WO2015046313A1 - 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池 - Google Patents
固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池 Download PDFInfo
- Publication number
- WO2015046313A1 WO2015046313A1 PCT/JP2014/075398 JP2014075398W WO2015046313A1 WO 2015046313 A1 WO2015046313 A1 WO 2015046313A1 JP 2014075398 W JP2014075398 W JP 2014075398W WO 2015046313 A1 WO2015046313 A1 WO 2015046313A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- solid electrolyte
- mol
- electrolyte composition
- solid
- Prior art date
Links
- 0 CC1(*Cc(cc2N)ccc2N)CC=C(*)C(*)=CC1 Chemical compound CC1(*Cc(cc2N)ccc2N)CC=C(*)C(*)=CC1 0.000 description 7
- ZCXYZQYJTDAYPU-UHFFFAOYSA-N CC(CC(C(C1)N)N)C1N Chemical compound CC(CC(C(C1)N)N)C1N ZCXYZQYJTDAYPU-UHFFFAOYSA-N 0.000 description 1
- KAMGOKSXKBHPHL-UHFFFAOYSA-N Nc(c(N)c1N)ccc1N Chemical compound Nc(c(N)c1N)ccc1N KAMGOKSXKBHPHL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/0804—Manufacture of polymers containing ionic or ionogenic groups
- C08G18/0819—Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
- C08G18/0823—Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/227—Catalysts containing metal compounds of antimony, bismuth or arsenic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/2815—Monohydroxy compounds
- C08G18/282—Alkanols, cycloalkanols or arylalkanols including terpenealcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/285—Nitrogen containing compounds
- C08G18/2865—Compounds having only one primary or secondary amino group; Ammonia
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3203—Polyhydroxy compounds
- C08G18/3206—Polyhydroxy compounds aliphatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/34—Carboxylic acids; Esters thereof with monohydroxyl compounds
- C08G18/348—Hydroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/44—Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4833—Polyethers containing oxyethylene units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
- C08G18/5024—Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/6692—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/265—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/40—Polyamides containing oxygen in the form of ether groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/42—Polyamides containing atoms other than carbon, hydrogen, oxygen, and nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/44—Polyester-amides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1007—Preparatory processes from tetracarboxylic acids or derivatives and diamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1042—Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1046—Polyimides containing oxygen in the form of ether bonds in the main chain
- C08G73/105—Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1075—Partially aromatic polyimides
- C08G73/1082—Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/24—Homopolymers or copolymers of amides or imides
- C08L33/26—Homopolymers or copolymers of acrylamide or methacrylamide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a solid electrolyte composition, a binder for an all-solid secondary battery, a battery electrode sheet using the same, and an all-solid secondary battery.
- An electrolyte solution is used for the lithium ion battery.
- Attempts have been made to make an all-solid secondary battery in which the electrolyte solution is replaced with a solid electrolyte and the constituent materials are all solid.
- the greatest advantage of using an inorganic solid electrolyte is high safety.
- a flammable material such as a carbonate-based solvent is used as the medium.
- an all-solid secondary battery made of an inorganic compound capable of making the electrolyte nonflammable is positioned.
- the second advantage of the all-solid-state secondary battery is that it is suitable for increasing the energy density by stacking electrodes. Specifically, a battery having a structure in which an electrode and an electrolyte are directly arranged in series can be obtained. At this time, since the metal package for sealing the battery cell, the copper wire and the bus bar for connecting the battery cell can be omitted, the energy density of the battery is greatly increased. In addition, good compatibility with the positive electrode material capable of increasing the potential is also mentioned as an advantage.
- Non-Patent Document 1 Developed vigorously as a next-generation lithium ion secondary battery due to the above advantages (see Non-Patent Document 1).
- an inorganic all-solid-state secondary battery there is a disadvantage because the electrolyte is a hard solid. For example, the interface resistance between solid particles is increased.
- Patent Document 1 a method of sintering a solid electrolyte at a high temperature (Patent Document 1), a method using a jig for pressurizing a cell (see Patent Document 2), and a method of pressing the entire element with a resin (Patent Document 1)
- Patent Document 1 For example, a method of firing a green sheet containing a solid electrolyte after pressing (see Patent Document 4) has been proposed.
- the present invention is capable of suppressing an increase in interfacial resistance between solid particles or between solid particles and a current collector in an all-solid-state secondary battery, regardless of pressurization. It is an object of the present invention to provide a solid electrolyte composition and a binder for an all-solid secondary battery, and a battery electrode sheet and an all-solid secondary battery using the solid electrolyte composition and the binder for the all-solid-state secondary battery capable of realizing excellent binding properties.
- the present inventors have studied and experimented from various aspects regarding the material forming the solid electrolyte layer. As a result, it has been found that by using a polymer binder composed of a polymer having a hard segment and a soft segment in the molecule, it is possible to suppress an increase in interfacial resistance related to the solid electrolyte layer.
- the present invention has been completed based on this finding and has the following means.
- a solid electrolyte composition comprising an inorganic solid electrolyte having a conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table and a polymer binder, wherein the polymer binder comprises a hard segment and a soft segment
- the polymer constituting the polymer binder is an alcoholic hydroxyl group, phenolic hydroxyl group, mercapto group, carboxy group, sulfo group, sulfonamide group, phosphoric acid group, cyano group, amino group, zwitterion-containing group, metal
- R 1 and R 5 each independently represents an oxygen atom or NR N.
- RN represents a hydrogen atom or an alkyl group.
- R 2 to R 4 and R 6 to R 10 each independently represents a hydrogen atom or an alkyl group. * Represents a binding site.
- the polymer constituting the polymer binder has, as a hard segment, at least one of repeating structures represented by the following groups I of formulas (I-1) to (I-5): [1] to [6] Solid electrolyte composition as described in any one of these.
- R 11 and R 12 each independently represents a divalent linking group that is an alkylene group, an arylene group, or a combination thereof.
- R 13 represents an alkyl group, an alkenyl group, an aryl group, or an aralkyl group.
- R 14 represents an aromatic or aliphatic tetravalent linking group.
- R a represents a hydrogen atom or an alkyl group. * Represents a binding site.
- the polymer constituting the polymer binder has at least one of the repeating structures represented by the following groups II of formulas (II-1) to (II-5) as a soft segment: [1] to [6] Solid electrolyte composition as described in any one of these.
- R 21 represents a hydrogen atom or an alkyl group.
- R 22 represents a substituent containing a polyalkylene oxide chain, a polycarbonate chain, or a polyester chain and having a mass average molecular weight of 200 or more and 200,000 or less.
- R 23 represents a linking group containing a polyalkylene oxide chain, a polycarbonate chain, or a polyester chain and having a mass average molecular weight of 200 or more and 200,000 or less.
- * represents a binding site.
- R 12a represents an arylene group having 6 to 22 carbon atoms, an alkylene group having 1 to 15 carbon atoms, or a combination thereof.
- R 23a represents an alkylene group having 2 to 6 carbon atoms.
- R 23b represents an alkylene group having an acidic group having an acid dissociation constant pKa of 14 or less or a basic group having a pKa of a conjugate acid of 14 or less.
- R 23c represents an alkylene group having a radical or cationically polymerizable group.
- R 23d represents a diol residue having a molecular weight of 500 or more and 10,000 or less and a glass transition temperature of ⁇ 100 ° C. or more and 50 ° C. or less.
- x 40 to 60 mol%
- y 1 represents 0 to 40 mol%
- y 2 represents 1 to 20 mol%
- y 3 represents 1 to 40 mol%
- y 4 represents 1 to 40 mol%
- x + y 1 + y 2 + Y 3 + y 4 is 100 mol%.
- * Represents a binding site.
- the ratio of the total mass of the inorganic solid electrolyte and, if necessary, the electrode active material to the mass of the polymer binder is in the range of 1,000 to 1, in any one of [1] to [10]
- An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is [1] ]
- a binder for an all-solid secondary battery comprising a polymer having a repeating structure represented by the following formula (3).
- R 12a represents an arylene group having 6 to 22 carbon atoms, an alkylene group having 1 to 15 carbon atoms, or a combination thereof.
- R 23a represents an alkylene group having 2 to 6 carbon atoms.
- R 23b represents an alkylene group having an acidic group having an acid dissociation constant pKa of 14 or less or a basic group having a pKa of a conjugate acid of 14 or less.
- R 23c represents an alkylene group having a radical or cationically polymerizable group.
- R 23d represents a diol residue having a molecular weight of 500 or more and 10,000 or less and a glass transition temperature of ⁇ 100 ° C. or more and 50 ° C. or less.
- x 40 to 60 mol%
- y 1 represents 0 to 40 mol%
- y 2 represents 1 to 20 mol%
- y 3 represents 1 to 40 mol%
- y 4 represents 1 to 40 mol%
- x + y 1 + y 2 + Y 3 + y 4 is 100 mol%. * Represents a binding site.
- each substitution may be the same as or different from each other. Further, when a plurality of substituents and the like are close to each other, they may be bonded to each other or condensed to form a ring.
- the solid electrolyte composition of the present invention When used as a material for a solid electrolyte layer or an active material layer of an all-solid-state secondary battery, the solid electrolyte composition can be used between solid particles or between a solid particle and a current collector, regardless of pressure. An increase in the interface resistance can be suppressed, and an excellent effect is achieved in that good binding properties can be realized. As described above, according to the present invention, in the all-solid-state secondary battery, an increase in interface resistance between solid particles or between solid particles and a current collector can be suppressed without being pressurized, and good binding can be achieved.
- FIG. 1 is a cross-sectional view schematically showing an all solid lithium ion secondary battery according to a preferred embodiment of the present invention.
- FIG. 2 is a side sectional view schematically showing the test apparatus used in the examples.
- the solid electrolyte composition of the present invention contains an electrolyte and a polymer binder composed of a polymer having a hard segment and a soft segment.
- a polymer binder composed of a polymer having a hard segment and a soft segment.
- FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
- the all-solid-state secondary battery 10 of this embodiment includes a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in that order as viewed from the negative electrode side. Have.
- Each layer is in contact with each other and has a laminated structure. By adopting such a structure, at the time of charging, electrons (e ⁇ ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein.
- the solid electrolyte composition of the present invention is preferably used as a molding material for the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer, and particularly preferably used for molding the solid electrolyte layer.
- the thicknesses of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 are not particularly limited. In consideration of general battery dimensions, 10 to 1,000 ⁇ m is preferable, and 3 to 400 ⁇ m is more preferable.
- the inorganic solid electrolyte (A) in the present invention refers to a solid electrolyte made of an inorganic compound.
- the solid electrolyte means a solid electrolyte capable of moving ions inside.
- the inorganic solid electrolyte (A) may be referred to as an ion conductive inorganic solid electrolyte in order to distinguish it from an electrolyte salt (supporting electrolyte) described later.
- the ionic conductivity of the inorganic solid electrolyte (A) is not particularly limited.
- 1 ⁇ 10 ⁇ 6 S / cm or more is preferable, 1 ⁇ 10 ⁇ 5 S / cm or more is more preferable, 1 ⁇ 10 ⁇ 4 S / cm or more is more preferable, and 1 ⁇ 10 ⁇ 3 S. / Cm or more is particularly preferable.
- the upper limit is not particularly limited.
- 1 S / cm or less is realistic.
- the measurement method of ionic conductivity shall be based on the non-pressurization conditions measured in the Example mentioned later unless otherwise indicated.
- the inorganic solid electrolyte (A) does not contain organic compounds such as polymer compounds and complex salts, organic solid electrolytes, polymer electrolytes represented by PEO (polyethylene oxide), etc., LiTFSI (lithium bistrifluoromethanesulfonimide) It is clearly distinguished from organic electrolyte salts represented by Further, since the inorganic solid electrolyte (A) is a non-dissociable solid in a steady state, it does not dissociate or release into cations and anions even in the liquid.
- organic compounds such as polymer compounds and complex salts, organic solid electrolytes, polymer electrolytes represented by PEO (polyethylene oxide), etc.
- LiTFSI lithium bistrifluoromethanesulfonimide
- the inorganic solid electrolyte (A) contains a metal belonging to Group 1 or Group 2 of the periodic table, and has conductivity of this metal ion (preferably lithium ion), but does not have electron conductivity in general. Is.
- the inorganic solid electrolyte (A) is contained in at least one of the positive electrode active material layer, the inorganic solid electrolyte layer, and the negative electrode active material layer.
- a solid electrolyte material applied to an all-solid secondary battery can be appropriately selected and used.
- Representative examples of the inorganic solid electrolyte (A) include (i) a sulfide-based inorganic solid electrolyte and (ii) an oxide-based inorganic solid electrolyte.
- a sulfide-based inorganic solid electrolyte (hereinafter, also simply referred to as a sulfide-based solid electrolyte) contains sulfur (S) and belongs to Group 1 or Group 2 of the periodic table. It is preferable to include a metal to which the material belongs, to have ionic conductivity, and to have electronic insulation. For example, a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (7) can be given.
- M represents an element selected from B, Zn, Si, Cu, Ga and Ge.
- a to d represent the composition ratio of each element, and a: b: c: d satisfies 1 to 12: 0 to 0.2: 1: 2 to 9, respectively.
- the composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound in producing the sulfide-based solid electrolyte.
- the sulfide-based solid electrolyte may be amorphous (glass) or crystallized (glass ceramics), or only part of it may be crystallized.
- the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and the Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 65:35 to 85:15, more preferably 68:32 to 75:25.
- the lithium ion conductivity is preferably 1 ⁇ 10 ⁇ 4 S / cm or more, and more preferably 1 ⁇ 10 ⁇ 3 S / cm or more.
- a compound using a raw material composition containing Li 2 S and a sulfide of an element belonging to Group 13 to Group 15 can be given.
- Examples include Li 2 S—S—S—P 2 S 5 , Li 2
- Li 2 S—P 2 S 5 , Li 2 S—GeS 2 —Ga 2 S 3 , Li 2 S—GeS 2 —P 2 S 5 , Li 2 S—SiS 2 —P 2 S 5 , Li 2 A crystalline and / or amorphous raw material composition made of S—SiS 2 —Li 4 SiO 4 or Li 2 S—SiS 2 —Li 3 PO 4 is preferable because it has high lithium ion conductivity.
- Examples of a method for synthesizing a sulfide-based solid electrolyte material using such a raw material composition include an amorphization method.
- the amorphization method include a mechanical milling method and a melt quenching method. Among these, the mechanical milling method is preferable because processing at normal temperature is possible and the manufacturing process can be simplified.
- oxide-based inorganic solid electrolyte contains an oxygen atom (O), and is group 1 or group 2 of the periodic table. It is preferable to include a metal belonging to the above, to have ionic conductivity, and to have electronic insulation.
- LIICON Lithium super ionic conductor
- LiTi 2 P 3 O 12 having a NASICON (Natium super ionic conductor) type crystal structure
- a phosphorus compound containing Li, P and O is also preferable.
- lithium phosphate Li 3 PO 4
- LiPON obtained by substituting part of oxygen of lithium phosphate with nitrogen
- LiPOD LiPOD
- D is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, Au, etc.
- LiAON A is at least one selected from Si, B, Ge, Al, C, Ga and the like
- LiAON is at least one selected from Si, B, Ge, Al, C, Ga and the like
- Li 1 + xb + yb (Al, Ga) xb (Ti, Ge) 2-xb Si yb P 3-yb O 12 (where 0 ⁇ xb ⁇ 1, 0 ⁇ yb ⁇ 1) has high lithium ion conductivity. It is preferable because it is chemically stable and easy to handle. These may be used alone or in combination of two or more.
- the lithium ion conductivity of the oxide-based solid electrolyte is preferably 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 1 ⁇ 10 ⁇ 5 S / cm or more, and further preferably 5 ⁇ 10 ⁇ 5 S / cm or more.
- the inorganic solid electrolyte (A) does not absorb moisture from the viewpoint of suppressing a decrease in ionic conductivity due to hydrolysis and water electrolysis during energization. Sulfide-based inorganic solid electrolytes particularly easily react with moisture in the atmosphere, and are likely to decompose to generate hydrogen sulfide. Since the polymer binder (B) in this invention has a hard segment and a soft segment in a molecule
- an oxide-based inorganic solid electrolyte it is preferable to use an oxide-based inorganic solid electrolyte. Since the oxide-based inorganic solid electrolyte generally has a high hardness, the interface resistance is likely to increase in the all-solid secondary battery. Since the polymer binder (B) in the present invention has a hard segment and a soft segment in the molecule, an increase in interface resistance is effectively suppressed. In particular, it is assumed that the oxide-based inorganic solid electrolyte and the polymer binder (B) in the present invention act to form a more suitable adsorption state. Also from this viewpoint, it is particularly preferable to use an oxide-based inorganic solid electrolyte. An inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
- the average particle size of the inorganic solid electrolyte is not particularly limited. In addition, 0.001 micrometer or more is preferable and 0.01 micrometer or more is more preferable. As an upper limit, 1,000 micrometers or less are preferable and 100 micrometers or less are more preferable.
- the concentration of the inorganic solid electrolyte (A) in the solid electrolyte composition is preferably 50% by mass or more, and 80% by mass in 100% by mass of the solid component, considering both the battery performance and the reduction / maintenance effect of the interface resistance. % Or more is more preferable, and 90 mass% or more is more preferable. From the same viewpoint, the upper limit is preferably 99.9% by mass or less, more preferably 99% by mass or less, and further preferably 98% by mass or less.
- the polymer binder (B) used in the present invention preferably contains hard segments and soft segments in a predetermined ratio.
- a hard segment is a rigid group such as an aromatic group, heteroaromatic group, or aliphatic alicyclic group in the main skeleton, or a bonding part that enables intermolecular packing by intermolecular hydrogen bonding or ⁇ - ⁇ interaction. It can be described as a segment having generally rigid and strong cohesive force and a fiber form.
- the compound consisting of the site has a high glass transition temperature (Tg), and typically indicates 100 ° C. or higher.
- the soft segment can be described as a segment that has a long-chain linear group or a long-chain branching group in the main chain and is soft and stretchable. That whose glass transition temperature is low and which shows 50 degrees C or less is said.
- the hard segment contains at least one of an amide bond, a urea bond, a urethane bond, and an imide bond.
- the hard segment is more preferably a group selected from the following group I.
- R 11 and R 12 are each independently an alkylene group (the number of carbon atoms is preferably 1-12, more preferably 1-6, and still more preferably 1-3).
- An arylene group (the number of carbon atoms is preferably 6 to 22, more preferably 6 to 14, and further preferably 6 to 10), or a combination thereof.
- Preferred examples of the linking group for R 11 and R 12 include a group represented by the following formula (M2) or (M3).
- the formula (I-1) and the formula (I-2) are linked to an oxygen atom or an imino group (> NR N ) to form a urethane group or a urea group.
- R 13 represents an alkyl group (the number of carbon atoms is preferably 1 to 12, more preferably 1 to 6, and further preferably 1 to 3), and an alkenyl group (the number of carbon atoms). 2 to 12, preferably 2 to 6, more preferably 2 to 3, and an aryl group (the carbon number is preferably 6 to 22, more preferably 6 to 14, and further preferably 6 to 10), aralkyl A group (the carbon number is preferably 7 to 23, more preferably 7 to 15, and still more preferably 7 to 11).
- R a represents a hydrogen atom or an alkyl group (the carbon number is preferably 1 to 12, more preferably 1 to 6, and further preferably 1 to 3).
- the main chain ethylene group may be optionally substituted with a substituent (methyl group, ethyl group, propyl group, halogen atom, hydroxy group, etc.).
- R 13 may form a ring, and for example, may be bonded with R a in formula (I-4) to form a pyrrolidone ring or ⁇ -caprolactam ring substituted at the N-position.
- the ethylene group in the main chain may have a substituent. Examples of the substituent include a methyl group, an ethyl group, a halogen atom, and a cyano group.
- an arbitrary linking group may be interposed between the ethylene group of the main chain and the CO group or NH group of the substituent.
- R 14 represents an aromatic or aliphatic tetravalent linking group.
- R 14 is preferably a linking group represented by any one of the following formulas (i) to (iii).
- X 1 represents a single bond or a divalent linking group.
- the divalent linking group is preferably an alkylene group having 1 to 6 carbon atoms (for example, a methylene group, an ethylene group, or a propylene group).
- the propylene group is preferably a 1,3-hexafluoro-2,2-propanediyl group.
- L represents —CH 2 ⁇ CH 2 — or —CH 2 —.
- R X and R Y each independently represents a hydrogen atom or a substituent. * Represents a binding site with a carbonyl group.
- R X and R Y is an alkyl group (preferably having a carbon number of 1 to 12, preferably 1 to 6, more preferably 1 to 3) or an aryl group (preferably having a carbon number of 6 to 22). 6 to 14 are more preferable, and 6 to 10 are more preferable.
- a soft segment contains at least any one of a polyalkylene oxide chain (a polyethylene oxide chain and a polypropylene oxide chain are preferable), a polycarbonate chain, a polyester chain, and a silicone chain.
- the soft segment is more preferably a group selected from the following group II.
- R 21 represents a hydrogen atom or an alkyl group (the carbon number is preferably 1 to 12, more preferably 1 to 6, and further preferably 1 to 3).
- R 22 represents a substituent having a mass average molecular weight of 200 or more and 200,000 or less containing a polyalkylene oxide chain (a polyethylene oxide chain or a polypropylene oxide chain is preferred), a polycarbonate chain, or a polyester chain.
- the mass average molecular weight is preferably 500 or more, more preferably 700 or more, and further preferably 1,000 or more. As an upper limit, 100,000 or less is preferable and 10,000 or less is more preferable.
- R 22 preferably has an alkyl group at the terminal (the number of carbon atoms is preferably 1 to 12, and more preferably 1 to 6).
- alkyl group may have an ether group (—O—), a thioether group (—S—), a carbonyl group (> C ⁇ O), or an imino group (> NR N ).
- R 22 may have a heteroatom-containing group or a carbon-carbon unsaturated group defined in the third component described later.
- R 23 is a linking group having a mass average molecular weight of 200 or more and 200,000 or less containing a polyalkylene oxide chain (a polyethylene oxide chain or a polypropylene oxide chain is preferred), a polycarbonate chain, or a polyester chain.
- the mass average molecular weight is preferably 500 or more, more preferably 700 or more, and further preferably 1,000 or more. As an upper limit, 100,000 or less is preferable and 10,000 or less is more preferable.
- R 23 preferably has an alkyl group (the number of carbon atoms is preferably 1-12, more preferably 1-6) at the terminal.
- alkyl group may have an ether group (—O—), a thioether group (—S—), a carbonyl group (> C ⁇ O), or an imino group (> NR N ).
- R 23 may have a heteroatom-containing group or a carbon-carbon unsaturated group defined in the third component described later.
- the mass average molecular weight of R 22 and R 23, can be determined as mass average molecular weight in terms of polystyrene in GPC for monomers prior to incorporation into the polymer.
- the ratio of the hard segment component and the soft segment component of the polymer constituting the polymer binder (B) in the present invention is preferably 50 mol% or more, more preferably 60 mol% or more, and 70 mol% of the hard segment component in all polymers.
- the above is more preferable.
- 99 mol% or less is preferable, 90 mol% or less is more preferable, and 80 mol% or less is further more preferable.
- the soft segment component is preferably 1 mol% or more, more preferably 2 mol% or more, and still more preferably 5 mol% or more in the total polymer.
- 50 mol% or less is preferable, 30 mol% or less is more preferable, and 20 mol% or less is further more preferable.
- the molar ratio of the soft segment component to 100 mol of the hard segment component is preferably 1 mol or more, more preferably 10 mol or more, and further preferably 50 mol or more.
- 1,000 mol or less is preferable, 500 mol or less is more preferable, and 100 mol or less is further more preferable.
- the polymer binder (B) in the present invention preferably further has a repeating unit having a heteroatom-containing group.
- the heteroatom-containing group include alcoholic hydroxyl groups (hydroxyalkyl groups: preferably having 1 to 6 carbon atoms, more preferably 1 to 3), phenolic hydroxyl groups (hydroxyphenyl groups), mercapto groups, carboxy groups, It preferably has at least one of a sulfo group, a sulfonamide group, a phosphate group, a cyano group, an amino group, a zwitterion-containing group, a metal hydroxide group, and a metal alkoxide group.
- the amino group is represented by -NR N 2, R N has the same meaning as R N below imino groups (> NR N), and the preferred range is also the same.
- the zwitterion-containing group has a betaine structure (the number of carbon atoms is preferably 1 to 12, and more preferably 1 to 6), and examples of the cation moiety include quaternary ammonium, sulfonium, and phosphonium.
- the part includes carboxylate and sulfonate.
- the metal hydroxide is specifically a hydroxyl silyl group or a hydroxyl titanyl group.
- the metal alkoxide includes an alkoxysilyl group (the number of carbon atoms is preferably 1-12, more preferably 1-6), and an alkoxy titanyl group (the number of carbon atoms is preferably 1-12, more preferably 1-6). More preferred are trimethoxysilyl group, methyldimethoxysilyl group, triethoxysilyl group, methyldiethoxysilyl group, and trimethoxytitanyl group.
- the repeating unit having a hetero atom-containing group is preferably 0 mol% to 30 mol% in the entire polymer.
- this repeating unit having a heteroatom-containing group By incorporating this repeating unit having a heteroatom-containing group into the polymer constituting the polymer binder, the lithium ion conductivity is improved, or the interaction with the inorganic solid electrolyte is generated and the adhesiveness is expected to be improved. This is preferable.
- the polymer binder (B) in the present invention preferably has a carbon-carbon unsaturated group as the third component.
- the carbon-carbon unsaturated group include a carbon-carbon double bond and a carbon carbon-element triple bond.
- Specific examples of the group containing a carbon-carbon double bond include an acryl group, a methacryl group, a vinyl group, an allyl group, and a maleimide group.
- Specific examples of the carbon-carbon triple bond include a terminal ethynyl group, an internal ethynyl group, and a propargyl group.
- the group having a carbon-carbon unsaturated group is more preferably a group represented by the following formula (1) or (2).
- R 1 and R 5 each independently represents an oxygen atom or an imino group (> NR N ).
- RN represents a hydrogen atom or an alkyl group (the carbon number is preferably 1 to 12, more preferably 1 to 6, and further preferably 1 to 3).
- R 2 to R 4 and R 6 to R 10 each independently represent a hydrogen atom or an alkyl group (the carbon number is preferably 1 to 12, more preferably 1 to 6, and still more preferably 1 to 3).
- the repeating unit having a carbon-carbon unsaturated group is preferably 0 mol% to 30 mol% in the entire polymer.
- the third component may be present in either the hard segment part or the soft segment part in the polymer chain forming the binder. Further, it may be present in the polymer side chain or may be present at the end of the polymer main chain.
- the polymer which comprises the high molecular binder (B) which can be used for this invention is demonstrated.
- the polymer in the present invention has a hard segment and a soft segment. In the following, description will be made mainly on the hard segment component.
- polymer having an amide bond examples include polyamide and polyacrylamide.
- Polyamide can be obtained by condensation polymerization of diamine and dicarboxylic acid or by ring-opening polymerization of lactam.
- diamine component examples include ethylenediamine, 1-methylethyldiamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodeca
- diamine component examples include aliphatic diamines such as methylene diamine, and other examples include cyclohexane diamine, bis (4,4′-aminohexyl) methane, and paraxylylene diamine.
- Jeffamine manufactured by Huntsman Co., Ltd.
- carboxylic acid component examples include aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, sebacic acid, pimelic acid, speric acid, azelaic acid, undecanoic acid, undecadioic acid, dodecadioic acid, and dimer acid, 1,4-cyclohexane
- examples thereof include dicarboxylic acid, paraxylylene dicarboxylic acid, metaxylylene dicarboxylic acid, phthalic acid, 2,6-naphthalene dicarboxylic acid, 4,4′-diphenyl dicarboxylic acid, and the like.
- the diamine part may be a soft segment, or the dicarboxylic acid part may be a soft segment.
- Polyacrylamide is obtained by radical polymerization of acrylamide monomers.
- Polyacrylamide can be copolymerized with any radical monomer as long as it is copolymerizable with an acrylamide monomer.
- Examples of the copolymerization method include random polymerization, graft polymerization, and block polymerization. In order to construct polyacrylamide as a hard segment, block polymerization is more preferable.
- the acrylamide monomer can be synthesized from primary amine and acrylic acid chloride or primary amine and acrylic acid anhydride.
- the monomer copolymerizable with the acrylamide monomer is preferably capable of functioning as a soft segment, and examples thereof include radical polymerizable oligomers having a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, a polyester chain, and a silicone chain.
- polyethylene glycol monomethyl ether acrylamide, polyethylene glycol monomethyl ether acrylate, polyethylene glycol monomethyl ether methacrylate, polypropylene glycol monomethyl ether methacrylate, polyester methacrylate, polycarbonate methacrylate, methacrylate modified silicone oil and the like are preferably used.
- the soft segment of the amide polymer can be introduced, for example, by polycondensing a long-chain alkyl group that may be interrupted by a heteroatom, for example, a terminal diamine having an ethylene oxide chain or a propylene oxide chain, and a dicarboxylic acid.
- a heteroatom for example, a terminal diamine having an ethylene oxide chain or a propylene oxide chain
- a dicarboxylic acid for example, “Jeffamine” series (manufactured by Huntsman Co., Ltd., Mitsui Chemicals Fine Co., Ltd.) can be used as a commercial product.
- Polyurea may be mentioned as a polymer having a urea bond.
- Polyurea can be synthesized by condensation polymerization of a diisocyanate compound and a diamine compound in the presence of an amine catalyst. Examples of the diisocyanate include the following compounds.
- Diisocyanate Compound The diisocyanate compound is not particularly limited and may be appropriately selected. Examples thereof include a compound represented by the following formula (M1).
- R M1 is a divalent aliphatic or aromatic carbonization that may have a substituent (eg, an alkyl group, an aralkyl group, an aryl group, an alkoxy group, or a halogen atom is preferable).
- a substituent eg, an alkyl group, an aralkyl group, an aryl group, an alkoxy group, or a halogen atom is preferable.
- R M1 is optionally other functional group that does not react with an isocyanate group, such as an ester group (a group having an ester bond, such as an acyloxy group, an alkoxycarbonyl group, or an aryloxycarbonyl group), a urethane group, an amide group, and Any of the ureido groups may be contained.
- the diisocyanate compound represented by the formula (M1) is not particularly limited, and examples thereof include diisocyanates, triisocyanate compounds (compounds described in paragraph numbers 0034 to 0035 of JP-A-2005-250438), ethylenic compounds, and the like. Examples thereof include products obtained by addition reaction with 1 equivalent of monofunctional alcohol having a unsaturated group or monofunctional amine compound (compound described in paragraph Nos. 0037 to 0040 of JP-A-2005-250438). It is done.
- the group represented by the following formula (M2) is included.
- X represents a single bond, —CH 2 —, —C (CH 3 ) 2 —, —SO 2 —, —S—, —CO— or —O—. From the viewpoint of binding properties, —CH 2 — or —O— is preferable, and —CH 2 — is more preferable.
- the alkylene group exemplified here may be substituted with a halogen atom (preferably a fluorine atom).
- R M2 to R M5 each independently represent a hydrogen atom, a monovalent organic group, a halogen atom, —OR M6 , —N (R M6 ) 2 or —SR M6 .
- R M6 represents a hydrogen atom or a monovalent organic group.
- the monovalent organic group include an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, —OR M7 [wherein R M7 is a monovalent organic group (preferably an alkyl group having 1 to 20 carbon atoms).
- R M2 to R M5 are preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or —OR M7, more preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and even more preferably a hydrogen atom.
- the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
- the diisocyanate compound represented by the formula (M1) includes a group represented by the following formula (M3).
- X has the same meaning as X in formula (M2), and the preferred range is also the same.
- composition ratio of the aromatic groups represented by the formulas (M1) to (M3) is preferably 10 mol% or more, more preferably 10 mol% to 50 mol%, still more preferably 30 mol% to 50 mol% in the polymer.
- diisocyanate compound represented by the formula (M1) are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 2,4-tolylene diisocyanate and 2,4-tolylene diisocyanate. Dimer, 2,6-tolylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate, 3,3'-dimethyl Aromatic diisocyanate compounds such as biphenyl-4,4′-diisocyanate; Aliphatic diisocyanate compounds such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, dimer acid diisocyanate; isophorone diisocyanate Alicyclic diisocyanate compounds such as 4,4'-methylenebis (cyclohexyl)
- a soft segment of a polymer having a urea bond can be carried out by condensation polymerization of a terminal diamine having a long-chain alkyl group (for example, ethylene oxide chain or propylene oxide chain) that may be interrupted by a hetero atom and an isocyanate.
- a terminal diamine having a long-chain alkyl group for example, ethylene oxide chain or propylene oxide chain
- an isocyanate for example, “Jeffamine” series (manufactured by Huntsman Co., Ltd., Mitsui Chemicals Fine Co., Ltd.) can be used as a commercial product.
- Polyimide which has an imide bond
- a polyimide is obtained by adding a tetracarboxylic dianhydride and a diamine to form a polyamic acid and then ring-closing.
- tetracarboxylic dianhydride include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) and pyromellitic dianhydride (PMDA).
- 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA), oxydiphthalic dianhydride, diphenylsulfone-3,4,3 ′, 4′-tetracarboxylic dianhydride, Bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2 , 3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, p-phenylenebis (trimellitic acid monoester acid anhydride), p-b
- the tetracarboxylic acid component preferably contains at least s-BPDA and / or PMDA.
- s-BPDA is preferably contained in an amount of 50 mol% or more, more preferably 70 mol% or more, and further preferably 75 mol% or more in 100 mol% of the tetracarboxylic acid component. Since tetracarboxylic acid dihydrate desirably functions as a hard segment, it preferably has a rigid benzene ring.
- diamines used for polyimide include: 1) One benzene nucleus diamine such as paraphenylenediamine (1,4-diaminobenzene; PPD), 1,3-diaminobenzene, 2,4-toluenediamine, 2,5-toluenediamine, 2,6-toluenediamine, etc. ,
- Diaminodiphenyl ethers such as 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4 ′ -Diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4 ' -Diaminodiphenylmethane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 3,3 ', 5,5'-tetramethyl-4,4'-diaminodiphenylmethane, bis (4-aminophenyl) sulfide, 4,4'-diaminobenz
- the diamine to be used can be appropriately selected according to desired characteristics.
- diamine for example, the diamine structure described above can be used. Since diamine is preferably used as a soft segment, a structure having amino groups at both ends of a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, and a polyester chain is preferable.
- the soft segment-containing diamine for example, “Jeffamine” series (manufactured by Huntsman Co., Ltd., Mitsui Chemicals Fine Co., Ltd.) can be used as a commercial product.
- a polyurethane is mentioned as a polymer which has a urethane bond. It can be obtained by condensation polymerization of an isocyanate compound and a diol compound in the presence of a titanium, tin, or bismuth catalyst. As the isocyanate compound, the aforementioned compounds can be used.
- diol compound examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, neopentyl glycol, 1,3-butylene glycol, 1,6-hexane.
- Diethylene glycol triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol, octaethylene glycol, di-1,2-propylene glycol, tri-1,2-propylene glycol, tetra-1,2- Propylene glycol, hexa-1,2-propylene glycol, di-1,3-propylene glycol, tri-1,3-propylene glycol, tetra-1,3-propylene glycol, di-1,3-butylene glycol, tri- 1,3-butylene glycol, hexa-1,3-butylene glycol, polyethylene glycol having an average molecular weight of 200, polyethylene glycol having an average molecular weight of 400, polyethylene glycol having an average molecular weight of 600, an average molecule 1,000 polyethylene glycol, polyethylene glycol having an average molecular weight of 1,500, polyethylene glycol having an average molecular weight of 2,000, polyethylene glycol having
- the diol compound is also available as a commercial product.
- PE-68 New Pole PE-71, New Pole PE-74, New Pole PE-75, New Pole PE-78, New Pole PE-108, New Pole PE-128, New Pole BPE-20, New Pole BPE- 20F, New Pole BPE-20NK, New Pole BPE-20T, New Pole BPE-20G, New Pole BPE-40, New Pole BPE-60, New Pole BPE-100, New Pole BPE-180, New Pole BP-2P, New Pole BPE-23P, New Pole BPE-3P, New Pole BPE-5P, New Pole 50HB-100, New Pole 50HB-260, New Pole 50HB-400, New Pole 50HB-660, New Pole 50HB-2000, New Pole 50HB Examples include polyether diol compounds such as ⁇ 5100, polyester diol compounds, polycarbonate diol compounds, and silicone diol compounds.
- Polyester diol compounds include Polylite series (DIC), Kuraray polyol P series, Kuraray polyol F series, Kuraray polyol N series, Kuraray polyol PMNA series (manufactured by Kuraray Co., Ltd.), Plaxel series (Daicel Chemical Co., Ltd.) Can be suitably used.
- the polycarbonate diol compound the Duranol series (Asahi Kasei Chemicals Co., Ltd.), Etanacol series (Ube Industries, Ltd.), Plaxel CD series (Daicel Chemical Co., Ltd.), Kuraray polyol C series (( Kuraray Co., Ltd.) can be preferably used.
- silicone diol compound carbinol-modified silicone oil manufactured by Shin-Etsu Chemical Co., Ltd. can be used. Specifically, KF-6000, KF-6001, KF-6002, KF-6003 and the like can be preferably used.
- the diol preferably has a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, a polyester chain, or a silicone chain.
- the diol is a carbon-carbon unsaturated group or polar group (alcoholic hydroxyl group, phenolic hydroxyl group, mercapto group, carboxy group, sulfo group, sulfonamide group, phosphoric acid group, cyano group, amino group, zwitterion-containing group, It preferably has a metal hydroxide group or a metal alkoxide group.
- the diol having a carbon-carbon unsaturated group or a polar group for example, 2,2-bis (hydroxymethyl) propionic acid can be used.
- the diol compound containing a carbon-carbon unsaturated group compounds described in JP-A 2007-187836 as well as Bremer GLM (manufactured by NOF Corporation) can be suitably used as commercial products.
- monoalcohol or monoamine can be used as a polymerization terminator.
- a polymerization terminator is introduced into the terminal site of the polyurethane main chain.
- Polyalkylene glycol monoalkyl ether polyethylene glycol monoalkyl ether and polypropylene monoalkyl ether are preferred
- polycarbonate diol monoalkyl ether polycarbonate diol monoalkyl ether
- polyester diol monoalkyl ether polyester monoalcohol, etc.
- a monoalcohol or monoamine having a polar group or a carbon-carbon unsaturated group it is possible to introduce a polar group or a carbon-carbon unsaturated group at the end of the polyurethane main chain.
- Examples include ethanol, 3-hydroxyglutaronitrile, 2-aminoethanol, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-aminoethyl methacrylate, and 2-aminoethyl acrylate.
- the isocyanate compound portion functions as a hard segment and the diol compound portion functions as a soft segment.
- the effect of the polymer binder will be described including estimation.
- the hard segment gives pseudo-crosslinking characteristics between polymer chains. Therefore, the high elasticity modulus and the adhesiveness with respect to an inorganic material are shown.
- the soft segment contributes to imparting ion conductivity.
- the solid electrolyte and active material are dispersed in a softer soft segment by dissolving and mixing with the polymer. Furthermore, if necessary, the solid segment and the active material can be kept in the soft segment by having an adsorptive group or a polymerizable group at the soft segment site. Therefore, the ion concentration in the soft segment is improved, and the improvement of ion conductivity is expected. It is understood that the excellent effects of the present invention are exhibited through these actions.
- the polymer binder (B) in the present invention is preferably a binder for an all-solid-state secondary battery made of a polymer having a repeating structure represented by the following formula (3).
- R 12a represents an arylene group having 6 to 22 carbon atoms, an alkylene group having 1 to 15 carbon atoms, or a combination thereof.
- R 23a represents an alkylene group having 2 to 6 carbon atoms.
- R 23b represents an alkylene group having an acidic group having an acid dissociation constant pKa of 14 or less or a basic group having a pKa of a conjugate acid of 14 or less.
- R 23c represents an alkylene group having a radical or cationically polymerizable group.
- R 23d represents a diol residue having a molecular weight of 500 or more and 10,000 or less and a glass transition temperature of ⁇ 100 ° C. or more and 50 ° C. or less.
- x 40 to 60 mol%
- y 1 represents 0 to 40 mol%
- y 2 represents 1 to 20 mol%
- y 3 represents 1 to 40 mol%
- y 4 represents 1 to 40 mol%
- x + y 1 + y 2 + Y 3 + y 4 is 100 mol%. * Represents a binding site.
- R 12a has the same meaning as R 12 in formula (I-2), and the preferred range is also the same.
- the carbon number of the alkylene group for R 23a is preferably 2 to 5, and more preferably 2 to 4.
- the number of carbon atoms of the alkylene group of R 23b is preferably 1 to 12, more preferably 2 to 6, and further preferably 2 to 4.
- the acid group pKa in R 23b is preferably 10 or less, more preferably 6 or less, and the pKa of the basic group conjugate acid is preferably 10 or less, more preferably 6 or less.
- the acid dissociation constant pKa means an acid dissociation constant in water at 25 ° C.
- Specific examples of the acidic group include a carboxy group, a sulfo group, a phosphoric acid group, a phosphonic acid group, a phenolic hydroxyl group, an alkylsulfonylcarbamoyl group, and an acetylacetonate group.
- a carboxy group a sulfo group, or a phosphoric acid group.
- a carboxy group is more preferable.
- Specific examples of the basic group include an amino group, a pyridinyl group, and an amidine group, and among them, an amino group is preferable.
- the number of carbon atoms of the alkylene group for R 23c is preferably 1 to 12, more preferably 2 to 6, and still more preferably 2 to 3.
- Examples of the radical or cation polymerizable group for R 23c include the aforementioned carbon-carbon unsaturated groups, and the preferred ranges are also the same. Especially, group represented by Formula (1) is preferable.
- the molecular weight of R 23d is preferably from 700 to 5,000, more preferably from 1,000 to 3,000.
- the glass transition temperature is preferably ⁇ 80 ° C. or higher and 50 ° C. or lower, and more preferably ⁇ 80 ° C. or higher and 0 ° C. or lower.
- Specific examples of the diol residue of R 23d include a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, a polyester chain, and a silicone chain, and among them, a polyethylene oxide chain or a polypropylene oxide chain is preferable.
- the glass transition temperature (Tg) is measured by using a differential scanning calorimeter “X-DSC7000” (manufactured by SII Nanotechnology Co., Ltd.) under the following conditions using a dry sample. The measurement is performed twice on the same sample, and the second measurement result is adopted. Measurement chamber atmosphere: Nitrogen (50 mL / min) Temperature increase rate: 5 ° C / min Measurement start temperature: -100 ° C Measurement end temperature: 200 ° C Sample pan: Aluminum pan Mass of measurement sample: 5 mg Calculation of Tg: Tg is calculated by rounding off the decimal point of the intermediate temperature between the lowering start point and the lowering end point of the DSC chart.
- y 1 is preferably 1 to 40 mol%
- y 2 is preferably 1 to 10 mol%
- y 3 is preferably 1 to 20 mol%
- y 4 is preferably 10 to 40 mol%.
- the water concentration of the polymer constituting the polymer binder (B) in the present invention is preferably 100 ppm (mass basis) or less, and Tg is preferably 100 ° C. or less.
- the solvent used for the polymerization reaction of the polymer is not particularly limited. It is desirable to use a solvent that does not react with the inorganic solid electrolyte or the active material and that does not decompose them.
- a solvent that does not react with the inorganic solid electrolyte or the active material and that does not decompose them.
- hydrocarbon solvents toluene, heptane, xylene
- ester solvents ethyl acetate, propylene glycol monomethyl ether acetate
- ether solvents tetrahydrofuran, dioxane, 1,2-diethoxyethane
- ketone solvents acetone
- Methyl ethyl ketone Methyl ethyl ketone, cyclohexanone
- nitrile solvents acetonitrile, propionitrile, butyronitrile, isobutyronitrile
- halogen solvents dichloromethane
- the polymer constituting the polymer binder (B) in the present invention preferably has a mass average molecular weight of 1,000 or more, more preferably 5,000 or more, and still more preferably 10,000 or more. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, and 100,000 or less is more preferable.
- the molecular weight of the polymer means a mass average molecular weight unless otherwise specified. The mass average molecular weight can be measured as a molecular weight in terms of polystyrene by GPC.
- GPC device HLC-8220 manufactured by Tosoh Corporation
- G3000HXL + G2000HXL is used as the column
- the flow rate is 1 mL / min at 23 ° C.
- detection is performed by RI.
- the eluent can be selected from THF (tetrahydrofuran), chloroform, NMP (N-methyl-2-pyrrolidone), m-cresol / chloroform (manufactured by Shonan Wako Pure Chemical Industries, Ltd.) and dissolves. If present, use THF.
- the concentration of the polymer binder (B) in the solid electrolyte composition is 0 at a solid component of 100% by mass in consideration of a good reduction in interfacial resistance when used in an all-solid secondary battery and its maintainability. 1 mass% or more is preferable, 1 mass% or more is more preferable, and 2 mass% or more is more preferable. As an upper limit, from a viewpoint of a battery characteristic, 50 mass% or less is preferable, 20 mass% or less is more preferable, and 10 mass% or less is further more preferable.
- the mass ratio [(A + E) / B] of the total mass (total amount) of the inorganic solid electrolyte (A) and, if necessary, the electrode active material (E) to the mass of the polymer binder (B) is 1
- the range of 1,000 to 1 is preferred. This ratio is more preferably 500 to 2, and further preferably 100 to 10.
- the lithium salt that can be used in the present invention is preferably a lithium salt that is usually used in this type of product, and is not particularly limited. For example, those described below are preferable.
- Inorganic lithium salts inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
- (L-3) Oxalatoborate salt lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
- Rf 1 and Rf 2 each independently represents a perfluoroalkyl group.
- the electrolyte used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
- the content of the lithium salt is preferably 0 parts by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the solid electrolyte (A).
- As an upper limit 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
- a dispersion medium in which the above components are dispersed may be used.
- the dispersion medium include a water-soluble organic solvent. Specifically, methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, 2-methyl Alcohol compounds such as -2,4-pentanediol, 1,3-butanediol, 1,4-butanediol, alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol) Monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene
- amide solvents include N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, ⁇ -caprolactam
- Examples include formamide, N-methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropionamide, hexamethylphosphoric triamide, and the like.
- ketone solvent examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, dipropyl ketone, diisopropyl ketone, diisobutyl ketone, and cyclohexanone.
- ether solvent examples include dimethyl ether, diethyl ether, tetrahydrofuran, cyclopentyl methyl ether, dimethoxyethane, 1,4-dioxane, and the like.
- aromatic solvent examples include benzene, toluene, xylene, chlorobenzene, dichlorobenzene and the like.
- Examples of the aliphatic solvent include hexane, heptane, octane, decane, and dodecane.
- nitrile solvent examples include acetonitrile, propionitrile, butyronitrile, isobutyronitrile, and benzonitrile.
- the solid electrolyte composition of the present invention may contain a positive electrode active material.
- the solid electrolyte composition containing a positive electrode active material can be used as a composition for a positive electrode material. It is preferable to use a transition metal oxide for the positive electrode active material, and it is preferable to have a transition element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, and V). Further, mixed element M b (elements of the first (Ia) group of the metal periodic table other than lithium, elements of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si , P, B, etc.) may be mixed.
- Transition metal oxides include, for example, specific transition metal oxides including those represented by any of the following formulas (MA) to (MC), or other transition metal oxides such as V 2 O 5 and MnO 2 Can be mentioned.
- the positive electrode active material a particulate positive electrode active material may be used.
- a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, and the specific transition metal oxide is preferably used.
- Transition metal oxides oxides containing the above transition element M a is preferably exemplified.
- a mixed element M b (preferably Al) or the like may be mixed.
- the mixing amount is preferably 0 to 30 mol% with respect to the amount of the transition metal. That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
- M 1 are as defined above M a, and the preferred range is also the same.
- a represents 0 to 1.2 (preferably 0.2 to 1.2), and preferably 0.6 to 1.1.
- b represents 1 to 3 and is preferably 2.
- a part of M 1 may be substituted with the mixed element M b .
- the transition metal oxide represented by the formula (MA) typically has a layered rock salt structure.
- the transition metal oxide represented by the formula (MA) is more preferably represented by the following formulas.
- g is synonymous with the above-mentioned a, and its preferable range is also the same.
- j represents 0.1 to 0.9.
- i represents 0 to 1; However, 1-ji is 0 or more.
- k has the same meaning as b above, and the preferred range is also the same.
- Specific examples of these transition metal compounds include LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.01 Al 0.05 O 2 (nickel cobalt aluminum acid Lithium [NCA]), LiNi 0.33 Co 0.33 Mn 0.33 O 2 (nickel manganese lithium cobaltate [NMC]), LiNi 0.5 Mn 0.5 O 2 (lithium manganese nickelate) .
- transition metal oxide represented by the formula (MA) partially overlaps, but when expressed in different notations, the following are also preferable examples.
- M 2 are as defined above M a, and the preferred range is also the same.
- c represents 0 to 2, preferably 0.2 to 2, and more preferably 0.6 to 1.5.
- d represents 3 to 5 and is preferably 4.
- the transition metal oxide represented by the formula (MB) is more preferably represented by the following formulas.
- n is synonymous with d, and its preferable range is also the same.
- p represents 0-2. Examples of these transition metal compounds include LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
- Preferred examples of the transition metal oxide represented by the formula (MB) include those represented by the following formulas.
- an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
- the lithium-containing transition metal oxide is preferably a lithium-containing transition metal phosphate, and among them, one represented by the following formula (MC) is also preferable.
- e represents 0 to 2 (preferably 0.2 to 2), and preferably 0.5 to 1.5.
- f represents 1 to 5, and preferably 1 to 2.
- M 3 represents one or more elements selected from the group consisting of V, Ti, Cr, Mn, Fe, Co, Ni, and Cu.
- M 3 represents, other mixing element M b above, Ti, Cr, Zn, Zr, may be substituted by other metals such as Nb.
- Specific examples include, for example, olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and Li 3.
- Monoclinic Nasicon type vanadium phosphate salts such as V 2 (PO 4 ) 3 (lithium vanadium phosphate) can be mentioned.
- the a, c, g, m, and e values representing the composition of Li are values that change due to charge and discharge, and are typically evaluated as values in a stable state when Li is contained.
- the composition of Li is shown as a specific value, which also changes depending on the operation of the battery.
- the average particle size of the positive electrode active material used in the nonaqueous secondary battery of the present invention is not particularly limited. In addition, 0.1 ⁇ m to 50 ⁇ m is preferable. In order to make the positive electrode active substance have a predetermined particle size, an ordinary pulverizer or classifier may be used.
- the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
- the concentration of the positive electrode active material is not particularly limited.
- 20 to 90% by mass is preferable, and 40 to 80% by mass is more preferable with respect to 100% by mass of the solid component.
- the solid electrolyte composition of the present invention may contain a negative electrode active material.
- the solid electrolyte composition containing the negative electrode active material can be used as a composition for a negative electrode material.
- the negative electrode active material those capable of reversibly inserting and releasing lithium ions are preferable.
- Such materials are not particularly limited, and are carbonaceous materials, metal oxides such as tin oxide and silicon oxide, metal composite oxides, lithium alloys such as lithium alone and lithium aluminum alloys, and lithiums such as Sn and Si. And metals capable of forming an alloy. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
- carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of safety.
- the metal composite oxide is preferably capable of inserting and extracting lithium.
- the material is not particularly limited, and preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
- the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
- Examples thereof include carbonaceous materials obtained by firing artificial graphite such as petroleum pitch, natural graphite, and vapor-grown graphite, and various synthetic resins such as PAN-based resins and furfuryl alcohol resins.
- various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro
- Examples thereof include spheres, graphite whiskers, and flat graphite.
- carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization. Further, the carbonaceous material preferably has the face spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473. The carbonaceous material does not need to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, and the like. It can also be used.
- an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done.
- amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
- the strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. Is preferably 5 times or less, and more preferably not having a crystalline diffraction line.
- amorphous metal oxides and chalcogenides are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table are more preferable. Further preferred are oxides and chalcogenides composed of one kind of Al, Ga, Si, Sn, Ge, Pb, Sb, Bi or a combination of two or more kinds thereof.
- preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , such as SnSiS 3 may preferably be mentioned. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
- the average particle size of the negative electrode active material is preferably 0.1 ⁇ m to 60 ⁇ m.
- a well-known pulverizer or classifier is used.
- a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
- wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
- classification is preferably performed.
- the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
- composition formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
- ICP inductively coupled plasma
- Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloys, lithium A metal that can be alloyed with is preferable.
- the negative electrode active material preferably contains a titanium atom. More specifically, Li 4 Ti 5 O 12 has excellent rapid charge / discharge characteristics due to small volume fluctuations during the insertion and release of lithium ions, and it is possible to improve the life of lithium ion secondary batteries by suppressing electrode deterioration. This is preferable. By combining a specific negative electrode and a specific electrolyte, the stability of the secondary battery is improved even under various usage conditions.
- the concentration of the negative electrode active material is not particularly limited. In the solid electrolyte composition, 10 to 80% by mass is preferable, and 20 to 70% by mass is more preferable in 100% by mass of the solid component.
- the example which makes the solid electrolyte composition of this invention contain a positive electrode active material thru
- the present invention is not construed as being limited thereby.
- a solid electrolyte layer may be formed using the solid electrolyte composition according to the preferred embodiment of the present invention in combination with such a commonly used positive electrode material or negative electrode material.
- the positive and negative current collectors are preferably electron conductors that do not cause chemical changes.
- the positive electrode current collector is preferably made by treating the surface of aluminum or stainless steel with carbon, nickel, titanium or silver in addition to aluminum, stainless steel, nickel, titanium, etc. Among them, aluminum and aluminum alloys are more preferable. preferable.
- the current collector of the negative electrode is preferably aluminum, copper, stainless steel, nickel, or titanium, and more preferably aluminum, copper, or a copper alloy.
- the shape of the current collector is usually a film sheet. It is also possible to use nets, punched materials, lath bodies, porous bodies, foamed bodies, molded bodies of fiber groups, and the like.
- the thickness of the current collector is not particularly limited. 1 ⁇ m to 500 ⁇ m is preferable. Moreover, it is also preferable that the current collector surface is roughened by surface treatment.
- the all-solid-state secondary battery may be manufactured by a conventional method. Specifically, there is a method in which the solid electrolyte composition of the present invention is applied onto a metal foil serving as a current collector to form a battery electrode sheet having a coating film formed thereon.
- the composition used as a positive electrode material is apply
- the solid electrolyte composition of the present invention is applied to form a solid electrolyte layer.
- a composition to be a negative electrode material is applied on the solid electrolyte layer to form a negative electrode active material layer.
- a structure of an all-solid-state secondary battery in which a solid electrolyte layer is sandwiched between a positive electrode layer and a negative electrode layer can be obtained by stacking a negative electrode side current collector (metal foil) on the negative electrode active material layer. it can.
- coating method of said each composition should just follow a conventional method.
- the composition for forming the positive electrode active material layer after applying the composition for forming the positive electrode active material layer, the composition for forming the inorganic solid electrolyte layer (solid electrolyte composition) and the composition for forming the negative electrode active material layer, respectively
- a drying treatment may be performed, or a drying treatment may be performed after the multilayer coating.
- coating each composition to a separate base material you may laminate
- the drying temperature is not particularly limited.
- the lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and the upper limit is preferably 300 ° C or lower, more preferably 250 ° C or lower. By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state. Thereby, in an all-solid secondary battery, good binding properties and non-pressurized ion conductivity can be obtained.
- the all solid state secondary battery of the present invention can be applied to various uses. There are no particular restrictions on the application mode. For example, when installed in an electronic device, a notebook computer, pen input personal computer, mobile personal computer, electronic book player, mobile phone, cordless phone, pager, handy terminal, mobile fax, mobile copy , Portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. .
- Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
- a battery electrode sheet obtained by forming the solid electrolyte composition on a metal foil and forming a film.
- An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is An all-solid secondary battery formed of the solid electrolyte composition.
- An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
- this invention presupposes an inorganic all-solid-state secondary battery.
- the all-solid-state secondary battery is classified into an organic (polymer) all-solid-state secondary battery that uses a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state secondary battery that uses the above LLT, LLZ, or the like. .
- the application of the polymer compound to the inorganic all-solid secondary battery is not hindered, and the polymer compound can be applied as a binder for the positive electrode active material, the negative electrode active material, and the inorganic solid electrolyte particles.
- the inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the above LLT and LLZ.
- the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
- electrolyte a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations (Li ions) is sometimes called an electrolyte.
- electrolyte salt When distinguishing from the electrolyte as the above ion transport material, this is called “electrolyte salt” or “supporting electrolyte”.
- electrolyte salt examples include LiTFSI (lithium bistrifluoromethanesulfonimide).
- the term “composition” means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
- Neostan U-600 manufactured by Nitto Kasei Co., Ltd .; bismuth tris (2-ethylhexanoate)] was added and stirred at 60 ° C. for 5 hours. . 1.5 g of methanol was added and the mixture was further heated and stirred at 60 ° C. for 1 hour to obtain a 30% by mass polymer solution of Exemplified Compound (2).
- the mass average molecular weight obtained by GPC was 56,700.
- Neostan U-600 manufactured by Nitto Kasei Co., Ltd .; bismuth tris (2-ethylhexanoate)
- the mixture was heated and stirred at 60 ° C. for 5 hours.
- 1.5 g of methanol was added and the mixture was further heated and stirred at 60 ° C. for 1 hour to obtain a 30% by mass polymer solution of Exemplified Compound (3).
- the mass average molecular weight obtained by GPC was 32,600.
- the glass transition temperature obtained by the following DSC was ⁇ 8 ° C.
- Tg glass transition temperature
- X-DSC7000 manufactured by SII Nanotechnology Co., Ltd.
- Measurement chamber atmosphere Nitrogen (50 mL / min)
- Temperature increase rate 5 ° C / min
- Measurement start temperature -100 ° C
- Measurement end temperature 200 ° C
- Sample pan Aluminum pan Mass of measurement sample: 5 mg
- Calculation of Tg Tg was calculated by rounding off the decimal point of the intermediate temperature between the lowering start point and the lowering end point of the DSC chart.
- the temperature was raised to 60 ° C. in a dry atmosphere, and the mixture was heated and stirred for 30 minutes. And stirred with heating. Thereafter, 2 g of methanol was added to terminate the reaction.
- the polymer solution was dropped into 500 mL of hexane, reprecipitation operation was performed, the supernatant was decanted, and the resulting precipitate was heated and dried at 80 ° C. under vacuum to obtain Exemplified Compound (33).
- the mass average molecular weight obtained by GPC was 55,100.
- the glass transition temperature obtained by DSC was 13 ° C.
- Example 1 Preparation of Solid Electrolyte Composition
- a 45 mL container manufactured by Fritsch
- 180 pieces of zirconia beads having a diameter of 5 mm were charged, and 9.0 g of inorganic solid electrolyte LLT (manufactured by Toshima Seisakusho Co., Ltd.)
- an exemplary compound (1) 2.7 g of 30% polymer solution (solid content: 0.8 g) and 0.2 g of LiTFSI (manufactured by Aldrich) were added, and 15.0 g of methyl ethyl ketone was added as a dispersion medium.
- Table 1 summarizes the configuration of the solid electrolyte composition.
- solid electrolyte compositions S-1 to S-11 are the solid electrolyte compositions of the present invention
- solid electrolyte compositions T-1 to T-3 are comparative solid electrolyte compositions.
- the solid electrolyte composition is abbreviated as a composition.
- PEG is used in the secondary battery described in Japanese Patent Application Laid-Open No. 2007-066703
- PVdF is used in the secondary battery disclosed in Japanese Patent Application Laid-Open No. 2001-015162.
- composition for secondary battery negative electrode A negative electrode active material 100 described in the column of negative electrode in Table 2 in a planetary mixer (TK Hibismix, manufactured by PRIMIX), 5 parts by mass of acetylene black, 270 parts by mass of N-methylpyrrolidone. Mass parts and 75 parts by mass of the solid electrolyte composition were added, and the mixture was stirred at a rotation speed of 40 rpm for 1 hour to prepare the secondary battery negative electrode composition shown in Table 2.
- composition for a positive electrode of the secondary battery prepared above was applied onto an aluminum foil having a thickness of 20 ⁇ m with an applicator with adjustable clearance, heated at 80 ° C. for 1 hour, and further at 110 ° C.
- the coating solvent was dried by heating for a period of time. Then, it heated and pressurized so that it might become arbitrary density using the heat press machine, and the positive electrode for secondary batteries was obtained.
- the solid electrolyte composition described in the column of electrolyte in Table 2 was applied by an applicator with adjustable clearance, and then at 80 ° C. for 1 hour. After heating, it was further heated at 110 ° C. for 1 hour, and the polymerizable composition was polymerized and cured simultaneously with drying. Thereafter, the composition for a secondary battery negative electrode prepared above was further applied, heated at 80 ° C. for 1 hour, then further heated at 110 ° C. for 1 hour, and the polymerizable composition was polymerized and cured simultaneously with drying. A copper foil having a thickness of 20 ⁇ m was combined on the negative electrode layer, and heated and pressurized to a desired density using a heat press machine. 101-117 and c11-c13 were prepared.
- the electrode sheet for the secondary battery produced above was cut out into a disk shape having a diameter of 14.5 mm to produce a coin battery.
- the sample was sandwiched between jigs capable of applying a pressure of 500 kgf / cm 2 between the electrodes from the outside of the coin battery, and used for various electrochemical measurements.
- the ion conductivity under pressure (500 kgf / cm 2 ) and non-pressurization was determined by an alternating current impedance method in a constant temperature bath at 30 ° C.
- the test body shown in FIG. 2 was used for pressurization of the battery.
- 11 is an upper support plate
- 12 is a lower support plate
- 13 is a coin battery
- S is a screw.
- Table 2 summarizes the configuration and evaluation results of the secondary battery electrode sheet.
- test no. 101 to 117 are secondary battery electrode sheets using the solid electrolyte composition of the present invention.
- c11 to c13 are secondary battery electrode sheets using comparative solid electrolyte compositions.
- the solid electrolyte composition is abbreviated as electrolyte.
- LMO LiMn 2 O 4 lithium manganate
- LTO Li 4 Ti 5 O 12 lithium titanate (trade name “Enamite LT-106”, manufactured by Ishihara Sangyo Co., Ltd.)
- LCO LiCoO 2 lithium cobalt oxide
- NMC Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 nickel, manganese, lithium cobalt oxide
- the secondary battery electrode sheet using the solid electrolyte composition of the present invention and the laminated battery have excellent binding properties and excellent ion conductivity in a non-pressurized state. .
- the solid electrolyte and electrode active material are not peeled off during the handling of the electrode sheet in production, and the electrochemical contact at the solid interface can be maintained. It can be seen that it is.
- the binding property is inferior, and the ionic conductivity in the non-pressurized state is also greatly inferior.
- the binding property is inferior and it is expected that the battery characteristics will be adversely affected.
- the binding property is slightly inferior, and the ion conductivity in the non-pressurized state is greatly inferior.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Conductive Materials (AREA)
Abstract
Description
全固体二次電池の第二の利点は、電極のスタックによる高エネルギー密度化に適していることである。具体的には、電極と電解質を直接並べて直列化した構造を持つ電池にすることができる。このとき、電池セルを封止する金属パッケージ、電池セルをつなぐ銅線やバスバーを省略することができるので、電池のエネルギー密度が大幅に高められる。また、高電位化が可能な正極材料との相性の良さなども利点として挙げられる。
このような状況を鑑み、本発明は、全固体二次電池において、加圧によらずに、固体粒子間または固体粒子と集電体間等の界面抵抗の上昇を抑えることができ、かつ良好な結着性を実現できる固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池を提供することを課題とする。
〔2〕高分子バインダーを構成するハードセグメントが、アミド結合、ウレア結合、ウレタン結合およびイミド結合の少なくともいずれかの結合を含有する〔1〕に記載の固体電解質組成物。
〔3〕高分子バインダーを構成するソフトセグメントが、ポリアルキレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖およびシリコーン鎖の少なくともいずれかを含有する〔1〕または〔2〕に記載の固体電解質組成物。
〔4〕高分子バインダーを構成するポリマーが、アルコール性水酸基、フェノール性水酸基、メルカプト基、カルボキシ基、スルホ基、スルホンアミド基、リン酸基、シアノ基、アミノ基、双性イオン含有基、金属ヒドロキシド基および金属アルコキシド基の少なくともいずれかを有する〔1〕~〔3〕のいずれか1つに記載の固体電解質組成物。
〔5〕高分子バインダーを構成するポリマーが、炭素-炭素不飽和基を有する〔1〕~〔4〕のいずれか1つに記載の固体電解質組成物。
〔6〕炭素-炭素不飽和基が、下記式(1)または(2)で表される〔5〕に記載の固体電解質組成物。
〔7〕高分子バインダーを構成するポリマーが、ハードセグメントとして下記I群の式(I-1)~(I-5)で表される繰り返し構造の少なくともいずれかを有する〔1〕~〔6〕のいずれか1つに記載の固体電解質組成物。
〔8〕高分子バインダーを構成するポリマーが、ソフトセグメントとして下記II群の式(II-1)~(II-5)で表される繰り返し構造の少なくともいずれかを有する〔1〕~〔6〕のいずれか1つに記載の固体電解質組成物。
〔9〕高分子バインダーを構成するポリマーが、下記式(3)で表される繰り返し構造からなる〔1〕~〔6〕のいずれか1つに記載の固体電解質組成物。
〔10〕さらに電極活物質を含有する〔1〕~〔9〕のいずれか1つに記載の固体電解質組成物。
〔11〕高分子バインダーの質量に対する、無機固体電解質と必要により含有させる電極活物質の合計質量の比が、1,000~1の範囲である〔1〕~〔10〕のいずれか1つに記載の固体電解質組成物。
〔12〕高分子バインダーを構成するハードセグメント成分に対するソフトセグメント成分のモル比が、ハードセグメント成分100モルに対して、1~10,000モルである〔1〕~〔11〕のいずれか1つに記載の固体電解質組成物。
〔13〕 〔1〕~〔12〕のいずれか1つに記載の固体電解質組成物を金属箔上に配置し、製膜してなる電池用電極シート。
〔14〕正極活物質層、負極活物質層および固体電解質層を具備する全固体二次電池であって、正極活物質層、負極活物質層および固体電解質層の少なくともいずれかの層を〔1〕~〔12〕のいずれか1つに記載の固体電解質組成物で形成してなる全固体二次電池。
〔15〕下記式(3)で表される繰り返し構造を有するポリマーからなる、全固体二次電池用のバインダー。
このように、本発明によって、全固体二次電池において、加圧によらずに、固体粒子間または固体粒子と集電体間等の界面抵抗の上昇を抑えることができ、かつ良好な結着性を実現できる固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池を提供することが可能となった。
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
(無機固体電解質(A))
本発明における無機固体電解質(A)とは、無機化合物からなる固体電解質を言う。本明細書において、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質を意味する。この観点から、後述する電解質塩(支持電解質)と区別するため、無機固体電解質(A)をイオン伝導性無機固体電解質と呼ぶことがある。
無機固体電解質(A)のイオン伝導度は特に限定されない。なお、リチウムイオンにおいて、1×10-6S/cm以上が好ましく、1×10-5S/cm以上がより好ましく、1×10-4S/cm以上がさらに好ましく、1×10-3S/cm以上が特に好ましい。上限は特に制限されるものではない。なお、1S/cm以下が現実的である。
イオン伝導度の測定方法は、特に断らない限り、後述する実施例で測定した非加圧条件によるものとする。
硫化物系無機固体電解質(以下、単に硫化物系固体電解質とも称す)は、硫黄(S)を含有し、かつ、周期律表第1族もしくは第2族に属する金属を含み、イオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。例えば、下記式(7)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
具体的には、例えば、Li2S-P2S5、Li2S-GeS2、Li2S-GeS2-ZnS、Li2S-Ga2S3、Li2S-GeS2-Ga2S3、Li2S-GeS2-P2S5、Li2S-GeS2-Sb2S5、Li2S-GeS2-Al2S3、Li2S-SiS2、Li2S-Al2S3、Li2S-SiS2-Al2S3、Li2S-SiS2-P2S5、Li2S-SiS2-LiI、Li2S-SiS2-Li4SiO4、Li2S-SiS2-Li3PO4、Li10GeP2S12などが挙げられる。なかでも、Li2S-P2S5、Li2S-GeS2-Ga2S3、Li2S-GeS2-P2S5、Li2S-SiS2-P2S5、Li2S-SiS2-Li4SiO4、Li2S-SiS2-Li3PO4からなる結晶質および/または非晶質の原料組成物が、高いリチウムイオン伝導性を有するため好ましい。
このような原料組成物を用いて硫化物系固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法は、例えば、メカニカルミリング法および溶融急冷法を挙げることができる。なかでも、常温での処理が可能になり、製造工程を簡略化できるため、メカニカルミリング法が好ましい。
酸化物系無機固体電解質(以下、単に酸化物系固体電解質とも称す)は、酸素原子(O)を含有し、かつ、周期律表第1族もしくは第2族に属する金属を含み、イオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
またLi、PおよびOを含むリン化合物も好ましい。例えば、リン酸リチウム(Li3PO4)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれる少なくとも1種)が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれる少なくとも1種)等も好ましく用いることができる。
その中でも、Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12(ただし、0≦xb≦1、0≦yb≦1)は、高いリチウムイオン伝導性を有し、化学的に安定で取り扱いが容易なため、好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本発明では、酸化物系無機固体電解質を用いることが好ましい。酸化物系無機固体電解質は総じて硬度が高いため、全固体二次電池において界面抵抗の上昇を生じやすい。本発明における高分子バインダー(B)は、分子内にハードセグメントとソフトセグメントとを有するため、界面抵抗の上昇が効果的に抑制される。特に、酸化物系無機固体電解質と、本発明における高分子バインダー(B)とが作用し、より好適な吸着状態を形成することが想定される。この観点からも、酸化物系無機固体電解質を用いることが特に好ましい。
無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
本発明で使用する高分子バインダー(B)は、ハードセグメントおよびソフトセグメントを所定の割合で含有することが好ましい。ハードセグメントとは、主骨格に芳香族基や複素芳香族基、脂肪族脂環式基といった剛直な基、または分子間水素結合やπ-π相互作用による分子間パッキングを可能にする結合部を有する、一般的に剛直性を備え凝集力が強くかつ繊維形態を有するセグメントと説明することができる。その部位からなる化合物のガラス転移温度(Tg)は高く、典型的には100℃以上を示すものをいう。ソフトセグメントとは、主鎖に長鎖直線状基や長鎖分岐基を有し、柔らかく、伸縮性を有するセグメントと説明することができる。そのガラス転移温度が低く、50℃以下を示すものをいう。
ハードセグメントは、水素結合を介在して分子間擬似架橋を形成する骨格を有するものが好ましい。また、ハードセグメントは、アミド結合、ウレア結合、ウレタン結合およびイミド結合の少なくともいずれかの結合を含有することがより好ましい。ハードセグメントは下記I群から選ばれる基がさらに好ましい。
なお、式(I-3)において主鎖のエチレン基には任意の置換基(メチル基、エチル基、プロピル基、ハロゲン原子、ヒドロキシ基等)が置換していてもよい。ここで、R13は環を形成していてもよく、例えば、式(I-4)におけるRaで結合して、N位で置換したピロリドン環やε-カプロラクタム環を形成していてもよい。
なお、式(I-3)および(I-4)において、主鎖のエチレン基は置換基を有していてもよい。この置換基としては、例えば、メチル基、エチル基、ハロゲン原子、シアノ基等が挙げられる。また、主鎖のエチレン基と置換基のCO基またはNH基の間には任意の連結基が介在していてもよい。
ソフトセグメントは、ポリアルキレンオキシド鎖(ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖が好ましい)、ポリカーボネート鎖、ポリエステル鎖およびシリコーン鎖の少なくともいずれかを含有することが好ましい。ソフトセグメントは下記II群から選ばれる基がより好ましい。
R22は、末端にアルキル基(炭素数は、1~12が好ましく、1~6がより好ましい)を有することが好ましい。また、アルキル基中に、エーテル基(-O-)、チオエーテル基(-S-)、カルボニル基(>C=O)、イミノ基(>NRN)を有していてもよい。また、R22は、後述の第三成分で定義されるヘテロ原子含有基または炭素-炭素不飽和基を有していてもよい。
R23は、末端にアルキル基(炭素数は、1~12が好ましく、1~6がより好ましい)を有することが好ましい。また、アルキル基中に、エーテル基(-O-)、チオエーテル基(-S-)、カルボニル基(>C=O)、イミノ基(>NRN)を有していてもよい。また、R23は、後述の第三成分で定義されるヘテロ原子含有基または炭素-炭素不飽和基を有していてもよい。
ソフトセグメント成分は、全ポリマー中、1mol%以上が好ましく、2mol%以上がより好ましく、5mol%以上がさらに好ましい。上限としては、50mol%以下が好ましく、30mol%以下がより好ましく、20mol%以下がさらに好ましい。
ハードセグメント成分100モルに対するソフトセグメント成分のモル比は、1モル以上が好ましく、10モル以上がより好ましく、50モル以上がさらに好ましい。上限としては、1,000モル以下が好ましく、500モル以下がより好ましく、100モル以下がさらに好ましい。
各セグメントを上記の範囲で調整することにより、全固体二次電池における界面抵抗の低減性およびその維持性において一層優れた効果が得られ好ましい。
本発明における高分子バインダー(B)は、さらに、ヘテロ原子含有基をもつ繰り返し単位を有することが好ましい。へテロ原子含有基としては、アルコール性水酸基(ヒドロキシアルキル基:炭素数は、1~6が好ましく、1~3がより好ましい。)、フェノール性水酸基(ヒドロキシフェニル基)、メルカプト基、カルボキシ基、スルホ基、スルホンアミド基、リン酸基、シアノ基、アミノ基、双性イオン含有基、金属ヒドロキシド基および金属アルコキシド基の少なくともいずれかを有することが好ましい。ここで、アミノ基は-NRN 2で表され、RNは後述のイミノ基(>NRN)のRNと同義であり、好ましい範囲も同じである。双性イオン含有基は、具体的には、ベタイン構造(炭素数は、1~12が好ましく、1~6がより好ましい)であり、カチオン部分は4級アンモニウム、スルホニウム、ホスホニウムが挙げられ、アニオン部はカルボキシレート、スルホネートが挙げられる。金属ヒドロキシドは、具体的には、ヒドロキシルシリル基、ヒドロキシルチタニル基である。金属アルコキシドは、具体的には、アルコキシシリル基(炭素数は、1~12が好ましく、1~6がより好ましい)、アルコキシチタニル基(炭素数は、1~12が好ましく、1~6がより好ましい)が好ましく、より具体的には、トリメトキシシリル基、メチルジメトキシシリル基、トリエトキシシリル基、メチルジエトキシシリル基、トリメトキシチタニル基である。
本発明における高分子バインダー(B)を構成するポリマーにおいて、ヘテロ原子含有基をもつ繰り返し単位は、全ポリマー中で0mol%~30mol%が好ましい。このヘテロ原子含有基をもつ繰り返し単位を、高分子バインダーを構成するポリマーに組み込むことで、リチウムイオンの伝導性が向上、あるいは無機固体電解質との相互作用が生じ密着性が向上するという作用が期待でき好ましい。
本発明において、炭素-炭素不飽和基をもつ繰り返し単位は、全ポリマー中で0mol%~30mol%が好ましい。炭素-炭素不飽和基をもつ繰り返し単位を、高分子バインダー(B)を構成するポリマーに組み込むことで、無機固体電解質との化学結合が生じ密着性が向上するという作用が期待でき好ましい。
本発明におけるポリマーは、ハードセグメントとソフトセグメントとを有する。以下、特にハードセグメント成分を中心に説明する。
アミド結合を有するポリマーとしてポリアミド、ポリアクリルアミドなどが挙げられる。
ポリアミドはジアミンとジカルボン酸を縮重合するか、ラクタムの開環重合によって得ることができる。
ジアミン部分がソフトセグメントになってもよいし、ジカルボン酸部分がソフトセグメントになってもよい。
アクリルアミドモノマーとしては1級アミンとアクリル酸クロリドまたは1級アミンとアクリル酸無水物から合成できる。メチルアクリルアミド、エチルアクリルアミド、ブチルアクリルアミド、2-エチルヘキシルアクリルアミド、ベンジルアクリルアミド、シクロヘキシルアクリルアミド、1-アダマンタンアクリルアミドなどが挙げられる。
アクリルアミドモノマーと共重合しうるモノマーとしてはソフトセグメントとして機能しうることが好ましく、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖およびシリコーン鎖を有するラジカル重合性オリゴマーが挙げられる。例えば、ポリエチレングリコールモノメチルエーテルアクリルアミド、ポリエチレングリコールモノメチルエーテルアクリルレート、ポリエチレングリコールモノメチルエーテルメタクリレート、ポリプロピレングリコールモノメチルエーテルメタクリレート、ポリエステルメタクリレート、ポリカーボネートメタクリレート、メタクリレート変性シリコーンオイルなどが好適に用いられる。
ウレア結合を有するポリマーとしてはポリウレアが挙げられる。ジイソシアネート化合物とジアミン化合物をアミン触媒存在下で縮重合によってポリウレアを合成することができる。ジイソシアネートの例としては、下記の化合物を挙げることができる。
ジイソシアネート化合物としては、特に制限はなく、適宜選択することができ、例えば、下記式(M1)で表される化合物などが挙げられる。
式(M1)で表されるジイソシアネート化合物としては、特に制限はなく、目的に応じて適宜選択することができる。なお、下記式(M2)で表される基を含むことが好ましい。
1価の有機基としては、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、-ORM7〔ただし、RM7は1価の有機基(好ましくは炭素数1~20のアルキル基、炭素数6~10のアリール基等)を表す〕、アルキルアミノ基(炭素数は、1~20が好ましく、1~6がより好ましい)、アリールアミノ基(炭素数は、6~40が好ましく、6~20がより好ましい)などが挙げられる。
RM2~RM5は、水素原子、炭素数1~20のアルキル基または-ORM7が好ましく、水素原子または炭素数1~20のアルキル基がより好ましく、水素原子がさらに好ましい。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子が挙げられる。
イミド結合を有するポリマーとしてポリイミドが挙げられる。ポリイミドはテトラカルボン酸二無水物とジアミンを付加させポリアミック酸を形成した後、閉環することで得られる。
テトラカルボン酸二無水物の具体例としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)およびピロメリット酸二無水物(PMDA)が挙げられ、その他に、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)、オキシジフタル酸二無水物、ジフェニルスルホン-3,4,3’,4’-テトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、p-ビフェニレンビス(トリメリット酸モノエステル酸無水物)、m-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2-ビス〔(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物などを挙げることができる。これらは単独でも、2種以上を混合して用いることもできる。
テトラカルボン酸成分は、少なくともs-BPDAおよび/またはPMDAを含むことが好ましい。例えば、テトラカルボン酸成分100モル%中に、s-BPDAを好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは75モル%以上含む。テトラカルボン酸二水和物はハードセグメントとして機能することが望ましいため、剛直なベンゼン環を有していることが好ましい。
1)パラフェニレンジアミン(1,4-ジアミノベンゼン;PPD)、1,3-ジアミノベンゼン、2,4-トルエンジアミン、2,5-トルエンジアミン、2,6-トルエンジアミンなどのベンゼン核1つのジアミン、
ウレタン結合を有するポリマーとしてポリウレタンが挙げられる。イソシアネート化合物とジオール化合物をチタン、スズ、ビスマス触媒存在下で縮重合することで得られる。
イソシアネート化合物は前述した化合物を用いることができる。
ポリカーボネートジオール化合物としてはデュラノールシリーズ(旭化成ケミカルズ(株)社製)、エタナコールシリーズ(宇部興産(株)社製)、プラクセルCDシリーズ((株)ダイセル化学社製)、クラレポリオールCシリーズ((株)クラレ社製)を好適に用いることができる。
シリコーンジオール化合物としては、信越化学工業(株)社製のカルビノール変性シリコーンオイルを用いることができる。具体的にはKF-6000、KF-6001、KF-6002、KF-6003などを好適に用いることができる。
また、特開2003-177533号公報、特開平11-352691号公報、特開平10-260530号公報、特開2005-250158号公報、特開2009-86321号公報に記載されているジオール化合物も好ましく用いることができる。
炭素-炭素不飽和基を含有するジオール化合物は、市販品としてブレンマーGLM(日油(株)社製)の他、特開2007-187836号公報に記載の化合物を好適に用いることができる。
本発明における高分子バインダー(B)を構成するポリマーは、そのハードセグメントがポリマー鎖間の擬似的な架橋特性を与えると解される。そのため、高い弾性率と無機材料に対する密着性を示す。一方、ソフトセグメントはイオン伝導性の付与に貢献する。固体電解質や活物質はポリマーと溶解混合することで、より柔軟なソフトセグメント内に分散される。さらに、必要により、ソフトセグメント部位に吸着性基や重合性基を有することにより固体電解質や活物質をソフトセグメント中にとどめることができる。そのため、ソフトセグメント中のイオン濃度が向上し、イオン伝導性の向上が見込まれる。これらの作用を通じて、本発明の優れた効果を発揮するものと解される。
R23aのアルキレン基の炭素数は、2~5が好ましく、2~4がより好ましい。
R23bにおける酸性基のpKaは、10以下が好ましく、6以下がより好ましく、塩基性基の共役酸のpKaは、10以下が好ましく、6以下がより好ましい。
なお、酸解離定数pKaは、25℃の水における酸解離定数を意味する。
具体的な酸性基は、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、フェノール性水酸基、アルキルスルフォニルカルバモイル基、アセチルアセトナート基等が挙げられ、なかでもカルボキシ基、スルホ基またはリン酸基が好ましく、カルボキシ基がより好ましい。
具体的な塩基性基は、アミノ基、ピリジニル基、アミジン基等が挙げられ、なかでもアミノ基が好ましい。
R23cにおけるラジカルまたはカチオン重合性基は、前述の炭素-炭素不飽和基が挙げられ、好ましい範囲も同じである。なかでも、式(1)で表される基が好ましい。
R23dのジオール残基は、具体的には、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖、シリコーン鎖等が挙げられ、なかでもポリエチレンオキシド鎖またはポリプロピレンオキシド鎖が好ましい。
測定室内の雰囲気:窒素(50mL/min)
昇温速度:5℃/min
測定開始温度:-100℃
測定終了温度:200℃
試料パン:アルミニウム製パン
測定試料の質量:5mg
Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度の小数点以下を四捨五入することでTgを算定する。
また、本発明における高分子バインダー(B)を構成するポリマーは、晶析させて乾燥させてもよい、ポリマー溶液をそのまま用いてもよい。金属系触媒(ウレタン化、ポリエステル化触媒=スズ、チタン、ビスマス)は少ない方が好ましい。重合時に少なくするか、晶析で触媒を除くことで、共重合体中の金属濃度を、100ppm(質量基準)以下とすることが好ましい。
本発明において、ポリマーの分子量は、特に断らない限り、質量平均分子量を意味する。質量平均分子量は、GPCによってポリスチレン換算の分子量として計測することができる。このとき、GPC装置HLC-8220(東ソー(株)社製)を用い、カラムはG3000HXL+G2000HXLを用い、23℃で流量は1mL/minで、RIで検出することとする。溶離液としては、THF(テトラヒドロフラン)、クロロホルム、NMP(N-メチル-2-ピロリドン)、m-クレゾール/クロロホルム(湘南和光純薬(株)社製)から選定することができ、溶解するものであればTHFを用いることとする。
本発明では、高分子バインダー(B)の質量に対する、無機固体電解質(A)と必要により含有させる電極活物質(E)の合計質量(総量)の質量比[(A+E)/B]は、1,000~1の範囲が好ましい。この比率はさらに500~2がより好ましく、100~10がさらに好ましい。
本発明に用いることができるリチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、以下に述べるものが好ましい。
これらのなかで、LiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4、Li(Rf1SO3)、LiN(Rf1SO2)2、LiN(FSO2)2、及びLiN(Rf1SO2)(Rf2SO2)が好ましく、LiPF6、LiBF4、LiN(Rf1SO2)2、LiN(FSO2)2、及びLiN(Rf1SO2)(Rf2SO2)などのリチウムイミド塩がさらに好ましい。ここで、Rf1およびRf2はそれぞれ独立にパーフルオロアルキル基を表す。
なお、電解液に用いる電解質は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
本発明の固体電解質組成物においては、上記の各成分を分散させる分散媒体を用いてもよい。分散媒体は、例えば、水溶性有機溶媒が挙げられる。
具体的には、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオール等のアルコール化合物溶媒、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)を含むエーテル化合物溶媒が挙げられる。
本発明の固体電解質組成物には、正極活物質を含有させてもよい。正極活物質を含有する固体電解質組成物は、正極材料用の組成物として用いることができる。正極活物質には遷移金属酸化物を用いることが好ましく、中でも、遷移元素Ma(Co、Ni、Fe、Mn、Cu、Vから選択される1種以上の元素)を有することが好ましい。また、混合元素Mb(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなど)を混合してもよい。
遷移金属酸化物は、例えば、下記式(MA)~(MC)のいずれかで表されるものを含む特定遷移金属酸化物、またはその他の遷移金属酸化物としてV2O5、MnO2等が挙げられる。正極活物質には、粒子状の正極活性物質を用いてもよい。
具体的に、可逆的にリチウムイオンを挿入・放出できる遷移金属酸化物を用いることができ、上記特定遷移金属酸化物を用いることが好ましい。
リチウム含有遷移金属酸化物としては中でも下式で表されるものが好ましい。
式(MA)で表される遷移金属酸化物は典型的には層状岩塩型構造を有する。
(MA-2) LigNiOk
(MA-3) LigMnOk
(MA-4) LigCojNi1-jOk
(MA-5) LigNijMn1-jOk
(MA-6) LigCojNiiAl1-j-iOk
(MA-7) LigCojNiiMn1-j-iOk
これらの遷移金属化合物の具体例としては、LiCoO2(コバルト酸リチウム[LCO])、LiNi2O2(ニッケル酸リチウム)LiNi0.85Co0.01Al0.05O2(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi0.33Co0.33Mn0.33O2(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5O2(マンガンニッケル酸リチウム)が挙げられる。
代表的なもの:
LigNi1/3Mn1/3Co1/3O2
LigNi1/2Mn1/2O2
代表的なもの:
LigNi0.8Co0.15Al0.05O2
リチウム含有遷移金属酸化物としては中でも下記式(MB)で表されるものも好ましい。
(MB-2) LimMnpAl2-pOn
(MB-3) LimMnpNi2-pOn
これらの遷移金属化合物は、例えば、LiMn2O4、LiMn1.5Ni0.5O4が挙げられる。
(b) Li2FeMn3O8
(c) Li2CuMn3O8
(d) Li2CrMn3O8
(e) Li2NiMn3O8
リチウム含有遷移金属酸化物は、リチウム含有遷移金属リン酸化物が好ましく、なかでも下記式(MC)で表されるものも好ましい。
本発明の固体電解質組成物には、負極活物質を含有させてもよい。負極活物質を含有する固体電解質組成物は、負極材料用の組成物として用いることができる。負極活物質としては、可逆的にリチウムイオンを挿入・放出できるものが好ましい。このような材料は、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、及び、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が安全性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵、放出可能であることが好ましい。その材料は、特には制限されるものではなく、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
例えば、上記特定の高分子バインダーを含まないバインダー組成物として正極活物質ないし負極活物質を含むペーストを調製してもよい。このとき、上記の固体電解質を含有させることが好ましい。このような、常用される正極材料ないし負極材料と組み合わせて、上記本発明の好ましい実施形態に係る固体電解質組成物を用い固体電解質層を形成してもよい。
正・負極の集電体は、化学変化を起こさない電子伝導体が好ましい。正極の集電体は、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。負極の集電体は、アルミニウム、銅、ステンレス鋼、ニッケル、チタンが好ましく、アルミニウム、銅、銅合金がより好ましい。
集電体の厚みは、特に限定されない。なお、1μm~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
全固体二次電池の作製は常法によればよい。具体的には、本発明の固体電解質組成物を集電体となる金属箔上に塗布し、塗膜を形成した電池用電極シートとする方法が挙げられる。
例えば、正極集電体である金属箔上に正極材料となる組成物を塗布し、正極活物質層を形成し、電池用正極シートを作製する。正極活物質層の上に、本発明の固体電解質組成物を塗布し、固体電解質層を形成する。さらに、固体電解質層の上に、負極材料となる組成物を塗布し、負極活物質層を形成する。負極活物質層の上に、負極側の集電体(金属箔)を重ねることで、正極層と負極層の間に、固体電解質層が挟まれた全固体二次電池の構造を得ることができる。
乾燥温度は特に限定されない。なお、下限は30℃以上が好ましく、60℃以上がより好ましく、上限は、300℃以下が好ましく、250℃以下がより好ましい。このような温度範囲で加熱することで、分散媒体を除去し、固体状態にすることができる。これにより、全固体二次電池において、良好な結着性と非加圧でのイオン伝導性を得ることができる。
本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はなく、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
〔1〕上記の固体電解質組成物を金属箔上に配置し、製膜してなる電池用電極シート。
〔2〕正極活物質層、負極活物質層および固体電解質層を具備する全固体二次電池であって、上記正極活物質層、負極活物質層および固体電解質層の少なくともいずれかの層を上記の固体電解質組成物で形成してなる全固体二次電池。
無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLLTやLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがある。上記のイオン輸送材料としての電解質と区別する際には、これを「電解質塩」または「支持電解質」と呼ぶ。電解質塩としては、例えばLiTFSI(リチウムビストリフルオロメタンスルホンイミド)が挙げられる。
本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。
例示化合物(1)の合成
4,4’-ジフェニルメタンジイソシアネート〔和光純薬工業(株)社製〕2.5gとポリエチレングリコール2000〔和光純薬工業(株)社製、平均分子量2,000〕18.9gを200mLのフラスコに仕込み、メチルエチルケトン50gに溶解させた。60℃に昇温させて30分間加熱攪拌した後、ネオスタンU-600〔日東化成(株)社製;ビスマストリス(2-エチルヘキサノエート)〕47mgを加えて5時間60℃で加熱攪拌した。メタノール1.3gを加えてさらに60℃で1時間加熱攪拌して例示化合物(1)の30質量%ポリマー溶液を得た。標準ポリスチレン換算によるゲル浸透クロマトグラフィー(GPC)で得られた質量平均分子量は77,000であった。
4,4’-ジフェニルメタンジイソシアネート〔和光純薬工業(株)社製〕2.5gとポリエチレングリコール2000〔和光純薬工業(株)社製、平均分子量2,000〕18.0gと、ジメチロールプロピオン酸〔東京化成工業(株)社製〕0.13gを200mLのフラスコに仕込み、メチルエチルケトン52gに溶解させた。60℃に昇温させて30分間加熱攪拌した後、ネオスタンU-600〔日東化成(株)社製;ビスマストリス(2-エチルヘキサノエート)〕51mgを加えて5時間60℃で加熱攪拌した。メタノール1.5gを加えてさらに60℃で1時間加熱攪拌して例示化合物(2)の30質量%ポリマー溶液を得た。上記GPCにより得られた質量平均分子量は56,700であった。
4,4’-ジフェニルメタンジイソシアネート〔和光純薬工業(株)社製〕2.5g、ポリエチレングリコール2000〔和光純薬工業(株)社製、平均分子量2,000、ガラス転移温度-42℃)17.6g、ジメチロールプロピオン酸〔東京化成工業(株)社製〕0.13gとブレンマーGLM〔日油(株)社製;グリセリンモノメタクリレート〕0.16gを200mLのフラスコに仕込み、メチルエチルケトン52gに溶解させた。p-メトキシフェノール0.1gを添加し60℃に昇温させて30分間加熱攪拌した後、ネオスタンU-600〔日東化成(株)社製;ビスマストリス(2-エチルヘキサノエート)〕51mgを加えて5時間60℃で加熱攪拌した。メタノール1.5gを加えてさらに60℃で1時間加熱攪拌して例示化合物(3)の30質量%ポリマー溶液を得た。上記GPCにより得られた質量平均分子量は32,600であった。また、下記DSCにより得られたガラス転移温度は、-8℃であった。
ガラス転移温度(Tg)は、得られたポリマー溶液を乾燥した試料について、示差走査熱量計「X-DSC7000」(SII・ナノテクノロジー(株)社製)を用いて下記の条件で測定した。測定は同一の試料で二回実施し、二回目の測定結果を採用した。
測定室内の雰囲気:窒素(50mL/min)
昇温速度:5℃/min
測定開始温度:-100℃
測定終了温度:200℃
試料パン:アルミニウム製パン
測定試料の質量:5mg
Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度の小数点以下を四捨五入することでTgを算定した。
4,4’-ジフェニルメタンジイソシアネート〔和光純薬工業(株)社製〕2.5g、ポリカーボネートジオール(平均分子量1,000)9.5gを200mLのフラスコに仕込み、プロピレングリコールモノメチルエーテルアセテート28gに溶解させた。60℃に昇温させて30分間加熱攪拌した後、ネオスタンU-600〔日東化成(株)社製;ビスマストリス(2-エチルヘキサノエート)〕51mgを加えて5時間60℃で加熱攪拌した。メタノール1.5gを加えてさらに60℃で1時間加熱攪拌して例示化合物(6)の30質量%ポリマー溶液を得た。上記GPCにより得られた質量平均分子量は53,600であった。
温度計、攪拌器、窒素導入管を備えた500mLのフラスコ中にジェファーミンD-2000〔ハンツマン(株)社製;ポリオキシプロピレンジアミン、平均分子量2,000〕30.5gを入れ、NMP(N-メチル-2-ピロリドン)82gに溶解した後、3,3’,4,4’-ビフェニルテトラカルボン酸無水物〔三菱化学(株)社製〕4.5gを添加した。60℃で4時間攪拌し室温まで放冷した。無水フタル酸0.36gを添加し、室温で10時間攪拌してやや褐色透明のポリアミック酸溶液を得た。得られた30質量%ポリマー溶液を、上記GPCで分析すると、質量平均分子量は95,200であった。
このポリマー溶液をガラス基板上にスピン塗布し、250℃で加熱脱水することによりポリイミド化を進行させ、例示化合物(16)のポリイミドフイルムを得た。上記GPCにより得られた質量平均分子量は87,300であった。
温度計、攪拌器、窒素導入管を備えた500mLのフラスコ中にテレフタル酸無水物〔東京化成工業(株)社製〕2.0gをテトラヒドロフラン(THF)200mLに溶解させて5℃に冷却した。これにトリエチルアミン10.3g加え、ジェファーミンD-2000〔ハンツマン(株)社製;ポリオキシプロピレンジアミン、平均分子量2,000〕20.9gを30分かけて分割添加した。室温で3時間攪拌した後に得られたポリマー溶液をメタノール/水(7/3)で晶析して例示化合物(22)を得た。上記GPCにより得られた質量平均分子量は76,200であった。
温度計、攪拌器、窒素導入管を備えた500mLのフラスコ中に、プロピレングリコールモノメチルエーテル20gを加えて80℃で窒素置換した。これに、フェニルアクリルアミド7.3g、M-230G〔新中村化学工業(株)社製、質量平均分子量1,000〕40.0g、グリシジルメタクリレート〔和光純薬工業(株)社製〕0.21g、2-ヒドロキシエチルメタクリレート〔和光純薬工業(株)社製〕0.15g、V-601〔和光純薬工業(株)社製〕0.1gのプロピレングリコールモノメチルエーテル138g溶液を2時間かけて滴下した。滴下後さらに窒素雰囲気下80℃で4時間加熱攪拌を行った。このポリマー溶液にp-メトキシフェノール0.25gとドデシルアミン1.5gとアクリル酸0.19g加えて、空気下で90℃4時間加熱攪拌して例示化合物(28)のポリマー溶液を得た。上記GPCにより得られた質量平均分子量は87,000であった。
4,4’-ジフェニルメタンジイソシアネート〔和光純薬工業(株)社製〕2.5g、ジェファーミンD-2000〔ハンツマン(株)社製;ポリオキシプロピレンジアミン、平均分子量2,000〕17.6gを200mLのフラスコに仕込み、メチルエチルケトン52gに溶解させた。60℃に昇温させて30分間加熱攪拌した後、ネオスタンU-600〔日東化成(株)社製;ビスマストリス(2-エチルヘキサノエート)〕51mgを加えて5時間60℃で加熱攪拌した。ブチルアミン1.7gを加え、さらに60℃で1時間加熱攪拌して例示化合物(30)の30質量%ポリマー溶液を得た。上記GPCにより質量平均分子量55,300であった。
200mL3つ口フラスコに、2,6-ジーt-ブチルフェノール〔和光純薬工業(株)社製〕35mg、4-4’-ジフェニルメタンジイソシアネート〔和光純薬工業(株)社製〕12.6g、1,4-ブタンジオール〔和光純薬工業(株)社製〕1.8g、ブレンマーGLM〔日油(株)社製;グリセリンモノメタクリレート〕1.6g、2,2-ヒドロキシメチルブタン酸1.5g、ポリエチレングリコール1000(質量平均分子量1,000、ガラス転移温度-49℃)10.0gを加え、テトラヒドロフラン65gに溶解させた。乾燥雰囲気下で60℃に昇温させて30分間加熱攪拌した後、ネオスタンU-600〔日東化成(株)社製;ビスマストリス(2-エチルヘキサノエート)〕89mgを加えて5時間60℃で加熱攪拌した。その後メタノール2gを加えて反応を終了させた。このポリマー溶液をヘキサン500mLに滴下して再沈操作を行い、上澄みをデカンテーションし、得られた沈殿物を真空下80℃で加熱乾燥することにより例示化合物(33)を得た。上記GPCにより得られた質量平均分子量は55,100であった。また、上記DSCにより得られたガラス転移温度は、13℃であった。
固体電解質組成物の調製
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、無機固体電解質LLT((株)豊島製作所製)9.0g、例示化合物(1)の30%ポリマー溶液2.7g(固形分0.8g)、LiTFSI(Aldrich社製)0.2gを加え、分散媒として、メチルエチルケトン15.0gを投入した。その後、フリッチュ社製遊星ボールミルP-7に容器をセットし、回転数300rpmで2時間混合を続け、固体電解質組成物S-1を得た。他の固体電解質組成物S-2~S-11およびT-1~T-3も、表1に記載の構成に変えた以外は、固体電解質組成物S-1と同様の方法で調製した。
ここで、固体電解質組成物S-1~S-11が本発明の固体電解質組成物であり、固体電解質組成物T-1~T-3が比較の固体電解質組成物である。
なお、表1において、固体電解質組成物は組成物と省略して記載した。
表中数字は質量比(%)
LLT:Li0.33La0.55TiO3(平均粒径3.25μm)
LLZ:Li7La3Zr2O12(平均粒径5.06μm、(株)豊島製作所製)
PEG:ポリエチレングリコール
PVdF:ポリフッ化ビニリデン
THF:テトラヒドロフラン
NMP:N-メチルピロリドン
MFG:プロピレングリコールモノメチルエーテル
MEK:メチルエチルケトン
LiTFSI:LiN(CF3SO2)2
ソフト/ハード:バインダーポリマーのハードセグメントのモル数を100としたときの、ソフトセグメントのモル比(仕込み量から算出)
プラネタリーミキサー(TKハイビスミックス、PRIMIX社製)に、アセチレンブラック5質量部、N-メチルピロリドン270質量部、表2の正極の欄に記載の正極活物質100質量部および固体電解質組成物75質量部を加え、回転数40rpmで1時間撹拌を行い、表2に記載の二次電池正極用組成物を調整した。
プラネタリーミキサー(TKハイビスミックス、PRIMIX社製)に、アセチレンブラック5質量部、N-メチルピロリドン270質量部、表2の負極の欄に記載の負極活物質100質量部および固体電解質組成物75質量部を加え、回転数40rpmで1時間撹拌を行い、表2に記載の二次電池負極用組成物を調整した。
上記で作製した二次電池正極用組成物を厚み20μmのアルミ箔上に、クリアランスが調節可能なアプリケーターにより塗布し、80℃で1時間加熱後、さらに110℃で1時間加熱し、塗布溶媒を乾燥した。その後、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、二次電池用正極を得た。
上記で作製した二次電池用正極上に、表2の電解質の欄に記載の固体電解質組成物を、クリアランスが調節可能なアプリケーターにより塗布し、80℃で1時間加熱後、さらに110℃で1時間加熱し、乾燥と同時に重合性組成物を重合硬化させた。その後、上記で作製した二次電池負極用組成物をさらに塗布し、80℃で1時間加熱後、さらに110℃で1時間加熱し、乾燥と同時に重合性組成物を重合硬化させた。負極層上に厚み20μmの銅箔を合わせ、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、表2に記載の二次電池用電極シートの試験No.101~117およびc11~c13を作製した。
上記で作製した二次電池用電極シートに粘着テープを貼り、一定速度で引き剥がした際の、引き剥がした粘着テープの面積に対する剥離しなかったシート部分の面積比率で評価した。
B:95%以上100%未満
C:80%以上95%未満
D:50%以上80%未満
E:50%未満
上記で作製した二次電池用電極シートを直径14.5mmの円板状に切り出し、コイン電池を作製した。コイン電池の外部より、電極間に500kgf/cm2の圧力をかけることが可能なジグに挟み、各種電気化学的測定に用いた。
上記で得られたコイン電池を用いて、30℃の恒温槽中、交流インピーダンス法により、加圧(500kgf/cm2)および非加圧でのイオン伝導度を求めた。このとき、電池の加圧には図2に示した試験体を用いた。11が上部支持板、12が下部支持板、13がコイン電池、Sがネジである。
ここで、試験No.101~117が本発明の固体電解質組成物を使用した二次電池用電極シートであり、試験No.c11~c13が比較の固体電解質組成物を使用した二次電池用電極シートである。
なお、表2において、固体電解質組成物は電解質と省略して記載した。
なお、下記はいずれも活物質の略称である。
LMO:LiMn2O4 マンガン酸リチウム
LTO:Li4Ti5O12 チタン酸リチウム(商品名「エナマイトLT-106」、石原産業(株)社製)
LCO:LiCoO2 コバルト酸リチウム
NMC:Li(Ni1/3Mn1/3Co1/3)O2 ニッケル、マンガン、コバルト酸リチウム
一方、電解質組成物T-1を用いた比較例では結着性が劣り、非加圧状態でのイオン伝導性も大きく劣る。結着剤として、ソフトセグメントのみを有するポリエチレングリコールT-2を用いた比較例では、結着性が劣り、電池特性に悪影響を与えることが予想される。ポリフッ化ビニリデンT-3を用いた比較例では、結着性がやや劣り、非加圧状態でのイオン伝導性が大きく劣る。
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 上部支持板
12 下部支持板
13 コイン電池
S ネジ
Claims (15)
- 周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質および高分子バインダーを有する固体電解質組成物であって、該高分子バインダーが、ハードセグメントとソフトセグメントとを有するポリマーで構成された固体電解質組成物。
- 前記高分子バインダーを構成する前記ハードセグメントが、アミド結合、ウレア結合、ウレタン結合およびイミド結合の少なくともいずれかの結合を含有する請求項1に記載の固体電解質組成物。
- 前記高分子バインダーを構成する前記ソフトセグメントが、ポリアルキレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖およびシリコーン鎖の少なくともいずれかを含有する請求項1または2に記載の固体電解質組成物。
- 前記高分子バインダーを構成するポリマーが、アルコール性水酸基、フェノール性水酸基、メルカプト基、カルボキシ基、スルホ基、スルホンアミド基、リン酸基、シアノ基、アミノ基、双性イオン含有基、金属ヒドロキシド基および金属アルコキシド基の少なくともいずれかを有する請求項1~3のいずれか1項に記載の固体電解質組成物。
- 前記高分子バインダーを構成するポリマーが、炭素-炭素不飽和基を有する請求項1~4のいずれか1項に記載の固体電解質組成物。
- 前記高分子バインダーを構成するポリマーが、下記式(3)で表される繰り返し構造からなる請求項1~6のいずれか1項に記載の固体電解質組成物。
- さらに電極活物質を含有する請求項1~9のいずれか1項に記載の固体電解質組成物。
- 前記高分子バインダーの質量に対する、前記無機固体電解質と必要により含有させる電極活物質の合計質量の比が、1,000~1の範囲である請求項1~10のいずれか1項に記載の固体電解質組成物。
- 前記高分子バインダーを構成する前記ハードセグメント成分に対する前記ソフトセグメント成分のモル比が、該ハードセグメント成分100モルに対して、1~10,000モルである請求項1~11のいずれか1項に記載の固体電解質組成物。
- 請求項1~12のいずれか1項に記載の固体電解質組成物を金属箔上に配置し、製膜してなる電池用電極シート。
- 正極活物質層、負極活物質層および固体電解質層を具備する全固体二次電池であって、該正極活物質層、負極活物質層および固体電解質層の少なくともいずれかの層を請求項1~12のいずれか1項に記載の固体電解質組成物で形成してなる全固体二次電池。
- 下記式(3)で表される繰り返し構造を有するポリマーからなる、全固体二次電池用のバインダー。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112014004424.5T DE112014004424T5 (de) | 2013-09-25 | 2014-09-25 | Festelektrolytzusammensetzung, Bindemittel für vollständig im festen Zustand vorliegende Sekundärbatterien und Elektrodenblatt für Batterien und vollständig in festem Zustand vorliegende Sekundärbatterie, die jeweils die Festelektrolytzusammensetzung verwenden |
CN201480052696.0A CN105580186B (zh) | 2013-09-25 | 2014-09-25 | 固体电解质组合物、全固态二次电池用的粘合剂、使用它们的电池用电极片及全固态二次电池 |
KR1020167008931A KR101842375B1 (ko) | 2013-09-25 | 2014-09-25 | 고체 전해질 조성물 및 전고체 이차전지용 바인더, 그리고 이들을 이용한 전지용 전극 시트 및 전고체 이차전지 |
US15/079,846 US10654963B2 (en) | 2013-09-25 | 2016-03-24 | Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition |
US16/777,372 US11440986B2 (en) | 2013-09-25 | 2020-01-30 | Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-198786 | 2013-09-25 | ||
JP2013198786 | 2013-09-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/079,846 Continuation US10654963B2 (en) | 2013-09-25 | 2016-03-24 | Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015046313A1 true WO2015046313A1 (ja) | 2015-04-02 |
Family
ID=52743447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/075398 WO2015046313A1 (ja) | 2013-09-25 | 2014-09-25 | 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10654963B2 (ja) |
JP (1) | JP6110823B2 (ja) |
KR (1) | KR101842375B1 (ja) |
CN (1) | CN105580186B (ja) |
DE (1) | DE112014004424T5 (ja) |
WO (1) | WO2015046313A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105811002A (zh) * | 2016-03-16 | 2016-07-27 | 中国科学院青岛生物能源与过程研究所 | 一种有机无机复合全固态电解质及其构成的全固态锂电池 |
CN107615552A (zh) * | 2015-09-16 | 2018-01-19 | 日本瑞翁株式会社 | 全固体二次电池用粘结剂及全固体二次电池 |
CN108370062A (zh) * | 2015-12-25 | 2018-08-03 | 富士胶片株式会社 | 全固态二次电池、全固态二次电池用粒子、全固态二次电池用固体电解质组合物及全固态二次电池用电极片以及它们的制造方法 |
WO2018151119A1 (ja) * | 2017-02-16 | 2018-08-23 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質含有シートおよび全固体二次電池の製造方法 |
US20190326630A1 (en) * | 2017-02-16 | 2019-10-24 | Fujifilm Corporation | Solid electrolyte composition, solid electrolyte-containing sheet and manufacturing method therefor, all-solid state secondary battery and manufacturing method therefor, and polymer and non-aqueous solvent dispersion thereof |
WO2020075749A1 (ja) | 2018-10-11 | 2020-04-16 | 富士フイルム株式会社 | 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池 |
WO2020110993A1 (ja) * | 2018-11-26 | 2020-06-04 | 株式会社大阪ソーダ | 無機固体電解質二次電池用電極、および無機固体電解質二次電池 |
WO2020137434A1 (ja) | 2018-12-28 | 2020-07-02 | 日本ゼオン株式会社 | 全固体二次電池用バインダー組成物 |
WO2021014852A1 (ja) | 2019-07-19 | 2021-01-28 | 富士フイルム株式会社 | 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法 |
WO2021039468A1 (ja) | 2019-08-30 | 2021-03-04 | 富士フイルム株式会社 | 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法 |
US10978735B2 (en) | 2018-01-23 | 2021-04-13 | Samsung Electronics Co., Ltd. | Stretchable polymer electrolyte, stretchable electrode, stretchable polymer, electrocheical device, and method of preparing stretchable polymer |
US11431022B2 (en) * | 2017-02-17 | 2022-08-30 | Fujifilm Corporation | Solid electrolyte composition, solid electrolyte-containing sheet and manufacturing method therefor, all-solid state secondary battery and manufacturing method therefor, and polymer and non-aqueous solvent dispersion thereof |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016181448A (ja) * | 2015-03-24 | 2016-10-13 | 富士フイルム株式会社 | 硫化物系固体電解質組成物、電池用電極シートおよびその製造方法、並びに、全固体二次電池およびその製造方法 |
CN107636865B (zh) * | 2015-06-02 | 2020-09-18 | 富士胶片株式会社 | 负极用材料、全固态二次电池、该电池用电极片以及该电池和该电极片的制造方法 |
KR101681297B1 (ko) * | 2015-06-09 | 2016-12-12 | 한국생산기술연구원 | 전고체 리튬이차전지 및 이의 제조방법 |
JP6461354B2 (ja) * | 2015-08-18 | 2019-01-30 | 富士フイルム株式会社 | 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法 |
KR101793168B1 (ko) * | 2016-02-03 | 2017-11-20 | 한국생산기술연구원 | Llzo 고체전해질을 포함하는 전고체 리튬이차전지 및 그의 제조방법 |
KR101848677B1 (ko) * | 2016-02-19 | 2018-05-24 | 한국생산기술연구원 | 공침법을 이용한 전고체 리튬이차전지용 양극복합소재 및 그의 제조방법 |
KR102244414B1 (ko) | 2016-05-23 | 2021-04-23 | 후지필름 가부시키가이샤 | 고체 전해질 조성물, 고체 전해질 함유 시트 및 전고체 이차 전지와 고체 전해질 함유 시트 및 전고체 이차 전지의 제조 방법 |
KR102168055B1 (ko) | 2016-05-23 | 2020-10-20 | 후지필름 가부시키가이샤 | 고체 전해질 조성물, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와 전고체 이차 전지용 전극 시트 및 전고체 이차 전지의 제조 방법 |
KR101865834B1 (ko) * | 2016-06-15 | 2018-06-08 | 한국생산기술연구원 | 전고체 리튬이차전지 및 그의 제조방법 |
CN109526241B (zh) * | 2016-07-26 | 2022-07-01 | 富士胶片株式会社 | 固体电解质组合物、片材及电池及相关制造方法和聚合物 |
CN108258305B (zh) * | 2016-12-28 | 2020-08-18 | 财团法人工业技术研究院 | 电解质与电池 |
KR102244412B1 (ko) | 2017-02-13 | 2021-04-23 | 후지필름 가부시키가이샤 | 고체 전해질 조성물, 고체 전해질 함유 시트 및 그 제조 방법, 전고체 이차 전지 및 그 제조 방법과, 폴리머와 그 비수용매 분산물 및 다이올 화합물 |
KR20180131776A (ko) * | 2017-06-01 | 2018-12-11 | 현대자동차주식회사 | 전고체 전지 및 그 제조방법 |
KR102136548B1 (ko) * | 2017-09-05 | 2020-07-22 | 주식회사 엘지화학 | 전해질 조성물, 전해질 필름, 및 전기변색소자 |
KR102191618B1 (ko) * | 2017-09-05 | 2020-12-15 | 주식회사 엘지화학 | 실리콘 전극 바인더 |
CN111066189B (zh) | 2017-09-14 | 2024-03-01 | 富士胶片株式会社 | 固体电解质组合物和含固体电解质片材、它们的制造、保存方法、套件以及全固态二次电池 |
JP6942810B2 (ja) | 2017-10-12 | 2021-09-29 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 |
CN111247673B (zh) | 2017-10-30 | 2023-11-10 | 富士胶片株式会社 | 活性物质层形成用组合物、电池、电极片及相关制造方法 |
JP6996244B2 (ja) * | 2017-11-15 | 2022-01-17 | トヨタ自動車株式会社 | 全固体電池の製造方法、全固体電池およびスラリー |
JP7003151B2 (ja) * | 2017-11-17 | 2022-01-20 | 富士フイルム株式会社 | 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法 |
CN111213213B (zh) * | 2017-11-17 | 2021-11-12 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法 |
KR102484902B1 (ko) | 2017-12-27 | 2023-01-04 | 현대자동차주식회사 | 전고체 전지 |
KR102425881B1 (ko) | 2018-02-05 | 2022-07-27 | 후지필름 가부시키가이샤 | 고체 전해질 조성물 및 그 제조 방법, 고체 전해질 함유 시트, 및 전고체 이차 전지용 전극 시트와 전고체 이차 전지의 제조 방법 |
CN112042033B (zh) * | 2018-04-20 | 2024-08-02 | 富士胶片株式会社 | 固体电解质组合物、全固态二次电池及其片材和电极片以及所述电池及其片材的制造方法 |
KR102133477B1 (ko) * | 2018-06-25 | 2020-07-13 | 전남대학교산학협력단 | Uv 경화형 우레탄 폴리머-고체전해질 및 이의 제조방법 |
WO2020022205A1 (ja) * | 2018-07-25 | 2020-01-30 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池、固体電解質含有シート及び全固体二次電池の製造方法、並びに、粒子状バインダーの製造方法 |
CN110911642B (zh) * | 2018-09-14 | 2021-05-11 | 多氟多化工股份有限公司 | 一种极片用粘结剂及其制备方法、硅基极片、锂离子电池 |
JP7104800B2 (ja) | 2018-09-27 | 2022-07-21 | 富士フイルム株式会社 | 全固体二次電池の製造方法、並びに、全固体二次電池用電極シート及びその製造方法 |
KR102465821B1 (ko) | 2018-10-05 | 2022-11-11 | 주식회사 엘지에너지솔루션 | 고분자 전해질용 조성물 및 이로부터 제조된 고분자 전해질을 포함하는 리튬 이차전지 |
US11978854B2 (en) | 2018-10-05 | 2024-05-07 | Lg Energy Solution, Ltd. | Composition for polymer electrolyte and lithium secondary battery including polymer electrolyte prepared therefrom |
WO2020080261A1 (ja) * | 2018-10-15 | 2020-04-23 | 富士フイルム株式会社 | 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法 |
KR20210089758A (ko) * | 2018-12-26 | 2021-07-16 | 후지필름 가부시키가이샤 | 고체 전해질 조성물, 전고체 이차 전지용 시트와 전고체 이차 전지, 및 전고체 이차 전지용 시트 혹은 전고체 이차 전지의 제조 방법 |
WO2020138122A1 (ja) | 2018-12-27 | 2020-07-02 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 |
EP4372026A3 (en) * | 2019-03-29 | 2024-07-17 | Teijin Limited | Polymeric binder and all-solid-state secondary battery |
CN113614146A (zh) * | 2019-03-29 | 2021-11-05 | 帝人株式会社 | 高分子粘合剂和包含其的全固体二次电池 |
WO2021020031A1 (ja) * | 2019-07-26 | 2021-02-04 | 富士フイルム株式会社 | 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法 |
KR20220041887A (ko) * | 2019-08-30 | 2022-04-01 | 후지필름 가부시키가이샤 | 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법, 및, 복합 폴리머 입자 |
JP2021118172A (ja) * | 2020-01-28 | 2021-08-10 | 株式会社リコー | 電気化学素子作製用液体組成物、電極の製造方法、電気化学素子の製造方法及び電極 |
WO2021166968A1 (ja) * | 2020-02-20 | 2021-08-26 | 富士フイルム株式会社 | 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法 |
CN111244537A (zh) * | 2020-02-24 | 2020-06-05 | 南方科技大学 | 复合固态电解质,固态电池及其制备方法 |
KR102428210B1 (ko) | 2020-03-31 | 2022-08-02 | 재원산업 주식회사 | Uv 경화형 폴리우레탄 이오노머-세라믹 고체 전해질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
CN111704708B (zh) * | 2020-06-08 | 2022-06-03 | 广州市乐基智能科技有限公司 | 一种交联型聚氨酯粘结剂的制备方法及其在锂电池领域的应用 |
JP7235415B2 (ja) * | 2020-07-09 | 2023-03-08 | トヨタ自動車株式会社 | 全固体電池および該全固体電池に用いる樹脂層形成用材料 |
KR20220014451A (ko) | 2020-07-28 | 2022-02-07 | 현대자동차주식회사 | 전고체 전지용 복합 바인더 조성물, 이를 포함하는 전극 슬러리 및 이를 이용한 전고체 전지용 전극의 제조방법 |
JP7016392B2 (ja) * | 2020-08-18 | 2022-02-04 | 旭化成株式会社 | セパレータおよびその製造方法 |
CN112186189B (zh) * | 2020-09-30 | 2023-02-03 | 东莞力朗电池科技有限公司 | 一种高镍三元材料正极片及电池 |
CN116507587A (zh) * | 2020-12-02 | 2023-07-28 | 富士胶片株式会社 | 氧化物固体电解质、粘合剂、固体电解质层、活性物质、电极、全固态二次电池 |
CN112615049B (zh) * | 2020-12-21 | 2023-01-03 | 中创新航技术研究院(江苏)有限公司 | 固态电解质及包含它的电池 |
KR20220103640A (ko) * | 2021-01-15 | 2022-07-22 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 |
US20220384909A1 (en) * | 2021-05-13 | 2022-12-01 | Global Graphene Group, Inc. | Thermally stable polymer-based composite separator for a lithium secondary battery and manufacturing method |
KR20240049842A (ko) | 2021-10-18 | 2024-04-17 | 후지필름 가부시키가이샤 | 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지, 및, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법 |
CN116995233A (zh) * | 2022-04-25 | 2023-11-03 | 深圳市研一新材料有限责任公司 | 一种电池用粘结剂及其制备方法和应用 |
CN117996078A (zh) * | 2022-10-27 | 2024-05-07 | 深圳市研一新材料有限责任公司 | 一种电池粘结剂及其制备方法和锂离子电池 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009176484A (ja) * | 2008-01-22 | 2009-08-06 | Idemitsu Kosan Co Ltd | 全固体リチウム二次電池用正極及び負極、並びに全固体リチウム二次電池 |
JP2010113820A (ja) * | 2008-11-04 | 2010-05-20 | Idemitsu Kosan Co Ltd | リチウムイオン伝導性固体電解質組成物及びそれを用いた電池 |
WO2010089891A1 (ja) * | 2009-02-09 | 2010-08-12 | トヨタ自動車株式会社 | 固体電解質材料含有シートの製造方法 |
JP2010186682A (ja) * | 2009-02-13 | 2010-08-26 | Toyota Motor Corp | 固体電解質層の製造方法 |
JP2010205449A (ja) * | 2009-02-27 | 2010-09-16 | Nippon Zeon Co Ltd | 全固体二次電池用固体電解質層、全固体二次電池用積層体および全固体二次電池 |
JP2011134675A (ja) * | 2009-12-25 | 2011-07-07 | Toyota Motor Corp | 電極層、固体電解質層および全固体二次電池 |
JP2011233422A (ja) * | 2010-04-28 | 2011-11-17 | Nippon Zeon Co Ltd | リチウムイオン伝導性固体電解質組成物および全固体二次電池 |
WO2012073678A1 (ja) * | 2010-11-29 | 2012-06-07 | Jsr株式会社 | 電池用バインダー組成物、電池電極用スラリー、固体電解質組成物、電極及び全固体型電池 |
JP2012227107A (ja) * | 2011-04-05 | 2012-11-15 | Sumitomo Electric Ind Ltd | 非水電解質電池用電極体及び非水電解質電池 |
WO2012173089A1 (ja) * | 2011-06-17 | 2012-12-20 | 日本ゼオン株式会社 | 全固体二次電池 |
WO2013001623A1 (ja) * | 2011-06-29 | 2013-01-03 | トヨタ自動車株式会社 | 固体電解質層、二次電池用電極層および全固体二次電池 |
JP2013008611A (ja) * | 2011-06-27 | 2013-01-10 | Nippon Zeon Co Ltd | 全固体二次電池 |
WO2013065738A2 (ja) * | 2011-10-31 | 2013-05-10 | 日本ゼオン株式会社 | 全固体二次電池 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE310321T1 (de) * | 1995-06-28 | 2005-12-15 | Ube Industries | Nichtwässrige sekundärbatterie |
JP2000106154A (ja) | 1998-09-28 | 2000-04-11 | Matsushita Electric Ind Co Ltd | 全固体電池およびその製造法 |
JP4280339B2 (ja) * | 1998-10-16 | 2009-06-17 | パナソニック株式会社 | 固体電解質成型体、電極成型体および電気化学素子 |
US20020122985A1 (en) * | 2001-01-17 | 2002-09-05 | Takaya Sato | Battery active material powder mixture, electrode composition for batteries, secondary cell electrode, secondary cell, carbonaceous material powder mixture for electrical double-layer capacitors, polarizable electrode composition, polarizable electrode, and electrical double-layer capacitor |
US20050187369A1 (en) * | 2003-05-20 | 2005-08-25 | Ju-Kil Lee | One-part polyurethane resin composition, method of preparing the same, and method of preparing a paint composition having the same |
CN101142252B (zh) * | 2005-03-15 | 2011-08-03 | 昭和电工株式会社 | 包含(甲基)丙烯酰基的芳族异氰酸酯化合物及其制备方法 |
KR100773247B1 (ko) * | 2005-04-20 | 2007-11-05 | 주식회사 엘지화학 | 향상된 과충전 안전성의 리튬 이차전지 |
US20060258831A1 (en) * | 2005-05-10 | 2006-11-16 | Nigel Barksby | High molecular weight thermoplastic polyurethanes made from polyols having high secondary hydroxyl content |
US9580320B2 (en) | 2005-10-13 | 2017-02-28 | Ohara Inc. | Lithium ion conductive solid electrolyte and method for manufacturing the same |
KR100898705B1 (ko) * | 2006-08-21 | 2009-05-21 | 주식회사 엘지화학 | 폴리비닐알콜과 폴리우레탄의 semi-IPN인 전극합제용 바인더 및 이를 기반으로 하는 리튬 이차전지 |
JP2008059843A (ja) | 2006-08-30 | 2008-03-13 | Kyoto Univ | 固体電解質層及びその製造方法 |
JP2008103284A (ja) | 2006-10-20 | 2008-05-01 | Idemitsu Kosan Co Ltd | 全固体電池 |
CN102573940B (zh) * | 2009-08-21 | 2015-04-01 | 心脏起搏器公司 | 可交联聚异丁烯类聚合物及包含其的医疗装置 |
JP5299178B2 (ja) * | 2009-09-02 | 2013-09-25 | 日本ゼオン株式会社 | 全固体二次電池 |
JP5388895B2 (ja) * | 2010-02-25 | 2014-01-15 | 日本合成化学工業株式会社 | スチレン系熱可塑性エラストマーラテックス、およびその製造方法 |
JP5664773B2 (ja) * | 2011-05-19 | 2015-02-04 | トヨタ自動車株式会社 | リチウム固体電池 |
JP2013097906A (ja) * | 2011-10-28 | 2013-05-20 | Asahi Kasei Corp | 電極用バインダー |
JP6048589B2 (ja) * | 2012-11-16 | 2016-12-21 | エルジー・ケム・リミテッド | 間隙充填用スウェリングテープ |
-
2014
- 2014-09-18 JP JP2014190589A patent/JP6110823B2/ja active Active
- 2014-09-25 KR KR1020167008931A patent/KR101842375B1/ko active IP Right Grant
- 2014-09-25 WO PCT/JP2014/075398 patent/WO2015046313A1/ja active Application Filing
- 2014-09-25 CN CN201480052696.0A patent/CN105580186B/zh active Active
- 2014-09-25 DE DE112014004424.5T patent/DE112014004424T5/de active Pending
-
2016
- 2016-03-24 US US15/079,846 patent/US10654963B2/en active Active
-
2020
- 2020-01-30 US US16/777,372 patent/US11440986B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009176484A (ja) * | 2008-01-22 | 2009-08-06 | Idemitsu Kosan Co Ltd | 全固体リチウム二次電池用正極及び負極、並びに全固体リチウム二次電池 |
JP2010113820A (ja) * | 2008-11-04 | 2010-05-20 | Idemitsu Kosan Co Ltd | リチウムイオン伝導性固体電解質組成物及びそれを用いた電池 |
WO2010089891A1 (ja) * | 2009-02-09 | 2010-08-12 | トヨタ自動車株式会社 | 固体電解質材料含有シートの製造方法 |
JP2010186682A (ja) * | 2009-02-13 | 2010-08-26 | Toyota Motor Corp | 固体電解質層の製造方法 |
JP2010205449A (ja) * | 2009-02-27 | 2010-09-16 | Nippon Zeon Co Ltd | 全固体二次電池用固体電解質層、全固体二次電池用積層体および全固体二次電池 |
JP2011134675A (ja) * | 2009-12-25 | 2011-07-07 | Toyota Motor Corp | 電極層、固体電解質層および全固体二次電池 |
JP2011233422A (ja) * | 2010-04-28 | 2011-11-17 | Nippon Zeon Co Ltd | リチウムイオン伝導性固体電解質組成物および全固体二次電池 |
WO2012073678A1 (ja) * | 2010-11-29 | 2012-06-07 | Jsr株式会社 | 電池用バインダー組成物、電池電極用スラリー、固体電解質組成物、電極及び全固体型電池 |
JP2012227107A (ja) * | 2011-04-05 | 2012-11-15 | Sumitomo Electric Ind Ltd | 非水電解質電池用電極体及び非水電解質電池 |
WO2012173089A1 (ja) * | 2011-06-17 | 2012-12-20 | 日本ゼオン株式会社 | 全固体二次電池 |
JP2013008611A (ja) * | 2011-06-27 | 2013-01-10 | Nippon Zeon Co Ltd | 全固体二次電池 |
WO2013001623A1 (ja) * | 2011-06-29 | 2013-01-03 | トヨタ自動車株式会社 | 固体電解質層、二次電池用電極層および全固体二次電池 |
WO2013065738A2 (ja) * | 2011-10-31 | 2013-05-10 | 日本ゼオン株式会社 | 全固体二次電池 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107615552A (zh) * | 2015-09-16 | 2018-01-19 | 日本瑞翁株式会社 | 全固体二次电池用粘结剂及全固体二次电池 |
CN108370062A (zh) * | 2015-12-25 | 2018-08-03 | 富士胶片株式会社 | 全固态二次电池、全固态二次电池用粒子、全固态二次电池用固体电解质组合物及全固态二次电池用电极片以及它们的制造方法 |
US10892516B2 (en) | 2015-12-25 | 2021-01-12 | Fujifilm Corporation | All-solid state secondary battery, particles for all-solid state secondary battery, solid electrolyte composition for all-solid state secondary battery, and electrode sheet for all-solid state secondary battery, and methods for manufacturing same |
CN105811002A (zh) * | 2016-03-16 | 2016-07-27 | 中国科学院青岛生物能源与过程研究所 | 一种有机无机复合全固态电解质及其构成的全固态锂电池 |
US20190326630A1 (en) * | 2017-02-16 | 2019-10-24 | Fujifilm Corporation | Solid electrolyte composition, solid electrolyte-containing sheet and manufacturing method therefor, all-solid state secondary battery and manufacturing method therefor, and polymer and non-aqueous solvent dispersion thereof |
JPWO2018151119A1 (ja) * | 2017-02-16 | 2019-11-07 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質含有シートおよび全固体二次電池の製造方法 |
WO2018151119A1 (ja) * | 2017-02-16 | 2018-08-23 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質含有シートおよび全固体二次電池の製造方法 |
US11631885B2 (en) * | 2017-02-16 | 2023-04-18 | Fujifilm Corporation | Solid electrolyte composition, solid electrolyte-containing sheet and manufacturing method therefor, all-solid state secondary battery and manufacturing method therefor, and polymer and non-aqueous solvent dispersion thereof |
CN110291675B (zh) * | 2017-02-16 | 2023-02-21 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及后两者的制造方法 |
CN110291675A (zh) * | 2017-02-16 | 2019-09-27 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法 |
US11431022B2 (en) * | 2017-02-17 | 2022-08-30 | Fujifilm Corporation | Solid electrolyte composition, solid electrolyte-containing sheet and manufacturing method therefor, all-solid state secondary battery and manufacturing method therefor, and polymer and non-aqueous solvent dispersion thereof |
US10978735B2 (en) | 2018-01-23 | 2021-04-13 | Samsung Electronics Co., Ltd. | Stretchable polymer electrolyte, stretchable electrode, stretchable polymer, electrocheical device, and method of preparing stretchable polymer |
WO2020075749A1 (ja) | 2018-10-11 | 2020-04-16 | 富士フイルム株式会社 | 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池 |
WO2020110993A1 (ja) * | 2018-11-26 | 2020-06-04 | 株式会社大阪ソーダ | 無機固体電解質二次電池用電極、および無機固体電解質二次電池 |
JP7400729B2 (ja) | 2018-11-26 | 2023-12-19 | 株式会社大阪ソーダ | 無機固体電解質二次電池用電極、および無機固体電解質二次電池 |
JPWO2020110993A1 (ja) * | 2018-11-26 | 2021-12-16 | 株式会社大阪ソーダ | 無機固体電解質二次電池用電極、および無機固体電解質二次電池 |
KR20210110297A (ko) | 2018-12-28 | 2021-09-07 | 니폰 제온 가부시키가이샤 | 전고체 이차 전지용 바인더 조성물 |
WO2020137434A1 (ja) | 2018-12-28 | 2020-07-02 | 日本ゼオン株式会社 | 全固体二次電池用バインダー組成物 |
WO2021014852A1 (ja) | 2019-07-19 | 2021-01-28 | 富士フイルム株式会社 | 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法 |
WO2021039468A1 (ja) | 2019-08-30 | 2021-03-04 | 富士フイルム株式会社 | 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2015088480A (ja) | 2015-05-07 |
US10654963B2 (en) | 2020-05-19 |
US20160204468A1 (en) | 2016-07-14 |
CN105580186A (zh) | 2016-05-11 |
DE112014004424T5 (de) | 2016-06-23 |
US20200181308A1 (en) | 2020-06-11 |
CN105580186B (zh) | 2018-02-06 |
JP6110823B2 (ja) | 2017-04-05 |
KR20160051877A (ko) | 2016-05-11 |
US11440986B2 (en) | 2022-09-13 |
KR101842375B1 (ko) | 2018-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6110823B2 (ja) | 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池 | |
CN109526241B (zh) | 固体电解质组合物、片材及电池及相关制造方法和聚合物 | |
JP6607694B2 (ja) | 全固体二次電池、電極活物質層用組成物および全固体二次電池用電極シートならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法 | |
JP6429412B2 (ja) | 全固体二次電池、これに用いる固体電解質組成物および電池用電極シートならびに電池用電極シートおよび全固体二次電池の製造方法 | |
KR102086274B1 (ko) | 고체 전해질 조성물, 전고체 이차 전지용 시트, 전고체 이차 전지용 전극 시트 및 그 제조 방법과, 전고체 이차 전지 및 그 제조 방법 | |
JP6318100B2 (ja) | 全固体二次電池、これに用いる固体電解質組成物および電池用電極シートならびに電池用電極シートおよび全固体二次電池の製造方法 | |
JP2016181448A (ja) | 硫化物系固体電解質組成物、電池用電極シートおよびその製造方法、並びに、全固体二次電池およびその製造方法 | |
WO2017099248A1 (ja) | 固体電解質組成物、バインダー粒子、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、これらの製造方法 | |
JP6607871B2 (ja) | 全固体二次電池、それに用いる固体電解質組成物、これを用いた電池用電極シート、ならびに電池用電極シートおよび全固体二次電池の製造方法 | |
WO2015122290A1 (ja) | 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法 | |
WO2017145894A1 (ja) | 二次電池用電極活物質、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法 | |
JP6442607B2 (ja) | 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法 | |
JP6071938B2 (ja) | 全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに電池用電極シートおよび全固体二次電池の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480052696.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14847366 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014004424 Country of ref document: DE Ref document number: 1120140044245 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167008931 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14847366 Country of ref document: EP Kind code of ref document: A1 |