CN102308425B - 石榴石型锂离子传导性氧化物和含有所述氧化物的全固态锂离子二次电池 - Google Patents

石榴石型锂离子传导性氧化物和含有所述氧化物的全固态锂离子二次电池 Download PDF

Info

Publication number
CN102308425B
CN102308425B CN201080006675.7A CN201080006675A CN102308425B CN 102308425 B CN102308425 B CN 102308425B CN 201080006675 A CN201080006675 A CN 201080006675A CN 102308425 B CN102308425 B CN 102308425B
Authority
CN
China
Prior art keywords
lithium ion
carbuncle type
ion secondary
secondary cell
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080006675.7A
Other languages
English (en)
Other versions
CN102308425A (zh
Inventor
太田慎吾
小林哲郎
朝冈贤彦
浅井满
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009122991A external-priority patent/JP5287499B2/ja
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Publication of CN102308425A publication Critical patent/CN102308425A/zh
Application granted granted Critical
Publication of CN102308425B publication Critical patent/CN102308425B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本发明的全固态锂离子二次电池含有充当固体电解质的新型石榴石型氧化物。所述石榴石型锂离子传导性氧化物为由式Li5+XLa3(Zrx,A2-X)O12表示的石榴石型锂离子传导性氧化物,其中A为选自Sc、Ti、V、Y、Nb、Hf、Ta、Al、Si、Ga、Ge和Sn中的至少一种且X满足不等式1.4≤X<2,或为如下石榴石型锂离子传导性氧化物,其通过用离子半径不同于Zr的元素来置换式Li7La3Zr2O12表示的石榴石型锂离子传导性氧化物中的Zr位而得到,其中在基于(220)衍射峰的强度进行归一化时,具有(024)衍射峰的X射线衍射(XRD)图案的归一化强度为9.2以上。

Description

石榴石型锂离子传导性氧化物和含有所述氧化物的全固态锂离子二次电池
技术领域
本发明涉及石榴石型锂离子传导性氧化物和含有所述石榴石型锂离子传导性氧化物的全固态锂离子二次电池。 
背景技术
全固态锂离子二次电池含有固体电解质,因此可燃性比含非水电解质的锂二次电池低。所提出的全固态锂离子二次电池的实例包括将锂-镧-钛复合氧化物用作固体电解质的电池(专利文献1)和将Li2S-P2S3组合物用作固体电解质的电池(专利文献2)。这些电池尚未付诸实际使用。关于此的原因之一是涉及固体电解质的问题。固体电解质需要具有三个主要性能:高的锂离子传导率、高的化学稳定性、和宽的电位窗。然而,尚未发现具有这种性能的任意一种固体电解质。 
石榴石型氧化物具有诸如高化学稳定性和宽电位窗的优势并因此是固体电解质的候选。然而,所述石榴石型氧化物具有诸如传导率低的劣势。近来,Weppner报道了,通过固相反应合成的石榴石型氧化物Li7La3Zr2O12在25℃下的传导率为1.9×10-4~2.3×10-4Scm-1且其活化能为0.34eV(非专利文献)。 
专利文献1:日本特开2008-226639号公报 
专利文献2:日本特开2008-084798号公报 
非专利文献:德国应用化学(Angew.Chem.Int.Ed.),2007,46,7778-7781 
发明内容
尽管Li7La3Zr2O12的传导率大于常规石榴石型氧化物的传导率,但是在Li7La3Zr2O12与除石榴石型锂离子传导性氧化物之外的锂离子传导性氧化物之间的传导率无显著差别。玻璃陶瓷Li1.5Al0.5Ge1.5(PO4)3(下文中称作LAGP)的传导率为约7.0×10-4Scm-1且基本上等于Li7La3Zr2O12的传导率。玻璃陶瓷Li1+XTi2SiXP3-XO12·AlPO4(下文中称作Ohara电解质)的传导率为约1×10-3Scm-1;因此,Ohara电解质的传导率比Li7La3Zr2O12的传导率低约一个数量级。因此,期望开发一种具有更高传导率的石榴石型氧化物。所述LAGP在0.5V以下(相对于锂离子)被还原且所述Ohara电解质在1.5V以下(相对于锂离子)被还原;因此,LAGP和Ohara电解质不满足二次电池用固体电解质所需要的电位窗。 
为了解决这种问题而完成了本发明。本发明的目的是提供具有高化学稳定性、宽电位窗和高锂离子传导率的石榴石型氧化物。本发明的另一个目的是提供含这种石榴石型氧化物的全固态锂离子二次电池。 
为了实现所述目的,本发明人对石榴石型氧化物Li7La3Zr2O12的组成进行了研究。本发明人发现,其中通过用适当量的Nb来置换Zr位而改性的石榴石型氧化物具有超过Li7La3Zr2O12的锂离子传导率,且还发现,该石榴石型氧化物可用作全固态锂离子二次电池用固体电解质。由此完成了本发明。 
本发明的第一石榴石型锂离子传导性氧化物具有石榴石状结构并由式Li5+XLa3(ZrX,A2-X)O12表示,其中A为选自Sc、Ti、V、Y、Nb、Hf、Ta、Al、Si、Ga、Ge和Sn中的至少一种且X满足不等式1.4≤X<2。 
本发明的第二石榴石型锂离子传导性氧化物为如下的石榴石型锂离子传导性氧化物,其通过用离子半径不同于Zr的元素来置换式Li7La3Zr2O12表示的石榴石型锂离子传导性氧化物中的Zr位而得到,其 中在基于(220)衍射峰的强度进行归一化时,具有(024)衍射峰的X射线衍射(XRD)图案的归一化强度为9.2以上。 
所述第一和第二石榴石型锂离子传导性氧化物具有基本上与常规石榴石型氧化物Li7La3Zr2O12相同的化学稳定性和电位窗,且与石榴石型氧化物相比,锂离子传导率更高且锂离子传导率随温度的变化率更小。上述问题的原因可能为如下所述。已知的是,石榴石状结构含有各自与位于四面体顶点处的氧离子一起形成四面体的四配位锂离子和各自与位于八面体顶点处的氧离子一起形成八面体的六配位锂离子。在所述石榴石状结构中,通过用离子半径不同于Zr的元素(例如,上述的A)置换Zr位来改变锂离子周围的氧离子的原子坐标。通过调节所用元素的量来增大所述锂离子周围的氧离子之间的距离;由此使得锂离子易于发生迁移。这可能导致锂离子传导率增大且传导率的变化率因活化能下降而随温度下降。 
本发明的全固态锂离子二次电池具有将固体电解质层夹在正极和负极之间的构造,所述正极含有能够吸藏和释放锂离子的正极活性材料且所述负极含有能够释放和吸藏锂离子的负极活性材料。所述固体电解质层由第一或第二石榴石型锂离子传导性氧化物制成。 
本发明的全固态锂离子二次电池含有充当固体电解质的新型石榴石型氧化物。所述新型石榴石型氧化物具有基本上与常规石榴石型氧化物Li7La3Zr2O12相同的化学稳定性和电位窗,且与石榴石型氧化物相比,锂离子传导率更高且锂离子传导率随温度的变化率更小。因此,含有新型石榴石型氧化物的全固态锂离子二次电池具有良好的电池性能并因此期望将其特别应用于需要具有高功率的车辆中。 
附图说明
图1为显示例1、3、5和7的试样的XRD图案的图; 
图2为显示例1~3和5~7的试样的晶格参数的X值依赖性的图; 
图3为显示例1~7的试样的传导率的X值依赖性的图; 
图4为石榴石型氧化物的晶体结构的一部分的说明图; 
图5A为石榴石型氧化物的全部晶体结构的说明图; 
图5B为显示从所述晶体结构暴露的LiO6(II)八面体的说明图; 
图6A为显示三角形的边a和b的X值依赖性的图,其中通过例1、3和5~7的试样的各个LiO4(I)四面体中的氧离子形成所述三角形; 
图6B为显示三角形面积的X值依赖性的图; 
图7为显示例1~3、5和7的试样的各衍射峰的归一化强度的X值依赖性的图,其中基于相应试样的(220)衍射峰的强度,通过对各衍射峰的强度进行归一化而确定所述归一化强度; 
图8为显示例1、3和5~7的试样的各衍射峰的归一化强度的X值依赖性的图,其中基于相应试样的(024)衍射峰的强度,通过对各衍射峰的强度进行归一化而确定所述归一化强度; 
图9为显示例1~7的试样的阿累尼乌斯(Arrhenius)图的图; 
图10为显示例1~7的各试样的活化能的X值依赖性的图; 
图11为显示例5的试样的化学稳定性的图,其中在空气中于室温下对所述试样进行测试; 
图12为显示通过测量例5试样的电位窗而获得的结果的图; 
图13A为具有正极活性材料层的小球(pellet)的正视图; 
图13B为所述小球的右视图; 
图14为全固态锂离子二次电池的截面图; 
图15为显示全固态锂离子二次电池的充放电性能的图; 
图16为显示全固态锂离子二次电池在各个循环的容量的图; 
图17为显示全固态锂离子二次电池的结构的实例的说明图; 
图18为显示全固态锂离子二次电池的结构的实例的说明图;且 
图19为显示用于制备全固态锂离子二次电池的例示性技术的说明图。 
具体实施方式
本发明的第一石榴石型锂离子传导性氧化物具有石榴石状结构并 由式Li5+XLa3(ZrX,A2-X)O12表示,其中A为如上所述且X满足不等式1.4≤X<2。由于X满足不等式1.4≤X<2,所以与已知的石榴石型锂离子传导性氧化物Li7La3Zr2O12(即X=2)相比,该第一石榴石型锂离子传导性氧化物具有更高的锂离子传导率和更低的活化能。当A为例如Nb时,所述第一石榴石型锂离子传导性氧化物具有2.5×10-4Scm-1以上的锂离子传导率和0.34eV以下的活化能。因此,在全固态锂离子二次电池中使用第一石榴石型锂离子传导性氧化物使得易于传导锂离子;因此,全固态锂离子二次电池的电解质电阻低且输出高。由于第一石榴石型锂离子传导性氧化物的活化能即传导率随其温度的变化率小,所以全固态锂离子二次电池的输出稳定。所述值X优选满足不等式1.6≤X≤1.95,因为第一石榴石型锂离子传导性氧化物具有更高的锂离子传导率和更低的活化能。所述值X更优选满足不等式1.65≤X≤1.9,因为第一石榴石型锂离子传导性氧化物具有基本上极大值的锂离子传导率和基本上极小值的活化能。A优选为Nb或具有与Nb基本相等离子半径的Ta。 
本发明的第二石榴石型锂离子传导性氧化物为如下石榴石型锂离子传导性氧化物,其通过用离子半径不同于Zr的元素来置换式Li7La3Zr2O12表示的石榴石型锂离子传导性氧化物中的Zr位而得到,其中在基于(220)衍射峰的强度进行归一化时,具有(024)衍射峰的XRD  图案的归一化强度为9.2以上,所述元素为选自Sc、Ti、V、Y、Nb、Hf、Ta、Al、Si、Ga、Ge和Sn中的至少一种。由于(024)衍射峰的归一化强度为9.2以上,所以由LiO4(I)四面体中的氧离子形成的三角形接近于等边三角形且面积大;因此,与具有式Li7La3Zr2O12(即X=2)的已知石榴石型锂离子传导性氧化物相比,第二石榴石型锂离子传导性氧化物具有更高的锂离子传导率和更低的活化能。当A为例如Nb时,所述第二石榴石型锂离子传导性氧化物具有2.5×10-4Scm-1以上的锂离子传导率和0.34eV以下的活化能。因此,在全固态锂离子二次电池中使用第二石榴石型锂离子传导性氧化物使得易于传导锂离子;因此,全固态锂离子二次电池的输出高。由于第二石榴石型锂离子传导性氧 化物的活化能即传导率随其温度的变化率小,所以全固态锂离子二次电池的输出稳定。所述(024)衍射峰的归一化强度优选为10.0以上,因为第二石榴石型锂离子传导性氧化物具有更高的锂离子传导率和更低的活化能。所述(024)衍射峰的归一化强度更优选为10.2以上,因为第二石榴石型锂离子传导性氧化物具有基本上极大值的锂离子传导率和基本上极小值的活化能。A优选为Nb或具有与Nb基本相等离子半径的Ta。 
下面对制造第一或第二石榴石型锂离子传导性氧化物的例示性方法进行说明。所述方法包括:(1)第一混合步骤,其中对含锂化合物的无机材料进行混合,所述无机材料通过煅烧会改变状态并将其用作原料;(2)第一煅烧步骤,其中在预定煅烧温度下对所述混合的无机材料进行煅烧以改变所述无机材料的状态;(3)第二混合步骤,其中将所述无机材料与预定量的另一种无机材料进行混合;(4)第二煅烧步骤,其中在预定煅烧温度下对在所述第二混合步骤中混合的所述无机材料进行煅烧;和(5)成形/煅烧步骤,其中将在所述第二煅烧步骤中煅烧的所述无机材料成形为成形体(compact)并在成形/煅烧温度下对所述成形体进行煅烧。下面将详细描述这些步骤。 
(1)第一混合步骤 
在该步骤中,将通过在预定温度下进行煅烧会改变状态的无机材料混合在一起。特别地,将所述无机材料粉碎并混合在一起,从而形成由式Li5+XLa3(ZrX,A2-X)O12表示的组合物,其中A为如上所述且X满足不等式1.4≤X<2。所述无机材料的实例包括所述组合物中包含的元素的碳酸盐、磺酸盐、硝酸盐、草酸盐、氯化物、氢氧化物和氧化物。特别地,优选碳酸盐和氢氧化物,因为通过分别对碳酸盐和氢氧化物进行热分解而产生的二氧化碳和水相对易于处理。例如,优选使用Li2CO3、La(OH)3、ZrO2和A2O3,其中A为如上所述。本文中所使用的术语“改变状态”可以指产生气体或发生预定的相变。优选以形成目标组成的混合比将作为原料的无机材料进行混合。可通过干法而 不使用任何溶剂将所述无机材料粉碎并混合,或者可通过湿法将其粉碎并混合。考虑到要提高混合性能,优选通过这种湿法在溶剂中将无机材料粉碎并混合。例如,能够使用行星式研磨机、超微磨碎机、球磨机等对所述无机材料进行混合。所述溶剂优选为几乎不溶解Li的溶剂,更优选有机溶剂如乙醇。所述无机材料的混合时间取决于其量,且可以为例如2~8小时。 
(2)第一煅烧步骤 
在该步骤中,在高于或等于无机材料的状态发生变化的预定温度且低于成形/煅烧温度的预定煅烧温度(下文中称作第一温度)下对在第一混合步骤中混合的无机材料进行煅烧。当无机材料包含Li2CO3时,所述预定的煅烧温度高于或等于该Li2CO3发生分解的温度。这能够抑制因在成形/煅烧步骤中的热分解而产生气体所造成的密度下降。所述第一温度优选为900℃~1150℃。根据经验能够将无机材料的煅烧温度确定在无机材料充分发生状态变化并能够防止易于挥发的成分(下文中也称作挥发性成分)如锂发生蒸发的范围内。 
(3)第二混合步骤 
在该步骤中,向在第一煅烧步骤中煅烧的所述无机材料(下文中也称作第一材料)中添加无机材料并将这些无机材料混合在一起,所添加无机材料的量根据对无机材料进行煅烧的条件来确定。该步骤的主要目的是校正因在各个煅烧步骤中的蒸发而造成的组成变化。所添加无机材料的实例为含有挥发性成分等的无机化合物如Li2CO3。根据第一和第二煅烧步骤以及成形/煅烧步骤的条件能够从经验上确定所添加无机材料的量。可根据组成的变化来确定所添加无机材料的量。所添加无机材料的类型、将所添加无机材料与前述无机材料进行混合的方法、以及所添加无机材料与前述无机材料的混合时间可如在第一混合步骤中所述的那样。在第二混合步骤中,所添加无机材料的类型、将所添加无机材料与前述无机材料进行混合的方法、以及所添加无机材料与前述无机材料的混合时间可与第一混合步骤中所述的那些相同或不 同。在第二混合步骤中,优选将Li添加到无机材料中,使得添加到其中的Li的量为所述无机材料中Li的量的4~20原子%。 
(4)第二煅烧步骤 
在该步骤中,在高于或等于无机材料状态发生变化的预定温度并低于成形/煅烧温度的煅烧温度(下文中称作第二温度)下,对与所添加无机材料混合的无机材料(第一材料)进行煅烧。该步骤的主要目的是改变所添加无机材料的状态。可在与所述第一煅烧步骤基本相同的条件下实施所述第二煅烧步骤。优选在高于或等于所述无机材料的状态发生变化的预定温度并低于或等于第一煅烧步骤的煅烧温度的温度下实施第二煅烧步骤。这防止了煅烧的无机材料发生凝固;因此,不需要对在成形/煅烧步骤中煅烧的无机材料进行粉碎。由于在第二煅烧步骤中状态发生改变的无机材料的量远小于第一煅烧步骤中的量,所以第二煅烧步骤中的煅烧温度可以低。由于实施第二煅烧步骤,所以在成形/煅烧步骤中能够抑制由于为了抑制组成变化而添加的无机材料的状态改变而造成的密度降低。 
(5)成形/煅烧步骤 
在该步骤中,将在第二煅烧步骤中煅烧的无机材料(下文中也称作第二材料)成形为成形体并在高于前述煅烧温度的成形/煅烧温度下对所述成形体进行煅烧。在所述成形/煅烧步骤中,优选的是,在成形为成形体之前不在溶剂中对第二材料进行粉碎。这能够防止在成形/煅烧步骤中被蒸发且过量包含在第二材料中的挥发性成分,因与这种溶剂接触而引发的挥发性成分的状态变化;因此,能够确保抑制因无机材料的状态变化而造成的密度下降。当无机材料包括例如Li2CO3时,能够防止在第二煅烧步骤中由过量的Li2CO3产生的Li2O转化成LiOH或Li2CO3。在第一或第二混合步骤中在溶剂中混合无机材料的情况中,优选的是,在所述成形/煅烧步骤之前不在任何溶剂中对所述无机材料进行混合。由于第二材料在第二煅烧步骤之后煅烧两次、因此几乎不凝固或固定,所以通过简单的碎解能够将所述第二材料相对容易地成形 为成形体。通过对所述第二材料进行例如冷等静压(CIP)、热等静压(HIP)、成形、热压等,能够将所述成形体成形为任意形状。 
根据所述方法,将根据经验确定的量的无机材料添加至在第一煅烧步骤中煅烧的无机材料中,对所述无机材料和所添加的无机材料进行重新煅烧,然后成形为成形体,对所述成形体进行煅烧。因此,能够降低由于无机材料的状态发生变化而引起的体积变化并能够精确抑制组成的变化。不能将制造本发明的第一或第二石榴石型锂离子传导性氧化物的方法限制为这一种方法,可以通过其他方法制造所述第一或第二石榴石型锂离子传导性氧化物。 
本发明的全固态锂离子二次电池具有固体电解质层夹在含正极活性材料的正极与含负极活性材料的负极之间的构造,所述正极活性材料能够吸藏并释放锂离子且所述负极活性材料能够释放并吸藏锂离子。所述固体电解质层由第一或第二石榴石型锂离子传导性氧化物制成。 
在全固态锂离子二次电池中,可将聚合物电解质层布置在固体电解质层与正极或负极之间。这使得固体电解质层与正极或负极之间的粘附增强,由此获得了良好的电池性能。 
在全固态锂离子二次电池中,正极中包含的正极活性材料可以为含过渡金属元素的硫化物或含锂和过渡金属元素的氧化物。所述正极活性材料的实例包括过渡金属硫化物如TiS2、TiS3、MoS3和FeS2;锂-锰复合氧化物如LiMnO2和LiMn2O4;锂-钴复合氧化物如LiCoO2;锂-镍复合氧化物如LiNiO2;锂-锰-钴复合氧化物如LiMnCoO4;锂-铁复合氧化物如LiFeO2;锂-铁-磷复合氧化物如LiFePO4;锂-钒复合氧化物如LiV2O4;和过渡金属氧化物如V2O5。 
在全固态锂离子二次电池中,包含在负极中的负极活性材料的实 例包括金属锂、能够释放和吸藏锂离子的碳质材料、含锂的合金如Li-Al和Li-Zn、含铟的合金如In-Sb和Cu-In-Sn、氧化物如Li4Ti5O12和WO2、镧-镍化合物如La3Ni2Sn7、以及导电聚合物。考虑到安全性,优选碳质材料。所述碳质材料没有特别限制。所述碳质材料的实例包括焦炭、玻璃碳、石墨、非石墨化碳、热解碳和碳纤维。特别地,所述负极活性材料优选为石墨如合成或天然石墨,因为这种石墨具有与金属锂相近的工作电位、可以在高工作电压下进行充放电、在使用锂盐作为电解质盐的情况中能够抑制自放电、且能够降低充电期间的不可逆容量。 
在全固态锂离子二次电池中,用于制备正极或负极的方法没有特别限制,且能够使用气相法或固相法来制备正极或负极。气相法的实例包括脉冲激光沉积(PLD)、溅射、气相沉积和包括金属有机化学气相沉积(MOCVD)的化学气相沉积(CVD)。所述固相法的实例包括烧结法、溶胶-凝胶法、刮刀法、丝网印刷法、浆料浇铸法和粉末压制法。能够通过刮刀法或类似方法,使用下列溶剂来制备浆料:芳族烃溶剂如甲苯或二甲苯或醇溶剂如乙醇或丙醇。当浆料含有树脂粘合剂时,所述树脂粘合剂可以为例如聚乙烯基树脂。在通过粉末压制法制造全固态锂离子二次电池的情况中,正极活性材料、负极活性材料和固体电解质全部都可以为粉末状。或者,固体电解质可以为固体且正极和负极活性材料可以为粉末状。或者,固体电解质可以为粉末状且正极和负极活性材料可以为固体。 
全固态锂离子二次电池的形状没有特别限制且可具有硬币形、纽扣形、片形、多层形、圆柱形、平坦形、矩形或另一种形状。相同的全固态锂离子二次电池可以相互串联连接而形成电动车辆用电源。电动车辆的实例包括仅由电池驱动的电池电动车辆、由内燃机和电动机驱动的混合电动车辆、以及由燃料电池驱动的燃料电池电动车辆。 
全固态锂离子二次电池的形状没有特别限制,可具有图17或18中所示的结构。全固态锂离子二次电池20包括由第一或第二石榴石型 氧化物制成的固体电解质层10、布置在固体电解质层10表面上的正极12、以及布置在所述固体电解质层10另一个表面上的负极14,如图17中所示。所述正极12包括含有正极活性材料的正极活性材料层12a和与所述正极活性材料层12a接触的正极集电器12b。所述负极14包括含负极活性材料的负极活性材料层14a和与所述负极活性材料层14a接触的负极集电器14b。可以通过气相法、固相法、或气相法与固相法的组合来制造所述全固态锂离子二次电池20。以块状的形式形成所述固体电解质层10。通过气相法、固相法或气相法和固相法的组合在固体电解质层10的表面上形成正极12和负极14。或者,可以通过气相法、固相法、或气相法与固相法的组合在负极集电器14b上依次布置下列构件:负极活性材料层14a、固体电解质层10、正极活性材料层12a和正极集电器12b。或者,如图19中所示,在圆柱形绝缘容器30中布置负极集电器14b;在负极集电器14b上依次布置负极活性材料粉末、固体电解质粉末和正极活性材料粉末;在负极活性材料粉末上布置正极集电器12b;并可以对正极和负极集电器12b和14b进行压制而使其相互接近。除了所述固体电解质层10、正极12和负极14之外,所述全固态锂离子二次电池20可还包含第一聚合物电解质层16和第二聚合物电解质层18,如图18中所示,所述第一聚合物电解质层16布置在固体电解质层10的表面上且布置于固体电解质层10与正极12的之间,所述第二聚合物电解质层18布置在固体电解质层10的表面上且布置于固体电解质层10与负极14之间。所述正极12包含如上所述的正极活性材料层12a和正极集电器12b。所述负极14包含如上所述的负极活性材料层14a和负极集电器14b。可以以如下方式制造全固态锂离子二次电池20:将正极活性材料层12a布置在正极集电器12b的表面上,将负极活性材料层14a布置在负极集电器14b的表面上,将胶凝的聚合物电解质涂布至正极活性材料层12a和负极活性材料层14a,并将固体电解质层10夹在正极活性材料层12a与负极活性材料层14a之间。所述全固态锂离子二次电池20可包含第一和第二聚合物电解质层16和18中的两种或一种。 
实施例 
制备石榴石型氧化物 
由下列起始原料合成石榴石型氧化物Li5+XLa3(ZrX,Nb2-X)O12(X=0~2):Li2CO3、La(OH)3、ZrO2和Nb2O3。在例1~7中,X等于0、1.0、1.5、1.625、1.75、1.875或2.0(参见表1)。对起始原料称重而获得化学计量比。在300rpm下在含锆球的行星式球磨机中在乙醇中将经称重的起始原料粉碎并混合一小时(第一混合步骤)。将经混合的起始原料粉末与锆球和乙醇分离,然后在空气气氛下于950℃下在Al2O3坩埚中煅烧10小时(第一煅烧步骤)。为了补偿在烧结期间的Li的损失,向经煅烧的粉末中添加过量的Li2CO3,使得所添加Li2CO3的量为由式Li5+XLa3(ZrX,Nb2-X)O12(X=0~2)表示的组合物中Li量的10原子%。在300rpm下在含锆球的行星式球磨机中将经煅烧的粉末和Li2CO3在乙醇中混合1小时(第二混合步骤)。在空气气氛中于950℃下将得到的混合物煅烧10小时(第二煅烧步骤)。将所得混合物成形为成形体,然后在空气气氛中于1200℃下将所述成形体煅烧36小时(成形/煅烧步骤)。通过这种工序制备了例1~7中的试样。例3~6对应于本发明例且例1、2和7对应于比较例。 
表1 
  例1   X=0   Li5La3Nb2O12
  例2   X=1.0   Li6La3(Zr1,Nb1)O12
  例3   X=1.5   Li6.5La3(Zr1.5,Nb0.5)O12
  例4   X=1.625   Li6.625La3(Zr1.625,Nb0.375)O12
  例5   X=1.75   Li6.75La3(Zr1.75,Nb0.25)O12
  例6   X=1.875   Li6.875La3(Zr1.875,Nb0.125)O12
  例7   X=2.0   Li7La3Zr2O12
测量石榴石型氧化物的性能和测量结果 
1.相对密度 
以如下方式来计算各种试样的测量密度:对试样进行干燥、利用 电子天平称重、以及利用游标卡尺测量尺寸并将试样的重量除以其体积。以如下方式来确定以百分比计的相对密度:计算试样的理论密度、将试样的测量密度除以其理论密度并将商乘以100。在例1~7中,所述试样具有88%~92%的相对密度。 
2.相和晶格参数 
根据各试样的XRD测定,确定了其相和晶格参数。在下列条件下利用得自布鲁克(Bruker)的X射线衍射仪D8 Advance测量了试样粉末的XRD:CuKα,2θ=10°~120°且0.01°步长/秒。利用晶体结构分析程序Rietan-2000(Mater.Sci.Forum(材料科学论坛),(2000),321-324页,198)对得到的数据进行晶体结构分析。图1显示了例1、3、5和7的试样即Li5+XLa3(ZrX,Nb2-X)O12(X=0、1.5、1.75或2)的XRD图案。从图1可清楚看出,这些试样不含杂质且具有单相。图2显示了由例1~3和5~7的各试样的XRD图案确定的晶格参数的X值依赖性。从图2可清楚看出,Zr百分比的增加增大了晶格参数。这是因为Zr4+离子的半径 大于Nb5+离子的半径 
Figure BPA00001411674200132
由于晶格参数连续变化,所以认为Nb将Zr位置换(认为可获得完全固溶体)。 
3.传导率 
根据在恒温浴中在0.1Hz~1MHz频率和100mV振幅电压下利用AC阻抗分析仪得到的奈奎斯特(Nyquist)图的圆弧确定了各种试样的电阻。根据试样的电阻确定了其传导率。利用AC阻抗分析仪测量试样电阻所使用的阻塞电极为Au电极。以将Au糊膏涂布至试样并然后在850℃下烘焙30分钟的方式形成Au电极。图3显示了在25℃下例1~7的试样即Li5+XLa3(ZrX,Nb2-X)O12(X=0~2)的传导率的X值依赖性。从图3可清楚看出,在X满足不等式1.4≤X<2、满足不等式1.6≤X≤1.95和满足不等式1.65≤X≤1.9时,所述传导率分别为大于已知的Li7La3Zr2O12(即X=2,例7)的传导率,远大于例7的试样的传导率,及基本上为极大值(6×10-4Scm-1)。由于试样具有如上述项1中所述的88%~92%的相对密度,所以认为传导率随X变化的原因不在于密度的 影响。 
下面对通过添加适当量的铌来提高传导率的原因进行说明。石榴石型氧化物的晶体结构包括各自由锂离子和与其配位的四个氧离子构成的LiO4(I)四面体、各自由锂离子和与其配位的六个氧离子构成的LiO6(II)八面体、各自由镧离子和与其配位的八个氧离子构成的LaO8十二面体、以及各自由锆离子和与其配位的六个氧离子构成的ZrO6八面体,如图4中所示。图5A显示了其全部晶体结构。在图5A中所示的晶体结构中,各个LiO6(II)八面体被ZrO6八面体和LaO8十二面体包围,因此不能看到所述LiO6(II)八面体。图5B显示了通过从图5A中所示的晶体结构中除去LaO8十二面体而暴露的LiO6(II)八面体。六配位的锂离子各自被六个氧离子、三个镧离子和两个锆离子所包围,且不可能赋予传导率。四配位的锂离子各自与位于四面体顶点的氧离子一起形成四面体。图6显示了通过Rietveld结构分析而确定的LiO4(I)四面体的结构变化。形成LiO4(I)四面体的氧离子之间的距离具有两个数。在LiO4(I)四面体中,两个长边由a表示且短边由b表示。如图6A中所示,长边a的长度基本上为常数而与Nb的置换量无关,且通过置换适当量的Nb使短边b的长度增加。即,置换适当量的Nb,使得由氧离子形成的三角形接近等边三角形并增大面积(参见图6B)。这表明,使用适当量的Nb置换Zr优化了传导锂离子周围的结构(由氧离子形成的三角形)并使得锂离子易于迁移。除了Nb之外,用于置换Zr的元素可以为例如Sc、Ti、V、Y、Hf、Ta等,因为能够预期类似的结构变化并因此能够获得类似的优势。 
XRD峰的强度随所述LiO4(I)四面体结构而变化。通过如上所述用Nb置换Zr位来改变形成LiO4(I)四面体的三角形,由此XRD峰的强度比发生变化。图7显示了例1~3、5和7的试样的各衍射峰的归一化强度的X值依赖性,其中基于相应试样的(220)衍射峰的强度,通过对各衍射峰的强度进行归一化而确定所述归一化强度。对各种试样的代表性(024)衍射峰的归一化强度进行了记录(参见图8)。当保持不等 式1.4≤X<2并因此传导率大于已知的Li7La3Zr2O12(即X=2,例7)的传导率时,(024)衍射峰的归一化强度为9.2以上。当保持不等式1.6≤X≤1.95并因此传导率大得多时,(024)衍射峰的归一化强度为10.0以上。当保持不等式1.65≤X≤1.9并因此传导率基本上为极大值时,(024)衍射峰的归一化强度为10.2以上。 
4.活化能(Ea) 
根据使用阿累尼乌斯方程σ=A exp(-Ea/kT)的阿累尼乌斯图的斜率确定了各试样的活化能(Ea),其中σ为传导率,A为频率因子,k为波尔兹曼常数,T为绝对温度,且Ea为活化能。图9显示了例1~7的各试样的传导率的温度依赖性(阿累尼乌斯图)。图9还显示了玻璃陶瓷Li1+XTi2SiXP3-XO12·AlPO4(Ohara电解质,X=0.4)的传导率和玻璃陶瓷Li1.5Al0.5Ge1.5(PO4)3(LAGP)的传导率的温度依赖性(文献数据),这些玻璃陶瓷为具有特别高的传导率的锂离子传导性氧化物。图10显示了例1~7的各试样的活化能Ea的X值依赖性,所述活化能根据阿累尼乌斯图确定。从图10可清楚看出,X满足不等式1.4≤X<2的试样的活化能小于Li7La3Zr2O12(X=2,例7)的活化能,即活化能Ea小于0.34eV。因此,这些试样在宽温度范围内具有稳定的传导率。X满足不等式1.5≤X≤1.9的试样具有0.32eV以下的活化能。X为1.75的试样具有0.3eV的化合物,其为极小值。0.3eV的活化能基本上等于现有锂离子传导性氧化物的活化能中的最低值(Ohara电解质具有0.3eV的活化能且LAGP具有0.31eV的活化能)。 
5.化学稳定性 
在空气中于室温下对石榴石型氧化物Li6.75La3Zr1.75Nb0.25O12(即X=1.75,例5)的化学稳定性进行了研究。特别地,以将Li6.75La3Zr1.75Nb0.25O12在空气中放置7天的方式测量Li6.75La3Zr1.75Nb0.25O12的传导率随时间的变化。图11显示了测量结果。本体电阻成分(bulk resistance component)是常数,与石榴石型氧化物在空气中的暴露时间无关。这表明,石榴石型氧化物在室温下在空气中 是稳定的。 
6.电位窗 
对石榴石型氧化物Li6.75La3Zr1.75Nb0.25O12(即X=1.75,例5)的电位窗进行了研究。以如下方式对其电位窗进行测量:将金施加到Li6.75La3Zr1.75Nb0.25O12的块状球(bulk pellet)表面上、将Li金属施加到其另一个表面上、并在0~5.5V(相对于Li+离子)的范围内或在-0.5~9.5V(相对于Li+离子)的范围内在1mV/s下对块状球的电位进行扫频。图12显示了测量结果。扫描电位从-0.5增加到9.5V使得在0V以上或以下有氧化还原电流流动。这可能是因为锂的氧化或还原引起的。在约7V以上有微弱的氧化电流流动。流动的氧化电流非常小且视觉上观察不到颜色的变化。因此,流动的氧化电流不是由电解质的分解造成的,而是可能由于包含在陶瓷中的痕量杂质或者是晶界的分解造成的。 
制备全固态锂离子二次电池 
使用石榴石型氧化物Li6.75La3Zr1.75Nb0.25O12(即X=1.75,例5)作为固体电解质来制备全固态锂离子二次电池120。图13为由石榴石型氧化物制成的小球110的说明图,其包含正极活性材料层112a。图14为全固态锂离子二次电池120的侧视图。将例5中制备的石榴石型氧化物成形为小球110。所述小球110具有13mm的直径和2mm的厚度。以通过脉冲激光沉积(PLD)法在小球110的表面上沉积LiCoO2的方式形成正极活性材料层112a。在所述PLD法中,使用Nd-YAG激光器(λ=266nm,E=~1Jcm-2pls-1)并将用于形成正极活性材料层112a的室保持在10Pa的氧分压PO2和室温下。所述正极活性材料层112a具有6mm的直径和500nm的厚度。在电炉中利用空气气氛在500℃下对具有正极活性材料层112a的小球110退火1小时之后,将Au糊膏112c涂布到正极活性材料层112a上。在Au糊膏112c上布置充当正极集电器的Au金属板112b并然后在400℃下烘焙30分钟。正极活性材料层112a、充当正极集电器的Au金属板112b和Au糊膏112c形成正极112。在具有Ar气氛的手套箱中布置具有正极112的小球110之后,将充当 中布置具有正极112的小球110之后,将充当负极114的锂金属压接至与正极112隔开的小球110的表面上,由此完成全固态锂离子二次电池120。除了负极114之外,所述锂金属还充当参考电极。 
全固态锂离子二次电池的充放电性能 
以如下方式对制备的全固态锂离子二次电池120进行充放电测试:将全固态锂离子二次电池120放置在具有Ar气氛的手套箱中的密闭容器内,并将密封铅从密闭容器中取出。所述全固态锂离子二次电池120具有3.0V的开路电压。在3~4.3V的扫描范围内在0.2mV/分钟的扫频速率下对全固态锂离子二次电池120进行恒压充放电一个循环。在3~4.3V(相对于Li)的扫频电位范围内在1mA的电流下对制得的全固态锂离子二次电池120进行充放电三个循环。在3~4.3V(相对于Li)的扫频电位范围内在2mA的电流下对制得的全固态锂离子二次电池120进行充放电三个循环。在3~4.4V(相对于Li)的扫频电位范围内在1mA的电流下对制得的全固态锂离子二次电池120进行充放电三个循环。即,将全固态锂离子二次电池120恒压充电并放电一个循环,然后恒流充电并放电九个循环。在充放电循环之间不存在休止期间。图15显示了测量结果。图15为显示全固态锂离子二次电池120的充放电性能的图。从图15可清楚看出,全固态锂离子二次电池120显示了可逆的充放电过程。这确认了,全固态锂离子二次电池120运行良好。图16显示了全固态锂离子二次电池120在各循环的容量。 
下面总结了全固态锂离子二次电池120与常规锂离子二次电池的差别。 
(1)与非水锂离子二次电池的对比 
与全固态锂离子二次电池120中包含的石榴石型氧化物相比,用于非水锂离子二次电池中的电解质具有更高的锂离子传导率。然而,所述电解质具有如因在升高的温度(60℃)下的分解而发生燃烧和劣化的危险,因此不能在升高的温度下使用。或者,需要一些冷却单元以 用于防止电解质被加热至高温。相反,本文中包含的石榴石型氧化物在升高的温度下稳定且不可燃。本文中包含的石榴石型氧化物高度安全并具有不需要冷却单元的优点。大部分常规报道的电解质在升高的电位(4.5V以上)下发生分解;因此,难以将高电位的正极活性材料与这种电解质一起使用。相反,本文中包含的石榴石型氧化物在8V下稳定(参见图12),因此能够与基本上所有常规报道的正极活性材料一起使用。 
(2)与含有硫化物电解质的全固态锂离子二次电池的对比 
本文中包含的石榴石型氧化物与硫化物电解质如Li3.25Ge0.25P0.25S4之间的传导率基本无差别,因此在本文中包含的石榴石型氧化物与硫化物电解质之间的电解质电阻基本无差别。大部分硫化物电解质据报道具有约0~10V的宽电位窗;因此,在本文中包含的石榴石型氧化物与硫化物电解质之间的电位窗无明显差别。硫化物电解质具有化学稳定性的问题,因为硫化物电解质与空气中的水分发生反应而产生气态硫化氢。然而,本文中包含的石榴石型氧化物不具有这种问题。 
(3)与含其他氧化物的全固态锂离子二次电池的对比 
本文中包含的石榴石型氧化物的锂离子传导率比常规石榴石型氧化物高数倍。这使得本文中包含的石榴石型氧化物的电解质电阻为常规石榴石型氧化物的电阻的数分之一。尽管常规已知的Ohara电解质(玻璃陶瓷)具有基本上与本文中包含的石榴石型氧化物相等的锂离子传导率,但是所述Ohara电解质在约1.5V下被还原而导致绝缘性降低。因此,使用Ohara电解质难以制造高电压的电池(例如,不能使用作为当前电池用主流材料的碳基负极活性材料)。相反,本文中包含的石榴石型氧化物即使在8V下也不会被还原,而仍是稳定的(参见图12)。因此,能够使用本文中包含的石榴石型氧化物来制造高电压电池。 
本申请要求2009年2月4日提交的日本专利申请2009-023623和2009年5月21日提交的日本专利申请2009-122991的优先权,通过参 考将两者的完整内容并入本文中。 
工业实用性 
本发明的石榴石型锂离子传导性氧化物适用于全固态锂离子二次电池。本发明的全固态锂离子二次电池适用于工业设备用电源和家用器具用电源。 

Claims (4)

1.一种由式Li5+XLa3(ZrX,A2-X)O12表示的石榴石型锂离子传导性氧化物,
其中A为选自Sc、Ti、V、Y、Nb、Hf、Ta、Al、Si、Ga、Ge和Sn中的至少一种且X满足不等式1.4≤X<2。
2.如权利要求1所述的石榴石型锂离子传导性氧化物,其中X满足不等式1.6≤X≤1.95。
3.如权利要求1所述的石榴石型锂离子传导性氧化物,其中X满足不等式1.65≤X≤1.9。
4.一种全固态锂离子二次电池,其中在含正极活性材料的正极与含负极活性材料的负极之间夹有固体电解质层,所述正极活性材料能够吸藏和释放锂离子,且所述负极活性材料能够释放和吸藏锂离子,
其中所述固体电解质层由根据权利要求1~3中任一项的石榴石型锂离子传导性氧化物构成。
CN201080006675.7A 2009-02-04 2010-02-02 石榴石型锂离子传导性氧化物和含有所述氧化物的全固态锂离子二次电池 Active CN102308425B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009-023623 2009-02-04
JP2009023623 2009-02-04
JP2009-122991 2009-05-21
JP2009122991A JP5287499B2 (ja) 2009-05-21 2009-05-21 全固体型リチウムイオン二次電池
PCT/JP2010/051741 WO2010090301A1 (en) 2009-02-04 2010-02-02 Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same

Publications (2)

Publication Number Publication Date
CN102308425A CN102308425A (zh) 2012-01-04
CN102308425B true CN102308425B (zh) 2014-03-26

Family

ID=42084517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080006675.7A Active CN102308425B (zh) 2009-02-04 2010-02-02 石榴石型锂离子传导性氧化物和含有所述氧化物的全固态锂离子二次电池

Country Status (4)

Country Link
US (1) US8986895B2 (zh)
EP (1) EP2353203B9 (zh)
CN (1) CN102308425B (zh)
WO (1) WO2010090301A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534813A (zh) * 2017-09-21 2019-03-29 丰田自动车株式会社 石榴石型离子传导性氧化物和氧化物电解质烧结体的制造方法

Families Citing this family (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080057386A1 (en) 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US7282295B2 (en) 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US9368775B2 (en) 2004-02-06 2016-06-14 Polyplus Battery Company Protected lithium electrodes having porous ceramic separators, including an integrated structure of porous and dense Li ion conducting garnet solid electrolyte layers
CA2727266A1 (en) 2008-06-16 2010-01-14 Polyplus Battery Company Aqueous lithium/air battery cells
JP5132639B2 (ja) 2008-08-21 2013-01-30 日本碍子株式会社 セラミックス材料及びその製造方法
US8986895B2 (en) 2009-02-04 2015-03-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
JP5525388B2 (ja) * 2009-09-03 2014-06-18 日本碍子株式会社 セラミックス材料及びその製造方法
JP5376252B2 (ja) * 2009-09-03 2013-12-25 日本碍子株式会社 セラミックス材料及びその利用
JP5358522B2 (ja) * 2010-07-07 2013-12-04 国立大学法人静岡大学 固体電解質材料およびリチウム電池
DE102010064302A1 (de) * 2010-12-29 2012-07-05 Robert Bosch Gmbh Lithium-Schwefel-Zelle auf Festkörperelektrolytbasis
JP5290337B2 (ja) 2011-02-24 2013-09-18 国立大学法人信州大学 ガーネット型固体電解質、当該ガーネット型固体電解質を含む二次電池、及び当該ガーネット型固体電解質の製造方法
US10530015B2 (en) * 2011-06-20 2020-01-07 Kabushiki Kaisha Toyota Chuo Kenkyusho All-solid-state lithium secondary battery and method for producing the same
DE102011079401A1 (de) 2011-07-19 2013-01-24 Robert Bosch Gmbh Lithiumionen leitende, granatartige Verbindungen
US9660311B2 (en) 2011-08-19 2017-05-23 Polyplus Battery Company Aqueous lithium air batteries
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
EP2683005B1 (en) * 2012-07-06 2016-06-01 Samsung Electronics Co., Ltd Solid ionic conductor, solid electrolyte including the same, lithium battery including said solid electrolyte, and method of manufacturing said lithium battery
CN102780030B (zh) * 2012-07-18 2015-07-15 宁波大学 一种四组份阴阳离子共掺杂石榴石型固体电解质
CN102780028B (zh) * 2012-07-18 2015-07-15 宁波大学 一种四组份离子共掺杂石榴石型固体电解质
CN103594725B (zh) * 2012-08-17 2016-02-17 万向电动汽车有限公司 一种锂离子电池固态电解质材料Li7La3Zr2O12的制备方法
WO2014036090A1 (en) * 2012-08-28 2014-03-06 Applied Materials, Inc. Solid state battery fabrication
CN102856584B (zh) * 2012-09-04 2015-07-15 宁波大学 一种B3+,Al3+,Ti4+,Y3+,S2-共掺杂固体电解质Li7La3Zr2O12
CN102867985B (zh) * 2012-09-04 2015-06-17 宁波大学 一种B3+,Al3+,Mg2+,Y3+,S2-共掺杂固体电解质Li7La3Zr2O12
CN102867986B (zh) * 2012-09-04 2015-07-15 宁波大学 一种B3+,Al3+,Ti4+,Y3+四组份阳离子共掺杂固体电解质Li7La3Zr2O12
CN102867988B (zh) * 2012-09-04 2015-05-27 宁波大学 一种B3+,Al3+,Ti4+,Y3+,F-共掺杂固体电解质Li7La3Zr2O12
WO2014041669A1 (ja) 2012-09-13 2014-03-20 富士通株式会社 イオン導電体及び二次電池
JP2014110149A (ja) * 2012-11-30 2014-06-12 Murata Mfg Co Ltd 全固体型電池用積層体
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
CN103113107A (zh) * 2013-02-28 2013-05-22 中国科学院上海硅酸盐研究所 一种制备陶瓷固态电解质的方法
EP2976798B1 (en) 2013-03-21 2018-11-07 University of Maryland, College Park Ion-conducting batteries with solid state electrolyte materials
US11888149B2 (en) * 2013-03-21 2024-01-30 University Of Maryland Solid state battery system usable at high temperatures and methods of use and manufacture thereof
CN103247823B (zh) * 2013-04-19 2016-02-24 清华大学 全固态锂离子电池及其制备方法
JP6100610B2 (ja) * 2013-05-27 2017-03-22 信越化学工業株式会社 負極活物質及び非水電解質二次電池並びにそれらの製造方法
KR102093336B1 (ko) 2013-06-24 2020-03-26 삼성전자주식회사 복합양극활물질, 그 제조방법 및 이를 채용한 양극과 리튬전지
US8940446B1 (en) * 2013-08-06 2015-01-27 Quantumscape Corporation Solid state lithium-air based battery cell
CN103390769B (zh) * 2013-08-09 2015-06-03 宁德时代新能源科技有限公司 固态电解质膜片及锂离子电池
JP6028694B2 (ja) 2013-08-23 2016-11-16 株式会社豊田中央研究所 ガーネット型イオン伝導性酸化物の製造方法及び複合体の製造方法
US9552917B2 (en) * 2013-09-20 2017-01-24 Skyworks Solutions, Inc. Materials, devices and methods related to below-resonance radio-frequency circulators and isolators
ES2890654T3 (es) 2013-10-07 2022-01-21 Quantumscape Battery Inc Materiales de granate para baterías secundarias de Li y métodos de fabricación y uso de los materiales de granate
KR101526703B1 (ko) * 2013-11-12 2015-06-05 현대자동차주식회사 Al 치환된 가넷의 합성 방법
US9548512B2 (en) 2013-12-12 2017-01-17 Ut-Battelle, Llc High conducting oxide—sulfide composite lithium superionic conductor
DE102014100684B4 (de) 2014-01-22 2017-05-11 Schott Ag lonenleitende Glaskeramik mit granatartiger Kristallstruktur, Verfahren zur Herstellung und Verwendung einer solchen Glaskeramik
KR102183992B1 (ko) 2014-02-07 2020-11-27 삼성에스디아이 주식회사 양극 활물질, 이를 채용한 양극과 리튬 전지, 및 상기 양극 활물질의 제조방법
US9660270B2 (en) 2014-04-24 2017-05-23 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Method for producing garnet-type compound, garnet-type compound, and all-solid lithium secondary cell containing said garnet-type compound
EP2944611A1 (de) 2014-05-16 2015-11-18 Evonik Degussa GmbH Verfahren zur Herstellung eines kubisch kristallinen, Aluminium, Lithium, Lanthan und Zirkon enthaltenden Mischoxides mit Granatstruktur
WO2015173114A1 (de) * 2014-05-16 2015-11-19 Evonik Degussa Gmbh Verfahren zur herstellung von lithium, lanthan und zirkon enthaltender mischoxidpulver
FR3023417B1 (fr) 2014-07-01 2016-07-15 I-Ten Batterie entierement solide comprenant un electrolyte solide et une couche de materiau polymere solide
FR3023418B1 (fr) 2014-07-01 2016-07-15 I Ten Batterie entierement solide comprenant un electrolyte en materiau polymere solide reticule
CN104300125B (zh) * 2014-08-15 2016-09-28 中山大学 一种类石榴结构复合材料的制备方法
US20160093915A1 (en) 2014-09-30 2016-03-31 Seiko Epson Corporation Composition for forming lithium reduction resistant layer, method for forming lithium reduction resistant layer, and lithium secondary battery
US10026990B2 (en) 2014-10-16 2018-07-17 Corning Incorporated Lithium-ion conductive garnet and method of making membranes thereof
KR101982422B1 (ko) * 2014-10-31 2019-05-27 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 리튬 이온 전도성 결정체 및 전고체 리튬 이온 이차 전지
US10211481B2 (en) * 2014-11-26 2019-02-19 Corning Incorporated Stabilized solid garnet electrolyte and methods thereof
CN104638295B (zh) * 2014-12-16 2017-01-25 清华大学 一种复合电解质片的制备方法
KR102609408B1 (ko) 2015-04-16 2023-12-04 퀀텀스케이프 배터리, 인코포레이티드 고체 전해질 제조를 위한 세터 플레이트 및 그를 사용하여 치밀한 고체 전해질을 제조하는 방법
CN107851774A (zh) * 2015-07-21 2018-03-27 昆腾斯科普公司 铸造和烧结生坯石榴石薄膜的方法和材料
JP2017033926A (ja) * 2015-07-29 2017-02-09 セントラル硝子株式会社 ガーネット型酸化物焼結体及びその製造方法
CN105406116B (zh) * 2015-11-24 2018-08-10 青岛能迅新能源科技有限公司 溶胶-凝胶法制备固态锂离子电解质材料Li7La3Zr2O12的方法
JP6418145B2 (ja) * 2015-12-07 2018-11-07 トヨタ自動車株式会社 複合固体電解質
CN105489931A (zh) * 2015-12-24 2016-04-13 国联汽车动力电池研究院有限责任公司 硫化物电解质在制备全固态电池中的应用
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
JP6278433B2 (ja) 2016-01-29 2018-02-14 国立研究開発法人産業技術総合研究所 リチウム含有ガーネット結晶体および全固体リチウムイオン二次電池
US10734642B2 (en) 2016-03-30 2020-08-04 Global Graphene Group, Inc. Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries
US20170331092A1 (en) 2016-05-13 2017-11-16 Quantumscape Corporation Solid electrolyte separator bonding agent
EP3252024B1 (en) * 2016-05-27 2019-12-18 Toyota Jidosha Kabushiki Kaisha Oxide electrolyte sintered body and method for producing the same
CN105977530B (zh) * 2016-07-04 2019-03-01 山东瑞纳森新能源科技有限公司 高离子电导率、强机械性能固体电解质材料及其制备方法
CN106129463B (zh) * 2016-07-04 2019-01-29 山东瑞纳森新能源科技有限公司 固体电解质材料及其制备方法
US11158880B2 (en) 2016-08-05 2021-10-26 Quantumscape Battery, Inc. Translucent and transparent separators
CN109716447B (zh) * 2016-09-21 2021-05-18 株式会社村田制作所 固体电解质及全固态电池
EP3529839A1 (en) 2016-10-21 2019-08-28 QuantumScape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
JP6565950B2 (ja) 2017-02-02 2019-08-28 トヨタ自動車株式会社 ガーネット型酸化物固体電解質の製造方法
US11495792B2 (en) 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
US10211455B2 (en) 2017-02-20 2019-02-19 Nanotek Instruments, Inc. Lithium secondary batteries containing protected particles of anode active materials and method of manufacturing
US10084182B2 (en) 2017-02-23 2018-09-25 Nanotek Instruments, Inc. Alkali metal-sulfur secondary battery containing a protected sulfur cathode and manufacturing method
US10840502B2 (en) 2017-02-24 2020-11-17 Global Graphene Group, Inc. Polymer binder for lithium battery and method of manufacturing
US11978904B2 (en) 2017-02-24 2024-05-07 Honeycomb Battery Company Polymer binder for lithium battery and method of manufacturing
US10985373B2 (en) 2017-02-27 2021-04-20 Global Graphene Group, Inc. Lithium battery cathode and method of manufacturing
US10411264B2 (en) 2017-02-27 2019-09-10 Global Graphene Group, Inc. Cathode active material layer for lithium secondary battery and method of manufacturing
US11011776B2 (en) 2017-03-15 2021-05-18 Ngk Spark Plug Co., Ltd. Lithium-ion-conductive ceramic material, lithium-ion-conductive ceramic sintered body, and lithium battery
CN110521048B (zh) 2017-03-30 2023-07-04 Tdk株式会社 固体电解质及全固体二次电池
US11411244B2 (en) 2017-03-30 2022-08-09 Tdk Corporation All-solid secondary battery
JP7040519B2 (ja) 2017-03-30 2022-03-23 Tdk株式会社 固体電解質及び全固体リチウムイオン二次電池
JP7151701B2 (ja) 2017-03-30 2022-10-12 Tdk株式会社 固体電解質及び全固体二次電池
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10483533B2 (en) 2017-04-10 2019-11-19 Global Graphene Group, Inc. Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10916766B2 (en) 2017-04-10 2021-02-09 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a polymer-encapsulated sulfur cathode and manufacturing method
US10770721B2 (en) 2017-04-10 2020-09-08 Global Graphene Group, Inc. Lithium metal secondary battery containing anode-protecting polymer layer and manufacturing method
US10862129B2 (en) 2017-04-12 2020-12-08 Global Graphene Group, Inc. Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method
CN106941190A (zh) * 2017-04-14 2017-07-11 中国科学院宁波材料技术与工程研究所 石榴石型固体电解质材料的制备方法
CN108727025A (zh) 2017-04-17 2018-11-02 中国科学院上海硅酸盐研究所 锂石榴石复合陶瓷、其制备方法及其用途
EP4369453A3 (en) 2017-06-23 2024-10-02 QuantumScape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
US10964951B2 (en) 2017-08-14 2021-03-30 Global Graphene Group, Inc. Anode-protecting layer for a lithium metal secondary battery and manufacturing method
US10804537B2 (en) 2017-08-14 2020-10-13 Global Graphene Group, Inc. Protected particles of anode active materials, lithium secondary batteries containing same and method of manufacturing
JP6904422B2 (ja) 2017-08-30 2021-07-14 株式会社村田製作所 固体電解質及び全固体電池
WO2019044902A1 (ja) * 2017-08-30 2019-03-07 株式会社村田製作所 共焼成型全固体電池
JP2019046721A (ja) 2017-09-05 2019-03-22 トヨタ自動車株式会社 スラリー、固体電解質層の製造方法、及び、全固体電池の製造方法
CN107732295A (zh) * 2017-10-12 2018-02-23 燕山大学 一种基于卤化锂掺杂的氧化物固体电解质及其低温烧结方法
WO2019090360A1 (en) 2017-11-06 2019-05-09 Quantumscape Corporation Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
CN111328433A (zh) * 2017-11-24 2020-06-23 株式会社半导体能源研究所 二次电池及二次电池的制造方法
JP6988472B2 (ja) * 2017-12-28 2022-01-05 トヨタ自動車株式会社 電池
JP6988473B2 (ja) * 2017-12-28 2022-01-05 トヨタ自動車株式会社 電池用セパレータ、及び、リチウム電池、並びに、これらの製造方法
JP7017079B2 (ja) 2017-12-28 2022-02-08 トヨタ自動車株式会社 電極の製造方法、電極、及び、電極-電解質層接合体
CN111295720B (zh) * 2018-01-05 2022-05-10 松下知识产权经营株式会社 固体电解质材料及电池
WO2019161301A1 (en) 2018-02-15 2019-08-22 University Of Maryland, College Park Ordered porous solid electrolyte structures, electrochemical devices with same, methods of making same
JP7031353B2 (ja) 2018-02-16 2022-03-08 セイコーエプソン株式会社 電解質、電池、電子機器、電解質および電池の製造方法
US10573894B2 (en) 2018-02-21 2020-02-25 Global Graphene Group, Inc. Protected particles of anode active materials for lithium batteries
US10601034B2 (en) 2018-02-21 2020-03-24 Global Graphene Group, Inc. Method of producing protected particles of anode active materials for lithium batteries
JP6780666B2 (ja) 2018-02-22 2020-11-04 株式会社豊田中央研究所 窒素電池、燃料合成装置及び燃料合成方法
US11721832B2 (en) 2018-02-23 2023-08-08 Global Graphene Group, Inc. Elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10964936B2 (en) 2018-03-02 2021-03-30 Global Graphene Group, Inc. Conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10971722B2 (en) 2018-03-02 2021-04-06 Global Graphene Group, Inc. Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10818926B2 (en) 2018-03-07 2020-10-27 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US11005094B2 (en) 2018-03-07 2021-05-11 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US11043694B2 (en) 2018-04-16 2021-06-22 Global Graphene Group, Inc. Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US10971723B2 (en) 2018-04-16 2021-04-06 Global Graphene Group, Inc. Process for alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
CA3101863A1 (en) 2018-06-06 2019-12-12 Quantumscape Corporation Solid-state battery
US11121398B2 (en) 2018-06-15 2021-09-14 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing cathode material particulates
US10978698B2 (en) 2018-06-15 2021-04-13 Global Graphene Group, Inc. Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery
US10854927B2 (en) 2018-06-18 2020-12-01 Global Graphene Group, Inc. Method of improving cycle-life of alkali metal-sulfur secondary battery
US10985376B2 (en) 2018-06-18 2021-04-20 Global Graphene Group, Inc. Lithium-sulfur battery containing an electrode-protecting layer
US10985365B2 (en) 2018-06-18 2021-04-20 Global Graphene Group, Inc. Lithium-sulfur battery containing two anode-protecting layers
US10957912B2 (en) 2018-06-18 2021-03-23 Global Graphene Group, Inc. Method of extending cycle-life of a lithium-sulfur battery
US10862157B2 (en) 2018-06-18 2020-12-08 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US10978744B2 (en) 2018-06-18 2021-04-13 Global Graphene Group, Inc. Method of protecting anode of a lithium-sulfur battery
US10777810B2 (en) 2018-06-21 2020-09-15 Global Graphene Group, Inc. Lithium metal secondary battery containing a protected lithium anode
US11276852B2 (en) 2018-06-21 2022-03-15 Global Graphene Group, Inc. Lithium metal secondary battery containing an elastic anode-protecting layer
US10873088B2 (en) 2018-06-25 2020-12-22 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
US11959166B2 (en) 2018-08-14 2024-04-16 Massachusetts Institute Of Technology Methods of fabricating thin films comprising lithium-containing materials
US11043662B2 (en) 2018-08-22 2021-06-22 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11239460B2 (en) 2018-08-22 2022-02-01 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
US10886528B2 (en) 2018-08-24 2021-01-05 Global Graphene Group, Inc. Protected particles of cathode active materials for lithium batteries
US10629899B1 (en) 2018-10-15 2020-04-21 Global Graphene Group, Inc. Production method for electrochemically stable anode particulates for lithium secondary batteries
US10971724B2 (en) 2018-10-15 2021-04-06 Global Graphene Group, Inc. Method of producing electrochemically stable anode particulates for lithium secondary batteries
JP6873963B2 (ja) * 2018-11-09 2021-05-19 株式会社豊田中央研究所 リチウム電池及び複合構造体の製造方法
US10971725B2 (en) 2019-01-24 2021-04-06 Global Graphene Group, Inc. Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer
US11791450B2 (en) 2019-01-24 2023-10-17 Global Graphene Group, Inc. Method of improving cycle life of a rechargeable lithium metal battery
US11569527B2 (en) 2019-03-26 2023-01-31 University Of Maryland, College Park Lithium battery
US11837695B2 (en) * 2019-08-05 2023-12-05 Samsung Electronics Co., Ltd. Oxide, method of preparing the same, solid electrolyte including the oxide, and electrochemical device including the oxide
CN110474098B (zh) * 2019-09-04 2020-12-15 天津巴莫科技有限责任公司 一种石榴石型固态电解质材料、其包覆的复合材料及制备方法和应用
JP7361299B2 (ja) * 2019-09-19 2023-10-16 国立研究開発法人産業技術総合研究所 ガリウム置換型固体電解質材料および全固体リチウムイオン二次電池
WO2021126998A1 (en) * 2019-12-18 2021-06-24 University Of Washington Solid-state battery cathodes and methods thereof
CN113130976A (zh) * 2019-12-30 2021-07-16 天津国安盟固利新材料科技股份有限公司 一种石榴石型固态电解质及制备方法
JP2023537172A (ja) 2020-04-29 2023-08-31 ソルヴェイ(ソシエテ アノニム) Llzoガーネットのフッ素化のための方法
DE102020111624A1 (de) 2020-04-29 2021-11-04 Schott Ag Aluminium-dotierter Lithiumionenleiter auf Basis einer Granatstruktur
WO2021257973A1 (en) * 2020-06-19 2021-12-23 The Regents Of The University Of Michigan Hybrid electrolyte for lithium metal battery
US20240025757A1 (en) * 2020-12-24 2024-01-25 Nippon Denko Co., Ltd. Lithium ion-conductive oxide material and all-solid-state lithium secondary battery
JP6916405B1 (ja) 2021-03-31 2021-08-11 第一稀元素化学工業株式会社 セラミックス粉末材料、焼結体、及び、電池
CN116178012B (zh) * 2023-03-02 2024-01-23 太原理工大学 一种高熵石榴石固态电解质陶瓷及其制备方法和应用

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644971A (ja) 1992-07-22 1994-02-18 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池
JPH11283664A (ja) 1998-03-27 1999-10-15 Kyocera Corp 固体電解質電池
JP4497585B2 (ja) 1999-07-27 2010-07-07 株式会社豊田中央研究所 リチウム二次電池用正極ペースト組成物およびリチウム二次電池用正極
KR100513726B1 (ko) 2003-01-30 2005-09-08 삼성전자주식회사 고체 전해질, 이를 채용한 전지 및 그 고체 전해질의 제조방법
JP4069066B2 (ja) 2003-12-24 2008-03-26 三井金属鉱業株式会社 リチウム−マンガン系複合酸化物の製造方法
JP5165843B2 (ja) 2004-12-13 2013-03-21 パナソニック株式会社 活物質層と固体電解質層とを含む積層体およびこれを用いた全固体リチウム二次電池
US7993782B2 (en) 2005-07-01 2011-08-09 National Institute For Materials Science All-solid lithium battery
JP5001616B2 (ja) 2006-09-29 2012-08-15 株式会社村田製作所 全固体二次電池
JP5296323B2 (ja) 2007-03-13 2013-09-25 日本碍子株式会社 全固体電池
JP5211527B2 (ja) 2007-03-29 2013-06-12 Tdk株式会社 全固体リチウムイオン二次電池及びその製造方法
DE102007030604A1 (de) 2007-07-02 2009-01-08 Weppner, Werner, Prof. Dr. Ionenleiter mit Granatstruktur
JP5277859B2 (ja) 2007-12-03 2013-08-28 セイコーエプソン株式会社 硫化物系リチウムイオン伝導性固体電解質ガラスおよび全固体リチウム二次電池
JP5515211B2 (ja) 2007-12-14 2014-06-11 ソニー株式会社 正極活物質の製造方法
JP2009193940A (ja) 2008-02-18 2009-08-27 Toyota Motor Corp 電極体及びその製造方法、並びに、リチウムイオン二次電池
JP5376364B2 (ja) 2008-03-07 2013-12-25 公立大学法人首都大学東京 固体電解質構造体の製造方法、全固体電池の製造方法、固体電解質構造体及び全固体電池
JP5132639B2 (ja) 2008-08-21 2013-01-30 日本碍子株式会社 セラミックス材料及びその製造方法
JP5262572B2 (ja) 2008-10-23 2013-08-14 株式会社豊田中央研究所 リチウム含有ガーネット型酸化物、リチウム二次電池及び固体電解質の製造方法
JP4728385B2 (ja) 2008-12-10 2011-07-20 ナミックス株式会社 リチウムイオン二次電池、及び、その製造方法
US8986895B2 (en) 2009-02-04 2015-03-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
JP5287499B2 (ja) 2009-05-21 2013-09-11 株式会社豊田中央研究所 全固体型リチウムイオン二次電池
JP5083336B2 (ja) 2009-02-04 2012-11-28 株式会社豊田中央研究所 ガーネット型リチウムイオン伝導性酸化物
JP5551880B2 (ja) 2009-02-20 2014-07-16 三星電子株式会社 全固体二次電池
JP5508833B2 (ja) 2009-12-21 2014-06-04 ナミックス株式会社 リチウムイオン二次電池
US10530015B2 (en) 2011-06-20 2020-01-07 Kabushiki Kaisha Toyota Chuo Kenkyusho All-solid-state lithium secondary battery and method for producing the same
JP6144007B2 (ja) 2011-06-29 2017-06-07 株式会社豊田中央研究所 ガーネット型イオン伝導性酸化物及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12;Ramaswamy Murugan et.al;《Angew. Chem. Int. Ed.》;20071231;第46卷;7778-7781 *
Ramaswamy Murugan et.al.Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12.《Angew. Chem. Int. Ed.》.2007,第46卷7778-7781.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534813A (zh) * 2017-09-21 2019-03-29 丰田自动车株式会社 石榴石型离子传导性氧化物和氧化物电解质烧结体的制造方法
CN109534813B (zh) * 2017-09-21 2022-09-06 丰田自动车株式会社 石榴石型离子传导性氧化物和氧化物电解质烧结体的制造方法

Also Published As

Publication number Publication date
EP2353203A1 (en) 2011-08-10
EP2353203B9 (en) 2014-04-16
US20110244337A1 (en) 2011-10-06
US8986895B2 (en) 2015-03-24
EP2353203B1 (en) 2013-10-02
CN102308425A (zh) 2012-01-04
WO2010090301A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
CN102308425B (zh) 石榴石型锂离子传导性氧化物和含有所述氧化物的全固态锂离子二次电池
JP5413090B2 (ja) 全固体型リチウム二次電池
JP5287499B2 (ja) 全固体型リチウムイオン二次電池
JP5083336B2 (ja) ガーネット型リチウムイオン伝導性酸化物
Yoshinari et al. Interfacial stability of phosphate-NASICON solid electrolytes in Ni-rich NCM cathode-based solid-state batteries
KR101807583B1 (ko) 리튬이온 전지용 황화물계 고체 전해질
KR101665465B1 (ko) 리튬 이온 전지용 황화물계 고체 전해질
JP5701741B2 (ja) 硫化物系固体電解質
KR20170016807A (ko) 고체 전해질, 및 이를 포함하는 리튬 전지
CN104995769A (zh) 正极活性物质及其制备方法以及包含该正极活性物质的锂二次电池
CN108039463A (zh) 一种固态电解质/电极复合材料的制备及应用该材料的固态电池
CN105637694A (zh) 钠离子电池用电极复合材料及其制造方法、以及钠全固态电池
CN109643825A (zh) 陶瓷石榴石基离子传导材料
JPWO2014148432A1 (ja) リチウムチタン硫化物、リチウムニオブ硫化物及びリチウムチタンニオブ硫化物
CN105977528A (zh) 石榴石型锂离子传导性氧化物及全固态型锂离子二次电池
CN109742442A (zh) 石榴石型固态电解质的制备及应用该固态电解质的二次电池
CN107732298A (zh) 一种用于全固态锂离子电池的Gd掺杂Li7La3Zr2O12石榴石型固体电解质
CN112573574A (zh) 一种通过调控锂空位含量制备石榴石型固态电解质的方法
KR20170098199A (ko) 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN114270559A (zh) 蓄电装置用电极和蓄电装置
CN108511795A (zh) 一种o2-和f-协同掺杂的lisicon型固体电解质材料及其制备方法
Okumura et al. Zr-and Ce-doped Li 6 Y (BO 3) 3 electrolyte for all-solid-state lithium-ion battery
KR101684127B1 (ko) 스피넬계 고체전해질 및 이를 이용한 전고체 전지
Sanchez et al. Electrochemical lithium insertion in two polymorphs of a reduced molybdenum oxide (γ and γ′-Mo 4 O 11)
Kumar et al. Smart Solid Electrolyte Materials in Energy Storage Devices: Batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant