WO2021241429A1 - 固体電池 - Google Patents

固体電池 Download PDF

Info

Publication number
WO2021241429A1
WO2021241429A1 PCT/JP2021/019326 JP2021019326W WO2021241429A1 WO 2021241429 A1 WO2021241429 A1 WO 2021241429A1 JP 2021019326 W JP2021019326 W JP 2021019326W WO 2021241429 A1 WO2021241429 A1 WO 2021241429A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode layer
solid
layer
auxiliary agent
Prior art date
Application number
PCT/JP2021/019326
Other languages
English (en)
French (fr)
Inventor
良平 高野
修 近川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180026470.3A priority Critical patent/CN115413378A/zh
Priority to JP2022526976A priority patent/JP7367868B2/ja
Priority to EP21812641.5A priority patent/EP4160745A1/en
Publication of WO2021241429A1 publication Critical patent/WO2021241429A1/ja
Priority to US17/971,755 priority patent/US20230060930A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the inventors of the present invention have found the following: By coating the metal conductive auxiliary agent with a refractory material in the electrode layer, coalescence and bemming during sintering are suppressed, and a smaller content of the metallic conductive auxiliary agent is suitable in the electrode layer. It was found that a flexible conductive path can be formed, and as a result, the utilization rate of the electrode active material is improved. Therefore, by using such an electrode layer, the energy density of the solid-state battery can be increased.
  • FIG. 3A is a schematic cross-sectional view of an electrode layer for explaining a conductive path in another example of the electrode layer in the solid-state battery of the present invention.
  • FIG. 3B is a schematic cross-sectional view of the conductive auxiliary agent schematically showing an example of the elongated conductive auxiliary agent contained in the electrode layer in the solid-state battery of the present invention shown in FIG. 3A.
  • FIG. 3C is a schematic cross-sectional view of the conductive auxiliary agent schematically showing another example of the elongated conductive auxiliary agent contained in the electrode layer in the solid-state battery of the present invention shown in FIG. 3A.
  • FIG. 3A is a schematic cross-sectional view of an electrode layer for explaining a conductive path in another example of the electrode layer in the solid-state battery of the present invention.
  • FIG. 3B is a schematic cross-sectional view of the conductive auxiliary agent schematically showing an example of the elongated conductive auxiliary agent contained in the electrode layer in the solid-state
  • the solid-state battery of the present invention includes a positive electrode current collector layer 11, a negative electrode current collector layer 21, a positive electrode current collector (not shown), a negative electrode current collector 22, and an electrode separation unit 15, 25, a protective layer 5, and end face electrodes 10 and 20 may be further provided.
  • the solid-state battery of FIG. 1B is similar to the solid-state battery of FIG. 1A except that the negative electrode layer 2 has an end face current collecting structure.
  • the end face current collector structure of the negative electrode layer 2 of FIG. 1B is a negative electrode terminal via the negative electrode current collector 22 while being in contact with the negative electrode current collector 22 at the end face of the negative electrode layer 2. It is a structure that is electrically connected to 20.
  • the negative electrode layer 2 has a main surface current collecting structure.
  • the main surface current collecting structure of the negative electrode layer 2 of FIG. 1A is mainly via the negative electrode current collecting layer 21 while being in contact with the negative electrode current collecting layer 21 on the main surface of the negative electrode layer 2. It is a structure that is electrically connected to the negative electrode terminal 20.
  • the positive electrode layer 1 has a main surface electrode structure, but the present invention is not limited to this, and even if the positive electrode layer 1 has an end surface current collecting structure as that of the negative electrode layer 2 of FIG. 1B. good.
  • the coating material is a material different from the electrode active material and the solid electrolyte contained in the electrode layer containing the coating type conductive auxiliary agent.
  • the electrode active material is a positive electrode active material in the positive electrode layer and a negative electrode active material in the negative electrode layer.
  • the fact that the materials are different means that the formulas are different when expressed by a chemical composition formula or a chemical structural formula.
  • the cause of the unification and bemming of the core material is the low wettability between the electrode active material particles / core material (conductive aid). By coating with an oxide different from the electrode active material particles, the wettability of both can be enhanced, and as a result, the unification and bemming of the core material can be further suppressed.
  • an element that does not dissolve in the negative electrode active material means an element that does not replace V or is difficult to replace when the negative electrode active material contains V (vanadium).
  • V vanadium
  • elements that do not replace V or are difficult to replace Zn (zinc), Al (aluminum), Ga (gallium), Si (silicon), Ge (germanium), Sn (in the periodic table) in the periodic table (that is, long-periodic table) Select from the group consisting of elements other than tin), P (phosphorus), As (arsenic), Ti (titanium), Mo (molybdenum), W (tungsten), Fe (iron), Cr (chromium), and Co (elements other than cobalt).
  • the form of the coating layer 202 in the solid-state battery is usually maintained in the form before sintering for manufacturing the solid-state battery.
  • the coating layer when the average value of the aspects of all the coating materials in contact with the core material 201 is within the above range.
  • the covering material which constitutes the above shall have a film-like morphology.
  • the aspect ratio of the covering material is, for example, as shown in FIG. 2E, the ratio of the maximum length L of the covering material to the length t in the direction perpendicular to the direction defining the maximum length in a cross-sectional view.
  • the length t in the direction perpendicular to the direction defining the maximum length L may be the coating material dimension t'in the direction perpendicular to the surface (or the contact portion thereof) of the conductive auxiliary agent with which the coating material contacts.
  • its maximum length L is the maximum value of the length along the surface of the core material 201. ..
  • the coating material 202 is arranged around the conductive auxiliary agent 201 in contact with the conductive auxiliary agent 201, and usually has a dimension t'(see FIGS. 2B to 2E) of 500 nm or less (for example, 1 nm or more and 500 nm or less). doing. That is, the coating material is a coating material that is arranged in contact with the conductive auxiliary agent around the conductive auxiliary agent (core material) and has the above-mentioned predetermined dimensions. ..
  • the dimension t' is the dimension of each coating material particle constituting the coating layer.
  • the dimension t' is the thickness dimension of the coating layer.
  • the dimension t' is preferably 1 nm or more and 400 nm or less from the viewpoint of further suppressing the unification and bemming of the conductive auxiliary agent (core material) and further improving the utilization rate of the electrode active material during charging and discharging of the solid-state battery.
  • the coating material film has the above-mentioned predetermined dimensions (that is, the thickness direction) in the direction perpendicular to the surface of the conductive auxiliary agent with which the coating material comes into contact (that is, the thickness direction). It is arranged in contact with the conductive auxiliary agent while having a predetermined thickness).
  • the area ratio of the coating material is usually 0.1% or more and 15% or less with respect to the conductive auxiliary agent (core material) constituting the coated conductive auxiliary agent, and the unification of the conductive auxiliary agent (core material) and the ball From the viewpoint of further suppressing the conversion and further improving the utilization rate of the electrode active material during charging and discharging of the solid-state battery, it is preferably 0.8% or more and 8% or less, and more preferably 0.8% or more and 4% or less.
  • the area ratio of the covering material is the conductive auxiliary agent (core material) of the covering material which is arranged in contact with the conductive auxiliary agent and has the above-mentioned predetermined dimensions around the conductive auxiliary agent. ) To the area ratio.
  • the area ratio of the coating material measures the area of any 100 selected conductive auxiliaries (core materials) and the area of the coating material in each of these conductive auxiliaries in a cross-sectional view. It is shown as a value based on the ratio obtained by dividing the total area of the coating material by the total area of the conductive auxiliary agent.
  • the conductive auxiliary agent (core material) of the coated conductive auxiliary agent is composed of a metal material.
  • a metallic material is a metal that has not been oxidized.
  • the metal material constituting the core material is not particularly limited, and is, for example, Ag (silver), Au (gold), Pd (palladium), Pt (platinum), Cu (copper), Sn (tin), Ni (nickel) and It is composed of one or more metallic materials selected from the group consisting of those alloys.
  • the conductive auxiliary agent is preferably Ag, Cu and them from the viewpoint of further suppressing the unification and beading of the conductive auxiliary agent (core material) and further improving the utilization rate of the electrode active material during charging and discharging of the solid-state battery. It is composed of one or more metallic materials selected from the group consisting of alloys of.
  • the shape of the conductive auxiliary agent (core material) constituting the coated conductive auxiliary agent is not particularly limited, and the conductive auxiliary agent (core material) is, for example, an elongated conductive auxiliary agent, a spherical conductive auxiliary agent, or a mixture thereof. You may.
  • the conductive auxiliary agent (core material) constituting the coated conductive auxiliary agent further suppresses the unification and bemming of the conductive auxiliary agent (core material) and further suppresses the utilization rate of the electrode active material during charging and discharging of the solid-state battery. From the viewpoint of improvement, it is preferable to include an elongated conductive auxiliary agent.
  • the elongated conductive auxiliary agent means a conductive auxiliary agent having an elongated shape in a cross-sectional view of the electrode layer. Therefore, the elongated shape can also be referred to as a "long-sectional elongated shape in cross-sectional view".
  • FIG. 3A is a schematic cross-sectional view of an electrode layer for explaining a conductive path in an example of an electrode layer containing a coated conductive auxiliary agent using an elongated conductive auxiliary agent.
  • the conductive auxiliary agent having an elongated shape has a shape having an elongated direction in a cross-sectional view of the electrode layer.
  • the conductive auxiliary agent that can have an elongated shape
  • a flat conductive auxiliary agent, a fibrous conductive auxiliary agent, or a mixture thereof is used.
  • the conductive auxiliary agent having an elongated shape in cross-sectional view corresponds to the material of the flat conductive auxiliary agent, the fibrous conductive auxiliary agent, or a mixture thereof by disassembling the solid-state battery.
  • the flat shape is a shape in which particles are crushed, and is also called a "scale-like" or "flat plate-like” shape.
  • the fibrous shape includes a "linear" shape or a "rod shape", and may be, for example, a shape possessed by so-called metal nanowires.
  • the depth length c is a dimension that defines the maximum length in the direction perpendicular to the cross-sectional view, and usually satisfies c ⁇ 2b (particularly 2a ⁇ c ⁇ 2b) in the case of a flat shape and 2b> c in the case of a fibrous shape. (Especially 2b> c> 0.5b) is satisfied.
  • the elongated shape specifically refers to a shape having a / b of 2.0 or more (particularly 2.0 or more and 20.0 or less).
  • FIG. 3B is a schematic cross-sectional view of a conductive auxiliary agent schematically showing an example of an elongated conductive auxiliary agent that can be contained in the electrode layer in the solid-state battery of the present invention.
  • the elongated shape includes a bent elongated shape with a bent portion.
  • the bent elongated shape has the longest dimension a and the short side length (for one conductive auxiliary agent 200b in the electrode layer, while having one or more bent portions 201) in the electrode layer.
  • the shape is defined by the thickness dimension) b, and the depth length c (that is, the dimension in the front-back direction on FIG. 3C) (not shown) is not particularly limited.
  • the longest dimension a is a dimension that defines the maximum length in a cross-sectional view.
  • the short side length b is a dimension that defines the maximum length (or maximum thickness) in the direction perpendicular to the longest dimension a direction in a cross-sectional view.
  • the depth length c is a dimension that defines the maximum length in a plan view perpendicular to a cross-sectional view.
  • the a, b and c and their relationships in the bent elongated shape are similar to those in the simple cross-sectional elongated shape (eg, FIG. 3B).
  • FIG. 3C is a schematic cross-sectional view of the conductive auxiliary agent schematically showing another example of the conductive auxiliary agent having a long and narrow cross-sectional view that can be contained in the electrode layer in the solid-state battery of the present invention.
  • the average aspect ratio (the longest dimension a / short side length b described above) is usually 2.0 or more (particularly 2.0 or more and 20.0 or less) for the elongated conductive auxiliary agent in the electrode layer, and the electrode active material. From the viewpoint of further improving the utilization rate of the above, it is preferably 2.0 or more and 15.0 or less, more preferably 2.5 or more and 10.0 or less, and further preferably 3.0 or more and 8.0 or less.
  • the average aspect ratio (a / b) of the elongated conductive auxiliary agent is an arbitrary 100 cross-sectional elongated shapes confirmed in the electrode layer of the SEM image (photograph) showing the laminated structure (cross-sectional structure) of the solid-state battery.
  • the average value based on the conductive auxiliary agent of is used.
  • the cross-sectional view may be an SEM image (photograph) showing the laminated structure (cross-sectional structure) of the solid-state battery.
  • the average short side length b of the elongated conductive auxiliary agent is defined as any 100 elongated conductive auxiliary agents confirmed in the electrode layer of the SEM image (photograph) showing the laminated structure (cross-sectional structure) of the solid-state battery. The average value based on is used.
  • the spherical conductive auxiliary agent has the longest dimension "a” that defines the maximum length and the short length that defines the maximum length in the direction perpendicular to the longest dimension a direction in the cross-sectional view, as in the elongated conductive auxiliary agent.
  • the side length is "b"
  • it is a conductive auxiliary agent having a shape in which the ratio (a / b) of these is less than 2.0 (particularly 1.5 or less).
  • the average dimension of the conductive auxiliary agent (core material) constituting the coated conductive auxiliary agent is an average value of the dimensions defining the maximum length, and is an average value of the dimensions corresponding to the longest dimension a of the elongated shape and the spherical conductive auxiliary agent. Is.
  • the average size of the conductive auxiliary agent (core material) constituting the coated conductive auxiliary agent is any 100 coatings confirmed in the electrode layer of the SEM image (photograph) showing the laminated structure (cross-sectional structure) of the solid-state battery.
  • the average value based on the conductive auxiliary agent (core material) in the type conductive auxiliary agent is used.
  • the electrode layer contains a coated conductive auxiliary agent at a content such that the area ratio of the conductive auxiliary agent (core material) constituting the coated conductive auxiliary agent to the electrode layer is 5% or more and 35% or less, and is conductive.
  • the area ratio is preferably 10% or more and 30% or less. More preferably, it is contained in a content such that it is 18% or more and 28% or less.
  • the negative electrode layer when the negative electrode layer contains a coated conductive auxiliary agent, a negative electrode active material and a solid electrolyte, the negative electrode layer is a coated conductive auxiliary agent while bonding the negative electrode active material particles with the coated conductive auxiliary agent and the solid electrolyte.
  • the negative electrode active material particles and the solid electrolyte preferably have the form of a sintered body bonded to each other by sintering.
  • the negative electrode layer may further contain a conductive auxiliary agent other than the coated conductive auxiliary agent.
  • a conductive auxiliaries for example, conductive auxiliaries composed of the same metal material as the metal material as the conductive auxiliary (core material) constituting the coated conductive auxiliary, acetylene black, ketjen black, etc. Examples thereof include carbon materials such as carbon nanotubes such as Super P (registered trademark) and VGCF (registered trademark).
  • the molar ratio of Li to V in the negative electrode active material is preferably 2 or more and 6 or less (particularly 2 or more and 4 or less) from the viewpoint of further improving the utilization rate of the negative electrode active material.
  • the negative electrode layer contains a negative electrode active material having such a molar ratio.
  • the conductive auxiliary agent is coalesced and beggled (for example, sphericalized) at the time of sintering. It is particularly easy to proceed, the conductive path is particularly easy to break, and the utilization rate of the negative electrode active material is further lowered.
  • the negative electrode layer contains such a negative electrode active material, the breakage of the conductive path can be sufficiently suppressed, and as a result, the negative electrode at the time of charging / discharging with a smaller amount of the conductive auxiliary agent is used.
  • the utilization rate of active materials can be improved more sufficiently. Therefore, when the negative electrode layer contains the negative electrode active material having the above molar ratio, the effect of forming the conductive auxiliary agent in the form of a coating type in the present invention is particularly high.
  • the negative electrode active material is described by the general formula (1): from the viewpoint of further improving the utilization rate of the negative electrode active material. It is preferable to have an average chemical composition represented by. With such a composition, the reactivity of the solid electrolyte layer with the LISION type solid electrolyte can be further sufficiently reduced.
  • the negative electrode active material used in the present invention further fully expresses its capacity by the redox of V. Therefore, in order to obtain a sufficient reversible capacity, the V amount y is preferably 0.5 ⁇ y ⁇ 1.0 as described later.
  • A is one or more elements selected from the group consisting of Na (sodium), K (potassium), Mg (magnesium), Ca (calcium), and Zn (zinc).
  • B is Zn (zinc), Al (aluminum), Ga (gallium), Si (silicon), Ge (germanium), Sn (tin), P (phosphorus), As (arsenic), Ti (titanium), Mo ( One or more elements selected from the group consisting of molybdenum), W (tungsten), Fe (iron), Cr (chromium), and Co (cobalt).
  • x has a relationship of 0 ⁇ x ⁇ 1.0, preferably a relationship of 0 ⁇ x ⁇ 0.5, more preferably a relationship of 0 ⁇ x ⁇ 0.1, and further preferably 0. .. y has a relationship of 0.5 ⁇ y ⁇ 1.0, preferably a relationship of 0.55 ⁇ y ⁇ 1.0, and more preferably a relationship of 0.8 ⁇ y ⁇ 1.0. It has, and more preferably 1.
  • a is the average valence of A.
  • the average valence of B is, as B, for example, when n1 elements X having a valence a +, n2 elements Y having a valence b +, and n3 elements Z having a valence c + are recognized, the above-mentioned A It is the same value as the average valence of.
  • A is one or more elements selected from the group consisting of Al and Zn.
  • B is one or more, particularly two, elements selected from the group consisting of Si and P.
  • x has a relationship of 0 ⁇ x ⁇ 0.06, and is more preferably 0.
  • y has a relationship of 0.55 ⁇ y ⁇ 1.0, more preferably 0.8 ⁇ y ⁇ 1.0, and further preferably 1.
  • a is the average valence of A.
  • b is the average valence of B.
  • the chemical composition of the negative electrode active material reflects the chemical composition of the negative electrode active material used at the time of manufacture as it is when high-speed sintering is performed at 750 ° C. for about 1 minute together with the solid electrolyte layer, but the temperature is 750 ° C.
  • the sintering is performed for a long time of about 1 hour, the element diffusion to the solid electrolyte layer proceeds, and the amount of V is usually reduced.
  • the negative electrode active material has a ⁇ II- Li 3 VO 4 type structure
  • the negative electrode active material has a ⁇ II- Li 3 VO 4 type crystal structure
  • the negative electrode active material has a ⁇ II- Li 3 VO 4 type structure, that is, the negative electrode active material (particularly its particles) has a so-called ⁇ II- Li 3 VO 4 type crystal structure in X-ray diffraction. It is meant to indicate one or more major peaks corresponding to the Miller index inherent in, at a given angle of incidence.
  • ICDD Card No. 01-073-6058 can be mentioned.
  • the negative electrode active material has a ⁇ II- Li 3 VO 4 type structure
  • the negative electrode active material has a ⁇ II- Li 3 VO 4 type crystal structure
  • the negative electrode active material has a ⁇ II- Li 3 VO 4 type structure, that is, the negative electrode active material (particularly its particles) has a so-called ⁇ II- Li 3 VO 4 type crystal structure in X-ray diffraction. It is meant to indicate one or more major peaks corresponding to the Miller index inherent in, at a given angle of incidence.
  • ICDD Card No. 01-073-2850 can be mentioned.
  • the average chemical composition and crystal structure of the negative electrode active material in the negative electrode layer usually change due to element diffusion during sintering.
  • the negative electrode active material preferably has the above-mentioned average chemical composition and crystal structure in the solid-state battery after being sintered together with the positive electrode layer and the solid electrolyte layer.
  • the negative electrode active material capable of occluding and releasing sodium ions is selected from the group consisting of sodium-containing phosphoric acid compounds having a nacicon-type structure, sodium-containing phosphoric acid compounds having an olivine-type structure, and sodium-containing oxides having a spinel-type structure. At least one of the following is mentioned.
  • the average particle size of the negative electrode active material is not particularly limited, and may be, for example, 0.01 ⁇ m or more and 20 ⁇ m or less, preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the average particle size of the negative electrode active material for example, 10 or more and 100 or less particles may be randomly selected from the SEM image, and the average particle size (arithmetic mean) may be obtained by simply averaging the particles. can.
  • the particle size is the diameter of the spherical particle assuming that the particle is perfectly spherical.
  • a cross section of a solid-state battery is cut out, a cross-section SEM image is taken using SEM, and then image analysis software (for example, "A image-kun" (manufactured by Asahi Kasei Engineering Co., Ltd.)) is used to cut the particles.
  • image analysis software for example, "A image-kun" (manufactured by Asahi Kasei Engineering Co., Ltd.)
  • the particle diameter R can be obtained by the following formula.
  • the average particle size of the negative electrode active material in the negative electrode layer can be automatically measured by specifying the negative electrode active material by the composition at the time of measuring the average chemical composition described above
  • the volume ratio of the negative electrode active material in the negative electrode layer is not particularly limited, and is preferably 20% or more and 80% or less, and is preferably 30% or more and 75% or less, from the viewpoint of further improving the utilization rate of the negative electrode active material. More preferably, it is more preferably 30% or more and 60% or less.
  • the particle shape of the negative electrode active material in the negative electrode layer is not particularly limited, and may be, for example, a spherical shape, a flat shape, or an indefinite shape.
  • the negative electrode layer preferably further contains a solid electrolyte, particularly a solid electrolyte having a garnet-type structure. Since the negative electrode layer contains a garnet-type solid electrolyte, the ionic conductivity of the negative electrode layer can be increased, and a high rate can be expected. Further, since a side reaction at the time of co-firing with a negative electrode active material having a Li / V ratio of 2 or more can be suppressed, an improvement in the utilization rate of the negative electrode can be expected. As will be described later, it is preferable that the solid electrolyte layer also further contains a solid electrolyte, particularly a solid electrolyte having a garnet-type structure.
  • the solid electrolyte layer contains a garnet-type solid electrolyte, so that the insulating property of the solid electrolyte layer can be improved. It is thought that this is because the garnet-type solid electrolyte is difficult to be reduced during charging and discharging, so it is difficult for electrons to be injected, and the degree of bending of the LISION-type solid electrolyte in the solid electrolyte increases, resulting in an increase in electron resistance. Be done. Further, since a side reaction at the time of co-firing with a negative electrode active material having a Li / V ratio of 2 or more can be suppressed, an improvement in the utilization rate of the negative electrode can be expected.
  • At least one (particularly both) of the negative electrode layer or the solid electrolyte layer contains a solid electrolyte having a garnet-type structure.
  • one of the negative electrode layer and the solid electrolyte layer may contain a solid electrolyte having a garnet-type structure, or both of them are garnet. It means that it may contain a solid electrolyte having a mold structure.
  • the solid electrolyte has a garnet-type structure
  • a solid electrolyte having a garnet-type structure means that, in X-ray diffraction, the solid electrolyte incidents one or more major peaks corresponding to the Miller index inherent in the so-called garnet-type crystal structure. Means to show in angle.
  • the solid electrolyte having a garnet-type structure is described by the general formula (2) :. It is preferable to have an average chemical composition represented by.
  • the negative electrode layer contains a solid electrolyte having an average chemical composition as described above, further improvement in the utilization rate of the negative electrode active material can be achieved.
  • A is one or more elements selected from the group consisting of Ga (gallium), Al (aluminum), Mg (magnesium), Zn (zinc), and Sc (scandium).
  • B is one or more elements selected from the group consisting of Nb (niobium), Ta (tantalum), W (tungsten), Te (tellurium), Mo (molybdenum), and Bi (bismuth).
  • x has a relationship of 0 ⁇ x ⁇ 0.5.
  • y has a relationship of 0 ⁇ y ⁇ 2.0.
  • a is the average valence of A, which is the same as the average valence of A in the formula (1).
  • b is the average valence of B, which is the same as the average valence of B in the formula (1).
  • A is one or more elements selected from the group consisting of Ga and Al.
  • B is one or more elements selected from the group consisting of Nb, Ta, W, Mo, and Bi.
  • x has a relationship of 0 ⁇ x ⁇ 0.3, preferably 0.
  • y has a relationship of 0 ⁇ y ⁇ 1.0, preferably 0 ⁇ y ⁇ 0.7, more preferably 0.3 ⁇ y ⁇ 0.7, and is preferably 0.5.
  • a is the average valence of A.
  • b is the average valence of B.
  • solid electrolyte represented by the general formula (2) include, for example, (Li 6.4 Ga 0.05 Al 0.15 ) La 3 Zr 2 O 12 and (Li 6.4 Ga 0.2). ) La 3 Zr 2 O 12 , Li 6.4 La 3 (Zr 1.6 Ta 0.4 ) O 12 , (Li 6.4 Al 0.2 ) La 3 Zr 2 O 12 , Li 6.5 La 3 Examples thereof include (Zr 1.5 Mo 0.25 ) O 12 and Li 6.5 La 3 (Zr 1.5 Ta 0.5 ) O 12.
  • the average chemical composition of the solid electrolyte (particularly the solid electrolyte having a garnet-type structure) in the negative electrode layer means the average value of the chemical composition of the solid electrolyte in the thickness direction of the negative electrode layer.
  • the average chemical composition of the solid electrolyte is analyzed by breaking the solid-state battery and performing composition analysis with EDX using SEM-EDX (energy dispersive X-ray spectroscopy) with a view of the entire thickness direction of the negative electrode layer. And measurable.
  • the average chemical composition of the negative electrode active material and the average chemical composition of the solid electrolyte can be automatically distinguished and measured according to their compositions in the above composition analysis.
  • the solid electrolyte of the negative electrode layer can be obtained by the same method as the negative electrode active material except that a raw material compound containing a predetermined metal atom is used, or can be obtained as a commercially available product.
  • the average chemical composition and crystal structure of the solid electrolyte in the negative electrode layer usually change due to element diffusion during sintering.
  • the solid electrolyte preferably has the above-mentioned average chemical composition and crystal structure in the solid-state battery after being sintered together with the positive electrode layer and the solid electrolyte layer.
  • the volume ratio of the solid electrolyte (particularly the solid electrolyte having a garnet-type structure) in the negative electrode layer is not particularly limited, and is 10% from the viewpoint of the balance between further improving the utilization rate of the negative electrode active material and increasing the energy density of the solid state battery. It is preferably 50% or more, and more preferably 20% or more and 40% or less.
  • the negative electrode layer may further contain, for example, a sintering aid, a conductive auxiliary agent, and the like, in addition to the negative electrode active material and the solid electrolyte.
  • these sintering aids have low fusible properties, and by advancing liquid phase sintering, the negative electrode layer can be densified at a lower temperature. Further, by adopting the above composition, the side reaction between the sintering aid and the LISION type solid electrolyte used in the present invention at the time of co-sintering can be further suppressed.
  • the sintering aid that satisfies these conditions include Li 3 BO 3 , (Li 2.7 Al 0.3 ) BO 3 , and Li 2.8 (B 0.8 C 0.2 ) O 3 . Of these, it is particularly preferable to use BO 3 having a particularly high ionic conductivity (Li 2.7 Al 0.3).
  • the volume ratio of the sintering aid in the negative electrode layer can be measured by the same method as the volume ratio of the negative electrode active material.
  • B can be focused on as a detection element in EDX, which is determined to be in the region of the sintering aid.
  • the negative electrode layer usually has a thickness of 2 ⁇ m or more and 100 ⁇ m or less, particularly 2 ⁇ m or more and 50 ⁇ m or less.
  • the main surface is a surface having a relatively large area, and more specifically, an upper surface and / or a lower surface perpendicular to the stacking direction. Collecting current on the main surface means that electrons come and go mainly from the main surface.
  • the negative electrode layer 2 is directly electrically connected to the negative electrode terminal 20 on the negative electrode terminal 20 side, but the negative electrode terminal 20 is connected to the negative electrode terminal 20 via the negative electrode current collector as in the negative electrode layer in the end face current collector structure. It may be electrically connected to.
  • the negative electrode layer 2 may be laminated on both main surfaces of the negative electrode current collecting layer 21 as shown in FIG. 1A, or may be laminated on one main surface. May be done.
  • the negative electrode current collector layer 21 and the negative electrode current collector 22 that the negative electrode layer 2 may have include at least a conductive material.
  • the negative electrode current collector layer 21 and the negative electrode current collector 22 may further include a solid electrolyte.
  • the negative electrode current collector layer 21 and the negative electrode current collector 22 are made of a sintered body containing at least a conductive material and a solid electrolyte.
  • a material having a relatively high conductivity is usually used, and for example, a carbon material, silver, palladium, gold, platinum, aluminum, or copper. It is preferable to use at least one selected from the group consisting of and nickel.
  • the solid electrolyte that may be contained in the negative electrode current collecting layer 21 and the negative electrode current collecting unit 22 may be selected from the same solid electrolytes as the solid electrolyte that may be contained in the negative electrode layer described above.
  • the negative electrode current collector layer 21 and the negative electrode current collector 22 are preferably in the form of a sintered body from the viewpoint of reducing the manufacturing cost of the solid-state battery and the internal resistance of the solid-state battery by the integral sintering.
  • the negative electrode current collector layer 21 and the negative electrode current collector 22 have the form of a sintered body, for example, the negative electrode current collector layer 21 and the negative electrode current collector 22 are sintered assist in addition to the above-mentioned conductive material and solid electrolyte. It may be composed of a sintered body further containing an agent.
  • the sintering aid contained in the negative electrode current collector layer 21 and the negative electrode current collector 22 may be selected from, for example, the same materials as the sintering aid that can be contained in the negative electrode layer.
  • the thickness of the negative electrode current collector layer is not particularly limited, and may be, for example, 1 ⁇ m or more and 5 ⁇ m or less, particularly 1 ⁇ m or more and 3 ⁇ m or less.
  • the thickness of the negative electrode current collector may usually be the same as that of the negative electrode layer.
  • the positive electrode layer when the positive electrode layer contains a coated conductive auxiliary agent, a positive electrode active material and a solid electrolyte, the positive electrode layer is a coated conductive auxiliary agent while binding between the positive electrode active material particles by the coated conductive auxiliary agent and the solid electrolyte.
  • the positive electrode active material particles and the solid electrolyte preferably have the form of a sintered body bonded to each other by sintering.
  • the positive electrode active material from the viewpoint of reactivity at the time of co-sintering with the LISION type solid electrolyte used in the present invention. Is more preferably used. In addition, only one kind of these positive electrode active material particles may be used, or a plurality of kinds may be mixed and used.
  • the fact that the positive electrode active material has a Nashikon type structure means that the positive electrode active material (particularly, its particles have a Nashikon type crystal structure, and in a broad sense, it is a Nashikon type by a person skilled in the art of solid cells. In a narrow sense, it means that the positive electrode active material has a pear-con type structure in the positive electrode layer, that is, the positive electrode active material (particularly its particles) has a crystal structure that can be recognized as the crystal structure of the positive electrode layer. It means that one or more major peaks corresponding to the mirror index peculiar to the so-called Nashikon type crystal structure are shown at a predetermined incident angle. Examples of the positive electrode active material having a Nashikon type structure preferably used are described above. Examples include the above-mentioned compounds.
  • Examples of the positive electrode active material that can occlude and release sodium ions include a sodium-containing phosphoric acid compound having a nacicon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing layered oxide, and a sodium-containing oxide having a spinel-type structure. At least one selected from the group consisting of the above is mentioned.
  • the positive electrode active material can be obtained by the same method as the negative electrode active material except that a raw material compound containing a predetermined metal atom is used, or can be obtained as a commercially available product.
  • the chemical composition and crystal structure of the positive electrode active material in the positive electrode layer usually change due to element diffusion during sintering.
  • the positive electrode active material preferably has the above-mentioned chemical composition and crystal structure in a solid-state battery after being sintered together with the negative electrode layer and the solid electrolyte layer.
  • the average particle size of the positive electrode active material can be obtained by the same method as the average particle size of the negative electrode active material in the negative electrode layer.
  • the average particle size of the positive electrode active material in the positive electrode layer usually reflects the average particle size of the positive electrode active material used at the time of manufacture as it is. In particular, when LiCoO 2 is used for the positive electrode particles, it is reflected as it is.
  • the volume ratio of the positive electrode active material in the positive electrode layer is not particularly limited, and is preferably 30% or more and 90% or less, and 40% or more and 70% or less, from the viewpoint of further improving the utilization rate of the negative electrode active material. More preferred.
  • the positive electrode layer may further contain, for example, a solid electrolyte, a sintering aid, a conductive auxiliary agent, and the like, in addition to the positive electrode active material.
  • the type of solid electrolyte contained in the positive electrode layer is not particularly limited.
  • a solid electrolyte contained in the positive electrode layer for example, a solid electrolyte having a garnet-type structure (Li 6.4 Ga 0.2) La 3 Zr 2 O 12, Li 6.4 La 3 (Zr 1. 6Ta 0.4) O 12 , (Li 6.4 Al 0.2 ) La 3 Zr 2 O 12 , Li 6.5 La 3 (Zr 1.5 Mo 0.25 ) O 12 , solid electrolyte Li 3 + x (V) with a LISION type structure.
  • the solid electrolyte of the positive electrode layer can be obtained by the same method as the negative electrode active material except that a raw material compound containing a predetermined metal atom is used, or can be obtained as a commercially available product.
  • the volume ratio of the solid electrolyte in the positive electrode layer is not particularly limited, and is preferably 20% or more and 60% or less from the viewpoint of further improving the utilization rate of the positive electrode active material and increasing the energy density of the solid state battery. More preferably, it is% or more and 45% or less.
  • the same compound as the sintering aid in the negative electrode layer can be used.
  • the volume ratio of the sintering aid in the positive electrode layer is not particularly limited, and should be 0.1% or more and 20% or less from the viewpoint of further improving the utilization rate of the negative electrode active material and increasing the energy density of the solid-state battery. It is preferable, and it is more preferable that it is 1% or more and 10% or less.
  • the positive electrode layer may further contain a conductive auxiliary agent other than the coated conductive auxiliary agent.
  • a conductive auxiliaries that may be contained in the positive electrode layer, any conductive auxiliaries known in the field of solid-state batteries can be used.
  • Such conductive aids include, for example, metal materials such as Ag (silver), Au (gold), Pd (palladium), Pt (platinum), Cu (copper), Sn (tin), Ni (nickel); Examples thereof include carbon materials such as carbon nanotubes such as acetylene black, ketjen black, Super P (registered trademark), and VGCF (registered trademark).
  • the volume ratio of the conductive auxiliary agent in the positive electrode layer is not particularly limited, and is preferably 10% or more and 50% or less from the viewpoint of further improving the utilization rate of the positive electrode active material and increasing the energy density of the solid-state battery. It is more preferably 20% or more and 40% or less.
  • the positive electrode layer 1 may have a main surface current collecting structure as shown in FIGS. 1A and 1B, or may have an end surface current collecting structure.
  • the positive electrode layer preferably has a main surface current collecting structure from the viewpoint of reducing manufacturing costs.
  • the fact that the positive electrode layer 1 has a main surface current collecting structure means that the positive electrode layer 1 has a structure that collects current on the main surface of the positive electrode layer.
  • the positive electrode layer 1 is in contact with the positive electrode current collector layer 11 on the main surface 1x of the positive electrode layer 1 and is electrically connected to the positive electrode terminal 10 via the positive electrode current collector layer 11. Is connected.
  • the positive electrode current collecting layer 11 may be laminated on the main surface of the positive electrode layer 1 and / or the positive electrode layer 1 is laminated on the main surface of the positive electrode current collecting layer 11. May be.
  • the fact that the positive electrode layer 1 has an end face current collecting structure means that the positive electrode layer 1 has a structure that collects current at the end face (particularly only the end face) of the positive electrode layer 1 on the positive electrode terminal 10 side.
  • the positive electrode layer 1 is electrically connected to the positive electrode terminal 10 via the positive electrode current collector while being in contact with the positive electrode current collector at the end face (particularly only the end face) of the positive electrode layer 1 on the positive electrode terminal 10 side.
  • it may be directly and electrically connected to the positive electrode terminal 10 at the end face (particularly only the end face) of the positive electrode layer 1 on the positive electrode terminal 10 side.
  • the positive electrode current collector layer 11 and the positive electrode current collector are preferably in the form of a sintered body from the viewpoint of reducing the manufacturing cost of the solid-state battery by integral sintering and reducing the internal resistance of the solid-state battery.
  • the positive electrode current collector layer 11 and the positive electrode current collector have the form of a sintered body
  • the positive electrode current collector layer 11 and the positive electrode current collector have a sintering aid in addition to the above-mentioned conductive material and solid electrolyte. It may be further composed of a sintered body containing the same.
  • the sintering aid contained in the positive electrode current collector layer 11 and the positive electrode current collector may be selected from, for example, the same materials as the sintering aid that can be contained in the negative electrode layer.
  • the thickness of the positive electrode current collector layer is not particularly limited, and may be, for example, 1 ⁇ m or more and 5 ⁇ m or less, particularly 1 ⁇ m or more and 3 ⁇ m or less.
  • the thickness of the positive electrode current collector may usually be the same as that of the positive electrode layer.
  • the solid electrolyte layer 3 is not particularly limited, and is, for example, a material capable of conducting lithium ions or sodium ions (particularly lithium ions).
  • the solid electrolyte layer 3 is a solid electrolyte capable of conducting lithium ions, for example, a solid electrolyte having a LISION type structure (for example, a first solid electrolyte described later) and a solid electrolyte having a garnet type structure (for example, a second solid electrolyte described later). It may contain one or more materials selected from (solid electrolyte) and oxide glass ceramics-based lithium ion conductors.
  • the solid electrolyte layer 3 preferably contains one of the first solid electrolyte and the second solid electrolyte, which will be described later, or both of them. From the same viewpoint and other viewpoints (for example, from the viewpoint of manufacturing cost), it is preferable that the solid electrolyte layer 3 contains only the second solid electrolyte.
  • the first solid electrolyte is a solid electrolyte having a LISION type structure and containing at least V. LISICON structure having the first solid electrolyte in the solid electrolyte layer, beta I structure, beta II type structure, beta II 'structure, T I type structure, T II type structure, gamma II type structure, and gamma 0 type structure To embrace. That is, the solid electrolyte layer is beta I structure, beta II type structure, beta II 'structure, T I type structure, T II type structure, gamma II type structure, gamma 0 type structure or one or more with these composite structures It may contain a solid electrolyte of.
  • the LISION type structure of the first solid electrolyte is preferably a ⁇ II type structure from the viewpoint of further improving the utilization rate of the electrode active material.
  • the fact that the first solid electrolyte has a ⁇ II type structure means that the solid electrolyte has a ⁇ II type crystal structure, and in a broad sense, it is defined by a person skilled in the art of solid batteries as having a ⁇ II type. It means having a crystal structure that can be recognized as the crystal structure of. In a narrow sense, the fact that the first solid electrolyte has a ⁇ II type structure in the solid electrolyte layer means that the solid electrolyte has a Miller index peculiar to the so-called ⁇ II- Li 3 VO 4 type crystal structure in X-ray diffraction. It is meant to indicate one or more corresponding major peaks at a given angle of incidence.
  • the fact that the first solid electrolyte has a ⁇ I type structure in the solid electrolyte layer means that the solid electrolyte has a ⁇ I type crystal structure, and in a broad sense, it is ⁇ I type by those skilled in the art of solid batteries. It means having a crystal structure that can be recognized as the crystal structure of. In a narrow sense, the fact that the first solid electrolyte has a ⁇ I type structure in the solid electrolyte layer means that the solid electrolyte has a Miller index peculiar to the so-called ⁇ I- Li 3 VO 4 type crystal structure in X-ray diffraction. It is meant to indicate one or more corresponding major peaks at a given angle of incidence.
  • the fact that the first solid electrolyte has a ⁇ II type structure in the solid electrolyte layer means that the solid electrolyte has a ⁇ II type crystal structure, and in a broad sense, ⁇ II type by those skilled in the art of solid batteries. It means having a crystal structure that can be recognized as the crystal structure of. In a narrow sense, the fact that the first solid electrolyte has a ⁇ II type structure in the solid electrolyte layer means that the solid electrolyte has a Miller index peculiar to the so-called ⁇ II- Li 3 VO 4 type crystal structure in X-ray diffraction. It is meant to indicate one or more corresponding major peaks at a given angle of incidence.
  • the solid electrolyte, the X-ray diffraction, the so-called beta II' is the first solid electrolyte beta II solid electrolyte layer -Li 3 VO 4 -type crystal structure specific mirror It is meant to indicate one or more major peaks corresponding to the exponent at a given angle of incidence.
  • J.solid state chem ARWest et.al, J.solid state chem. , 4,20-28 (1972)
  • XRD data mirror index corresponding to the surface spacing d value
  • the first solid electrolyte having a T I type structure solid electrolyte layer and means that the solid electrolyte has a T I type crystal structure, in a broad sense, T I-type by those skilled in the art of solid-state battery It means having a crystal structure that can be recognized as the crystal structure of. In a narrow sense, in The first solid electrolyte having a T I type structure solid electrolyte layer, the solid electrolyte, the X-ray diffraction, the Miller index inherent to the so-called T I -Li 3 VO 4 type crystal structure It is meant to indicate one or more corresponding major peaks at a given angle of incidence. Compounds having T I type structure (i.e.
  • J.solid state chem ARWest et.al, J.solid state chem. , 4,20-28 (1972)
  • ICDD Card No. 00-024-0668 ICDD Card No. 00-024-0668 is mentioned.
  • the fact that the first solid electrolyte has a T II type structure means that the solid electrolyte has a T II type crystal structure, and in a broad sense, it is a T II type by a person skilled in the art of solid batteries. It means having a crystal structure that can be recognized as the crystal structure of. In a narrow sense, the fact that the first solid electrolyte has a T II type structure in the solid electrolyte layer means that the solid electrolyte has a Miller index peculiar to the so-called T II- Li 3 VO 4 type crystal structure in X-ray diffraction. It is meant to indicate one or more corresponding major peaks at a given angle of incidence.
  • T type II structure ie, solid electrolytes
  • J. solid state chem ARWest et.al, J. solid state chem., 4, 20-28 (1972)
  • ICDD Card No. 00-024-0669 is mentioned.
  • the first solid electrolyte is represented by the general formula (3) :. It is more preferable to have an average chemical composition represented by.
  • A is one or more elements selected from the group consisting of Na (sodium), K (potassium), Mg (magnesium), Ca (calcium), and Zn (zinc).
  • B is Zn (zinc), Al (aluminum), Ga (gallium), Si (silicon), Ge (germanium), Sn (tin), P (phosphorus), As (arsenic), Ti (titanium), Mo ( One or more elements selected from the group consisting of molybdenum), W (tungsten), Fe (iron), Cr (chromium), and Co (cobalt).
  • x has a relationship of 0 ⁇ x 1.0, particularly 0 ⁇ x ⁇ 0.2, and is preferably 0.
  • the average chemical composition of the first solid electrolyte in the solid electrolyte layer means the average value of the chemical composition of the first solid electrolyte in the thickness direction of the solid electrolyte layer.
  • the solid battery is broken, and SEM-EDX (energy dispersive X-ray spectroscopy) is used to analyze the composition by EDX from the viewpoint that the entire thickness direction of the solid electrolyte layer is contained. It can be analyzed and measured.
  • the average chemical composition of the first solid electrolyte having a LISION type structure and the average chemical composition of the solid electrolyte having a garnet type structure described later can be automatically distinguished and measured by their compositions in the above composition analysis.
  • the site of the first solid electrolyte (that is, the solid electrolyte of the LISION type structure) is identified by the detection of V, and the site of the second solid electrolyte (for example, the garnet type solid electrolyte) is La, Zr. By identification, it is possible to separate.
  • the chemical composition and crystal structure of the first solid electrolyte in the solid electrolyte layer usually change due to element diffusion during sintering.
  • the first solid electrolyte preferably has the above-mentioned chemical composition and crystal structure in a solid-state battery after being sintered together with the negative electrode layer and the positive electrode layer.
  • the chemical composition of the first solid electrolyte reflects the chemical composition of the solid electrolyte used at the time of production as it is when high-speed sintering is performed at 750 ° C. for about 1 minute together with the negative electrode layer.
  • sintering is performed at ° C. for a long time of about 1 hour, element diffusion from the negative electrode active material of the negative electrode layer proceeds, and the amount of V usually increases.
  • the volume ratio of the first solid electrolyte in the solid electrolyte layer can be measured by the same method as the volume ratio of the positive electrode active material.
  • the second solid electrolyte is the same as the solid electrolyte having a garnet-type structure preferably contained in the negative electrode layer, and may be selected from the same range as the solid electrolyte having a garnet-type structure described in the description of the negative electrode layer. good.
  • the solid electrolyte layer and the negative electrode layer contain a solid electrolyte having a garnet-type structure
  • the solid electrolyte having a garnet-type structure contained in the solid electrolyte layer and the solid electrolyte having a garnet-type structure contained in the negative electrode layer are They may have the same chemical composition or may have different chemical compositions from each other.
  • the average chemical composition of the second solid electrolyte in the solid electrolyte layer means the average value of the chemical composition of the second solid electrolyte in the thickness direction of the solid electrolyte layer.
  • the solid battery is broken, and SEM-EDX (energy dispersive X-ray spectroscopy) is used to analyze the composition by EDX from the viewpoint that the entire thickness direction of the solid electrolyte layer fits. It can be analyzed and measured.
  • the volume ratio of the second solid electrolyte in the solid electrolyte layer is not particularly limited, and is preferably 20% or more and 100% or less, preferably 40% or more and 100% or less, from the viewpoint of further improving the utilization rate of the electrode active material. More preferably, it is more preferably 40% or more and 70% or less.
  • the average value of the thickness measured at any 10 points in the SEM image is used.
  • the porosity is not particularly limited, and is preferably 20% or less, more preferably 15% or less, still more preferably 10% or less, from the viewpoint of further improving the utilization rate of the electrode active material.
  • the porosity of the solid electrolyte layer the value measured by the same method as the porosity of the negative electrode layer is used.
  • the chemical composition of the solid electrolyte layer does not necessarily have to be uniform in the solid electrolyte layer, and the chemical composition may change, for example, in the thickness direction.
  • the insulating property can be improved.
  • the protective layer 5 is usually made of an insulating material.
  • Insulating material means a material that does not have ionic or electronic conductivity. Therefore, the insulating substance is an inorganic substance having no ionic conductivity and electron conductivity.
  • An inorganic substance having no ionic conductivity means an inorganic substance having an ionic conductivity of 1 ⁇ 10 -7 S / cm or less. From the viewpoint of suppressing deterioration of the battery over a longer period of time, the ion conductivity is preferably 1 ⁇ 10 -10 S / cm or less.
  • An inorganic substance having no electron conductivity means an inorganic substance having an electron conductivity of 1 ⁇ 10 -7 S / cm or less. From the viewpoint of suppressing deterioration of the battery over a longer period of time, the electron conductivity is preferably 1 ⁇ 10 -10 S / cm or less.
  • the protective layer 5 When the protective layer 5 is composed of such an insulating substance, the protective layer 5 has excellent moisture resistance, environmental resistance and durability.
  • the protective layer 5 can be a protective layer having higher bonding strength with the battery element as compared with the protective layer containing a resin (for example, a polymer compound).
  • a resin for example, a polymer compound.
  • the protective layer 5 can more sufficiently prevent the expansion and contraction of the solid-state battery as compared with the protective layer containing the polymer compound, and as a result, the deterioration of the battery performance can be more sufficiently suppressed.
  • the insulating substance constituting the protective layer 5 is not particularly limited, and examples thereof include glass and ceramics.
  • the glass is a combination of quartz glass (SiO 2 ) or at least one of SiO 2 and PbO, B 2 O 3 , MgO, ZnO, Bi 2 O 3 , Na 2 O, and Al 2 O 3. Examples include composite oxide-based glass. Examples of ceramics include alumina, cordylite, mullite, steatite, and forsterite.
  • the protective layer may be composed of one or more materials selected from the group consisting of these substances.
  • the protective layer may contain a material having electronic conductivity (eg, metal) as long as the battery element is not short-circuited.
  • the protective layer is preferably made of a sintered body containing the above-mentioned insulating substance particles.
  • the sintered body constituting the protective layer has pores between the insulating substance particles, it can suppress the adsorption, absorption and permeation of water and gas (carbon dioxide) in the thickness direction (for example, the stacking direction L). Has a degree of precision.
  • the protective layer may contain a resin such as a polymer compound, and for example, the polymer compound used at the time of production and / or a thermal decomposition product thereof may remain.
  • the content of the polymer compound and its thermal decomposition products and other residues in the protective layer is usually 0.1% by weight or less, particularly 0.01% by weight or less, based on the total amount of the protective layer.
  • residues are similarly present in the protective layer. It may remain.
  • the content of the residue in each layer or each part of the positive electrode layer, the positive electrode current collector layer, the positive electrode current collector part, the negative electrode layer, the negative electrode current collector layer, the negative electrode current collector part, the solid electrolyte layer and the electrode separation part is the total amount of each layer.
  • the value may be within the same range as the residue content range in the protective layer.
  • the thickness direction of the H 2 O-permeable protective layer for example, 10 -2 g / m 2 / day or less, may be less, especially 10 -4 g / m2 / day.
  • the thickness of the thickest portion of the protective layer is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, and most preferably 20 ⁇ m or less. ..
  • the protective layer preferably has an average thickness of 1 ⁇ m or more, more preferably 5 ⁇ m or more, from the viewpoint of further suppressing deterioration of battery performance due to adsorption, absorption, permeation, etc. of water and gas (carbon dioxide). ..
  • the maximum thickness and the average thickness for the thickness at any 100 points are used, respectively.
  • the protective layer covers the upper and lower surfaces of the solid-state battery.
  • the protective layer may be in direct contact with the upper and lower surfaces of the battery element covered by the protective layer, as shown in FIGS. 1A and 1B, or via a layer other than the layer constituting the battery element. May be indirectly contacted.
  • the fact that the protective layer is in direct contact with the upper and lower surfaces of the battery element means that the surface of the protective layer and the battery element do not have layers other than the layers constituting the battery element intervening between the protective layer and the battery element. It means that it is in direct contact with the surface of the battery.
  • the protective layer is integrally sintered between the upper and lower surfaces of the battery element covered by the protective layer and the sintered body.
  • the fact that the protective layer is integrally sintered with the upper and lower surfaces of the battery element covered by the protective layer means that the protective layer is fired with the upper and lower surfaces of the battery element covered by the protective layer. It means that they are joined by firing.
  • the protective layer and the upper and lower surfaces of the battery element covered by the protective layer are both sintered bodies, but are integrally sintered.
  • the protective layer and the battery element have an integrally sintered structure.
  • the protective layer and the upper and lower surfaces of the battery element covered by the protective layer do not have to be strictly integrated, and a part of the protective layer may not be integrated.
  • the protective layer and the upper and lower surfaces of the battery element covered by the protective layer may be integrated as a whole.
  • the upper and lower surfaces of the battery element covered by the protective layer are usually the surface of the outermost layer of the battery element.
  • the outermost layer of the battery element is the uppermost layer arranged at the highest level and the lowest layer arranged at the lowest level among the layers constituting the battery element.
  • the surface of the outermost layer is the upper surface of the uppermost layer and the lower surface of the lowermost layer.
  • the electrode separating portion 15 (that is, the positive electrode separating portion) is arranged around the positive electrode layer 1 to separate the positive electrode layer 1 from the negative electrode terminal 20.
  • the electrode separating portion 25 (that is, the negative electrode separating portion) is also arranged around the negative electrode layer 2 to separate the negative electrode layer 2 from the positive electrode terminal 10.
  • the electrode separation portions 15 and 25 are preferably composed of one or more materials selected from the group consisting of, for example, a solid electrolyte, an insulating substance, and a mixture thereof.
  • a solid electrolyte that can form the electrode separation portions 15 and 25 the same material as the solid electrolyte that can form the solid electrolyte layer can be used.
  • the insulating substance that can form the electrode separation portions 15 and 25, the same material as the insulating substance that can form the protective layer can be used.
  • the electrode separation portion further contains a sintering aid.
  • a sintering aid in the electrode separation portion, the same compound as the sintering aid in the negative electrode layer can be used.
  • the solid-state battery of the present invention has electrode terminals 10 and 20 electrically connected to a positive electrode layer or a negative electrode layer on each of the two opposite side surfaces.
  • the electrode terminal electrically connected to the positive electrode layer is referred to as a positive electrode terminal
  • the electrode terminal electrically connected to the negative electrode layer is referred to as a negative electrode terminal 20.
  • the electrode terminal is also a member also called an end face electrode.
  • the solid-state battery of the present invention has electrode terminals 10 and 20 parallel to each other and parallel to the stacking direction L.
  • the electrode terminal preferably contains a conductive material having a high conductivity.
  • the thickness of the electrode terminals 10 and 20 is not particularly limited, and may be, for example, 1 ⁇ m or more and 1 mm or less, particularly 10 ⁇ m or more and 100 ⁇ m or less.
  • the solid-state battery can be manufactured, for example, by a so-called green sheet method, a printing method, or a method in which these methods are combined.
  • a paste is prepared by appropriately mixing a solvent, a resin, or the like with the positive electrode active material.
  • the paste is applied onto the sheet and dried to form a green sheet for forming the positive electrode layer.
  • the green sheet for the positive electrode layer may contain a solid electrolyte, a conductive auxiliary agent and / or a sintering auxiliary agent and the like.
  • the conductive auxiliary agent of the positive electrode layer may contain a coated conductive auxiliary agent.
  • the paste is applied onto the sheet and dried to form a green sheet for forming the negative electrode layer.
  • the green sheet for the negative electrode layer may contain a solid electrolyte, a conductive auxiliary agent and / or a sintering auxiliary agent and the like.
  • the conductive auxiliary agent in the negative electrode layer may contain a coated conductive auxiliary agent.
  • the paste is prepared by appropriately mixing a solvent, resin, etc. with the insulating substance.
  • the paste is applied and dried to prepare a green sheet for forming a protective layer.
  • the green sheet for the protective layer may contain a sintering aid or the like.
  • the paste is prepared by appropriately mixing a solvent, resin, etc. with the solid electrolyte and / or the insulating substance.
  • the paste is applied and dried to prepare a green sheet for forming the electrode separation portion.
  • the green sheet for the electrode separation portion may contain a sintering aid or the like.
  • a laminated body is produced by appropriately laminating the green sheets obtained by the above method.
  • the prepared laminate may be pressed.
  • Preferred press methods include a hydrostatic pressure press method and the like.
  • a solid-state battery can be obtained by applying the electrode terminal paste to a predetermined arrangement in the laminated body and sintering the paste at, for example, 600 to 800 ° C.
  • the printing method will be described.
  • the printing method is the same as the green sheet method except for the following items. -Prepare an ink for each layer having a composition similar to that of the paste for each layer for obtaining a green sheet, except that the blending amount of the solvent and the resin is suitable for use as an ink. -Printing and laminating using the ink of each layer to produce a laminated body.
  • garnet-type solid electrolyte powder solid electrolyte powder of the negative electrode layer and solid electrolyte powder of the solid electrolyte layer
  • the garnet-type solid electrolyte powder used in Examples and Comparative Examples was produced as follows.
  • Raw materials include lithium hydroxide monohydrate LiOH ⁇ H 2 O, lanthanum hydroxide La (OH) 3 , zirconium oxide ZrO 2 , gallium oxide Ga 2 O 3 , aluminum oxide Al 2 O 3 , niobium oxide Nb 2 O 5 , Tantalum oxide Ta 2 O 5 and molybdenum oxide MoO 3 were used.
  • Each raw material was weighed so that the chemical composition had a predetermined chemical composition, water was added, the mixture was sealed in a 100 ml polyethylene polypot, and the mixture was rotated at 150 rpm for 16 hours on a pot rack to mix the raw materials. Further, lithium monohydrate LiOH ⁇ H 2 O hydroxide is Li source considering lack of Li at the time of sintering, to the aim composition, was charged with 3 wt% excess. The obtained slurry was evaporated and dried, and then calcined at 900 ° C. for 5 hours to obtain a target phase. A mixed solvent of toluene-acetone was added to the obtained calcined powder, and the mixture was pulverized with a planetary ball mill for 6 hours. This pulverized powder was dried to obtain a solid electrolyte powder. It was confirmed by ICP measurement that the above powder had no composition deviation.
  • Positive electrode active material powder, negative electrode active material powder and LISON type solid electrolyte powder (first solid electrolyte powder of the solid electrolyte layer) Positive electrode active material powder, negative electrode active material powder and No. 1 used in Examples and Comparative Examples.
  • 1 Solid electrolyte powder was produced as follows. Lithium hydroxide monohydrate (LiOH ⁇ H 2 O), vanadium pentoxide (V 2 O 5 ), and silicon (Si) were used as raw materials. Each raw material was appropriately weighed so that the chemical composition had a predetermined chemical composition, water was added, the mixture was sealed in a 100 ml polyethylene polypot, and rotated at 150 rpm for 16 hours on a pot rack to mix the raw materials.
  • a mixed solvent of toluene-acetone was added to the obtained main baking powder, pulverized with a planetary ball mill for 6 hours, and dried to obtain a sintering aid powder. It was confirmed by ICP measurement that the above powder had no composition deviation.
  • -Conductive aid C1 (Ag powder coated with granular layer) Spherical Ag powder (average primary particle size 2 ⁇ m, manufactured by Shoei Chemical Co., Ltd.) was subjected to bead mill treatment to obtain flat Ag powder having an aspect ratio (a / b) ratio of 4.5 and a b value of 0.9 ⁇ m.
  • a granular layer-coated Ag powder in which the surface of the flat Ag powder was coated with 3 layers of granular Li 2 ZrO was obtained by the same method as that of the conductive auxiliary agent B1 except that the flat Ag powder was used as the core material.
  • the ratio of the core material to the coating material and the sputtering time were adjusted so that the electrode layer obtained in each example had a predetermined coating material / Ag particle area ratio.
  • -Conductive aid D1 (Ag powder coated with granular layer) A granular layer-coated Ag powder in which the surface of the spherical Ag powder was coated with the granular Li 2 SiO 3 layer was obtained by the same method as that of the conductive auxiliary agent B1 except that Li 2 SiO 3 was used as the coating material (target). The ratio of the core material to the coating material and the sputtering time were adjusted so that the electrode layer obtained in each example had the area ratio of the predetermined coating material / Ag particles and the average thickness of the predetermined coating material.
  • -Conductive aid E1 (Ag powder coated with granular layer) A granular layer-coated Ag powder in which the surface of the spherical Ag powder was coated with the granular Li 2 TiO 3 layer was obtained by the same method as that of the conductive auxiliary agent B1 except that Li 2 TiO 3 was used as the coating material (target). The ratio of the core material to the coating material and the sputtering time were adjusted so that the electrode layer obtained in each example had the area ratio of the predetermined coating material / Ag particles and the average thickness of the predetermined coating material.
  • -Conductive aid F1 (Ag powder coated with granular layer)
  • a granular layer-coated Ag powder in which the surface of the spherical Ag powder was coated with a granular CuO layer was obtained by the same method as that of the conductive auxiliary agent B1 except that CuO was used as the coating material (target).
  • the ratio of the core material to the coating material and the sputtering time were adjusted so that the electrode layer obtained in each example had the area ratio of the predetermined coating material / Ag particles and the average thickness of the predetermined coating material.
  • -Conductive aid G1 Cu powder coated with granular layer
  • a granular layer-coated Cu powder was obtained by coating the surface of the spherical Cu powder with 3 layers of granular Li 2 ZrO by the same method as that of the conductive auxiliary agent B1 except that the spherical Cu powder was used as the core material.
  • the ratio of the core material to the coating material and the sputtering time were adjusted so that the electrode layer obtained in each example had the area ratio of the predetermined coating material / Cu particles and the average thickness of the predetermined coating material.
  • a granular layer-coated Ag powder was obtained by coating the surface of a spherical Ag powder with a granular ZrN layer by the same method as that of the conductive auxiliary agent B1 except that Si 3 N 4 was used as a coating material (target).
  • the ratio of the core material to the coating material and the sputtering time were adjusted so that the electrode layer obtained in each example had the area ratio of the predetermined coating material / Ag particles and the average thickness of the predetermined coating material.
  • a granular layer-coated Ag powder in which the surface of the spherical Ag powder was coated with a granular WC layer was obtained by the same method as that of the conductive auxiliary agent B1 except that WC was used as the coating material (target).
  • the ratio of the core material to the coating material and the sputtering time were adjusted so that the electrode layer obtained in each example had the area ratio of the predetermined coating material / Ag particles and the average thickness of the predetermined coating material.
  • -Conductive aids K1 to K2 (Ag powder coated with a film-like layer)
  • a film-like layer-coated Ag powder in which the surface of the spherical Ag powder was coated with the film-like Li 2 ZrO 3 layer was obtained by the same method as that of the conductive auxiliary agent B1 except that the sputter rate was reduced.
  • the ratio of the core material to the coating material and the sputtering time were adjusted so that the electrode layer obtained in each example had the area ratio of the predetermined coating material / Ag particles and the average thickness of the predetermined coating material.
  • -Conductive aid M1 Membranous layer coated Ag powder
  • a film-like layer-coated Ag powder in which the surface of the spherical Ag powder was coated with the film-like W layer was obtained by the same method as that of the conductive auxiliary agent K1 except that W was used as the coating material (target).
  • the ratio of the core material to the coating material and the sputtering time were adjusted so that the electrode layer obtained in each example had the area ratio of the predetermined coating material / Ag particles and the average thickness of the predetermined coating material.
  • Li 3 VO 4 as an anode active material ( ⁇ II -Li 3 VO 4 type), Li 6.5 La 3 (Zr 1.5 Ta 0.5) as a solid electrolyte powder O 12 (garnet ), Conductive aid B2 (that is, granular layer-coated Ag powder), and Li 3 BO 3 as a sintering aid were weighed and kneaded with butyral resin, alcohol, and binder to prepare a slurry for the negative electrode layer.
  • the slurry for the negative electrode layer was sheet-molded on a PET film using the doctor blade method, dried and peeled off to obtain a green sheet for the negative electrode layer.
  • the green sheet for the negative electrode layer and the green sheet for the solid electrolyte layer were laminated with each other and pressure-bonded to obtain a laminated body.
  • the laminate was cut into a square shape (planar view shape) having a top view dimension of 10 mm ⁇ 10 mm.
  • an Ag paste coating layer for the negative electrode current collector layer 21 was formed on the surface of the green sheet for the negative electrode layer opposite to the green sheet for the solid electrolyte layer.
  • the obtained laminate was sandwiched between two porous setters, the binder was removed at 400 ° C., and then sintering was performed at 750 ° C.
  • Utilization rate of negative electrode active material For solid-state batteries, the amount of electricity was measured in a voltage range of 0.2V to 3.0V (vs.Li / Li +) at a current density equivalent to 0.05C by a constant current charge / discharge test. The reversible capacity was calculated. The initial reversible capacity was calculated by dividing the initial reversible electric quantity obtained from the constant current charge / discharge test by the weight of the negative electrode active material. Further, the utilization rate R was calculated by dividing the initial reversible capacity by the theoretical capacity, with the capacity when V (vanadium) in the negative electrode active material proceeded as a two-electron reaction as the theoretical capacity.
  • Example 2 to 3 The solid-state battery was manufactured, measured and evaluated by the same method as in Example 1 except that the content of the coated conductive auxiliary agent was changed.
  • a conductive auxiliary agent A1 (uncoated conductive auxiliary agent, spherical Ag powder, average primary particle size 0.8 ⁇ m, manufactured by Shoei Chemical Co., Ltd.) was used instead of the coated conductive auxiliary agent, and the content of the conductive auxiliary agent A1 was changed.
  • the solid-state battery was manufactured, measured, and evaluated by the same method as in Example 1 except that the solid-state battery was allowed to be produced.
  • Comparative Examples 1 and 2 relate to a solid-state battery manufactured by using an uncoated conductive auxiliary agent and changing the content of the uncoated conductive auxiliary agent. From Comparative Examples 1 and 2, it was found that the utilization rate of the active material was significantly reduced by containing the uncoated conductive auxiliary agent and reducing the content thereof. It is considered that this is because the uncoated conductive auxiliary agent is united and beveled at the time of firing, so that the conductive path is interrupted, electrons are not supplied, and there is an active material that does not contribute to charging / discharging.
  • the average aspect ratio (a / b) of the core material (conductive aid) was 1.1, and the average short side length b was 3.1 ⁇ m.
  • the average aspect ratio (a / b) of the core material (conductive aid) was 1.8, and the average short side length b was 1.2 ⁇ m.
  • the use of the coated conductive auxiliary agent increases the average aspect ratio of the core material and decreases the average short side length. It is considered that this is because the use of the coated conductive auxiliary agent suppressed the integration and bemming of the core particles during sintering. By suppressing the integration and beating of the core particles during sintering in this way, the connectivity of the conductive auxiliary agent in the electrode layer is improved and the contact area with the active material is improved, and the utilization rate is improved. Is considered to have improved.
  • Examples 4 to 7 The solid-state battery was manufactured, measured and evaluated by the same method as in Example 1 except that the type and content of the coated conductive auxiliary agent were changed.
  • Examples 2 and 8 to 10 relate to a solid-state battery manufactured by changing the shape of the core material (conductive aid), the form of the coating material, and the average thickness. From Examples 8 and 9, it was found that a high effect can be obtained even when the coating material has a film-like form. It was found that when the coating material takes a film-like form, the utilization rate of the active material is improved by reducing the thickness of the coating material, which is preferable. From the comparison of Examples 2 and 10, it was found that the use of the conductive additive having a flat shape improves the utilization rate of the active material, which is preferable. It is considered that this is because it is easier to form a conductive path when the flat shape is taken as compared with the spherical shape.
  • Example 11 to 18 The solid-state battery was manufactured, measured and evaluated by the same method as in Example 1 except that the type and content of the coated conductive auxiliary agent were changed. In Example 13 only, sintering was performed in the air.
  • Example 19 The negative electrode current collector was not formed, and the negative electrode layer was in contact with the negative electrode current collector at the end face of the negative electrode layer, and the end face current collector was electrically connected to the negative electrode terminal via the negative electrode current collector.
  • the solid-state battery was manufactured, measured and evaluated by the same method as in Example 1 except that the structure was adopted.
  • the obtained solid-state battery had a cross-sectional structure as shown in FIG. 4B. Specifically, as shown in FIG. 4B, the same method as that of the solid-state battery manufacturing method of FIG. 4A is used except that the Ag paste coating layer for the negative electrode current collector 210 is formed on the end face of the green sheet for the negative electrode layer. , The solid-state battery of FIG. 4B was manufactured.
  • Examples 11 to 18 relate to a solid-state battery manufactured by changing the composition of a conductive auxiliary agent (core material) and a coating material. From Table 7, it was found that a high utilization rate can be obtained even if the composition of the coating material is variously changed. From Examples 14 and 16 to 18, it was found that the effect can be obtained even if a metal material, a metal nitride, or a metal carbide is used as the coating material, but a higher utilization rate can be obtained by using an oxide as the coating material. It turned out to be. It is considered that this is because the use of oxide as the coating material has a higher effect of enhancing the wettability between the active material and the conductive auxiliary agent.
  • Example 20 and Comparative Example 3 Manufacturing and measurement of a solid-state battery by the same method as in Example 1 except that the type and content of the coated conductive auxiliary agent were changed and Li 1.1 V 0.9 O 2 was used as the negative electrode active material. And evaluated.
  • Example 20 and Comparative Example 3 relate to a solid-state battery in which the composition of the electrode active material is changed. From Table 8, it can be seen that the effect of coating the refractory material can be obtained particularly when the active material having a Li / V ratio of 3 is used as compared with the case where the active material having a Li / V ratio of 1.2 is used. Do you get it. This is because the active material having a Li / V ratio of 3 has a particularly low wettability with the metal conductive auxiliary agent, and has the property that coalescence and bemming proceed easily, and the effect of suppressing beading by the oxide coating can be obtained. It is thought that this is because it is easy.
  • the solid-state battery according to the embodiment of the present invention can be used in various fields where battery use or storage is expected. Although only an example, the solid-state battery according to the embodiment of the present invention can be used in the field of electronic mounting.
  • the solid-state battery according to an embodiment of the present invention also includes an electric / information / communication field (for example, a mobile phone, a smartphone, a smart watch, a laptop computer and a digital camera, an activity meter, an arm computer, etc.) in which a mobile device or the like is used.
  • Electrical / electronic equipment field or mobile equipment field including electronic paper, wearable devices, RFID tags, card-type electronic money, small electronic devices such as smart watches), home / small industrial applications (eg, power tools, golf carts, homes) Computer / nursing / industrial robot fields), large industrial applications (eg forklifts, elevators, bay port cranes), transportation system fields (eg hybrid cars, electric cars, buses, trains, electric assisted bicycles, electric) (Fields such as motorcycles), power system applications (for example, various power generation, road conditioners, smart grids, general home-installed power storage systems, etc.), medical applications (medical equipment fields such as earphone hearing aids), pharmaceutical applications (dose management) It can be used in fields such as systems), IoT fields, and space / deep sea applications (for example, fields such as space explorers and submersible research vessels).
  • Coated conductive auxiliary agent 201 Conductive auxiliary agent (core material) 202: Coating material

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、より少ない導電助剤の含有量であっても、充放電時における負極活物質の利用率がより十分に高い固体電池を提供する。本発明は、正極層、負極層および該正極層と該負極層との間に介在する固体電解質層を含む固体電池であって、前記正極層または負極層の少なくとも一方の電極層は金属材料から構成される導電助剤201を含み、前記導電助剤201は、前記電極層中、該導電助剤よりも融点が高い被覆材料202によって被覆されている、固体電池に関する。

Description

固体電池
 本発明は固体電池に関する。
 近年、携帯電話や携帯型パーソナルコンピュータ等の携帯型電子機器の電源として、電池の需要が大幅に拡大している。このような用途に用いられる電池では、イオンを移動させるための媒体として、有機溶媒等の電解質(電解液)が従来から使用されている。
 しかし、上記の構成の電池では電解液が漏出するという危険性があり、しかも電解液に用いられる有機溶媒等は可燃性物質であるという問題がある。このため、電解液に代えて固体電解質を用いることが提案されている。また、電解質として固体電解質を用いると共に、その他の構成要素も固体で構成されている焼結型固体二次電池の開発が進められている。
 固体電池用の負極層および正極層等の電極層には、電子伝導性の向上の観点から、導電助剤として炭素材料を添加する技術が知られている(特許文献1)。しかしながら、このような技術において炭素材料は焼結性が非常に低く、共焼結の際に電極層の焼結を阻害するため、充放電時において負極活物質の利用率が低下することが問題となっていた。
 そこで、導電助剤として金属材料を用いることにより、負極層の焼結を促進し、負極活物質の利用率を向上させる試みがなされている(特許文献2,3)。
特許第5644951号 WO2019/044901号公報 WO2019/044902号公報
 本発明の発明者等は、上記のような従来の技術においては、以下に示すような問題が生じることを見い出した。
 従来技術において理想とする固体電池においては、電極活物質の電子伝導性が低いため、図5Aに示すように、導電助剤200’により、正極層1’および負極層2’等の電極層中に適切に導電パスp’を形勢する必要がある。しかしながら、AgおよびCuのような金属導電助剤200’を用いた場合は、図5Bに示すように、焼結時に金属導電助剤200’同士が合一化および玉化しやすいため、連続的な導電パスを形成しにくく、電極層は十分な電子導電性を有することはできなかった。このため、電極層内に十分な導電パスを形成するためには、多量の金属導電助剤の添加が必要になった。しかしながら、金属導電助剤の多量な添加は、固体電池のエネルギー密度を向上させる上で好ましくなかった。したがって、より少ない金属導電助剤の含有量にて、電極層内に適切かつ十分な導電パスを形成する手法が求められていた。図5Aは、従来技術において理想とする固体電池における電極層の導電パスを説明するための電極層の模式的断面図である。図5Bは、従来技術において現実の固体電池における電極層の導電パスを説明するための電極層の模式的断面図である。
 このような状況の下、本発明の発明者等は、上記のような金属材料から構成される導電助剤を用いることによる負極活物質の利用率に関する問題が、負極層がLi/V比率2以上の負極活物質を含む場合に顕著であることも見い出した。当該負極活物質を用いると、焼結時に導電助剤の合一化および玉化が特に進行しやすく、導電パスp'の破断が特に起こりやすいことが明らかとなった。これは、Li/V比率2以上の負極活物質と導電助剤(特に金属粉)との濡れ性が比較的低いことが原因と考えられる。
 本発明は、より少ない導電助剤の含有量であっても、充放電時における負極活物質の利用率がより十分に高い固体電池を提供することを目的とする。
 本発明はまた、負極層がLi/V比率2以上の負極活物質を含み、かつ導電助剤の含有量がより少ない場合であっても、充放電時における負極活物質の利用率がより十分に高い固体電池を提供することを目的とする。
 本発明は、
 正極層、負極層および該正極層と該負極層との間に介在する固体電解質層を含む固体電池であって、
 前記正極層または負極層の少なくとも一方の電極層は金属材料から構成される導電助剤を含み、
 前記導電助剤は、前記電極層中、該導電助剤よりも融点が高い被覆材料によって被覆されている、固体電池に関する。
 本発明の発明者等は、より少ない導電助剤の含有量にて、電極層内に適切な導電パスを形成する手法を検討した結果、以下のことを見い出した:
 電極層において、金属導電助剤が高融点材料で被覆されることで、焼結時の合一化および玉化が抑制され、より少ない金属導電助剤の含有量にて、電極層内に適切な導電パスを形成でき、結果として電極活物質の利用率が向上することがわかった。したがって、このような電極層を用いることで、固体電池のエネルギー密度を高めることができる。
 さらに、負極層において、金属導電助剤が高融点材料で被覆されることで、負極層がLi/V比率2以上の負極活物質を含む場合であっても、効率よく導電パスを形成できることがわかった。したがって、負極層において、金属導電助剤が高融点材料で被覆されることで、負極層がLi/V比率2以上の負極活物質を含み、かつ導電助剤の含有量を低減しても、負極活物質の利用率を高めることができ、固体電池の高エネルギー密度化が実現できる。
 本発明の固体電池は、より少ない導電助剤の含有量であっても、充放電時における電極活物質の利用率がより十分に高い。
図1Aは、本発明の一実施形態に係る固体電池を模式的に示した固体電池の模式的断面図である。 図1Bは、本発明の別の一実施形態に係る固体電池を模式的に示した固体電池の模式的断面図である。 図2Aは、本発明の固体電池における電極層の導電パスを説明するための電極層の模式的断面図である。 図2Bは、本発明の固体電池において電極層に含まれる導電助剤および被覆材料(粒状)の一例を模式的に示した導電助剤の模式的断面図である。 図2Cは、本発明の固体電池において電極層に含まれる導電助剤および被覆材料(膜状)の一例を模式的に示した導電助剤の模式的断面図である。 図2Dは、本発明の固体電池において電極層に含まれる導電助剤および被覆材料(粒状)の別の一例を模式的に示した導電助剤の模式的断面図である。 図2Eは、本発明の固体電池において電極層に含まれる導電助剤および被覆材料(膜状)の別の一例を模式的に示した導電助剤の模式的断面図である。 図3Aは、本発明の固体電池における電極層の別の一例において導電パスを説明するための電極層の模式的断面図である。 図3Bは、図3Aに示す本発明の固体電池において電極層に含まれる細長形状の導電助剤の一例を模式的に示した導電助剤の模式的断面図である。 図3Cは、図3Aに示す本発明の固体電池において電極層に含まれる細長形状の導電助剤の別の一例を模式的に示した導電助剤の模式的断面図である。 図4Aは、実施例で製造した本発明の一実施形態に係る固体電池(主面集電構造)を模式的に示した固体電池の模式的断面図である。 図4Bは、実施例で製造した本発明の別の一実施形態に係る固体電池(端面集電構造)を模式的に示した固体電池の模式的断面図である。 図5Aは、従来技術において理想とする固体電池における電極層の導電パスを説明するための電極層の模式的断面図である。 図5Bは、従来技術において現実の固体電池における電極層の導電パスを説明するための電極層の模式的断面図である。
<固体電池>
 本発明は固体電池を提供する。本明細書でいう「固体電池」とは、広義にはその構成要素(特に電解質層)が固体から構成されている電池を指し、狭義にはその構成要素(特に全ての構成要素)が固体から構成されている「全固体電池」を指す。本明細書でいう「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」、および放電のみが可能な「一次電池」を包含する。「固体電池」は好ましくは「二次電池」である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」などの「電気化学デバイス」も包含し得る。
 本発明の固体電池は、図1Aおよび図1Bに示すように、正極層1、負極層2および固体電解質層3を含み、通常は、正極層および負極層が固体電解質層を介して積層されてなる積層構造を有する。正極層および負極層は、それらの間に固体電解質層が備わっている限り、それぞれ2層以上で積層されていてもよい。固体電解質層は正極層および負極層と接触して、それらに挟持されている。正極層と固体電解質層とは焼結体同士の一体焼結をなしていてもよく、かつ/または負極層と固体電解質層とは焼結体同士の一体焼結をなしていてもよい。焼結体同士の一体焼結をなしているとは、隣接または接触する2つまたはそれ以上の部材(特に層)が焼結により接合されているという意味である。ここでは、当該2つまたはそれ以上の部材(特に層)はいずれも焼結体でありながら、一体的に焼結されていてもよい。図1Aおよび図1Bはいずれも、本発明の一実施形態に係る固体電池を模式的に示した固体電池の模式的断面図である。
 本発明の固体電池は、図1Aおよび図1Bに示すように、正極集電層11、負極集電層21、正極集電部(図示せず)、負極集電部22、電極分離部15,25、保護層5、端面電極10,20をさらに有していてもよい。図1Bの固体電池は、負極層2が端面集電構造を有すること以外、図1Aの固体電池と同様である。図1Bの負極層2が有する端面集電構造とは、後で詳述するように、負極層2の端面で負極集電部22と接触しつつ、該負極集電部22を介して負極端子20と電気的に接続される構造のことである。他方、図1Aの固体電池において、負極層2は主面集電構造を有する。図1Aの負極層2が有する主面集電構造とは、後で詳述するように、負極層2の主面で負極集電層21と接触しつつ、主として該負極集電層21を介して負極端子20と電気的に接続される構造のことである。なお、図1Aおよび図1Bにおいて、正極層1は主面電極構造を有しているが、これに限定されず、図1Bの負極層2が有するような端面集電構造を有していてもよい。
[電極層]
 電極層は正極層1および負極層2を包含する。本発明において、正極層1または負極層2の少なくとも一方の電極層は、後述の被覆型導電助剤を含む。例えば、正極層1または負極層2の一方のみが被覆型導電助剤を含んでもよいし、または両方が被覆型導電助剤を含んでもよい。好ましい実施態様においては、少なくとも負極層、より好ましくは負極層および正極層の両方の層が被覆型導電助剤を含んでいることが好ましい。従来技術において、金属材料から構成される導電助剤を用いることによる合一化および玉化に基づく負極活物質の利用率低下の問題が、負極層がLi/V比率2以上の負極活物質を含む場合に顕著であるところ、このような場合においても、負極活物質の利用率を十分に向上させ得るためである。なお、「導電助剤」は「導電性材料」とも称され得る材料である。従って、「被覆型導電助剤」は「被覆型導電性材料」と称されてもよい。
 被覆型導電助剤においては、金属材料から構成されている導電助剤(コア材料ともいう)が被覆材料によって被覆されており、被覆材料の融点は、導電助剤(すなわちコア材料)の融点よりも高い。このため、図2Aに示すように、負極層2(または正極層1)において、被覆型導電助剤200を含む場合、被覆材料により被覆されていない導電助剤(すなわちコア材料)をそのまま含む場合と比較して、焼結による導電助剤(すなわちコア材料)の合一化および玉化を抑制することができる。詳しくは、コア材料としての導電助剤(すなわち焼結性が高い金属)を高融点材料(すなわち難焼結性材料)で被覆することで、物理的にコア材料間の接触を抑制し、コア材料の焼結による合一化および玉化を阻害する。その結果として、導電パスpが十分に確保され、より少ない導電助剤の含有量であっても、充放電時における電極活物質の利用率をより十分に高くすることができる。
 被覆材料の融点を「Mpcv(℃)」、導電助剤(コア材料)の融点を「Mpcr(℃)」としたとき、「Mpcv-Mpcr」は通常、50℃以上4000℃以下であり、導電助剤(すなわちコア材料)の合一化および玉化のさらなる抑制の観点から、好ましくは100℃以上4000℃以下であり、より好ましくは200℃以上3000℃以下であり、さらに好ましくは200℃以上2000℃以下であり、特に好ましくは200℃以上1000℃以下であり、最も好ましくは200℃以上800℃以下である。
 本明細書中、融点はChemIDplusもしくはCRC Handbook of Chemistry and Physicsに基づく値を用いている。詳しくは、融点はChemIDplusに基づく値であり、ChemIDplusに記載のない融点はCRC Handbook of Chemistry and Physicsに基づく値を用いており、上記二つの文献に記載のない融点はAcer-NIST Phase Equilibria Diagramsに基づく値を用いている。
 被覆材料は、当該被覆型導電助剤が含まれる電極層に含まれる電極活物質および固体電解質とは材質が異なる材料である。電極活物質とは、正極層においては正極活物質のことであり、負極層においては負極活物質のことである。材質が異なるとは、化学組成式または化学構造式で表したとき、当該式が異なるという意味である。コア材料の合一化および玉化の原因は、電極活物質粒子/コア材料(導電助剤)間の濡れ性が低いことにある。電極活物質粒子とは異なる酸化物で被覆することで、両者の濡れ性を高めることができ、結果としてコア材料の合一化および玉化をより一層、抑制することができる。
 被覆材料は、例えば、金属酸化物、金属窒化物もしくは金属炭化物であってもよいし、または金属材料であってもよい。金属材料とは、酸化されていない金属という意味である。被覆材料の具体例として、例えば、LiZrO、LiSiO、LiTiO、LiAlO、CuO、Al、ZrO等の金属酸化物;ZrN、Si等の金属窒化物;WC、TaC等の金属炭化物;およびPd、W、Cu等の金属材料等が挙げられる。電極活物質粒子/コア材料(導電助剤)間の濡れ性を高め、コア材料の合一化および玉化をより一層、抑制する観点からは、被覆材料は金属酸化物であることが好ましく、LiZrO、CuOであることがより好ましい。
 被覆材料は、コア材料の合一化および玉化のさらなる抑制の観点および電極の利用率向上の観点から、電極活物質に固溶しない元素を含有していることが好ましい。詳しくは、被覆材料は、化学組成式に表したとき、金属元素として、電極活物質に固溶しない元素のみを含有しているか、または電極活物質に固溶しない元素とLiのみを含有していることが好ましい。電極活物質に固溶しない元素とは、電極活物質を構成する元素(特にレドックスに寄与する元素)と置換しない元素または置換し難い元素(好ましくは置換しない元素)という意味である。これは、被覆材料が負極活物質に固溶する元素を含んでいる場合、負極活物質と被覆材料間で副反応が進行しやすくなり、焼結時の被覆効果が弱まること、および、負極活物質の変性を引き起こすためである。置換しない元素または置換し難い元素は、原子半径、およびイオン化した際の価数、および配位数の選択性に基づいている。詳しくは、電極活物質に固溶しない元素は、電極活物質を構成する元素(特にレドックスに寄与する元素)よりも原子半径が大きい元素であってもよい。
 例えば、負極層において、負極活物質に固溶しない元素とは、当該負極活物質がV(バナジウム)を含有する場合、Vと置換しない元素または置換し難い元素という意味である。Vと置換しない元素または置換し難い元素として、周期表(すなわち長周期型周期表)におけるZn(亜鉛),Al(アルミニウム),Ga(ガリウム),Si(ケイ素),Ge(ゲルマニウム),Sn(錫),P(リン),As(ヒ素),Ti(チタン),Mo(モリブデン),W(タングステン),Fe(鉄),Cr(クロム),およびCo(コバルト以外の元素からなる群から選択される1種以上の元素が挙げられ、具体的には、例えば、Zr、Cu、Pd、Sc、Y、Nb、Ta、Bからなる群から選択される1種以上の元素が挙げられ、好ましくは例えば、Zr、Cu、およびPdからなる群から選択される1種以上の元素が挙げられる。
 被覆型導電助剤200において、被覆材料202が導電助剤(コア材料)201の周囲において構成する被覆層は、図2Bに示すような粒状形態を有していてもよいし、図2Cに示すような膜状形態を有していてもよいし、またはそれらの複合的形態を有していてもよい。詳しくは、被覆層は、断面視において、粒状形態を有していてもよいし、膜状形態を有していてもよいし、またはそれらの複合的形態を有していてもよい。本明細書でいう「断面視」とは、固体電池を構成する各層の積層方向に基づく厚み方向に対して略垂直な方向から捉えた場合の形態(端的にいえば、厚み方向に平行な面で切り取った場合の形態)に基づいており、断面図を包含する。特に「断面視」は、固体電池を構成する各層の積層方向に基づく厚み方向に平行な面であって、正極端子および負極端子に垂直な面で切り取った場合の形態に基づいていてもよく、例えば図1Aおよび図1Bに示すような断面視が挙げられる。従って、各種測定に用いられる「固体電池の積層構造(断面構造)を示すSEM画像」は上記のような断面視に基づく画像であってもよい。
 被覆層が粒状形態を有するとは、被覆層が図2Bに示すような粒状の被覆材料から構成されている、という意味である。固体電池における粒状形態の被覆層は、粒状の導電助剤(コア材料)201と粒状の被覆材料202とを混合することにより、粒状の導電助剤(コア材料)201の表面に粒状の被覆材料202を静電的に付着させた被覆型導電助剤原料を用いて固体電池を製造することにより得ることができる。
 被覆層が膜状形態を有するとは、被覆層が図2Cに示すような膜状の被覆材料から構成されている、という意味である。固体電池における膜状形態の被覆層は、粒状の導電助剤(コア材料)201の表面に、スパッタ法、蒸着法、イオンプレーティング法,ゾル-ゲル法等の成膜法により、被覆材料202を成膜させた被覆型導電助剤原料を用いて固体電池を製造することにより得ることができる。
 被覆層が粒状形態を有する場合であっても、または膜状形態を有する場合であっても、当該被覆層は、導電助剤の周囲において、必ずしも図2Bおよび図2Cに示すように連続的に形成されていなければならないというわけではない。詳しくは、導電助剤(コア材料)201は、上記したいずれの場合においても、後述する被覆材料の面積比率が達成されている限り、図2Dおよび図2Eに示すように、部分的に被覆層202が形成されていない部分(例えば、導電助剤201が被覆材料202により被覆されていない部分(すなわち露出部分))210を有していてもよい。
 固体電池における被覆層202が有する形態は通常、固体電池製造のための焼結を行う前の形態が維持される。
 例えば、被覆型導電助剤200が焼結前において粒状形態の被覆層を有する場合、当該被覆層は焼結後においても粒状形態を有する。このとき、被覆層202は焼結後において、図2Dに示すようにコア材料201の露出部分210を有していてもよいし、または図2Bに示すようにコア材料201の露出部分を有していなくてもよい。本発明において被覆層202が焼結後において粒状形態を有するとは、コア材料201の露出部分の有無にかかわらず、コア材料201と接触する全ての被覆材料のアスペクトの平均値が1.5未満(例えば1以上1.5未満)であることをいう。詳しくは、電極層における任意の100個のコア材料201の各々について、当該コア材料201と接触する全ての被覆材料のアスペクトの平均値が上記範囲内であるとき、当該被覆層(または当該被覆層を構成する被覆材料)は粒状形態を有するものとする。
 また例えば、被覆型導電助剤200が焼結前において膜状形態の被覆層を有する場合、当該被覆層は焼結後においても膜状形態を有する。このとき、被覆層202は焼結後において、図2Eに示すようにコア材料201の露出部分210を有していてもよいし、または図2Cに示すようにコア材料201の露出部分を有していなくてもよい。本発明において被覆層202が焼結後において膜状形態を有するとは、コア材料201の露出部分の有無にかかわらず、コア材料201と接触する全ての被覆材料のアスペクトの平均値が1.5以上であることをいう。詳しくは、電極層における任意の100個のコア材料201の各々について、当該コア材料201と接触する全ての被覆材料のアスペクトの平均値が上記範囲内であるとき、当該被覆層(または当該被覆層を構成する被覆材料)は膜状形態を有するものとする。
 ここで、被覆材料のアスペクト比は、例えば図2Eに示すように、断面視において当該被覆材料の最大長Lの、当該最大長を規定する方向に対して垂直方向の長さtに対する割合のことである。当該最大長Lを規定する方向に対して垂直方向の長さtは、被覆材料が接触する導電助剤の表面(またはその接触部分)に対する垂直方向における被覆材料寸法t’であってもよい。特に1つの被膜材料202が、図2Eに示すように、コア材料201の表面に沿って配置されている場合、その最大長Lは、コア材料201の表面に沿った長さの最大値である。
 被覆材料202は導電助剤201の周囲において、当該導電助剤201と接触して配置されており、通常は500nm以下(例えば1nm以上500nm以下)の寸法t’(図2B~2E参照)を有している。すなわち、被覆材料とは導電助剤(コア材料)の周囲において、当該導電助剤と接触して配置されている被覆材料であって、上記した所定寸法を有している被覆材料のことである。被覆材料が上記した所定寸法t’を有するとは、被覆材料が、当該被覆材料が接触する導電助剤の表面(またはその接触部分)に対する垂直方向において、上記した所定寸法t’を有する、という意味である。従って、仮に導電助剤と接触して配置されている物質(または材料)であっても、導電助剤の表面に対する垂直方向において、上記した所定寸法を超える寸法を有する物質は、本発明においては、被覆材料に包含されない。上記寸法t’は、当該被覆材料が接触する導電助剤の表面(またはその接触部分)に対する垂直方向における最大長のことである。被覆層が粒状形態を有する場合、上記寸法t’は、当該被膜層を構成する各被覆材料粒子の寸法のことである。被覆層が膜状形態を有する場合、上記寸法t’は、当該被膜層の厚み寸法のことである。寸法t’は、導電助剤(コア材料)の合一化および玉化のさらなる抑制および固体電池の充放電時における電極活物質の利用率のさらなる向上の観点から、好ましくは1nm以上400nm以下であり、より好ましくは1nm以上200nm以下であり、さらに好ましくは1nm以上100nm以下であり、特に好ましくは1nm以上50nm以下であり、最も好ましくは1nm以上30nm以下である。
 例えば、被覆材料が粒状形態の被覆層を構成する場合、各被覆材料粒子は、当該被覆材料が接触する導電助剤の表面に対する垂直方向において、上記した所定寸法t’を有しながら、導電助剤と接触して配置されている。
 また例えば、被覆材料が膜状形態の被覆層を構成する場合、当該被覆材料膜は、当該被覆材料が接触する導電助剤の表面に対する垂直方向(すなわち厚み方向)において、上記した所定寸法(すなわち所定厚み)を有しながら、導電助剤と接触して配置されている。
 被覆材料が粒状形態の被覆層を構成する場合および膜状形態の被覆層を構成する場合のいずれの場合においても、断面視において、任意の100箇所で測定された当該被覆層の平均厚みは上記した寸法t’の範囲内であることが望ましい。
 被覆材料の面積比率は通常、被覆型導電助剤を構成する導電助剤(コア材料)に対して0.1%以上15%以下であり、導電助剤(コア材料)の合一化および玉化のさらなる抑制および固体電池の充放電時における電極活物質の利用率のさらなる向上の観点から、好ましくは0.8%以上8%以下、より好ましくは0.8%以上4%以下である。
 被覆材料の面積比率は、導電助剤の周囲において、当該導電助剤と接触して配置されている被覆材料であって上記した所定寸法を有している被覆材料の、導電助剤(コア材料)に対する面積比率である。
 本明細書中、被覆材料の面積比率は、断面視において、選択された任意の100個の導電助剤(コア材料)の面積およびこれらの導電助剤の各々における被覆材料の面積を測定し、被覆材料の総面積を導電助剤の総面積で除することにより得られる割合に基づく値で示されている。
 被覆材料による導電助剤(コア材料)の被覆率は、上記した被覆材料の面積比率が達成されるような被覆率であればよい。
 被覆型導電助剤の導電助剤(コア材料)は、金属材料から構成されている。金属材料とは、酸化されていない金属のことである。コア材料を構成する金属材料は特に限定されず、例えば、Ag(銀)、Au(金),Pd(パラジウム),Pt(白金),Cu(銅)、Sn(錫)、Ni(ニッケル)およびそれらの合金からなる群から選択される1種以上の金属材料から構成されている。導電助剤は、導電助剤(コア材料)の合一化および玉化のさらなる抑制および固体電池の充放電時における電極活物質の利用率のさらなる向上の観点から、好ましくはAg、Cuおよびそれらの合金からなる群から選択される1種以上の金属材料から構成されている。
 被覆型導電助剤を構成する導電助剤(コア材料)の形状は特に限定されず、導電助剤(コア材料)は、例えば、細長状導電助剤、球状導電助剤またはそれらの混合物であってもよい。被覆型導電助剤を構成する導電助剤(コア材料)は、導電助剤(コア材料)の合一化および玉化のさらなる抑制および固体電池の充放電時における電極活物質の利用率のさらなる向上の観点から、細長状導電助剤を含むことが好ましい。
 細長状導電助剤は、図3Aに示すように、電極層の断面視において細長形状を有している導電助剤という意味である。このため、細長形状は「断面視細長形状」と呼ぶこともできる。図3Aは、細長状導電助剤を用いた被覆型導電助剤を含む電極層の一例において導電パスを説明するための電極層の模式的断面図である。例えば、細長形状を有する導電助剤は、電極層の断面視において、長尺方向を備えた形状を有している。
 細長形状を有し得る導電助剤として、例えば、扁平状導電助剤、繊維状導電助剤またはそれらの混合物が使用される。本発明の固体電池において、断面視細長形状の導電助剤が扁平状導電助剤、繊維状導電助剤またはそれらの混合物のいずれの材料に相当するのかは、当該固体電池を分解することにより容易に認識することができる。
 扁平状とは、簡潔に表現すれば、粒子が押しつぶされたような形状であって、「鱗片状」または「平板状」とも称される形状である。
 繊維状とは、「線状」または「棒状」を包含する形状であり、例えば、いわゆる金属ナノワイヤーが有する形状であってもよい。
 細長形状の導電助剤は、詳しくは電極層中、図3Bに示すように、断面視において、1つの導電助剤200aについて、最長寸法aと短辺長(厚み寸法)bとにより規定される形状を有し、その奥行長c(すなわち図3B上の表裏方向の寸法)(図示せず)は特に限定されない。最長寸法aは、断面視において、最大長を規定する寸法である。短辺長bは、断面視において、最長寸法a方向に対する垂直方向において最大長(または最大厚み)を規定する寸法である。短辺長bは通常、a>bを満たす。奥行長cは、断面視に対する垂直方向において、最大長を規定する寸法であり、通常は扁平状の場合はc≧2b(特に2a≧c≧2b)を満たし、繊維状の場合は2b>c(特に2b>c>0.5b)を満たす。細長形状は詳しくは、a/bが2.0以上(特に2.0以上20.0以下)の形状をいう。図3Bは、本発明の固体電池において電極層に含まれ得る細長形状の導電助剤の一例を模式的に示した導電助剤の模式的断面図である。
 細長形状は、屈曲部を付与された屈曲細長形状を包含する。詳しくは屈曲細長形状は、図3Cに示すように、断面視において、電極層中、1つの導電助剤200bについて、1つ以上の屈曲部201を有しつつ、最長寸法aと短辺長(厚み寸法)bとにより規定される形状であり、その奥行長c(すなわち図3C上の表裏方向の寸法)(図示せず)は特に限定されない。屈曲細長形状においても、最長寸法aは、断面視において、最大長を規定する寸法である。短辺長bは、断面視において、最長寸法a方向に対する垂直方向において最大長(または最大厚み)を規定する寸法である。奥行長cは、断面視に対する垂直な平面視において、最大長を規定する寸法である。屈曲細長形状(例えば図3C)におけるa、bおよびcならびにそれらの関係は、単純的な断面視細長形状(例えば図3B)においてと同様である。図3Cは、本発明の固体電池における電極層に含まれ得る断面視細長形状の導電助剤の別の一例を模式的に示した導電助剤の模式的断面図である。
 電極層における細長形状の導電助剤について、平均アスペクト比(前記した最長寸法a/短辺長b)は通常、2.0以上(特に2.0以上20.0以下)であり、電極活物質の利用率のさらなる向上の観点から、好ましくは2.0以上15.0以下、より好ましくは2.5以上10.0以下、さらに好ましくは3.0以上8.0以下である。
 細長形状の導電助剤の平均アスペクト比(a/b)は、固体電池の積層構造(断面構造)を示すSEM画像(写真)の電極層中で確認された任意の100個の断面視細長形状の導電助剤に基づく平均値を用いている。断面視は、固体電池の積層構造(断面構造)を示すSEM画像(写真)であってもよい。
 電極層における細長形状の導電助剤において、平均短辺長(平均短辺厚み)bは、特に限定されず、電極活物質の利用率のさらなる向上の観点から、好ましくは0.1μm以上4.0μm以下、より好ましくは0.1μm以上2.0μm以下、さらに好ましくは0.1μm以上1.5μm以下、特に好ましくは0.1μm以上1.0μm以下である。
 細長形状の導電助剤の平均短辺長bは、固体電池の積層構造(断面構造)を示すSEM画像(写真)の電極層中で確認された任意の100個の細長形状の導電助剤に基づく平均値を用いている。
 電極層における細長形状の導電助剤について、平均奥行長cは特に限定されず、例えば、0.1μm以上10.0μm以下であってもよい。例えば、導電助剤として扁平状導電助剤を用いる場合、電極層における細長形状の導電助剤の平均奥行長cは通常、0.1μm以上20μm以下である。また例えば、繊維状導電助剤を用いる場合、電極層における細長形状の導電助剤の平均奥行長cは通常、0.1μm以上10.0μm以下である。
 細長形状の導電助剤の平均奥行長cは、固体電池の積層構造(断面構造)を示す0.1μm間隔で撮影された100枚のSEM画像から作成された3次元像の電極層中で確認された任意の100個の断面視細長形状の導電助剤に基づく平均値を用いることができる。
 球状導電助剤は、詳しくは、断面視において、細長形状導電助剤においてと同様に、最大長を規定する最長寸法を「a」と当該最長寸法a方向に対する垂直方向において最大長を規定する短辺長を「b」としたとき、これらの比(a/b)が2.0未満(特に1.5以下)の形状を有する導電助剤のことである。
 被覆型導電助剤を構成する導電助剤(コア材料)の平均寸法は特に限定されず、通常は0.1μm以上10μm以下であり、導電助剤(コア材料)の合一化および玉化のさらなる抑制および固体電池の充放電時における電極活物質の利用率のさらなる向上の観点から、好ましくは0.3μm以上2μm以下であり、より好ましくは0.5μm以上2μm以下である。
 被覆型導電助剤を構成する導電助剤(コア材料)の平均寸法は、最大長を規定する寸法の平均値であり、細長形状および球状導電助剤の最長寸法aに相当する寸法の平均値である。
 被覆型導電助剤を構成する導電助剤(コア材料)の平均寸法は、固体電池の積層構造(断面構造)を示すSEM画像(写真)の電極層中で確認された任意の100個の被覆型導電助剤における導電助剤(コア材料)に基づく平均値を用いている。
 電極層は被覆型導電助剤を、当該被覆型導電助剤を構成する導電助剤(コア材料)の電極層に対する面積割合が5%以上35%以下となるような含有量にて含み、導電助剤(コア材料)の合一化および玉化のさらなる抑制および固体電池の充放電時における電極活物質の利用率のさらなる向上の観点から、当該面積割合が好ましくは10%以上30%以下、より好ましくは18%以上28%以下となるような含有量にて含む。
 被覆型導電助剤を構成する導電助剤(コア材料)の電極層に対する面積割合は、固体電池の積層構造(断面構造)を示すSEM画像(写真)の電極層中で確認された導電助剤(コア材料)の面積割合の値である。より詳しくは、被覆型導電助剤を構成する導電助剤(コア材料)の電極層に対する面積割合は、断面視において、任意の10箇所において測定された値の平均値であって、電極層(すなわち電極層における各視野の全面積)に対する面積割合として表される。
(負極層)
 負極層2は負極活物質を含み、さらに固体電解質を含んでもよい。負極層2が被覆型導電助剤を含む場合、負極層2は被覆型導電助剤および負極活物質を含み、さらに固体電解質を含んでもよい。負極層においては、被覆型導電助剤、負極活物質および固体電解質はいずれも焼結体の形態を有することが好ましい。例えば、負極層が被覆型導電助剤、負極活物質および固体電解質を含む場合、負極層は、被覆型導電助剤および固体電解質により負極活物質粒子間を結合しつつ、被覆型導電助剤、負極活物質粒子および固体電解質は、それらの間で相互に焼結により接合されている焼結体の形態を有することが好ましい。
 負極層は、被覆型導電助剤以外の他の導電助剤をさらに含んでもよい。他の導電助剤として、例えば、上記した被覆型導電助剤を構成する導電助剤(コア材料)としての金属材料と同様の金属材料から構成される導電助剤、アセチレンブラック、ケッチェンブラック、Super P(登録商標)、VGCF(登録商標)等のカーボンナノチューブなどの炭素材料等が挙げられる。
 負極層は金属イオンを吸蔵放出可能な層であり、好ましくはリチウムイオンまたはナトリウムイオン(特にリチウムイオン)を吸蔵放出可能な層である。負極層に含まれるリチウムイオンを吸蔵放出可能な負極活物質は特に限定されず、例えば、黒鉛などの炭素材料であってもよく、負極活物質の利用率のさらなる向上と放電容量の向上の観点から、V(バナジウム)に対するLi(リチウム)のモル比が2.0以上(特に2以上10以下)である負極活物質を含むことが好ましい。負極活物質におけるVに対するLiのモル比は、負極活物質の利用率のさらなる向上の観点から、2以上6以下(特に2以上4以下)であることが好ましい。本発明は、負極層がこのようなモル比の負極活物質を含むことが特に効果的である。負極層がこのようなモル比の負極活物質を含む場合、導電助剤との濡れ性が低いことに起因して、焼結時に導電助剤の合一化および玉化(例えば球形化)が特に進行しやすく、導電パスの破断が特に起こりやすく、負極活物質の利用率がより低下する。しかし、本発明においては、負極層がこのような負極活物質を含む場合であっても、導電パスの破断を十分に抑制でき、結果として、より少量の導電助剤により、充放電時における負極活物質の利用率をより十分に向上させ得る。従って、負極層が上記モル比の負極活物質を含む場合、本発明において導電助剤の形態を被覆型とすることの効果が特に高くなる。
 本発明においては、負極層がVに対するLiのモル比が上記範囲である負極活物質を含み、かつ、後述のように、固体電解質層がガーネット型構造もしくはLISICON型構造を有する固体電解質を含むことで、固体電解質層と負極層との間でより一層、良好な接合性が得られる。さらに、負極層中に含まれる負極活物質と固体電解質層中のガーネット型固体電解質もしくはLISICON型固体電解質との間の共焼結時の副反応が抑制され、固体電池の可逆容量を増大させることができる。これらの結果、充放電時における負極活物質の利用率をより十分に高くすることができる。
 負極活物質は、負極活物質の利用率のさらなる向上の観点から、一般式(1):
Figure JPOXMLDOC01-appb-C000002
で表される平均化学組成を有することが好ましい。このような組成とすることで、固体電解質層におけるLISICON型固体電解質との反応性をより一層十分に低減することができる。また、本発明で用いる負極活物質はVのレドックスによって容量をより一層十分に発現する。したがって、十分な可逆容量を得るためにはV量yは後述のように0.5≦y≦1.0であることが好ましい。負極活物質が上記組成を有する場合、負極層の厚み方向で上記のような平均組成をとっていればよく、負極層の厚み方向で化学組成が変化していてもよい。
 式(1)中、Aは、Na(ナトリウム),K(カリウム),Mg(マグネシウム),Ca(カルシウム),およびZn(亜鉛)からなる群から選択される1種類以上の元素である。
 Bは、Zn(亜鉛),Al(アルミニウム),Ga(ガリウム),Si(ケイ素),Ge(ゲルマニウム),Sn(錫),P(リン),As(ヒ素),Ti(チタン),Mo(モリブデン),W(タングステン),Fe(鉄),Cr(クロム),およびCo(コバルト)からなる群から選択される1種類以上の元素である。
 xは、0≦x≦1.0の関係を有し、好ましくは0≦x≦0.5の関係、より好ましくは0≦x≦0.1の関係を有し、さらに好ましくは0である。
 yは、0.5≦y≦1.0の関係を有し、好ましくは0.55≦y≦1.0の関係を有し、より好ましくは0.8≦y≦1.0の関係を有し、さらに好ましくは1である。
 aはAの平均価数である。Aの平均価数は、Aとして、例えば、価数a+の元素Xがn1個、価数b+の元素Yがn2個、および価数c+の元素Zがn3個で認められる場合、(n1×a+n2×b+n3×c)/(n1+n2+n3)で表される値のことである。
 bはBの平均価数である。Bの平均価数は、Bとして、例えば、価数a+の元素Xがn1個、価数b+の元素Yがn2個、および価数c+の元素Zがn3個で認められる場合、上記したAの平均価数と同様の値のことである。
 式(1)中、負極活物質の入手容易性の向上、負極活物質の利用率のさらなる向上の観点から、好ましい実施態様においては、以下の通りである:
 Aは、Al,およびZnからなる群から選択される1種類以上の元素である。
 Bは、Si,およびPからなる群から選択される1種類以上、特に2種類の元素である。
 xは0≦x≦0.06の関係を有し、より好ましくは0である。
 yは0.55≦y≦1.0の関係を有し、より好ましくは0.8≦y≦1.0、さらに好ましくは1である。
 aはAの平均価数である。
 bはBの平均価数である。
 負極活物質の具体例として、例えば、例えば、LiVO、Li3.2(V0.8Si0.2)O、(Li3.1Al0.03)(V0.8Si0.2)O、(Li3.1Zn0.05)(V0.8Si0.2)O、Li3.3(V0.60.1Si0.3)O、Li3.18(V0.770.05Si0.18)O、Li3.07(V0.900.03Si0.07)O、Li3.22(V0.720.06Si0.22)O等が挙げられる。
 負極活物質の化学組成は平均化学組成であってもよい。負極活物質の平均化学組成は、負極層の厚み方向における負極活物質の化学組成の平均値を意味する。負極活物質の平均化学組成は、固体電池を破断し、SEM-EDX(エネルギー分散型X線分光法)を用いて、負極層の厚み方向全体が収まる視野にてEDXによる組成分析を行うことで分析および測定可能である。
 負極層において負極活物質の平均化学組成と後述の固体電解質の平均化学組成とは、上記組成分析において、それらの組成により、自動的に区別して測定され得る。
 負極活物質は、例えば、以下の方法により製造することができる。まず、所定の金属原子を含有する原料化合物を、化学組成が所定の化学組成となるように秤量し、水を添加および混合してスラリーを得る。スラリーを乾燥させ、700℃以上1000℃以下で4時間以上6時間以下、仮焼し、粉砕して、負極活物質を得ることができる。
 負極活物質の化学組成は、固体電解質層とともに、例えば750℃で1分間程度の高速焼結を行った場合、製造時において使用された負極活物質の化学組成がそのまま反映されるが、750℃で1時間程度の長時間焼結を行った場合、固体電解質層への元素拡散が進行し、通常はV量が低減される。
 負極活物質は、負極活物質の利用率のさらなる向上の観点から、βII-LiVO型構造またはγII-LiVO型構造を有することが好ましい。このような結晶構造を有することで、充放電の可逆性が向上し、安定したサイクル特性を得ることができる。また、活物質がγII-LiVO型構造をとることで、固体電解質層におけるLISICON型固体電解質との接合性が向上し、より好ましい。
 負極活物質がβII-LiVO型構造を有するとは、当該負極活物質(特にその粒子)がβII-LiVO型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりβII-LiVO型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、負極活物質がβII-LiVO型構造を有するとは、当該負極活物質(特にその粒子)は、X線回折において、いわゆるβII-LiVO型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。βII-LiVO型構造を有する負極活物質の一例として、例えば、ICDD Card No.01-073-6058が挙げられる。
 負極活物質がγII-LiVO型構造を有するとは、当該負極活物質(特にその粒子)がγII-LiVO型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりγII-LiVO型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、負極活物質がγII-LiVO型構造を有するとは、当該負極活物質(特にその粒子)は、X線回折において、いわゆるγII-LiVO型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。γII-LiVO型構造を有する負極活物質の一例として、例えば、ICDD Card No.01-073-2850が挙げられる。
 負極層における負極活物質の平均化学組成および結晶構造は通常、焼結時の元素拡散によって変化する。負極活物質は、正極層および固体電解質層とともに焼結した後の固体電池において、上記した平均化学組成および結晶構造を有していることが好ましい。
 ナトリウムイオンを吸蔵放出可能な負極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。
 負極活物質の平均粒径は、特に限定されず、例えば、0.01μm以上、20μm以下であってもよく、好ましくは0.1μm以上、5μm以下である。
 負極活物質の平均粒径は、例えば、SEM画像中から無作為に10個以上100個以下の粒子を選び出し、それらの粒径を単純に平均して平均粒径(算術平均)を求めることができる。
 粒径は、粒子が完全な球形であると仮定したときの球形粒子の直径とする。このような粒径は、例えば、固体電池の断面を切り出し、SEMを用いて断面SEM画像撮影後、画像解析ソフト(例えば、「A像くん」(旭化成エンジニアリング社製))を用いて粒子の断面積Sを算出後、以下の式によって粒子直径Rを求めることができる。
Figure JPOXMLDOC01-appb-M000003
 なお、負極層における負極活物質の平均粒径は、上記した平均化学組成の測定時において、組成により負極活物質を特定して、自動的に測定され得る。
 負極層における負極活物質の体積割合は特に限定されず、負極活物質の利用率のさらなる向上の観点から、20%以上80%以下であることが好ましく、30%以上75%以下であることがより好ましく、30%以上60%以下であることがさらに好ましい。
 負極層における負極活物質の体積割合はFIB断面加工後のSEM画像から測定することができる。詳しくは、負極層の断面を、SEM-EDXを用いて観測する。EDXからVが検出される部位が負極活物質であると判断し、上記の部位の面積比率を算出することで、負極活物質の体積割合の測定が可能である
 負極層における負極活物質の粒子形状は、特に限定されず、例えば、球状形状、扁平形状、不定形状いずれの粒子形状であってもよい。
 負極層は固体電解質、特にガーネット型構造を有する固体電解質をさらに含むことが好ましい。負極層がガーネット型固体電解質を含むことで、負極層のイオン伝導度を増大させることができ、高レート化が期待できる。また、Li/V比率が2以上の負極活物質との共焼成時の副反応を抑制できるため、負極の利用率の向上が期待できる。後述するように、固体電解質層もまた、固体電解質、特にガーネット型構造を有する固体電解質をさらに含むことが好ましい。固体電解質層がガーネット型固体電解質を含むことで、固体電解質層の絶縁性を向上させることができるためである。これは、ガーネット型固体電解質は充放電中に還元されにくいため、電子が注入されにくいこと、および固体電解質中でのLISICON型固体電解質の屈曲度が増大し、電子抵抗が増大するためだと考えられる。また、Li/V比率が2以上の負極活物質との共焼成時の副反応を抑制できるため、負極の利用率の向上が期待できる。従って、負極層または固体電解質層の少なくとも一方(特に両方)は、ガーネット型構造を有する固体電解質を含むことが好ましい。負極層または固体電解質層の少なくとも一方はガーネット型構造を有する固体電解質を含むとは、負極層または固体電解質層の一方がガーネット型構造を有する固体電解質を含んでもよいし、またはそれらの両方がガーネット型構造を有する固体電解質を含んでもよいことを意味する。
 固体電解質がガーネット型構造を有するとは、当該固体電解質がガーネット型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりガーネット型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、固体電解質がガーネット型構造を有するとは、当該固体電解質は、X線回折において、いわゆるガーネット型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。
 負極層において、ガーネット型構造を有する固体電解質は、一般式(2):
Figure JPOXMLDOC01-appb-C000004
で表される平均化学組成を有することが好ましい。負極層が上記のような平均化学組成を有する固体電解質を含むことで、負極活物質の利用率のさらなる向上を達成することができる。
 式(2)中、Aは、Ga(ガリウム)、Al(アルミニウム)、Mg(マグネシウム)、Zn(亜鉛)、およびSc(スカンジウム)からなる群から選択される1種類以上の元素である。
 Bは、Nb(ニオブ)、Ta(タンタル)、W(タングステン)、Te(テルル)、Mo(モリブデン)、およびBi(ビスマス)からなる群から選択される1種類以上の元素である。
 xは、0≦x≦0.5の関係を有する。
 yは、0≦y≦2.0の関係を有する。
 aはAの平均価数であり、式(1)におけるAの平均価数と同様である。
 bはBの平均価数であり、式(1)におけるBの平均価数と同様である。
 式(2)中、負極活物質の利用率のさらなる向上の観点から、好ましい実施態様においては、以下の通りである:
 Aは、Ga、およびAlからなる群から選択される1種類以上の元素である。
 Bは、Nb、Ta、W、Mo、およびBiからなる群から選択される1種類以上の元素である。
 xは、0≦x≦0.3、好ましくは0の関係を有する。
 yは、0≦y≦1.0の関係、好ましくは0≦y≦0.7の関係、より好ましくは0.3≦y≦0.7の関係を有し、好ましくは0.5である。
 aはAの平均価数である。
 bはBの平均価数である。
 一般式(2)で表される固体電解質の具体例として、例えば、例えば、(Li6.4Ga0.05Al0.15)LaZr12、(Li6.4Ga0.2)LaZr12、Li6.4La(Zr1.6Ta0.4)O12、(Li6.4Al0.2)LaZr12、Li6.5La(Zr1.5Mo0.25)O12、Li6.5La(Zr1.5Ta0.5)O12が挙げられる。
 負極層における固体電解質(特にガーネット型構造を有する固体電解質)の平均化学組成は、負極層の厚み方向における固体電解質の化学組成の平均値を意味する。固体電解質の平均化学組成は、固体電池を破断し、SEM-EDX(エネルギー分散型X線分光法)を用いて、負極層の厚み方向全体が収まる視野にてEDXによる組成分析を行うことで分析および測定可能である。
 負極層において負極活物質の平均化学組成と固体電解質の平均化学組成とは、上記組成分析において、それらの組成により、自動的に区別して測定され得る。
 負極層の固体電解質は、所定の金属原子を含有する原料化合物を用いること以外、負極活物質と同様の方法により得ることができるし、または市販品として入手することもできる。
 負極層における固体電解質の平均化学組成および結晶構造は通常、焼結時の元素拡散によって変化する。当該固体電解質は、正極層および固体電解質層とともに焼結した後の固体電池において、上記した平均化学組成および結晶構造を有していることが好ましい。
 負極層における固体電解質(特にガーネット型構造を有する固体電解質)の体積割合は特に限定されず、負極活物質の利用率のさらなる向上と固体電池の高エネルギー密度化とのバランスの観点から、10%以上50%以下であることが好ましく、20%以上40%以下であることがより好ましい。
 負極層における固体電解質の体積割合は、負極活物質の体積割合と同様の方法により、測定することができる。ガーネット型固体電解質であることは、Zrおよび/またはLaがEDXにて検出される部位に基づくものとする。
 負極層は、負極活物質および固体電解質に加え、例えば、焼結助剤および導電助剤等をさらに含んでいてもよい。
 負極層が焼結助剤を含むことで、より低温における焼結時においても緻密化が可能となり、負極活物質/固体電解質層界面における元素拡散を抑制することができる。焼結助剤は、固体電池の分野で知られている焼結助剤が使用可能である。負極活物質の利用率のさらなる向上の観点から、発明者らが検討した結果、焼結助剤の組成は、少なくともLi(リチウム)、B(ホウ素)、およびO(酸素)を含み、Bに対するLiのモル比(Li/B)を2.0以上とすることが好ましい。これらの焼結助剤は低融性であり、液相焼結を進行させることでより低温で負極層の緻密化が可能となる。また、上記の組成とすることで、共焼結時に焼結助剤と本発明で用いるLISICON型固体電解質との副反応がより一層、抑制できる。これらを満たす焼結助剤として、例えば、LiBO、(Li2.7Al0.3)BO、Li2.8(B0.80.2)O等があげられる。これらの内、イオン伝導度が特に高い(Li2.7Al0.3)BOを用いることが特に好ましい。
 負極層における焼結助剤の体積割合は特に限定されず、負極活物質の利用率のさらなる向上および固体電池の高エネルギー密度化のバランスの観点から、0.1以上10%以下であることが好ましく、1%以上7%以下であることがより好ましい。
 負極層における焼結助剤の体積割合は、負極活物質の体積割合と同様の方法により、測定することができる。焼結助剤の領域と判断するEDXでの検出元素としては、Bに着目することができる。
 負極層において、空隙率は特に限定されず、負極活物質の利用率のさらなる向上のさらなる低減の観点から、好ましくは20%以下、より好ましくは15%以下、さらに好ましくは10%以下である。
 負極層の空隙率は、FIB断面加工後のSEM画像から測定された値を用いている。
 負極層は通常、2μm以上100μm以下、特に2μm以上50μm以下の厚みを有している。
 負極層2は、図1Bに示すように端面集電構造を有していてもよいし、または図1Aに示すように主面集電構造を有していてもよい。負極層は、容量密度(例えば、エネルギー密度)のさらなる向上の観点から、端面集電構造を有することが好ましい。
 負極層2が端面集電構造を有するとは、負極層2が負極端子20側にて負極層2の端面2a(特に端面のみ)で集電を行う構造を有するという意味である。詳しくは、負極層2は、例えば図1Bに示すように、負極端子20側にて負極層2の端面2a(特に端面のみ)で負極集電部22と接触しつつ、当該負極集電部22を介して負極端子20と電気的に接続されていてもよいし、または負極端子20側にて負極層2の端面2a(特に端面のみ)で、負極端子20と直接的かつ電気的に接続されていてもよい。負極層2は、負極端子20との電気的接続のより十分な確保の観点から、図1Bに示すように、負極端子20側にて負極層2の端面2a(特に端面のみ)で負極集電部22と接触しつつ、当該負極集電部22を介して負極端子20と電気的に接続されていることが好ましい。
 負極層2の端面集電構造において、負極層2が負極集電部22を介して負極端子20と電気的に接続されている場合、負極層2と負極集電部22とは相互に端面同士で接触しており、結果として、断面視において、積層方向に対する垂直方向で相互に隣接した構成を有している。負極層2と負極集電部22とは、平面視においても、積層方向に対する垂直方向で相互に隣接した構成を有している。
 負極層2の端面集電構造において、負極層2が負極集電部22を介して負極端子20と電気的に接続されている場合、負極集電部22は通常、負極層2における積層方向Lの上面2bと面一の上面22bを有し、かつ負極層2における積層方向Lの下面2cと面一の下面22cを有している。面一とは、2つの面の間に段差がない状態のことである。2つの面とは、負極層2の上面2bと負極集電部22の上面22b、および負極層2の下面2cと負極集電部22の下面22cのことである。
 負極層2が主面集電構造を有するとは、負極層2が負極層の主面で集電を行う構造を有するという意味である。詳しくは、負極層2は、図1Aに示すように、負極層2の主面2xで負極集電層21と接触しつつ、当該負極集電層21を介して負極端子20と電気的に接続されている。負極層2の主面集電構造において、負極集電層21は負極層2の主面に積層されていてもよいし、かつ/または負極層2は負極集電層21の主面に積層されていてもよい。主面とは、面積が比較的大きい面のことであり、詳しくは積層方向に垂直な上面および/または下面のことである。主面で集電を行うとは、主として主面から電子が出入りするという意味である。図1Aにおいて、負極層2は負極端子20側で負極端子20と直接的に電気的に接続されているが、端面集電構造における負極層のように、負極集電部を介して負極端子20と電気的に接続されていてもよい。負極層2が主面集電構造を有する場合、負極層2は、図1Aに示すように、負極集電層21の両方の主面に積層されてもよいし、または片方の主面に積層されてもよい。
 負極層2が有し得る負極集電層21および負極集電部22は、少なくとも導電性材料を含んで成る。負極集電層21および負極集電部22は、更に固体電解質を含んで成っていてよい。ある好適な態様では、負極集電層21および負極集電部22は、導電性材料および固体電解質を少なくとも含む焼結体から構成されている。負極集電層21および負極集電部22に含まれてもよい導電性材料は通常、導電率が比較的大きい材料が用いられ、例えば、炭素材料、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケルから成る群から選択される少なくとも1種を用いることが好ましい。負極集電層21および負極集電部22に含まれてもよい固体電解質は、上記した負極層に含まれてもよい固体電解質と同様の固体電解質から選択されてもよい。
 負極集電層21および負極集電部22は、一体焼結による固体電池の製造コストの低減および固体電池の内部抵抗の低減の観点から、焼結体の形態を有することが好ましい。負極集電層21および負極集電部22が焼結体の形態を有する場合、例えば、負極集電層21および負極集電部22は、上記した導電性材料および固体電解質の他、焼結助剤をさらに含む焼結体により構成されてもよい。負極集電層21および負極集電部22に含まれる焼結助剤は、例えば、負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。
 負極集電層の厚みは特に限定されず、例えば、1μm以上5μm以下、特に1μm以上3μm以下であってもよい。
 負極集電部の厚みは通常、負極層と同様の厚みを有していてもよい。
 負極層は「負極活物質層」とも呼ばれ得る層である。
(正極層)
 正極層1は正極活物質を含み、さらに固体電解質を含んでもよい。正極層1が被覆型導電助剤を含む場合、正極層1は被覆型導電助剤および正極活物質を含み、さらに固体電解質を含んでもよい。正極活物質の利用率のさらなる向上の観点から、正極層は、被覆型導電助剤を含むことが好ましい。正極層においては、被覆型導電助剤、正極活物質および固体電解質はいずれも焼結体の形態を有することが好ましい。例えば、正極層が被覆型導電助剤、正極活物質および固体電解質を含む場合、正極層は、被覆型導電助剤および固体電解質により正極活物質粒子間を結合しつつ、被覆型導電助剤、正極活物質粒子および固体電解質は、それらの間で相互に焼結により接合されている焼結体の形態を有することが好ましい。
 正極層は金属イオンを吸蔵放出可能な層であり、好ましくはリチウムイオンまたはナトリウムイオン(特にリチウムイオン)を吸蔵放出可能な層である。正極活物質は、特に限定されず、固体電池の分野で知られている正極活物質が使用可能である。リチウムイオンを吸蔵放出可能な正極活物質として、例えば、ナシコン型構造を有するリチウム含有リン酸化合物粒子、オリビン型構造を有するリチウム含有リン酸化合物粒子、リチウム含有層状酸化物粒子、スピネル型構造を有するリチウム含有酸化物粒子等が挙げられる。好ましく用いられるナシコン型構造を有するリチウム含有リン酸化合物の具体例としては、Li(PO等が挙げられる。好ましく用いられるオリビン型構造を有するリチウム含有リン酸化合物の具体例としては、LiFe(PO、LiMnPO等が挙げられる。好ましく用いられるリチウム含有層状酸化物粒子の具体例としては、LiCoO,LiCo1/3Ni1/3Mn1/3O2等が挙げられる。好ましく用いられるスピネル型構造を有するリチウム含有酸化物の具体例としては、LiMn,LiNi0.5Mn1.5等が挙げられる。本発明で用いるLISICON型固体電解質との共焼結時における反応性の観点から、正極活物質として、LiCoO,LiCo1/3Ni1/3Mn1/3等のリチウム含有層状酸化物がより好ましく用いられる。なお、これらの正極活物質粒子のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。
 正極層において正極活物質がナシコン型構造を有するとは、当該正極活物質(特にその粒子がナシコン型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりナシコン型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、正極層において正極活物質がナシコン型構造を有するとは、当該正極活物質(特にその粒子)は、X線回折において、いわゆるナシコン型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。好ましく用いられるナシコン型構造を有する正極活物質としては、上記で例示した化合物が挙げられる。
 正極層において正極活物質がオリビン型構造を有するとは、当該正極活物質(特にその粒子)がオリビン型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりオリビン型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、正極層において正極活物質がオリビン型構造を有するとは、当該正極活物質(特にその粒子)は、X線回折において、いわゆるオリビン型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。好ましく用いられるオリビン型構造を有する正極活物質としては、上記で例示した化合物が挙げられる。
 ナトリウムイオンを吸蔵放出可能な正極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、ナトリウム含有層状酸化物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。
 正極層において正極活物質がスピネル型構造を有するとは、当該正極活物質(特にその粒子)がスピネル型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりスピネル型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、正極層において正極活物質がスピネル型構造を有するとは、当該正極活物質(特にその粒子)は、X線回折において、いわゆるスピネル型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。好ましく用いられるスピネル型構造を有する正極活物質としては、上記で例示した化合物が挙げられる。
 正極活物質の化学組成は平均化学組成であってもよい。正極活物質の平均化学組成は、正極層の厚み方向における正極活物質の化学組成の平均値を意味する。正極活物質の平均化学組成は、固体電池を破断し、SEM-EDX(エネルギー分散型X線分光法)を用いて、正極層の厚み方向全体が収まる視野にてEDXによる組成分析を行うことで分析および測定可能である。
 正極活物質は、所定の金属原子を含有する原料化合物を用いること以外、負極活物質と同様の方法により得ることができるし、または市販品として入手することもできる。
 正極層における正極活物質の化学組成および結晶構造は通常、焼結時の元素拡散によって変化する。正極活物質は、負極層および固体電解質層とともに焼結した後の固体電池において、上記した化学組成および結晶構造を有していることが好ましい。
 正極活物質の平均粒径は、特に限定されず、例えば、0.01μm以上、10μm以下であってもよく、好ましくは0.05μm以上、4μm以下である。
 正極活物質の平均粒径は、負極層における負極活物質の平均粒径と同様の方法により求めることができる。
 正極層における正極活物質の平均粒径は通常、製造時において使用された正極活物質の平均粒径がそのまま反映される。特に、正極粒子にLiCoOを使用した場合はそのまま反映される。
 正極層における正極活物質の粒子形状は、特に限定されず、例えば、球状形状、扁平形状、不定形状いずれの粒子形状であってもよい。
 正極層における正極活物質の体積割合は特に限定されず、負極活物質の利用率のさらなる向上の観点から、30%以上90%以下であることが好ましく、40%以上70%以下であることがより好ましい。
 正極層は、正極活物質に加え、例えば、固体電解質、焼結助剤および導電助剤等をさらに含んでいてもよい。
 正極層に含まれる固体電解質の種類は特に限定されない。正極層に含まれる固体電解質として、例えば、ガーネット型構造を有する固体電解質(Li6.4Ga0.2)LaZr12、Li6.4La(Zr1.6Ta0.4)O12、(Li6.4Al0.2)LaZr12、Li6.5La(Zr1.5Mo0.25)O12、LISICON型構造を有する固体電解質Li3+x(V1-xSi)O、ぺロブスカイト型構造を有する固体電解質La2/3-xLi3xTiO、アモルファス構造を有する固体電解質LiBO-LiSiO等が挙げられる。このうち、本発明で用いるLISICON型固体電解質との共焼結時の反応性の観点から、ガーネット型構造を有する固体電解質、LISICON型構造を有する固体電解質を用いることが特に好ましい。
 正極層の固体電解質は、所定の金属原子を含有する原料化合物を用いること以外、負極活物質と同様の方法により得ることができるし、または市販品として入手することもできる。
 正極層における固体電解質の平均化学組成および結晶構造は通常、焼結時の元素拡散によって変化する。当該固体電解質は、負極層および固体電解質層とともに焼結した後の固体電池において、上記した平均化学組成および結晶構造を有していることが好ましい。
 正極層における固体電解質の体積割合は特に限定されず、正極活物質の利用率のさらなる向上および固体電池の高エネルギー密度化のバランスの観点から、20%以上60%以下であることが好ましく、30%以上45%以下であることがより好ましい。
 正極層における焼結助剤としては、負極層における焼結助剤と同様の化合物が使用可能である。
 正極層における焼結助剤の体積割合は特に限定されず、負極活物質の利用率のさらなる向上および固体電池の高エネルギー密度化のバランスの観点から、0.1%以上20%以下であることが好ましく、1%以上10%以下であることがより好ましい。
 正極層は、被覆型導電助剤以外の他の導電助剤をさらに含んでもよい。正極層において含まれてもよい他の導電助剤は、固体電池の分野で知られている、あらゆる導電助剤が使用可能である。そのような導電助剤としては、例えば、Ag(銀)、Au(金),Pd(パラジウム),Pt(白金),Cu(銅)、Sn(錫)、Ni(ニッケル)などの金属材料;およびアセチレンブラック、ケッチェンブラック、Super P(登録商標)、VGCF(登録商標)等のカーボンナノチューブなどの炭素材料等が挙げられる。
 正極層における導電助剤の体積割合は特に限定されず、正極活物質の利用率のさらなる向上および固体電池の高エネルギー密度化のバランスの観点から、10%以上50%以下であることが好ましく、20%以上40%以下であることがより好ましい。
 正極層において、空隙率は特に限定されず、負極活物質の利用率のさらなる向上の観点から、好ましくは20%以下、より好ましくは15%以下、さらに好ましくは10%以下である。
 正極層の空隙率は、負極層の空隙率と同様の方法により測定された値を用いている。
 正極層1は、図1Aおよび図1Bに示すように主面集電構造を有していてもよいし、または端面集電構造を有していてもよい。正極層は、製造コストの低減の観点から、主面集電構造を有することが好ましい。
 正極層1が主面集電構造を有するとは、正極層1が正極層の主面で集電を行う構造を有するという意味である。詳しくは、正極層1は、図1Aおよび図1Bに示すように、正極層1の主面1xで正極集電層11と接触しつつ、当該正極集電層11を介して正極端子10と電気的に接続されている。正極層1の主面集電構造において、正極集電層11は正極層1の主面に積層されていてもよいし、かつ/または正極層1は正極集電層11の主面に積層されていてもよい。主面とは、面積が比較的大きい面のことであり、詳しくは積層方向に垂直な上面および/または下面のことである。主面で集電を行うとは、主として主面から電子が出入りするという意味である。図1Aにおいて、正極層1は正極端子10側で正極端子10と直接的に電気的に接続されているが、後述する端面集電構造を有する正極層のように、正極集電部を介して正極端子10と電気的に接続されていてもよい。正極層1が主面集電構造を有する場合、正極層1は、図1Aおよび図1Bに示すように、正極集電層11の両方の主面に積層されてもよいし、または片方の主面に積層されてもよい。
 正極層1が端面集電構造を有するとは、正極層1が正極端子10側にて正極層1の端面(特に端面のみ)で集電を行う構造を有するという意味である。詳しくは、正極層1は、正極端子10側にて正極層1の端面(特に端面のみ)で正極集電部と接触しつつ、当該正極集電部を介して正極端子10と電気的に接続されていてもよいし、または正極端子10側にて正極層1の端面(特に端面のみ)で、正極端子10と直接的かつ電気的に接続されていてもよい。
 正極層1が有し得る正極集電層11および正極集電部は、少なくとも導電性材料を含んで成る。正極集電層11および正極集電部は、更に固体電解質を含んで成っていてよい。ある好適な態様では、正極集電層11および正極集電部は、導電性材料および固体電解質を少なくとも含む焼結体から構成されている。正極集電層11および正極集電部に含まれてもよい導電性材料は通常、導電率が比較的大きい材料が用いられ、例えば、負極集電層および負極集電部と同様の導電性材料から選択されてもよい。正極集電層11および正極集電部に含まれてもよい固体電解質は、上記した負極層に含まれてもよい固体電解質と同様の固体電解質から選択されてもよい。
 正極集電層11および正極集電部は、一体焼結による固体電池の製造コストの低減および固体電池の内部抵抗の低減の観点から、焼結体の形態を有することが好ましい。正極集電層11および正極集電部が焼結体の形態を有する場合、例えば、正極集電層11および正極集電部は、上記した導電性材料および固体電解質の他、焼結助剤をさらに含む焼結体により構成されてもよい。正極集電層11および正極集電部に含まれる焼結助剤は、例えば、負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。
 正極集電層の厚みは特に限定されず、例えば、1μm以上5μm以下、特に1μm以上3μm以下であってもよい。
 正極集電部の厚みは通常、正極層と同様の厚みを有していてもよい。
 正極層は「正極活物質層」と呼ばれ得る層である。
[固体電解質層]
 本発明において固体電解質層3は特に限定されず、例えば、リチウムイオンまたはナトリウムイオン(特にリチウムイオン)を伝導可能な材料である。固体電解質層3は、リチウムイオンが伝導可能な固体電解質として、例えば、LISICON型構造を有する固体電解質(例えば、後述する第1固体電解質)、ガーネット型構造を有する固体電解質(例えば、後述する第2固体電解質)、および酸化物ガラスセラミックス系リチウムイオン伝導体から選択される1種以上の材料を含んでいてもよい。固体電解質層3は、電極活物質の利用率のさらなる向上の観点から、後述する第1固体電解質または第2固体電解質の一方を含むこと、またはそれらの両方を含むことが好ましい。同様の観点および他の観点(例えば、製造コストの観点)から、固体電解質層3は第2固体電解質のみを含むことが好ましい。
 第1固体電解質はLISICON型構造を有し、かつ少なくともVを含む固体電解質である。固体電解質層において第1固体電解質が有するLISICON型構造は、β構造、βII型構造、βII’型構造、T型構造、TII型構造、γII型構造、およびγ型構造を包容する。すなわち、固体電解質層はβ構造、βII型構造、βII’型構造、T型構造、TII型構造、γII型構造、γ型構造またはこれらの複合構造を有する1種以上の固体電解質を含んでもよい。第1固体電解質が有するLISICON型構造は、電極活物質の利用率のさらなる向上の観点から、γII型構造であることが好ましい。
 固体電解質層において第1固体電解質がγII型構造を有するとは、当該固体電解質がγII型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりγII型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、固体電解質層において第1固体電解質がγII型構造を有するとは、当該固体電解質は、X線回折において、いわゆるγII-LiVO型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。γII型構造を有する化合物(すなわち固体電解質)は、例えば、文献「J.solid state chem」(A.R.West et.al,J.solid state chem.,4,20-28(1972))に記載されており、その一例として、例えば、ICDD Card No.01-073-2850が挙げられる。
 固体電解質層において第1固体電解質がβ型構造を有するとは、当該固体電解質がβ型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりβ型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、固体電解質層において第1固体電解質がβ型構造を有するとは、当該固体電解質は、X線回折において、いわゆるβ-LiVO型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。β型構造を有する化合物(すなわち固体電解質)は、例えば、文献「J.solid state chem」(A.R.West et.al,J.solid state chem.,4,20-28(1972))に記載されており、その一例として、例えば、以下の表に記載のXRDデータ(面間隔d値と対応するミラー指数)を示す。
Figure JPOXMLDOC01-appb-T000005
 固体電解質層において第1固体電解質がβII型構造を有するとは、当該固体電解質がβII型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりβII型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、固体電解質層において第1固体電解質がβII型構造を有するとは、当該固体電解質は、X線回折において、いわゆるβII-LiVO型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。βII型構造を有する化合物(すなわち固体電解質)は、例えば、文献「J.solid state chem」(A.R.West et.al,J.solid state chem.,4,20-28(1972))に記載されており、その一例として、例えば、ICDD Card No.00-024-0675が挙げられる。
 固体電解質層において第1固体電解質がβII’型構造を有するとは、当該固体電解質がβII’型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりβII’型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、固体電解質層において第1固体電解質がβII’型構造を有するとは、当該固体電解質は、X線回折において、いわゆるβII’-LiVO型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。βII’型構造を有する化合物(すなわち固体電解質)は、例えば、文献「J.solid state chem」(A.R.West et.al,J.solid state chem.,4,20-28(1972))に記載されており、その一例として、例えば、以下の表に記載のXRDデータ(面間隔d値と対応するミラー指数)を示す。
Figure JPOXMLDOC01-appb-T000006
 固体電解質層において第1固体電解質がT型構造を有するとは、当該固体電解質がT型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりT型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、固体電解質層において第1固体電解質がT型構造を有するとは、当該固体電解質は、X線回折において、いわゆるT-LiVO型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。T型構造を有する化合物(すなわち固体電解質)は、例えば、文献「J.solid state chem」(A.R.West et.al,J.solid state chem.,4,20-28(1972))に記載されており、その一例として、例えば、ICDD Card No.00-024-0668が挙げられる。
 固体電解質層において第1固体電解質がTII型構造を有するとは、当該固体電解質がTII型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりTII型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、固体電解質層において第1固体電解質がTII型構造を有するとは、当該固体電解質は、X線回折において、いわゆるTII-LiVO型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。TII型構造を有する化合物(すなわち固体電解質)は、例えば、文献「J.solid state chem」(A.R.West et.al,J.solid state chem.,4,20-28(1972))に記載されており、その一例として、例えば、ICDD Card No.00-024-0669が挙げられる。
 固体電解質層において第1固体電解質がγ型構造を有するとは、当該固体電解質がγ型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりγ型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、固体電解質層において第1固体電解質がγ型構造を有するとは、当該固体電解質は、X線回折において、いわゆるγ-LiVO型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。γ型構造を有する化合物(すなわち固体電解質)は、例えば、文献「J.solid state chem」(A.R.West et.al,J.solid state chem.,4,20-28(1972))に記載されており、その一例として、例えば、以下の表に記載のXRDデータ(面間隔d値と対応するミラー指数)を示す。
Figure JPOXMLDOC01-appb-T000007
 固体電解質層において、第1固体電解質は、一般式(3):
Figure JPOXMLDOC01-appb-C000008
で表される平均化学組成を有することがより好ましい。
 式(3)中、Aは、Na(ナトリウム),K(カリウム),Mg(マグネシウム),Ca(カルシウム),およびZn(亜鉛)からなる群から選択される1種類以上の元素である。
 Bは、Zn(亜鉛),Al(アルミニウム),Ga(ガリウム),Si(ケイ素),Ge(ゲルマニウム),Sn(錫),P(リン),As(ヒ素),Ti(チタン),Mo(モリブデン),W(タングステン),Fe(鉄),Cr(クロム),およびCo(コバルト)からなる群から選択される1種類以上の元素である。
 xは、0≦x≦1.0、特に0≦x≦0.2の関係を有し、好ましくは0である。
 yは、0<y<1.0、特に0.05≦y<0.93の関係を有し、電極活物質の利用率のさらなる向上の観点から、好ましくは0.4≦y≦0.9、より好ましくは0.6≦y≦0.9の関係を有する。
 aはAの平均価数であり、式(1)におけるAの平均価数と同様である。
 bはBの平均価数であり、式(1)におけるBの平均価数と同様である。
 式(3)中、電極活物質の利用率のさらなる向上の観点から、好ましい実施態様においては、以下の通りである:
 Aは、Alである。
 Bは、Si,Ge,およびPからなる群から選択される1種類以上の元素である。
 xは、0≦x≦0.2、特に0≦x≦0.1の関係を有し、好ましくは0である。
 yは、0.7≦y≦0.9の関係を有し、好ましくは0.8である。
 固体電解質層における第1固体電解質の平均化学組成は、固体電解質層の厚み方向における第1固体電解質の化学組成の平均値を意味する。第1固体電解質の平均化学組成は、固体電池を破断し、SEM-EDX(エネルギー分散型X線分光法)を用いて、固体電解質層の厚み方向全体が収まる視野にてEDXによる組成分析を行うことで分析および測定可能である。
 固体電解質層においてLISICON型構造の第1固体電解質の平均化学組成と後述のガーネット型構造の固体電解質の平均化学組成とは、上記組成分析において、それらの組成により、自動的に区別して測定され得る。例えば、SEM-EDX分析から、第1固体電解質(すなわちLISICON型構造の固体電解質)の部位はVの検出による同定により、第2固体電解質(例えば、ガーネット型固体電解質)の部位はLa、Zrによる同定により、分離することが可能である。
 固体電解質層の第1固体電解質は、所定の金属原子を含有する原料化合物を用いること以外、負極活物質と同様の方法により得ることができるし、または市販品として入手することもできる。
 固体電解質層における第1固体電解質の化学組成および結晶構造は通常、焼結時の元素拡散によって変化する。当該第1固体電解質は、負極層および正極層とともに焼結した後の固体電池において、上記した化学組成および結晶構造を有していることが好ましい。特に、第1固体電解質の化学組成は、負極層とともに、例えば750℃で1分間程度の高速焼結を行った場合、製造時において使用された固体電解質の化学組成がそのまま反映されるが、750℃で1時間程度の長時間焼結を行った場合、負極層の負極活物質からの元素拡散が進行し、通常はV量が増加する。
 固体電解質層における第1固体電解質の体積割合は特に限定されず、電極活物質の利用率のさらなる向上の観点から、0%以上80%以下であることが好ましく、0%以上60%以であることがより好ましく、30%以上60%以下であることがさらに好ましい。
 固体電解質層における第1固体電解質の体積割合は、正極活物質の体積割合と同様の方法により、測定することができる。
 第2固体電解質はガーネット型構造を有する固体電解質である。固体電解質層が第2固体電解質を含むことで、固体電解質層の絶縁性を向上させることができる。これは、第2固体電解質は充放電中に還元されにくく、電子が注入されにくいためであると考えられる。第1固体電解質と第2固体電解質を併用した場合においては、固体電解質層中での第1固体電解質の屈曲度が増大し、第2固体電解質により電子抵抗が増大する。
 第2固体電解質は、負極層に含まれることが好ましいガーネット型構造を有する固体電解質と同様であり、負極層の説明で記載したガーネット型構造を有する固体電解質と同様の範囲内から選択されてもよい。固体電解質層および負極層が共に、ガーネット型構造を有する固体電解質を含む場合、固体電解質層に含まれるガーネット型構造を有する固体電解質と、負極層に含まれるガーネット型構造を有する固体電解質とは、同じ化学組成を有していてもよいし、または相互に異なる化学組成を有していてもよい。
 固体電解質層Bとして好ましい固体電解質は、前記した式(2)中において以下の通りの化学組成を有する固体電解質である:
 Aは、Ga、およびAlからなる群から選択される1種類以上(特に2種類)の元素である。
 Bは、Nb、Ta、W、Mo、およびBiからなる群から選択される1種類以上の元素である。
 xは、0≦x≦0.3の関係を有し、好ましくは0.2である。
 yは、0≦y≦1.0の関係、好ましくは0≦y≦0.7の関係、より好ましくは0≦y≦0.3の関係を有し、さらに好ましくは0である。
 aはAの平均価数である。
 bはBの平均価数である。
 固体電解質層における第2固体電解質の平均化学組成は、固体電解質層の厚み方向における第2固体電解質の化学組成の平均値を意味する。第2固体電解質の平均化学組成は、固体電池を破断し、SEM-EDX(エネルギー分散型X線分光法)を用いて、固体電解質層の厚み方向全体が収まる視野にてEDXによる組成分析を行うことで分析および測定可能である。
 固体電解質層における第2固体電解質の体積割合は特に限定されず、電極活物質の利用率のさらなる向上の観点から、20%以上100%以下であることが好ましく、40%以上100%以下であることがより好ましく、40%以上70%以下であることがさらに好ましい。
 固体電解質層における第2固体電解質の体積割合は、正極活物質の体積割合と同様の方法により、測定することができる。
 酸化物ガラスセラミックス系リチウムイオン伝導体としては、例えば、リチウム、アルミニウムおよびチタンを構成元素に含むリン酸化合物(LATP)、リチウム、アルミニウムおよびゲルマニウムを構成元素に含むリン酸化合物(LAGP)を用いることができる。
 ナトリウムイオンが伝導可能な固体電解質としては、例えば、ナシコン構造を有するナトリウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するナトリウム含有リン酸化合物としては、Na(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。
 固体電解質層は、固体電解質に加え、例えば、焼結助剤等をさらに含んでいてもよい。電極活物質の利用率のさらなる向上の観点から、負極層または固体電解質層の少なくとも一方、好ましくは、両方が焼結助剤をさらに含むことが好ましい。負極層または固体電解質層の少なくとも一方は焼結助剤をさらに含むとは、負極層または固体電解質層の一方が焼結助剤をさらに含んでもよいし、またはそれらの両方が焼結助剤をさらに含んでもよいことを意味する。
 固体電解質層における焼結助剤としては、負極層における焼結助剤と同様の化合物が使用可能である。
 固体電解質層における焼結助剤の体積割合は特に限定されず、電極活物質の利用率のさらなる向上および固体電池の高エネルギー密度化のバランスの観点から、0.1%以上20%以下であることが好ましく、1%以上10%以下であることがより好ましい。
 固体電解質層の厚みは通常、0.1~30μmであり、固体電解質層の薄型化の観点から、好ましくは20~1μmである。
 固体電解質層の厚みは、SEM画像において任意の10箇所で測定された厚みの平均値を用いている。
 固体電解質層において、空隙率は特に限定されず、電極活物質の利用率のさらなる向上の観点から、好ましくは20%以下、より好ましくは15%以下、さらに好ましくは10%以下である。
 固体電解質層の空隙率は、負極層の空隙率と同様の方法により測定された値を用いている。
 固体電解質層の化学組成は、固体電解質層中で必ずしも均質である必要はなく、例えば厚み方向で化学組成が変化していてもよい。特に、固体電解質層の第1固体電解質の平均組成が上記を満たすことで、絶縁性を向上させることができる。
[保護層]
 保護層5は、図1Aの紙面上に示すように、少なくとも固体電池の上下面に形成されるものであり、好ましくは固体電池の全ての側面にも形成される。保護層5は、電気的、物理的および化学的に、固体電池(特に正極層、負極層および固体電解質層等の電池要素)を保護するためのものである。
 保護層5は通常、絶縁性物質からなっている。絶縁性物質とは、イオン伝導性および電子伝導性を有さない物質という意味である。従って、絶縁性物質とは、イオン伝導性および電子伝導性を有さない無機物質のことである。イオン伝導性を有さない無機物質とは、イオン伝導性が1×10-7S/cm以下である無機物質という意味である。より長期的に電池の劣化を抑制する観点から、イオン伝導性は1×10-10S/cm以下であることが好ましい。電子伝導性を有さない無機物質とは、電子伝導性が1×10-7S/cm以下である無機物質という意味である。より長期的に電池の劣化を抑制する観点から、電子伝導性は1×10-10S/cm以下であることが好ましい。
 保護層5がこのような絶縁性物質から構成されると、保護層5は優れた耐湿性、耐環境性および耐久性を有する。詳しくは、保護層5は、樹脂(例えば高分子化合物)を含む保護層と比較して、電池要素との接合強度が高い保護層とすることができる。その結果として、保護層5は、高分子化合物を含む保護層と比較して、固体電池の膨張および収縮をより十分に防止することができ、結果として電池性能の低下をより十分に抑制できる。
 保護層5を構成する絶縁性物質としては特に限定されず、例えば、ガラスやセラミックスが挙げられる。ガラスとしては、石英ガラス(SiO)や、SiOとPbO,B,MgO,ZnO,Bi,NaO,Alの少なくとも1つから選ばれるものとを組み合わせた複合酸化物系ガラス等が挙げられる。セラミックスとしては、アルミナ、コージライト、ムライト、ステアタイト、フォルステライト等が挙げられる。保護層はこれらの物質からなる群から選択される1種以上の材料から構成されてもよい。保護層は、電池要素をショートさせない限り、電子伝導性を有する材料(例えば、金属)を含んでもよい。保護層が電子伝導性を有する材料を含む場合、電子伝導性材料の含有割合は、例えば1体積%以下であってもよい。保護層が電子伝導性材料(例えば、金属)を含むことにより、電池反応により発生する熱を外部に円滑に逃がすことができる。
 保護層は上記した絶縁性物質粒子を含む焼結体により構成されていることが好ましい。保護層を構成する焼結体は、絶縁性物質粒子間に気孔を有するものの、その厚み方向(例えば、積層方向L)において、水分およびガス(二酸化炭素)の吸着、吸収および透過を抑制し得る程度の緻密性を有する。
 保護層は、高分子化合物等の樹脂を含んでもよく、例えば、製造時に使用される高分子化合物および/またはその熱分解物が残留していてもよい。保護層における高分子化合物およびその熱分解物等の残留物の含有量は通常、保護層全量に対して、0.1重量%以下、特に0.01重量%以下である。なお、正極層、正極集電層、正極集電部、負極層、負極集電層、負極集電部、固体電解質層および後述の電極分離部においても、保護層においてと同様に、残留物が残留していてもよい。例えば、正極層、正極集電層、正極集電部、負極層、負極集電層、負極集電部、固体電解質層および電極分離部の各層または各部における残留物の含有量は、当該各層全量に対する値として、保護層における残留物の含有量範囲と同様の範囲内であってもよい。
 保護層の気孔率は例えば、0.1体積%以上20体積%以下、特に1体積%以上10体積%以下であってよい。気孔率は重量気孔率法、CTスキャンを用いた計算トモグラフィー法、液浸法などによって測定された値を用いている。
 保護層の厚み方向の酸素透過性は例えば、10-1cc/m/day/気圧 以下、特に10-3cc/m/day/気圧 以下であってよい。
 保護層の厚み方向のHO透過性は例えば、10-2g/m/day 以下、特に10-4g/m2/day 以下であってよい。HO透過性はキャリアガス法、着圧法、Ca腐食法によって25℃で測定された値を用いている。
 保護層は、絶縁性物質に加え、例えば、焼結助剤等をさらに含んでいてもよい。保護層は、焼結助剤をさらに含むことが好ましい。保護層における焼結助剤としては、負極層における焼結助剤と同様の化合物が使用可能である。
 保護層は、電池性能の低下をより一層、抑制する観点から、最も厚い部分の厚みが500μm以下であることが好ましく、より好ましくは100μm以下、さらに好ましくは50μm以下、最も好ましくは20μm以下である。保護層は、水分およびガス(二酸化炭素)の吸着、吸収および透過等による電池性能の低下をより一層、抑制する観点から、平均厚みが1μm以上であることが好ましく、より好ましくは5μm以上である。
 保護層の最も厚い部分の厚みおよび平均厚みはそれぞれ、任意の100箇所における厚みについての最大厚みおよび平均厚みを用いている。
 保護層は固体電池の上下面を覆っている。保護層は、当該保護層により覆われている電池要素の上下面と、図1Aおよび図1Bに示すように直接的に接していてもよいし、または電池要素を構成する層以外の層を介して間接的に接していてもよい。保護層が電池要素の上下面と直接的に接しているとは、電池要素を構成する層以外の層が、保護層と電池要素との間に介在することなく、保護層の表面と電池要素の表面とが直接的に接しているという意味である。
 保護層は当該保護層により覆われている電池要素の上下面と焼結体同士の一体焼結をなしていることが好ましい。保護層が当該保護層により覆われている電池要素の上下面と焼結体同士の一体焼結をなしているとは、保護層が当該保護層により覆われている電池要素の上下面と焼結により接合されているという意味である。詳しくは、保護層と、当該保護層により覆われている電池要素の上下面とは、いずれも焼結体でありながら、一体的に焼結されている。例えば、保護層および電池要素は一体焼結された構成を採っていることが好ましい。なお、保護層と当該保護層により覆われている電池要素の上下面との間において厳密に全部が一体化されていなければならないというわけではなく、一部分が一体化されていなくてもよい。保護層と当該保護層により覆われている電池要素の上下面とは全体として一体化されていればよい。
 保護層により覆われている電池要素の上下面は通常、電池要素の最外層の表面である。電池要素の最外層とは、電池要素を構成する層のうち、最上位に配置される最上層と最下位に配置される最下層のことである。最外層の表面は最上層の上面および最下層の下面のことである。
[電極分離部]
 本発明の固体電池は通常、電極分離部(「余白層」または「余白部」とも称される)15,25をさらに有している。
 電極分離部15(すなわち正極分離部)は、正極層1の周囲に配置されることにより、かかる正極層1を負極端子20から離間させる。電極分離部25(すなわち負極分離部)はまた、負極層2の周囲に配置されることにより、かかる負極層2を正極端子10から離間させる。
 電極分離部15,25は、例えば固体電解質、絶縁性物質およびそれらの混合物等からなる群から選択される1種以上の材料から構成されることが好ましい。
 電極分離部15,25を構成し得る固体電解質は、固体電解質層を構成し得る固体電解質と同様の材料が使用可能である。
 電極分離部15,25を構成し得る絶縁性物質は、保護層を構成し得る絶縁性物質と同様の材料が使用可能である。
 電極分離部は焼結助剤をさらに含むことが好ましい。電極分離部における焼結助剤としては、負極層における焼結助剤と同様の化合物が使用可能である。
[電極端子]
 本発明の固体電池は、2つの対向する側面の各々に、正極層または負極層と電気的に接続された電極端子10,20を有する。正極層と電気的に接続された電極端子を正極端子と称し、負極層と電気的に接続された電極端子を負極端子20と称する。また電極端子は端面電極とも称される部材である。本発明の固体電池は、電極端子10,20を相互に平行に、かつ積層方向Lにも平行に有している。電極端子は、導電率が大きい導電性材料を含んで成ることが好ましい。電極端子を構成するための導電性材料の具体的な材質としては、特に限定されるわけではないが、導電性の観点から、例えば、金、銀、銅、白金、錫、パラジウム、アルミニウム、チタン、ニッケル、無酸素銅、Cu-Sn合金、Cu-Zr合金、Cu-Fe合金、Cu-Cr-Sn-Zn合金、42合金(Ni-Fe合金)、コバール合金)からなる群から選択される少なくとも一種の導電性金属(すなわち金属または合金)を挙げることができる。
 電極端子10,20の厚みは、特に限定されず、例えば1μm以上1mm以下、特に10μm以上100μm以下であってもよい。
<固体電池の製造方法>
 固体電池は、例えば、いわゆるグリーンシート法、印刷法またはこれらの方法を組み合わせた方法によって、製造することができる。
 グリーンシート法について説明する。
 まず、正極活物質に対して、溶剤、樹脂等を適宜混合することにより、ペーストを調製する。そのペーストをシートの上に塗布し、乾燥させることにより正極層を構成するためのグリーンシートを形成する。正極層用グリーンシートに、固体電解質、導電助剤および/または焼結助剤等を含ませてもよい。正極層の導電助剤は被覆型導電助剤を含んでもよい。
 負極活物質に対して、溶剤、樹脂等を適宜混合することにより、ペーストを調製する。そのペーストをシートの上に塗布し、乾燥させることにより負極層を構成するためのグリーンシートを形成する。負極層用グリーンシートに、固体電解質、導電助剤および/または焼結助剤等を含ませてもよい。負極層の導電助剤は被覆型導電助剤を含んでもよい。
 固体電解質に対して、溶剤、樹脂等を適宜混合することにより、ペーストを調製する。そのペーストを塗布し、乾燥させることにより、固体電解質層を構成するためのグリーンシートを作製する。固体電解質層用のグリーンシートに、焼結助剤等を含ませてもよい。
 絶縁性物質に対して、溶剤、樹脂等を適宜混合することにより、ペーストを調製する。そのペーストを塗布し、乾燥させることにより、保護層を構成するためのグリーンシートを作製する。保護層用のグリーンシートに、焼結助剤等を含ませてもよい。
 固体電解質および/または絶縁性物質に対して、溶剤、樹脂等を適宜混合することにより、ペーストを調製する。そのペーストを塗布し、乾燥させることにより、電極分離部を構成するためのグリーンシートを作製する。電極分離部用のグリーンシートに、焼結助剤等を含ませてもよい。
 導電性材料に対して、溶剤、樹脂等を適宜混合することにより、電極端子用ペーストを調製する。
 次に、上記の方法で得られたグリーンシートを適宜積層することにより積層体を作製する。作製した積層体をプレスしてもよい。好ましいプレス方法としては、静水圧プレス法等が挙げられる。
 その後、積層体における所定の配置に電極端子用ペーストを塗布し、例えば600~800℃で焼結することにより固体電池を得ることができる。
 印刷法について説明する。
 印刷法は、以下の事項以外、グリーンシート法と同様である。
・溶剤および樹脂の配合量がインクとしての使用に適した配合量とすること以外、グリーンシートを得るための各層のペーストの組成と同様の組成を有する各層のインクを調製する。
・各層のインクを用いて印刷および積層し、積層体を作製する。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
[材料の製造]
 以下の(1)~(3)において、正極層および負極層の製造に使用される正極活物質、負極活物質、固体電解質および焼結助剤ならびに固体電解質層の製造に使用される第1および第2固体電解質および焼結助剤を、後述する組成を有するように、製造した。
(1)ガーネット型固体電解質粉末(負極層の固体電解質粉末および固体電解質層の固体電解質粉末)の製造
 実施例および比較例で使用のガーネット型固体電解質粉末を以下の通り製造した。
 原料には水酸化リチウム一水和物LiOH・HO、水酸化ランタンLa(OH)、酸化ジルコニウムZrO,酸化ガリウムGa、酸化アルミニウムAl、酸化ニオブNb、酸化タンタルTa、酸化モリブテンMoOを用いた。
 各原料を、化学組成が所定の化学組成となるように秤量し、水を添加し、100mlのポリエチレン製ポリポットに封入してポット架上で150rpm、16時間回転し、原料を混合した。また、Li源である水酸化リチウム一水和物LiOH・HOは焼結時のLi欠損を考慮し、狙い組成に対し、3wt%過剰で仕込んだ。
 得られたスラリーを蒸発および乾燥させた後、900℃で5時間仮焼することで目的相を得た。
 得られた仮焼粉にトルエン-アセトンの混合溶媒を添加し、遊星ボールミルにて6時間粉砕した。
 この粉砕粉を乾燥し、固体電解質粉末とした。上記粉末はICP測定によって、組成ずれがないことを確認した。
(2)正極活物質粉末、負極活物質粉末およびLISICON型固体電解質粉末(固体電解質層の第1固体電解質粉末)の製造
 実施例および比較例で使用の正極活物質粉末、負極活物質粉末および第1固体電解質粉末を以下の通り製造した。
 原料には水酸化リチウム一水和物(LiOH・HO)、五酸化バナジウム(V)、ケイ素(Si)を用いた。
 各原料を、化学組成が所定の化学組成となるように適宜秤量し、水を添加し、100mlのポリエチレン製ポリポットに封入してポット架上で150rpm、16時間回転し、原料を混合した。
 得られたスラリーを蒸発および乾燥させた後、空気中にて800℃で5時間仮焼を行った。
 得られた仮焼粉に、アルコールを添加し、再度100mlのポリエチレン製ポリポットに封入してポット架上で150rpm、16時間回転し、粉砕を行った。
 粉砕粉を再度、900℃にて5時間本焼を行った。
 その後、得られた本焼粉にトルエン-アセトンの混合溶媒を添加し、遊星ボールミルにて6時間粉砕し、乾燥させたものを、負極活物質粉末および第1固体電解質粉末とした。上記粉末はICP測定によって、組成ずれがないことを確認した。
(3)焼結助剤粉末の製造
 実施例および比較例で使用の焼結助剤粉末を以下の通り製造した。
 原料には水酸化リチウム一水和物(LiOH・HO)、酸化ホウ素(B)、酸化アルミニウム(Al)を用いた。
 各原料を、化学組成が所定の化学組成となるように適宜秤量し、乳鉢にてよく混合した後、650℃で5時間仮焼を行った。
 その後、仮焼粉を再度乳鉢でよく粉砕、混合した後、680℃で40時間本焼を行った。
 得られた本焼粉にトルエン-アセトンの混合溶媒を添加し、遊星ボールミルにて6時間粉砕し、乾燥させたものを焼結助剤粉末とした。上記粉末はICP測定によって、組成ずれがないことを確認した。
(4)導電助剤の製造
・導電助剤A1(未被覆Ag粉)
 導電助剤A1として、球状Ag粉(平均一次粒径0.8μm、昭栄化学社製)を用いた。
・導電助剤B1~B5(粒状層被覆Ag粉)
 導電助剤への被覆材料の担持手法としては、粉バレルスパッタを用いた。ターゲットとして所定の被覆材料(LiZrO)を用いて、コア材料としての導電助剤粒子A1に被覆を行った。また、スパッタ時間を変化させることで、被覆材料の粒径(厚み)および被覆量を変化させた導電助剤粒子を得た。コア材料と被覆材料との比率およびスパッタ時間は、各実施例で得られる電極層が所定の被覆材料/Ag粒子の面積比率を有するように調整した。なお、スパッタレートを低下させることで膜状の被覆材料を得ることができる。
・導電助剤C1(粒状層被覆Ag粉)
 球状Ag粉(平均一次粒径2μm、昭栄化学社製)を、ビーズミル処理をすることにより、アスペクト(a/b)比4.5およびb値0.9μmの扁平状Ag粉を得た。
 コア材料として扁平状Ag粉を用いたこと以外、導電助剤B1と同様の方法により、扁平状Ag粉の表面に粒状LiZrO層を被覆した粒状層被覆Ag粉を得た。コア材料と被覆材料との比率およびスパッタ時間は、各実施例で得られる電極層が所定の被覆材料/Ag粒子の面積比率を有するように調整した。
・導電助剤D1(粒状層被覆Ag粉)
 被覆材料(ターゲット)としてLiSiOを用いたこと以外、導電助剤B1と同様の方法により、球状Ag粉の表面に粒状LiSiO層を被覆した粒状層被覆Ag粉を得た。コア材料と被覆材料との比率およびスパッタ時間は、各実施例で得られる電極層が所定の被覆材料/Ag粒子の面積比率および所定の被覆材料の平均厚みを有するように調整した。
・導電助剤E1(粒状層被覆Ag粉)
 被覆材料(ターゲット)としてLiTiOを用いたこと以外、導電助剤B1と同様の方法により、球状Ag粉の表面に粒状LiTiO層を被覆した粒状層被覆Ag粉を得た。コア材料と被覆材料との比率およびスパッタ時間は、各実施例で得られる電極層が所定の被覆材料/Ag粒子の面積比率および所定の被覆材料の平均厚みを有するように調整した。
・導電助剤F1(粒状層被覆Ag粉)
 被覆材料(ターゲット)としてCuOを用いたこと以外、導電助剤B1と同様の方法により、球状Ag粉の表面に粒状CuO層を被覆した粒状層被覆Ag粉を得た。コア材料と被覆材料との比率およびスパッタ時間は、各実施例で得られる電極層が所定の被覆材料/Ag粒子の面積比率および所定の被覆材料の平均厚みを有するように調整した。
・導電助剤G1(粒状層被覆Cu粉)
 コア材料として球状Cu粉を用いたこと以外、導電助剤B1と同様の方法により、球状Cu粉の表面に粒状LiZrO層を被覆した粒状層被覆Cu粉を得た。コア材料と被覆材料との比率およびスパッタ時間は、各実施例で得られる電極層が所定の被覆材料/Cu粒子の面積比率および所定の被覆材料の平均厚みを有するように調整した。
・導電助剤H1(粒状層被覆Ag粉)
 被覆材料(ターゲット)としてSiを用いたこと以外、導電助剤B1と同様の方法により、球状Ag粉の表面に粒状ZrN層を被覆した粒状層被覆Ag粉を得た。コア材料と被覆材料との比率およびスパッタ時間は、各実施例で得られる電極層が所定の被覆材料/Ag粒子の面積比率および所定の被覆材料の平均厚みを有するように調整した。
・導電助剤J1(粒状層被覆Ag粉)
 被覆材料(ターゲット)としてWCを用いたこと以外、導電助剤B1と同様の方法により、球状Ag粉の表面に粒状WC層を被覆した粒状層被覆Ag粉を得た。コア材料と被覆材料との比率およびスパッタ時間は、各実施例で得られる電極層が所定の被覆材料/Ag粒子の面積比率および所定の被覆材料の平均厚みを有するように調整した。
・導電助剤K1~K2(膜状層被覆Ag粉)
 スパッタレートを低減したこと以外、導電助剤B1と同様の方法により、球状Ag粉の表面に膜状LiZrO層を被覆した膜状層被覆Ag粉を得た。コア材料と被覆材料との比率およびスパッタ時間は、各実施例で得られる電極層が所定の被覆材料/Ag粒子の面積比率および所定の被覆材料の平均厚みを有するように調整した。
・導電助剤L1(膜状層被覆Ag粉)
 被覆材料(ターゲット)としてPdを用いたこと以外、導電助剤K1と同様の方法により、球状Ag粉の表面に膜状Pd層を被覆した膜状層被覆Ag粉を得た。コア材料と被覆材料との比率およびスパッタ時間は、各実施例で得られる電極層が所定の被覆材料/Ag粒子の面積比率および所定の被覆材料の平均厚みを有するように調整した。
・導電助剤M1(膜状層被覆Ag粉)
 被覆材料(ターゲット)としてWを用いたこと以外、導電助剤K1と同様の方法により、球状Ag粉の表面に膜状W層を被覆した膜状層被覆Ag粉を得た。コア材料と被覆材料との比率およびスパッタ時間は、各実施例で得られる電極層が所定の被覆材料/Ag粒子の面積比率および所定の被覆材料の平均厚みを有するように調整した。
[実施例1]
(固体電池の製造)
 図4Aに示す固体電池(単極評価用固体電池)を以下の方法により製造した。
・負極層用グリーンシート
 負極活物質としてLiVO(βII-LiVO型)、固体電解質粉末としてLi6.5La(Zr1.5Ta0.5)O12(ガーネット型)、導電助剤B2(すなわち粒状層被覆Ag粉)、焼結助剤としてLiBOを秤量し、ブチラール樹脂、アルコール、バインダと混練することで、負極層用スラリーを作製した。負極活物質、固体電解質、導電助剤、焼結助剤の体積比率は(60-x):35:x:5とした(10≦x≦25)。実施例1では、x=20とした。
 負極層用スラリーを、ドクターブレード法を用いてPETフィルム上にシート成形し、乾燥および剥離して、負極層用グリーンシートを得た。
・固体電解質層用グリーンシート
 第1固体電解質としてLi3.2(V0.8Si0.2)O(γII型)、第2固体電解質として(Li6.4Ga0.05Al0.15)LaZr12(ガーネット型)および焼結助剤としてLiBOを秤量し、ブチラール樹脂、アルコール、バインダと混練することで、固体電解質層用スラリーを作製した。第1固体電解質、第2固体電解質、および焼結助剤粉末の体積比率は47.5:47.5:5とした。
 固体電解質層用スラリーを、ドクターブレード法を用いてPETフィルム上にシート成形し、乾燥および剥離して、固体電解質層用シートを得た。
 次に、負極層用グリーンシートおよび固体電解質層用グリーンシートを相互に積層し、圧着することで積層体を得た。
 積層体を10mm×10mmの上面視寸法の正方形形状(平面視形状)に切断した。その後、図4Aに示すように、負極層用グリーンシートにおける固体電解質層用グリーンシートとは反対側の面に、負極集電層21のためのAgペースト塗布層を形成した。得られた積層体を2枚の多孔性のセッターで挟持し、400℃でバインダを除去した後、750℃にて焼結を行った。なお、焼結は、被覆材料の酸化反応を抑制するため、N/H混合雰囲気にて行った。
 その後、固体電解質層の負極層とは反対側の面に対極兼参照極としてLi金属50を張り付け、60℃、200MPaの条件でWIP(Warm Isostatic Pressing)処理を施すことで、固体電池を製造した。その後、固体電池を2032型のコインセルで封止して評価を行った。
 走査型電子顕微鏡を用いて、固体電解質層3、負極層2および負極集電層21の厚みを確認したところ、それぞれ100μm、15μmおよび5μmであった。固体電解質層、負極層の空隙率は10%以下であり、十分に焼結が進行していることを確認した。
 このような固体電池は、主面集電構造を有し、図4Aに示すように、電極層から矢印方向で集電を行うようになっている。図4Aの固体電池において、負極層2における電子拡散経路は15μmであった。
 また、焼結後の上面視寸法(X,Y方向の寸法)を測定したところ、8mm×8mmであった。本実施例の固体電池は焼結過程を経ることで空隙の減少に伴って収縮した。
(測定および評価)
・導電助剤(コア材料)の面積割合
 固体電池の積層構造(断面構造)を示すSEM画像(写真)を画像解析ソフト「A像君」(旭化成エンジニアリング社製)により撮影した。SEM画像を撮影する固体電池の断面は、正極層(本実施例では対極兼参照極)、固体電解質層および負極層等の積層方向Lに平行で、かつ正極端子および負極端子に垂直な断面であって、平面視における固体電池の重心を通る断面である。平面視における固体電池の重心とは、等質の材料(例えば、紙)を当該固体電池(平面視)の輪郭で切り取り、均衡をとって点で支えたときの当該点である。SEM画像の負極層中で確認された導電助剤の面積割合を求めた。当該面積割合は、任意の10箇所において測定された値の平均値であり、各視野の全面積に対する導電助剤(コア材料)の面積の割合である。
・被覆材料/コア材料(Ag粒子またはCu粒子)の面積比率
 導電助剤の面積割合の測定方法で撮影されたTEM画像の負極層中で確認された被覆材料およびコア材料の面積に基づいて、それらの面積割合を求めた。詳しくは、被覆材料/コア材料の面積比率は、任意の10箇所において測定された値の平均値であって、負極層における導電助剤としてのコア材料(Ag粒子またはCu粒子)に対する面積割合として求めた。
・被覆材料の平均厚み
 導電助剤の面積割合の測定方法で撮影されたTEM画像の負極層中で確認された被覆材料の厚みの平均値を求めた。詳しくは、被覆材料の厚みは、任意の100箇所において測定された値の平均値として求めた。
・負極活物質の利用率
 固体電池について、定電流充放電試験によって、0.05Cに相当する電流密度にて電圧範囲0.2V~3.0V(vs.Li/Li+)で電気量を測定して可逆容量を算出した。
 定電流充放電試験から得られた初期可逆電気量を負極活物質重量で除算することで、初回可逆容量を算出した。また、負極活物質中のV(バナジウム)が2電子反応進行した際の容量を理論容量とし、上記初期可逆容量を理論容量で除算することで利用率Rを算出した。
 ◎;90%≦R≦100%(最良);
 ○;80%≦R<90%(良);
 △;70%≦R<80%(可)(実用上問題なし);
 ×;R<70%(不可)(実用上問題あり)。
[実施例2~3]
 被覆導電助剤の含有量を変化させたこと以外、実施例1と同様の方法により、固体電池の製造、測定および評価を行った。
[比較例1~2]
 被覆導電助剤の代わりに導電助剤A1(未被覆導電助剤、球状Ag粉、平均一次粒径0.8μm、昭栄化学社製)を用いたこと、および導電助剤A1の含有量を変化させたこと以外、実施例1と同様の方法により、固体電池の製造、測定および評価を行った。
Figure JPOXMLDOC01-appb-T000009
 比較例1~2は、未被覆導電助剤を用い、かつ、当該未被覆導電助剤の含有量を変化させて作製した固体電池に関する。
 比較例1~2から、未被覆導電助剤を含有し、その含有量が低減することで、活物質の利用率が著しく低下することがわかった。これは、焼成時に未被覆導電助剤が合一化および玉化することで、導電パスが途切れて、電子が供給されず、充放電に寄与しない活物質が存在するためであると考えられる。
 実施例1~3は、高融点材料被覆を行った導電助剤を用い、かつ、当該導電助剤の含有量を変化させて作製した固体電池に関する。
 実施例1~3から、導電助剤として高融点材料を被覆した被覆型導電助剤を含有することで、導電助剤の含有量が低減しても、可逆容量が高い水準で維持できることがわかった。これは、被覆型導電助剤を用いることで、焼結時の合一化および玉化が抑制できることから、未被覆導電助剤に比べて、同じ含有量でも、負極層中の導電パスがつながりやすくなるためであると考えられる。
 またコア材料としての導電助剤の面積割合が低下すると、可逆容量の低下が見られた。このことより、被覆型導電助剤を含有している場合でも、より高い利用率が実現できる、好ましい含有量範囲が存在することがわかった。
 比較例2で得られた固体電池において、コア材料(導電助剤)の平均アスペクト比(a/b)は1.1であり、平均短辺長bは3.1μmであった。
 実施例2で得られた固体電池において、コア材料(導電助剤)の平均アスペクト比(a/b)は1.8であり、平均短辺長bは1.2μmであった。
 比較例2と実施例2の比較から、被覆型導電助剤を用いることよって、コア材料の平均アスペクト比が増大すること、および平均短辺長が低減することがわかる。これは、被覆型導電助剤を用いることで、焼結時のコア粒子の一体化および玉化が抑制されたことに由来していると考えられる。このように焼結時のコア粒子の一体化・および玉化が抑制されることで、電極層中の導電助剤の連結性の向上、および活物質との接触面積の向上がなされ、利用率が向上したと考えられる。
[実施例4~7]
 被覆導電助剤の種類および含有量を変更したこと以外、実施例1と同様の方法により、固体電池の製造、測定および評価を行った。
Figure JPOXMLDOC01-appb-T000010
 実施例4~7は、高融点材料の被覆量を変化させて作製した固体電池に関する。
 実施例4~7から、被覆材料/コア材料(導電助剤)の面積比率(%)が0.8%以上8%以下(特に0.8%以上4%以下)の時に利用率がより高くなり、より好ましいことがわかった。
 これは以下の現象によるものと考えられる:
・被覆型導電助剤の含有量が少ないときは、焼成時の合一化および玉化の抑制の効果が弱くなる;
・当該含有量が多くなりすぎると、合一化および玉化の抑制効果は発現するものの、活物質と導電助剤間の電荷移動を被覆粒子が阻害する。
[実施例8~10]
 被覆導電助剤の種類および含有量を変更したこと以外、実施例1と同様の方法により、固体電池の製造、測定および評価を行った
 実施例10で得られた固体電池において、コア材料(導電助剤)の平均アスペクト比(a/b)は4.3であり、平均短辺長bは1.2μmであった。
Figure JPOXMLDOC01-appb-T000011
 実施例2,8~10は、コア材料(導電助剤)の形状ならびに被覆材料の形態および平均厚みを変化させて作製した固体電池に関する。
 実施例8,9から、被覆材料が膜状の形態であっても、高い効果が得られることがわかった。被覆材料が膜状の形態をとる場合、被覆材料の厚みが小さくなることで、活物質の利用率が向上し、好ましいことがわかった。
 実施例2、10の比較から、導電助剤の形状が扁平状のものを用いることで、活物質の利用率が向上し、好ましいことがわかった。これは、球状に比べて、扁平状の形状をとる方が、導電パスをより形成しやすくなるためだと考えられる。
[実施例11~18]
 被覆導電助剤の種類および含有量を変更したこと以外、実施例1と同様の方法により、固体電池の製造、測定および評価を行った。
 実施例13のみにおいて、焼結は大気中にて行った。
[実施例19]
 負極集電層を形成しなかったこと、および負極層を当該負極層の端面で負極集電部と接触しつつ、該負極集電部を介して負極端子と電気的に接続される端面集電構造としたこと以外、実施例1と同様の方法により、固体電池の製造、ならびに測定および評価を行った。
 得られた固体電池は、図4Bに示すような断面構造を有していた。
 詳しくは、図4Bに示すように、負極層用グリーンシートにおける端面に、負極集電部210のためのAgペースト塗布層を形成したこと以外、図4Aの固体電池の製造方法と同様の方法により、図4Bの固体電池を製造した。
 このような固体電池は、端面集電構造を有し、図4Bに示すように、電極層から矢印方向で集電を行うようになっている。図4Bの固体電池において、負極層2における電子拡散経路は15μmであった。
 また、焼結後の上面視寸法(X,Y方向の寸法)を測定したところ、8mm×8mmであった。本実施例の固体電池は焼結過程を経ることで空隙の減少に伴って収縮した。
Figure JPOXMLDOC01-appb-T000012
 実施例11~18は、導電助剤(コア材料)および被覆材料の組成を変更して作製した固体電池に関する。
 表7から、被覆材料の組成を種々変化させても高い利用率が得られることがわかった。
 実施例14および16~18から、被覆材料に金属材料、金属窒化物、金属炭化物を用いても効果が得られることがわかったが、被覆材料に酸化物を用いた方が高い利用率が得られることがわかった。これは、被覆材料に酸化物を用いた方が活物質/導電助剤間の濡れ性を高める効果が高いためだと考えられる。
 実施例2、11~15の比較から、活物質中に含まれるVと置換し難い元素である、Zr、Cu、Pbを含む被覆材料を用いることで、特に高い効果が得られることがわかった。
 実施例15から、導電助剤として、Cuを用いた場合でも、Ag同様、被覆材料を用いることで、高い利用率が得られることが分かった。
[実施例20および比較例3]
 被覆導電助剤の種類および含有量を変更したこと、および負極活物質としてLi1.10.9を用いたこと以外、実施例1と同様の方法により、固体電池の製造、測定および評価を行った。
Figure JPOXMLDOC01-appb-T000013
 実施例20および比較例3は、電極活物質の組成を変化させた固体電池に関する。
 表8から、Li/V比率が1.2の活物質を用いた場合に比べて、Li/V比率が3の活物質を用いた場合は特に高融点材料の被覆による効果が得られることが分かった。これは、Li/V比率が3の活物質は特に金属導電助剤と濡れ性が低く、合一化および玉化が進行しやすい性質があり、酸化物被覆による玉化抑制の効果が得られやすいためだと考えられる。
 本発明の一実施形態に係る固体電池は、電池使用または蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の一実施形態に係る固体電池は、エレクトロニクス実装分野で用いることができる。本発明の一実施形態に係る固体電池はまた、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、スマートウォッチ、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、ウェアラブルデバイス、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。
200:被覆型導電助剤
201:導電助剤(コア材料)
202:被覆材料

Claims (20)

  1.  正極層、負極層および該正極層と該負極層との間に介在する固体電解質層を含む固体電池であって、
     前記正極層または負極層の少なくとも一方の電極層は金属材料から構成される導電助剤を含み、
     前記導電助剤は、前記電極層中、該導電助剤よりも融点が高い被覆材料によって被覆されている、固体電池。
  2.  前記被覆材料は金属酸化物である、請求項1に記載の固体電池。
  3.  前記電極層は電極活物質および固体電解質をさらに含み、
     前記被覆材料は、前記電極活物質および前記固体電解質とは材質が異なる材料である、請求項1または2に記載の固体電池。
  4.  前記被覆材料は、前記電極活物質に固溶しない元素を含有している、請求項3に記載の固体電池。
  5.  前記被覆材料は、前記導電助剤の周囲において、被覆層を形成し、
     前記被覆層は粒状形態または膜状形態を有している、請求項1~4のいずれかに記載の固体電池。
  6.  前記被覆材料は、前記導電助剤の周囲において、該導電助剤と接触して配置されつつ、500nm以下の寸法を有しており、
     前記寸法は、前記被覆材料が接触する前記導電助剤の表面に対する垂直方向における最大長である、請求項1~5のいずれかに記載の固体電池。
  7.  前記被覆材料の面積比率は導電助剤に対して0.1%以上15%以下である、請求項1~6のいずれかに記載の固体電池。
  8.  前記導電助剤は、Ag(銀)、Au(金),Pd(パラジウム),Pt(白金),Cu(銅)、Sn(錫)、Ni(ニッケル)およびそれらの合金からなる群から選択される1種以上の金属材料から構成されている、請求項1~7のいずれかに記載の固体電池。
  9.  前記導電助剤は、細長状導電助剤、球状導電助剤またはそれらの混合物である、請求項1~8のいずれかに記載の固体電池。
  10.  前記導電助剤は0.1μm以上4.0μm以下の平均短辺厚みを有する、請求項1~9のいずれかに記載の固体電池。
  11.  前記導電助剤の前記電極層に対する面積割合は5%以上35%以下である、請求項1~10のいずれかに記載の固体電池。
  12.  前記電極層は、該電極層の端面で電極集電部と接触しつつ、該電極集電部を介して電極端子と電気的に接続される端面集電構造を有している、請求項1~11のいずれかに記載の固体電池。
  13.  前記電極集電部は、前記正極層、前記固体電解質層および前記負極層の積層方向において、前記電極層の上面と面一の上面および前記電極層の下面と面一の下面を有している、請求項12に記載の固体電池。
  14.  前記電極層は負極層であり、
     前記負極層はV(バナジウム)に対するLiのモル比が2.0以上である負極活物質を含む、請求項1~13のいずれかに記載の固体電池。
  15.  前記負極活物質が、一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Aは、Na,K,Mg,Ca,およびZnからなる群から選択される1種類以上の元素である;Bは、Zn,Al,Ga,Si,Ge,Sn,P,As,Ti,Mo,W,Fe,Cr,およびCoからなる群から選択される1種類以上の元素である;0≦x≦1.0;0.5≦y≦1.0;aはAの平均価数である;bはBの平均価数である)
    で表される平均化学組成を有する、請求項14に記載の固体電池。
  16.  前記負極活物質がβII-LiVO型結晶構造またはγII-LiVO型結晶構造を有する、請求項14または15に記載の固体電池。
  17.  前記負極層は2μm以上50μm以下の厚みを有している、請求項14~16のいずれかに記載の固体電池。
  18.  前記負極層または前記固体電解質層の少なくとも一方は、焼結助剤をさらに含み、
     前記焼結助剤が、Li、BおよびOを含み、かつ、Bに対するLiのモル比(Li/B)が2.0以上である化学組成を有する化合物である、請求項14~17のいずれかに記載の固体電池。
  19.  前記正極層および前記負極層はリチウムイオンを吸蔵放出可能な層となっている、請求項1~18のいずれかに記載の固体電池。
  20.  前記固体電解質層は前記正極層および前記負極層と相互に焼結体同士の一体焼結をなしている、請求項1~19のいずれかに記載の固体電池。
PCT/JP2021/019326 2020-05-25 2021-05-21 固体電池 WO2021241429A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180026470.3A CN115413378A (zh) 2020-05-25 2021-05-21 固体电池
JP2022526976A JP7367868B2 (ja) 2020-05-25 2021-05-21 固体電池
EP21812641.5A EP4160745A1 (en) 2020-05-25 2021-05-21 Solid-state battery
US17/971,755 US20230060930A1 (en) 2020-05-25 2022-10-24 Solid-state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-090446 2020-05-25
JP2020090446 2020-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/971,755 Continuation US20230060930A1 (en) 2020-05-25 2022-10-24 Solid-state battery

Publications (1)

Publication Number Publication Date
WO2021241429A1 true WO2021241429A1 (ja) 2021-12-02

Family

ID=78744727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019326 WO2021241429A1 (ja) 2020-05-25 2021-05-21 固体電池

Country Status (5)

Country Link
US (1) US20230060930A1 (ja)
EP (1) EP4160745A1 (ja)
JP (1) JP7367868B2 (ja)
CN (1) CN115413378A (ja)
WO (1) WO2021241429A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121642A1 (ja) * 2012-02-17 2013-08-22 ソニー株式会社 二次電池、二次電池の製造方法、二次電池用電極および電子機器
JP5644951B2 (ja) 2011-09-12 2014-12-24 株式会社村田製作所 全固体電池用未焼結積層体、全固体電池およびその製造方法
WO2019044902A1 (ja) 2017-08-30 2019-03-07 株式会社村田製作所 共焼成型全固体電池
WO2019044901A1 (ja) 2017-08-30 2019-03-07 株式会社村田製作所 固体電解質及び全固体電池
WO2019093403A1 (ja) * 2017-11-13 2019-05-16 株式会社村田製作所 全固体電池
JP2020095934A (ja) * 2018-11-28 2020-06-18 パナソニックIpマネジメント株式会社 固体電解質およびそれを備えた蓄電デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644951B2 (ja) 2011-09-12 2014-12-24 株式会社村田製作所 全固体電池用未焼結積層体、全固体電池およびその製造方法
WO2013121642A1 (ja) * 2012-02-17 2013-08-22 ソニー株式会社 二次電池、二次電池の製造方法、二次電池用電極および電子機器
WO2019044902A1 (ja) 2017-08-30 2019-03-07 株式会社村田製作所 共焼成型全固体電池
WO2019044901A1 (ja) 2017-08-30 2019-03-07 株式会社村田製作所 固体電解質及び全固体電池
WO2019093403A1 (ja) * 2017-11-13 2019-05-16 株式会社村田製作所 全固体電池
JP2020095934A (ja) * 2018-11-28 2020-06-18 パナソニックIpマネジメント株式会社 固体電解質およびそれを備えた蓄電デバイス

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. R. WEST, J. SOLID STATE CHEM, vol. 4, 1972, pages 20 - 28
A. R. WEST, J. SOLID STATE CHEM., vol. 4, 1972, pages 20 - 28

Also Published As

Publication number Publication date
JPWO2021241429A1 (ja) 2021-12-02
CN115413378A (zh) 2022-11-29
JP7367868B2 (ja) 2023-10-24
EP4160745A1 (en) 2023-04-05
US20230060930A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
JP5731278B2 (ja) 全固体リチウムイオン電池
JP6904423B2 (ja) 共焼成型全固体電池
WO2018123479A1 (ja) リチウムイオン電池及びその製造方法
JP7306492B2 (ja) 固体電池
WO2021145312A1 (ja) 固体電池
US20230006200A1 (en) Solid-state battery
WO2022124348A1 (ja) 固体電池
US20230076099A1 (en) Solid electrolyte ceramic material and solid-state battery
WO2022107826A1 (ja) 固体電解質セラミックスおよび固体電池
WO2021241429A1 (ja) 固体電池
JP2015185290A (ja) 全固体電池及びその製造方法
JP7279845B2 (ja) 固体電池
WO2023090048A1 (ja) 負極活物質およびその負極活物質を含む固体電池
WO2022186087A1 (ja) 固体電池
WO2024070286A1 (ja) 固体電池
WO2023223810A1 (ja) 固体電解質セラミックスおよび固体電池
WO2023223712A1 (ja) 固体電解質セラミックスおよび固体電池
WO2022107801A1 (ja) 固体電解質セラミックスおよび固体電池
WO2022107824A1 (ja) 固体電解質セラミックスおよび固体電池
WO2022107804A1 (ja) 固体電解質セラミックスおよび固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526976

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021812641

Country of ref document: EP

Effective date: 20230102