JP6904422B2 - 固体電解質及び全固体電池 - Google Patents

固体電解質及び全固体電池 Download PDF

Info

Publication number
JP6904422B2
JP6904422B2 JP2019539581A JP2019539581A JP6904422B2 JP 6904422 B2 JP6904422 B2 JP 6904422B2 JP 2019539581 A JP2019539581 A JP 2019539581A JP 2019539581 A JP2019539581 A JP 2019539581A JP 6904422 B2 JP6904422 B2 JP 6904422B2
Authority
JP
Japan
Prior art keywords
ion conductive
lithium ion
solid electrolyte
conductive substance
garnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019539581A
Other languages
English (en)
Other versions
JPWO2019044901A1 (ja
Inventor
良平 高野
良平 高野
充 吉岡
充 吉岡
彰佑 伊藤
彰佑 伊藤
武郎 石倉
武郎 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2019044901A1 publication Critical patent/JPWO2019044901A1/ja
Application granted granted Critical
Publication of JP6904422B2 publication Critical patent/JP6904422B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/466Magnesium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、固体電解質及び全固体電池に関する。
従来、信頼性及び安全性に優れる電池として、全固体電池が知られている。例えば、特許文献1には、ガーネット型リチウムイオン伝導性物質とLiBOとを母材として含む低温で焼結可能な固体電解質が記載されている。
特開2013−37992号公報
本発明者らは、鋭意研究した結果、特許文献1に記載された固体電解質では、低温で焼成した場合にイオン伝導度を十分に高くすることができないことを見出した。
本発明の主な目的は、低温焼成した際にも、高いイオン伝導度が実現できる固定電解質及び全固体電池を提供することにある。
本発明に係る固体電解質は、ガーネット型構造を有するリチウムイオン伝導性物質と、LISICON型構造を有するリチウムイオン伝導性物質と、Li及びBを含有する化合物とを含む。
本発明によれば、低温焼成した際にも、高いイオン伝導度が実現できる固定電解質及び全固体電池を提供することができる。
図1は、本発明の一実施形態に係る全固体電池の模式的断面図である。
以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
図1は、本実施形態に係る共焼成型全固体電池1の模式的断面図である。図1に示されるように、正極11と、負極12と、固体電解質層13とを備えている。固体電解質層13は、負極12の上に設けられている。固体電解質層13は、負極12と接触している。正極11は、固体電解質層13の上に設けられている。正極11は、固体電解質層13と接触している。すなわち、固体電解質層13が正極11と負極12とにより挟持されている。正極11及び負極12のそれぞれは、固体電解質層13と焼結によって接合されている。すなわち、正極11、固体電解質層13及び負極12は、一体焼結体である。
(正極11)
正極11は、正極活物質粒子を含んでいる。好ましく用いられる正極活物質粒子としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物粒子、オリビン型構造を有するリチウム含有リン酸化合物粒子、リチウム含有層状酸化物粒子、スピネル型構造を有するリチウム含有酸化物粒子等が挙げられる。好ましく用いられるナシコン型構造を有するリチウム含有リン酸化合物の具体例としては、Li(PO等が挙げられる。好ましく用いられるオリビン型構造を有するリチウム含有リン酸化合物の具体例としては、LiFe(PO、LiMnPO等が挙げられる。好ましく用いられるリチウム含有層状酸化物粒子の具体例としては、LiCoO,LiCo1/3Ni1/3Mn1/3等が挙げられる。好ましく用いられるスピネル型構造を有するリチウム含有酸化物の具体例としては、LiMn,LiNi0.5Mn1.5、LiTi12等が挙げられる。なかでも、下記の負極活物質及びガーネット型リチウムイオン伝導性物質を用いる本実施形態においては、LiCoO,LiCo1/3Ni1/3Mn1/3等のリチウム含有層状酸化物がより好ましく用いられる。これらの正極活物質粒子のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。
正極11は、固体電解質をさらに含んでいてもよい。正極11に含まれる固体電解質の種類は特に限定されないが、後述の固体電解質層13に含まれる固体電解質と同種の固体電解質を含むことが好ましい。
正極11は、正極活物質に加え、例えば、導電助剤や焼結助剤等をさらに含んでいてもよい。
好ましく用いられる導電助剤としては、例えば、Ag、Au、Pd、Pt、Cu、Snなどの金属材料や、アセチレンブラック、ケッチェンブラック、Super P、VGCF(登録商標)等のカーボンナノチューブなどの炭素材料等が挙げられる。
好ましく用いられる焼結助剤としては、Li、M及びO(Mは、Li及びOを除く少なくとも1種元素である。)を含んでいること、すなわち、Li、M(Mは、Li及びOを除く少なくとも1種元素である。)複合酸化物であることが好ましい。焼結助剤は、Li、B及びOを含んでいること、すなわち、Li及びBを含む複合酸化物であることがより好ましい。たとえば、LiBO、Li、LiBO、Li2+x1−x(0<x<1)などが挙げられる。
(負極12)
負極12は、負極活物質粒子を含んでいる。好ましく用いられる負極活物質としては、好ましく用いられる負極活物質の具体例としては、例えば、LiとVとを含み、Liの含有量のモル比(Li/V)が2.0以上の複合酸化物、黒鉛−リチウム化合物粒子、リチウム金属、リチウム合金粒子等が挙げられる。好ましく用いられるリチウム合金の具体例としては、Li−Al合金等が挙げられる。好ましく用いられるLiおよびVを含む複合酸化物としては、例えば、LiVO、Li3.20.8Si0.2、Li3.20.8Ge0.2、Li3.20.7Ti0.3、Li2.7Al0.1VO、Li2.4Al0.2VO、Li2.7Ga0.1VO、Li2.8Zn0.1VO、Li2.0Zn0.5VO、Li3.0Zn0.10.8Si0.2、Li3.00.70.3等が挙げられる。これらの負極活物質粒子のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。
負極12は、固体電解質をさらに含んでいてもよい。負極12に含まれる固体電解質の種類は特に限定されないが、後述の固体電解質層13に含まれる固体電解質と同種の固体電解質を含むことが好ましい。
負極12は、負極活物質に加え、例えば、導電助剤や焼結助剤等をさらに含んでいてもよい。
好ましく用いられる導電助剤としては、例えば、Ag、Au、Pd、Pt、Cu、Snなどの金属材料や、アセチレンブラック、ケッチェンブラック、Super P、VGCF(登録商標)等のカーボンナノチューブなどの炭素材料等が挙げられる。
好ましく用いられる焼結助剤としては、Li、M及びO(Mは、Li及びOを除く少なくとも1種元素である。)を含んでいること、すなわち、Li、M(Mは、Li及びOを除く少なくとも1種元素である。)複合酸化物であることが好ましい。焼結助剤は、Li、B及びOを含んでいること、すなわち、Li及びBを含む複合酸化物であることがより好ましい。Li及びBを含む複合酸化物の具体例としては、例えば、LiBO、Li、LiBO、Li2+x1−x(0<x<1)などが挙げられる。
(固体電解質層13)
固体電解質層13は、固体電解質を含む層である。固体電解質層13に含まれる固体電解質は、ガーネット型構造を有するリチウムイオン伝導性物質と、LISICON型構造を有するリチウムイオン伝導性物質と、Li及びBを含有する化合物とを含む。
LISICON型構造を有するリチウムイオン伝導性物質としては、例えば、組成式(Li[3−ax+(5−b)])MO(Aは、Mg、Al、Ga及びZnからなる群から選ばれた少なくとも1種の元素であり、Mは、Zn、Al、Ga、Si、Ge、Ti、P及びVからなる群から選ばれた少なくとも1種の元素であり、0≦x≦1.0、aはAの平均価数であり、bはMの平均価数である。)で表されるものが挙げられる。
好ましく用いられるLISICON型のリチウムイオン伝導性物質としては、例えば、Li3.2(V0.8Si0.2)O、Li3.4(V0.6Si0.4)O、Li3.4(V0.8Ge0.4)O、Li3.5(Ge0.50.5)O、Li3.5(P0.5Si0.5)O、(Li3.3Al0.03)(V0.6Si0.4)O等が挙げられる。
ガーネット型構造を有するリチウムイオン伝導性物質としては、例えば、組成式(Li[7−ax−(b−4)y])LaZr(2−y)12(Aは、Ga、Al、Mg、Zn及びScからなる群から選ばれた少なくとも1種の元素であり、Bは、Nb、Ta、W、Te、Mo及びBiからなる群から選ばれた少なくとも1種の元素であり、0≦x≦0.5、0≦y≦2.0、aはAの平均価数であり、bはBの平均価数である。)で表されるものが挙げられる。
好ましく用いられるガーネット型構造を有するリチウムイオン伝導性物質としては、例えば、(Li6.4Ga0.05Al0.15)LaZr12、(Li6.4Al0.2)LaZr12、(Li6.4Ga0.15Sc0.05)LaZr12、Li6.75La(Zr1.75Nb0.25)O11、(Li6.45Al0.1)La(Zr1.75Nb0.25)O12、(Li6.175Al0.1)La(Zr1.475Ta0.105Bi0.42)O12、Li6.6La(Zr1.6Ta0.4)O12等が挙げられる。
Li及びBを含有する化合物は、Li及びBを含有する酸化物であることが好ましい。好ましく用いられるLi及びBを含有する酸化物としては、例えば、LiBO、Li、Li2.7Al0.1BO、Li2.20.80.2等が挙げられる。
Li及びBを含有する化合物において、Bに対するLiのモル比(Li/B)が、2.0以上であることが好ましい。但し、モル比(Li/B)が高すぎるとLiCO、LiOH等のリチウムイオン伝導性が低いLi塩が遊離しやすくなる虞がある。従って、Bに対するLiのモル比(Li/B)は、6.5以下であることが好ましい。
ガーネット型構造を有するリチウムイオン伝導性物質の体積比率をXとし、LISICON型構造を有するリチウムイオン伝導性物質の体積比率をYとし、Li及びBを含有する酸化物の体積比率をZとしたときに、10%≦X≦89.5%、10%≦Y≦89.5%、0.5%≦Z≦30%、X+Y+Z≦100%であることが好ましく、37%≦X≦70%、20%≦Y≦60%、3.0%≦Z≦20%、80%≦X+Y+Z≦100%であることがより好ましい。
固体電解質層13は、ガーネット型リチウムイオン伝導性物質、LISICON型リチウムイオン伝導性物質、Li及びBを含有する化合物以外のその他の成分をさらに含んでいてもよい。その他の成分は特に限定されないが、ガーネット型リチウムイオン伝導性物質、LISICON型リチウムイオン伝導性物質、Li及びBを含有する化合物のそれぞれと共焼成時に副反応しないものであることが好ましい。好ましく用いられるその他の成分としては、例えば、LiZrO、ZrO、Al、LaZr等が挙げられる。
以上説明したように、本実施形態に係る固体電解質は、ガーネット型構造を有するリチウムイオン伝導性物質と、LISICON型構造を有するリチウムイオン伝導性物質と、Li及びBを含有する化合物とを含む。このため、下記の実施例及び比較例からも分かるように、本実施形態に係る固体電解質によれば、低温焼成した際にも、高いイオン伝導度が実現できる。この理由は定かではないが、以下の理由が考えられる。すなわち、LISICON型リチウムイオン伝導性物質が、Li及びBを含有する化合物及びガーネット型リチウムイオン伝導性物質の両方と高い濡れ性を有しているため、液相焼結が促進され、より低温で緻密かが促進されるためであると考えられる。また、低温焼成した際に高いイオン伝導度が実現される理由としては、以下の理由も考えられる。LISICON型リチウムイオン伝導性物質とガーネット型リチウムイオン伝導性物質との間で固相反応が進行しにくい。このため、イオン伝導を阻害する異相が形成され難い。よって、LISICON型リチウムイオン伝導性物質とガーネット型リチウムイオン伝導性物質との間のLiイオン伝導抵抗が低くなるためであると考えられる。つまり、ガーネット型リチウムイオン伝導性物質とLISICON型リチウムイオン伝導性物質を共存させることで、それぞれの副反応が生じ難く、結晶構造が保持されるためであると考えられる。
(全固体電池1の製造方法)
次に、全固体電池1の製造方法の一例について説明する。
まず、活物質粒子と固体電解質とに対して、溶剤、樹脂等を適宜混合することにより、ペーストを調製する。そのペーストをシートの上に塗布し、乾燥させることにより正極11を構成するための第1のグリーンシートを形成する。同様に、負極12を構成するための第2のグリーンシートを形成する。
尚、第1及び第2のグリーンシートに、導電助剤や焼結助剤等を含ませてもよい。
固体電解質に対して、溶剤、樹脂等を適宜混合することにより、ペーストを調製する。そのペーストを塗布し、乾燥させることにより、固体電解質層13を構成するための第3のグリーンシートを作製する。
次に、第1〜第3のグリーンシートを適宜積層することにより積層体を作製する。作製した積層体をプレスしてもよい。好ましいプレス方法としては、静水圧プレス法等が挙げられる。
その後、積層体を焼結することにより全固体電池1を得ることができる。
以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
(比較例1)
〔ガーネット型リチウムイオン伝導性物質粉末の作製〕
水酸化リチウム一水和物(LiOH・HO)、酸化ガリウム(Ga)、酸化アルミニウム(Al)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)を含む原料を、固体電解質の組成が下記の表1に示す組成となるように秤量した。次に、水を添加し、100mlのポリエチレン製ポリポットに封入して、ポット架上で150rpm、16時間回転させ、原料を混合した。なお、また、Li源である水酸化リチウム一水和物(LiOH・HO)は焼結時のLi欠損を考慮し、狙い組成に対し、3質量%過剰に仕込んだ。
次に、得られたスラリーを乾燥させた後に、1000℃で5時間仮焼成した。次に、得られた仮焼成物にトルエン−アセトンの混合溶媒を添加し、遊星ボールミルにて12時間粉砕し、表1に示す組成のガーネット型リチウムイオン伝導性物質粉末を得た。
得られたリチウムイオン伝導性物質粉末を走査型電子顕微鏡(SEM)を用いて観察したところ、リチウムイオン伝導性物質粉末の粒子径は0.5μm程度であった。
〔Li及びBを含有する化合物粉末の作製〕
水酸化リチウム一水和物(LiOH・HO)、酸化ホウ素(B)を含む原料を、組成が下記の表1に示す組成となるように秤量した。秤量した原料を、メノウ乳鉢を用いて混合した。
次に、混合した原料を600℃で5時間仮焼成した。次に、得られた仮焼成物にトルエン−アセトンの混合溶媒を添加し、遊星ボールミルにて12時間粉砕し、Li及びBを含有する化合物粉末を得た。
〔固体電解質タブレットの作製〕
上記の手順で作製したガーネット型リチウムイオン伝導性物質粉末、Li及びBを含有する化合物粉末を表1に示す体積比率となるように秤量した。
秤量した原料を、乳鉢を用いて混合し、混合物を得た。
次に、得られた混合物と、ブチラール樹脂と、アルコールとを、200:15:140の重量比率で混合した後、80℃のホットプレート上でアルコールを除去し、バインダーとなるブチラール樹脂で被覆された混合粉末を得た。
次に、ブチラール樹脂で被覆された混合粉末を錠剤成型機を用いて90MPaでプレスしてタブレット状に成型した。得られたタブレットを、酸素雰囲気下で、500℃の温度で加熱することにより、ブチラール樹脂を除去した。その後、空気雰囲気下で750℃で10時間焼成した。その後、室温まで降温することで、固体電解質の焼結タブレットを得た。
(比較例2)
〔LISICON型リチウムイオン伝導性物質粉末の作製〕
水酸化リチウム一水和物(LiOH・HO)、酸化バナジウム(V)、酸化ケイ素(SiO)を含む原料を、リチウムイオン伝導性物質の組成が下記の表1に示す組成となるように秤量した。次に、水を添加し、100mlのポリエチレン製ポリポットに封入して、ポット架上で150rpm、16時間回転させ、原料を混合した。なお、また、Li源である水酸化リチウム一水和物(LiOH・HO)は焼結時のLi欠損を考慮し、狙い組成に対し、3質量%過剰に仕込んだ。
次に、得られたスラリーを乾燥させた後に、800℃〜1000℃で5時間仮焼成した。次に、得られた仮焼成物にトルエン−アセトンの混合溶媒を添加し、遊星ボールミルにて12時間粉砕し、表1に示す組成のLISICON型リチウムイオン伝導性物質粉末を得た。
〔Li及びBを含有する化合物粉末の作製〕
比較例1と同様にして、Li及びBを含有する化合物粉末を得た。
〔固体電解質タブレットの作製〕
上記の手順で作製したLISICON型リチウムイオン伝導性物質粉末、Li及びBを含有する化合物粉末を表1に示す体積比率となるように秤量した。秤量した原料を、乳鉢を用いて混合し、混合物を得た。
次に、得られた混合物と、ブチラール樹脂と、アルコールとを、200:15:140の重量比率で混合した後、80℃のホットプレート上でアルコールを除去し、バインダーとなるブチラール樹脂で被覆された混合粉末を得た。
次に、ブチラール樹脂で被覆された混合粉末を錠剤成型機を用いて90MPaでプレスしてタブレット状に成型した。得られたタブレットを、酸素雰囲気下で、500℃の温度で加熱することにより、ブチラール樹脂を除去した。その後、空気雰囲気下で750℃で10時間焼成した。その後、室温まで降温することで、固体電解質の焼結タブレットを得た。
(比較例3)
〔ガーネット型リチウムイオン伝導性物質粉末の作製〕
比較例1と同様にして、ガーネット型リチウムイオン伝導性物質粉末を得た。
〔LISICON型リチウムイオン伝導性物質粉末の作製〕
比較例2と同様にして、LISICON型リチウムイオン伝導性物質粉末を得た。
〔固体電解質タブレットの作製〕
上記の手順で作製したガーネット型リチウムイオン伝導性物質粉末、LISICON型リチウムイオン伝導性物質粉末を表1に示す体積比率となるように秤量した。秤量した原料を、乳鉢を用いて混合し、混合物を得た。
次に、得られた混合物と、ブチラール樹脂と、アルコールとを、200:15:140の重量比率で混合した後、80℃のホットプレート上でアルコールを除去し、バインダーとなるブチラール樹脂で被覆された混合粉末を得た。
次に、ブチラール樹脂で被覆された混合粉末を錠剤成型機を用いて90MPaでプレスしてタブレット状に成型した。得られたタブレットを、酸素雰囲気下で、500℃の加熱で焼成することにより、ブチラール樹脂を除去した。その後、空気雰囲気下で750℃で10時間焼成した。その後、室温まで降温することで、固体電解質の焼結タブレットを得た。
(実施例1)
〔ガーネット型リチウムイオン伝導性物質粉末の作製〕
比較例1と同様にして、ガーネット型リチウムイオン伝導性物質粉末を得た。
〔LISICON型リチウムイオン伝導性物質粉末の作製〕
比較例2と同様にして、LISICON型リチウムイオン伝導性物質粉末を得た。
〔Li及びBを含有する化合物粉末の作製〕
比較例1と同様にして、Li及びBを含有する化合物粉末を得た。
〔固体電解質タブレットの作製〕
上記の手順で作製したガーネット型リチウムイオン伝導性物質粉末、LISICON型リチウムイオン伝導性物質粉末、Li及びBを含有する化合物粉末を表1に示す体積比率となるように秤量した。秤量した原料を、乳鉢を用いて混合し、混合物を得た。
次に、得られた混合物と、ブチラール樹脂と、アルコールとを、200:15:140の重量比率で混合した後、80℃のホットプレート上でアルコールを除去し、バインダーとなるブチラール樹脂で被覆された混合粉末を得た。
次に、ブチラール樹脂で被覆された混合粉末を錠剤成型機を用いて90MPaでプレスしてタブレット状に成型した。得られたタブレットを、酸素雰囲気下で、500℃の温度で加熱することにより、ブチラール樹脂を除去した。その後、空気雰囲気下で750℃で10時間焼成した。その後、室温まで降温することで、固体電解質の焼結タブレットを得た。
(実施例2)
タブレットの焼成温度を700℃としたこと以外は、実施例と同様にして固体電解質の焼結タブレットを得た。
(実施例3)
ガーネット型リチウムイオン伝導性物質粉末、LISICON型リチウムイオン伝導性物質粉末、Li及びBを含有する化合物粉末を表2に示す体積比率となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例4)
ガーネット型リチウムイオン伝導性物質粉末、LISICON型リチウムイオン伝導性物質粉末、Li及びBを含有する化合物粉末を表2に示す体積比率となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例5)
ガーネット型リチウムイオン伝導性物質粉末、LISICON型リチウムイオン伝導性物質粉末、Li及びBを含有する化合物粉末を表2に示す体積比率となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例6)
ガーネット型リチウムイオン伝導性物質粉末、LISICON型リチウムイオン伝導性物質粉末、Li及びBを含有する化合物粉末を表2に示す体積比率となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例7)
ガーネット型リチウムイオン伝導性物質粉末、LISICON型リチウムイオン伝導性物質粉末、Li及びBを含有する化合物粉末を表3に示す体積比率となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例8)
ガーネット型リチウムイオン伝導性物質粉末、LISICON型リチウムイオン伝導性物質粉末、Li及びBを含有する化合物粉末を表3に示す体積比率となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例9)
ガーネット型リチウムイオン伝導性物質粉末、LISICON型リチウムイオン伝導性物質粉末、Li及びBを含有する化合物粉末を表3に示す体積比率となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例10)
ガーネット型リチウムイオン伝導性物質粉末、LISICON型リチウムイオン伝導性物質粉末、Li及びBを含有する化合物粉末を表3に示す体積比率となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例11)
ガーネット型リチウムイオン伝導性物質粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)、酸化アルミニウム(Al)を含む原料を表4に示す組成となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例12)
ガーネット型リチウムイオン伝導性物質粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、酸化ガリウム(Ga)、酸化スカンジウム(Sc)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)を含む原料を表4に示す組成となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例13)
ガーネット型リチウムイオン伝導性物質粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)、酸化ニオブ(Nb)を含む原料を表4に示す組成となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例14)
ガーネット型リチウムイオン伝導性物質粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、酸化アルミニウム(Al)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)、酸化ニオブ(Nb)を含む原料を表4に示す組成となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例15)
ガーネット型リチウムイオン伝導性物質粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、酸化アルミニウム(Al)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)、酸化タンタル(Ta)、酸化ビスマス(Bi)を含む原料を表4に示す組成となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例16)
ガーネット型リチウムイオン伝導性物質粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)、酸化タンタル(Ta)を含む原料を表4に示す組成となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例17)
Li及びBを含有する化合物粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、酸化ホウ素(B)を含む原料を、組成が下記の表4に示す組成となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例18)
Li及びBを含有する化合物粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、酸化ホウ素(B)、酸化アルミニウム(Al)を含む原料を、組成が下記の表4に示す組成となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例19)
Li及びBを含有する化合物粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、酸化ホウ素(B)、炭酸リチウム(LiCO)を含む原料を、組成が下記の表4に示す組成となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例20)
LISICON型リチウムイオン伝導性物質粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、酸化バナジウム(V)、酸化ケイ素(SiO)を含む原料を、固体電解質の組成が下記の表4に示す組成となるように秤量したことと、ガーネット型リチウムイオン伝導性物質粉末、LISICON型リチウムイオン伝導性物質粉末、Li及びBを含有する化合物粉末を表4に示す体積比率となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例21)
LISICON型リチウムイオン伝導性物質粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、酸化バナジウム(V)、酸化ケイ素(SiO)を含む原料を、固体電解質の組成が下記の表4に示す組成となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例22)
LISICON型リチウムイオン伝導性物質粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、酸化バナジウム(V)、酸化ゲルマニウム(GeO)を含む原料を、固体電解質の組成が下記の表4に示す組成となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例23)
LISICON型リチウムイオン伝導性物質粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、酸化ゲルマニウム(GeO)、酸化リン(P)を含む原料を、固体電解質の組成が下記の表4に示す組成となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例24)
LISICON型リチウムイオン伝導性物質粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、酸化リン(P)、酸化ケイ素(SiO)を含む原料を、固体電解質の組成が下記の表4に示す組成となるように秤量したこと
と、ガーネット型リチウムイオン伝導性物質粉末、LISICON型リチウムイオン伝導性物質粉末、Li及びBを含有する化合物粉末を表4に示す体積比率となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
(実施例25)
LISICON型リチウムイオン伝導性物質粉末の作製において、水酸化リチウム一水和物(LiOH・HO)、酸化アルミニウム(Al)、酸化バナジウム(V)、酸化ケイ素(SiO)を含む原料を、固体電解質の組成が下記の表4に示す組成となるように秤量したこと以外は、実施例1と同様にして、固体電解質の焼結タブレットを得た。
〔相対密度の測定〕
実施例1〜25及び比較例1〜3のそれぞれにおいて作製した固体電解質の焼結タブレットの重量を電子天秤を用いて測定した。次に、マイクロメーターを用いて焼結タブレットの実寸から体積を測定した。
測定した重量を体積で除することにより、焼結タブレットの密度を算出し、固体電解質の密度の理論値と測定値との割合から相対密度(%)を求めた。結果を表1〜表4に示す。尚、固体電解質の密度の理論値は、固体電解質を構成する、ガーネット型リチウムイオン伝導性物質、LISICON型リチウムイオン伝導性物質、Li及びBを含有する化合物の格子体積とモル質量から計算される理論密度と体積比率によって算出した。
〔イオン伝導度の測定〕
実施例1〜25及び比較例1〜3のそれぞれにおいて作製した固体電解質の焼結タブレットの両面に、スパッタリング法によって集電体層となる白金(Pt)層を形成した。その後、白金層が形成された焼結タブレットをSUS集電体で挟持することにより、固定した。
次に、各固体電解質の焼結タブレットを、0.1MHz以上1MHz以下(±50mV)の範囲で室温(25℃)で、交流インピーダンスを測定し、ナイキストプロットを得た。
得られたナイキストプロットから、粒内・粒界を含む電解質全体の抵抗を測定しイオン伝導度を算出した。結果を表1〜表4に示す。
Figure 0006904422
実施例1の結果から、ガーネット型リチウムイオン伝導性物質、LISICON型リチウムイオン伝導性物質及びLi及びBを含有する化合物を含む固体電解質は、750℃という低い焼成温度であっても、高い相対密度が得られ、高いイオン伝導度が得られることが分かった。また、実施例2の結果から、焼成温度が700℃であっても、高い相対密度が得られ、高いイオン伝導度が得られることが分かった。
一方、比較例1〜3の結果から、焼成温度が750℃である場合、固体電解質が、ガーネット型リチウムイオン伝導性物質、LISICON型リチウムイオン伝導性物質及びLi及びBを含有する化合物の全てを含んでいない場合には、相対密度が低く、イオン伝導度が低くなることが分かった。
Figure 0006904422
表2に示す結果から、LISICON型リチウムイオン伝導性物質の体積比率を10%以上とすると、相対密度が高くなり、高いイオン伝導度が得られることが分かった。特に、ガーネット型リチウムイオン伝導性物質の体積比率(X(%))とLISICON型リチウムイオン伝導性物質の体積比率(Y(%))が、それぞれ、37%≦X≦70%、20%≦Y≦60%であるときに、高いイオン伝導度が得られることが分かった。
Figure 0006904422
表3に示す結果から、Li及びBを含有する化合物の体積比率(Z(%))を3%≦Z≦20%としたときに特に高いイオン伝導度が得られることが分かった。
Figure 0006904422
実施例11〜16の結果から、種々の組成を有するガーネット型リチウムイオン伝導性物質を用いても、高い相対密度が得られ、高いイオン伝導度を実現できることが分かった。
実施例17、18の結果から、種々のLi及びBを含有する化合物を用いても、高いイオン伝導度を実現できることが分かった。また、Li及びBを含有する化合物において、Bに対するLiのモル比(Li/B)が、2.0以上の場合、高いイオン伝導度が得られることが分かった。
実施例20〜25の結果から、種々のLISICON型リチウムイオン伝導性物質を用いても、高い相対密度と高いイオン伝導度を実現できることが分かった。
本発明に係る固体電解質は、ガーネット型構造を有するリチウムイオン伝導性物質と、LISICON型構造を有するリチウムイオン伝導性物質と、Li及びBを含有する化合物とを含む。このため、本発明に係る固体電解質は、低温焼成した際にも、高いイオン伝導度を有する。この理由は定かではないが、LISICON型構造を有するリチウムイオン伝導性物質は、ガーネット型構造を有するリチウムイオン伝導性物質と、Li及びBを含有する化合物との両方に対して高い濡れ性を有しているため、液相焼結が促進され、その結果、緻密化が進行するためであると考えられる。また、LISICON型構造を有するリチウムイオン伝導性物質と、ガーネット型構造を有するリチウムイオン伝導性物質との間で固相反応が生じにくいため、イオン伝導度を低下させる異相が形成され難いことも高いイオン伝導度を実現できる一因であると考えられる。
LISICON型構造を有するリチウムイオン伝導性物質が、組成式(Li[3−ax+(5−b)])MO(Aは、Mg、Al、Ga及びZnからなる群から選ばれた少なくとも1種の元素であり、Mは、Zn、Al、Ga、Si、Ge、Ti、P及びVからなる群から選ばれた少なくとも1種の元素であり、0≦x≦1.0、aはAの平均価数であり、bはMの平均価数である。)で表されることが好ましい。
ガーネット型構造を有するリチウムイオン伝導性物質が、組成式(Li[7−ax−(b−4)y])LaZr(2−y)12(Aは、Ga、Al、Mg、Zn及びScからなる群から選ばれた少なくとも1種の元素であり、Bは、Nb、Ta、W、Te、Mo及びBiからなる群から選ばれた少なくとも1種の元素であり、0≦x≦0.5、0≦y≦2.0、aはAの平均価数であり、bはBの平均価数である。)で表されることが好ましい。
Li及びBを含有する化合物が、Li及びBを含有する酸化物であることが好ましい。
Li及びBを含有する化合物において、Bに対するLiのモル比(Li/B)が2.0以上であることが好ましい。この場合、固体電解質のイオン伝導度を高めることができる。
ガーネット型構造を有するリチウムイオン伝導性物質の体積比率をXとし、LISICON型構造を有するリチウムイオン伝導性物質の体積比率をYとし、Li及びBを含有する酸化物の体積比率をZとしたときに、10%≦X≦89.5%、10%≦Y≦89.5%、0.5%≦Z≦30%、X+Y+Z≦100%であることが好ましい。
ガーネット型構造を有するリチウムイオン伝導性物質の体積比率をXとし、LISICON型構造を有するリチウムイオン伝導性物質の体積比率をYとし、Li及びBを含有する酸化物の体積比率をZとしたときに、37%≦X≦70%、20%≦Y≦60%、3.0%≦Z≦20%、80%≦X+Y+Z≦100%であることが好ましい。
本発明に係る全固体電池は、本発明に係る固体電解質を含む固体電解質層を備える。
1 全固体電池
11 正極
12 負極
13 固体電解質層

Claims (7)

  1. ガーネット型構造を有するリチウムイオン伝導性物質と、LISICON型構造を有するリチウムイオン伝導性物質と、Li及びBを含有する化合物とを含み、
    前記LISICON型構造を有するリチウムイオン伝導性物質が酸化物であり、
    前記Li及びBを含有する化合物が、Li及びBを含有する酸化物であり、
    前記Li及びBを含有する酸化物の体積比率が0.5〜30%である、固体電解質。
  2. 前記LISICON型構造を有するリチウムイオン伝導性物質が、組成式(Li[3−ax+(5−b)])MO(Aは、Mg、Al、Ga及びZnからなる群から選ばれた少なくとも1種の元素であり、Mは、Zn、Al、Ga、Si、Ge、Ti、P及びVからなる群から選ばれた少なくとも1種の元素であり、0≦x≦1.0、aはAの平均価数であり、bはMの平均価数である。)で表される、請求項1に記載の固体電解質。
  3. 前記ガーネット型構造を有するリチウムイオン伝導性物質が、組成式(Li[7−ax−(b−4)y])LaZr(2−y)12(Aは、Ga、Al、Mg、Zn及びScからなる群から選ばれた少なくとも1種の元素であり、Bは、Nb、Ta、W、Te、Mo及びBiからなる群から選ばれた少なくとも1種の元素であり、0≦x≦0.5、0≦y≦2.0、aはAの平均価数であり、bはBの平均価数である。)で表される、請求項1又は2に記載の固体電解質。
  4. 前記Li及びBを含有する化合物において、Bに対するLiのモル比(Li/B)が2.0以上である、請求項1〜のいずれか一項に記載の固体電解質。
  5. 前記ガーネット型構造を有するリチウムイオン伝導性物質の体積比率をXとし、前記LISICON型構造を有するリチウムイオン伝導性物質の体積比率をYとし、前記Li及びBを含有する酸化物の体積比率をZとしたときに、10%≦X≦89.5%、10%≦Y≦89.5%、X+Y+Z≦100%である、請求項1〜のいずれか一項に記載の固体電解質。
  6. 前記ガーネット型構造を有するリチウムイオン伝導性物質の体積比率をXとし、前記LISICON型構造を有するリチウムイオン伝導性物質の体積比率をYとし、前記Li及びBを含有する酸化物の体積比率をZとしたときに、37%≦X≦70%、20%≦Y≦60%、3.0%≦Z≦20%、80%≦X+Y+Z≦100%である、請求項1〜のいずれか一項に記載の固体電解質。
  7. 請求項1〜のいずれか一項に記載の固体電解質を含む固体電解質層を備える、全固体電池。
JP2019539581A 2017-08-30 2018-08-29 固体電解質及び全固体電池 Active JP6904422B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017165458 2017-08-30
JP2017165458 2017-08-30
JP2017218078 2017-11-13
JP2017218078 2017-11-13
PCT/JP2018/031938 WO2019044901A1 (ja) 2017-08-30 2018-08-29 固体電解質及び全固体電池

Publications (2)

Publication Number Publication Date
JPWO2019044901A1 JPWO2019044901A1 (ja) 2020-01-23
JP6904422B2 true JP6904422B2 (ja) 2021-07-14

Family

ID=65525801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019539581A Active JP6904422B2 (ja) 2017-08-30 2018-08-29 固体電解質及び全固体電池

Country Status (4)

Country Link
US (1) US11955596B2 (ja)
JP (1) JP6904422B2 (ja)
CN (1) CN111033859B (ja)
WO (1) WO2019044901A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145312A1 (ja) * 2020-01-16 2021-07-22 株式会社村田製作所 固体電池
JP7306492B2 (ja) * 2020-01-16 2023-07-11 株式会社村田製作所 固体電池
WO2021187443A1 (ja) 2020-03-16 2021-09-23 株式会社村田製作所 固体電池
WO2021241429A1 (ja) 2020-05-25 2021-12-02 株式会社村田製作所 固体電池
JPWO2021251409A1 (ja) * 2020-06-10 2021-12-16
EP4269344A1 (en) 2020-12-25 2023-11-01 Resonac Corporation Lithium ion-conductive solid electrolyte, and all-solid-state battery
CN112968217A (zh) * 2021-03-02 2021-06-15 深圳先进技术研究院 一种在固态电解质上固定正极材料的方法及固态电池
WO2023176968A1 (ja) * 2022-03-17 2023-09-21 Tdk株式会社 固体電解質層、及び全固体二次電池
WO2023176967A1 (ja) * 2022-03-17 2023-09-21 Tdk株式会社 固体電解質層、及び全固体二次電池
EP4287306A1 (en) * 2022-05-31 2023-12-06 Samsung Electronics Co., Ltd. All-solid secondary battery and method of preparing all-solid secondary battery

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090301A1 (en) 2009-02-04 2010-08-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
JP5742144B2 (ja) 2010-09-08 2015-07-01 株式会社豊田中央研究所 複合体の製造方法、複合体及びそれを備えたアルカリ金属二次電池
JP5919673B2 (ja) * 2011-08-10 2016-05-18 株式会社豊田中央研究所 固体電解質及びその製造方法
FR2982082B1 (fr) 2011-11-02 2013-11-22 Fabien Gaben Procede de fabrication de batteries en couches minces entierement solides
JP6260250B2 (ja) 2012-12-29 2018-01-17 株式会社村田製作所 固体電解質用材料
KR102038621B1 (ko) * 2013-02-14 2019-10-30 삼성전자주식회사 고체이온전도체, 이를 포함하는 고체전해질, 이를 포함하는 리튬전지, 및 이의 제조방법
FR3002695B1 (fr) 2013-02-28 2021-04-02 I Ten Procede de fabrication d'une batterie monolithique entierement solide
JP6165546B2 (ja) * 2013-08-09 2017-07-19 株式会社日立製作所 固体電解質および全固体リチウムイオン二次電池
JP2015056326A (ja) 2013-09-13 2015-03-23 株式会社日立製作所 固体電解質及びそれを用いた全固体型イオン二次電池
WO2015151144A1 (ja) * 2014-03-31 2015-10-08 株式会社日立製作所 全固体リチウム二次電池
JP6259704B2 (ja) 2014-04-14 2018-01-10 株式会社日立製作所 全固体電池用電極の製造方法及び全固体電池の製造方法
JP2015204215A (ja) * 2014-04-15 2015-11-16 住友金属鉱山株式会社 リチウムイオン伝導性固体電解質とその製造方法、および、全固体電池
JP6462343B2 (ja) * 2014-12-04 2019-01-30 国立大学法人信州大学 Li含有複合酸化物の製造方法
JP2016184483A (ja) 2015-03-26 2016-10-20 株式会社日立製作所 全固体リチウム二次電池
JP2016201310A (ja) * 2015-04-13 2016-12-01 株式会社日立製作所 全固体リチウム二次電池
JP2017033926A (ja) * 2015-07-29 2017-02-09 セントラル硝子株式会社 ガーネット型酸化物焼結体及びその製造方法
JP2017103163A (ja) 2015-12-03 2017-06-08 トヨタ自動車株式会社 非水電解液二次電池
WO2018052371A1 (en) * 2016-09-13 2018-03-22 National University Of Singapore Solid electrolyte
JP7009390B2 (ja) * 2016-12-27 2022-01-25 日本碍子株式会社 リチウムイオン電池及びその製造方法
DE112018001795T5 (de) 2017-03-30 2019-12-19 Tdk Corporation All-solid-state-batterie
KR102093971B1 (ko) 2017-06-21 2020-05-21 주식회사 엘지화학 리튬 이차전지
US11469464B2 (en) 2017-06-29 2022-10-11 I-Ten Encapsulation system for electronic components and batteries

Also Published As

Publication number Publication date
WO2019044901A1 (ja) 2019-03-07
CN111033859B (zh) 2023-07-18
US20200106131A1 (en) 2020-04-02
JPWO2019044901A1 (ja) 2020-01-23
US11955596B2 (en) 2024-04-09
CN111033859A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
JP6992818B2 (ja) 全固体電池
JP6904422B2 (ja) 固体電解質及び全固体電池
JP6904423B2 (ja) 共焼成型全固体電池
JP6164812B2 (ja) 全固体リチウムイオン二次電池
JP6593459B2 (ja) 固体電解質及び全固体電池
JP6109672B2 (ja) セラミック正極−固体電解質複合体
JP6018930B2 (ja) 正極−固体電解質複合体の製造方法
JP6669268B2 (ja) 固体電解質及び全固体電池
JP7306493B2 (ja) 固体電池
JP2013243112A (ja) 全固体蓄電素子
CN114930595A (zh) 固体电池
JP6109673B2 (ja) セラミック正極−固体電解質複合体
JP6168690B2 (ja) セラミック正極−固体電解質複合体
US11942596B2 (en) Solid electrolyte material, solid electrolyte layer, and all solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6904422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150