CN102809904A - 调色剂以及双组分显影剂 - Google Patents

调色剂以及双组分显影剂 Download PDF

Info

Publication number
CN102809904A
CN102809904A CN2012102418713A CN201210241871A CN102809904A CN 102809904 A CN102809904 A CN 102809904A CN 2012102418713 A CN2012102418713 A CN 2012102418713A CN 201210241871 A CN201210241871 A CN 201210241871A CN 102809904 A CN102809904 A CN 102809904A
Authority
CN
China
Prior art keywords
toner
particle
resin
mass parts
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102418713A
Other languages
English (en)
Other versions
CN102809904B (zh
Inventor
藤川博之
中村邦彦
小松望
盐足吉彬
大津刚
板仓隆行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanko Metal Industry Co ltd
Original Assignee
Sanko Metal Industry Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanko Metal Industry Co ltd filed Critical Sanko Metal Industry Co ltd
Publication of CN102809904A publication Critical patent/CN102809904A/zh
Application granted granted Critical
Publication of CN102809904B publication Critical patent/CN102809904B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08775Natural macromolecular compounds or derivatives thereof
    • G03G9/08782Waxes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0815Post-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0821Developers with toner particles characterised by physical parameters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0827Developers with toner particles characterised by their shape, e.g. degree of sphericity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

本发明涉及调色剂以及双组分显影剂。一种调色剂,该调色剂包括:至少含有粘结剂树脂和蜡的调色剂颗粒;和外部添加剂。所述调色剂的特征在于:调色剂颗粒用扫描探针显微镜测量的平均表面粗糙度(Ra)为1.0-30.0nm,并且该调色剂具有对于45体积%甲醇水溶液的5.0×10-3N/m以上至1.0×10-1N/m以下的表面张力指数(I),所述表面张力指数(I)通过由毛细管吸引时间法进行的测量并使用以下等式(1)计算:I=Pα/(A×B×106)等式(1),I:调色剂的表面张力指数(N/m),Pα:调色剂对于45体积%甲醇的水溶液的毛细管压力(N/m2),A:调色剂的比表面积(m2/g),B:调色剂的真密度(g/cm3)。

Description

调色剂以及双组分显影剂
本申请是中国专利申请200880122942.X的分案申请,原申请200880122942.X的申请日为2008年12月26日,其名称为“调色剂以及双组分显影剂”。
技术领域
本发明涉及调色剂和双组分显影剂,各调色剂和双组分显影剂用于电子照相系统、静电记录系统、静电印刷系统或调色剂喷射系统。
背景技术
显影系统如电子照相术分为包括单独使用调色剂的单组分显影系统和包括使用磁性载体和调色剂的混合物的双组分显影系统。
与单组分显影系统相比,双组分显影系统提供稳定的带电性并有利于保持长时间的高图像质量,这是因为以下原因:双组分显影系统包括磁性载体的使用,并因此使相对于调色剂的磁性载体的摩擦带电面积变宽。另外,由于磁性载体显示出向显影区域供给调色剂的高能力,因此经常使用双组分显影系统,特别是在高速机器中。
已知调色剂颗粒的表面特性影响调色剂的各种物理性质如带电性能。鉴于上述,通常进行以下设计:通过处理各调色剂颗粒的表面来改善调色剂的性能。例如,已知包括机械性平滑表面的方法(专利文献1和2)。
然而,通过机械表面处理实现的平滑性改进仍是有限的。已知用热风处理作为代替该处理的另外方法(专利文献3、4、5和6)。
虽然热风处理提供极高的表面平滑性并改善调色剂的性能,但在减少调色剂消耗量以及防止调色剂飞散方面,该处理仍可以改进。
另外,已知具有其不均匀度受控制的表面的球形化调色剂(专利文献7)。
虽然该调色剂已在带电性能、显影性能和转印性能方面达到兼容性,但当应用于高速机器时,调色剂仍在防止飞散和点再现性方面显示出不足的性能。
已提出将平均粒径为25μm以上至55μm以下并具有规定磁化强度的树脂涂布的磁性载体(专利文献8)以及具有体积磁化强度为20emu/cm3以上至60emu/cm3以下的磁性载体(专利文献9)作为用于双组分显影剂的磁性载体。
在各这些提案中,公开了使显影剂承载构件上的磁性载体的穗(naps)密集,以改善图像承载构件上静电潜像的点再现性,并在常温、常湿(温度为25℃和湿度为50%RH)环境下的耐久试验过程中达到良好显影性能。然而,在防止飞散,以及在高温、高湿环境(温度为32.5℃和湿度为80%RH)下的耐久试验时的显影性能和点再现性方面,各磁性载体仍可以改进。
如上所述,已做出各种提案,但在减少调色剂消耗量、防止飞散以及在高温、高湿环境(温度为32.5℃和湿度为80%RH)下的耐久试验时的显影性能和点再现性方面,各提案仍可以改善。因此,需要能够解决这些问题的各调色剂和双组分显影剂。
专利文献1:JP 02-87157A
专利文献2:JP 07-181732A
专利文献3:JP 11-295929A
专利文献4:JP 2003-162090A
专利文献5:JP2003-270856A
专利文献6:JP2004-138691A
专利文献7:JP2004-246344A
专利文献8:JP2002-91090A
专利文献9:JP09-281805A
发明内容
本发明要解决的问题
本发明的目的是提供已解决上述问题的各调色剂和双组分显影剂。即,目的是提供各自具有如下特征的调色剂和双组分显影剂:各调色剂和双组分显影剂具有优异转印性能,能实现调色剂消耗量的减少,并具有优异飞散特性以及在高温、高湿环境(温度为32.5℃和湿度为80%RH)下的耐久试验时具有优异的显影性能和点再现性。
用于解决问题的方案
本发明人认为通过使调色剂颗粒各表面的表面粗糙度(Ra)和调色剂的表面张力指数满足预定范围能够实现上述目的。由此,发明人完成了本发明。即,本发明如下所述。
本发明涉及调色剂,该调色剂包括:各自至少包含粘结剂树脂和蜡的调色剂颗粒;和外部添加剂,其中调色剂颗粒表面用扫描探针显微镜测量的平均表面粗糙度(Ra)为1.0nm以上至30.0nm以下;并且调色剂对于45体积%甲醇水溶液的表面张力指数I为5.0×10-3N/m以上至1.0×10-1N/m以下,该表面张力指数I通过毛细管吸引时间法测量并用以下等式(1)计算:
I=Pα/(A×B×106)    等式(1)
其中I表示调色剂的表面张力指数(N/m),Pα表示调色剂对于45体积%甲醇水溶液的毛细管压力(N/m2),A表示调色剂的比表面积(m2/g)以及B表示调色剂的真密度(g/cm3)。
另外,本发明涉及包括磁性载体和所述调色剂的双组分显影剂。
发明的效果
根据本发明的优选实施方式,可提供各自具有如下特征的调色剂和双组分显影剂:各调色剂和双组分显影剂具有优异的转印性能,能实现调色剂消耗量的减少,并具有优异飞散特性以及在高温、高湿环境(温度为32.5℃和湿度为80%RH)下的耐久试验时具有优异的显影性能和点再现性。
附图说明
图1示出本发明的表面处理装置的轮廓截面图。
图2示出本发明的表面处理装置中调色剂供给口和气流喷射构件的轮廓截面图。
附图标记说明
100:调色剂供给口
101:热风供给口
102:气流喷射构件
103:冷风供给口
104:第二冷风供给口
106:冷却套管
110:扩散风
111:用于防止冷凝的气流供给口
112:具有多个空穴的扩散构件
114:调色剂
115:高压空气供给喷嘴
116:输送管
具体实施方式
本发明的调色剂包括:各自至少包含粘结剂树脂和蜡的调色剂颗粒;和外部添加剂,其中调色剂颗粒表面用扫描探针显微镜测量的平均表面粗糙度(Ra)为1.0nm以上至30.0nm以下;并且调色剂对于45体积%甲醇水溶液的表面张力指数I为5.0×10-3N/m以上至1.0×10-1N/m以下,该表面张力指数I通过毛细管吸引时间法测量并用以下等式(1)计算:
I=Pα/(A×B×106)    等式(1)
其中I表示调色剂的表面张力指数(N/m),Pα表示调色剂对于45体积%甲醇水溶液的毛细管压力(N/m2),A表示调色剂的比表面积(m2/g)以及B表示调色剂的真密度(g/cm3)。
在本发明的调色剂中,调色剂颗粒表面用扫描探针显微镜测量的平均表面粗糙度(Ra)为1.0nm以上至30.0nm以下。另外,调色剂颗粒表面的平均表面粗糙度(Ra)优选2.0nm以上至25.0nm以下,并更优选3.0nm以上至20.0nm以下。
当调色剂颗粒表面的平均表面粗糙度(Ra)落入上述范围内时,调色剂具有优异的转印性能,能实现调色剂消耗量的减少,并在高温、高湿环境(温度为32.5℃和湿度为80%RH)下的耐久试验时具有优异的显影性能和点再现性。调色剂颗粒表面的平均表面粗糙度(Ra)落入上述范围内的情况表示调色剂颗粒各自具有平滑表面。当各调色剂颗粒的表面平滑时,外部添加剂可以均匀地存在于各调色剂颗粒的表面上,因此调色剂显示出清晰的带电分布。因此,可产生上述效果。
当带电分布清晰时,例如,由于在各显影步骤和转印步骤中有利于各调色剂的移动,所以可实现调色剂消耗量的降低。
另外,当调色剂颗粒表面的平均表面粗糙度(Ra)落入以上范围内时,调色剂带电的上升极迅速,因此调色剂从高温、高湿环境下的耐久试验的初始阶段能够保持良好的显影性能。
当调色剂颗粒表面的平均表面粗糙度(Ra)小于1.0nm时,调色剂的带电性能变得如此高,以致易于发生由充电引起的浓度降低。
另一方面,当调色剂颗粒表面的平均表面粗糙度(Ra)大于30.0nm时,各调色剂颗粒表面上的外部添加剂的分布变化,因此调色剂的带电分布也变化,并且调色剂的消耗量增加。另外,在高温、高湿环境下,调色剂充电变慢,带电分布的变化变得格外大,图像浓度的降低和雾化变得显著,并且点再现性劣化。
可通过在制造调色剂时用热或机械冲击力处理表面来调整上述调色剂颗粒表面的平均表面粗糙度(Ra)以落入上述范围内。
在本发明的调色剂中,调色剂颗粒表面的用扫描探针显微镜测量的粗糙度的十点高度(Rz)优选10nm至1,000nm以下,更优选20nm以上至900nm以下,或特别优选30nm以上至800nm以下。
上述调色剂颗粒表面的粗糙度的十点高度(Rz)优选落入上述范围内,其原因如下:降低进入调色剂凹陷部的外部添加剂的量,因此增加了各调色剂颗粒表面上有效外部添加剂的量,并使带电分布变得清晰。
上述调色剂颗粒表面的粗糙度的十点高度(Rz)可通过生产调色剂时机械或热处理表面来调整至上述范围内。
本发明中,上述调色剂颗粒表面的平均表面粗糙度(Ra)和粗糙度的十点高度(Rz)用扫描探针显微镜测量。稍后将描述关于测量的细节。
另外,本发明的调色剂对于45体积%甲醇水溶液的表面张力指数为5.0×10-3N/m以上至1.0×10-1Nm以下,该表面张力指数通过毛细管吸引时间法测量并用以下等式(1)计算:
I=Pα/(A×B×106)    等式(1)
其中I表示调色剂的表面张力指数(N/m),Pα表示调色剂对于45体积%甲醇水溶液的毛细管压力(N/m2),A表示调色剂的比表面积(m2/g)以及B表示调色剂的真密度(g/cm3)。调色剂的表面张力指数I优选为5.0×10-3N/m以上至7.5×10-2N/m以下并更优选5.0×10-3N/m以上至5.0×10-2N/m以下。
上述调色剂的表面张力指数表示使调色剂表面疏水的程度,并且它是大部分取决于各调色剂颗粒表面的疏水性影响以及外部添加剂影响的指数。表面张力指数越大,使调色剂表面疏水的程度越大。应当注意,本发明中规定的表面张力指数是由使甲醇渗入调色剂表面细微结构而施加的压力计算的指数。因此,考虑到比常规疏水性评价情况中更细微的结构,特别是各调色剂颗粒表面上细微凹凸的影响时,表面张力指数的使用允许其评价调色剂的疏水性。
当上述调色剂的表面张力指数为5.0×10-3N/m以上至1.0×10-1N/m以下时,外部添加剂与各调色剂颗粒的粘合力粘合力是适度的,因此可抑制外部添加剂从各调色剂颗粒表面的游离。结果,即使在调色剂收到高应力如高速机器的显影设备的情况下,也能改善在高温、高湿环境(温度为32.5℃和湿度为80%RH)下的耐久试验时调色剂的显影性能。另外,即使当转印步骤在高接触压力下进行时,也能减轻调色剂的飞散。
本发明的调色剂中,上述调色剂颗粒表面的平均表面粗糙度(Ra)满足上述范围,因此外部添加剂以匀均匀的状态分布。另外,上述调色剂的表面张力指数满足上述范围,因此使调色剂表面疏水的比率是高的并且落入适度范围内。因此,可获得上述效果。
另外,用例如偶联剂进行疏水处理的细粉特别优选用作外部添加剂,这是因为抑制外部添加剂游离的程度扩大在另外改善上述效果方面是有效的。
换句话说,当外部添加剂均匀且稳定地存在于调色剂表面时,以低比率疏水化的调色剂的量降低,因此调色剂间的粘合力变得均匀。结果,即使当转印步骤在高接触压力下进行时,也可以趋于减轻调色剂的飞散。
当上述调色剂的表面张力指数超过1.0×10-1N/m时,使调色剂表面疏水化的比率变得极高,因此调色剂的带电分布变宽。结果,在高温、高湿环境下发生图像浓度的降低或雾化。此外,当表面张力指数由于大量蜡溶出调色剂表面而增加时,存在转印效率下降,或由于蜡粘合到特定构件而发生的调色剂带电性能降低的可能性。另外,可能发生调色剂融着到特定构件。
另一方面,当上述调色剂的表面张力指数低于5.0×10-3N/m时,外部添加剂粘着对于各调色剂颗粒的粘合力降低,因此外部添加剂易于从调色剂表面脱附。因此,当转印步骤在高接触压力进行时调色剂的飞散变得显著,或者调色剂的带电性能降低。结果,在高温、高湿环境下图像浓度的降低和雾化变得显著。
本发明中,可通过使调色剂表面进行疏水处理来调节调色剂的表面张力指数以落入上述范围。
用于上述疏水处理的方法是例如,包括用已知疏水物质(处理剂)处理调色剂表面的方法。偶联剂或用偶联剂处理的细粒、蜡、油、清漆(varnish)或有机化合物等可用作处理剂。
具体方法如下:当用热风进行调色剂表面处理时用蜡使各调色剂颗粒表面疏水化。应当注意本发明不局限于上述方法。
当调色剂表面用热风处理时,如果在调色剂表面施加过多热量,有时大量蜡迁移至各调色剂颗粒的表面,或者蜡的分布情况变得不均匀。因此,可通过控制调色剂生产条件如热风温度和冷风温度来控制蜡溶出量以及蜡分布,期望调整调色剂的表面张力指数以落入上述范围内。
为了可以控制蜡溶出至各调色剂颗粒表面的量以及蜡在表面的分布,分散于上述调色剂颗粒中的蜡优选平均一次分散粒径为0.01μm以上至1.00μm以下。平均一次分散粒径更优选0.05μm以上至0.80μm以下,或特别优选0.10μm以上至0.60μm以下。
当蜡的平均一次分散粒径落入上述范围内时,在用热风进行表面处理的情况下,可改善控制蜡至各调色剂颗粒表面的迁移速率的容易性,因此可抑制蜡不均匀、过量的溶出。另外,蜡均匀地分散于各调色剂颗粒中,因此使蜡均匀地溶出至调色剂表面,并稳定调色剂的带电量。
上述分散于调色剂颗粒中的蜡的平均一次分散粒径可通过如下方法调整至落入上述范围内:控制待用粘结剂树脂的种类和组合,待用蜡的种类和添加量,以及此外,生产调色剂时的捏合步骤和冷却步骤的条件。具体地,优选将具有通过乙烯基类树脂组分和碳氢化合物之间反应所得结构的聚合物与蜡一起进一步地引入各调色剂颗粒。
具有其中聚烯烃接枝到乙烯基类树脂组分的结构的接枝聚合物,或具有其中乙烯基类单体与聚烯烃进行接枝聚合反应的乙烯基类树脂组分的接枝聚合物特别优选用作上述具有通过乙烯基类树脂组分和碳氢化合物之间反应所得结构的聚合物。
将上述具有通过乙烯基类树脂组分和碳氢化合物之间反应所得结构的聚合物作为用于生产调色剂时在捏合步骤或表面平滑步骤中熔融的粘结剂树脂和蜡的表面活性剂。因此,该聚合物是优选的,因为该聚合物可以控制:调色剂颗粒中蜡的平均一次分散粒径;和在用热风进行表面处理时蜡至调色剂表面的迁移速率。
上述具有其中聚烯烃接枝到乙烯基类树脂组分的结构的接枝聚合物,或具有其中乙烯基类单体与聚烯烃进行接枝聚合反应的乙烯基类树脂组分的接枝聚合物没有特别限定,只要聚烯烃是具有一个双键的不饱和烃类单体的聚合物或共聚物即可,并且可使用各种聚烯烃的任一种;特别优选使用聚乙烯类聚烯烃或聚丙烯类聚烯烃。
另一方面,作为乙烯基类单体,可例举下列化合物。
苯乙烯类单体如苯乙烯、邻甲基苯乙烯、间甲基苯乙烯、对甲基苯乙烯、对甲氧基苯乙烯、对苯基苯乙烯、对氯苯乙烯、3,4-二氯苯乙烯、对乙基苯乙烯、2,4-二甲基苯乙烯、对-正丁基苯乙烯、对-叔丁基苯乙烯、对-正己基苯乙烯、对-正辛基苯乙烯、对-正壬基苯乙烯、对-正癸基苯乙烯、对-正十二烷基苯乙烯以及它们的衍生物。
含氮原子的乙烯基类单体包括含氨基的α-亚甲基脂肪族单羧酸酯如二甲基氨乙基甲基丙烯酸酯、二乙基氨乙基甲基丙烯酸酯;以及丙烯酸或甲基丙烯酸衍生物如丙烯腈、甲基丙烯腈和丙烯酰胺。
实例还包含:含羧基的乙烯基类单体包括不饱和二元酸如马来酸、柠康酸、衣康酸、烯基琥珀酸、富马酸和中康酸;不饱和二元酸酐如马来酸酐、柠康酸酐、衣康酸酐和烯基琥珀酸酐;不饱和二元酸半酯如马来酸甲基半酯、马来酸乙基半酯、马来酸丁基半酯、柠康酸甲基半酯、柠康酸乙基半酯、柠康酸丁基半酯、衣康酸甲基半酯、烯基琥珀酸甲基半酯、富马酸甲基半酯和中康酸甲基半酯;不饱和二元酸酯如二甲基马来酸酯和二甲基富马酸酯;α,β-不饱和酸如丙烯酸、甲基丙烯酸、巴豆酸和肉桂酸;α,β-不饱和酸酐如巴豆酸酐和肉桂酸酐以及α,β-不饱和酸和低脂肪酸的酐;烯基丙二酸、烯基戊二酸和烯基己二酸及这些酸的酐和单酯。
实例进一步包含:含羟基的乙烯基类单体,包括丙烯酸酯类或甲基丙烯酸酯类,如丙烯酸2-羟乙酯、甲基丙烯酸2-羟乙酯和甲基丙烯酸2-羟丙酯;和4-(1-羟基-1-甲丁基)苯乙烯和4-(1-羟基-1-甲己基)苯乙烯。
由丙烯酸酯类形成的酯单元包括丙烯酸酯如丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丁酯、丙烯酸异丁酯、丙烯酸丙酯、丙烯酸正辛脂、丙烯酸十二酯、丙烯酸2-乙基己酯、硬脂丙烯酸硬脂酯、丙烯酸2-氯乙酯和丙烯酸苯酯。
由甲基丙烯酸酯形成的酯单元包括α-亚甲基脂肪族单羧酸酯如甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸正丁酯、甲基丙烯酸异丁酯、甲基丙烯酸正辛酯、甲基丙烯酸十二酯、甲基丙烯酸2-乙基己酯、硬脂甲基丙烯酸硬脂酯、甲基丙烯酸苯酯、甲基丙烯酸二甲基氨乙酯和甲基丙烯酸二乙基氨乙酯。
具有通过乙烯基类树脂组分和碳氢化合物之间反应所得结构的聚合物可通过已知方法,该已知方法例如上述那些聚合物用单体之间的反应或一种聚合物用单体与另外一种聚合物之间的反应。
乙烯基类树脂组分优选包含作为构成单元的苯乙烯类单元以及此外的丙烯腈或甲基丙烯腈。
在上述聚合物中碳氢化合物与乙烯基类树脂组分间的质量比优选为1/99至75/25。为了使蜡能够有利地分散于各调色剂颗粒中,碳氢化合物和乙烯基类树脂组分优选以上述范围内的比率使用。
上述具有通过乙烯基类树脂组分与碳氢化合物之间反应所得结构的聚合物的含量优选为0.2质量份以上至20质量份以下,相对于100质量份的粘结剂树脂。为了使蜡能够有利地分散于各调色剂颗粒中,上述聚合物优选以上述范围内的含量使用。
本发明的调色剂中,在上述调色剂表面的蜡的丰度优选为60%以上至100%以下,更优选为70%以上至98%以下,或再更优选为80%以上至95%以下。
上述调色剂表面上蜡的丰度可通过调色剂材料间的组成比和由X射线光电子分光计(ESCA)测量的调色剂表面元素浓度计算确定。
例如,假定从用于调色剂的粘结剂树脂的树脂组成确定的元素浓度为“碳[C]80原子%、氧[O]20原子%”,从用于调色剂的蜡(如碳氢化合物蜡)的组成中确定的元素浓度为“碳[C]100原子%、氧[O]0原子%”以及由X射线光电子分光分析(ESCA)测量的元素浓度为“碳[C]97原子%、氧[O]3原子%”。这种情况下,由以下等式计算出的调色剂表面上蜡的丰度为85(%)。
(等式):{(20-3)/20}×100=85(%)
例如,假定从用于调色剂的粘结剂树脂的树脂组成确定的元素浓度为“碳[C]80原子%、氧[O]20原子%”,从用于调色剂的蜡(如酯蜡)的组成中确定的元素浓度为“碳[C]95原子%、氧[O]5原子%”以及由X射线光电子分光分析(ESCA)测量的元素浓度为“碳[C]93原子%、氧[O]7原子%”。在这种情况下,由以下等式计算出的调色剂表面上蜡的丰度为87%。
(等式):{(20-7)/(20-5)}×100=87(%)
上述调色剂表面上蜡的丰度优选为60%以上至100%以下,这是因为材料均与地分布于调色剂表面的程度高,由此使调色剂的带电性能变得均匀。上述调色剂表面上蜡的丰度可通过控制表面处理时的处理条件、要使用的蜡的种类和量以及分散于调色剂颗粒中的蜡的平均一次分散粒径而调整落入上述范围内。
关于用流式颗粒图像测量设备(针对于圆当量直径为2.00μm以上至200.00以下颗粒、具有图象处理分辨率为512×512像素(每个像素为0.37μm乘0.37μm)的流式颗粒图像测量设备)测量的圆形度分布,本发明的调色剂优选平均圆形度为0.950以上至1.000以下。平均圆形度更优选0.955以上至0.990以下,或特别优选0.960以上至0.985以下。将调色剂的平均圆形度设定至上述范围内意指调色剂凹凸部的数量减少。特别地,由于调色剂凹陷部数量的减少使外部添加剂进入凹陷部的量减少,由此使外部添加剂从调色剂表面脱附的量减少。结果,调色剂的带电分布变得的清晰,因此调色剂的消耗量可额外地降低,并且可抑制外部添加剂的脱附。因此,可得到在高温、高湿环境下的耐久试验中的显影性能格外优异的调色剂。
上述调色剂的平均圆形度可通过处理各调色剂颗粒的表面而调整落入上述范围内。
可用如加热或机械冲击力来处理的各调色剂颗粒表面更优选用热风处理。在任何此类表面处理方法中,各调色剂颗粒的表面覆盖有内部添加至所述颗粒的蜡,而调色剂颗粒的边缘用加热或机械冲击力除去。另外,优选如下方法:在调色剂颗粒扩散于空气中的状态下,使调色剂颗粒瞬间处于高温热风中,并随即用冷风瞬时冷却颗粒。上述冷风优选除湿冷风,特别是绝对湿度为5g/m3以下的冷风。
上述方法可以在不向调色剂颗粒施加过量热的情况下均匀地处理调色剂颗粒的表面。另外,该方法可以仅处理各调色剂颗粒的表面,而防止原料组分的改变。结果,可以防止过量蜡迁移至各调色剂颗粒表面以及蜡的不均匀迁移。稍后将描述关于上述用热风的表面处理的细节。
本发明的调色剂的重均粒径(D4)优选为3.0μm以上至8.0μm以下,更优选为4.0μm以上至7.0μm以下,或特别优选为4.5μm以上至6.5μm以下。从另外改善点再现性和转印效率的角度,调色剂的重均粒径(D4)设定在上述范围内是优选措施。调色剂的重均粒径(D4)可通过在制造调色剂的特定阶段分级调色剂颗粒来调整。
作为用于本发明调色剂的粘结剂树脂,可使用已知树脂。其实例包括:聚苯乙烯、苯乙烯衍生物的均聚物如聚乙烯基甲苯;苯乙烯类共聚物如苯乙烯-丙烯共聚物、苯乙烯-乙烯基甲苯共聚物、苯乙烯-乙烯基萘共聚物、苯乙烯-丙烯酸甲酯共聚物、苯乙烯-丙烯酸乙酯共聚物、苯乙烯-丙烯酸丁酯共聚物、苯乙烯-丙烯酸辛酯共聚物、苯乙烯-丙烯酸二甲氨基乙酯共聚物、苯乙烯-甲基丙烯酸甲酯共聚物、苯乙烯-甲基丙烯酸乙酯共聚物、苯乙烯-甲基丙烯酸丁酯共聚物、苯乙烯-甲基丙烯酸辛酯共聚物、苯乙烯-甲基丙烯酸二甲氨基乙酯共聚物、苯乙烯-乙烯基甲基醚共聚物、苯乙烯-乙烯基乙基醚共聚物、苯乙烯-乙烯基甲基酮共聚物、苯乙烯-丁二烯共聚物、苯乙烯-异戊二烯共聚物、苯乙烯-马来酸共聚物、苯乙烯-马来酸酯共聚物、聚甲基丙烯酸甲酯、聚甲基丙烯酸丁酯、聚乙酸乙烯酯、聚乙烯、聚丙烯、聚乙烯醇缩丁醛、硅酮树脂、聚酯树脂、其中苯乙烯类聚合物单元和聚酯单元化学键合的杂化树脂、聚酰胺树脂、环氧树脂、聚丙烯酸类树脂、松香、改性的松香、萜烯树脂、酚醛树脂、脂肪族或脂环烃树脂和芳族石油树脂。这些化合物可单独或以混合物使用。
这些中,包含苯乙烯类共聚物和/或聚酯单元的树脂优选用作粘结剂树脂。
作为用于苯乙烯类共聚物的可聚合单体的实例,例举如下:苯乙烯;苯乙烯衍生物如邻甲基苯乙烯、间甲基苯乙烯、对甲基苯乙烯、α-甲基苯乙烯、对苯基苯乙烯、对乙基苯乙烯、2,4-二甲基苯乙烯、对正丁基苯乙烯、对叔丁基苯乙烯、对正己基苯乙烯、对正辛基苯乙烯、对正壬基苯乙烯、对正癸基苯乙烯、对-正十二烷基苯乙烯、对甲氧基苯乙烯、对氯苯乙烯、3,4-二氯苯乙烯、间硝基苯乙烯、邻硝基苯乙烯和对硝基苯乙烯;单烯烃如乙烯、丙烯、丁烯和异丁烯;多烯烃如丁二烯和异戊二烯;乙烯基卤化物如氯乙烯、二氯乙烯、溴乙烯和氟乙烯;乙烯基酯如乙酸乙烯酯;丙酸乙烯酯和苯甲酸乙烯酯;α-亚甲基脂肪族单羧酸酯如甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸正丁酯、甲基丙烯酸异丁酯、甲基丙烯酸正辛酯、甲基丙烯酸十二酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸硬脂酯、甲基丙烯酸苯酯、甲基丙烯酸二甲氨基乙酯和甲基丙烯酸二乙氨基乙酯;丙烯酸酯类如丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙酯、丙烯酸正丁酯、丙烯酸异丁酯、丙烯酸正辛酯、丙烯酸十二酯、丙烯酸2-乙基己酯、丙烯酸硬脂酯、丙烯酸2-氯乙酯和丙烯酸苯酯;乙烯醚如乙烯基甲基醚、乙烯基乙基醚和乙烯基异丁基醚;乙烯基酮类如乙烯基甲基酮、乙烯基己基酮和甲基异丙烯基酮;N-乙烯基化合物如N-乙烯基吡咯、N-乙烯基咔唑、N-乙烯基吲哚和N-乙烯吡咯烷酮;乙烯基萘;和丙烯酸酯或甲基丙烯酸酯衍生物如丙烯腈、甲基丙烯腈和丙烯酰胺。
实例还包含:不饱和二元酸如马来酸、柠康酸、衣康酸、烯基琥珀酸、富马酸和中康酸;不饱和二元酸酐如马来酸酐、柠康酸酐、衣康酸酐和烯基琥珀酸酐;不饱和二元酸半酯如马来酸甲基半酯、马来酸乙基半酯、马来酸丁基半酯、柠康酸甲基半酯、柠康酸乙基半酯、柠康酸丁基半酯、衣康酸甲基半酯、烯基琥珀酸甲基半酯、富马酸甲基半酯和中康酸甲基半酯;不饱和二元酸酯如二甲基马来酸酯和二甲基富马酸酯;α,β-不饱和酸如丙烯酸、甲基丙烯酸、巴豆酸和肉桂酸;α,β-不饱和酸酐如丁烯酸酐和肉桂酸酐以及α,β-不饱和酸和低脂肪酸的酐;以及各自具有羧基的单体如烯基丙二酸、烯基戊二酸和烯基己二酸及这些酸的酐和单酯。
实例进一步包含:丙烯酸酯类或甲基丙烯酸酯类如丙烯酸2-羟乙酯、甲基丙烯酸2-羟乙酯和甲基丙烯酸2-羟丙酯;和各自具有羟基的单体如4-(1-羟基-1-甲基丁基)苯乙烯和4-(1-羟基-1-甲基己基)苯乙烯。
上述粘结剂树脂优选包含至少具有聚酯单元的树脂;在所有粘结剂树脂中具有聚酯单元的树脂更优选占所有粘结剂树脂的50质量%以上,或特别优选70质量%以上。为了可以获得具有表面张力指数在上述特定范围内的调色剂,在所有粘结剂树脂中具有聚酯单元的树脂优选占所有粘结剂树脂的50质量%以上。
上述术语“聚酯单元”意指源自聚酯的部分,并且具有聚酯单元的树脂的实例包括聚酯树脂和杂化树脂。构成聚酯单元的组分具体为二元以上的醇单体组分和如二价以上羧酸、二价以上羧酸酸酐或二价以上羧酸酯等的酸单体组分。
作为二元以上醇单体组分的实例,可例举如下。
二元醇单体组分的实例包括:双酚A的氧化烯加合物如聚氧化丙烯(2.2)-2,2-双(4-羟苯基)丙烷、聚氧化丙烯(3.3)-2,2-双(4-羟苯基)丙烷、聚氧乙烯(2.0)-2,2-双(4-羟苯基)丙烷、聚氧化丙烯(2.0)-聚氧乙烯(2.0)-2,2-双(4-羟苯基)丙烷和聚氧化丙烯(6)-2,2-双(4-羟苯基)丙烷;乙二醇;二乙二醇;三甘醇;1,2-丙二醇;1,3-丙二醇;1,4-丁二醇;新戊基二醇;1,4-丁二醇;1,5-戊二醇;1,6-己二醇;1,4-环己烷二甲醇;双丙甘醇;聚乙二醇;聚丙二醇;聚丁二醇;双酚A;和氢化双酚A。
三元以上醇单体组分的实例包括山梨醇、1,2,3,6-己基四醇(1,2,3,6-hexanetetrol)、1,4-脱水山梨糖醇、季戊四醇、二季戊四醇、三季戊四醇、1,2,4-丁三醇、1,2,5-戊三醇、丙三醇、2-甲基戊三醇、2-甲基-1,2,4-丁三醇、三羟甲基乙烷、三羟甲基丙烷和1,3,5-三羟基甲苯。
二价羧酸单体组分的实例包括芳族二羧酸如苯二甲酸、间苯二酸和对苯二甲酸及其酸酐;烷基二羧酸如琥珀酸、己二酸、癸二酸和壬二酸或其酸酐;用6至18个碳原子的烷基或链烯基取代的琥珀酸或其酸酐;以及不饱和二羧酸如苯二甲酸、马来酸和柠康酸,或其酸酐。
三价以上羧酸的单体组分的实例包括多价羧酸如苯三酸、苯四酸、二苯酮四羧酸及其酸酐。
另外其它单体的实例包括多元醇如酚醛清漆型酚醛树脂的氧化烯醚(oxyalkylene ether)。
此外,作为用于本发明调色剂的蜡,例举如下。
脂族烃蜡如低分子量聚乙烯、低分子量聚丙烯、亚烷基共聚物、微晶蜡、石蜡和费-托蜡(Fischer-Tropsch wax);脂肪族烃蜡氧化物如聚环氧乙烷蜡或脂族烃蜡氧化物的嵌段共聚物;含脂肪族酯作为主要组分的蜡如巴西棕榈蜡(carnauba wax)、山萮酸山萮醇蜡(behenic acid behenyl wax)和褐煤酯蜡;以及包含部分或全部脱氧脂肪族酯的蜡如脱氧巴西棕榈蜡。
另外,直链饱和脂肪酸如棕榈酸、硬脂酸和褐煤蜡酸;不饱和脂肪酸如巴西烯酸、桐油酸和帕里拉油酸(barinarin acid);饱和醇如硬脂醇、芳烷基醇、山萮醇、二十四烷醇、二十六烷醇和三十烷醇;多元醇如山梨醇;脂肪酸如棕榈酸、硬脂酸、山萮酸和褐煤蜡酸和醇如硬脂醇、芳烷基醇、山萮醇、二十四烷醇、二十六烷醇和三十烷醇的酯;脂肪酰胺如亚油酸酰胺、油酸酰胺和月桂酰胺;饱和脂肪族双酰胺如亚甲基双二烷硬脂酰胺、亚乙基双癸酰胺、亚乙基双月桂酰胺和六亚甲基双硬酯酰胺;不饱和脂肪族胺如亚乙基双油酸酰胺、六亚甲基双油酸酰胺、N,N'-二油基己二酰二胺和N,N'-二油基癸二酰胺;芳香双酰胺如间二甲苯双硬脂酰胺和N-N'-二硬脂基间苯二甲醯亚胺;脂肪酸金属盐(通常称为金属皂)如硬脂酸钙、月桂酸钙、硬脂酸锌和硬脂酸镁;其中脂族烃蜡用乙烯基类单体如苯乙烯和丙烯酸类接枝的接枝蜡;脂肪酸和聚醇部分酯化的化合物如山萮酸单甘油酯;以及通过氢化植物油所得具有羧基的甲基酯化合物。
可特别优选使用的蜡的实例包括作为脂肪酸和醇的酯的脂族烃蜡和酯化化合物。上述实例包括以下化合物:通过高压下使亚烷基进行自由基聚合或通过借助利用齐格勒(Ziegler)催化剂或金属茂催化剂在减压下聚合亚烷基所得低分子量亚烷基聚合物;通过高分子量亚烷基聚合物的热分解所得亚烷基聚合物;以及从烃蒸馏时由残余物所得合成烃蜡,所述烃通过老化(Age)法从含一氧化碳和氢气的合成气体获得,和通过该烃蒸馏残余物氢化所得合成烃蜡。此外,还优选使用石蜡。
另外,用于本发明调色剂的蜡,在通过示差扫描量热法(DSC)装置测量的加热时的吸热曲线中,具有在30℃以上至200℃以下范围内,优选45℃以上至140℃以下范围内,更优选65℃以上至120℃以下范围内,以及特别优选65℃以上至100℃以下的温度中存在最大吸热峰处的峰温度。
当蜡在最大吸热峰处的峰温度优选为45℃以上至140℃以下范围内时,可获得良好的固着性。
蜡的含量优选3质量份以上至20质量份以下,更优选3质量份以上至15质量份以下,并再更优选3质量份以上至10质量份以下,相对于100质量份的粘结剂树脂。
本发明的调色剂的主峰值分子量,在通过调色剂的四氢呋喃(THF)可溶性物质的凝胶渗透色谱法(GPC)测量的分子量分布中,具有优选2,000以上至15,000以下,并更优选2,500以上至13,000以下的分子量。另外,重均分子量(Mw)/数均分子量(Mn)优选为3.0以上并更优选5.0以上。此外,Mw/Mn优选为1,000以下。
上述主峰值分子量和Mw/Mn优选满足上述范围,这是由于以下原因:在调色剂的低温固着性和耐热污损性之间能够达到良好的相容性,并且当用热风进行表面处理时,可有效地进行处理并可有利地防止调色剂颗粒的聚结(coalescence)。
本发明的调色剂优选具有40℃以上至90℃以下的玻璃化转变温度(Tg)以及80℃以上至150℃以下的软化温度(Tm),这是由于以下原因:可实现在保存稳定性、低温固着性以及耐热污损性间的相容性,并且当用热风进行表面处理时,可顺利地防止调色剂的聚结。
根据本发明的调色剂颗粒通过在各颗粒中引入磁性物质可转化为磁性调色剂颗粒。当引入磁性物质以使调色剂可用作磁性调色剂时,磁性物质也可用作着色剂。
磁性物质的实例包含:氧化铁如磁铁矿、磁赤铁矿和铁素体;和磁性金属如铁、钴和镍和这些磁性金属与金属如铝、钴、铜、铅、镁、锡、锌、锑、铍、铋、镉、钙、锰、硒、钛、钨或钒的金属合金,及其混合物。
磁性物质的数均粒径为2.00μm以下并优选0.05μm以上至0.50μm以下。调色剂中引入的磁性物质的含量优选20质量份以上至200质量份以下,相对于100质量份的粘结剂树脂,并特别优选40质量份以上至150质量份以下,相对于100质量份的粘结剂树脂。
另外,根据本发明的调色剂颗粒可包含以下颜料以用作非磁性调色剂颗粒。颜料的具体实例包括以下物质。
品红色用着色颜料的实例包括以下。
例举缩合偶氮化合物、二酮吡咯并吡咯化合物、蒽醌、喹吖啶酮化合物、碱性染料的色淀化合物、萘酚化合物、苯并咪唑酮化合物、硫靛化合物以及二萘嵌苯化合物。
具体实例包括以下:C.I.颜料红1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、21、22、23、30、31、32、37、38、39、40、41、48:2、48:3、48:4、49、50、51、52、53、54、55、57:1、58、60、63、64、68、81:1、83、87、88、89、90、112、114、122、123、144、146、150、163、166、169、177、184、185、202、206、207、209、220、221、238、254和269;C.I.颜料紫19;以及C.I.瓮红1、2、10、13、15、23、29和35。另外,也可使用如下颜料。
作为品红色调色剂用染料,例举如下:油溶染料如C.I.溶剂红1、3、8、23、24、25、27、30、49、81、82、83、84、100、109和121;C.I.分散红9;C.I.溶剂紫8、13、14、21和27;C.I.分散紫1;和碱性染料如C.I.碱性红1、2、9、12、13、14、15、17、18、22、23、24、27、29、32、34、35、36、37、38、39和40;C.I.碱性紫1、3、7、10、14、15、21、25、26、27和28。
作为青色用着色颜料,例举如下:C.I.颜料蓝1、2、3、7、15:2、15:3、15:4、16、17、60、62和66;C.I.瓮蓝6;C.I.酸性蓝45,以及酞菁骨架用1至5个邻苯二甲胺甲基取代的铜酞菁颜料。
作为黄色用着色颜料,例举如下:缩合的偶氮化合物、异吲哚啉化合物、蒽醌化合物、偶氮金属化合物、次甲基化合物或烯丙基酰胺(allylamide)化合物。具体实例包括以下:C.I.颜料黄1、2、3、4、5、6、7、10、11、12、13、14、15、16、17、23、62、65、73、74、83、93、95、97、109、110、111、120、127、128、129、147、155、168、174、180、181、185和191;以及C.I.瓮黄1、3和20。另外,也可使用染料如C.I.直接绿6、C.I.碱性绿4、C.I.碱性绿6和C.I.溶剂黄162。
例如,将炭黑或其颜色通过使用上述黄色用着色颜料、品红色用着色颜料和青色用着色颜料调整为黑色的着色剂用作黑色着色剂。
除上述磁性物质外的着色颜料等以优选0.1质量份以上至30.0质量份以下,更优选0.5质量份以上至25.0质量份以下,或最优选3.0质量份以上至20.0质量份以下的量使用,相对于100质量份的粘结剂树脂。
本发明的调色剂中,可使用已知的电荷控制剂以稳定调色剂的带电性能。虽然优选的量根据例如电荷控制剂的类型和任何调色剂其它组分的物理性质而变化,但电荷控制剂以优选0.1质量份以上至10.0质量份以下,或更优选0.1质量份以上至5.0质量份以下的量引入,相对于100质量份的调色剂的粘结剂树脂。已知此类电荷控制剂可分为用于控制调色剂以使调色剂可为负带电性的试剂以及用于控制调色剂以使调色剂可为正带电性的试剂,并且一种或两种以上的各电荷控制剂可根据调色剂类型和用途来使用。应注意可将电荷控制剂内部添加或外部添加至调色剂。
有机金属化合物、螯合物、在侧链具有磺酸或羧酸的聚合物型化合物有效地用作用于控制调色剂为负带电性的电荷控制剂。电荷控制剂的更具体的实例包括单偶氮金属化合物、乙酰丙酮金属化合物、芳香族碱式碳酸(aromatic hydroxycarbonate)的金属化合物、芳香族二碳酸盐(aromatic dicarbonate)的金属化合物和在侧链具有磺酸或羧酸的聚合物型化合物。其它电荷控制剂的实例包括:芳族碱式碳酸盐、芳族单碳酸盐(aromaticmonocarbonate)和芳族聚碳酸盐、其金属盐、酸酐和酯;以及苯酚衍生物如双酚。
还优选使用由如下通式(1)表示的偶氮类金属化合物。
[化学式1]
Figure BDA00001879637600221
式中,M表示配位中心金属,并且配位中心金属的实例包括S c、Ti、V、Cr、Co、Ni、Mn和Fe,Ar表示芳基如苯基或萘基,并且芳基可具有取代基如硝基、卤素基团、羧基、N-酰苯胺基或具有1至18个碳原子的烷基或烷氧基,X、X'、Y和Y'各自表示-O-、-CO-、-NH-或-NR-(其中R表示具有1至4个碳原子的烷基),以及抗衡离子(A+)为例如氢离子、钠离子、钾离子、铵离子、脂肪族铵离子或它们两种以上的混合物;条件是抗衡离子不是必需的,并可以不存在。
特别地,上述配位中心金属优选为Fe或Cr,芳基的取代基优选为卤素、烷基或N-酰苯胺基,以及抗衡离子(A+)优选为氢离子、碱金属离子、铵离子或脂肪族铵离子。还优选使用具有不同抗衡离子的化合物的混合物。
此外,其中金属元素配位和/或键合至由如下通式(2)表示的芳族羟基羧酸的金属化合物也赋予负带电性能,并因此可以适当地使用。
[化学式2]
通式(2)
通式(2)中,R1表示氢原子、烷基、芳基、芳烷基(alalkylgroup)、环烷基、烯基、烷氧基、芳氧基、羟基、酰氧基、烷氧羰基、芳氧羰基、酰基、羧基、卤素、硝基、氨基或氨基甲酰基、取代基R1可以彼此连接形成脂肪环、芳环或杂环,并且在该情况下,所述环可具有另外的取代基R1,取代基R1的数量可为1至8个,并且取代基可以彼此相同或不同。
上述配位和/或键合至芳族羟基羧酸的金属元素优选为Cr、Co、Ni、Mn、Fe、Zn、Al、B、Zr或Hf,或更优选Cr、Fe、Zn、Al、Zr或Hf。
由以下通式(3)表示的偶氮类铁化合物最优选用作由上述通式(1)表示的偶氮类金属化合物。
[化学式3]
Figure BDA00001879637600241
[式中:X1和X2各自表示氢原子、低级烷基、低级烷氧基、硝基或卤素原子,以及m和m'各自表示1至3的整数;
Y1至Y3各自表示氢原子、具有1至18个碳原子的烷基、具有2至18个碳原子的烯基、磺酰胺基、甲磺酰基、磺酸基、羧基酯基、羟基、具有1至18个碳原子的烷氧基、乙酰胺基、苯甲酰基、氨基或卤素原子,以及n和n'各自表示1至3的整数(在上述中,X2和X4、m和m'、Y1和Y3、n和n'或Y2和Y4可以彼此相同或不同);和
Figure BDA00001879637600242
表示铵离子、碱金属离子、氢离子或它们两个以上的混合离子。]
另外,以下示出由上述通式(3)表示的偶氮类铁化合物的具体实例。
[化学式4]
单偶氮铁化合物(1)
单偶氮铁化合物(2)
Figure BDA00001879637600252
单偶氮铁化合物(3)
[化学式5]
单偶氮铁化合物(4)
单偶氮铁化合物(5)
Figure BDA00001879637600262
单偶氮铁化合物(6)
Figure BDA00001879637600263
另一方面,作为用于控制调色剂为正带电性的电荷控制剂,可例举季铵盐、在侧链具有季铵盐的聚合物型化合物、胍化合物、咪唑化合物和三苯基甲烷化合物。
考虑到改善本发明调色剂的调色剂流动性能、转印性能和调色剂带电稳定性,用混合机如亨舍尔混合机(Henschel mixer)向调色剂颗粒中混入外部添加剂。作为外部添加剂可使用已知的外部添加剂并且优选使用下述细粉。其实例包括:氟类树脂粉末如偏二氟乙烯(fluorinated vinylidene)细粉和聚四氟乙烯细粉;氧化钛细粉;氧化铝细粉、二氧化硅细粉如湿法二氧化硅和干法二氧化硅;及其表面用硅烷化合物、有机硅化合物、钛偶联剂和硅油处理的细粉。
通过硫酸法、氯法或易挥发性钛化合物如醇钛、卤化钛和乙酰丙酮钛的低温氧化(热分解或水解)所得氧化钛细粉用作氧化钛细粉。可使用包含锐钛矿型、金红石型、它们的混合晶型和无定型的晶体体系中的任一种。
通过拜耳法(Bayer method)、改进的拜耳法、氯乙醇法、水中火花放电法、有机铝水解法、铝矾热分解法、碳酸铝铵热分解法或氯化铝火焰分解法所得氧化铝细粉用作氧化铝细粉。使用包括α、β、γ、δ、ξ、η、θ、κ、χ和ρ型、它们的混合晶体和无定型的晶体体系中的任一种;优选使用α、δ、γ或θ型、它们的混合晶体或无定型。
上述细粉的表面优选用例如偶联剂、硅油或有机硅化合物进行疏水处理。用于细粉表面疏水处理的方法是,例如包含用如有机硅化合物化学或物理处理表面的方法,该有机硅化合物与细粉反应或物理吸附至细粉。
作为有机硅化合物,例举如下:六甲基二硅氮烷、三甲基硅烷、三甲基氯硅烷、三甲基乙氧基硅烷、二甲基二氯硅烷、甲基三氯硅烷、烯丙基二甲基氯硅烷、烯丙基苯基二氯硅烷、苄基二甲基氯硅烷、溴甲基二甲基氯硅烷、α-氯乙基三氯硅烷、β-氯乙基三氯硅烷、氯甲基二甲基氯硅烷、三有机甲硅烷基硫醇、三甲基甲硅烷基硫醇、三有机甲硅烷基丙烯酸酯、乙烯基二甲基乙酰氧基硅烷、二甲基乙氧基硅烷、二甲基二甲氧基硅烷、二苯基二乙氧基硅烷、六甲基二硅氧烷、1,3-二乙烯基四甲基二硅氧烷、1,3-二苯基四甲基二硅氧烷和每分子中具有2至12个硅氧烷单元并且包含键合至位于各末端的单元内的硅上的羟基的二甲聚硅氧烷。可单独使用这些化合物中的一种或使用其以两种以上的混合物。
为了使上述表面张力指数可调整落入特定范围内,特别优选将上述进行疏水处理的细粉用作本发明调色剂中的外部添加剂。
从赋予特性的角度,上述外部添加剂通过基于氮吸附的BET法测量的比表面积优选为10m2/g以上,或更优选30m2/g以上。
外部添加剂以优选0.1质量份以上至8.0质量份以下,或更优选0.1质量份以上至4.0质量份以下的量添加,相对于100质量份的调色剂颗粒。
另外,从赋予流动性的角度,外部添加剂优选具有0.01μm以上至0.30μm以下的数均一次粒径(D1)。
另外,本发明的双组分显影剂的特征在于包含磁性载体和本发明的上述调色剂。利用本发明调色剂的双组分显影剂可提供具有改善的点再现性并具长期稳定的图像。
用于本发明的双组分显影剂的磁性载体优选具有相对于水的接触角为80°以上至125°以下。
当磁性载体相对于水的接触角落入上述范围内时,调色剂脱离与调色剂飞散之间的平衡变得特别良好,并能获得即使在高温、高湿环境(温度32.5℃、湿度80%RH)下的耐久试验时也能够有利地保持优异显影性能的双组分显影剂。
为了使上述磁性载体相对于水的接触角可控制落入上述范围内,磁性载体优选具有各核颗粒表面用树脂组分涂布的结构。
已知的载体核颗粒可用于上述磁性载体中。颗粒的具体实例包括:具有氧化或未氧化表面的铁粉;各自由如铁、锂、钙、镁、镍、铜、锌、钴、锰、铬或稀土元素制成的金属颗粒、各自由两种以上所述元素制成的合金颗粒或各自由任一种所述元素制成的氧化物颗粒;铁素体;以及通过在粘结剂树脂中分散磁性物质所得磁性物质分散的树脂载体(所谓的树脂载体)。
作为覆盖载体核颗粒表面的树脂组分,列举热塑树脂和固化树脂。
热塑性树脂的实例包括聚苯乙烯和丙烯酸类树脂如聚甲基丙烯酸甲酯和苯乙烯-丙烯酸共聚物、苯乙烯-丁二烯共聚物、乙烯-乙酸乙烯酯共聚物、氯乙烯、乙酸乙烯酯、聚偏二氟乙烯树脂、氟碳树脂、全氟碳树脂、溶剂-可溶性全氟碳树脂、聚乙烯醇、聚乙烯醇缩乙醛、聚乙烯吡咯烷酮、石油树脂、纤维素、纤维素衍生物如醋酸纤维素、硝酸纤维素、甲基纤维素、羟甲基纤维素、羟乙基纤维素和羟丙基纤维素、酚醛清漆树脂、低分子量聚乙烯、饱和烷基聚酯树脂、芳香族聚酯树脂如聚对苯二甲酸乙二酯和聚对苯二甲酸丁二酯、聚丙烯酸酯类、聚酰胺树脂、聚缩醛树脂、聚碳酸酯树脂、聚醚砜树脂、聚砜树脂、聚苯硫醚树脂和聚醚酮树脂。
固化树脂的实例包括酚醛树脂、改性酚醛树脂、马来树脂、醇酸树脂、环氧树脂、丙烯酸树脂、通过马来酐的缩聚反应所得不饱和聚酯、对苯二甲酸和多元醇、尿素树脂、三聚氰胺甲醛树脂、尿素-三聚氰胺树脂、二甲苯树脂、甲苯树脂、三聚氰二胺树脂、三聚氰胺-三聚氰二胺树脂、乙酰三聚氰二胺树脂、甘酞树脂、呋喃树脂、硅酮树脂、聚酰亚胺树脂、聚酰胺酰亚胺树脂、聚醚酰亚胺树脂和聚氨酯树脂。可单独使用这些树脂或可在使用前将它们中的两种以上混合。另外,热塑树脂与固化剂等混合并在使用前固化。
另外,可将细颗粒添加至涂布各载体核颗粒表面的树脂组分。任何有机和无机细颗粒可用作所述细颗粒,但在涂布各载体核颗粒的表面时,必须保持颗粒的形状。可优选使用交联树脂颗粒或无机细颗粒。具体地,可单独使用一种由选自交联聚甲基丙烯酸甲酯树脂、交联聚苯乙烯树脂、三聚氰胺甲醛树脂、酚醛树脂和尼龙树脂的树脂制成的细颗粒,或一种由选自如二氧化硅、氧化钛和氧化铝的无机物制成的细颗粒或者可以将两种以上此类树脂细颗粒和无机细颗粒作为混合物使用。这些,从调色剂带电稳定性角度,优选各自由交联聚甲基丙烯酸甲酯树脂、交联聚苯乙烯树脂或三聚氰胺甲醛树脂制成的细颗粒。
所述细颗粒优选以相对于100质量份的涂布树脂为1质量份以上至40质量份以下的量掺入和使用。当细颗粒以该范围内的量使用时,可改善带电稳定性和调色剂脱离,并可以防止图像缺陷如空白点。当该量低于1质量份时,不能得到添加细颗粒的效果。当所述量超过40质量份时,在耐久试验中发生涂布层的脱落,结果调色剂趋于耐久性不良。
另外,从带电控制的角度,涂布各载体核颗粒表面的树脂组分可包含导电性细颗粒。
作为导电粒子,具体地,优选包含至少一种以上选自炭黑、磁铁矿、石墨、氧化钛、氧化铝、氧化锌和氧化锡的颗粒。特别地,作为具有导电性的颗粒,可优选使用炭黑,这是因为其具有小粒径并且不抑制载体表面由于细颗粒导致的凹凸。
上述磁性载体优选在1,000/4π(kA/m)磁场中的磁化强度为30Am2/kg以上至70Am2/kg以下。当磁性载体的磁化强度落入上述范围内时,可获得额外长时间的各自具有良好点再现性的图像。
从调色剂摩擦带电性能、载体附着至图像区域的粘合力以及防止雾化的角度,优选上述磁性载体的基于容积基准的50%粒径(D50)为20μm以上至70μm以下。
在本发明双组分显影剂的情况下,调色剂和磁性载体间的混合比为显影剂中的调色剂浓度优选2质量%以上至15质量%以下,或更优选4质量%以上至13质量%以下。
下文中,将描述制造本发明的调色剂的方法。然而,本发明并不局限于以下描述。
可通过在已知方法中选择合适的材料或合适的生产条件来生产本发明的调色剂。例如,调色剂颗粒可通过以下获得:混合粘结剂树脂和蜡以及任意材料的原料混合步骤;熔融和捏合所得混合物的熔融捏合步骤;冷却和粉碎熔融捏合产物的粉碎步骤;球形化和/或处理所得粉碎产物表面的处理步骤;以及分级处理的产物的分级步骤。然后,可通过将所得调色剂颗粒与外部添加剂混合生产调色剂。应注意,更优选通过采用热风进行表面处理获得根据本发明的调色剂颗粒。
下面,描述生产例的实例。
在将供应到熔融和捏合步骤的原料混合的原料混合步骤中,至少以预定重量称取粘结剂树脂和蜡,共混并用混合机混合。
混合机的实例包括双锥体混合器、V型混合器、鼓型混合器、超速混合器(super mixer)、亨舍尔混合器和NAUTA混合器。
另外,将混合的调色剂原料熔融并捏合以熔融树脂,并将蜡等分散于其中。在熔融和捏合步骤中,例如,可使用间歇型混炼机(batch-type milling machine)如压缩捏合机(compressionkneader)和班伯里混合机(Banbury mixer)等,或连续型混炼机。近年来,考虑到连续生产等的优点,主要使用单轴或双轴挤出机。通常使用例如KTK型双轴挤出机(由Kobe Steels,Ltd.制造)、TEM型双轴挤出机(由To shiba Machine Co.,Ltd.制造)、双轴挤出机(由KCK.制造)、共捏合机(由Bus s制造)等。另外,通过熔融和捏合调色剂原料所得树脂组合物在熔融和捏合后用双辊等辊压,并经包含用冰水等冷却的冷却步骤冷却。
所得树脂组合物的冷却产物随后在粉碎步骤中粉碎成具有所需粒径的颗粒。在粉碎步骤中,所得物首先用破碎机、锤磨机、羽状研磨机(feather mill)等进行粗碎。此外,用Kryptron系统(由Kawasaki Heavy Industries制造)或超速马达(Superrotor)(由Nisshin Engineering Inc.制造)等粉碎所得物,由此获得粉碎产物。
其后,根据需要,利用筛分级机例如以下分级机分级粉碎产物,所述分级机包括作为惯性分级系统的Elbow jet分级(由Nittetsu Mining Co.,Ltd.制造)和作为离心分级系统的Turboplex(由Hosokawa Micron Corporation制造)分级,由此获得调色剂颗粒。
用于本发明的调色剂颗粒优选通过以下获得:用热风处理上述粉碎产物的表面;和分级处理产物。可选择地,也可优选包含用热风预先处理分级的产物表面的方法。
上述用热风表面处理优选通过以下方法进行:将调色剂从高压空气供给喷嘴通过喷射喷出,并将喷出的调色剂暴露于热风以便可以处理调色剂表面。热风的温度特别优选落入100℃以上至450℃以下的范围内。
此处,参考图1和2,将描述可用于本发明的调色剂的生产中的表面处理装置的轮廓。
图1示出根据本发明的表面处理装置的实例的截面图,图2示出显示气流喷射构件实例的截面图。
由调色剂供给口100供给的调色剂114由从高压空气供给喷嘴115喷出的喷射风加速移向喷嘴下面的气流喷射构件102。如图2所示,扩散风110从气流喷射构件102喷出,并且调色剂通过扩散风110向上方和外侧扩散。此时,调色剂的扩散可通过调整喷射风的流量和扩散风的流量来控制。
此外,为了防止调色剂的融着,在调色剂供给口100的外周、表面处理装置的外周以及输送管116的外周各自设有冷却套管106。应注意优选使冷却水(优选抗冻液如乙二醇)通过冷却套管。
另外,用从热风供给口101供给的热风处理通过扩散风扩散的调色剂表面。此时,在热风供给口的温度C(℃)优选为100℃以上至450℃以下,或更优选100℃以上至400℃以下。当温度落入上述温度范围内时,可均匀地处理各调色剂颗粒表面,而抑制调色剂颗粒的聚结。
其中已用热风处理的调色剂表面用从装置上部外周设置的冷风供给口103供给的冷风冷却。此时,为管理装置中的温度分布和控制调色剂的表面状态的目的,冷风可能从装置主体侧面设置的第二冷风供给口104导入。根据目的,第二冷风供给口104的出口可使用狭缝形状、百叶窗形状、多孔板形状或网眼形状等,并且冷风导入的方向可选自相对于装置中心的水平方向和沿装置壁面的方向。
此时,在上述各冷风供给口和第二冷风供给口的温度E(℃)优选为-50℃以上至10℃以下,或更优选-40℃以上至8℃以下。另外,上述冷风优选为除湿冷风。具体地,冷风具有优选5g/m3以下,或更优选3g/m3以下的绝对湿度含量。控制冷风的绝对湿度含量可以容易地调整调色剂表面的表面张力指数。
将温度设定在上述温度范围内实现以平衡的方式适度处理并防止调色剂融着到壁面。
随后,用鼓风机抽吸并用旋风分离器(cyclone)等通过输送管116回收冷却的调色剂。
接下来,将参照图2描述包含于表面处理装置的气流喷射部。图2是显示气流喷射构件实例的断面图。
如图2所示,通过定量供给器(feeder)从调色剂供给口100上部供给的调色剂在端口通过喷射风加速以移向出口部,然后通过来自于装置中设置的气流喷射构件102的扩散风扩散到外侧。应注意,气流喷射构件102的下缘优选设置在调色剂供给口100以下距端口下缘5mm以上至150mm以下范围的距离处。当气流喷射构件的下缘在距出口小于5mm距离的位置处连接时,将导入装置的调色剂的通过量设定在高水平可导致阻塞或处理失败。另外,当距离超过150mm时,不能均匀地得到通过扩散风扩散的调色剂处理用热风的效果。因此调色剂处理程度的变动,有时降低调色剂的转印性能。
另外,为了防止冷凝的气流供给口111可设置于调色剂供给口100和冷却套管106之间的调色剂供给口100的外周。用于防止冷凝的气流可从与扩散风或上述冷风和第二冷风通用的供给机导入,或者外部空气可通过打开进口获取。可选择地,装置可在关闭进口以使缓冲空气可以流入装置的状态下运转。
另外,根据需要,可用例如由NARA MACHINERY CO.,LTD.制造的杂交系统、由Hosokawa Micron Corporation制造的机械融合系统进一步进行表面改性和球形化处理。在该情况下,根据需要可使用筛分级机如分Hi-筛选机(Hi-bolter)(由Shin TokyoKikai KK制造)作为气流型筛子。
同时,外部处理上述外部添加剂的方法是,例如以下方法:将预定量的分级的调色剂颗粒和各种已知的外部添加剂彼此共混,然后通过使用向粉末施加剪切力的高速搅拌机如亨舍尔混合机或高速混合机作为外部添加机搅拌和混合。
下面将描述上述调色剂的各种物理性质的测量方法。
<测量调色剂颗粒表面的平均表面粗糙度(Ra)和粗糙度的十点高度(Rz)的方法>
利用以下测量装置在以下测量条件下测量调色剂颗粒表面的平均表面粗糙度(Ra)和粗糙度的十点高度(Rz)。
扫描探针显微镜:    Probe Station SPI 3800N
(由Seiko Instruments Inc.制造)
测量单元:          SPA 400
测量模式:          DFM(共振模式)形状图像
悬臂:              SI-DF 40P
分辨率:            X数据片数256
                    Y数据片数128
测量面积:          1平方微米
在调色剂包含添加有外部添加剂的各调色剂颗粒的情况下,必须预先除去外部添加剂。采用的具体方法如下所述。
(1)将45mg的调色剂投入样品瓶,并向瓶中装入10ml的甲醇。
(2)用超声波清洗器将样品分散1分钟以便能够分离外部添加剂。
(3)通过抽吸过滤(用10μm膜滤器)使各调色剂颗粒和外部添加剂彼此分离。在调色剂包含磁性物质的情况下,通过使磁体与样品瓶的底部接触以固着调色剂颗粒可仅分离上清液。
(4)上述操作(2)和(3)各自共进行三次,并用真空干燥器在室温下充分干燥所得调色剂颗粒。
替换上述操作(2)和(3)的去除外部添加剂的其它方法是,例如,涉及用强碱溶解外部添加剂的方法。优选将氢氧化钠的水溶液用作强碱。
另外,选择用随后描述的通过库仑特计数法测量的调色剂颗粒的粒径等于重均粒径(D4)的调色剂颗粒,定义为测量对象。将测量数据如下处理:进行测量十个以上不同的调色剂颗粒,并计算所得数据的平均值,将该平均值用作调色剂颗粒的平均表面粗糙度(Ra)和粗糙度的十点高度(Rz)。
平均表面粗糙度(Ra)是JIS B0601(1994)中定义的中心线平均粗糙度Ra的扩展到三维的版本,从而使中心线平均粗糙度可适用于测量表面。平均表面粗糙度是从参考面到指定面的偏差的绝对值的平均值,并由下式表示。
[数式1]
Ra = 1 S 0 &Integral; Y B Y T &Integral; X L X R | F ( X , Y ) - Z 0 | dXdY
F(X,Y):由全部测量数据表示的面积
S0:当假定指定面是理想的平面时的指定面的面积
Z0:指定面中Z数据(粗糙度数据)的平均值
本发明中使用的术语“指定面”是指1μm见方的测量面积。
同时,粗糙度的十点高度(Rz)按照JIS B0601(1994)中的定义进行测量。即,通过以下步骤测量粗糙度的十点高度。沿曲线平均线方向从粗糙度曲线仅选取基准长度。沿垂直于取样部平均线方向测量第一到第五最高波峰高度的绝对值(Yp),并平均测量值。类似地,沿该方向测量第一到第五最低波谷的高度的绝对值(Yv),并平均测量值。然后,确定这些平均值的总和,由此确定粗糙度的十点高度。
[数式2]
R Z = | Y p 1 + Y p 2 + Y p 3 + Y p 4 + Y p 5 | + | Y V 1 + Y V 2 + Y V 3 + Y V 4 + Y V 5 | 5
Figure BDA00001879637600372
<测量调色剂重均粒径(D4)的方法>
用设置有100μm口管的基于孔电阻法的精密粒度分布测量设备“Coulter Counter Multisizer3”(注册商标,由BeckmanCoulter,Inc制造)和设定测量条件和分析测量数据的该设备附带的专用软件“Beckman Coulter Multisizer 3 Version 3.51”(由Beckman Coulter,Inc制造)用于同时将有效测量通道的数量设定为25,000测量调色剂的重均粒径(D4),由此分析测量数据以计算粒径。
通过将试剂级氯化钠溶解于离子交换水中以具有大约1质量%浓度制备的电解质溶液,例如“ISOTON II”(由BeckmanCoulter,Inc制造)可以在测量中使用。
应注意,如下所述在测量和分析前设定专用软件。
在专用软件的“标准测量方法(SOM)的变更”界面中,将控制方式的总计数设定为50,000个颗粒,将测量次数设为1,并将通过使用“各自具有10.0μm粒径的标准颗粒”(由BeckmanCoulter,Inc制造)所得值设定为Kd值。通过按压“阈值/噪音水平测量”按钮自动设定阈值和噪音水平。此外,将电流设定为1,600μA,增益设为2,将电解质溶液设为ISOTON II,关于测量后是否冲洗口管,将复选标记放置在复选框中。
在专用软件的“从脉冲至粒径转化用设定”的界面中,将元件间隔(bin interval)设定为对数粒径、将粒径元件数设定为256,并将粒径范围设定为2μm至60μm的范围。
具体测量方法如下所述。
(1)将约200ml电解液装入Multisizer 3专用的玻璃制250-ml圆底烧杯中。将烧杯放在样品台上,将烧杯中的电解液用搅拌棒在24转/秒下沿逆时针方向搅拌。然后,通过分析软件的“口冲洗(aperture flush)”功能将口管中的污垢和气泡除去。
(2)将约30ml电解液装入玻璃制100-ml平底烧杯中。将通过用离子交换水三质量倍稀释“Contaminon N”(由非离子表面活性剂、阴离子表面活性剂和有机助洗剂形成并具有pH7的用于清洗精密测量装置的中性清洁剂的10质量%水溶液,由Wako PureChemical Industries,Ltd.制造)制备的约0.3ml稀释溶液作为分散剂添加至电解液中。
(3)准备超声波分散单元“Ultrasonic Dispersion System Tetora150”(由Nikkaki Bios Co.,Ltd.制造),其中构建各自具有50kHz振荡频率的两个振荡器,以在180°相位之外,并且其具有120W的电输出。将预定量的离子交换水装入超声波分散单元的水槽中。将约2ml的Contaminon N添加至水槽中。
(4)将部分(2)中的烧杯放在超声波分散单元的烧杯固定孔中,操作超声波分散单元。然后,调节烧杯的高度位置,以使在烧杯中电解液的液面尽可能地与来自超声波分散单元的超声波共振。
(5)在电解液用超声波照射的状态下,将约10mg的调色剂逐渐添加并分散于在部分(4)中的烧杯中的电解液中。然后,超声波分散处理继续另外60秒。应注意,在超声波分散时,适当调节在水槽中水的温度为10℃以上至40℃以下。
(6)将其中已分散调色剂的在部分(5)中的电解液用移液管滴入放置在样品台中的部分(1)中的圆底烧杯中,并将要测量的调色剂的浓度调节为约5%。然后,进行测量,直至测量50,000个颗粒的粒径。
(7)用设备附带的专用软件分析测量数据,并计算调色剂的重均粒径(D4)。应注意,当将专用软件设定为显示体积%单元的图时,在专用软件的“分析/体积统计值(算术平均)”界面上的“平均粒径”为重均粒径(D4)。
<测量调色剂平均圆形度的方法>
调色剂的平均圆形度用流式颗粒图像分析仪“FPIA-3000model”(由SYSMEX CORPORATION制造),在与装置校准操作时的测量和分析条件相同的测量和分析条件下测量。
具体测量方法如下所述:将适量表面活性剂,优选十二烷基苯磺酸钠,作为分散剂添加至20ml离子交换水中;然后将0.02g测量样品添加至该混合物中;将所得混合物用具有50kHz振荡频率和150W电输出的桌式超声波清洗和分散机(例如,“VS-150”(由VELVO-CLEAR制造))进行分散处理2分钟,从而获得测量用分散液。此时,适当冷却该分散液以具有10℃以上至40℃以下的温度。
测量中使用安装有标准物镜(放大倍率为10)的流式颗粒图像分析仪,并且使用颗粒鞘(Particle Sheath)“PSE-900A”(由SYSMEX CORPORATION制造)作为鞘液。将根据该步骤制备的分散液引入流式颗粒图像分析仪中,根据HPE测量模式的总计数模式测量3,000个调色剂颗粒的粒径。将在颗粒分析时的二值化阈值设定为85%并将待分析粒径限定为各自相应于2.00μm以上至200.00μm以下的圆当量直径,然后,确定调色剂颗粒的平均圆形度。
在测量开始前,通过使用标准胶乳颗粒(例如,用离子交换水稀释由Duke Scientific制造的“5100A”得到)进行自动对焦。其后,优选从测量开始起每两小时进行对焦。
应注意,本发明实例中,通过SYSMEX CORPORATION实施校准,使用已收到由SYSMEX CORPORATION发行的校准证书的流式颗粒图像分析仪,除了待分析的粒径限定为各自相应于2.00μm以上至200.00μm以下的圆当量直径外,在与收到校准证书时相同的测量和分析条件下进行测量。
流式颗粒图像分析仪“FPIA-3000型”(由SYSMEXCORPORATION制造)的测量原理如下:将流动颗粒拍摄为静态图像,并分析该图像。用样品抽吸注射器将添加到样品室的样品转移到平面鞘层流动池。转移到平面鞘层流动池的样品通过鞘层液夹心以形成平流。用频闪光以1/60秒的间隔照射通过平面鞘层流动池内部的样品,从而可将流动颗粒拍摄为静态图象。另外,由于颗粒流是扁平的,所以能在焦点上拍摄颗粒。颗粒图像是用CCD摄像机拍摄,并将拍摄的图像以一视野由512×512个像素(每个像素具有0.37μm乘0.37μm大小)组成的图像处理分辨率进行图像处理,由此取样各颗粒图像的边界。然后,测量各颗粒图像的投影面积S、周长L等。
接下来,用面积S和周长L的值,确定圆当量直径和圆形度。圆当量直径定义为与颗粒图像的投影面积具有相同面积的圆直径,圆形度C定义为由圆当量直径确定的圆周长除以颗粒投影图像的周长所得值,由以下等式计算圆当量直径和圆形度。
圆形度C=2×(π×S)1/2/L
当颗粒图像为完全圆形时,图像中颗粒的圆形度变为1.000。随着颗粒图像外周的凹凸程度的增加,颗粒的圆形度减小。在计算出各个颗粒的圆形度后,将0.200以上至1.000以下范围内的圆形度分为800个部分。计算所得圆形度的附加平均值,并将该值定义为平均圆形度。
<测量调色剂表面张力指数的方法>
调色剂的表面张力指数以下述方式计算。
将约5.5g调色剂轻轻地投入测量池,并用Tapping MachinePTM-1型(由SANKYO PIO-TECH.CO.,Ltd.制造)以30次/分的敲击速度(tapping speed)对该测量池进行敲击操作(tappingoperation)1分钟。将由此获得的样品放置于测量设备(WTMY-232A model Wet Tester,由SANKYO PIO-TECH.CO.,Ltd.制造;用于通过毛细管吸引时间法测量粉末可湿性的装置)进行测量。各测量条件如下。
Figure BDA00001879637600411
当调色剂的毛细管压力由Pα(N/m2)表示,调色剂的比表面积由A(m2/g)表示以及调色剂的真密度由B(g/cm3)表示时,调色剂的表面张力指数I(N/m)由以下等式(1)计算。应注意,调色剂的比表面积和真密度通过随后描述的方法测量。应注意在以下等式中的毛细管压力Pα(N/m2)是用上述测量装置测量的值,并且是甲醇水溶液开始渗入调色剂粉末层的压力。
I=Pα/(A×B×106)    等式(1)
<测量各调色剂和外部添加剂的比表面积的方法(BET法)>
用比表面积测量设备Tristar3000(由Shimadzu Corporation制造)测量各调色剂和外部添加剂的比表面积(BET法)。
如下所述测量各调色剂和外部添加剂的比表面积。根据BET法将氮气吸附到样品表面,并通过采用BET多点法计算样品的比表面积。在比表面积测量前,在样品管中精确称取约2g样品,并在室温下将试管抽真空24小时。抽至真空后,测量整个样品池的质量,由测量的质量与空样品池质量的差计算样品的精确质量。
接下来,将空样品池设置于上述测量装置的各平衡端口和分析端口。然后,将含有液氮的杜瓦瓶设置在预定位置,并使用饱和蒸汽压(P0)测量命令测量P0。完成P0测量后,将准备的样品池设置于分析端口,将样品质量和P0输入。之后,通过BET测量命令开始测量。之后,自动计算出BET比表面积。
<外部添加剂粒径的测量>
如下所述测量外部添加剂粒径。用扫描电子显微镜(铂金沉积,施加电压2.0kV,放大倍率50,000)随机选取各自具有1nm以上粒径的500个以上的颗粒,各颗粒的较大直径和较小直径用数字转换器测量。将较大直径和较小直径的平均值定义为各颗粒的粒径,并计算500个以上颗粒的数均粒径(D1)。
<调色剂真密度的测量>
用干式自动密度计Autopycnometer(由Yuasa Ionics Inc.制造)在以下条件下测量调色剂的真密度。
测量池        SM测量池(10ml)
样品量        约2.0g
测量装置基于气相转换法测量固体或液体的真密度。在液相转换法情况下基于阿基米德原理气相转换法显示出高精准性,这是因为将气体(氩气)用作了转换介质。
<通过凝胶渗透色谱法(GPC)测量调色剂或树脂的四氢呋喃(THF)可溶性物质的分子量的方法>
如下所述通过凝胶渗透色谱法(GPC)测量调色剂或树脂的四氢呋喃(THF)可溶性物质的分子量分布。
首先,室温下在THF中溶解样品24小时,然后,将所得溶液通过具有0.2μm孔径的耐溶剂性膜滤器“Maishori Disk”(由TOSOH CORPORATION制造)过滤,从而得到样品溶液。应注意调整样品溶液中可溶于THF中的组分的浓度至约0.8质量%。分子量分布的测量通过用样品溶液在以下条件下进行。设备:HLC8120 GPC(检测器:RI)(由TOSOH CORPORATION制造)
柱:Shodex KF-801、802、803、804、805、806和807的7连柱(由SHOWA DENKO K.K.制造)
洗脱液:四氢呋喃(THF)
流量:1.0ml/min
炉温:40.0℃
样品注入量:0.10ml
计算样品分子量时,使用用标准聚苯乙烯树脂(如购自TOSOH CORPORATION的在商品名“TSK标准聚苯乙烯F-850、F-450、F-288、F-128、F-80、F-40、F-20、F-10、F-4、F-2、F-1、A-5000、A-2500、A-1000或A-500”下的产品)制备的分子量校准曲线。
<测量磁性载体相对于水的接触角的方法>
用由SANKYO PIO-TECH.CO.,Ltd.制造的WTMY-232Amodel Wet Tester测量磁性载体相对于水的接触角。
将13.2g磁性载体轻轻地投入测量池,并用由SANKYOPIO-TECH.CO.,Ltd.制造的Tapping Machine PTM-1 model以30次/分的敲击速度和10mm的振幅对测量池进行敲击操作1分钟。将由此获得的样品设置于测量装置,然后进行测量。
首先,通过空气渗透法测量粉末层的比表面积,然后通过恒定流量法测量该层的压力拐点。由两者计算出磁性载体相对于水的接触角。
<测量蜡或树脂的最高吸热峰的峰温度的方法>
根据ASTM D3418-82用示差扫描量热计“Q1000”(由TAInstruments制造)测量蜡或树脂的最高吸热峰的峰温度。
用于装置检测部的温度校正通过使用铟和锌各自的融点来进行,并且用于该部的热量校正通过使用铟的熔融热来进行。
具体地,精确称取约10mg样品并投入铝盘中。通过使用空铝盘作为参比在30至200℃的测量温度范围内以10℃/min的升温速率进行测量。应注意,测量中,温度一旦升高到200℃,随后降低到30℃,然后再次升高。通过用第二次升温过程中在30至200℃温度范围内的D SC曲线来确定最高吸热峰的峰温度。
<测量树脂或调色剂的玻璃化转变温度(Tg)的方法>
根据ASTM D3418-82用示差扫描热量装置“Q1000”(由TAInstruments制造)来测量树脂或调色剂的玻璃化转变温度(Tg)。
用于装置检测部的温度校正通过使用各铟和锌的融点来进行,并且该部的热量校正通过使用铟的熔融热来进行。
具体地,精确称量约10mg样品并投入铝盘中。通过使用空铝盘作为参比在30至200℃的测量温度范围内以10℃/min的升温速率进行测量。在升温过程中在40℃至100℃的温度范围内得到比热变化。将在比热变化出现前后的基线中间的线和差热曲线的交点定义为玻璃化转变温度Tg。
<测量调色剂表面上的蜡丰度的方法>
调色剂表面上蜡的丰度通过基于调色剂材料间的组成比和由X射线光电子分光计(ESCA)测量的调色剂表面上的元素浓度计算确定。
调色剂表面上的元素浓度用X射线光电子分光分析仪(ESCA)(由ULVAC-PHI,INCORPORATED制造的Quantum 2000)在以下条件下测量。
样品测量范围:            Φ100μm
光电子进入角:            45°
X射线:                   50μ,12.5W,15kV
通过能(Pass Energy):     46.95eV
步长(Step Size):         0.200eV
扫描数(No.of Sweeps):    1至20
设定测量时间:            30min
<测量调色剂颗粒中蜡的平均一次分散粒径的方法>
将测量调色剂颗粒中蜡的平均一次分散粒径的具体的方法如下所述。即,将调色剂颗粒充分地分散于常温可固化的环氧树脂中。之后,所得物在温度为40℃的氛围中固化2天,并用四氧化三钌和四氧化三锇将所得固化产物染色。用配备有金刚石齿的切片机将固化产物切成薄层状样品,并用透射电子显微镜(TEM)测量各调色剂颗粒的断层形态。蜡的平均一次分散粒径的测量如下:随机选择20个蜡区域,用图像分析仪测量各区域的面积,具有与此区域中的任意之一相同的面积的圆的直径定义为圆当量直径,并将圆当量直径的平均值定义为平均一次分散粒径。
<磁性载体的磁化强度>
磁性载体的磁化强度用振动磁场型磁特性设备“振动样品的磁强计(vibrating sample magnetometer)”(VSM)(由RikenDenshi.Co.,Ltd.制造的振动磁场型磁特性自动记录仪BHV-30)通过以下步骤测量。
将磁性载体填充入圆筒状塑料容器内,以使容器用载体紧密地填充至足够的程度,另一方面,制备1,000/4π(kA/m)(1,000奥斯特)的外部磁场。在该状态下,测量填充于容器的磁性载体的磁矩。另外,测量填充容器的磁性载体的实际质量,并确定载体的磁化强度(Am2/kg)。
<测量磁性载体的容积基位的50%粒径(D50)的方法>
下面描述用多图像分析仪(由B eckman Coulter,Inc制造)测量磁性载体的基于容积基准的50%粒径(D50)。
将通过以50质量%:50质量%比例混合1质量%的NaCl的水溶液和甘油制备的溶液用作电解质溶液。这里,NaCl的水溶液只要通过使用一级氯化钠制备即可,或者例如也可将ISOTON(注册商标)-II(由Coulter Scientific Japan,Co.制造)用作NaCl的水溶液。甘油只要是试剂级或一级试剂即可。
将作为分散剂的0.5ml的表面活性剂(优选烷基苯硫酸盐)添加至电解质溶液(约30ml)中。另外,将10mg测量样品添加至该混合物。将其中已悬浮样品的电解质溶液用超声波分散单元进行分散处理约1分钟,从而获得分散液体。
在使用200μm口作为口和具有放大倍率为20透镜头的装置的设置情况下,计算磁性载体的容积基准的50%粒径(D50)在以下测量条件下。
测量框内的平均亮度:        220以上至230以下
测量框设定:                300
阈值(SH):          50
二值化水平:        180
将电解质溶液和分散液装入玻璃测量容器中,并将测量容器中的磁性载体颗粒的浓度设定为10体积%。以最大搅拌速度搅拌玻璃测量容器中的内容物。将样品的抽吸压力设定为10kPa。当磁性载体具有如此大的比重以致易于沉积时,将测量时间设定为20分钟。另外,每5分钟中止测量,并向容器中补加样品液以及电解质溶液和甘油的混合液。
测量数为2,000。完成测量后,用装置主体中的软件从颗粒图像画面中除去模糊的影像、凝集的颗粒(多个颗粒同时被测量)等。由以下等式计算磁性载体的圆形度。
圆当量直径=(4·面积/∏)1/2
将此处使用的术语“面积”定义为二值化的磁性载体颗粒图像的投影面积,并且将圆当量直径表示为当将“面积”视为是真圆面积时真圆的直径。将所得各个圆当量直径分为范围从4μm以上至100μm以下的256个部分并绘制基于容积基准的对数图像。由此,测量基于容积基准的50%粒径(D50)。
实施例
下文中,描述本发明的具体实施例。然而本发明并不局限于这些实施例。应注意,除非另有说明,在下述配方中的术语“份”和“%”分别指“质量份”和“质量%”。
(粘结剂树脂的生产例1)
将71.0质量份聚环氧丙烷(2.2)-2,2-双(4-羟苯基)丙烷、28.0质量份对苯二甲酸、1.0质量份苯三酸酐和0.5质量份四丁氧基钛作为聚酯单元组分投入玻璃制4-l四颈烧瓶中。该烧瓶配备有温度计、搅拌棒、冷凝器和氮气引入管,并且放置于覆套式加热器。接着,将烧瓶中的空气用氮气置换,然后在搅拌烧瓶中混合物的同时,逐渐地增加烧瓶中的温度。当混合物在温度200℃下搅拌时,将混合物进行反应4小时,由此得到具有聚酯单元的树脂1-1。具有聚酯单元的树脂1-1具有80,000的重均分子量(Mw)、3,500的数均分子量(Mn)和5,700的峰分子量(Mp)。
另外,将70.0质量份聚环氧丙烷(2.2)-2,2-双(4-羟苯基)丙烷、20.0质量份对苯二甲酸、3.0质量份间苯二酸、7.0质量份苯三酸酐和0.5质量份四丁氧基钛作为聚酯单元组分投入玻璃制4-l四颈烧瓶中。该烧瓶配备有温度计、搅拌棒、冷凝器和氮气引入管,并且放置于覆套式加热器中。接着,将烧瓶中的空气用氮气置换,然后在搅拌烧瓶中混合物的同时,逐渐地增加烧瓶中的温度。当混合物在温度220℃下搅拌时,将混合物进行反应6小时,从而得到具有聚酯单元的树脂1-2。具有聚酯单元的树脂1-2具有120,00的重均分子量(Mw)、4,000的数均分子量(Mn)和7,800的峰分子量(Mp)。
将50质量份上述聚酯树脂1-1和50质量份聚酯树脂1-2用亨舍尔混合机(由Mitsui Miike Machinery Co.,Ltd.制造)预先混合,然后用熔融捏合机PCM 30(由Ikegai,Ltd.制造)在3.3s-1的转数和树脂捏合温度100℃下熔融和共混,从而获得粘结剂树脂1。
(粘结剂树脂生产例2)
将60.1质量份聚环氧丙烷(2.2)-2,2-双(4-羟苯基)丙烷、14.3质量份聚环氧乙烷(2.2)-2,2-双(4-羟苯基)丙烷、12.0质量份对苯二甲酸、3.2质量份苯三酸酐、10.4质量份富马酸和0.3质量份四丁氧基钛作为聚酯单元组分投入玻璃制4-l四颈烧瓶中。该烧瓶配备有温度计、搅拌棒、冷凝器和氮气引入管,并且放置于覆套式加热器中。接着,将烧瓶中的空气用氮气置换,然后在搅拌烧瓶中混合物的同时,逐渐地增加烧瓶中的温度。当混合物在温度200℃下搅拌时,将混合物进行反应3小时,从而得到由聚酯树脂形成的粘结剂树脂2。粘结剂树脂2具有70,00的重均分子量(Mw)、3,100的数均分子量(Mn)和5,00的峰分子量(Mp)。
(粘结剂树脂生产例3)
将42.1质量份丙二醇、56.8质量份对苯二甲酸、1.1质量份苯三酸酐和0.6质量份四丁氧基钛投入玻璃制4-l四颈烧瓶中。该烧瓶配备有温度计、搅拌棒、冷凝器和氮气引入管,并且放置于覆套式加热器中。接着,将四颈烧瓶内的空气用氮气置换。然后在搅拌烧瓶中混合物的同时,将烧瓶中的温度逐渐地增加至210℃。将混合物进行反应3小时,从而得到聚酯树脂3-1。聚酯树脂3-1具有5,500的重均分子量(Mw)、2,000的数均分子量(Mn)和3,600的峰分子量(Mp)。
另外,将31.4质量份丙二醇、48.0质量份对苯二甲酸、4.2质量份苯三酸酐和0.4质量份四丁氧基钛投入玻璃制4-l四颈烧瓶中。该四颈烧瓶配备有温度计、搅拌棒、冷凝器和氮气引入管,并且放置于覆套式加热器中。接着,将四颈烧瓶中的空气用氮气置换,然后在搅拌烧瓶中混合物的同时,将烧瓶中的温度逐渐地增加至180℃。将混合物进行反应3小时,其后,将16.4质量份苯三酸酐添加至烧瓶中,并将烧瓶中的温度增加至220℃。然后,将混合物进行反应12小时,从而得到具有聚酯单元的树脂3-2。具有聚酯单元的树脂3-2具有100,000的重均分子量(Mw)、5,000的数均分子量(Mn)和9,200的峰分子量(Mp)。
将60质量份上述聚酯树脂3-1和40质量份聚酯树脂3-2用亨舍尔混合机(由Mitsui Miike Machinery Co.,Ltd.制造)预先混合,然后用熔融捏合机PCM 30(由Ikegai,Ltd.制造)在3.3s-1的转数和树脂捏合温度100℃下熔融和共混,从而获得粘结剂树脂3。
(粘结剂树脂生产例4)
准备78.0质量份苯乙烯、18.5质量份丙烯酸正丁酯、3.5质量份甲基丙烯酸和0.8质量份2,2-双(4,4-二叔丁基过氧化环己基)丙烷。当在四颈烧瓶中搅拌200质量份的二甲苯时,将容器中的空气用氮气充分地置换,并将容器的温度增加至120℃。之后,将上述各组分经4小时滴加至烧瓶。此外,在二甲苯回流下完成聚合反应,并通过减压下蒸馏除去溶剂。将由此获得的树脂定义为乙烯基树脂4-1。由GPC所得乙烯基树脂4-1的分子量如下述:600,000的重均分子量(Mw)、200,000的数均分子量(Mn)和200,000的峰分子量(Mp)。
将30质量份的乙烯基树脂4-1、55.0质量份苯乙烯、12.0质量份丙烯酸正丁酯、3.0质量份甲基丙烯酸和1.4质量份二叔丁基过氧化物经4小时滴加至200质量份二甲苯。另外在二甲苯回流下完成聚合反应,并通过减压下蒸馏除去溶剂,从而获得粘结剂树脂4。粘结剂树脂4具有100,000的重均分子量(Mw)、5,000的数均分子量(Mn)和10,000的峰分子量(Mp)。
(调色剂生产例1)
Figure BDA00001879637600501
将上述材料投入高压釜中,并将系统中的空气用氮气置换。之后,在搅拌混合物的同时将系统中的温度增加并保持在180℃。将50质量份2质量%的过氧化氢叔丁基的二甲苯溶液经5小时连续滴加至该系统,并冷却所得混合物。之后,通过分离除去溶剂,从而得到其中乙烯基树脂组分与上述低密度聚乙烯反应的聚合物A。测量聚合物A的分子量,并得到以下结果:该聚合物A具有7,000的重均分子量(Mw)和3,000的数均分子量(Mn)。
Figure BDA00001879637600511
将上述配方用亨舍尔混合机(FM-75型,由Mitsui MiikeMachinery Co.,Ltd.制造)混合,然后将混合物用温度设至130℃的双轴捏合机(PCM-30型,由Ikegai,Ltd.制造)捏合。冷却所得捏合产物,并用锤磨机粗粉碎成各自具有1mm以下尺寸的产物,从而得到粗粉碎产物。将所得粗粉碎产物用机械式粉碎机(T-250,由Turbo Kogyo Co.Ltd.制造)粉碎。另外,用采用柯恩达效应(Coanda effect)的多段分级机分级所得粉碎产物,从而得到含磁性物质的树脂颗粒。所得含磁性物质的树脂颗粒具有以下特征:颗粒具有6.3μm的重均粒径(D4),各自具有4.0μm以下粒径的调色剂颗粒占所述颗粒的25.6个数%,并且各自具有10.1μm以上粒径的颗粒占所述颗粒的2.6体积%。
将含磁性物质的树脂颗粒用示于图1中的表面平滑设备进行表面处理。
气流喷射构件102的下缘设置于调色剂供给口100下缘以下距下缘100mm的距离处。
操作条件如下:供给量为5kg/hr、热风温度C为250℃、热风流量为6m3/min、冷风温度E为5℃、冷风流量为4m3/min、冷风绝对湿度含量为3g/m3、鼓风机流量为20m3/min、喷射风流量为1m3/min和扩散风流量为0.3m3/min。
上述条件下的表面处理产生具有以下特征的调色剂颗粒1:颗粒具有6.7μm的重均粒径(D4)、各自具有4.0μm以下粒径的颗粒占所述颗粒的18.6个数%,各自具有10.1μm以上粒径的颗粒占所述颗粒的3.1体积%。在调色剂颗粒1中的蜡具有0.25μm的平均一次分散粒径。
所得调色剂颗粒1表面的用扫描探针显微镜测量的平均表面粗糙度(Ra)和粗糙度的十点高度(Rz)分别为15nm和500nm。
将1.2质量份具有16nm平均一次粒径的其表面用20质量%六甲基二硅氮烷处理的疏水性二氧化硅细颗粒添加至100质量份所得调色剂颗粒1,并将这些颗粒用亨舍尔混合机(FM-75型,由Mitsui Miike Machinery Co.,Ltd.制造)混合,从而获得调色剂1。
所得调色剂具有0.970的平均圆形度,6.3×10-3N/m的表面张力指数和85%的其表面上的蜡丰度。表1示出由此获得的调色剂1的物理性质。
(调色剂生产例2)
除了在280℃的热风温度中进行表面处理外,以与调色剂生产例1相同的方式生产调色剂2。表1示出由此获得的调色剂2的物理性质。
(调色剂生产例3)
除了在220℃的热风温度中进行表面处理外,以与调色剂生产例1相同的方式生产调色剂3。表1示出由此获得的调色剂3的物理性质。
(调色剂生产例4)
除了将费-托蜡(最高吸热峰的峰温度为105℃)的用量变为10质量份和在300℃的热风温度中进行表面处理外,以与调色剂生产例1相同的方式生产调色剂颗粒。将1.2质量份具有16nm平均一次粒径的其表面用10质量%二甲基硅油处理的疏水性二氧化硅细颗粒添加至100质量份所得调色剂颗粒,并将这些颗粒用亨舍尔混合机(FM-75型,由Mitsui Miike Machinery Co.,Ltd.制造)混合。从而获得调色剂4。表1示出由此获得的调色剂4的物理性质。
(调色剂生产例5)
Figure BDA00001879637600531
将上述配方用亨舍尔混合机(FM-75型,由Mitsui MiikeMachinery Co.,Ltd.制造)混合,然后将混合物用温度设至100℃的双轴挤出机(PCM-30型,由Ikegai,Ltd.制造)捏合。冷却所得捏合产物,并用锤磨机粗粉碎成各自具有1mm以下大小的产物,从而得到粗粉碎产物。用机械式粉碎机(T-250,由Turbo KogyoCo.Ltd.制造)粉碎所得粗粉碎产物。另外,用采用柯恩达效应的多分割分级机分级所得粉碎产物,从而得到调色剂颗粒。所得调色剂颗粒具有以下特征:颗粒具有5.8μm的重均粒径(D4),各自具有4.0μm以下粒径的调色剂颗粒占颗粒的25.6个数%,并且各自具有10.1μm以上粒径的调色剂颗粒占颗粒的0.2体积%。
将调色剂颗粒用示于图1的表面处理装置进行表面处理。
气流喷射构件102的下缘设置于调色剂供给口100下缘以下距下缘100mm的距离处。
操作条件如下:供给量为5kg/hr、热风温度C为200℃、热风流量为6m3/min、冷风温度E为5℃、冷风流量为4m3/min、冷风绝对湿度为3g/m3、鼓风机流量为20m3/min、喷射风流量为1m3/min和扩散风为0.3m3/min。
上述条件下的表面处理产生具有以下特征的调色剂颗粒:颗粒具有6.2μm的重均粒径(D4)、各自具有4.0μm以下粒径的颗粒占所述颗粒的20.3个数%,并且各自具有10.1μm以上粒径的颗粒占所述颗粒的2.3体积%。在调色剂颗粒1中的蜡具有0.10μm的平均一次分散粒径。
所得调色剂颗粒表面的用扫描探针显微镜测量的平均表面粗糙度(Ra)和粗糙度的十点高度(Rz)分别为8nm和120nm。
将1.0质量份具有50nm平均一次粒径的其表面用15质量%异丁基三甲氧基硅烷处理的氧化钛细颗粒和0.8质量份具有16nm平均一次粒径的其表面用20质量%六甲基二硅氮烷处理的疏水性二氧化硅细颗粒添加至100质量份所得调色剂颗粒,并将这些颗粒用亨舍尔混合机(FM-75型,由Mitsui MiikeMachinery Co.,Ltd.制造)混合,从而获得调色剂5。
所得调色剂5具有0.970的平均圆形度,1.3×10-2N/m的表面张力指数和90%的其表面上的蜡丰度。表1示出由此获得的调色剂5的物理性质。
(调色剂生产例6)
除了在180℃的热风温度中进行表面处理外,以与调色剂生产例5相同的方式生产调色剂6。表1示出由此获得的调色剂6的物理性质。
(调色剂生产例7)
除了将粘结剂树脂1变为粘结剂树脂2;不使用聚合物A;和在220℃的热风温度下进行表面处理外,以与调色剂生产例5相同的方式生产调色剂7。表1示出由此获得的调色剂7的物理性质。
(调色剂制造例8)
除了将粘结剂树脂1变为粘结剂树脂3外,以与调色剂制造例5相同的方式生产调色剂8。表1示出由此获得的调色剂8的物理性质。
(调色剂制造例9)
除了将费-托蜡(最高吸热峰的峰温度为105℃)的用量变为15质量份和在250℃热风温度在进行表面处理外,以与调色剂生产例1相同的方式生产调色剂9。表1示出由此获得的调色剂9的物理性质。
(调色剂生产例10)
除了通过使用HYBRIDIZER(由NARA MACHINERYCO.,LTD.制造)代替图1所示的表面处理设备利用机械性冲击进行表面处理外,以与调色剂生产例1相同的方式生产调色剂10。表1示出由此获得的调色剂10的物理性质。
(调色剂生产例11)
除了将粘结剂树脂1变为粘结剂树脂4外,以与调色剂生产例1相同的方式生产调色剂11。表1示出由此获得的调色剂11的物理性质。
(调色剂生产例12)
除了未进行利用图1所示的表面处理设备的表面处理外,以与调色剂生产例5相同的方式生产调色剂12。表1示出由此获得的调色剂12的物理性质。
(调色剂生产例13)
除了石蜡(最高吸热峰的峰温度为78℃)的用量变为15质量份和不使用聚合物A外,以与调色剂生产例5相同的方式生产调色剂13。表1示出由此获得的调色剂13的物理性质。
(调色剂生产例14)
将450质量份0.12mol/l的Na3PO4水溶液装入710质量份离子交换水中,并将混合物加热到60℃。所得水溶液用TK-homomixer(由Tokushu Kika Kogyo制造)以250s-1搅拌。将68质量份1.2mol/l的CaCl2水溶液逐渐地添加至该水溶液,从而获得含Ca3(PO4)2的水性介质。
接下来,将以下材料加热至60℃,然后用TK-homomixer(由Tokushu Kika Kogyo制造)在166.7s-1下均匀地溶解或分散。
Figure BDA00001879637600561
然后,将10质量份聚合引发剂2,2'-偶氮双(2,4-二甲基戊腈)溶解于所得物,从而制备可聚合单体组分。
将所得聚合性单体组分投入上述水性介质中。在60℃和200s-1下在氮气氛下用TK-homomixer搅拌所得混合物10分钟,以致可将聚合性单体组分造粒。之后,在用桨式搅拌叶片搅拌所得物的同时将所得物的温度增加至80℃。然后,将所得物进行反应10小时。聚合反应完成后,通过减压下蒸馏除去剩余单体。在剩余物冷却后,添加盐酸以溶解Ca3(PO4)2。过滤所得分散液,并用水洗涤和干燥通过过滤所得产物,从而获得调色剂颗粒。调色剂颗粒具有6.7μm的重均粒径(D4)和0.970的平均圆形度。
将1.0质量份具有40nm平均一次粒径的其表面用12质量%异丁基三甲氧基硅烷处理的氧化钛细颗粒和0.5质量份具有20nm平均一次粒径的其表面用15质量%六甲基二硅氮烷处理的疏水性二氧化硅细颗粒添加至100质量份所得调色剂颗粒中,并将这些颗粒用亨舍尔混合机(FM-75型,由Mitsui MiikeMachinery Co.,Ltd.制造)混合,从而获得调色剂14。表1示出由此获得的调色剂14的物理性质。
(调色剂生产例15)
将560质量份聚环氧丙烷(2.2)-2,2-双(4-羟苯基)丙烷、250质量份聚环氧乙烷(2.2)-2,2-双(4-羟苯基)丙烷、300质量份对苯二甲酸和2质量份四丁氧基钛投入玻璃制4-l四颈烧瓶中。该四颈烧瓶配备有温度计、搅拌棒、冷凝器和氮气引入管,并且放置于覆套式加热器中。将烧瓶中的混合物在230℃下在氮气氛下进行反应7小时。之后,将混合物冷却至160℃,将30质量份苯二甲酸酐添加至该混合物,并将全部进行反应2小时。
然后,将所得溶液冷却至80℃。将通过在1,000质量份的乙酸乙酯中溶解180质量份的异佛尔酮二异氰酸酯制备的溶液(预先加热至80℃)装入上述溶液中,并将混合物进行反应2小时。
另外,将所得物冷却至50℃,将70质量份异佛尔酮二胺添加至该所得物中,并将混合物进行反应2小时,从而得到尿素变性聚酯树脂。该尿素变性聚酯树脂具有60,000的重均分子量、5,500的数均分子量和7,000的峰分子量。
Figure BDA00001879637600571
将上述材料添加至100质量份的乙酸乙酯。将内容物加热至60℃,然后用TK-homomixer(由Tokushu Kika Kogyo制造)在在200s-1下均匀地溶解和分散。
同时,将450质量份的0.12mol/l的Na3PO4的水溶液装入710质量份的离子交换水中,并将混合物加热至60℃。之后用TK-homomixer(由Tokushu Kika Kogyo制造)在15,000rpm下搅拌混合物。将68质量份的1.2mol/l的CaCl2的水溶液逐渐地添加至所得水溶液中,从而制备含有Ca3(PO4)2的水性介质。
将上述分散液装入所得水性介质中,并通过用TK-homomixer在60℃和250s-1下搅拌10分钟将所得混合液造粒。之后,将所得物的温度升至98℃以致在用桨式搅拌叶叶片搅拌所得物时可能除去溶剂。冷却剩余物后,添加盐酸以溶解Ca3(PO4)2。过滤所得混合液,并将通过过滤所得的产物用水洗涤并干燥,从而得到颗粒。将所得颗粒进行风力分级,得到调色剂颗粒。该调色剂颗粒具有6.2μm的重均粒径(D4)和0.975的平均圆形度。
将1.0质量份具有50nm平均一次粒径的其表面用15质量%的异丁基三甲氧基硅烷处理的氧化钛细颗粒和0.7质量份具有16nm平均一次粒径的其表面用20质量%的六甲基二硅氮烷处理的疏水性二氧化硅细颗粒添加至100质量份所得调色剂颗粒,并将该颗粒用亨舍尔混合机(FM-75model,由Mitsui MiikeMachinery Co.,Ltd.制造)混合,从而获得调色剂15。表1示出由此获得的调色剂15的物理性质。
(调色剂生产例16)
除了不使用石蜡(最高吸热峰的峰温度为78℃)外,以与调色剂生产例5相同的方式生产调色剂16。表1示出由此获得的调色剂16的物理性质。
(调色剂生产例17)
除了将石蜡(最高吸热峰的峰温度为78℃)变为1质量份聚乙烯蜡(最高吸热峰的峰温度为140℃)外,以与调色剂生产例5相同的方式生产调色剂17。表1示出由此获得的调色剂17的物理性质。
(调色剂生产例18)
<分散液A>
Figure BDA00001879637600591
混合并溶解上述组成,从而制备单体混合物。石蜡的分散液(最高吸热峰的峰温度为78℃)100质量份(内容物浓度30%,分散粒径0.14μm)
阴离子表面活性剂(由Dai-ichi Kogyo Seiyaku Co.,Ltd.制造:Neogen SC)                          1.2质量份
非离子表面活性剂(由Sanyo Chemical Industries,Ltd.制造:NONIPOL 400)                        0.5质量份
离子交换水                         1,530质量份
在烧瓶中分散上述配方,然后当用氮气置换配方周围的空气的同时开始加热。当液体温度达到70℃时,将通过在350质量份离子交换水中溶解6.56质量份过硫酸钾制备的溶液装入该液体中。当将所得液体的温度保持在70℃时,将单体混合物投入该液体中,并搅拌全部物质。将所得液体的温度升高到80℃,然后在没有任何变化的情况下进行持续乳化聚合6小时。之后,将该液体的温度降至40℃,然后用过滤器过滤该液体,从而得到分散液A。由此获得的分散液中的颗粒具有以下特征:颗粒的数均粒径为0.16μm和颗粒的固含量具有60℃的玻璃化转变温度,15,000的重均分子量(Mw)和12,000的峰值分子量。所得聚合物中的石蜡含量为6质量%。
<分散液B>
Figure BDA00001879637600601
将上述配方混合,然后用珠磨机(由KOTOBUKIINDUSTRIES CO.,LTD.制造的ULTRA APEX MILL)分散,从而得到着色剂分散液B。
将300质量份分散液A和25质量份分散液B装入安装有搅拌装置、冷却管和温度计的1-l可分离烧瓶中,然后搅拌。将180质量份的10质量%的氯化钠水溶液作为凝集剂滴加到该混合液中,并在搅拌的同时将烧瓶中的混合物在加热用油浴中加热到54℃。在48℃下保持1小时后,用光学显微镜观察到所得物。结果,观察到各自具有约5μm粒径的凝集颗粒的形成。
在随后的融着步骤中,将3质量份阴离子表面活性剂(由Dai-ichi Kogyo Seiyaku Co.,Ltd.制造:Neogen SC)添加至所得物中。之后,将包含该混合物的不锈钢制烧瓶密封。用磁力密封下连续搅拌的同时,加热混合物至100℃,并在该温度保持3小时。然后,冷却混合物。之后,过滤反应产物并用离子交换水充分洗涤。之后,干燥洗涤产物,从而获得调色剂颗粒。尝试通过用透射电子显微镜(TEM)观察调色剂颗粒来确定调色剂颗粒中蜡的平均一次分散粒径,但没能观察到蜡区域。该调色剂颗粒具有5.5μm的重均粒径(D4)和0.960的平均圆形度。
将1.0质量份具有40nm平均一次粒径的其表面用10质量%的异丁基三甲氧基硅烷处理的氧化钛细颗粒、0.5质量份具有20nm平均一次粒径的其表面用10质量%的六甲基二硅氮烷处理的疏水性二氧化硅细颗粒和1.5质量份具有110nm平均一次粒径的其表面用10质量%的六甲基二硅氮烷处理的疏水性二氧化硅细颗粒添加至100质量份所得调色剂颗粒,并将这些颗粒用亨舍尔混合机(FM-75型,由Mitsui Miike Machinery Co.,Ltd.制造)混合,从而获得调色剂18。表1示出由此获得的调色剂18的物理性质。
(磁性载体生产例1)
将4.0质量%的硅烷类偶联剂(3-(2-氨乙基氨丙基)三甲氧基硅烷)添加至具有0.28μm数均粒径(和10,000/4π(kA/m)磁场中磁化强度为75Am2/kg)的磁铁矿粉末中,以及将各个细颗粒在100℃以上的容器中以高速混合并搅拌以将其处理。
Figure BDA00001879637600611
将上述材料,5质量份28%的氨水和20质量份水投入烧瓶中,将内容物的温度在30分钟内增加至85℃,将内容物保持在该温度下同时搅拌和混合该内容物。将混合物进行聚合反应3小时,并固化生产的酚醛树脂。之后,冷却固化的酚醛树脂至30℃,此外,将水添加至树脂。之后,除去上清液,并用水洗涤沉淀物,然后风干。接着,将所得物在温度60℃下在减压(6.7×102Pa以下)下干燥。从而获得磁性物质分散于酚醛树脂中的状态下的球状含磁性物质的树脂载体核。
含有10质量%的甲基丙烯酸甲酯和苯乙烯共聚物(共聚比(质量%比)80:20,重均分子量45,000)的载体涂布液通过使用甲基丙烯酸甲酯和苯乙烯的共聚物作为涂布材料以及甲乙酮和甲苯的混合溶剂作为溶剂来制备。另外,将相对于100质量份共聚物为0.5质量份三聚氰胺树脂(具有0.2μm的数均粒径)和1.0质量份炭黑(具有30nm的数均粒径和50ml/100g的DBP吸油量)添加至载体涂布液,并用均化器将该内容物混合完全。接着,将含有磁性物质的树脂载体核投入混合溶液中,在70℃下挥发溶剂同时向混合物连续施加剪切应力。因此,在含磁性物质的树脂载体核表面涂布有甲基丙烯酸甲酯和苯乙烯的共聚物,以使该共聚物的量相对于100质量份含磁性物质的树脂载体核可为1质量份。
将用甲基丙烯酸甲酯和苯乙烯共聚物涂布的树脂涂布的含有磁性物质的树脂核通过在100℃下搅拌2小时而加热处理。之后,冷却并粉碎所得物,并用200目的筛子(具有75μm孔)分级,从而得到具有35μm的数均粒径、3.73g/cm3的真密度、55Am2/kg的磁化强度和88°的相对于水的接触角的磁性载体1。
(磁性载体生产例2)
除了将利用以下所示的化合物例1作为单元的单体和甲基丙烯酸甲酯的共聚物(共聚比(基于质量)40:60,重均分子量45,000)用作涂布材料外,以与磁性载体生产例1相同的方式获得磁性载体2。该磁性载体具有120°的相对于水的接触角。
[化学式6]
化合物例1
Figure BDA00001879637600621
(磁性载体生产例3)
除了将利用上述所示的化合物例1作为单元的单体和甲基丙烯酸甲酯共聚物(共聚比(基于质量)20:80,重均分子量45,000)用作涂布材料外,以与磁性载体生产例1相同的方式生产磁性载体3。该磁性载体具有110°相对于水的接触角。
(磁性载体生产例4)
除了将利用上面所示的化合物例1作为单元的单体和甲基丙烯酸甲酯共聚物(共聚比(基于质量)60:40,重均分子量45,000)用作涂布材料外,以与磁性载体生产例1相同的方式生产磁性载体4。该磁性载体具有128°相对于水的接触角。
(磁性载体生产例5)
除了不使用涂布材料外,以与磁性载体生产例1相同的方式生产磁性载体5。该磁性载体具有75°的相对于水的接触角。
<实施例1>
通过使用改造成具有392mm/sec处理速度(62张A4横向纸张/分)的由Hewlett-Packard Company制造的激光束打印机LaserJet 4350n(用于进行磁性、单组分显影的设备)评价调色剂1。评价项目和评价标准如下所示。另外,表2-1和2-2示出评价结果。
(1)图像浓度和雾化
对于以9,000张/天的速率在2天内在总计18,000张复印机用普通纸(A4尺寸:75g/m2)上进行如下图像输出试验:在常温、常湿环境(23℃,60%RH)和高温、高湿环境(32.5℃,80%RH)的每一种环境下以每10秒2张(打印率5%)进行打印。测量各初始阶段(第一张)和第18,000张的图像浓度和雾化。测量的图像浓度是用“Macbeth反射浓度计(Macbeth reflection densitometer)”(由Macbeth Co.制造)测定相对于在具有原始浓度为0.00的白色部处打印出的图像的浓度。确定初始阶段(第一张)的图像浓度和第18,000张的图像浓度之间的差值,并基于以下标准进行评价。
A:小于0.05
B:0.05以上至小于0.10
C:0.10以上至小于0.20
D:0.20以上
同时,测量定影图像的白色部的反射率和未使用的转印材料的反射率。然后由以下等式计算雾化浓度,并基于该雾化浓度进行图像雾化的评价。反射计(REFLECTOMETER MODELTC-6DS,由Tokyo Denshoku Co.,Ltd.制造)用于反射率测量。
雾化(%)=未使用纸的反射率(%)-图像白色部分的反射率(%)
A:小于0.5%
B:0.5%以上至小于1.0%
C:1.0%以上至小于2.0%
D:2.0%以上
(2)飞散
5,000张图像输出试验如下进行:在常温、常湿环境(23℃,60%RH)和高温、高湿环境(32.5℃,80%RH)的每一种环境下在复印机用普通纸张(A4尺寸:75g/m2)上输出具有4%打印率的图像。在各初始阶段(第一张)和第5,000张上打印出由100μm(潜像)线组成的格子图案(1cm间隔),并通过用光学显微镜目视观察进行印刷出图像中的飞散评价。
A:每条线非常清晰,几乎没有观察到飞散。
B:观察到轻度飞散,但每条线相对清晰。
C:飞散有点明显,每条线模糊。
D:低于C水平。
(3)调色剂消耗量
对于在常温、常湿环境(23℃,60%RH)下在5,000张复印机用普通纸(A4尺寸:75g/m2)上输出具有4%的打印率(printpercentage)的图像。测定通过输出而减少的在调色剂容器中的调色剂量,并计算每张的调色剂消耗量。
<实施例2至4和比较例1至3>
除了将使用的调色剂变为调色剂2至4(相应于实施例2至4)和9至11(相应于比较例1至3)中的任一种外,以与实施例1相同的方式进行图像输出试验,并以与实施例1相同的方式进行评价。表2-1和2-2示出评价结果。
<实施例5>
将10质量份上述调色剂5和90质量份磁性载体1用V型混合机混合,从而制备双组分显影剂1。
通过使用改造由Canon Inc.制造的全色复印机iRC6870以致使处理条件可变化的设备(用于进行双组分显影的设备)在各常温、常湿环境(23℃,60%RH)和高温、高湿环境(32.5℃,80%RH)下将上述双组分显影剂1进行耐久图像输出评价(A4横向,10%打印率,50,000张)。在耐久试验的初始阶段(第一张)和通过50,000张后的图像输出评价项目和评价标准如下所示。另外,表3-1和3-2示出评价结果。
(4)在耐久试验初始阶段(第一张)和通过50,000张后的图像浓度和雾化。
初期调整显影电压以使图像的调色剂装载量可以为0.6mg/cm2。通过使用X-Rite颜色反射浓度计(500系列:由X-Rite制造)测量图像浓度和雾化。测定耐久试验初始阶段(第一张)的图像浓度和第50,000张的图像浓度之间的差值,并基于以下标准进行评价。
A:小于0.05
B:0.05以上至小于0.10
C:0.10以上至小于0.20
D:0.20以上
同时,用反射计(由Tokyo Denshoku CO.,LTD.制造的REFLECTOMETER MODEL TC-6DS)测量图像输出前普通纸的平均反射率Dr(%)。
在耐久试验初始阶段和通过50,000张后的时间点的普通纸上输出实白图像(solid white image)(Vback:150V)。测量该输出的实白图像的反射率Ds(%)。使用以下等式由所得Dr和Ds(在各耐久试验初始阶段(第一张)和通过50,000张后的时间点)计算雾化(%)。按以下评价标准评价所得雾化。
雾化(%)=Dr(%)-Ds(%)
(评价标准)
A:小于0.5%
B:0.5%以上至小于1.0%
C:1.0%以上至小于2.0%
D:2.0%以上
(5)飞散
在各初始阶段(第一张)和第50,000张上打印出由100μm(潜像)线组成的格子图案(1cm间隔),并通过用光学显微镜目视观察进行印刷出图像中的飞散的评价。
A:每条线非常清晰,几乎没有观察到飞散。
B:观察到轻度飞散,但每条线相对清晰。
C:飞散有点明显,每条线模糊。
D:低于C水平。
(6)转印性能(转印残余浓度)
初期调整显影电压以使图像调色剂的装载量可以为0.6mg/cm2。在各耐久试验的初始阶段(第一张)和通过50,000张后的时间点输出实心图像。将在实心图像形成时感光鼓上的转印残余调色剂通过用由聚酯制备的透明粘合粘贴剥离。计算通过从其上粘有剥离用胶带的纸的浓度减去其上仅粘有胶带的纸的浓度所得浓度差。然后,基于以下标准用浓度差值进行转印性能评价。应注意,用上述X-Rite颜色反射浓度计(500系列:由X-Rite制造)测量各浓度。
A:小于0.05
B:0.05以上至小于0.10
C:0.10以上至小于0.20
D:0.20以上
(7)点再现性(在耐久试验初始阶段(第一张纸)和第50,000张纸后)
用一个像素为一个点形成点图像(dot image)。当调整来自改造设备的激光束的点直径(spot diameter)以使纸张上一点的面积变为20,000μm2以上至25,000μm2以下时形成一点图像。用数字显微镜VHX-500(安装有棱镜广角变焦镜头(lens wide rangezoom lens)VH-Z100,由KEYENCE CORPORATION制造)测定1,000个点的面积。
计算点面积的个数平均(S)和标准偏差(σ),并由以下等式计算点再现性指数。
点再现性指数=(σ/S)×100
A:点再现性指数为小于4.0。
B:点再现性指数为4.0以上至小于6.0。
C:点再现性指数为6.0以上至小于8.0。
D:点再现性指数为8.0以上。
<实施例6至8和比较例4至10>
除了将使用的调色剂变为在调色剂生产例6至8和12至18中所得调色剂6至8(相应于实施例6至8)和12至18(相应于比较例4至10)中的任一种外,以与实施例5相同的方式进行评价。表3-1和3-2示出评价结果。
<实施例9和10>
除了将使用的磁性载体变为磁性载体2和3(相应于实施例9至10)中的任一种外,以与实施例5相同的方式形成图像,并且以与实施例5相同的方式进行评价。表3-1和3-2示出评价结果。
<实施例11和12>
除了将使用的磁性载体变为磁性载体4和5(相应于实施例11和12)中的任一种外,以与实施例5相同的方式形成各图像,并且以与实施例5相同的方式进行评价。表3-1和3-2示出评价结果。
Figure BDA00001879637600691
Figure BDA00001879637600701
Figure BDA00001879637600711
Figure BDA00001879637600721
Figure BDA00001879637600731

Claims (9)

1.一种调色剂,其包括:
调色剂颗粒,所述调色剂颗粒各自至少包含粘结剂树脂和蜡;和
外部添加剂,其中:
所述调色剂颗粒表面用扫描探针显微镜测量的平均表面粗糙度(Ra)为1.0nm以上至30.0nm以下;和
所述调色剂具有5.0×10-3N/m以上至1.0×10-1N/m以下对于45体积%甲醇水溶液的表面张力指数I,所述表面张力指数I通过毛细管吸引时间法测量并由以下等式(1)计算:
I=Pα/(A×B×106)    等式(1)
其中I表示所述调色剂的表面张力指数,单位为N/m,Pα表示所述调色剂对于45体积%甲醇水溶液的毛细管压力,单位为N/m2,A表示所述调色剂的比表面积,单位为m2/g,和B表示所述调色剂的真密度,单位为g/cm3
2.根据权利要求1所述的调色剂,其中所述调色剂在所述调色剂颗粒的圆形度分布中具有0.950以上至1.000以下的平均圆形度,所述调色剂颗粒各自具有2.00μm以上至200.00μm以下的圆当量直径,所述平均圆形度用图像处理分辨率为512×512像素的流式颗粒图像测量设备测量,每个像素相当于0.37μm×0.37μm。
3.根据权利要求1或2所述的调色剂,其中所述调色剂颗粒表面用扫描探针显微镜测量的粗糙度的十点高度为10nm以上至1,000nm以下。
4.根据权利要求1至3中任一项所述的调色剂,其中所述粘结剂树脂包含具有聚酯单元的树脂。
5.根据权利要求1至4中任一项所述的调色剂,其中所述调色剂颗粒各自包含具有通过乙烯基类树脂组分和碳氢化合物之间的反应获得的结构的聚合物。
6.根据权利要求1至5中任一项所述的调色剂,其中所述调色剂颗粒通过用热风进行表面处理获得。
7.根据权利要求1至6中任一项所述的调色剂,其中所述调色剂颗粒各自包含着色剂。
8.一种双组分显影剂,其包括:
磁性载体;和
调色剂
其中所述调色剂包括根据权利要求1至7中任一项所述的调色剂。
9.根据权利要求8所述的双组分显影剂,其中所述磁性载体具有80°以上至125°以下相对于水的接触角。
CN201210241871.3A 2007-12-27 2008-12-26 调色剂以及双组分显影剂 Active CN102809904B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007335922 2007-12-27
JP2007-335922 2007-12-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200880122942XA Division CN101910954B (zh) 2007-12-27 2008-12-26 调色剂以及双组分显影剂

Publications (2)

Publication Number Publication Date
CN102809904A true CN102809904A (zh) 2012-12-05
CN102809904B CN102809904B (zh) 2015-06-10

Family

ID=40824333

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200880122942XA Active CN101910954B (zh) 2007-12-27 2008-12-26 调色剂以及双组分显影剂
CN201210241871.3A Active CN102809904B (zh) 2007-12-27 2008-12-26 调色剂以及双组分显影剂

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN200880122942XA Active CN101910954B (zh) 2007-12-27 2008-12-26 调色剂以及双组分显影剂

Country Status (6)

Country Link
US (2) US20090233212A1 (zh)
EP (1) EP2230555B1 (zh)
JP (1) JP5153792B2 (zh)
KR (2) KR101265486B1 (zh)
CN (2) CN101910954B (zh)
WO (1) WO2009084620A1 (zh)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5393330B2 (ja) * 2008-08-04 2014-01-22 キヤノン株式会社 磁性キャリア及び二成分系現像剤
JP2010117617A (ja) * 2008-11-14 2010-05-27 Oki Data Corp 現像剤、現像剤カートリッジ、現像装置及び画像形成装置
WO2011074060A1 (ja) * 2009-12-14 2011-06-23 キヤノン株式会社 トナー、二成分系現像剤及び画像形成方法
EP2616886B1 (en) * 2010-09-16 2017-11-15 Canon Kabushiki Kaisha Toner
JP5865032B2 (ja) * 2010-11-29 2016-02-17 キヤノン株式会社 トナー
JP5634252B2 (ja) * 2010-12-22 2014-12-03 キヤノン株式会社 トナー及び二成分系現像剤
US9034549B2 (en) 2010-12-24 2015-05-19 Canon Kabushiki Kaisha Toner
CN103384563B (zh) 2011-02-21 2015-04-22 佳能株式会社 热处理设备及制造调色剂的方法
US8653159B2 (en) 2011-03-09 2014-02-18 Canon Kabushiki Kaisha Apparatus for heat-treating toner and method for producing toner
JP5729035B2 (ja) * 2011-03-15 2015-06-03 株式会社リコー トナー及びそのトナーの製造方法
JP5760666B2 (ja) * 2011-05-11 2015-08-12 株式会社リコー トナー、現像剤、及び画像形成方法
CN102193354B (zh) * 2011-05-17 2012-08-22 湖北鼎龙化学股份有限公司 双组分显影剂
CN103608730A (zh) * 2011-06-13 2014-02-26 佳能株式会社 热处理设备以及调色剂的获得方法
JP5504245B2 (ja) * 2011-11-10 2014-05-28 京セラドキュメントソリューションズ株式会社 静電潜像現像用トナー、及び静電潜像現像用トナーの製造方法
MY185133A (en) * 2011-12-27 2021-04-30 Canon Kk Magnetic toner
JP5868165B2 (ja) * 2011-12-27 2016-02-24 キヤノン株式会社 現像装置及び現像方法
US20130288173A1 (en) * 2012-04-27 2013-10-31 Canon Kabushiki Kaisha Toner
US9058924B2 (en) 2012-05-28 2015-06-16 Canon Kabushiki Kaisha Magnetic carrier and two-component developer
US9063443B2 (en) 2012-05-28 2015-06-23 Canon Kabushiki Kaisha Magnetic carrier and two-component developer
WO2015016384A1 (en) 2013-07-31 2015-02-05 Canon Kabushiki Kaisha Magnetic toner
CN105452965B (zh) 2013-07-31 2020-01-10 佳能株式会社 调色剂
US9417540B2 (en) 2013-12-26 2016-08-16 Canon Kabushiki Kaisha Toner and two-component developer
JP6055426B2 (ja) * 2014-01-23 2016-12-27 京セラドキュメントソリューションズ株式会社 トナー及びその製造方法
JP6050767B2 (ja) * 2014-01-27 2016-12-21 京セラドキュメントソリューションズ株式会社 トナー
WO2015146498A1 (ja) * 2014-03-27 2015-10-01 キヤノン株式会社 樹脂粒子の製造方法およびトナー粒子の製造方法
US9423708B2 (en) 2014-03-27 2016-08-23 Canon Kabushiki Kaisha Method for producing toner particle
US9348253B2 (en) * 2014-10-14 2016-05-24 Canon Kabushiki Kaisha Image-forming method
JP6490436B2 (ja) * 2015-01-30 2019-03-27 サムスン エレクトロニクス カンパニー リミテッド 複合粒子、トナー用外添剤および複合粒子の製造方法
US9915885B2 (en) 2015-05-13 2018-03-13 Canon Kabushiki Kaisha Toner
US10082743B2 (en) 2015-06-15 2018-09-25 Canon Kabushiki Kaisha Toner
JP6740014B2 (ja) 2015-06-15 2020-08-12 キヤノン株式会社 トナー及びトナーの製造方法
US9969834B2 (en) 2015-08-25 2018-05-15 Canon Kabushiki Kaisha Wax dispersant for toner and toner
JP6797660B2 (ja) 2016-01-08 2020-12-09 キヤノン株式会社 トナーの製造方法
US10012918B2 (en) 2016-02-19 2018-07-03 Canon Kabushiki Kaisha Toner and method for producing toner
CN105652616B (zh) * 2016-03-15 2020-06-05 湖北鼎龙控股股份有限公司 双组分静电图像显影剂用载体芯材以及载体
JP6700878B2 (ja) 2016-03-16 2020-05-27 キヤノン株式会社 トナー及びトナーの製造方法
JP6887833B2 (ja) 2016-03-18 2021-06-16 キヤノン株式会社 トナー及びトナーの製造方法
JP6750849B2 (ja) 2016-04-28 2020-09-02 キヤノン株式会社 トナー及びトナーの製造方法
JP6921609B2 (ja) 2016-05-02 2021-08-18 キヤノン株式会社 トナーの製造方法
JP6815753B2 (ja) 2016-05-26 2021-01-20 キヤノン株式会社 トナー
US10036970B2 (en) 2016-06-08 2018-07-31 Canon Kabushiki Kaisha Magenta toner
US10133201B2 (en) 2016-08-01 2018-11-20 Canon Kabushiki Kaisha Toner
JP6921678B2 (ja) 2016-08-16 2021-08-18 キヤノン株式会社 トナー製造方法及び重合体
JP6750871B2 (ja) 2016-08-25 2020-09-02 キヤノン株式会社 トナー
JP6849409B2 (ja) 2016-11-25 2021-03-24 キヤノン株式会社 トナー
US10197936B2 (en) 2016-11-25 2019-02-05 Canon Kabushiki Kaisha Toner
JP6808538B2 (ja) 2017-02-28 2021-01-06 キヤノン株式会社 トナー
JP6833570B2 (ja) 2017-03-10 2021-02-24 キヤノン株式会社 トナー
JP6887868B2 (ja) 2017-05-15 2021-06-16 キヤノン株式会社 トナー
US10338487B2 (en) 2017-05-15 2019-07-02 Canon Kabushiki Kaisha Toner
US10345726B2 (en) 2017-05-15 2019-07-09 Canon Kabushiki Kaisha Method of manufacturing toner
US10353308B2 (en) 2017-05-15 2019-07-16 Canon Kabushiki Kaisha Toner
US10310396B2 (en) 2017-05-15 2019-06-04 Canon Kabushiki Kaisha Method of producing toner
US10551758B2 (en) 2017-05-15 2020-02-04 Canon Kabushiki Kaisha Toner
US10503090B2 (en) 2017-05-15 2019-12-10 Canon Kabushiki Kaisha Toner
JP6900245B2 (ja) 2017-06-09 2021-07-07 キヤノン株式会社 トナー
JP6914741B2 (ja) 2017-06-16 2021-08-04 キヤノン株式会社 トナーおよび画像形成方法
US10387572B2 (en) 2017-09-15 2019-08-20 International Business Machines Corporation Training data update
JP6965130B2 (ja) 2017-12-05 2021-11-10 キヤノン株式会社 マゼンタトナー及びトナーキット
US10599060B2 (en) 2017-12-06 2020-03-24 Canon Kabushiki Kaisha Toner
JP2019128516A (ja) 2018-01-26 2019-08-01 キヤノン株式会社 トナー
JP7267750B2 (ja) 2018-01-26 2023-05-02 キヤノン株式会社 トナー
JP7146403B2 (ja) 2018-01-26 2022-10-04 キヤノン株式会社 トナー
JP7237688B2 (ja) 2018-05-01 2023-03-13 キヤノン株式会社 トナー
JP7229701B2 (ja) 2018-08-28 2023-02-28 キヤノン株式会社 トナー
JP7286471B2 (ja) 2018-08-28 2023-06-05 キヤノン株式会社 トナー
US10955765B2 (en) 2018-11-22 2021-03-23 Canon Kabushiki Kaisha Magnetic carrier and two-component developer
JP7433869B2 (ja) 2018-12-05 2024-02-20 キヤノン株式会社 トナー
JP7327993B2 (ja) 2019-05-13 2023-08-16 キヤノン株式会社 トナー及びトナーの製造方法
JP7391572B2 (ja) 2019-08-29 2023-12-05 キヤノン株式会社 トナー及びトナーの製造方法
JP2021081711A (ja) 2019-11-13 2021-05-27 キヤノン株式会社 磁性キャリア、二成分現像剤、及び磁性キャリアの製造方法
US11914325B2 (en) 2020-03-05 2024-02-27 Canon Kabushiki Kaisha Toner and method for producing toner
US11809131B2 (en) 2020-03-05 2023-11-07 Canon Kabushiki Kaisha Toner
JP2021165835A (ja) 2020-04-06 2021-10-14 キヤノン株式会社 トナー及びトナーの製造方法
JP7475982B2 (ja) 2020-06-19 2024-04-30 キヤノン株式会社 トナー

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004078206A (ja) * 2002-07-30 2004-03-11 Canon Inc 黒トナー
CN1527141A (zh) * 2003-03-07 2004-09-08 ������������ʽ���� 调色剂和双组分显影剂
EP1505449A2 (en) * 2003-08-01 2005-02-09 Canon Kabushiki Kaisha Toner
CN1609720A (zh) * 2003-08-01 2005-04-27 佳能株式会社 调色剂
US20060068314A1 (en) * 2004-09-30 2006-03-30 Hideaki Kawata Magnetic mono-component toner for developing electrostatic latent image and image forming method
JP2007148077A (ja) * 2005-11-29 2007-06-14 Canon Inc トナーの製造方法
US7297455B2 (en) * 2003-07-30 2007-11-20 Canon Kabushiki Kaisha Toner, and image forming method

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2742694B2 (ja) 1988-09-22 1998-04-22 コニカ株式会社 静電荷像記録方法
JPH07181732A (ja) 1993-12-24 1995-07-21 Matsushita Electric Ind Co Ltd トナー及び電子写真装置
JPH09281805A (ja) 1996-04-19 1997-10-31 Konica Corp 画像形成方法と装置
JPH11295929A (ja) 1998-04-14 1999-10-29 Minolta Co Ltd 静電潜像現像用トナーおよびその製法
CN100370364C (zh) * 1998-06-25 2008-02-20 松下电器产业株式会社 调色剂及其制造方法
CA2337087C (en) * 2000-03-08 2006-06-06 Canon Kabushiki Kaisha Magnetic toner, process for production thereof, and image forming method, apparatus and process cartridge using the toner
US6537715B2 (en) * 2000-07-28 2003-03-25 Canon Kabushiki Kaisha Toner, image-forming method and process cartridge
JP2002091090A (ja) 2000-09-13 2002-03-27 Canon Inc 樹脂コートキャリア、二成分系現像剤及び画像形成方法
US6613490B2 (en) * 2000-10-31 2003-09-02 Canon Kabushiki Kaisha Toner, image forming method and process-cartridge
JP3799250B2 (ja) * 2001-08-06 2006-07-19 キヤノン株式会社 トナー、画像形成方法及びプロセスカートリッジ
JP2003162090A (ja) 2001-11-26 2003-06-06 Matsushita Electric Ind Co Ltd トナー、トナーの製造方法及び画像形成装置
DE60310456T2 (de) * 2002-01-18 2007-09-27 Canon K.K. Farb-Toner und Vielfarben-Bilderzeugungsverfahren
JP2003270856A (ja) 2002-03-15 2003-09-25 Seiko Epson Corp トナーの製造方法およびトナー
DE60321614D1 (de) * 2002-03-15 2008-07-31 Seiko Epson Corp Tonerherstellungsverfahren, und Toner
DE60304944T2 (de) * 2002-07-30 2006-11-23 Canon K.K. Schwarzer Toner
EP1398673A3 (en) * 2002-09-12 2005-08-31 Canon Kabushiki Kaisha Developer
EP1403723B1 (en) * 2002-09-27 2013-02-20 Canon Kabushiki Kaisha Toner
JP2004138691A (ja) 2002-10-16 2004-05-13 Mitsubishi Chemicals Corp 静電潜像現像用トナーの製造方法
JP4234022B2 (ja) 2003-01-20 2009-03-04 株式会社リコー トナー、現像剤、現像装置、及び画像形成装置
EP1439429B1 (en) * 2003-01-20 2013-03-13 Ricoh Company, Ltd. Toner and developer
JP4174353B2 (ja) * 2003-03-07 2008-10-29 キヤノン株式会社 非磁性トナー
EP1455236B8 (en) * 2003-03-07 2007-03-07 Canon Kabushiki Kaisha Color toner
JP4343672B2 (ja) * 2003-04-07 2009-10-14 キヤノン株式会社 フルカラー画像形成用カラートナー
CN1550919B (zh) 2003-05-14 2010-04-28 佳能株式会社 磁性载体及双组分显影剂
JP4262161B2 (ja) * 2003-08-01 2009-05-13 キヤノン株式会社 トナー
EP1515194B1 (en) * 2003-09-12 2014-11-12 Canon Kabushiki Kaisha Magnetic toner
CN1595302B (zh) * 2003-09-12 2011-12-07 佳能株式会社 彩色调色剂
JP4136999B2 (ja) * 2004-04-26 2008-08-20 キヤノン株式会社 磁性キャリア及び二成分系現像剤
JP2006309048A (ja) * 2005-05-02 2006-11-09 Canon Inc トナー
WO2007055240A1 (ja) * 2005-11-08 2007-05-18 Canon Kabushiki Kaisha トナー及び画像形成方法
CN101427187B (zh) * 2006-04-19 2013-03-27 保土谷化学工业株式会社 电荷控制剂组合物以及使用其的调色剂
JP2008058874A (ja) * 2006-09-04 2008-03-13 Ricoh Co Ltd 一成分トナーおよび画像形成方法
JP4205124B2 (ja) * 2006-09-14 2009-01-07 シャープ株式会社 電子写真用現像剤および画像形成装置
JP4439542B2 (ja) * 2007-07-23 2010-03-24 シャープ株式会社 トナーの製造方法
JP4442676B2 (ja) * 2007-10-01 2010-03-31 富士ゼロックス株式会社 光定着用カラートナー及びその製造方法、並びに、静電荷像現像剤、プロセスカートリッジ及び画像形成装置
US20090246675A1 (en) * 2008-02-01 2009-10-01 Canon Kabushiki Kaisha Two-component developer, replenishing developer, and image-forming method using the developers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004078206A (ja) * 2002-07-30 2004-03-11 Canon Inc 黒トナー
CN1527141A (zh) * 2003-03-07 2004-09-08 ������������ʽ���� 调色剂和双组分显影剂
US7297455B2 (en) * 2003-07-30 2007-11-20 Canon Kabushiki Kaisha Toner, and image forming method
EP1505449A2 (en) * 2003-08-01 2005-02-09 Canon Kabushiki Kaisha Toner
CN1609720A (zh) * 2003-08-01 2005-04-27 佳能株式会社 调色剂
US20060068314A1 (en) * 2004-09-30 2006-03-30 Hideaki Kawata Magnetic mono-component toner for developing electrostatic latent image and image forming method
JP2007148077A (ja) * 2005-11-29 2007-06-14 Canon Inc トナーの製造方法

Also Published As

Publication number Publication date
EP2230555A4 (en) 2012-10-03
JP5153792B2 (ja) 2013-02-27
US20090233212A1 (en) 2009-09-17
KR20130010501A (ko) 2013-01-28
EP2230555A1 (en) 2010-09-22
EP2230555B1 (en) 2017-02-22
CN101910954A (zh) 2010-12-08
CN102809904B (zh) 2015-06-10
WO2009084620A1 (ja) 2009-07-09
CN101910954B (zh) 2012-08-22
KR101265486B1 (ko) 2013-05-21
US8288069B2 (en) 2012-10-16
US20110136060A1 (en) 2011-06-09
JPWO2009084620A1 (ja) 2011-05-19
KR20100092520A (ko) 2010-08-20

Similar Documents

Publication Publication Date Title
CN101910954B (zh) 调色剂以及双组分显影剂
US9304426B2 (en) Electrostatic latent image developing toner
CN104749913B (zh) 调色剂和双组分显影剂
KR101445048B1 (ko) 토너
CN101715569B (zh) 磁性调色剂
CN101589345B (zh) 图像形成方法、磁性调色剂及处理单元
US9329509B2 (en) Electrostatic latent image developing toner
CN101067730B (zh) 胶囊色粉
CN102667629B (zh) 调色剂、双组分显影剂和图像形成方法
CN107015450A (zh) 调色剂、图像形成设备和图像形成方法
CN104685419A (zh) 调色剂
CN109343316A (zh) 调色剂用蜡分散剂和调色剂
CN103838098A (zh) 静电荷像显影用调色剂
JP2014164274A (ja) 静電荷像現像用トナー
JP2007041500A (ja) 電子写真用トナーおよび現像剤
JP2006178093A (ja) 電子写真用トナーおよびその製造方法
JP6443287B2 (ja) 静電潜像現像用トナー
JP4620953B2 (ja) 電子写真用キャリア
JP6324104B2 (ja) トナー
JP2007279400A (ja) トナー及び画像形成方法
JP5419658B2 (ja) トナーキット及び画像形成方法
JP7395130B2 (ja) 二成分現像剤
JP2007264493A (ja) 静電潜像現像用トナー
JP2018045093A (ja) トナー、ならびにそれを用いた二成分現像剤、現像装置及び画像形成装置
JP5250389B2 (ja) 電子写真用トナー、およびこれを用いた画像形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant