WO2020138122A1 - 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 - Google Patents

固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 Download PDF

Info

Publication number
WO2020138122A1
WO2020138122A1 PCT/JP2019/050711 JP2019050711W WO2020138122A1 WO 2020138122 A1 WO2020138122 A1 WO 2020138122A1 JP 2019050711 W JP2019050711 W JP 2019050711W WO 2020138122 A1 WO2020138122 A1 WO 2020138122A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
group
solid
polymer
active material
Prior art date
Application number
PCT/JP2019/050711
Other languages
English (en)
French (fr)
Inventor
智則 三村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020563329A priority Critical patent/JP7096366B2/ja
Priority to CN201980085639.5A priority patent/CN113228343A/zh
Priority to KR1020217018255A priority patent/KR20210089759A/ko
Publication of WO2020138122A1 publication Critical patent/WO2020138122A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells

Definitions

  • the present invention relates to a solid electrolyte composition, a solid electrolyte-containing sheet and an all-solid secondary battery, and a method for manufacturing a solid electrolyte-containing sheet and an all-solid secondary battery.
  • a lithium-ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and can charge and discharge by moving lithium ions back and forth between both electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolytic solution is liable to leak, and there is a risk of short circuit inside the battery due to overcharging or overdischarging, which may cause ignition. Therefore, further improvement in safety and reliability is required. Under these circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of the organic electrolyte has been receiving attention.
  • the all-solid-state secondary battery has a solid negative electrode, electrolyte, and positive electrode, and can greatly improve the safety and reliability of a battery using an organic electrolytic solution.
  • an inorganic solid electrolyte, an active material, a binder (binder), etc. are contained as materials for forming constituent layers such as a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer.
  • Materials have been proposed.
  • Patent Document 1 discloses a solid electrolyte composition having a polymer binder and an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and the polymer binder , A solid electrolyte composition composed of a polymer having a hard segment and a soft segment is described.
  • the constituent layers of an all-solid-state secondary battery are usually formed of solid particles such as an inorganic solid electrolyte and an active material, and the interfacial contact between the solid particles is inherently limited, so that the interfacial resistance is also reduced. (Ionic conductivity decreases.).
  • the constituent layers formed on the surface of the current collector are easily peeled off from the current collector, and the charge and discharge of the all-solid-state secondary battery (absorption and absorption of lithium ions) occur.
  • Contact failure between solid particles occurs due to contraction and expansion of the constituent layers, especially the active material layer, leading to an increase in electrical resistance and a decrease in battery performance.
  • a binder has been used to improve the binding property between solid particles, and the polymer structure constituting the binder has been studied, but there is a demand for further improvement in suppressing contact failure due to contraction and expansion of the active material layer.
  • the present invention is a solid electrolyte composition exhibiting excellent dispersibility, and by using it as a material forming a constituent layer of an all-solid secondary battery, the obtained all-solid secondary battery has an interfacial resistance between solid particles. It is an object of the present invention to provide a solid electrolyte composition capable of firmly binding solid particles while suppressing an increase in temperature and realizing excellent battery performance. Another object of the present invention is to provide a solid electrolyte-containing sheet and an all solid state secondary battery having a layer composed of this solid electrolyte composition. Further, it is an object of the present invention to provide a solid electrolyte containing sheet using the above solid electrolyte composition and a method for manufacturing an all solid state secondary battery.
  • a solid electrolyte composition together with an inorganic solid electrolyte and a dispersion medium, is a sequentially polymerized polymer and contains at least two oxygen atom, sulfur atom and nitrogen atom-containing groups.
  • a binder containing a polymer having a constituent component having a specific linking group the above-mentioned polymers have an appropriate interaction between the constituent components of each other and enhance the dispersibility of the solid electrolyte composition. I found that I can.
  • this solid electrolyte composition as a material for forming a constituent layer of an all-solid-state secondary battery, while suppressing an increase in interfacial resistance between solid particles, a constituent layer in which solid particles are firmly bound is formed. It was found that an all-solid secondary battery that can be formed and exhibits excellent battery performance can be manufactured. The present invention has been completed through further studies based on these findings.
  • a solid electrolyte composition comprising:
  • L 11 is an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 18 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, a divalent heterocyclic group having 4 to 18 carbon atoms, an oxygen atom, A carbonyl group, -N(R N1 )-, or imine linking group, or a group combining these is shown.
  • X 11 and X 12 represent an oxygen atom, a sulfur atom or —N(R N1 )—. However, X 11 and X 12 are different from each other.
  • R N1 represents a hydrogen atom, an alkylsilyl group, an aryl group having 6 to 18 carbon atoms or an alkyl group having 1 to 12 carbon atoms.
  • H-2> The solid electrolyte composition according to ⁇ 1>, wherein the stepwise polymer has a partial structure represented by the following formula (H-2).
  • L 21 has the same meaning as L 11 above.
  • R N2 has the same meaning as R N1 .
  • * Indicates a bonding portion for introducing the above partial structure into the sequential polymerization polymer.
  • H-3 The solid electrolyte composition according to ⁇ 1> or ⁇ 2>, wherein the stepwise polymer has a partial structure represented by the following formula (H-3).
  • L 31 represents an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 12 carbon atoms, an oxygen atom, an imine linking group, or a group having a molecular weight of 400 or less in combination thereof. * Indicates a bonding portion for introducing the above partial structure into the sequential polymerization polymer.
  • ⁇ 4> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 3>, wherein the stepwise polymer is a polymer represented by the following formula.
  • L 1 represents a molecular chain having a molecular weight of 14 or more and 200,000 or less.
  • X 1 , X 2 and L 2 have the same meanings as the above X 11 , the above X 12 and the above L 11 , respectively.
  • X 3 and X 4 each represent —NH— or an oxygen atom, and L 3 represents a hydrocarbon group.
  • X 5 and X 6 each represent —NH— or an oxygen atom, and L 4 represents a polycarbonate chain, a polyester chain or a polyalkylene oxide chain.
  • X 7 and X 8 each represent —NH— or an oxygen atom, and L 5 represents a hydrocarbon polymer chain.
  • s1 to s5 represent the content (mass %) of each constituent component, and are 100 mass% in total.
  • ⁇ 5> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 4>, in which the urea value of the stepwise polymer is greater than 0 and 0.5 mmol/g or less.
  • ⁇ 6> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 5>, wherein the binder is particles having an average particle size of 5 nm to 10 ⁇ m.
  • ⁇ 7> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 6>, wherein the content of the binder is 0.001 to 10% by mass based on the total solid content of the solid electrolyte composition.
  • ⁇ 9> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 8>, in which the mass-average molecular weight of the above-mentioned sequentially polymerized polymer is 10,000 to 90,000.
  • ⁇ 10> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 9>, which contains a conductive auxiliary agent.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 represent composition ratios of the respective elements, and a1:b1:c1:d1:e1 satisfies 1 to 12:0 to 5:1:2 to 12:0 to 10.
  • the dispersion medium is at least one of a ketone compound solvent, an ester compound solvent, an aromatic compound solvent, and an aliphatic compound solvent. ..
  • a solid electrolyte-containing sheet having a layer composed of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 14>.
  • An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer in this order, An all-solid-state secondary layer that is a layer composed of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 14> and at least one of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer. battery.
  • ⁇ 17> A method for producing a solid electrolyte-containing sheet, comprising a step of applying the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 14>.
  • ⁇ 18> A method for producing an all-solid secondary battery, comprising a step of applying the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 14>.
  • the solid electrolyte composition of the present invention has excellent dispersion stability. Further, the solid electrolyte composition of the present invention is to realize a solid electrolyte-containing sheet excellent in binding property between solid particles in a constituent layer and the like and ionic conductivity, and an all-solid secondary battery excellent in battery performance. You can Further, the solid electrolyte-containing sheet of the present invention is excellent in the binding property between solid particles in the constituent layer and the ionic conductivity. Further, the all solid state secondary battery of the present invention has excellent battery performance. The solid electrolyte-containing sheet and the all-solid secondary battery manufacturing method of the present invention can provide the solid electrolyte-containing sheet and all-solid secondary battery.
  • FIG. 1 is a vertical cross-sectional view schematically showing an all-solid secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view schematically showing the ion conductivity measurement test body or all-solid-state secondary battery (coin battery) manufactured in the examples.
  • the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • acrylic or “(meth)acrylic
  • it means acrylic and/or methacrylic.
  • the expression of a compound (for example, when it is referred to as a compound at the end) is used to include the compound itself, a salt thereof, and an ion thereof.
  • it is meant to include a derivative in which a part of the derivative is changed, such as by introducing a substituent, within a range in which a desired effect is exhibited.
  • a substituent a linking group, etc.
  • substituent (hereinafter referred to as a substituent, etc.) which is not specified as substituted or unsubstituted in the present specification, it means that the group may have an appropriate substituent. Therefore, in the present specification, even when the YYY group is simply described, the YYY group includes not only a mode having no substituent but also a mode having a substituent. This is also synonymous with compounds that do not specify substituted or unsubstituted.
  • the following substituent T is mentioned as a preferable substituent.
  • each substituent or the like may be the same or different from each other. It means good. Further, even when not otherwise specified, when a plurality of substituents and the like are adjacent to each other, they may be linked to each other or condensed to form a ring.
  • the solid electrolyte composition of the present invention comprises an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and a sequential polymerization comprising a constituent represented by the following formula (H-1). It contains a binder containing a polymer and a dispersion medium.
  • L 11 is an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 18 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, an oxygen atom, —N(R N1 )—, a silane linking group or an imine A linking group or a group combining these groups, atoms or linking groups is shown.
  • X 11 and X 12 represent an oxygen atom, a sulfur atom or —N(R N1 )—. However, X 11 and X 12 are different from each other.
  • R N1 represents a hydrogen atom, an alkylsilyl group or an alkyl group having 1 to 12 carbon atoms.
  • the present invention can achieve (maintain) the high and stable dispersibility of a solid electrolyte composition and the strong binding property between solid particles at a high level while suppressing an increase in interfacial resistance. Therefore, the constituent layer constituted by the solid electrolyte composition of the present invention shows a high strength, the contact state between solid particles (amount of ion conduction path) and the binding force between solid particles and the like are improved in a well-balanced manner, It is considered that the solid particles are bound to each other with a strong binding property while the ionic conduction path is constructed, and the interfacial resistance between the solid particles is reduced.
  • Each sheet or all-solid-state secondary battery provided with a constitutional layer exhibiting such excellent characteristics shows a high ionic conductivity by suppressing an increase in electric resistance, and further, this excellent battery performance, repeated charge and discharge. Even if it does, it can be maintained.
  • the reason for this is not clear, but it is estimated as follows.
  • the polymers can be aggregated to increase the mechanical strength of the polymer.
  • the interaction between the polymers is too strong, the polymers aggregate and settle. That is, the mechanical strength of the polymer and the dispersibility of the slurry containing the polymer have a trade-off relationship.
  • the polymer constituting the binder has the constituent component represented by the above formula (H-1), so that the polymers strongly interact with each other at X 11 and X 12 , and the other By intentionally weakening the interaction in, it is possible to give the polymer the desired cohesive force (mechanical strength) and binding force to solid particles, and further improve its dispersibility when made into a slurry. It is thought to be possible.
  • H-1 constituent component represented by the above formula (H-1)
  • the polymer constituting the binder adheres closely. It is considered that the ionic conductivity of the sheet, the binding property of the solid particles and the like in the constituent layer, and the battery performance of the all-solid secondary battery are excellent, partly because the solid particles dispersed are highly evenly dispersed.
  • the excellent dispersibility of the solid electrolyte composition means a state in which solid particles are highly and stably dispersed in a dispersion medium, for example, in the “dispersion test” in Examples described later. , Showing dispersibility of evaluation rank “4” or more.
  • the binder is preferably dispersed as particles (in the solid state) in the dispersion medium, and the inorganic solid electrolyte and the binder are dispersed in the dispersion medium in the solid state (suspension). 2) (the solid electrolyte composition is a slurry) is more preferable.
  • the binder is a constituent layer or a coating and drying layer of the solid electrolyte composition described below, solid particles such as an inorganic solid electrolyte are bound to each other, and further adjacent layers (for example, a current collector) and solid particles are bound to each other. It is sufficient that the solid particles are not necessarily bound to each other in the dispersed state of the solid electrolyte composition.
  • the solid electrolyte composition of the present invention also includes, as a dispersoid, an active material, in addition to an inorganic solid electrolyte, and an embodiment containing a conductive additive and the like (the composition of this embodiment is referred to as "electrode composition"). ..).
  • the solid electrolyte composition of the present invention is a non-aqueous composition.
  • the non-aqueous composition includes not only a form containing no water but also a form having a water content (also referred to as water content) of 200 ppm or less.
  • the water content is preferably 150 ppm or less, more preferably 100 ppm or less, and further preferably 50 ppm or less.
  • the water content indicates the amount of water contained in the solid electrolyte composition (mass ratio of water in the solid electrolyte composition).
  • the water content can be determined by Karl Fischer titration by filtering the solid electrolyte composition with a 0.45 ⁇ m membrane filter.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte in which ions can move. Since it does not contain an organic substance as a main ion conductive material, it is an organic solid electrolyte (a polymer electrolyte typified by polyethylene oxide (PEO) or the like, an organic typified by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or the like. Electrolyte salt) is clearly distinguished. Further, since the inorganic solid electrolyte is solid in the steady state, it is not usually dissociated or released into cations and anions.
  • PEO polyethylene oxide
  • LiTFSI lithium bis(trifluoromethanesulfonyl)imide
  • the electrolytic solution or the inorganic electrolyte salt LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.
  • the inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and generally has no electron conductivity.
  • the inorganic solid electrolyte has ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table.
  • a solid electrolyte material applicable to this type of product can be appropriately selected and used.
  • Typical examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte and (ii) an oxide-based inorganic solid electrolyte, and in view of high ionic conductivity and easy interparticle interfacial bonding, Inorganic solid electrolytes are preferred.
  • the inorganic solid electrolyte preferably has lithium-ion ionic conductivity.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom, has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Compounds having properties are preferred.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, and other elements other than Li, S and P depending on the purpose or the case. May be included.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive sulfide-based inorganic solid electrolyte satisfying the composition represented by the following formula (1).
  • Formula (1) L a1 M b1 P c1 S d1 A e1
  • L represents an element selected from Li, Na and K, and Li is preferable.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 represent composition ratios of the respective elements, and a1:b1:c1:d1:e1 satisfies 1 to 12:0 to 5:1:2 to 12:0 to 10.
  • a1 is preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, and more preferably 0 to 1.
  • d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, and more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the compounding ratio of the raw material compounds when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized.
  • glass glass
  • glass-ceramic glass-ceramic
  • Li—P—S based glass containing Li, P and S, or Li—P—S based glass ceramics containing Li, P and S can be used.
  • the sulfide-based inorganic solid electrolyte is, for example, lithium sulfide (Li 2 S), phosphorus sulfide (eg, phosphorus pentasulfide (P 2 S 5 )), elemental phosphorus, elemental sulfur, sodium sulfide, hydrogen sulfide, lithium halide (eg, LiI, LiBr, LiCl) and a sulfide of the element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by a reaction of at least two raw materials.
  • Li 2 S lithium sulfide
  • phosphorus sulfide eg, phosphorus pentasulfide (P 2 S 5 )
  • elemental phosphorus elemental sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • a sulfide of the element represented by M for example, SiS 2 , S
  • the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ⁇ 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S/cm or more, more preferably 1 ⁇ 10 ⁇ 3 S/cm or more.
  • the upper limit is 1 ⁇ 10 ⁇ 1 S/cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4 -P 2 S 5 , Li 2 S-P 2 S 5 -P 2 O 5 , Li 2 S-P 2 S 5 -SiS 2 , Li 2 S-P 2 S 5 -SiS 2- LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3 , Li 2 S-
  • amorphization method examples include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom, has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Compounds having properties are preferred.
  • the ionic conductivity of the oxide-based inorganic solid electrolyte is preferably 1 ⁇ 10 ⁇ 6 S/cm or more, more preferably 5 ⁇ 10 ⁇ 6 S/cm or more, and 1 ⁇ 10 ⁇ 5 S. /Cm or more is particularly preferable.
  • the upper limit is not particularly limited, and is practically 1 ⁇ 10 ⁇ 1 S/cm or less.
  • nb (M bb is at least one element of Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, Sn, xb satisfies 5 ⁇ xb ⁇ 10, and yb satisfies 1 ⁇ yb ⁇ 4, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, and nb satisfies 5 ⁇ nb ⁇ 20.), Li xc Byc M cc zc O nc (M cc is At least one element of C, S, Al, Si, Ga, Ge, In, and Sn, xc satisfies 0 ⁇ xc ⁇ 5, yc satisfies 0 ⁇ yc ⁇ 1, and zc satisfies 0 ⁇ zc ⁇ 1 and nc satisfies 0 ⁇ nc ⁇ 6), Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P
  • Li 1+xh+yh (Al, Ga) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 (where 0 ⁇ xh ⁇ 1, 0 ⁇ yh ⁇ 1), Li having a garnet type crystal structure 7 La 3 Zr 2 O 12 (LLZ) and the like can be mentioned.
  • a phosphorus compound containing Li, P and O is also desirable.
  • lithium phosphate (Li 3 PO 4 ), LiPON and LiPOD 1 (D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr) in which a part of oxygen of lithium phosphate is replaced with nitrogen. , Nb, Mo, Ru, Ag, Ta, W, Pt, Au, etc.).
  • LiA 1 ON (A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.) and the like can also be preferably used.
  • the halide-based inorganic solid electrolyte contains a halogen atom, has the ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Compounds having properties are preferred.
  • the halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as LiCl, LiBr, LiI, Li 3 YBr 6 and Li 3 YCl 6 described in ADVANCED MATERIALS, 2018, 30, 1803075. Of these, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
  • the hydride-based inorganic solid electrolyte contains a hydrogen atom, has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Compounds having properties are preferred.
  • the hydride-based inorganic solid electrolyte is not particularly limited, and examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, 3LiBH 4 —LiCl, and the like.
  • the inorganic solid electrolyte is preferably particles.
  • the average particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited and is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the average particle size of the inorganic solid electrolyte is measured by the following procedure.
  • the inorganic solid electrolyte particles are prepared by diluting a 1% by mass dispersion liquid in a 20 mL sample bottle with water (heptane in the case of a substance which is unstable to water).
  • the diluted dispersion sample is irradiated with ultrasonic waves of 1 kHz for 10 minutes, and immediately thereafter, used for the test.
  • a laser diffraction/scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA) was used, and data was captured 50 times at a temperature of 25° C. using a quartz cell for measurement. Obtain the volume average particle size.
  • JIS Z 8828:2013 “Particle size analysis-Dynamic light scattering method” if necessary. Five samples are prepared for each level, and the average value is adopted.
  • the inorganic solid electrolytes may be used alone or in combination of two or more.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition is not particularly limited, and is 50% by mass or more at a solid content of 100% by mass in terms of dispersibility, reduction of interfacial resistance and binding property. It is more preferably 70% by mass or more, and particularly preferably 90% by mass or more. From the same viewpoint, the upper limit is preferably 99.99% by mass or less, more preferably 99.95% by mass or less, and particularly preferably 99.9% by mass or less.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition is the total content of the inorganic solid electrolyte and the active material.
  • the solid content means a component that does not disappear by volatilization or evaporation when the solid electrolyte composition is dried for 6 hours at 150° C. under a nitrogen atmosphere under a pressure of 1 mmHg. .. Typically, it refers to components other than the dispersion medium described below.
  • the solid electrolyte composition of the present invention contains a binder that binds solid particles.
  • This binder is composed of a sequential polymerization type polymer described later, may be soluble in the dispersion medium, and is insoluble or hardly soluble (particles) in the dispersion medium particularly in terms of ionic conductivity. Is preferred.
  • being insoluble or sparingly soluble in the dispersion medium means that the binder is added to the dispersion medium at 30° C. (the amount used is 10 times the mass of the binder) and left standing for 24 hours, This means that the amount dissolved in the dispersion medium is 30% by mass or less, preferably 20% by mass or less, and more preferably 10% by mass or less. This dissolved amount is the ratio of the binder mass dissolved in the dispersion medium after 24 hours to the binder mass added to the dispersion medium.
  • the binder may be present in the solid electrolyte composition, for example, dissolved in the dispersion medium, or may be present in the dispersion medium in a solid state (as the insoluble or sparingly soluble particles) (solid).
  • the binder is preferably a particulate binder in the solid electrolyte composition from the viewpoint of battery resistance and cycle characteristics. It is one of the preferable embodiments that the particulate binder maintains the particulate state even in the constituent layers (coating and drying layer) such as the solid electrolyte layer and the electrode active material layer.
  • the binder is a particulate binder
  • its shape is not particularly limited and may be flat, amorphous or the like, and spherical or granular is preferable.
  • the average particle size of the particulate binder is not particularly limited, and is preferably 5 nm or more and 10 ⁇ m or less. This can improve the dispersibility of the solid electrolyte composition, the binding property between solid particles, and the ionic conductivity.
  • the average particle size is preferably 10 nm or more and 5 ⁇ m or less, more preferably 15 nm or more and 1 ⁇ m or less, and further preferably 20 nm or more and 0.5 ⁇ m or less, from the viewpoint that dispersibility, binding property and ionic conductivity can be further improved.
  • the average particle size of the binder can be measured in the same manner as the inorganic solid electrolyte.
  • the average particle size of the particulate binder in the constituent layer of the all-solid secondary battery is, for example, measured in advance after disassembling the battery and peeling the constituent layer containing the particulate binder, and then measuring the constituent layer. The measurement can be performed by excluding the measured value of the average particle diameter of the particles other than the particulate binder that has been used.
  • the average particle size of the particulate binder can be adjusted, for example, by the type of dispersion medium used when preparing the binder dispersion, the content of the constituent components in the polymer constituting the binder, and the like.
  • Binder the content in the solid electrolyte composition, dispersibility, further inorganic solid electrolyte particles, in terms of compatibility with the binding properties with solid particles such as the active material and the conductive auxiliary agent and ion conductivity, solid.
  • 100 mass% of the component 0.001 mass% or more is preferable, 0.05 mass% or more is more preferable, 0.1 mass% or more is further preferable, and 0.2 mass% or more is particularly preferable.
  • the upper limit is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less.
  • the mass ratio [(mass of inorganic solid electrolyte+mass of active material)/(mass of binder)] of the total mass (total mass) of the inorganic solid electrolyte and the active material to the mass of the binder is , 1,000 to 1 is preferable. This ratio is more preferably 1000 to 2, and even more preferably 500 to 10.
  • the polymer constituting the binder is a sequential polymerization type polymer having the constituent components represented by the following formula (H-1).
  • the “sequential polymerization type polymer” refers to a polymer containing a polymer chain obtained by sequential polymerization as a segment in the main chain or side chain (preferably main chain).
  • the sequential polymerization polymer may be a copolymer containing two or more kinds of polymer chains obtained by sequential polymerization, or a copolymer containing a segment other than the polymer chains obtained by sequential polymerization.
  • the type of sequential polymerization is not particularly limited, examples of the sequential polymerization polymer include, for example, polyester, polyamide, polyimide, polyurethane, polyurea, polycarbonate, etc., in terms of dispersibility, battery performance, etc., polyester, polyamide, Polyurethane and polyurea are preferred.
  • the sequentially polymerized polymer used in the present invention has a constituent component represented by the following formula (H-1).
  • the sequentially polymerized polymer may have the constituent component represented by the following formula (H-1) in either the main chain or the side chain, and preferably has it in the main chain.
  • the main chain of the polymer means a linear molecular chain in which all the other molecular chains constituting the polymer can be regarded as branched chains or pendant chains with respect to the main chain. Although it depends on the mass average molecular weight of a molecular chain regarded as a branched chain or a pendant chain, the longest chain is typically the main chain among the molecular chains constituting the polymer. However, the functional group at the polymer end is not included in the main chain.
  • the side chain of the polymer means a molecular chain other than the main chain, and includes a short molecular chain and a long molecular chain.
  • the step-polymerization polymer used in the present invention includes a constituent component represented by the formula (H-1) described below and a constituent component represented by any one of the following formulas (I-1) to (I-4) ( A main chain formed by combining two or more (preferably 2 to 4 types, more preferably 2 or 3 types) of constituent components derived from a monomer, or a carboxylic acid dianhydride represented by the following formula (I-5) (a polymer having a main chain formed by sequentially polymerizing a compound represented by the following formula (I-6) (a component derived from a carboxylic acid dianhydride (monomer) represented by the following formula (I-5) and the following) A polymer having a main chain to which constituent components derived from the compound (monomer) represented by the formula (I-6) are bonded is preferable.
  • each constituent component is appropriately selected according to the polymer species.
  • One kind of constituent in the combination of constituents means the number of kinds of constituents represented by any one of the following formulas, and has two kinds of constituents represented by the following formula. Is not to be construed as two constituents.
  • R P1 and R P2 each represent a molecular chain having a (mass average) molecular weight of 14 or more and 200,000 or less.
  • the molecular weight of this molecular chain cannot be unambiguously determined because it depends on the type and the like. For example, 30 or more is preferable, 50 or more is more preferable, 100 or more is further preferable, and 150 or more is particularly preferable.
  • the upper limit is preferably 100,000 or less, more preferably 10,000 or less.
  • the molecular weight of the molecular chain is measured with respect to the raw material compound before being incorporated into the main chain of the polymer.
  • the molecular chain that can be taken as R P1 and R P2 is not particularly limited, and is preferably a hydrocarbon chain, a polyalkylene oxide chain, a polycarbonate chain or a polyester chain, more preferably a hydrocarbon chain or a polyalkylene oxide chain, and a hydrocarbon chain.
  • Polyethylene oxide chains or polypropylene oxide chains are more preferred.
  • the hydrocarbon chain which can be taken as R P1 and R P2 means a hydrocarbon chain composed of a carbon atom and a hydrogen atom, and more specifically, at least two compounds of a compound composed of a carbon atom and a hydrogen atom. It means a structure in which an atom (for example, a hydrogen atom) or a group (for example, a methyl group) is eliminated.
  • the hydrocarbon chain also includes a chain having a group containing an oxygen atom, a sulfur atom or a nitrogen atom, such as a hydrocarbon group represented by the following formula (M2).
  • M2 hydrocarbon group represented by the following formula
  • This hydrocarbon chain may have a carbon-carbon unsaturated bond and may have a ring structure of an aliphatic ring and/or an aromatic ring. That is, the hydrocarbon chain may be a hydrocarbon chain composed of a hydrocarbon selected from an aliphatic hydrocarbon and an aromatic hydrocarbon.
  • Such a hydrocarbon chain may be one that satisfies the above-mentioned molecular weight, and both a hydrocarbon chain having a low molecular weight and a hydrocarbon chain having a hydrocarbon polymer (also referred to as a hydrocarbon polymer chain).
  • the low molecular weight hydrocarbon chain is a chain composed of a normal (non-polymerizable) hydrocarbon group, and examples of this hydrocarbon group include an aliphatic or aromatic hydrocarbon group. Is an alkylene group (having preferably 1 to 12 carbon atoms, more preferably 1 to 6 and still more preferably 1 to 3), an arylene group (having 6 to 22 carbon atoms, preferably 6 to 14 and 6 to 10).
  • the hydrocarbon group forming a low molecular weight hydrocarbon chain that can be taken as R P2 is more preferably an alkylene group, further preferably an alkylene group having 2 to 6 carbon atoms, and particularly preferably an alkylene group having 2 or 3 carbon atoms.
  • This hydrocarbon chain may have a polymer chain (for example, a (meth)acrylic polymer) as a substituent.
  • aliphatic hydrocarbon group for example, a hydrogen-reduced product of an aromatic hydrocarbon group represented by the following formula (M2), a partial structure of a known aliphatic diisosonate compound (for example, a group consisting of isophorone), and the like are also included.
  • the aromatic hydrocarbon group is preferably a phenylene group or a hydrocarbon group represented by the following formula (M2).
  • X represents a single bond, —CH 2 —, —C(CH 3 ) 2 —, —SO 2 —, —S—, —CO— or —O—, and is a binding point of view.
  • —CH 2 — or —O— is preferable, and —CH 2 — is more preferable.
  • the alkylene group exemplified here may be substituted with a halogen atom (preferably a fluorine atom).
  • R M2 to R M5 each represent a hydrogen atom or a substituent, and a hydrogen atom is preferable.
  • the substituent which can be taken as R M2 to R M5 is not particularly limited, and examples thereof include an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, —OR M6 , —N(R M6 ) 2 , —SR M6 (R M6 represents a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms), halogen atom (eg, fluorine atom, chlorine atom, bromine atom) Are listed.
  • R M6 represents a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms
  • halogen atom eg, fluorine atom, chlorine atom, bromine atom
  • —N(R M6 ) 2 is an alkylamino group (having preferably 1 to 20 carbon atoms, more preferably 1 to 6) or an arylamino group (having 6 to 40 carbon atoms, preferably 6 to 20 carbon atoms). More preferred).
  • the hydrocarbon polymer chain may be a polymer chain formed by polymerizing (at least two) polymerizable hydrocarbons, and a chain composed of a hydrocarbon polymer having a larger number of carbon atoms than the above-mentioned low molecular weight hydrocarbon chain.
  • the chain is not particularly limited, and is preferably a chain composed of a hydrocarbon polymer composed of 30 or more, more preferably 50 or more carbon atoms.
  • the upper limit of the number of carbon atoms constituting the hydrocarbon polymer is not particularly limited and may be, for example, 3,000.
  • This hydrocarbon polymer chain is preferably a chain composed of a hydrocarbon polymer whose main chain satisfies the above-mentioned number of carbon atoms and which is composed of an aliphatic hydrocarbon, and is composed of an aliphatic saturated hydrocarbon or an aliphatic unsaturated hydrocarbon. It is more preferable that the chain is a polymer (preferably elastomer) chain. Specific examples of the polymer include a diene polymer having a double bond in the main chain and a non-diene polymer having no double bond in the main chain.
  • the diene polymer examples include a styrene-butadiene copolymer, a styrene-ethylene-butadiene copolymer, a copolymer of isobutylene and isoprene (preferably butyl rubber (IIR)), a butadiene polymer, an isoprene polymer and ethylene.
  • IIR butyl rubber
  • the non-diene polymer include olefin polymers such as ethylene-propylene copolymer and styrene-ethylene-butylene copolymer, and hydrogen reduction products of the above diene polymers.
  • the hydrocarbon chain that can be taken as R P1 and R P2 may have a substituent (for example, a substituent T described later or a functional group described in the functional group group ⁇ I> described later).
  • the hydrocarbon that becomes the hydrocarbon chain preferably has a reactive group at its terminal, and more preferably has a polycondensable terminal reactive group.
  • the end-reactive group capable of polycondensation or polyaddition forms a group bonded to R P1 or R P2 in each of the above formulas by polycondensation or polyaddition.
  • Examples of such a terminal reactive group include an isocyanato group, a hydroxy group, a carboxy group and an amino group, and among them, a hydroxy group is preferable.
  • hydrocarbon polymer having a terminal reactive group examples are, under the trade names, NISSO-PB series (manufactured by Nippon Soda Co., Ltd.), Claysol series (manufactured by Tomoe Kogyo Co., Ltd.), PolyVEST-HT series (manufactured by Evonik). , Poly-bd series (manufactured by Idemitsu Kosan Co., Ltd.), poly-ip series (manufactured by Idemitsu Kosan Co., Ltd.), EPOL (manufactured by Idemitsu Kosan Co., Ltd.) and Polytail series (manufactured by Mitsubishi Chemical Co., Ltd.) are preferably used.
  • R P1 is preferably a low molecular weight hydrocarbon chain, and more preferably a hydrocarbon chain composed of an aromatic hydrocarbon group.
  • R P2 is preferably a molecular chain other than a low molecular weight hydrocarbon chain or an aliphatic hydrocarbon group, and more preferably an embodiment containing a molecular chain other than a low molecular weight hydrocarbon chain and an aliphatic hydrocarbon group, respectively.
  • the component represented by the formula (I-3) and the component derived from the compound represented by any one of the formula (I-4) and the formula (I-6) have a low molecular weight R P2. It is preferable to include at least two kinds of the constituent component which is an aliphatic hydrocarbon group and the constituent component where R P2 is a molecular chain other than the low molecular weight hydrocarbon chain.
  • the number of carbon atoms of the alkyleneoxy group in the polyalkylene oxide chain is preferably 1 to 10, more preferably 1 to 6, and 2 or 3 (polyethylene oxide chain or Polypropylene oxide chains) are more preferred.
  • the polyalkylene oxide chain may be a chain composed of one kind of alkylene oxide or a chain composed of two or more kinds of alkylene oxide (for example, a chain composed of ethylene oxide and propylene oxide).
  • Examples of the polycarbonate chain or polyester chain include known chains of polycarbonate or polyester.
  • Each of the polyalkylene oxide chain, the polycarbonate chain and the polyester chain preferably has an alkyl group (having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) at the terminal.
  • an ether group (—O—), a thioether group (—S—), a carbonyl group (>C ⁇ O), an imino group (>NR Na :R Na is a hydrogen atom, and a carbon number of 1). It may have an alkyl group having 6 to 6 or an aryl group having 6 to 10 carbon atoms.
  • R P1 and R P2 are divalent molecular chains, but at least one hydrogen atom is replaced by —NH—CO—, —CO—, —O—, —NH— or —N ⁇ Therefore, it may have a trivalent or higher molecular chain.
  • constituent components represented by the above formula (I-1) are shown below.
  • the raw material compound (diisocyanate compound) for deriving the constituent component represented by the above formula (I-1) include, for example, the diisocyanate compound represented by the formula (M1) described in WO2018/020827, Specific examples thereof include polymeric 4,4′-diphenylmethane diisocyanate and the like.
  • the constituent component represented by the formula (I-1) and the raw material compound leading to the constituent component are not limited to those described in the following specific examples and the above-mentioned documents.
  • the raw material compound (carboxylic acid or acid chloride thereof, etc.) leading to the constituent component represented by the above formula (I-2) is not particularly limited and is described in, for example, [0074] of International Publication No. 2018/020827, Examples thereof include carboxylic acid or acid chloride compounds and specific examples thereof.
  • constituent components represented by the above formula (I-3) are shown below.
  • the starting compounds (diol compounds or diamine compounds) for deriving the components represented by the above formula (I-3) or formula (I-4) are described in, for example, International Publication No. 2018/020827. Each compound and specific examples thereof are mentioned, and further dihydroxyoxamide is also mentioned.
  • the constituent components represented by formula (I-3) or formula (I-4) and the raw material compounds leading to them are not limited to those described in the following specific examples and the above-mentioned documents.
  • R P3 represents an aromatic or aliphatic linking group (tetravalent), and a linking group represented by any of the following formulas (i) to (ix) is preferable.
  • X 1 represents a single bond or a divalent linking group.
  • the divalent linking group is preferably an alkylene group having 1 to 6 carbon atoms (eg methylene, ethylene, propylene). As propylene, 1,3-hexafluoro-2,2-propanediyl is preferable.
  • L represents —CH 2 ⁇ CH 2 — or —CH 2 —.
  • R X and R Y each represent a hydrogen atom or a substituent.
  • * represents a binding site to the carbonyl group in formula (1-5).
  • the substituent that can be used as R X and R Y is not particularly limited, and examples thereof include the substituent T described later.
  • alkyl group having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms
  • an aryl group having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, further preferably 6 to 10 carbon atoms
  • 6 to 22 carbon atoms having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, further preferably 6 to 10 carbon atoms
  • R b1 to R b4 represent a hydrogen atom or a substituent, and preferably a hydrogen atom. Examples of this substituent include the substituent T described later, and an alkyl group is preferable.
  • the carboxylic acid dianhydride represented by the above formula (I-5) and the raw material compound (diamine compound) leading to the constituent component represented by the above formula (I-6) are not particularly limited, and include, for example, Each compound described in WO2018/020827 and WO2015/046313 and specific examples thereof can be mentioned.
  • R P1 , R P2, and R P3 may each have a substituent.
  • the substituent is not particularly limited, and examples thereof include the substituent T described below, and further, a ketone group of the functional group (I) described above, and the above-mentioned substituent that can be adopted as R M2 is preferable.
  • the step-by-step polymer has a constituent represented by the following formula (H-1).
  • X 11 and X 12 represent an oxygen atom, a sulfur atom or —N(R N )—. However, X 11 and X 12 are different from each other.
  • R N represents a hydrogen atom, an alkylsilyl group, an aryl group having 6 to 18 carbon atoms or an alkyl group having 1 to 12 carbon atoms.
  • the alkylene group having 1 to 12 carbon atoms may be linear, branched, cyclic, or a combination of at least two of these forms.
  • This alkylene group preferably contains a cyclic structure in order to further improve the dispersibility of the solid electrolyte composition slurry and the battery performance.
  • Specific examples of the alkylene group include methylene, ethylene, propylene, butylene, hexylene, octylene, nonylene, decylene, cyclohexylene and dodecenylene.
  • the alkylene group which combined cyclohexylene and ethylene is also mentioned.
  • the carbon number of the arylene group having 6 to 18 carbon atoms is more preferably 6 to 10.
  • Specific examples of the arylene group include phenylene and naphthylene.
  • the alkenylene group having 2 to 12 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethenylene, propenylene and 1-methylpropenylene.
  • the heterocycle constituting the above heterocyclic group may be an aliphatic heterocycle or an aromatic heterocycle, and may be a monocycle or a condensed ring.
  • the hetero atom contained in the divalent heterocyclic group having 4 to 18 carbon atoms is not particularly limited, and examples thereof include an oxygen atom, a nitrogen atom and a sulfur atom.
  • the number of heteroatoms contained in one heterocycle is not particularly limited and is preferably 1 to 3, more preferably 1 or 2.
  • the carbon number is preferably 4 to 10, and more preferably 4 or 5.
  • the heterocycle is preferably a 4- to 7-membered ring, more preferably a 5- or 6-membered ring. Specific examples of the heterocycle include a pyrrolidine ring and a pyridine ring.
  • R N is preferably a hydrogen atom.
  • the alkyl group of the alkylsilyl group represented by R N has the same meaning as the following alkyl group having 1 to 12 carbon atoms.
  • the alkyl group having 1 to 12 carbon atoms represented by R N may be linear, branched or cyclic, and specific examples of the alkyl group include methyl, ethyl, propyl, i-propyl, t-butyl, pentyl and cyclohexyl. Can be mentioned.
  • the aryl group having 6 to 18 carbon atoms represented by R N preferably has 6 to 10 carbon atoms. Specific examples of aryl groups include phenyl and naphthyl.
  • a divalent group obtained by combining two or three of these is preferable, and a divalent group obtained by combining two is more preferable.
  • a divalent group obtained by combining an alkylene group having 2 to 12 carbon atoms and an arylene group having 6 to 18 carbon atoms, and a divalent heterocyclic group having 4 to 18 carbon atoms and an alkylene group having 2 to 12 carbon atoms examples thereof include a combined divalent group and a divalent group in which an oxygen atom and an alkylene group having 2 to 12 carbon atoms are combined.
  • the molecular weight of the combined groups is not particularly limited and is preferably 6000 or less, more preferably 1000 or less, more preferably 400 or less, and further preferably 300 or less.
  • the lower limit of the molecular weight is preferably 40 or more, more preferably 50 or more.
  • L 11 The group that can be adopted as L 11 is appropriately determined in consideration of the length of the molecular chain of each group, rigidity, hydrophobicity (affinity with the dispersion medium described below), and the like, and the From the standpoint, an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 18 carbon atoms, or a divalent group in which these are combined is preferable, and an alkylene group having 1 to 12 carbon atoms is more preferable.
  • L 11 may have a substituent.
  • the substituent is not particularly limited and has the same meaning as the substituent that R P1 may have, for example.
  • X 11 and X 12 each represent an oxygen atom, a sulfur atom or —N(R N1 )—, and R N1 has the same meaning as R N1 of —N(R N1 )— which may be taken as L 11 , and is a hydrogen atom. Is preferred.
  • X 11 and X 12 are appropriately selected from the above atoms and —N(R N1 )—, respectively, but an atom in which X 11 and X 12 are different from each other or —N(R N1 )— is selected.
  • the combination of X 11 and X 12 is not particularly limited, for binding to X 11 or X 12 and other components, one of X 11 and X 12 are those showing a strong the interaction, X 11 and The other of X 12 shows the above weak interaction.
  • examples of the bond having strong interaction include thiourea bond and urea bond
  • examples of the bond having weak interaction include thiourethane bond and urethane.
  • Bonds, amide bonds, carbonate bonds, ester bonds and the like are mentioned, and the strength of interaction among these five bonds is thiourethane ⁇ urethane>urethane>amide>carbonate>ester. That is, the strength of the interaction between thiourethane and urethane is about the same, and the strengths thereafter become weaker in order.
  • one is -N the X 11 and X 12 (R N1) - and, preferably the other is a sulfur atom or an oxygen atom, one is -N the X 11 and X 12 (R N1) - It is more preferable that the other is an oxygen atom, and it is particularly preferable that one of X 11 and X 12 is —NH— and the other is an oxygen atom.
  • the constituent component represented by the formula (H-1) is shown as a divalent constituent component, but in the present invention, a trivalent or higher valent constituent component is included.
  • a polyvalent constituent one or more hydrogen atoms possessed by L 11 are removed to serve as a bonding part (to bond with other constituents) for incorporation into the polymer.
  • the valence of the constituent component is preferably 3 to 8 and more preferably 3 or 4.
  • the bonding portion may be an atom from which a hydrogen atom has been removed, or may be a linking group that bonds to this atom.
  • the linking group is not particularly limited, and is an alkylene group having 2 to 12 carbon atoms, an arylene group having 6 to 18 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, an oxygen atom, a sulfur atom, -N(R N1 )- , A silane linking group or an imine linking group, or a group combining these groups, atoms or linking groups.
  • the terminal bonding portion of this linking group is preferably an oxygen atom, a sulfur atom or —N(R N1 )—, more preferably an oxygen atom or a sulfur atom, which may be the same as or different from X 11 or X 12. ..
  • the raw material compound leading to this constituent component is not particularly limited, and examples thereof include an amino alcohol compound, an amino thiol compound, and a hydroxymercapto compound. These compounds may be appropriately synthesized or may be commercially available products.
  • the sequential polymerization-type polymer used in the present invention has the following functional group group ⁇ It is preferable to have at least one functional group described in I>. These functional groups may be bonded to not only R P2 of the constituent component represented by the above formula (I-3) or the formula (I-4) but also other groups.
  • the sequential polymerization type polymer is represented by the constituent component represented by the formula (H-1) among the constituent components represented by the above formulas and the formula (I-3) or the formula (I-4). It preferably has a component.
  • the constituent component represented by the formula (I-3) is a constituent component in which R P2 is the above-mentioned polycarbonate chain, polyester chain, or polyalkylene oxide chain as a molecular chain (a constituent component represented by the following formula (I-3B)).
  • R P2 is a hydrocarbon group (preferably a group having at least one functional group described in the functional group ⁇ I>) (the following formula (I- 3A)) and at least one of R P2 is a hydrocarbon polymer chain as a molecular chain (a component represented by the following formula (I-3C)). Is preferred.
  • the step-by-step polymer includes a constituent component represented by the following formula (I-1) or formula (I-2), a constituent component represented by the formula (I-3B) and a formula (H-1). )
  • a constituent component represented by the formula (I-3C) or a constituent component represented by the formula (I-3A) is included. It is more preferable that it has a constituent component represented by formula (I-3C) and a constituent component represented by formula (I-3A).
  • R P1 is as described above.
  • R P2A represents a hydrocarbon group, and preferably has at least one functional group described in the functional group group ⁇ I>. Examples include bis(hydroxymethyl)acetic acid compounds such as 2,2-bis(hydroxymethyl)butyric acid.
  • R P2B represents a polycarbonate chain, a polyester chain or a polyalkylene oxide chain.
  • R P2C represents a hydrocarbon polymer chain.
  • the hydrocarbon group that can be taken as R P2A , the polycarbonate chain, the polyester chain, the polyalkylene oxide chain that can be taken as R P2B , and the hydrocarbon polymer chain that can be taken as R P2C are each taken as R P2 in the above formula (I-3).
  • R P2 has the same meaning as a hydrocarbon group, a polycarbonate chain, a polyester chain, a polyalkylene oxide chain and a hydrocarbon polymer chain, and the preferable ones are also the same.
  • L 11 , X 11 and X 12 are as described above.
  • the combination of the constituent components represented by the above formulas is not particularly limited, and preferable constituent components represented by the respective formulas can be appropriately combined.
  • a combination of the following preferable components may be mentioned.
  • Component represented by formula (I-1) component derived from diphenylmethane diisocyanate compound, component derived from dicyclohexylmethane 4,4′-diisocyanate
  • Component represented by formula (I-2) Component derived from terephthalic acid dichloride compound
  • Component represented by formula (I-3A) component derived from 2,2-bis(hydroxymethyl)butyric acid compound, 2,2-bis(hydroxymethyl)propionic acid
  • Component represented by the formula (I-3B) component derived from polyethylene glycol or polypropylene glycol, poly Component represented by component formula (I-3C) derived from tetramethylene glyco
  • the step-polymerization polymer used in the present invention may have constituent components other than the constituent components represented by the above formulas. Such constituents are not particularly limited as long as they can be successively polymerized with the constituents represented by the above formulas.
  • the (total) content of the constituents represented by the formula (H-1) and any of the formulas (1-1) to (I-6) in the stepwise polymer is not particularly limited. It is preferably from 100 to 100% by mass, more preferably from 10 to 100% by mass, even more preferably from 50 to 100% by mass, further preferably from 80 to 100% by mass. The upper limit of this content may be, for example, 90% by mass or less, regardless of the above 100% by mass.
  • the content of the constituents other than the constituents represented by the above formulas in the stepwise polymer is not particularly limited and is preferably 80% by mass or less.
  • the content of the constituent component represented by the above formula (H-1) in the stepwise polymer is not particularly limited, and the lower limit is preferably 0.001 mass% or more, and 0.1 mass% or more. More preferably, it is more preferably 0.3% by mass or more, further preferably 1% by mass or more.
  • the upper limit is preferably 50% by mass or less, more preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less.
  • the constituent component represented by the formula (I-1) or the formula (I-2) or the constituent component derived from the carboxylic acid dianhydride represented by the formula (I-5) in the step-wise polymer is not particularly limited, and the lower limit is preferably 0% by mass or more, more preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and 10% by mass. More preferably, it is more preferably 15% by mass or more.
  • the upper limit is preferably 70% by mass or less, more preferably 65% by mass or less, more preferably 60% by mass or less, more preferably 50% by mass or less, and 40% by mass or less.
  • the content of the constituent component represented by formula (I-3), formula (I-4) or formula (I-6) in the stepwise polymer is not particularly limited, and the lower limit is 0% by mass or more. It is preferable that it is 5% by mass or more, more preferably 15% by mass or more, more preferably 25% by mass or more, and further preferably 35% by mass.
  • the upper limit is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 65% by mass or less.
  • a constituent component in which R P2 is a hydrocarbon group (preferably at least one functional group described in the functional group group ⁇ I>).
  • the content of the constituent component having, for example, the constituent component represented by the above formula (I-3A) in the sequential polymerization polymer is not particularly limited, but the lower limit is preferably 0 mass% or more. 0.1 mass% or more is more preferable, and 1 mass% or more is still more preferable.
  • the upper limit is preferably 50% by mass or less, more preferably 30% by mass or less, more preferably 10% by mass or less, and more preferably 5% by mass or less.
  • constituents represented by the formula (I-3) or the formula (I-4) constituents in which R P2 is a polycarbonate chain, a polyester chain or a polyalkylene oxide chain as a molecular chain (for example, the above formula (I-).
  • the content of the constituent component (3B)) in the stepwise polymer is not particularly limited, but for example, the lower limit is preferably 0% by mass or more, and 0.1% by mass or more. More preferably, it is more preferably 10% by mass or more.
  • the upper limit is preferably 70% by mass or less, more preferably 60% by mass or less, more preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass or less.
  • the constituent component in which R P2 is the above hydrocarbon polymer chain as a molecular chain (for example, represented by the above formula (I-3C))
  • the content of the constituent component) in the sequential polymerization polymer is not particularly limited, and for example, the lower limit is preferably 0 mass% or more, more preferably 5 mass% or more, and more preferably 10 mass% or more. More preferably, The upper limit is preferably 80% by mass or less, more preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 45% by mass or less.
  • the above content of each constituent component shall be the total content.
  • a partial structure containing a constituent represented by the above formula (H-1) (not a constituent corresponding to a constituent derived from a raw material compound, but a bonding portion specific to the present invention The constituent components) will be described.
  • the partial structure containing the constituent component represented by the formula (H-1) is not uniquely determined by the other constituent components bonded to the constituent component represented by the formula (H-1), and in the present invention,
  • the partial structure represented by the following formula (H-2) is preferable, and the partial structure represented by the following formula (H-3) is more preferable.
  • L 21 has the same meaning as L 11 , and the preferred range is also the same.
  • R N2 has the same meaning as R N1 and the preferred range is also the same.
  • * Indicates a binding part for introducing a partial structure into the sequential polymerization polymer.
  • This partial structure includes an example of the constituent component represented by the formula (H-1) and other constituent components bonded to both ends of the constituent component (for example, the above formula (H-1) or the formula (H-2)). Is a partial structure consisting of a carbonyl group of the constituent component).
  • the bonds (—COO— bond and —CONR N2 —) bonded to L 21 are different from each other, and one bond of both bonds sandwiching L 21 is strong in the successive polymerization type polymer. Shows an interaction and the other binding shows a weak interaction. Therefore, it is considered that the above partial structure suppresses a strong interaction (aggregation) between the polymers due to both bonds and exhibits an interaction suitable for the present invention.
  • L 31 is an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 12 carbon atoms, an oxygen atom, an imine linking group, or a molecular weight of 400 or less (preferably 300 or less, preferably Represents a group of 40 or more, more preferably 50 or more).
  • This partial structure includes an example of the constituent component represented by formula (H-1) and other constituent components (both constituent components represented by formula (H-1)) bonded to both ends of this constituent component. It is a partial structure consisting of an NHCO-group.
  • the urethane bond bonded to L 31 exhibits the above-mentioned weak interaction, and the urea bond exhibits strong interaction. Due to this partial structure, the mechanical strength of the polymer is maintained and the strength of the polymer is increased. It is possible to suppress the development of various interactions (cohesive force).
  • the step-polymerization polymer used in the present invention is preferably a polymer represented by the following formula in order to further improve the dispersibility of the solid electrolyte composition slurry, the ionic conductivity of the solid electrolyte-containing sheet, and the battery performance.
  • L 1 has the same meaning as R P1 and the preferred range is also the same.
  • X 1 , X 2 and L 2 have the same meanings as X 11 , X 12 and L 11 , respectively, and the preferred ranges are also the same.
  • Both X 3 and X 4 represent —NH— or an oxygen atom, and preferably an oxygen atom.
  • L 3 has the same meaning as R P2A and the preferred range is also the same.
  • X 5 and X 6 each represent —NH— or an oxygen atom, and preferably an oxygen atom.
  • L 4 has the same meaning as R P2B and the preferred range is also the same.
  • Both X 7 and X 8 represent —NH— or an oxygen atom, and preferably an oxygen atom.
  • L 5 has the same meaning as R P2C and the preferred range is also the same.
  • s1 to s5 indicate the content (mass %) of each constituent component, which is 100 mass% in total. The total of s2 to s5 exceeds 0% by mass.
  • the lower limit of s1 is preferably more than 0 mass%, more preferably 0.01 mass% or more, more preferably 0.1 mass% or more, and more preferably 10 mass% or more. Is more preferably 15% by mass or more.
  • the upper limit of s1 is preferably 70% by mass or less, more preferably 65% by mass or less, more preferably 60% by mass or less, more preferably 50% by mass or less, 40% by mass. The following is more preferable.
  • the lower limit of s2 is preferably 0.001% by mass or more, more preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and preferably 1% by mass or more. More preferable.
  • the upper limit of s2 is preferably 50% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, and further preferably 3% by mass or less.
  • the lower limit of s3 is preferably 0% by mass or more, more preferably 0.1% by mass or more, and further preferably 1% by mass or more.
  • the upper limit of s3 is preferably 50% by mass or less, more preferably 30% by mass or less, more preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the lower limit of s4 is preferably 0% by mass or more, more preferably 0.1% by mass or more, and further preferably 10% by mass or more.
  • the upper limit is preferably 70% by mass or less, more preferably 60% by mass or less, more preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass or less. More preferably,
  • the lower limit of s5 is preferably 0% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more.
  • the upper limit of s5 is preferably 80% by mass or less, more preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 45% by mass or less.
  • the constituent components corresponding to the constituent components represented by the formulas with s1 to s5 may have the same structure or different structures.
  • the total content of these constituent components is s1.
  • sequential polymerization type polymer used in the present invention include the polymers synthesized in Examples and the following compounds.
  • the sequentially polymerized polymer may have a substituent.
  • substituent T examples include groups selected from the following substituent T.
  • the substituent T is shown below, but the substituent T is not limited thereto.
  • Alkyl group preferably alkyl group having 1 to 20 carbon atoms, for example, methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl group Preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl etc.
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl etc.
  • a cycloalkyl group preferably an alkynyl
  • a cycloalkyl group having 3 to 20 carbon atoms for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.
  • an aryl group preferably an aryl group having 6 to 26 carbon atoms, for example, phenyl, 1-naphthyl) , 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.
  • a heterocyclic group preferably a heterocyclic group having 2 to 20 carbon atoms, and preferably having at least one oxygen atom, sulfur atom, nitrogen atom
  • a 5- or 6-membered heterocyclic group which includes an aromatic heterocyclic group and an aliphatic heterocyclic group, for example, a tetrahydropyran ring group, a tetrahydrofuran ring group, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazoly
  • An alkylthio group preferably an alkylthio group having 1 to 20 carbon atoms, for example, methylthio, ethylthio, isopropylthio, benzylthio, etc.
  • R P is a hydrogen atom or a substituent (preferably a group selected from the substituent T). Further, each of the groups listed as the substituent T may be further substituted with the above substituent T.
  • the compound, the substituent, the linking group and the like include an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group and/or an alkynylene group, these may be cyclic or linear, or linear or branched. Good.
  • the urea value of the sequential polymerization polymer used in the present invention is not particularly limited, and the dispersibility of the solid electrolyte composition slurry, the ionic conductivity of the solid electrolyte-containing sheet and the binding property in the constituent layers, and the battery performance are improved. Therefore, it is preferable to exceed 0 mmol/g, more preferably 0.03 mmol/g or more, still more preferably 0.05 mmol/g or more.
  • the upper limit is preferably 0.5 mmol/g or less, more preferably 0.45 mmol/g or less, even more preferably 0.35 mmol/g or less.
  • the urea value can be calculated by the measuring method described in Examples below.
  • the mass average molecular weight of the step-polymerized polymer contained in the binder is not particularly limited and is preferably 5,000 or more, more preferably 10,000 or more, and particularly preferably 15,000 or more. ..
  • the upper limit is preferably 1,000,000 or less, more preferably 500,000 or less, and more preferably 200,000 or less.
  • a mode in which a cross-linked structure is introduced and the molecular weight exceeds the measurement limit is also preferable.
  • the sequential polymerization type polymer is obtained by arbitrarily combining raw material compounds that lead to predetermined constituents depending on the type of the main chain, and performing sequential polymerization in the presence of a catalyst (including an organic tin catalyst, if necessary). , Can be synthesized.
  • the method and conditions for sequential polymerization are not particularly limited, and known methods and conditions can be appropriately selected.
  • Each characteristic and physical property of the sequential polymerization type polymer can be adjusted by the type of the sequential polymerization type polymer, further, the type or content of the constituent component (raw material compound), the molecular weight of the polymer and the like.
  • a known compound is appropriately selected according to the type of the step-polymerization polymer.
  • the solvent for synthesizing the step-polymerization polymer is not particularly limited, and those listed as the dispersion medium described later can be preferably used.
  • a dispersion liquid of a sequential polymerization type polymer is prepared by the phase inversion emulsification method described later (when a binder is prepared)
  • a sequential polymerization type polymer is synthesized (when a sequential polymerization type polymer solution is prepared).
  • the method of substituting the solvent used in step 1 for a dispersion medium capable of emulsifying and dispersing the sequential polymerization polymer and removing the solvent used when synthesizing the sequential polymerization polymer is preferable.
  • the boiling point of the solvent used when synthesizing the sequential polymerization polymer is preferably lower than the boiling point of the dispersion medium in which the sequential polymerization polymer can be emulsified and dispersed.
  • the dispersion medium capable of emulsifying and dispersing the sequential polymerization type polymer a dispersion medium capable of emulsifying and dispersing the sequential polymerization type polymer described later can be preferably used.
  • the method for preparing the dispersion liquid of the sequential polymerization type polymer is not particularly limited, and it may be prepared by the synthesis of the above sequential polymerization type polymer (for example, the emulsion polymerization method), and the synthesized sequential polymerization type polymer is used in an appropriate dispersion medium. It can also be prepared by dispersion.
  • Examples of the method for dispersing the sequentially polymerized polymer in the dispersion medium include a method using a flow reactor (a method of colliding primary particles of the sequentially polymerized polymer), a method of stirring using a homogenizer, and a phase inversion emulsification method. Can be mentioned. Among them, the method of phase inversion emulsification of the synthesized sequential polymerization type polymer is preferable in view of productivity, and further, the characteristics and physical properties of the obtained sequential polymerization type polymer.
  • the phase inversion emulsification method includes a step of dispersing a sequentially polymerized polymer and a step of removing the solvent used during the synthesis of the sequentially polymerized polymer.
  • a solution of the sequential polymerization polymer is added dropwise to a dispersion medium in which the sequential polymerization polymer can be emulsified and dispersed (for example, at -20 to 150° C. for 0.5 to 8 hours) and emulsified.
  • a method a method of emulsifying by slowly dropping a dispersion medium capable of emulsifying and dispersing the sequentially polymerized polymer while vigorously stirring the solution of the successively polymerized polymer.
  • Examples of the step of removing the solvent include a method in which the dispersion liquid of the sequentially polymerized polymer thus obtained is concentrated under reduced pressure or heated under an inert gas stream.
  • the solvent used during the synthesis of the step-by-step polymer can be selectively removed, and the concentration of the dispersion medium capable of emulsifying and dispersing the step-by-step polymer can be increased.
  • the “strong stirring” is not particularly limited as long as mechanical energy such as impact, shear, shear stress, friction, vibration is applied to the polymer solution.
  • a homogenizer, a homodisper, a Shinto machine, a dissolver, a Titec mixer, a stirring blade in a stirring tank, a high-pressure jet disperser, an ultrasonic disperser, a ball mill, a beads mill, etc. are used, for example, at 300 to 1000 rpm.
  • a mode in which stirring is performed under conditions such as the number of rotations can be mentioned.
  • the term “slowly dropping” is not particularly limited as long as it is not added all at once, and examples thereof include a condition in which the dispersion medium to be dropped is added dropwise to the sequential polymerization polymer solution over 10 minutes or more.
  • the dispersion medium in which the sequentially polymerized polymer can be emulsified and dispersed is appropriately determined according to the type of constituent components of the sequentially polymerized polymer.
  • a solvent which can easily dissolve this constituent component and hardly dissolve other components such as the constituent component represented by the formula (I-1) can be mentioned.
  • Such a solvent is not particularly limited, and non-aqueous dispersion media (aliphatic compounds and aromatic compounds) are preferable among the dispersion media described later.
  • Examples of the aliphatic compound include hexane, heptane, normal octane, isooctane, nonane, decane, dodecane, cyclohexane, cycloheptane, cyclooctane, methylcyclohexane, ethylcyclohexane, decalin, light oil, kerosene, gasoline and the like.
  • Examples of the aromatic compound include benzene, toluene, ethylbenzene, xylene, mesitylene, tetralin and the like.
  • the dispersion medium may be used alone or in combination of two or more.
  • a polar solvent (ether solvent, ketone solvent, ester solvent, etc.) may be added as long as it does not hinder the emulsion dispersion of the polymer.
  • the mass ratio of the non-aqueous dispersion medium and the polar solvent [mass of non-aqueous dispersion medium/mass of polar solvent] is preferably 100/0 to 70/30, more preferably 100/0 to 90/10, and 100/0 to Most preferred is 99/1.
  • the boiling point at normal pressure of the dispersion medium capable of emulsifying and dispersing the sequentially polymerized polymer is preferably 80°C or higher, preferably 70°C or higher, and more preferably 80°C or higher.
  • the average particle size of the particles of the sequential polymerization type polymer is the solid content concentration or dropping rate of the sequential polymerization type polymer solution used, the type of the sequential polymerization type polymer, and further the type or content of the constituent components. And the like.
  • the solid electrolyte composition of the present invention contains a dispersion medium (dispersion medium).
  • the dispersion medium may be one that disperses or dissolves the above components, and is preferably one that disperses at least the binder.
  • Examples of the dispersion medium contained in the solid electrolyte composition include various organic solvents. Examples of the organic solvent include alcohol compounds, ether compounds, amide compounds, amine compounds, ketone compounds, aromatic compounds, aliphatic compounds, nitrile compounds, ester compounds, and the like, and specific examples of the dispersion medium are as follows. The following are listed.
  • Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and 2 -Methyl-2,4-pentanediol, 1,3-butanediol and 1,4-butanediol may be mentioned.
  • an alkylene glycol alkyl ether ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene glycol Monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.), dialkyl ether (dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.), cyclic ether (tetrahydrofuran, dioxane (1,2-, 1,3) -And 1,4-isomers are included) and the like).
  • alkylene glycol alkyl ether ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propy
  • amide compound examples include N,N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N- Examples thereof include methylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
  • Examples of the ketone compound include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone, and the like.
  • Examples of the aromatic compound include benzene, toluene, xylene and the like.
  • Examples of the aliphatic compound include hexane, heptane, octane, decane and the like.
  • Examples of the nitrile compound include acetonitrile, propyronitrile, isobutyronitrile and the like.
  • ester compound examples include ethyl acetate, butyl acetate, propyl acetate, butyl butyrate, and butyl pentanoate.
  • non-aqueous dispersion medium examples include the above aromatic compounds and aliphatic compounds.
  • a ketone compound, an aromatic compound, an aliphatic compound and an ester compound are preferable, and a ketone compound, an aliphatic compound and an ester compound are more preferable.
  • a combination of a sulfide-based inorganic solid electrolyte and an aliphatic compound is particularly preferable.
  • the dispersion medium has a boiling point at atmospheric pressure (1 atm) of preferably 50°C or higher, more preferably 70°C or higher.
  • the upper limit is preferably 250°C or lower, and more preferably 220°C or lower.
  • the solid electrolyte composition may contain one kind or two or more kinds of dispersion media.
  • the content of the dispersion medium in the solid electrolyte composition is not particularly limited and can be set appropriately.
  • 20 to 99 mass% is preferable, 30 to 90 mass% is more preferable, and 40 to 80 mass% is particularly preferable.
  • the solid electrolyte composition of the present invention may contain a conductive auxiliary agent, and it is particularly preferable that the silicon atom-containing active material as the negative electrode active material is used in combination with the conductive auxiliary agent.
  • the conductive aid is not particularly limited, and those known as general conductive aids can be used.
  • electronic conductive materials such as graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, Ketjen black and furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber or carbon nanotube.
  • a conductive auxiliary agent that does not function as an active material does not cause insertion and release of Li when the battery is charged and discharged.
  • the conductive assistants those that can function as the active material in the active material layer when the battery is charged/discharged are classified as the active material, not the conductive assistant. Whether or not the battery functions as an active material when charged and discharged is not unique and is determined by a combination with the active material.
  • the conductive additive one type may be used, or two or more types may be used.
  • the total content of the conductive additive in the electrode composition is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, based on the total solid content.
  • the shape of the conductive additive is not particularly limited, and a particulate shape is preferable.
  • the median diameter D50 of the conductive additive is not particularly limited and is, for example, preferably 0.01 to 1 ⁇ m, and more preferably 0.02 to 0.1 ⁇ m.
  • the solid electrolyte composition of the present invention may contain an active material capable of inserting and releasing ions of a metal element belonging to Group 1 or 2 of the periodic table.
  • the active material include a positive electrode active material and a negative electrode active material, and a transition metal oxide that is a positive electrode active material or a metal oxide that is a negative electrode active material is preferable.
  • a solid electrolyte composition containing an active material (a positive electrode active material and a negative electrode active material) may be referred to as an electrode composition (a positive electrode composition and a negative electrode composition).
  • the positive electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above-mentioned characteristics, and may be an element capable of forming a complex with Li such as a transition metal oxide, an organic substance, or sulfur, or a complex of sulfur and a metal.
  • the element M b (elements of Group 1 (Ia), elements of Group 2 (IIa), Al, Ga, In, Ge, Sn, Pb of the metal periodic table other than lithium, Elements such as Sb, Bi, Si, P or B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphate compound, (MD) ) Lithium-containing transition metal halogenated phosphoric acid compounds and (ME) lithium-containing transition metal silicic acid compounds.
  • MA a transition metal oxide having a layered rock salt type structure
  • MB transition metal oxide having a spinel type structure
  • MC lithium-containing transition metal phosphate compound
  • MD Lithium-containing transition metal halogenated phosphoric acid compounds
  • ME lithium-containing transition metal silicic acid compounds.
  • transition metal oxide having a (MA) layered rock salt structure examples include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (lithium nickel cobalt aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobalt oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
  • transition metal oxide having a (MB) spinel structure examples include LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li.
  • Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And the monoclinic naconic vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And the like, such as cobalt fluorophosphates.
  • the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO, LMO, NCA or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but a particulate shape is preferable.
  • the volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m.
  • An ordinary crusher or classifier may be used to make the positive electrode active material have a predetermined particle size.
  • the positive electrode active material obtained by the firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction/scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA).
  • the positive electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (unit weight) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.
  • the content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and 50 to 85% by mass based on 100% by mass of the solid content. More preferably, 55 to 80 mass% is particularly preferable.
  • the negative electrode active material is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a metal oxide, a metal composite oxide, a silicon-based material, a simple substance of lithium, a lithium alloy, an anode active material capable of forming an alloy with lithium. Etc. Above all, a carbonaceous material, a metal composite oxide, or a simple substance of lithium is preferably used from the viewpoint of reliability.
  • the carbonaceous material used as the negative electrode active material is a material that substantially consists of carbon.
  • petroleum pitch carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), and PAN (polyacrylonitrile)-based resin or furfuryl alcohol resin
  • a carbonaceous material obtained by firing a resin can be used.
  • various carbon fibers such as PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polyvinyl alcohol)-based carbon fibers, lignin carbon fibers, glassy carbon fibers and activated carbon fibers. Examples thereof include mesophase microspheres, graphite whiskers, and flat graphite.
  • the metal oxide and metal composite oxide applied as the negative electrode active material are not particularly limited as long as they are oxides capable of occluding and releasing lithium, and amorphous oxides are preferable, and further metal elements and the periodic table.
  • Chalcogenite which is a reaction product with an element of Group 16 is also preferred.
  • amorphous as used herein means an X-ray diffraction method that uses CuK ⁇ rays and has a broad scattering band having an apex in the region of 20° to 40° at a 2 ⁇ value. May have.
  • the amorphous oxide of a metalloid element and the above chalcogenide are more preferable, and the elements of Group 13 (IIIB) to Group 15 (VB) of the periodic table
  • An oxide or a chalcogenide composed of one kind of Al, Ga, Si, Sn, Ge, Pb, Sb and Bi alone or a combination of two or more kinds thereof is particularly preferable.
  • Specific examples of preferable amorphous oxides and chalcogenides are, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , and Sb 2.
  • O 4, Sb 2 O 8 Bi 2 O 3, Sb 2 O 8 Si 2 O 3, Sb 2 O 5, Bi 2 O 3, Bi 2 O 4, GeS, PbS, PbS 2, Sb 2 S 3 and Sb 2 S 5 is preferably mentioned.
  • the metal (composite) oxide and the chalcogenide contain at least one of titanium and lithium as constituent components from the viewpoint of high current density charge/discharge characteristics.
  • the metal composite oxide containing lithium (lithium composite metal oxide) for example, a composite oxide of lithium oxide and the above metal (composite) oxide or the above chalcogenide, more specifically, Li 2 SnO 2 is Can be mentioned.
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charging/discharging characteristics because of its small volume fluctuation during storage/release of lithium ions, and suppresses deterioration of the electrodes to prevent lithium ion secondary It is preferable in that the life of the battery can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • the lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of a secondary battery, and examples thereof include a lithium aluminum alloy.
  • the negative electrode active material capable of forming an alloy with lithium is not particularly limited as long as it is one that is usually used as a negative electrode active material for secondary batteries. Such an active material has large expansion and contraction due to charge and discharge, and the binding property of the solid particles is lowered as described above, but in the present invention, the binder can achieve high binding property.
  • examples of such an active material include a negative electrode active material having a silicon atom or a tin atom, each metal such as Al and In, and a negative electrode active material having a silicon atom that enables higher battery capacity (silicon atom-containing active material).
  • a silicon atom-containing active material in which the content of silicon atoms is 50 mol% or more of all the constituent atoms is more preferable.
  • a negative electrode containing these negative electrode active materials Si negative electrode containing a silicon atom-containing active material, Sn negative electrode containing a tin atom-containing active material
  • carbon negative electrodes graphite, acetylene black, etc.
  • silicon atom-containing active material examples include silicon materials such as Si and SiOx (0 ⁇ x ⁇ 1), and alloys containing titanium, vanadium, chromium, manganese, nickel, copper or lanthanum (for example, LaSi 2 , VSi 2 ) or an organized active material (for example, LaSi 2 /Si), and other active materials containing a silicon atom and a tin atom such as SnSiO 3 and SnSiS 3 .
  • SiOx can be used as a negative electrode active material (semi-metal oxide) itself, and since Si is generated by the operation of an all-solid secondary battery, an active material (precursor thereof) that can be alloyed with lithium.
  • the negative electrode active material having a tin atom examples include Sn, SnO, SnO 2 , SnS, SnS 2 , and the active material containing the silicon atom and the tin atom. Further, a complex oxide with lithium oxide, for example, Li 2 SnO 2 can also be mentioned.
  • the shape of the negative electrode active material is not particularly limited, but a particulate shape is preferable.
  • the average particle diameter of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • An ordinary crusher or classifier is used to obtain a predetermined particle size.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill or a sieve is preferably used.
  • wet pulverization in which water or an organic solvent such as methanol is allowed to coexist can be carried out as necessary.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be performed both dry and wet.
  • the average particle diameter of the negative electrode active material particles can be measured by the same method as the method for measuring the volume average particle diameter of the positive electrode active material described above.
  • the chemical formula of the compound obtained by the above calcination method can be calculated from the mass difference of the powder before and after calcination as a simple method, and as a simple method.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (unit weight) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.
  • the content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass based on 100% by mass of the solid content.
  • the surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include spinel titanate, tantalum-based oxides, niobium-based oxides, lithium niobate-based compounds, and the like, and specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , and LiTaO 3.
  • the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus. Furthermore, the surface of the particles of the positive electrode active material or the negative electrode active material may be surface-treated with active rays or active gas (plasma etc.) before and after the surface coating.
  • the solid electrolyte composition of the present invention may optionally contain, as components other than the above components, a lithium salt, an ionic liquid, a thickener, a cross-linking agent (such as radical polymerization, condensation polymerization or ring-opening polymerization). ), a polymerization initiator (such as one that generates an acid or a radical by heat or light), a defoaming agent, a leveling agent, a dehydrating agent, an antioxidant and the like.
  • a lithium salt such as radical polymerization, condensation polymerization or ring-opening polymerization.
  • a cross-linking agent such as radical polymerization, condensation polymerization or ring-opening polymerization.
  • a polymerization initiator such as one that generates an acid or a radical by heat or light
  • a defoaming agent such as one that generates an acid or a radical by heat or light
  • a leveling agent such as one that generates an acid or a radical by heat
  • the solid electrolyte composition of the present invention contains a cross-linking agent and a polymerization initiator, and a mode of cross-linking the particulate binder (the polymer constituting the) during the formation of the constituent layer described later, the cross-linking agent and the polymerization initiation.
  • a mode in which an agent is not contained and the particulate binder (a polymer constituting the particulate binder) is not crosslinked in the formation of the constituent layer (an aspect in which the particulate binder does not include a crosslinked polymer) are included.
  • the solid electrolyte composition of the present invention can be prepared, preferably as a slurry, by mixing the inorganic solid electrolyte, the binder, the dispersion medium, and other components with, for example, various mixers that are usually used.
  • the mixing method is not particularly limited, and may be mixed all at once or sequentially.
  • a particulate binder is used, it is usually used as a dispersion of the particulate binder, but is not limited thereto.
  • the environment for mixing is not particularly limited, and examples thereof include dry air or an inert gas.
  • the solid electrolyte-containing sheet of the present invention is a sheet-shaped molded article that has a layer composed of the solid electrolyte composition of the present invention and can form a constituent layer of an all-solid-state secondary battery, and is various depending on its use. Including the aspect of.
  • a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte sheet for all solid state secondary batteries
  • an electrode or a sheet preferably used for a laminate of an electrode and a solid electrolyte layer (electrode for all solid state secondary battery) Sheet) and the like.
  • the solid electrolyte sheet for all-solid-state secondary battery of the present invention may be a sheet having a solid electrolyte layer, even a sheet in which the solid electrolyte layer is formed on a substrate does not have a substrate, the solid electrolyte layer It may be a sheet formed from.
  • the solid electrolyte sheet for all solid state secondary batteries may have other layers in addition to the solid electrolyte layer. Examples of the other layer include a protective layer (release sheet), a current collector, and a coat layer.
  • the solid electrolyte sheet for an all-solid secondary battery of the present invention for example, on a substrate, a layer composed of the solid electrolyte composition of the present invention, usually a solid electrolyte layer, and optionally a protective layer in this order A sheet is included.
  • the solid electrolyte layer formed from the solid electrolyte composition of the present invention contains an inorganic solid electrolyte and a binder containing a polymer having the above-mentioned specific constituents, and has excellent binding properties.
  • the solid electrolyte layer is the same as the solid electrolyte layer in the all-solid-state secondary battery described later, and usually contains no active material.
  • the solid electrolyte sheet for all-solid secondary batteries can be used suitably as a material which comprises the solid electrolyte layer of all-solid secondary batteries.
  • the base material is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include a sheet (plate-like body) made of a material, an organic material, an inorganic material, and the like, which will be described later with reference to a current collector.
  • the organic material include various polymers and the like, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, cellulose and the like.
  • the inorganic material include glass and ceramics.
  • the electrode sheet for an all-solid secondary battery of the present invention may be an electrode sheet having an active material layer, and the active material layer is on a base material (current collector).
  • the sheet may be a sheet formed of an active material layer or a sheet having no base material.
  • This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, and a current collector, an active material layer and a solid electrolyte.
  • a mode having a layer and an active material layer in this order is also included.
  • the electrode sheet of the present invention may have the other layers described above.
  • the layer thickness of each layer constituting the electrode sheet of the present invention is the same as the layer thickness of each layer described in the all-solid secondary battery described later.
  • the active material layer of the electrode sheet is preferably formed of the solid electrolyte composition (electrode composition) of the present invention. This electrode sheet can be suitably used as a material forming the (negative electrode or positive electrode) active material layer of the all-solid secondary battery.
  • the solid electrolyte-containing sheet of the present invention can be manufactured using the solid electrolyte composition of the present invention.
  • the solid electrolyte composition of the present invention is prepared as described above, and the obtained solid electrolyte composition is formed into a film (coating and drying) on a substrate (may have other layers interposed).
  • a method of forming a solid electrolyte layer (coating dry layer) on a substrate can be mentioned. In this way, a solid electrolyte-containing sheet having a base material (current collector) and a coating and drying layer can be produced if necessary.
  • the coating dry layer is a layer formed by applying the solid electrolyte composition of the present invention and drying the dispersion medium (that is, using the solid electrolyte composition of the present invention, the solid of the present invention A layer having a composition obtained by removing the dispersion medium from the electrolyte composition).
  • the dispersion medium may remain in the active material layer and the coating dried layer as long as the effects of the present invention are not impaired, and the remaining amount can be, for example, 3% by mass or less in each layer.
  • the solid electrolyte composition of the present invention is preferably used as a slurry, and if desired, the solid electrolyte composition of the present invention can be slurried by a known method. Each process such as application and drying of the solid electrolyte composition of the present invention will be described in the following method for manufacturing an all-solid secondary battery.
  • the coating dried layer obtained as described above can be pressed.
  • the pressurizing condition and the like will be described later in the method of manufacturing an all-solid-state secondary battery.
  • the base material, the protective layer (particularly the release sheet) and the like can be peeled off.
  • the all solid state secondary battery of the present invention comprises a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer arranged between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer is formed on the positive electrode current collector, if necessary, and constitutes a positive electrode.
  • the negative electrode active material layer is, if necessary, formed on the negative electrode current collector to form a negative electrode.
  • At least one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is formed of the solid electrolyte composition of the present invention, and all layers are preferably formed of the solid electrolyte composition of the present invention.
  • the active material layer or the solid electrolyte layer formed of the solid electrolyte composition of the present invention is preferably the same as the solid species of the solid electrolyte composition of the present invention with respect to the component species to be contained and the content ratio thereof. ..
  • a known material can be used.
  • the thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited. The thickness of each layer is preferably 10 to 1,000 ⁇ m, and more preferably 20 ⁇ m or more and less than 500 ⁇ m, in consideration of the dimensions of a general all-solid secondary battery.
  • the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is more preferably 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode active material layer and the negative electrode active material layer may each include a current collector on the side opposite to the solid electrolyte layer.
  • the solid electrolyte composition or the active material layer can be formed by the solid electrolyte composition of the present invention or the solid electrolyte-containing sheet.
  • the solid electrolyte layer and the active material layer to be formed are preferably the same as those in the solid content of the solid electrolyte composition or the solid electrolyte-containing sheet, unless otherwise specified, for each component and the content thereof. ..
  • the thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited.
  • each layer is preferably 10 to 1,000 ⁇ m, and more preferably 20 ⁇ m or more and less than 500 ⁇ m, in consideration of the dimensions of a general all-solid secondary battery.
  • the thickness of at least one of the positive electrode active material layer, the solid electrolyte layer and the negative electrode active material layer is more preferably 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode active material layer and the negative electrode active material layer may each be provided with a current collector on the side opposite to the solid electrolyte layer.
  • the all-solid-state secondary battery of the present invention may be used as the all-solid-state secondary battery with the above structure depending on the application, and in order to obtain the form of a dry battery, it should be further enclosed in a suitable casing before use.
  • the housing may be made of metal or resin (plastic).
  • a metallic thing an aluminum alloy thing and a stainless steel thing can be mentioned, for example.
  • the metallic casing is preferably divided into a casing on the positive electrode side and a casing on the negative electrode side and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.
  • FIG. 1 is a sectional view schematically showing an all-solid-state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. ..
  • the layers are in contact with each other and have a laminated structure. By adopting such a structure, during charging, electrons (e ⁇ ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated there.
  • the solid electrolyte composition of the present invention can be preferably used as a molding material for a solid electrolyte layer, a negative electrode active material layer or a positive electrode active material layer. Further, the solid electrolyte-containing sheet of the present invention is suitable as a solid electrolyte layer, a negative electrode active material layer or a positive electrode active material layer.
  • the positive electrode active material layer hereinafter, also referred to as positive electrode layer
  • the negative electrode active material layer hereinafter, also referred to as negative electrode layer
  • this all-solid secondary battery When the all-solid secondary battery having the layer structure shown in FIG. 1 is put into a 2032 type coin case, this all-solid secondary battery is referred to as an all-solid secondary battery laminate, and this all-solid secondary battery laminate is A battery produced by putting it in a 2032 type coin case may be referred to as an all-solid secondary battery.
  • any one of the solid electrolyte layer and the active material layer is formed using the solid electrolyte composition of the present invention or the solid electrolyte containing sheet.
  • all layers are formed using the solid electrolyte composition of the present invention or the solid electrolyte-containing sheet, and in another preferred embodiment, the solid electrolyte layer and the positive electrode active material layer are the solid electrolyte composition of the present invention or the above. It is formed using a solid electrolyte containing sheet.
  • the negative electrode active material layer is formed by using the solid electrolyte composition or the electrode sheet of the present invention, a layer made of a metal or an alloy as a negative electrode active material, a layer made of a carbonaceous material as a negative electrode active material, etc. It can also be formed by depositing a metal belonging to Group 1 or 2 of the periodic table on the negative electrode current collector or the like during charging.
  • the components contained in the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 may be the same or different from each other.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
  • either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel and titanium, as well as aluminum or stainless steel whose surface is treated with carbon, nickel, titanium or silver (a thin film is formed). The above) are preferable, and among them, aluminum and aluminum alloys are more preferable.
  • As a material for forming the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, etc., carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel. Preferred are aluminum, copper, copper alloy and stainless steel.
  • the shape of the current collector is usually a film sheet, but a net, a punch, a lath, a porous body, a foam, a molded body of fibers, and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
  • a functional layer or member is appropriately interposed or disposed between or outside each layer of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer and the positive electrode current collector. You may. Each layer may be composed of a single layer or multiple layers.
  • the all-solid-state secondary battery of the present invention is not particularly limited, and can be produced (including) through the method for producing a solid electrolyte composition of the present invention. Focusing on the raw material used, the solid electrolyte composition of the present invention can also be used for production. Specifically, the all-solid secondary battery, the solid electrolyte composition of the present invention is prepared as described above, using the obtained solid electrolyte composition and the like, a solid electrolyte layer of the all-solid secondary battery and It can be manufactured by forming an active material layer. This makes it possible to manufacture an all-solid secondary battery having a high battery capacity. Since the method for preparing the solid electrolyte composition of the present invention is as described above, it is omitted.
  • the all-solid secondary battery of the present invention includes a step of applying the solid electrolyte composition of the present invention onto a substrate (for example, a metal foil serving as a current collector) to form a coating film (forming a film). It can be produced via a method (via).
  • a positive electrode active material layer is formed by applying the solid electrolyte composition (electrode composition) of the present invention as a positive electrode composition onto a metal foil that is a positive electrode current collector, to form a positive electrode for an all-solid secondary battery. Make a sheet. Then, the solid electrolyte composition of the present invention for forming a solid electrolyte layer is applied onto the positive electrode active material layer to form a solid electrolyte layer.
  • the solid electrolyte composition (electrode composition) of the present invention is applied as a negative electrode composition onto the solid electrolyte layer to form a negative electrode active material layer.
  • a negative electrode current collector metal foil
  • each layer is reversed, and the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery. You can also do it.
  • the positive electrode sheet for all solid state secondary batteries is produced as described above.
  • the solid electrolyte composition of the present invention is applied as a negative electrode composition onto a metal foil that is a negative electrode current collector to form a negative electrode active material layer, and a negative electrode sheet for an all-solid secondary battery is produced.
  • the solid electrolyte composition of the present invention is applied onto any one of the active material layers of these sheets as described above to form a solid electrolyte layer.
  • the other of the positive electrode sheet for all-solid secondary battery and the negative electrode sheet for all-solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • the all solid state secondary battery can be manufactured.
  • the following method can be given as another method. That is, the positive electrode sheet for all-solid secondary batteries and the negative electrode sheet for all-solid secondary batteries are produced as described above. Separately from this, a solid electrolyte composition is applied onto a substrate to prepare a solid electrolyte sheet for an all-solid secondary battery including a solid electrolyte layer. Further, the positive electrode sheet for all-solid secondary battery and the negative electrode sheet for all-solid secondary battery are laminated so as to sandwich the solid electrolyte layer peeled from the base material. In this way, the all solid state secondary battery can be manufactured.
  • Each of the above production methods is a method of forming a solid electrolyte layer, a negative electrode active material layer, and a positive electrode active material layer with the solid electrolyte composition of the present invention. Forms at least one of the solid electrolyte layer, the negative electrode active material layer, and the positive electrode active material layer with the solid electrolyte composition of the present invention.
  • a commonly used solid electrolyte composition when forming a negative electrode active material layer, a known negative electrode composition, examples thereof include a metal or alloy (metal layer) as the negative electrode active material, a carbonaceous material (carbonaceous material layer) as the negative electrode active material, and the like.
  • the method of applying the composition used for manufacturing the all-solid secondary battery is not particularly limited and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating, dip coating, slit coating, stripe coating and bar coating. At this time, the composition may be subjected to a drying treatment after each coating, or may be subjected to a multilayer treatment and then a drying treatment.
  • the drying temperature is not particularly limited. The lower limit is preferably 30° C. or higher, more preferably 60° C. or higher, even more preferably 80° C. or higher.
  • the upper limit is preferably 300°C or lower, more preferably 250°C or lower, and further preferably 200°C or lower.
  • the dispersion medium By heating in such a temperature range, the dispersion medium can be removed and a solid state (coating dried layer) can be obtained. It is also preferable because the temperature is not raised too high and each member of the all solid state secondary battery is not damaged. As a result, in the all-solid secondary battery, excellent overall performance can be obtained and good binding property can be obtained.
  • the solid electrolyte composition of the present invention when applied and dried, the solid particles are firmly bound to each other, and the interfacial resistance between the solid particles is small. Can be formed.
  • the pressurizing method include a hydraulic cylinder press machine.
  • the applied pressure is not particularly limited, and generally, it is preferably in the range of 50 to 1500 MPa.
  • the applied composition may be heated at the same time as pressing.
  • the heating temperature is not particularly limited and is generally in the range of 30 to 300°C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be performed in a state in which the coating solvent or dispersion medium is dried in advance, or may be performed in a state in which the coating solvent or dispersion medium remains.
  • each composition may be applied at the same time, or the application and drying press may be applied simultaneously and/or sequentially. After coating on different substrates, they may be laminated by transfer.
  • the atmosphere during pressurization is not particularly limited, and may be air, dry air (dew point ⁇ 20° C. or lower), inert gas (eg, argon gas, helium gas, nitrogen gas). Since the inorganic solid electrolyte reacts with water, the atmosphere during pressurization is preferably under dry air or in an inert gas.
  • the pressing time may be a short time (for example, within several hours) and high pressure may be applied, or a long time (one day or more) and medium pressure may be applied.
  • a restraint (screw tightening pressure or the like) of the all solid state secondary battery can be used in order to continue applying a medium pressure.
  • the pressing pressure may be uniform or different with respect to the pressed portion such as the sheet surface.
  • the pressing pressure can be changed according to the area and film thickness of the pressed portion. It is also possible to change the same site stepwise with different pressures.
  • the pressed surface may be smooth or roughened.
  • the all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charge/discharge with the press pressure being increased, and then releasing the pressure until the pressure becomes the general working pressure of the all-solid secondary battery.
  • the all-solid secondary battery of the present invention can be applied to various uses.
  • the application mode is not particularly limited, but for example, when it is mounted on an electronic device, it is a notebook computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, a mobile phone. Examples include copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, mini disk, electric shaver, transceiver, electronic organizer, calculator, portable tape recorder, radio, backup power supply, memory card.
  • consumer products include automobiles (electric vehicles, etc.), electric vehicles, motors, lighting equipment, toys, game devices, road conditioners, clocks, strobes, cameras, medical devices (pacemakers, hearing aids, shoulder scuffers, etc.), etc. .. Further, it can be used for various military purposes and for space. It can also be combined with a solar cell.
  • Neostan U-600 manufactured by Nitto Kasei; bismuth tris(2-ethylhexanoate)
  • Butylamine 1.7 g was added, and the mixture was further heated and stirred at 60° C. for 1 hour to obtain a 30% by mass polymer solution of a binder consisting of polymer BC-1.
  • the obtained polymerization solution was concentrated under reduced pressure to distill off methyl ethyl ketone, and then dissolved in heptane to obtain 25 parts of terminal diol-modified polydodecyl methacrylate (DOPMD) [carbon number of alkyl moiety: 12; terminal diol lipophilic polymer]. 292 g of a mass% heptane solution was obtained. The weight average molecular weight of the obtained polymer was 3,200.
  • DOPMD terminal diol-modified polydodecyl methacrylate
  • a heptane solution containing 25 mass% of a terminal diol-modified polydodecyl methacrylate (DOPMD; diol compound) was added to a 1-liter (L) three-necked flask and diluted with 110 g of heptane.
  • DOPMD terminal diol-modified polydodecyl methacrylate
  • 11.1 g of isophorone diisocyanate manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.
  • 0.1 g of Neostan U-600 (trade name, manufactured by Nitto Kasei Co., Ltd.) were added, and heated and stirred at 75° C. for 5 hours.
  • the dodecyl group contained in the component derived from the terminal diol-modified polydodecyl methacrylate is a structural portion that solvates with heptane (a hydrocarbon solvent), and the polyurea structure has a solvation with heptane. Not a structural part.
  • the polyurea of the polyurea colloidal particles (Aa-1) had a mass average molecular weight of 9,600.
  • the mixed liquid was made into fine particles and became a light orange slurry.
  • the obtained slurry was quickly put into a 100 mL three-necked flask which was previously stirred at 80° C. and a rotation speed of 400 rpm, 0.1 g of Neostan U-600 (trade name, manufactured by Nitto Kasei) was added, and the mixture was heated at 80° C. for 3 hours. It was stirred. The slurry became a white emulsion. From this, it is estimated that polyurethane particles were formed.
  • the white emulsified slurry was cooled to obtain a 40 mass% heptane dispersion of a binder composed of polymer BC-2.
  • the average particle size of the particulate polymer in each of the obtained polymer dispersions was measured by the above-mentioned method. The results are shown in Table 1.
  • the mass average molecular weight of the polymer and the like was measured by the above method.
  • the dispersion state of the polymer was visually evaluated and shown in the "shape" column of Table 1. A state in which a polymer is dispersed in a dispersion medium to form a particulate polymer is called “particle”.
  • precipitation a state in which the polymer is precipitated without being dispersed in the dispersion medium
  • solution a state in which the polymer is dissolved and does not form a particulate polymer
  • the urea number shown in Table 1 below was calculated as follows.
  • the urea value is usually the amount (mmol) of the amino group-containing compound used during polymer synthesis, and the number of amino group-containing compounds (number of amino groups contained in one molecule of the amino group-containing compound)/total number of amino group-containing compounds. It can be calculated from the mass (g). It is also possible to measure the NMR of the polymer and calculate the content of the urea group from the integral ratio of the peaks of the urea group. In this example, the urea number used from the amino group-containing compound used in the synthesis and the urea number obtained from the NMR of the polymer were almost the same.
  • Component M1 Component represented by formula (I-1) or (I-2)
  • Component M2 Component represented by formula (I-3B)
  • Component M3 represented by formula (I-3C)
  • Component M4 Component M4: Component represented by Formula (H-1)
  • Component M5 and M6 Component represented by Formula (I-3A) or (I-4)
  • Polymer BC-1 Each constituent component of to BC-3 is described in order in each constituent component column.
  • MDI diphenylmethane diisocyanate (manufactured by FUJIFILM Wako Pure Chemical Industries)
  • PEG200 polyethylene glycol (number average molecular weight: 200, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.)
  • GI1000 NISSO-PB GI-1000 (trade name, manufactured by Nippon Soda Co., Ltd.)
  • 4A1B 4-amino-1-butanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • DMBA 2,2-bis(hydroxymethyl)butyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • 3A1P 3-amino-1-propanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • 4ACE 4-aminocyclohexane ethanol (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Bis-A 2,2-bis(4-hydroxyphenyl)propane (
  • a polymer BC-4 dispersion was prepared in the same manner as the polymer B-2 except that 4A1B (4-amino-1-butanol) was not used in the preparation of the polymer B-2 dispersion.
  • the dispersion liquid of the polymer B-2 was put in a glass petri dish and dried at 100° C. for 3 hours to obtain a dry film having a film thickness of 80 ⁇ m.
  • the obtained film was cut into a width of 10 mm and a length of 40 mm, and set on a force gauge (made by IMADA) so that the chuck distance was 30 mm.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • Example 1 A solid electrolyte composition and a solid electrolyte-containing sheet were produced, and the following characteristics were evaluated for the solid electrolyte composition and the solid electrolyte-containing sheet. The results are shown in Tables 2 and 3.
  • ⁇ Preparation of solid electrolyte composition 180 zirconia beads having a diameter of 5 mm were placed in a zirconia 45 mL container (manufactured by Fritsch), and 4.85 g of the above-synthesized LPS, a polymer dispersion or solution shown in Table 2 (0.15 g as solid content mass), and 16.0 g of the dispersion medium shown in Table 2 was added. Then, this container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch Ltd., and mixing was continued for 10 minutes at a temperature of 25° C. and a rotation speed of 150 rpm to obtain solid electrolyte compositions C-1 to C-22 and BC. -1 to BC-3 were prepared respectively.
  • the total amount refers to the total amount (10 cm) of the solid electrolyte composition charged in the glass test tube, and the height of the supernatant refers to the solid component of the solid electrolyte composition settling (solid-liquid separation).
  • the amount of the supernatant (cm). In this test, the smaller the ratio is, the better the dispersibility is, and the evaluation rank "4" or higher is the pass level.
  • ⁇ Evaluation 2 Evaluation of binding property>
  • the solid electrolyte-containing sheet was wrapped around rods having different diameters, and the presence or absence of cracks, cracks or cracks in the solid electrolyte layer and the presence or absence of peeling of the solid electrolyte layer from the aluminum foil (current collector) were confirmed.
  • the binding property was evaluated according to which of the following evaluation ranks included the minimum diameter of the rod wound without causing defects such as these defects. In the present invention, the smaller the minimum diameter of the bar is, the stronger the binding property is, and the evaluation rank “4” or more is passed.
  • the ionic conductivity was measured using the obtained ionic conductivity measuring test body 13. Specifically, in a 25° C. constant temperature bath, AC impedance was measured up to a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz using a 1255B FREQUENCY RESPONSE ANALYZER (trade name) manufactured by SOLARTRON. Thus, the resistance in the film thickness direction of the sample was obtained and calculated by the following formula (1).
  • Ionic conductivity (mS/cm) 1000 ⁇ sample film thickness (cm)/ ⁇ resistance ( ⁇ ) ⁇ sample area (cm 2 ) ⁇ ...Equation (1)
  • the sample film thickness and the sample area were measured before the laminated body 12 was put in the 2032 type coin case 16, and the value obtained by subtracting the thickness of the aluminum foil (that is, the film thickness and the area of the solid electrolyte layer). Is.
  • the solid electrolyte composition which did not satisfy the requirements of the present invention failed the dispersibility evaluation.
  • the solid electrolyte-containing sheet produced from the solid electrolyte composition that did not satisfy the requirements of the present invention failed the binding property evaluation and the ionic conductivity evaluation.
  • the solid electrolyte composition of the present invention has passed the dispersibility evaluation, and the solid electrolyte-containing sheet produced from the solid electrolyte composition of the present invention has the binding property evaluation and the ionic conductivity evaluation passed.
  • the urea value of the sequentially polymerized polymer is more than 0 and 0.5 mmol/g or less. It can be seen that, when it is, dispersibility evaluation and binding property evaluation are more excellent.
  • Example 2 An all-solid secondary battery was manufactured and the following characteristics were evaluated. The results are shown in Table 3. ⁇ Preparation of composition for positive electrode> 180 pieces of 5 mm diameter zirconia beads were put into a zirconia 45 mL container (manufactured by Fritsch), 2.7 g of the above-synthesized LPS, KYNAR FLEX 2500-20 KYNAR FLEX 2500-20 (trade name, PVdF-HFP: polyfluorinated) 0.3 g of vinylidene hexafluoropropylene copolymer) as solid mass and 22 g of butyl butyrate were added.
  • This container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch Ltd., and the mixture was stirred at 25° C. and a rotation speed of 300 pm for 60 minutes. Then, 7.0 g of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NMC) was charged as the positive electrode active material, and similarly, the container was set in the planetary ball mill P-7, and the rotation speed was 25° C. Mixing was continued at 100 rpm for 5 minutes to prepare a positive electrode composition.
  • NMC LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • the composition for positive electrode obtained above was applied onto a 20 ⁇ m thick aluminum foil (positive electrode current collector) with a Baker applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.) and heated at 100° C. for 2 hours. Then, the positive electrode composition was dried (dispersion medium was removed). Then, the dried positive electrode composition was pressed (10 MPa, 1 minute) at 25° C. using a heat press machine to prepare a positive electrode sheet for an all-solid secondary battery having a positive electrode active material layer with a film thickness of 80 ⁇ m. did.
  • ⁇ Preparation of negative electrode composition 180 zirconia beads having a diameter of 5 mm were placed in a zirconia 45 mL container (manufactured by Fritsch), 4.0 g of the above-synthesized LPS, and a polymer dispersion or solution shown in Table 3 (0.3 g as solid content mass). , And 22 g of the dispersion medium shown in the table were added.
  • This container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch Ltd., and the mixture was stirred at 25° C. and a rotation speed of 300 pm for 60 minutes.
  • Si Silicon (manufactured by Aldrich) AB: Acetylene black (manufactured by Denka) THF: Tetrahydrofuran (Fujifilm Wako Pure Chemical Industries, Ltd.)
  • the composition for a negative electrode obtained above was applied onto a stainless steel foil (negative electrode current collector) having a thickness of 10 ⁇ m by a baker type applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.) and at 100° C. for 2 hours.
  • the negative electrode composition was heated and dried (dispersion medium was removed). Then, using a heat press, the dried negative electrode composition was pressed at 25° C. (10 MPa, 1 minute) to prepare an all-solid secondary battery negative electrode sheet having a negative electrode active material layer with a film thickness of 50 ⁇ m. did.
  • the solid electrolyte-containing sheet shown in the "solid electrolyte layer" column of Table 4 prepared in Example 1 was added to the solid electrolyte layer.
  • the solid electrolyte layer having a film thickness of 50 ⁇ m was obtained by stacking so as to contact the negative electrode active material layer, applying a pressure of 50 MPa at 25° C. using a pressing machine to transfer (laminate), and then applying a pressure of 600 MPa at 25° C.
  • Negative electrode sheets PU-1 to PU-24 and PV-1 to PV-3 for solid secondary batteries were prepared, respectively.
  • the prepared negative electrode sheet for all solid-state secondary batteries (the aluminum foil of the solid electrolyte-containing sheet has been peeled off) was cut into a disk shape having a diameter of 14.5 mm, and as shown in FIG. 2, a spacer and a washer (see FIG. 2). (Not shown) was put in a stainless steel 2032 type coin case 11 and a positive electrode sheet (positive electrode active material layer) punched with a diameter of 14.0 mm was stacked on the solid electrolyte layer.
  • a stainless steel foil (negative electrode current collector) is further laid on it to form an all-solid secondary battery laminate 12 (aluminum-positive electrode active material layer-solid electrolyte layer-negative electrode active material layer-stainless steel laminate). Formed. Then, the 2032 type coin case 11 was caulked to manufacture the all solid state secondary batteries 201 to 225 and c21 to c23 shown in FIG. 2, respectively.
  • the all-solid-state secondary battery 13 manufactured in this way has the layer structure shown in FIG.
  • This all-solid-state secondary battery was initialized by repeating charge and discharge for one cycle with one charge and one discharge as one cycle of charge and discharge.
  • discharge capacity in the first charge/discharge cycle after initialization initial discharge capacity
  • discharge capacity retention ratio discharge capacity relative to the initial discharge capacity
  • the all-solid secondary battery of the comparative example had a low discharge capacity retention rate and a large resistance.
  • the discharge capacity retention ratio of the present invention was high and the resistance was small. It is also found that when silicon is used as the negative electrode active material, a high energy density is exhibited.
  • the solid electrolyte composition C-2 the solid electrolyte composition C- except that an oxide-based inorganic solid electrolyte (Li 7 La 3 Zr 2 O 12 (manufactured by Toyoshima Seisakusho)) was used in place of LPS
  • an oxide-based inorganic solid electrolyte Li 7 La 3 Zr 2 O 12 (manufactured by Toyoshima Seisakusho)
  • the solid electrolyte-containing sheet produced using this solid electrolyte composition was evaluated for its binding property and ionic conductivity, and it was a good result.
  • composition for the negative electrode except that an oxide-based inorganic solid electrolyte (Li 7 La 3 Zr 2 O 12 (manufactured by Toyoshima Seisakusho)) was used in place of LPS in the composition for the negative electrode U-2.
  • a negative electrode composition A was prepared in the same manner as U-2.
  • the all-solid secondary battery 202 an all-solid secondary battery was produced in the same manner as the all-solid secondary battery 202, except that the negative electrode composition A was used in place of the negative electrode composition U-2. The discharge capacity retention rate and the resistance of the all solid state secondary battery were evaluated, and good results were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、特定構造の構成成分を有する逐次重合系ポリマーを含むバインダーと、分散媒とを含む固体電解質組成物、この組成物で構成した層を有する、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法。

Description

固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
 本発明は、固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法に関する。
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電又は過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性の更なる向上が求められている。
 このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質及び正極の全てが固体からなり、有機電解液を用いた電池の安全性及び信頼性を大きく改善することができる。
 このような全固体二次電池において、負極活物質層、固体電解質層及び正極活物質層等の構成層を形成する材料として、無機固体電解質、活物質及びバインダー(結着剤)等を含有する材料が、提案されている。
 例えば、特許文献1には、周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質及び高分子バインダーを有する固体電解質組成物であって、この高分子バインダーが、ハードセグメントとソフトセグメントとを有するポリマーで構成された固体電解質組成物が記載されている。
特開2015-088480号公報
 全固体二次電池の構成層は、通常、無機固体電解質、活物質等の固体粒子で形成され、固体粒子同士の界面接触は本来的に制約があるため、界面抵抗の低減にも制約が生じる(イオン伝導度が低下する。)。一方、固体粒子同士の結着性が弱いと、集電体表面に形成された構成層が集電体から剥がれやすく、また、全固体二次電池の充放電(リチウムイオンの放出吸収)に伴う構成層、とりわけ活物質層の収縮膨張による固体粒子同士の接触不良が起こり、電気抵抗の上昇、更には電池性能の低下を招く。固体粒子同士の結着性向上のためにバインダーが用いられ、バインダーを構成するポリマー構造の検討もなされてきたが、活物質層の収縮膨張による接触不良の抑制についてはさらなる改善の要求がある。
 本発明は、優れた分散性を示す固体電解質組成物であって、全固体二次電池の構成層を形成する材料として用いることにより、得られる全固体二次電池において、固体粒子間の界面抵抗の上昇を抑えながら固体粒子を強固に結着させることができ、優れた電池性能を実現できる固体電解質組成物を提供することを課題とする。また、本発明は、この固体電解質組成物で構成した層を有する、固体電解質含有シート及び全固体二次電池を提供することを課題とする。更に、本発明は、上記固体電解質組成物を用いた固体電解質含有シート及び全固体二次電池の製造方法を提供することを課題とする。
 本発明者らは、種々検討を重ねた結果、固体電解質組成物として、無機固体電解質及び分散媒とともに、逐次重合系ポリマーであって、酸素原子、硫黄原子及び窒素原子含有基の少なくとも2つを特定の連結基を介して有する構成成分を有するポリマーを含むバインダーを併用することにより、上記ポリマー同士が互いの上記構成成分間で適度な相互作用をして、固体電解質組成物の分散性を高めることができることを見出した。更に、この固体電解質組成物を全固体二次電池の構成層を形成する材料として用いることにより、固体粒子間の界面抵抗の上昇を抑制しつつ、固体粒子を強固に結着させた構成層を形成でき、優れた電池性能を示す全固体二次電池を作製できること、を見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>
 周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、下記式(H-1)で表わされる構成成分を有する逐次重合系ポリマーを含むバインダーと、分散媒とを含む、固体電解質組成物。
Figure JPOXMLDOC01-appb-C000005
 式中、L11は、炭素数1~12のアルキレン基、炭素数6~18のアリーレン基、炭素数2~12のアルケニレン基、炭素数4~18の2価のヘテロ環基、酸素原子、カルボニル基、-N(RN1)-若しくはイミン連結基又はこれらを組合せた基を示す。X11及びX12は酸素原子、硫黄原子又は-N(RN1)-を示す。ただし、X11及びX12は互いに異なる。RN1は水素原子、アルキルシリル基、炭素数6~18のアリール基又は炭素数1~12のアルキル基を示す。
<2>
 上記逐次重合系ポリマーが、下記式(H-2)で表わされる部分構造を有する、<1>に記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000006
 式中、L21は上記L11と同義である。RN2は上記RN1と同義である。*は上記部分構造が逐次重合系ポリマーに導入されるための結合部を示す。
<3>
 上記逐次重合系ポリマーが、下記式(H-3)で表わされる部分構造を有する、<1>又は<2>に記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000007
 L31は、炭素数1~12のアルキレン基、炭素数6~12のアリーレン基、酸素原子、イミン連結基、又はこれらを組合せた分子量400以下の基を示す。*は上記部分構造が逐次重合系ポリマーに導入されるための結合部を示す。
<4>
 上記逐次重合系ポリマーが、下記式で表されるポリマーである、<1>~<3>のいずれか1つに記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000008
 式中、Lは分子量が14以上200,000以下の分子鎖を示す。
 X、X及びLは、それぞれ上記X11、上記X12及び上記L11と同義である。
 X及びXは、いずれも-NH-又は酸素原子を示し、Lは炭化水素基を示す。
 X及びXは、いずれも-NH-又は酸素原子を示し、Lはポリカーボネート鎖、ポリエステル鎖又はポリアルキレンオキシド鎖を示す。
 X及びXは、いずれも-NH-又は酸素原子を示し、Lは炭化水素ポリマー鎖を示す。
 s1~s5は、各構成成分の含有量(質量%)を示し、合計100質量%である。
<5>
 上記逐次重合系ポリマーのウレア価が0より大きく0.5mmol/g以下である、<1>~<4>のいずれか1つに記載の固体電解質組成物。
<6>
 上記バインダーが、平均粒径5nm以上10μm以下の粒子である、<1>~<5>のいずれか1つに記載の固体電解質組成物。
<7>
 上記バインダーの含有量が、固体電解質組成物の全固形分中、0.001~10質量%である、<1>~<6>のいずれか1つに記載の固体電解質組成物。
<8>
 上記逐次重合系ポリマーが、下記官能基群(I)から選択される官能基を少なくとも1種有する、<1>~<7>のいずれか1つに記載の固体電解質組成物。
<官能基群(I)>
カルボキシ基、スルホン酸基、ケトン基、リン酸基
<9>
 上記逐次重合系ポリマーの質量平均分子量が10000~90000である、<1>~<8>のいずれか1つに記載の固体電解質組成物。
<10>
 導電助剤を含有する、<1>~<9>のいずれか1つに記載の固体電解質組成物。
<11>
 活物質を含む、<1>~<10>のいずれか1つに記載の固体電解質組成物。
<12>
 上記活物質がケイ素原子を含有する負極活物質である、<11>に記載の固体電解質組成物。
<13>
 上記無機固体電解質が下記式(1)で表される硫化物系無機固体電解質である、<1>~<12>のいずれか1つに記載の固体電解質組成物。
   式(1):La1
 式中、LはLi、Na及びKから選択される元素を示す。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。
<14>
 上記分散媒が、ケトン化合物溶媒、エステル化合物溶媒、芳香族化合物溶媒及び脂肪族化合物溶媒のうちの少なくとも1種である、<1>~<13>のいずれか1つに記載の固体電解質組成物。
<15>
 <1>~<14>のいずれか1つに記載の固体電解質組成物で構成した層を有する、固体電解質含有シート。
<16>
 正極活物質層と負極活物質層と固体電解質層とをこの順で具備する全固体二次電池であって、
 上記正極活物質層、上記負極活物質層及び上記固体電解質層の少なくともいずれかを<1>~<14>のいずれか1つに記載の固体電解質組成物で構成した層である全固体二次電池。
<17>
 <1>~<14>のいずれか1つに記載の固体電解質組成物を塗布する工程を含む、固体電解質含有シートの製造方法。
<18>
 <1>~<14>のいずれか1つに記載の固体電解質組成物を塗布する工程を含む、全固体二次電池の製造方法。
 本発明の固体電解質組成物は分散安定性に優れる。また、本発明の固体電解質組成物は、構成層中の固体粒子間等の結着性とイオン伝導度に優れた固体電解質含有シート、及び電池性能に優れた全固体二次電池を実現することができる。また、本発明の固体電解質含有シートは、構成層中の固体粒子間等の結着性及びイオン伝導度に優れる。また、本発明の全固体二次電池は電池性能に優れる。また、本発明の固体電解質含有シートの製造方法及び全固体二次電池の各製造方法は、上記固体電解質含有シート及び全固体二次電池を提供することができる。
図1は本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 図2は実施例で作製したイオン伝導度測定用試験体又は全固体二次電池(コイン電池)を模式的に示す縦断面図である。
 本発明の説明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、単に「アクリル」又は「(メタ)アクリル」と記載するときは、アクリル及び/又はメタクリルを意味する。
 本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本明細書において置換又は無置換を明記していない置換基、連結基等(以下、置換基等という。)については、その基に適宜の置換基を有していてもよい意味である。よって、本明細書において、単に、YYY基と記載されている場合であっても、このYYY基は、置換基を有しない態様に加えて、更に置換基を有する態様も包含する。これは置換又は無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 本明細書において、特定の符号で示された置換基等が複数あるとき、又は複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
[固体電解質組成物]
 本発明の固体電解質組成物は、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、下記式(H-1)で表わされる構成成分を有する逐次重合系ポリマーを含むバインダーと、分散媒とを含む。
Figure JPOXMLDOC01-appb-C000009
 式中、L11は、炭素数1~12のアルキレン基、炭素数6~18のアリーレン基、炭素数2~12のアルケニレン基、酸素原子、-N(RN1)-、シラン連結基若しくはイミン連結基又はこれらの基、原子若しくは連結基を組合せた基を示す。X11及びX12は酸素原子、硫黄原子又は-N(RN1)-を示す。ただし、X11及びX12は互いに異なる。RN1は水素原子、アルキルシリル基又は炭素数1~12のアルキル基を示す。
 本発明は、固体電解質組成物の高度かつ安定な分散性と、固体粒子間等の強固な結着性とを、界面抵抗の上昇を抑えつつも、高い水準で両立(維持)できる。よって、本発明の固体電解質組成物で構成した構成層は、高強度を示すうえ、固体粒子同士の接触状態(イオン伝導パスの構築量)及び固体粒子同士等の結着力がバランスよく改善され、イオン伝導パスを構築しつつも、固体粒子同士等が強固な結着性で結着し、しかも固体粒子間の界面抵抗が小さくなると考えられる。このような優れた特性を示す構成層を備えた各シート又は全固体二次電池は、電気抵抗の上昇を抑えて高いイオン伝導度を示し、更にはこの優れた電池性能を、充放電を繰り返したとしても、維持できる。
 この理由は定かではないが以下のように推定される。
 バインダーを構成するポリマーに極性の大きい構成成分を導入し、ポリマー同士を強く相互作用させることで、ポリマー同士を凝集させてポリマーの力学的強度を高めることができる。しかし、ポリマー同士の相互作用が強すぎると、ポリマーが凝集し、沈降してしまう。すなわち、上記ポリマーの力学的強度と、このポリマーを含有するスラリーの分散性とはトレードオフの関係にある。
 本発明の固体電解質組成物は、バインダーを構成するポリマーが上記式(H-1)で表わされる構成成分を有することで、ポリマー同士がX11及びX12の一方で強く相互作用し、もう一方での相互作用が敢えて弱められていることにより、所望の凝集力(力学的強度)及び固体粒子に対する結着力をポリマーに付与することができ、さらには、スラリーにした場合にその分散性を向上できると考えられる。
 このような本発明の固体電解質組成物から構成層を形成することで、本発明の固体電解質含有シート及び本発明の全固体二次電池は、その構成層中で、バインダーを構成するポリマーが密着した固体粒子が高い均一性で分散していることを一因として、上記シートのイオン伝導度、上記構成層中の固体粒子等の結着性及び全固体二次電池の電池性能に優れると考えられる。
 なお、本発明において、固体電解質組成物の分散性が優れるとは、固体粒子を分散媒中に高度かつ安定して分散させた状態をいい、例えば、後述する実施例における「分散性試験」において、評価ランク「4」以上の分散性を示すことをいう。
 本発明の固体電解質組成物において、バインダーは粒子として(固体状態で)分散媒中に分散していることが好ましく、無機固体電解質及びバインダーが固体状態で分散媒中に分散された分散状態(サスペンジョン)にあること(固体電解質組成物がスラリーであること)がより好ましい。バインダーは、構成層、又は後述する固体電解質組成物の塗布乾燥層としたときに、無機固体電解質等の固体粒子同士、更には隣接する層(例えば集電体)と固体粒子とを、結着させることができればよく、固体電解質組成物の上記分散状態において、固体粒子同士を必ずしも結着させていなくてもよい。
 本発明の固体電解質組成物は、分散質として、無機固体電解質に加えて、活物質、更には導電助剤等を含有する態様も包含する(この態様の組成物を「電極用組成物」という。)。
 本発明の固体電解質組成物は、非水系組成物である。本発明において、非水系組成物とは、水分を含有しない態様に加えて、含水率(水分含有量ともいう。)が200ppm以下である形態をも包含する。非水系組成物において、含水率は、150ppm以下であることが好ましく、100ppm以下であることがより好ましく、50ppm以下であることが更に好ましい。含水量は、固体電解質組成物が含有する水の量(固体電解質組成物中の水の質量割合)を示す。含水量は、固体電解質組成物を0.45μmのメンブレンフィルターでろ過し、カールフィッシャー滴定により求めることができる。
 以下、本発明の固体電解質組成物が含有する成分及び含有しうる成分について説明する。
<無機固体電解質>
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンが解離若しくは遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば特に制限されず電子伝導性を有さないものが一般的である。
 本発明において、無機固体電解質は、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有する。無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は、(i)硫化物系無機固体電解質と、(ii)酸化物系無機固体電解質が代表例として挙げられ、高いイオン伝導度と粒子間界面接合の容易さの点で、硫化物系無機固体電解質が好ましい。
 本発明の全固体二次電池が全固体リチウムイオン二次電池である場合、無機固体電解質はリチウムイオンのイオン伝導性を有することが好ましい。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましく、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 硫化物系無機固体電解質としては、例えば、下記式(1)で示される組成を満たすリチウムイオン伝導性硫化物系無機固体電解質が挙げられる。
 
   式(1):La1b1c1d1e1
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合比を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にされず、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に限定されず、1×10-1S/cm以下であることが実際的である。
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In、Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In、Snの少なくとも1種以上の元素でありxcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
(iii)ハロゲン化物系無機固体電解質
 ハロゲン化物系無機固体電解質は、ハロゲン原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 ハロゲン化物系無機固体電解質としては、特に制限されず、例えば、LiCl、LiBr、LiI、ADVANCED MATERIALS,2018,30,1803075に記載のLiYBr、LiYCl等の化合物が挙げられる。中でも、LiYBr、LiYClを好ましい。
(iv)水素化物系無機固体電解質
 水素化物系無機固体電解質は、水素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 水素化物系無機固体電解質としては、特に制限されず、例えば、LiBH、Li(BHI、3LiBH-LiCl等が挙げられる。
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の平均粒径(体積平均粒子径)は特に制限されず、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。無機固体電解質の平均粒径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 無機固体電解質の、固体電解質組成物中の含有量は、特に制限されず、分散性、界面抵抗の低減及び結着性の点で、固形分100質量%において、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.99質量%以下であることが好ましく、99.95質量%以下であることがより好ましく、99.9質量%以下であることが特に好ましい。ただし、固体電解質組成物が後述する活物質を含有する場合、固体電解質組成物中の無機固体電解質の上記含有量は、無機固体電解質と活物質との合計含有量とする。
 本発明において、固形分(固形成分)とは、固体電解質組成物を、1mmHgの気圧下、窒素雰囲気下150℃で6時間乾燥処理を行ったときに、揮発若しくは蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
<バインダー>
 本発明の固体電解質組成物は、固体粒子を結着させるバインダーを含有する。
 このバインダーは、後述する逐次重合系ポリマーで構成されており、分散媒に対して可溶であってもよく、特にイオン伝導性の点で、分散媒に対して不溶若しくは難溶(の粒子)であることが好ましい。
 本発明において、分散媒に対して不溶若しくは難溶であるとは、バインダーを30℃の分散媒(使用量はバインダーの質量に対して10倍)に添加し、24時間静置しても、分散媒への溶解量が30質量%以下であることを意味し、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。この溶解量は、分散媒に添加したバインダー質量に対する、24時間経過後に分散媒から中に溶解しているバインダー質量の割合とする。
 上記バインダーは、固体電解質組成物中において、例えば分散媒に溶解して存在していてもよく、分散媒中に固体状で(上記不溶若しくは難溶の粒子として)存在していてもよい(固体状で存在するバインダーを粒子状バインダーという。)。本発明において、バインダーは、固体電解質組成物中において粒子状バインダーであることが、電池抵抗及びサイクル特性の点で、好ましい。粒子状バインダーは固体電解質層及び電極活物質層等の構成層(塗布乾燥層)においても粒子状を維持していることが好ましい態様の1つである。
 バインダーが粒子状バインダーである場合、その形状は特に制限されず、偏平状、無定形等であってもよく、球状若しくは顆粒状が好ましい。粒子状バインダーの平均粒径は、特に制限されず、5nm以上10μm以下であることが好ましい。これにより、固体電解質組成物の分散性と固体粒子間等の結着性とイオン伝導性とを改善できる。分散性、結着性及びイオン伝導性を更に改善できる点で、平均粒径は、10nm以上5μm以下が好ましく、15nm以上1μm以下がより好ましく、20nm以上0.5μm以下が更に好ましい。バインダーの平均粒径は、無機固体電解質と同様にして測定できる。
 なお、全固体二次電池の構成層における粒子状バインダーの平均粒径は、例えば、電池を分解して粒子状バインダーを含有する構成層を剥がした後、その構成層について測定を行い、予め測定していた粒子状バインダー以外の粒子の平均粒径の測定値を排除することにより、測定することができる。
 粒子状バインダーの平均粒径は、例えば、バインダー分散液を調製する際に用いる分散媒の種類、バインダーを構成するポリマー中の構成成分の含有量等により、調整できる。
 バインダーの、固体電解質組成物中の含有量は、分散性、更には無機固体電解質粒子、活物質及び導電助剤等の固体粒子との結着性とイオン伝導性との両立の点で、固形成分100質量%において、0.001質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.2質量%以上が特に好ましい。上限としては、電池容量の観点から、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましい。
 本発明の固体電解質組成物において、バインダーの質量に対する、無機固体電解質と活物質の合計質量(総量)の質量比[(無機固体電解質の質量+活物質の質量)/(バインダーの質量)]は、1,000~1の範囲が好ましい。この比率は1000~2がより好ましく、500~10が更に好ましい。
 バインダーを構成するポリマーは、下記式(H-1)で表わされる構成成分を有する逐次重合系ポリマーである。
Figure JPOXMLDOC01-appb-C000010
 X11、X12及びL11の詳細は後述する。
(逐次重合系ポリマー)
 本発明において、「逐次重合系ポリマー」とは、逐次重合により得られるポリマー鎖をセグメントとして主鎖又は側鎖(好ましくは主鎖)に含むポリマーをいう。逐次重合系ポリマーは、逐次重合により得られるポリマー鎖を2種以上含むコポリマーでもよく、逐次重合により得られるポリマー鎖以外のセグメントを含むコポリマーでもよい。
 逐次重合の種類等は特に制限されず、逐次重合系ポリマーとしては、例えば、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリウレア、ポリカーボネート等が挙げられ、分散性、電池性能等の点で、ポリエステル、ポリアミド、ポリウレタン、ポリウレア等が好ましい。
 本発明に用いる逐次重合系ポリマーは、下記式(H-1)で表わされる構成成分を有する。逐次重合系ポリマーは、下記式(H-1)で表わされる構成成分を主鎖及び側鎖のいずれに有してもよく、主鎖に有することが好ましい。
 本発明において、ポリマーの主鎖とは、ポリマーを構成する、それ以外のすべての分子鎖が、主鎖に対して枝分れ鎖若しくはペンダント鎖とみなしうる線状分子鎖をいう。枝分れ鎖若しくはペンダント鎖とみなす分子鎖の質量平均分子量にもよるが、典型的には、ポリマーを構成する分子鎖のうち最長鎖が主鎖となる。ただし、ポリマー末端が有する官能基は主鎖に含まない。
 また、ポリマーの側鎖とは、主鎖以外の分子鎖をいい、短分子鎖及び長分子鎖を含む。
 逐次重合系ポリマーについて、このポリマーを構成する通常の構成成分について説明し、次いで式(H-1)で表される構成成分について説明する。
 本発明に用いられる逐次重合系ポリマーは、後述する式(H-1)で表される構成成分と、下記式(I-1)~(I-4)のいずれかで表される構成成分(モノマー由来の構成成分)を2種以上(好ましくは2~4種、より好ましくは2又は3種)組み合わせてなる主鎖、又は下記式(I-5)で表されるカルボン酸二無水物と下記式(I-6)で表される化合物とを逐次重合してなる主鎖を有するポリマー(下記式(I-5)で表されるカルボン酸二無水物(モノマー)由来の構成成分と下記式(I-6)で表される化合物(モノマー)由来の構成成分が結合してなる主鎖を有するポリマー)が好ましい。各構成成分の組み合わせは、ポリマー種に応じて適宜に選択される。構成成分の組み合わせにおける1種の構成成分とは、下記のいずれか1つの式で表される構成成分の種類数を意味し、1つの下記式で表される構成成分を2種有していても、2種の構成成分とは解釈しない。
Figure JPOXMLDOC01-appb-C000011
 式中、RP1及びRP2は、それぞれ(質量平均)分子量が14以上200,000以下の分子鎖を示す。この分子鎖の分子量は、その種類等によるので一義的に決定できず、例えば、30以上が好ましく、50以上がより好ましく、100以上が更に好ましく、150以上が特に好ましい。上限としては、100,000以下が好ましく、10,000以下がより好ましい。分子鎖の分子量は、ポリマーの主鎖に組み込む前の原料化合物について測定する。
 RP1及びRP2としてとりうる上記分子鎖は、特に制限されず、炭化水素鎖、ポリアルキレンオキシド鎖、ポリカーボネート鎖又はポリエステル鎖が好ましく、炭化水素鎖又はポリアルキレンオキシド鎖がより好ましく、炭化水素鎖、ポリエチレンオキシド鎖又はポリプロピレンオキシド鎖が更に好ましい。
 RP1及びRP2としてとりうる炭化水素鎖は、炭素原子及び水素原子から構成される炭化水素の鎖を意味し、より具体的には、炭素原子及び水素原子から構成される化合物の少なくとも2つの原子(例えば水素原子)又は基(例えばメチル基)が脱離した構造を意味する。ただし、本発明において、炭化水素鎖は、例えば下記式(M2)で表される炭化水素基のように、鎖中に酸素原子、硫黄原子又は窒素原子を含む基を有する鎖も包含する。炭化水素鎖の末端に有し得る末端基は炭化水素鎖には含まれないものとする。この炭化水素鎖は、炭素-炭素不飽和結合を有していてもよく、脂肪族環及び/又は芳香族環の環構造を有していてもよい。すなわち、炭化水素鎖は、脂肪族炭化水素及び芳香族炭化水素から選択される炭化水素で構成される炭化水素鎖であればよい。
 このような炭化水素鎖としては、上記分子量を満たすものであればよく、低分子量の炭化水素基からなる鎖と、炭化水素ポリマーからなる炭化水素鎖(炭化水素ポリマー鎖ともいう。)との両炭化水素鎖を包含する。
 低分子量の炭化水素鎖は、通常の(非重合性の)炭化水素基からなる鎖であり、この炭化水素基としては、例えば、脂肪族若しくは芳香族の炭化水素基が挙げられ、具体的には、アルキレン基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アリーレン基(炭素数は6~22が好ましく、6~14が好ましく、6~10がより好ましい)、又はこれらの組み合わせからなる基が好ましい。RP2としてとりうる低分子量の炭化水素鎖を形成する炭化水素基としては、アルキレン基がより好ましく、炭素数2~6のアルキレン基が更に好ましく、炭素数2又は3のアルキレン基が特に好ましい。この炭化水素鎖は置換基として重合鎖(例えば(メタ)アクリルポリマー)を有していてもよい。
 脂肪族の炭化水素基としては、例えば、下記式(M2)で表される芳香族の炭化水素基の水素還元体、公知の脂肪族ジイソソアネート化合物が有する部分構造(例えばイソホロンからなる基)等も挙げられる。
 芳香族の炭化水素基は、フェニレン基又は下記式(M2)で表される炭化水素基が好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(M2)中、Xは、単結合、-CH-、-C(CH-、-SO-、-S-、-CO-又は-O-を示し、結着性の観点で、-CH-または-O-が好ましく、-CH-がより好ましい。ここで例示した上記アルキレン基はハロゲン原子(好ましくはフッ素原子)で置換されていてもよい。
 RM2~RM5は、それぞれ、水素原子又は置換基を示し、水素原子が好ましい。RM2~RM5としてとりうる置換基としては、特に制限されず、例えば、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、-ORM6、―N(RM6、-SRM6(RM6は置換基を示し、好ましくは炭素数1~20のアルキル基又は炭素数6~10のアリール基を示す。)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)が挙げられる。―N(RM6としては、アルキルアミノ基(炭素数は、1~20が好ましく、1~6がより好ましい)又はアリールアミノ基(炭素数は、6~40が好ましく、6~20がより好ましい)が挙げられる。
 炭化水素ポリマー鎖は、重合性の炭化水素が(少なくとも2つ)重合してなるポリマー鎖であって、上述の低分子量の炭化水素鎖よりも炭素原子数が大きい炭化水素ポリマーからなる鎖であれば特に制限されず、好ましくは30個以上、より好ましくは50個以上の炭素原子から構成される炭化水素ポリマーからなる鎖である。炭化水素ポリマーを構成する炭素原子数の上限は、特に制限されず、例えば3,000個とすることができる。この炭化水素ポリマー鎖は、主鎖が、上記炭素原子数を満たす、脂肪族炭化水素で構成される炭化水素ポリマーからなる鎖が好ましく、脂肪族飽和炭化水素若しくは脂肪族不飽和炭化水素で構成される重合体(好ましくはエラストマー)からなる鎖であることがより好ましい。重合体としては、具体的には、主鎖に二重結合を有するジエン系重合体、及び、主鎖に二重結合を有しない非ジエン系重合体が挙げられる。ジエン系重合体としては、例えば、スチレン-ブタジエン共重合体、スチレン-エチレン-ブタジエン共重合体、イソブチレンとイソプレンの共重合体(好ましくはブチルゴム(IIR))、ブタジエン重合体、イソプレン重合体及びエチレン-プロピレン-ジエン共重合体等が挙げられる。非ジエン系重合体としては、エチレン-プロピレン共重合体及びスチレン-エチレン-ブチレン共重合体等のオレフィン系重合体、並びに、上記ジエン系重合体の水素還元物が挙げられる。
 RP1及びRP2としてとりうる炭化水素鎖は、置換基(例えば、後述の置換基T又は後述の官能基群<I>に記載の官能基)を有していてもよい。
 炭化水素鎖となる炭化水素は、その末端に反応性基を有することが好ましく、縮重合可能な末端反応性基を有することがより好ましい。縮重合又は重付加可能な末端反応性基は、縮重合又は重付加することにより、上記各式のRP1又はRP2に結合する基を形成する。このような末端反応性基としては、イソシアナト基、ヒドロキシ基、カルボキシ基及びアミノ基等が挙げられ、中でもヒドロキシ基が好ましい。
 末端反応性基を有する炭化水素ポリマーとしては、例えば、いずれも商品名で、NISSO-PBシリーズ(日本曹達社製)、クレイソールシリーズ(巴工業社製)、PolyVEST-HTシリーズ(エボニック社製)、poly-bdシリーズ(出光興産社製)、poly-ipシリーズ(出光興産社製)、EPOL(出光興産社製)及びポリテールシリーズ(三菱化学社製)等が好適に用いられる。
 上記炭化水素鎖の中でも、RP1は、低分子量の炭化水素鎖であることが好ましく、芳香族の炭化水素基からなる炭化水素鎖がより好ましい。RP2は、低分子量の炭化水素鎖以外の分子鎖又は脂肪族の炭化水素基が好ましく、低分子量の炭化水素鎖以外の分子鎖及び脂肪族の炭化水素基をそれぞれ含む態様がより好ましい。この態様においては、式(I-3)で表される構成成分、式(I-4)及び式(I-6)のいずれかで表される化合物由来の構成成分は、RP2が低分子量の脂肪族の炭化水素基である構成成分と、RP2が低分子量の炭化水素鎖以外の分子鎖である構成成分の少なくとも2種を含むことが好ましい。
 ポリアルキレンオキシド鎖(ポリアルキレンオキシ鎖)中のアルキレンオキシ基の炭素数は、1~10であることが好ましく、1~6であることがより好ましく、2又は3であること(ポリエチレンオキシド鎖又はポリプロピレンオキシド鎖)が更に好ましい。ポリアルキレンオキシド鎖は、1種のアルキレンオキシドからなる鎖でもよく、2種以上のアルキレンオキシドからなる鎖(例えば、エチレンオキシド及びプロピレンオキシドからなる鎖)でもよい。
 ポリカーボネート鎖又はポリエステル鎖としては、公知のポリカーボネート又はポリエステルからなる鎖が挙げられる。
 ポリアルキレンオキシド鎖、ポリカーボネート鎖又はポリエステル鎖は、それぞれ、末端にアルキル基(炭素数は1~12が好ましく、1~6がより好ましい)を有することが好ましい。
 分子鎖が含むアルキル基中に、エーテル基(-O-)、チオエーテル基(-S-)、カルボニル基(>C=O)、イミノ基(>NRNa:RNaは水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基)を有していてもよい。
 上記各式において、RP1及びRP2は2価の分子鎖であるが、少なくとも1つの水素原子が-NH-CO-、-CO-、-O-、-NH-又は-N<で置換されて、3価以上の分子鎖となっていてもよい。
 上記式(I-1)で表される構成成分の具体例を以下に示す。また、上記式(I-1)で表される構成成分を導く原料化合物(ジイソシアネート化合物)としては、例えば、国際公開第2018/020827号に記載の、式(M1)で表されるジイソシアネート化合物、その具体例及びポリメリック4,4’-ジフェニルメタンジイソシアネート等が挙げられる。なお、本発明において、式(I-1)で表される構成成分及びこれを導く原料化合物は下記具体例及び上記文献に記載のものに限定されない。
Figure JPOXMLDOC01-appb-C000013
 上記式(I-2)で表される構成成分を導く原料化合物(カルボン酸若しくはその酸クロリド等)は、特に制限されず、例えば、国際公開第2018/020827号の[0074]に記載の、カルボン酸または酸クロリドの化合物及びその具体例が挙げられる。
 上記式(I-3)で表される構成成分の具体例を以下に示す。また、上記式(I-3)又は式(I-4)で表される構成成分を導く原料化合物(ジオール化合物又はジアミン化合物)としては、それぞれ、例えば、国際公開第2018/020827号に記載の各化合物及びその具体例が挙げられ、更にジヒドロキシオキサミドも挙げられる。なお、本発明において、式(I-3)又は式(I-4)で表される構成成分及びこれを導く原料化合物は下記具体例及び上記文献に記載のものに限定されない。
Figure JPOXMLDOC01-appb-C000014
 式(I-5)において、RP3は芳香族若しくは脂肪族の連結基(4価)を示し、下記式(i)~(iix)のいずれかで表される連結基が好ましい。
Figure JPOXMLDOC01-appb-C000015
 式(i)~(iix)中、Xは単結合又は2価の連結基を示す。2価の連結基としては、炭素数1~6のアルキレン基(例えば、メチレン、エチレン、プロピレン)が好ましい。プロピレンとしては、1,3-ヘキサフルオロ-2,2-プロパンジイルが好ましい。Lは-CH=CH-又は-CH-を示す。R及びRはそれぞれ水素原子又は置換基を表す。各式において、*は式(1-5)中のカルボニル基との結合部位を示す。R及びRとして採りうる置換基としては、特に制限されず、後述する置換基Tが挙げられ、アルキル基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)又はアリール基(炭素数は6~22が好ましく、6~14がより好ましく、6~10が更に好ましい)が好ましく挙げられる。
 式(I-6)において、Rb1~Rb4は水素原子又は置換基を示し、水素原子を示すことが好ましい。この置換基として後述の置換基Tが挙げられ、アルキル基が好ましい。
 上記式(I-5)で表されるカルボン酸二無水物、及び上記式(I-6)で表される構成成分を導く原料化合物(ジアミン化合物)は、それぞれ、特に制限されず、例えば、国際公開第2018/020827号及び国際公開第2015/046313号に記載の各化合物及びその具体例が挙げられる。
 RP1、RP2及びRP3は、それぞれ、置換基を有していてもよい。この置換基としては、特に制限されず、例えば、後述する置換基T、更には上記官能基群(I)のケトン基が挙げられ、RM2として採りうる上記置換基が好適に挙げられる。
 逐次重合系ポリマーは、下記式(H-1)で表される構成成分を有する。
Figure JPOXMLDOC01-appb-C000016
 式中、L11は、炭素数1~12のアルキレン基、炭素数6~18のアリーレン基、炭素数2~12のアルケニレン基、炭素数4~18の2価のヘテロ環基、酸素原子、カルボニル基、-N(R)-若しくはイミン連結基(-C(=NR)-)又はこれらの基、原子若しくは連結基を組合せた基を示す。X11及びX12は酸素原子、硫黄原子又は-N(R)-を示す。ただし、X11及びX12は互いに異なる。Rは水素原子、アルキルシリル基、炭素数6~18のアリール基又は炭素数1~12のアルキル基を示す。
 炭素数1~12のアルキレン基は、直鎖、分岐、環状及びこれらの少なくとも2つの形態を組合わせた形態のいずれでもよい。このアルキレン基は、固体電解質組成物スラリーの分散性及び電池性能をより向上させるため環状構造を含むことが好ましい。アルキレン基の具体例としては、メチレン、エチレン、プロピレン、ブチレン、ヘキシレン、オクチレン、ノニレン、デシレン、シクロへキシレン及びドデセニレンが挙げられる。また、シクロへキシレン及びエチレンを組合わせたアルキレン基も挙げられる。
 炭素数6~18のアリーレン基の炭素数は、6~10がより好ましい。アリーレン基の具体例としてフェニレン及びナフチレンが挙げられる。
 炭素数2~12のアルケニレン基は直鎖、分岐及び環状のいずれでもよく、具体例として、エテニレン、プロぺニレン及び1-メチルプロぺニレンが挙げられる。
 上記ヘテロ環基を構成するヘテロ環は、脂肪族ヘテロ環でも芳香族ヘテロ環でもよく、また単環でも縮合環でもよい。炭素数4~18の2価のヘテロ環基が有するヘテロ原子は特に制限されず、例えば、酸素原子、窒素原子及び硫黄原子が挙げられる。1つのヘテロ環が含むヘテロ原子の数は、特に制限されず、1~3個が好ましく、1個又は2個がより好ましい。炭素数は4~10が好ましく、4又は5がより好ましい。ヘテロ環は、4~7員環が好ましく、5又は6員環がより好ましい。ヘテロ環の具体例として、ピロリジン環及びピリジン環が挙げられる。
 -N(R)-及びイミン連結基(-C(=NR)-)中のRは水素原子を示すことが好ましい。Rで示されるアルキルシリル基のアルキル基は下記炭素数1~12のアルキル基と同義である。Rで示される炭素数1~12のアルキル基は直鎖、分岐及び環状のいずれでもよく、アルキル基の具体例として、メチル、エチル、プロピル、i-プロピル、t-ブチル、ペンチル及びシクロヘキシルが挙げられる。Rで示される炭素数6~18のアリール基は炭素数6~10がより好ましい。アリール基の具体例としてフェニル及びナフチルが挙げられる。
 上記基、原子若しくは連結基を組合せた基としては、これらのうちの2又は3個を組合わせた2価の基が好ましく、2個を組合わせた2価の基がより好ましく、例えば、炭素数2~12のアルキレン基と炭素数6~18のアリーレン基とを組合わせた2価の基、炭素数4~18の2価のヘテロ環基と炭素数2~12のアルキレン基とを組合わせた2価の基、及び酸素原子と炭素数2~12のアルキレン基とを組合わせた2価の基が挙げられる。
 組合せた基の分子量は、特に制限されず、6000以下が好ましく、1000以下がより好ましく、400以下がより好ましく、300以下が更に好ましい。分子量の下限としては、好ましくは40以上であり、より好ましくは50以上である。
 L11として採りうる基は、各基の分子鎖の長さ、剛直性及び疎水性(後述する分散媒との親和性)等を考慮して適宜に決定され、分散性、更には電池特性の点で、炭素数1~12のアルキレン基若しくは炭素数6~18のアリーレン基又はこれらを組合わせた2価の基であることが好ましく、炭素数1~12のアルキレン基がより好ましい。
 L11は置換基を有していてもよい。この置換基としては、特に制限されず、例えば、上記RP1が有していてもよい置換基と同義である。
 X11及びX12は、それぞれ、酸素原子、硫黄原子又は-N(RN1)-を示し、RN1はL11として採りうる-N(RN1)-のRN1と同義であり、水素原子が好ましい。
 X11及びX12は、それぞれ、上記原子及び-N(RN1)-から適宜に選択されるが、X11及びX12が互いに異なる原子又は-N(RN1)-が選択される。これにより、式(H-1)で表される構成成分が逐次重合系ポリマーに組み込まれた場合に生じる逐次重合系ポリマー同士に作用する上述の相互作用を、ポリマーの凝集を抑えつつも十分な機械的強度を実現できる。その結果、無機固体電解質組成物の分散性、更には全固体二次電池の電池性能を改善できる。X11及びX12の組み合わせは、特に制限されず、X11又はX12と他の構成成分との結合において、X11及びX12の一方は強い上記相互作用を示すものであり、X11及びX12の他方が弱い上記相互作用を示すものである。
 X11又はX12と他の構成成分との結合において、相互作用の強い結合としては、例えば、チオウレア結合、ウレア結合等が挙げられ、相互作用の弱い結合としては、例えば、チオウレタン結合、ウレタン結合、アミド結合、カーボネート結合、エステル結合等が挙げられ、この5つの結合の中での相互作用の強さは、チオウレタン≒ウレタン>アミド>カーボネート>エステルとなる。すなわち、チオウレタンとウレタンの相互作用の強さは同程度で、以降は順により弱い。
 本発明においては、X11及びX12の一方が-N(RN1)-で、他方が硫黄原子又は酸素原子であることが好ましく、X11及びX12の一方が-N(RN1)-で、他方が酸素原子であることがより好ましく、X11及びX12の一方が-NH-で、他方が酸素原子であることが特に好ましい。
 式(H-1)で表される構成成分は、2価の構成成分として示されているが、本発明においては、3価以上の構成成分を包含する。このような多価の構成成分としては、L11が有する1つ以上の水素原子が除去されて、ポリマーに組み込まれるための(他の構成成分と結合するための)結合部となっているものが挙げられる。この場合の構成成分の価数は、3~8価が好ましく、3価又は4価がより好ましい。
 また、結合部は、水素原子が除去された原子であってもよく、この原子に結合する連結基であってもよい。連結基としては、特に制限されず、炭素数2~12のアルキレン基、炭素数6~18のアリーレン基、炭素数2~12のアルケニレン基、酸素原子、硫黄原子、-N(RN1)-、シラン連結基若しくはイミン連結基又はこれらの基、原子若しくは連結基を組合せた基が挙げられる。この連結基の末端結合部は、酸素原子、硫黄原子又は-N(RN1)-であることが好ましく、酸素原子又は硫黄原子がより好ましく、X11又はX12と同一でも異なっていてもよい。
 上記式(H-1)で表される構成成分の具体例を以下に示す。
 この構成成分を導く原料化合物は、特に制限されず、例えば、アミノアルコール化合物、アミノチオール化合物、ヒドロキシメルカプト化合物等が挙げられる。これらの化合物は、適宜に合成してもよく市販品を用いてもよい。
Figure JPOXMLDOC01-appb-C000017
 本発明に用いられる逐次重合系ポリマーは、固体電解質組成物スラリーの分散性、固体粒子との結着性、固体電解質含有シートのイオン伝導性及び電池性能をより向上させるため、下記官能基群<I>に記載の官能基を少なくとも1種有していることが好ましい。これらの官能基は、上記式(I-3)又は式(I-4)で表される構成成分のRP2だけでなく、他の基に結合していてもよい。
<官能基群(I)>
カルボキシ基、スルホン酸基(-SOH)、ケトン基、リン酸基(ホスホ基、-OPO
(逐次重合系ポリマーの構造)
 逐次重合系ポリマーは、上記各式で表される構成成分のうち、式(H-1)で表される構成成分と、上記式(I-3)又は式(I-4)で表される構成成分とを有していることが好ましい。式(I-3)で表される構成成分としては、RP2が分子鎖として上記ポリカーボネート鎖、ポリエステル鎖、ポリアルキレンオキシド鎖である構成成分(下記式(I-3B)で表される構成成分)を有していることが好ましく、更に、RP2が炭化水素基(好ましくは官能基群<I>に記載の官能基を少なくとも1種を有する基)である構成成分(下記式(I-3A)で表される構成成分)、及び、RP2が分子鎖として上記の炭化水素ポリマー鎖である構成成分(下記式(I-3C)で表される構成成分)の少なくとも一方を有していることが好ましい。
 具体的には、逐次重合系ポリマーは、下記式(I-1)又は式(I-2)で表される構成成分、式(I-3B)で表される構成成分及び式(H-1)で表される構成成分を有することが好ましく、これら構成成分に加えて、式(I-3C)で表される構成成分又は式(I-3A)で表される構成成分を有していることがより好ましく、式(I-3C)で表される構成成分と式(I-3A)で表される構成成分とを有していることが更に好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(I-1)及び式(I-2)において、RP1は上述の通りである。
 式(I-3A)において、RP2Aは炭化水素基を示し、好ましくは官能基群<I>に記載の官能基を少なくとも1種を有している。例えば2,2-ビス(ヒドロキシメチル)酪酸等のビス(ヒドロキシメチル)酢酸化合物が挙げられる。式(I-3B)において、RP2Bはポリカーボネート鎖、ポリエステル鎖又はポリアルキレンオキシド鎖を示す。式(I-3C)において、RP2Cは炭化水素ポリマー鎖を示す。RP2Aとしてとりうる炭化水素基、RP2Bとしてとりうるポリカーボネート鎖、ポリエステル鎖、ポリアルキレンオキシド鎖及びRP2Cとしてとりうる炭化水素ポリマー鎖は、それぞれ、上記式(I-3)におけるRP2としてとりうる炭化水素基、ポリカーボネート鎖、ポリエステル鎖、ポリアルキレンオキシド鎖及び炭化水素ポリマー鎖と同義であり、好ましいものも同じである。
 式(H-1)において、L11、X11及びX12は上述の通りである。
 逐次重合系ポリマーにおいて、上記各式で表される構成成分の組み合わせは、特に制限されず、各式で表される構成成分の好ましいもの同士を適宜に組合わせることができる。例えば、下記好ましい構成成分の組合わせが挙げられる。
式(I-1)で表される構成成分:ジフェニルメタンジイソシアネート化合物に由来する構成成分、ジシクロヘキシルメタン4,4'-ジイソシアナートに由来する構成成分
式(I-2)で表される構成成分:テレフタル酸ジクロリド化合物に由来する構成成分
式(I-3A)で表される構成成分:2,2-ビス(ヒドロキシメチル)酪酸化合物に由来する構成成分、2,2-ビス(ヒドロキシメチル)プロピオン酸に由来する構成成分、プロピレングリコールに由来する構成成分、1,4-ブタンジオールに由来する構成成分
式(I-3B)で表される構成成分:ポリエチレングリコール若しくはポリプロピレングリコールに由来する構成成分、ポリテトラメチレングリコールに由来する構成成分
式(I-3C)で表される構成成分:(水素化)ポリブタジエンに由来する構成成分、(水素化)ポリイソプレンに由来する構成成分
式(H-1)で表される構成成分:上記具体例、又は実施例で用いた化合物に由来する構成成分、アミノアルコールに由来する構成成分
 本発明に用いられる逐次重合系ポリマーは、上記各式で表される構成成分以外の構成成分を有していてもよい。このような構成成分は、上記各式で表される構成成分と逐次重合可能なものであれば特に制限されない。
 逐次重合系ポリマー中の上記式(H-1)及び式(1-1)~式(I-6)のいずれかで表される構成成分の(合計)含有量は、特に限定されず、5~100質量%であることが好ましく、10~100質量%であることがより好ましく、50~100質量%であることが更に好ましく、80~100質量%であることが更に好ましい。この含有量の上限値は、上記100質量%にかかわらず、例えば、90質量%以下とすることもできる。
 逐次重合系ポリマー中の、上記各式で表される構成成分以外の構成成分の含有量は、特に限定されず、80質量%以下であることが好ましい。
 逐次重合系ポリマー中の上記式(H-1)で表される構成成分の含有量は特に制限されず、下限は0.001質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.3質量%以上であることがより好ましく、1質量%以上であることが更に好ましい。上限は50質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがより好ましく、3質量%以下であることが更に好ましい。
 逐次重合系ポリマーが上記式(I-1)~式(I-6)のいずれかで表される構成成分を有する場合、その含有量は、特に制限されず、以下の範囲に設定できる。
 すなわち、逐次重合系ポリマー中の、式(I-1)若しくは式(I-2)で表される構成成分、又は式(I-5)で表されるカルボン酸二無水物由来の構成成分の含有量は、特に制限されず、下限は0質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.1質量%以上であることがより好ましく、10質量%以上であることがより好ましく、15質量%以上であることが更に好ましい。上限は70質量%以下であることが好ましく、65質量%以下であることがより好ましく、60質量%以下であることがより好ましく、50質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。
 逐次重合系ポリマー中の、式(I-3)、式(I-4)又は式(I-6)で表される構成成分の含有量は、特に制限されず、下限は0質量%以上であることが好ましく、5質量%以上であることがより好ましく、15質量%以上であることがより好ましく、25質量%以上であることがより好ましく、35質量%であることが更に好ましい。上限は80質量%以下であることが好ましく、70質量%以下であることがより好ましく、65質量%以下であることが更に好ましい。
 式(I-3)又は式(I-4)で表される構成成分のうち、RP2が炭化水素基である構成成分(好ましくは官能基群<I>に記載の官能基を少なくとも1種を有する構成成分、例えば上記式(I-3A)で表される構成成分)の、逐次重合系ポリマー中の含有量は、特に制限されないが、例えば、下限は0質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、1質量%以上であることが更に好ましい。上限は50質量%以下であることが好ましく、30質量%以下であることがより好ましく、10質量%以下であることがより好ましく、5質量%以下であることがより好ましい。
 式(I-3)又は式(I-4)で表される構成成分のうち、RP2が分子鎖として上記ポリカーボネート鎖、ポリエステル鎖、ポリアルキレンオキシド鎖である構成成分(例えば上記式(I-3B)で表される構成成分)の、逐次重合系ポリマー中の含有量は、特に制限されないが、例えば、下限は0質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。上限は70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがより好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。
 式(I-3)又は式(I-4)で表される構成成分のうち、RP2が分子鎖として上記炭化水素ポリマー鎖である構成成分(例えば上記式(I-3C)で表される構成成分)の、逐次重合系ポリマー中の含有量は、特に制限されず、例えば、下限は0質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。上限は80質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがより好ましく、45質量%以下であることが更に好ましい。
 なお、逐次重合系ポリマーが各式で表される構成成分を複数有する場合、各構成成分の上記含有量は合計含有量とする。
 逐次重合系ポリマーの構造について、上記式(H-1)で表される構成成分を含む部分構造(原料化合物から導かれる構成成分に対応する構成成分ではなく、本発明に特有の結合部分で示す構成成分)について、説明する。
 式(H-1)で表される構成成分を含む部分構造としては、式(H-1)で表される構成成分と結合する他の構成成分によって一義的に決定されず、本発明では、下記式(H-2)で表わされる部分構造が好ましく、下記式(H-3)で表わされる部分構造がより好ましい。
Figure JPOXMLDOC01-appb-C000019
 式中、L21は上記L11と同義であり、好ましい範囲も同じである。RN2は上記RN1と同義であり、好ましい範囲も同じである。*は部分構造が逐次重合系ポリマーに導入されるための結合部を示す。
 この部分構造は、式(H-1)で表される構成成分の一例と、この構成成分の両端に結合する他の構成成分(例えば、上記式(H-1)又は式(H-2)で表される構成成分)のカルボニル基とからなる部分構造である。この部分構造は、L21に結合する結合(-COO-結合及び-CONRN2-)は互いに異なっており、逐次重合系ポリマーにおいて、L21を挟んだ両結合のうち一方の結合が上述の強い相互作用を示し、他方の結合が弱い相互作用を示す。そのため、上記部分構造は、両結合によるポリマー同士の強固な相互作用(凝集)を抑えて、本発明に好適な相互作用を示すと考えられる。
Figure JPOXMLDOC01-appb-C000020
 L31は、炭素数1~12のアルキレン基、炭素数6~12のアリーレン基、酸素原子、イミン連結基又はこれらの基、原子若しくは連結基を組合せた分子量400以下(好ましくは300以下、好ましくは40以上、より好ましくは50以上)の基を示す。*は部分構造が逐次重合系ポリマーに導入されるための結合部を示す。
 この部分構造は、式(H-1)で表される構成成分の一例と、この構成成分の両端に結合する他の構成成分(上記式(H-1)で表される構成成分)の-NHCO-基とからなる部分構造である。この部分構造は、L31に結合するウレタン結合が上述の弱い相互作用を示し、ウレア結合が強い相互作用を示し、この部分構造により、ポリマーの力学的強度を維持しつつも、ポリマー同士の強固な相互作用(凝集力)の発現を抑えることができる。
 本発明に用いられる逐次重合系ポリマーは、固体電解質組成物スラリーの分散性、固体電解質含有シートのイオン伝導性及び電池性能をより向上させるため、下記式で表されるポリマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 式中、LはRP1と同義であり、好ましい範囲も同じである。
 X、X及びLは、それぞれX11、X12及びL11と同義であり、好ましい範囲も同じである。
 X及びXは、いずれも-NH-又は酸素原子を示し、酸素原子を示すことが好ましい。Lは、RP2Aと同義であり、好ましい範囲も同じである。
 X及びXは、いずれも-NH-又は酸素原子を示し、酸素原子を示すことが好ましい。Lは、RP2Bと同義であり、好ましい範囲も同じである。
 X及びXは、いずれも-NH-又は酸素原子を示し、酸素原子を示すことが好ましい。Lは、RP2Cと同義であり、好ましい範囲も同じである。
 式中、s1~s5は、各構成成分の含有量(質量%)を示し、合計100質量%である。s2~s5の合計が0質量%を越える。
 s1の下限は0質量%越えであることが好ましく、0.01質量%以上であることがより好ましく、0.1質量%以上であることがより好ましく、10質量%以上であることがより好ましく、15質量%以上であることが更に好ましい。s1の上限は70質量%以下であることが好ましく、65質量%以下であることがより好ましく、60質量%以下であることがより好ましく、50質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。
 s2の下限は0.001質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.3質量%以上であることがより好ましく、1質量%以上であることが更に好ましい。s2の上限は50質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがより好ましく、3質量%以下であることが更に好ましい。
 s3の下限は0質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、1質量%以上であることが更に好ましい。s3の上限は50質量%以下であることが好ましく、30質量%以下であることがより好ましく、10質量%以下であることがより好ましく、5質量%以下であることがより好ましい。
 s4は、下限は0質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。上限は70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがより好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。
 s5の下限は0質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。s5の上限は80質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがより好ましく、45質量%以下であることが更に好ましい。
 式中、s1~s5を付した各式で表される各構成成分に対応する構成成分は、同じ構造でも互いに異なる構造でもよい。例えば、上記ポリマーが、Lが互いに異なる構造の構成成分を有する場合、これらの構成成分の合計含有量がs1である。
 本発明に用いられる逐次重合系ポリマーの具体例として、実施例で合成したポリマー及び下記化合物が挙げられる。
 逐次重合系ポリマー(各構成成分)は、置換基を有していてもよい。置換基としては、下記置換基Tから選択される基が挙げられる。以下に置換基Tを挙げるが、これらに限定されない。
 アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基で、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基である。ヘテロ環基には芳香族ヘテロ環基及び脂肪族ヘテロ環基を含む。例えば、テトラヒドロピラン環基、テトラヒドロフラン環基、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、ヘテロ環オキシ基(上記ヘテロ環基に-O-基が結合した基)、アルコキシカルボニル基(好ましくは炭素数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ(-NH)、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(アルキルカルボニル基、アルケニルカルボニル基、アルキニルカルボニル基、アリールカルボニル基、ヘテロ環カルボニル基を含み、好ましくは炭素数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、オクタノイル、ヘキサデカノイル、アクリロイル、メタクリロイル、クロトノイル、ベンゾイル、ナフトイル、ニコチノイル等)、アシルオキシ基(アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、アリールカルボニルオキシ基、ヘテロ環カルボニルオキシ基を含み、好ましくは炭素数1~20のアシルオキシ基、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、オクタノイルオキシ、ヘキサデカノイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、クロトノイルオキシ、ベンゾイルオキシ、ナフトイルオキシ、ニコチノイルオキシ等)、アリーロイルオキシ基(好ましくは炭素数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、ヘテロ環チオ基(上記ヘテロ環基に-S-基が結合した基)、アルキルスルホニル基(好ましくは炭素数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素数6~42のアリールシリル基、例えば、トリフェニルシリル等)、ホスホリル基(好ましくは炭素数0~20のリン酸基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素数0~20のホスフィニル基、例えば、-P(R)、スルホ基(スルホン酸基)、カルボキシ基、ヒドロキシ基、スルファニル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。Rは、水素原子又は置換基(好ましくは置換基Tから選択される基)である。
 また、これらの置換基Tで挙げた各基は、上記置換基Tが更に置換していてもよい。
 化合物、置換基及び連結基等がアルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基及び/又はアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよい。
(逐次重合系ポリマーの特性、物性)
 本発明に用いられる逐次重合系ポリマーのウレア価は特に制限されず、固体電解質組成物スラリーの分散性、固体電解質含有シートのイオン伝導度及び構成層中の結着性、並びに、電池性能を向上させるため、0mmol/gを越えることが好ましく、0.03mmol/g以上がより好ましく、0.05mmol/g以上が更に好ましい。上限は、0.5mmol/g以下が好ましく、0.45mmol/g以下がより好ましく、0.35mmol/g以下がさらに好ましい。
 ウレア価は、後記実施例の記載の測定方法により算出することができる。
 バインダーが含有する逐次重合系ポリマーの質量平均分子量は、特に限定されず、5,000以上であることが好ましく、10,000以上であることがより好ましく、15,000以上であることが特に好ましい。上限としては、1,000,000以下であることが好ましく、500,000以下であることがより好ましく、200,000以下であることがより好ましい。また架橋構造が導入され、分子量が測定限界以上になる態様も好ましい。
(逐次重合系ポリマーの合成)
 逐次重合系ポリマーは、主鎖の種類に応じて、所定の構成成分を導く原料化合物を任意に組み合わせて、必要により触媒(例えば、有機錫触媒を含む。)の存在下、逐次重合させることにより、合成することができる。逐次重合させる方法及び条件は、特に限定されず、公知の方法及び条件を適宜に選択できる。逐次重合系ポリマーの各特性、物性は、逐次重合系ポリマーの種類、更には、構成成分(原料化合物)の種類若しくは含有量、ポリマーの分子量等により、調整できる。原料化合物は、逐次重合系ポリマーの種類に応じて適宜に公知の化合物が選択される。例えば、上述した原料化合物の他にも、特開2015-088480号公報に記載の、ウレタン結合を有するポリマー、ウレア結合を有するポリマー、アミド結合を有するポリマー(ポリアミド樹脂)、イミド結合を有するポリマー等を形成する各原料化合物が挙げられる。
 逐次重合系ポリマーを合成する際の溶媒は、特に限定されず、後述する分散媒として挙げたものを好ましく用いることができる。本発明において、後述する転相乳化法により、逐次重合系ポリマーの分散液を調製する場合(バインダーを作製する場合)、逐次重合系ポリマーを合成する際(逐次重合系ポリマー溶液を調製する際)に用いた溶媒を、逐次重合系ポリマーを乳化分散し得る分散媒に置換し、逐次重合系ポリマーを合成する際に用いた溶媒を除去する方法が好ましい。この方法においては、逐次重合系ポリマーを合成する際に用いた溶媒の沸点は、逐次重合系ポリマーを乳化分散し得る分散媒の沸点より低いことが好ましい。逐次重合系ポリマーを乳化分散し得る分散媒としては、後述する逐次重合系ポリマーを乳化分散し得る分散媒を好ましく用いることができる。
 (逐次重合系ポリマーの分散液の調製)
 逐次重合系ポリマーの分散液を調製する方法は、特に制限されず、上記逐次重合系ポリマーの合成(例えば乳化重合法)により調製することもでき、合成した逐次重合系ポリマーを適宜の分散媒に分散して調製することもできる。分散媒に逐次重合系ポリマーを分散させる方法としては、例えば、フローリアクターを用いる方法(逐次重合系ポリマーの一次粒子同士を衝突させる方法)、ホモジナイザーを用いて撹拌する方法、転相乳化法等が挙げられる。中でも、生産性の点、更には得られる逐次重合系ポリマーの特性、物性等の点で、合成した逐次重合系ポリマーを転相乳化する方法が好ましい。
 転相乳化法としては、逐次重合系ポリマーを分散させる工程と、逐次重合系ポリマーの合成時に用いた溶媒を除去する工程とを有する。分散させる工程としては、逐次重合系ポリマーを乳化分散し得る分散媒中に逐次重合系ポリマーの溶液を(例えば、-20~150℃で0.5~8時間の条件で)滴下して乳化する方法、逐次重合系ポリマーの溶液を強く撹拌しつつ、逐次重合系ポリマーを乳化分散し得る分散媒をゆっくりと滴下して乳化させる方法が挙げられる。溶媒を除去する工程としては、こうして得られた逐次重合系ポリマーの分散液を、減圧濃縮又は不活性気流下で加熱する方法が挙げられる。これにより、逐次重合系ポリマーの合成時に用いた溶媒を選択的に除去することができ、逐次重合系ポリマーを乳化分散し得る分散媒の濃度を高めることができる。
 本発明において、上記「強く撹拌」とは、ポリマー溶液に衝撃、せん断、ずり応力、摩擦、振動等の機械的エネルギーを加える限り特に制限されない。例えば、ホモジナイザー、ホモディスパー、しんとう機、ディゾルバー、タイテックミキサー、攪絆槽での攪絆羽、高圧噴射式分散機、超音波分散機、ボールミル、ビーズミル等の装置を用い、例えば、300~1000rpmの回転数等の条件で撹拌する態様が挙げられる。また、「ゆっくりと滴下」とは、一括で添加しない限り特に制限されず、例えば、滴下する分散媒を10分以上かけて、逐次重合系ポリマー溶液に滴下混合する条件が挙げられる。
 逐次重合系ポリマーを乳化分散し得る分散媒としては、逐次重合系ポリマーの構成成分の種類等に応じて適宜に決定される。例えば、炭化水素ポリマー鎖を有する構成成分を含有する場合、この構成成分が溶解しやすく、式(I-1)で表される構成成分等の他の成分を溶解しにくい溶媒が挙げられる。このような溶媒としては、特に限定されず、後記分散媒の中でも、非水系分散媒(脂肪族化合物及び芳香族化合物)が好ましい。脂肪族化合物としては、例えば、ヘキサン、ヘプタン、ノルマルオクタン、イソオクタン、ノナン、デカン、ドデカン、シクロヘキサン、シクロヘプタン、シクロオクタン、メチルシクロヘキサン、エチルシクロヘキサン、デカリン、軽油、灯油、ガソリン等が挙げられる。芳香族化合物としては、例えば、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、テトラリン等が挙げられる。分散媒は1種単独で用いてもよく、2種以上を用いてもよい。ポリマーの乳化分散を阻害しない限りにおいて極性溶媒(エーテル溶媒、ケトン溶媒、エステル溶媒等)を添加してもよい。非水系分散媒と極性溶媒との質量比率[非水系分散媒の質量/極性溶媒の質量]は100/0~70/30が好ましく、100/0~90/10がより好ましく、100/0~99/1が最も好ましい。
 逐次重合系ポリマーを乳化分散し得る分散媒の常圧における沸点は、80℃以上が好ましく、70℃以上が好ましく、80℃以上が好ましい。
 転相乳化法において、逐次重合系ポリマーの粒子の、平均粒径は、用いる逐次重合系ポリマー溶液の固形分濃度若しくは滴下速度、逐次重合系ポリマーの種類、更には、構成成分の種類若しくは含有量等により、調製できる。
<分散媒>
 本発明の固体電解質組成物は、分散媒(分散媒体)を含有する。
 分散媒は、上記の各成分を分散又は溶解させるものであればよく、少なくともバインダーを溶解させずに分散させるものが好ましい。固体電解質組成物に含有される分散媒としては、例えば、各種の有機溶媒が挙げられる。有機溶媒としては、アルコール化合物、エーテル化合物、アミド化合物、アミン化合物、ケトン化合物、芳香族化合物、脂肪族化合物、ニトリル化合物、エステル化合物等の各溶媒が挙げられ、その分散媒の具体例としては下記のものが挙げられる。
 アルコール化合物としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。
 エーテル化合物としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)が挙げられる。
 アミド化合物としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。
 アミン化合物としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどが挙げられる。
 芳香族化合物としては、例えば、ベンゼン、トルエン、キシレンなどが挙げられる。
 脂肪族化合物としては、例えば、ヘキサン、ヘプタン、オクタン、デカンなどが挙げられる。
 ニトリル化合物としては、例えば、アセトニトリル、プロピロニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸ブチル、ペンタン酸ブチルなどが挙げられる。
 非水系分散媒としては、上記芳香族化合物、脂肪族化合物等が挙げられる。
 本発明においては、中でも、ケトン化合物、芳香族化合物、脂肪族化合物及びエステル化合物が好ましく、ケトン化合物、脂肪族化合物及びエステル化合物が更に好ましい。本発明においては、硫化物系無機固体電解質を用いて、更に上記の特定の有機溶媒を選定することが好ましい。この組み合わせを選定することにより、硫化物系無機固体電解質に対して活性な官能基が含まれないため硫化物系無機固体電解質を安定に取り扱える。特に硫化物系無機固体電解質と脂肪族化合物との組み合わせが好ましい。
 分散媒は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることが更に好ましい。
 固体電解質組成物は、分散媒を1種含有していても、2種以上を含有していてもよい。
 本発明において、固体電解質組成物中の分散媒の含有量は、特に制限されず適宜に設定することができる。例えば、固体電解質組成物中、20~99質量%が好ましく、30~90質量%がより好ましく、40~80質量%が特に好ましい。
<導電助剤>
 本発明の固体電解質組成物は、導電助剤を含有することもでき、特に負極活物質としてのケイ素原子含有活物質は導電助剤と併用されることが好ましい。
 導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いてもよい。
 本発明において、活物質と導電助剤とを併用する場合、上記の導電助剤のうち、電池を充放電した際にLiの挿入と放出が起きず、活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に活物質層中において活物質として機能しうるものは、導電助剤ではなく活物質に分類する。電池を充放電した際に活物質として機能するか否かは、一義的ではなく、活物質との組み合わせにより決定される。
 導電助剤は、1種を用いてもよいし、2種以上を用いてもよい。
 導電助剤の、電極用組成物中の総含有量は、全固形分中、0.1~30質量%が好ましく、0.5~20質量%がより好ましい。
 導電助剤の形状は、特に制限されず、粒子状が好ましい。導電助剤のメジアン径D50は、特に限定されず、例えば、0.01~1μmが好ましく、0.02~0.1μmが好ましい。
<活物質>
 本発明の固体電解質組成物は、周期律表第1族若しくは第2族に属する金属元素のイオンの挿入放出が可能な活物質を含有してもよい。
 活物質としては、正極活物質及び負極活物質が挙げられ、正極活物質である遷移金属酸化物、又は、負極活物質である金属酸化物が好ましい。
 本発明において、活物質(正極活物質及び負極活物質)を含有する固体電解質組成物を、電極用組成物(正極用組成物及び負極用組成物)ということがある。
(正極活物質)
 本発明の固体電解質組成物が含有してもよい正極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、有機物、硫黄などのLiと複合化できる元素、又は、硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P又はBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO及びLiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO、LMO、NCA又はNMCがより好ましい。
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 正極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量%が更に好ましく、55~80質量%が特に好ましい。
(負極活物質)
 負極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、金属酸化物、金属複合酸化物、ケイ素系材料、リチウム単体、リチウム合金、リチウムと合金形成可能な負極活物質等が挙げられる。中でも、炭素質材料、金属複合酸化物又はリチウム単体が信頼性の点から好ましく用いられる。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、リチウムを吸蔵及び放出可能な酸化物であれば特に制限されず、非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく挙げられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及び上記カルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb及びBiの1種単独若しくはそれらの2種以上の組み合わせからなる酸化物、又はカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、GeO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Sb、Bi、Bi、GeS、PbS、PbS、Sb及びSbが好ましく挙げられる。
 金属(複合)酸化物及び上記カルコゲナイドは、構成成分として、チタン及びリチウムの少なくとも一方を含有していることが、高電流密度充放電特性の観点で好ましい。リチウムを含有する金属複合酸化物(リチウム複合金属酸化物)としては、例えば、酸化リチウムと上記金属(複合)酸化物若しくは上記カルコゲナイドとの複合酸化物、より具体的には、LiSnOが挙げられる。
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 負極活物質としてのリチウム合金としては、二次電池の負極活物質として通常用いられる合金であれば特に制限されず、例えば、リチウムアルミニウム合金が挙げられる。
 リチウムと合金形成可能な負極活物質は、二次電池の負極活物質として通常用いられるものであれば特に制限されない。このような活物質は、充放電による膨張収縮が大きく、上述のように固体粒子の結着性が低下するが、本発明では上記バインダーにより高い結着性を達成できる。このような活物質として、ケイ素原子若しくはスズ原子を有する負極活物質、Al及びIn等の各金属が挙げられ、より高い電池容量を可能とするケイ素原子を有する負極活物質(ケイ素原子含有活物質)が好ましく、ケイ素原子の含有量が全構成原子の50mol%以上のケイ素原子含有活物質がより好ましい。
 一般的に、これらの負極活物質を含有する負極(ケイ素原子含有活物質を含有するSi負極、スズ原子を有する活物質を含有するSn負極)は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 ケイ素原子含有活物質としては、例えば、Si、SiOx(0<x≦1)等のケイ素材料、更には、チタン、バナジウム、クロム、マンガン、ニッケル、銅若しくはランタンを含む合金(例えば、LaSi、VSi)、又は組織化した活物質(例えば、LaSi/Si)、他にも、SnSiO、SnSiS等のケイ素原子及びスズ原子を含有する活物質等が挙げられる。なお、SiOxは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、全固体二次電池の稼働によりSiを生成するため、リチウムと合金化可能な活物質(その前駆体物質)として用いることができる。
 スズ原子を有する負極活物質としては、例えば、Sn、SnO、SnO、SnS、SnS、更には上記ケイ素原子及びスズ原子を含有する活物質等が挙げられる。また、酸化リチウムとの複合酸化物、例えば、LiSnOを挙げることもできる。
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機又は分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル又は篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式及び湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 負極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10~80質量%であることが好ましく、20~80質量%がより好ましい。
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
<他の添加剤>
 本発明の固体電解質組成物は、上記各成分以外の他の成分として、所望により、リチウム塩、イオン液体、増粘剤、架橋剤(ラジカル重合、縮合重合又は開環重合により架橋反応するもの等)、重合開始剤(酸又はラジカルを熱又は光によって発生させるものなど)、消泡剤、レベリング剤、脱水剤、酸化防止剤等を含有することができる。
 本発明において、本発明の固体電解質組成物は、架橋剤及び重合開始剤を含有し、後述する構成層の形成に際して粒子状バインダー(を構成するポリマー)を架橋させる態様と、架橋剤及び重合開始剤を含有せず、構成層の形成に際して粒子状バインダー(を構成するポリマー)を架橋させない態様(粒子状バインダーが架橋ポリマーを含まない態様)との両態様を包含する。
[固体電解質組成物の製造方法]
 本発明の固体電解質組成物は、無機固体電解質、バインダー、分散媒、更には他の成分を、例えば通常用いる各種の混合機で混合することにより、好ましくはスラリーとして、調製することができる。
 混合方法は、特に制限されず、一括して混合してもよく、順次混合してもよい。粒子状のバインダーを用いる場合、通常、粒子状のバインダーの分散液として用いるが、これに限定されない。混合する環境は、特に制限されず、乾燥空気下又は不活性ガス下等が挙げられる。
[固体電解質含有シート]
 本発明の固体電解質含有シートは、本発明の固体電解質組成物で構成した層を有し、全固体二次電池の構成層を形成しうるシート状成形体であって、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートともいう。)、電極、又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。
 本発明の全固体二次電池用固体電解質シートは、固体電解質層を有するシートであればよく、固体電解質層が基材上に形成されているシートでも、基材を有さず、固体電解質層から形成されているシートであってもよい。全固体二次電池用固体電解質シートは、固体電解質層の他に他の層を有してもよい。他の層としては、例えば、保護層(剥離シート)、集電体、コート層等が挙げられる。
 本発明の全固体二次電池用固体電解質シートとして、例えば、基材上に、本発明の固体電解質組成物で構成した層、通常、固体電解質層と、必要により保護層とをこの順で有するシートが挙げられる。本発明の固体電解質組成物で形成される固体電解質層は、無機固体電解質と、上記特定の構成成分を有するポリマーを含むバインダーとを含有しており、結着性に優れる。固体電解質層は、後述する全固体二次電池における固体電解質層と同じであり、通常、活物質を含まない。全固体二次電池用固体電解質シートは、全固体二次電池の固体電解質層を構成する材料として好適に用いることができる。
 基材としては、固体電解質層を支持できるものであれば特に限定されず、後述する集電体で説明する材料、有機材料、無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、セルロース等が挙げられる。無機材料としては、例えば、ガラス、セラミック等が挙げられる。
 本発明の全固体二次電池用電極シート(単に「本発明の電極シート」ともいう。)は、活物質層を有する電極シートであればよく、活物質層が基材(集電体)上に形成されているシートでも、基材を有さず、活物質層から形成されているシートであってもよい。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。本発明の電極シートは上述の他の層を有してもよい。本発明の電極シートを構成する各層の層厚は、後述する全固体二次電池において説明する各層の層厚と同じである。
 電極シートの活物質層は、本発明の固体電解質組成物(電極用組成物)で形成されることが好ましい。この電極シートは、全固体二次電池の(負極又は正極)活物質層を構成する材料として好適に用いることができる。
[固体電解質含有シートの製造方法]
 本発明の固体電解質含有シートは、本発明の固体電解質組成物を用いて製造することができる。例えば、上述のようにして本発明の固体電解質組成物を調製し、得られた固体電解質組成物を基材上(他の層を介していてもよい。)に製膜(塗布乾燥)して、基材上に固体電解質層(塗布乾燥層)を形成する方法が挙げられる。これにより、必要により基材(集電体)と塗布乾燥層とを有する固体電解質含有シートを作製することができる。ここで、塗布乾燥層とは、本発明の固体電解質組成物を塗布し、分散媒を乾燥させることにより形成される層(すなわち、本発明の固体電解質組成物を用いてなり、本発明の固体電解質組成物から分散媒を除去した組成からなる層)をいう。活物質層及び塗布乾燥層は、本発明の効果を損なわない範囲であれば分散媒が残存していてもよく、残存量としては、例えば、各層中、3質量%以下とすることができる。
 上記製造方法において、本発明の固体電解質組成物はスラリーとして用いることが好ましく、所望により、公知の方法で本発明の固体電解質組成物をスラリー化することができる。本発明の固体電解質組成物の塗布、乾燥等の各工程については、下記全固体二次電池の製造方法において説明する。
 本発明の固体電解質含有シートの製造方法においては、上記のようにして得られた塗布乾燥層を加圧することもできる。加圧条件等については、後述する、全固体二次電池の製造方法において説明する。
 また、本発明の固体電解質含有シートの製造方法においては、基材、保護層(特に剥離シート)等を剥離することもできる。
[全固体二次電池]
 本発明の全固体二次電池は、正極活物質層と、この正極活物質層に対向する負極活物質層と、正極活物質層及び負極活物質層の間に配置された固体電解質層とを有する。正極活物質層は、必要により正極集電体上に形成され、正極を構成する。負極活物質層は、必要により負極集電体上に形成され、負極を構成する。
 負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層は、本発明の固体電解質組成物で形成され、全ての層が本発明の固体電解質組成物で形成されることが好ましい。本発明の固体電解質組成物で形成された活物質層又は固体電解質層は、好ましくは、含有する成分種及びその含有量比について、本発明の固体電解質組成物の固形分におけるものと同じである。なお、活物質層又は固体電解質層が本発明の固体電解質組成物で形成されない場合、公知の材料を用いることができる。
 負極活物質層、固体電解質層及び正極活物質層の厚さは、それぞれ、特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
 正極活物質層及び負極活物質層は、それぞれ、固体電解質層とは反対側に集電体を備えていてもよい。
(正極活物質層、固体電解質層、負極活物質層)
 本発明の全固体二次電池においては、上述のように、固体電解質組成物又は活物質層は、本発明の固体電解質組成物又は上記固体電解質含有シートで形成することができる。形成される固体電解質層及び活物質層は、好ましくは、含有する各成分及びその含有量について、特段の断りがない限り、固体電解質組成物又は固体電解質含有シートの固形分におけるものと同じである。
 負極活物質層、固体電解質層及び正極活物質層の厚さは、それぞれ、特に限定されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層、固体電解質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
 正極活物質層及び負極活物質層は、それぞれ、固体電解質層とは反対側に集電体を備えていてもよい。
(筐体)
 本発明の全固体二次電池は、用途によっては、上記構造のまま全固体二次電池として使用してもよく、乾電池の形態とするためには更に適当な筐体に封入して用いることが好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金及びステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
 以下に、図1を参照して、本発明の好ましい実施形態に係る全固体二次電池について説明するが、本発明はこれに限定されない。
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。
 本発明の固体電解質組成物は、固体電解質層、負極活物質層又は正極活物質層の成形材料として好ましく用いることができる。また、本発明の固体電解質含有シートは、固体電解質層、負極活物質層又は正極活物質層として好適である。
 本明細書において、正極活物質層(以下、正極層とも称す。)と負極活物質層(以下、負極層とも称す。)をあわせて電極層又は活物質層と称することがある。
 図1に示す層構成を有する全固体二次電池を2032型コインケースに入れる場合、この全固体二次電池を全固体二次電池用積層体と称し、この全固体二次電池用積層体を2032型コインケースに入れて作製した電池を全固体二次電池と称して呼び分けることもある。
(正極活物質層、固体電解質層、負極活物質層)
 全固体二次電池10においては、固体電解質層及び活物質層のいずれか1つが本発明の固体電解質組成物又は上記固体電解質含有シートを用いて形成される。好ましい態様では全ての層が本発明の固体電解質組成物又は上記固体電解質含有シートを用いて形成され、好ましい別の態様では、固体電解質層及び正極活物質層が本発明の固体電解質組成物又は上記固体電解質含有シートを用いて形成される。負極活物質層は、本発明の固体電解質組成物又は上記電極シートを用いて形成する以外にも、負極活物質としての金属若しくは合金からなる層、負極活物質としての炭素質材料からなる層等を用いて、更には充電時に負極集電体等に周期律表第1族若しくは第2族に属する金属を析出させることにより、形成することもできる。
 正極活物質層4、固体電解質層3及び負極活物質層2が含有する各成分は、それぞれ、互いに同種であっても異種であってもよい。
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
[全固体二次電池の製造方法]
 本発明の全固体二次電池は、特に限定されず、本発明の固体電解質組成物の製造方法を介して(含んで)製造することができる。用いる原料に着目すると、本発明の固体電解質組成物を用いて製造することもできる。具体的には、全固体二次電池は、上述のようにして本発明の固体電解質組成物を調製し、得られた固体電解質組成物等を用いて、全固体二次電池の固体電解質層及び/又は活物質層を形成することにより、製造できる。これにより、電池容量の高い全固体二次電池を製造できる。本発明の固体電解質組成物の調製方法は上述の通りであるので省略する。
 本発明の全固体二次電池は、本発明の固体電解質組成物を、基材(例えば、集電体となる金属箔)上に塗布し、塗膜を形成する(製膜する)工程を含む(介する)方法を介して、製造できる。
 例えば、正極集電体である金属箔上に、正極用組成物として本発明の固体電解質組成物(電極用組成物)を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための本発明の固体電解質組成物を塗布して、固体電解質層を形成する。更に、固体電解質層の上に、負極用組成物として本発明の固体電解質組成物(電極用組成物)を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用組成物として本発明の固体電解質組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、本発明の固体電解質組成物を塗布して固体電解質層を形成する。更に、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。更に、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 上記各製造方法は、いずれも、固体電解質層、負極活物質層及び正極活物質層を本発明の固体電解質組成物で形成する方法であるが、本発明の全固体二次電池の製造方法においては、固体電解質層、負極活物質層及び正極活物質層の少なくとも一つを、本発明の固体電解質組成物で形成する。本発明の固体電解質組成物以外の組成物で固体電解質層を形成する場合、その材料としては、通常用いられる固体電解質組成物等、負極活物質層を形成する場合、公知の負極用組成物、負極活物質としての金属若しくは合金(金属層)又は負極活物質としての炭素質材料(炭素質材料層)等が挙げられる。
<各層の形成(製膜)>
 全固体二次電池の製造に用いる組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布及びバーコート塗布が挙げられる。
 このとき、組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、分散媒を除去し、固体状態(塗布乾燥層)にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
 上記のようにして、本発明の固体電解質組成物を塗布乾燥すると、固体粒子同士等が強固に結着し、更に固体粒子間の界面抵抗が小さな、必要により空隙の少ない密な塗布乾燥層を形成することができる。
 塗布した組成物、又は、全固体二次電池を作製した後の各層又は全固体二次電池は、加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は分散媒を予め乾燥させた状態で行ってもよいし、塗布溶媒又は分散媒が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布しても良いし、塗布乾燥プレスを同時及び/又は逐次行っても良い。別々の基材に塗布した後に、転写により積層してもよい。
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)及び不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。無機固体電解質は水分と反応するため、加圧中の雰囲気は、乾燥空気下又は不活性ガス中が好ましい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。固体電解質含有シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に制限はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 以下に、実施例に基づき本発明について更に詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。
<ポリマーの合成(ポリマー分散液若しくは溶液の調製)>
(ポリマーB-1の合成)
 500mL3つ口フラスコに、ポリエチレングリコール(PEG200(商品名)、数平均分子量200、富士フイルム和光純薬社製)14.51gと、NISSO-PB GI-1000(商品名、日本曹達社製)26.28gとを加え、THF(テトラヒドロフラン)264gに溶解した。この溶液に、ジフェニルメタンジイソシアネート(富士フイルム和光純薬社製)24.78gを加えて60℃で撹拌し、均一に溶解させた。
 得られた溶液に、ネオスタンU-600(商品名、日東化成社製)120mgを添加して60℃で5時間攪伴した。この溶液に4-アミノ-1-ブタノール(富士フイルム和光純薬社製)を0.53g加え60℃で30分撹拌し、粘性ポリマー溶液を得た。このポリマー溶液にメタノール1.9gを加えてポリマー末端を封止して、重合反応を停止し、ポリマーB-1の20質量%THF溶液(ポリマー溶液)を得た。
 次に、上記で得られたポリマー溶液を350rpmで撹拌しながら、ヘプタン720gを1時間かけて滴下し、ポリマーB-1の乳化液を得た。窒素フローしながらこの乳化液を85℃で120分加熱した。得られた残留物に対してヘプタン150gを加えて更に85℃で60分加熱した。この操作を4回繰り返し、THFを除去した。こうして、ポリマーB-1からなるバインダーの10質量%ヘプタン分散液を得た。
(ポリマーB-2~B-11の合成)
 上記ポリマーB-1の合成において、各構成成分を導く化合物として下記表1に記載の構成成分を導く若しくは形成する化合物を同表に記載の含有量となる使用量で用いたこと以外は、上記ポリマーB-1の合成と同様にして、ポリマーB-2~B-11(ポリマー分散液若しくは溶液)をそれぞれ合成(調製)した。
(ポリマーB-12の合成)
 温度計、攪拌器、窒素導入管を備えた500mLのフラスコ中にテレフタル酸ジクロリド(富士フイルム和光純薬社製)27.3gをテトラヒドロフラン(THF)200mLに溶解させて5℃に冷却した。これにトリエチルアミン30.3g加え、ドデシルジアミン(富士フイルム和光純薬社製)21.6g、3-アミノ-1プロパノール(富士フイルム和光純薬社製)1.1gを30分かけて分割添加した。室温で3時間攪拌してメタノールに再沈殿させた後にTHFに再溶解させることでバインダーB-12のTHF溶液を得た。
(ポリマーB-13~B-21の合成)
 上記ポリマーB-1の合成において、各構成成分を導く化合物として下記表1に記載の構成成分を導く若しくは形成する化合物を同表に記載の含有量となる使用量で用いたこと以外は、上記ポリマーB-1の合成と同様にして、ポリマーB-13~B-21(ポリマー分散液)をそれぞれ合成(調製)した。
(ポリマーBC-1の合成)
 4,4’-ジフェニルメタンジイソシアネート(富士フイルム和光純薬社製)2.5g、ジェファーミンD-2000(商品名、ハンツマン社製;ポリオキシプロピレンジアミン、平均分子量2,000)17.6gを200mLのフラスコに仕込み、メチルエチルケトン(MEK)52gに溶解させた。60℃に昇温させて30分間加熱攪拌した後、ネオスタンU-600(日東化成社製;ビスマストリス(2-エチルヘキサノエート))51mgを加えて5時間60℃で加熱攪拌した。ブチルアミン1.7gを加え、さらに60℃で1時間加熱攪拌してポリマーBC-1からなるバインダーの30質量%ポリマー溶液を得た。
(ポリマーBC-2の合成)
 500mL3つ口フラスコ中にメチルエチルケトン20mLを仕込み、窒素気流下で75℃で加熱した。一方、500mLメスシリンダーにドデシルメタクリレート(アルキル部位の炭素数12、富士フイルム和光純薬社製)70gとメチルエチルケトン110gとを仕込み、良く撹拌した。これに連鎖移動剤としてチオグリセロール(富士フイルム和光純薬社製)2.9gとラジカル重合開始剤V-601(富士フイルム和光純薬社製)3.2gとを加え、さらに良く撹拌した。得られたモノマー溶液を2時間かけて500mL3つ口フラスコに滴下し、ラジカル重合を開始させた。さらに、滴下終了後、75℃で6時間加熱撹拌を続けた。得られた重合液を減圧濃縮させ、メチルエチルケトンを留去させた後、ヘプタンに溶解して、末端ジオール変性ポリメタクリル酸ドデシル(DOPMD)〔アルキル部位の炭素数12;末端ジオール親油性ポリマー〕の25質量%ヘプタン溶液292gを得た。得られたポリマーの質量平均分子量は、3200であった。
 末端ジオール変性ポリメタクリル酸ドデシル(DOPMD;ジオール化合物)25質量%のヘプタン溶液260gを、1リットル(L)の3つ口フラスコに加え、ヘプタン110gで希釈した。これにイソホロンジイソシアネート(富士フイルム和光純薬社製)11.1gとネオスタンU-600(商品名、日東化成社製、触媒)0.1gとを加え、75℃で5時間加熱撹拌した。その後、イソホロンジアミン(アミン化合物)0.4gのヘプタン125g希釈液を1時間かけて滴下した。ポリマー溶液は、滴下開始後10分で透明から薄い黄色の蛍光色を有する溶液へと変化した。これより、ウレアコロイドが形成していることがわかる。反応液を室温に冷却し、ポリウレアコロイド粒子(Aa-1)〔ポリウレア構造を有する粒子〕の15質量%ヘプタン溶液506gを得た。
 ポリウレアコロイド粒子(Aa-1)において、末端ジオール変性ポリメタクリル酸ドデシル由来の成分が有するドデシル基は、ヘプタン(炭化水素系溶媒)と溶媒和する構造部分であり、ポリウレア構造は、ヘプタンと溶媒和しない構造部分である。ポリウレアコロイド粒子(Aa-1)のポリウレアの質量平均分子量は、9600であった。
 50mLサンプル瓶にジシクロヘキシルメタンジイソシアネート(東京化成工業社製)2.6g、1,4-ブタンジオール(富士フイルム和光純薬社製)0.42g、2,2-ビス(ヒドロキシメチル)ブタン酸(東京化成工業社製)0.28g、及びクラレポリオールP-1020(クラレ社製)2.9gを加えた。これにポリウレアコロイド粒子(Aa-1)の15質量%ヘプタン溶液15.7gを加え、50℃で加温しながらホモジナイザーで30分間分散した。この間、混合液は微粒子化し、薄橙色のスラリーとなった。得られたスラリーを、あらかじめ80℃、回転数400rpmで撹拌した100mL3つ口フラスコに手早く投入し、ネオスタンU-600(商品名、日東化成社製)0.1gを加えて80℃で3時間加熱撹拌した。スラリーは、白色乳濁状となった。これより、ポリウレタン粒子が形成されたことが推定される。白色乳濁状のスラリーを冷却し、ポリマーBC-2からなるバインダーの40質量%ヘプタン分散液を得た。
(ポリマーBC-3の合成)
 上記ポリマーB-1の合成において、各構成成分を導く化合物として下記表1に記載の構成成分を導く若しくは形成する化合物を同表に記載の含有量となる使用量で用いたこと以外は、上記ポリマーB-1の合成と同様にして、ポリマーBC-3(ポリマー分散液)を合成(調製)した。
 以下に、上記合成したポリマーの構造を示す。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 得られた各ポリマー分散液について、粒子状ポリマーの平均粒径を、上述の方法により、測定した。その結果を表1に示す。
 また、ポリマー等の質量平均分子量は、上述の方法により、測定した。
 得られた各粒子状ポリマー分散液について、ポリマーの分散状態(粒子状ポリマーの形成状態)を目視により、評価して、表1の「形状」欄に示した。ポリマーが分散媒に分散して粒子状ポリマーを形成している状態を「粒子」と称する。一方、ポリマーが分散媒に分散せずに沈殿している状態を「沈殿」と称し、溶解して粒子状ポリマーを形成せず溶液となっている状態を「溶液」と称する。
 下記表1に記載のウレア価は以下のようにして算出した。
 ウレア価は通常、ポリマー合成時に用いたアミノ基含有化合物量(mmol)と、(アミノ基含有化合物のアミノ基含有数(アミノ基含有化合物1分子が有するアミノ基の数)/アミノ基含有化合物全質量(g))とから算出できる。また、ポリマーのNMRを測定し、ウレア基のピークの積分比からウレア基の含有量を算出することもできる。本実施例では、合成に用いたアミノ基含有化合物から用いたウレア価と、ポリマーのNMRから求めたウレア価とはほぼ一致した。
Figure JPOXMLDOC01-appb-T000024
<表の注>
 構成成分M1:式(I-1)又は(I-2)で表される構成成分
 構成成分M2:式(I-3B)で表される構成成分
 構成成分M3:式(I-3C)で表される構成成分
 構成成分M4:式(H-1)で表される構成成分
 構成成分M5及びM6:式(I-3A)又は(I-4)で表される構成成分
 なお、ポリマーBC-1~BC-3の各構成成分は各構成成分欄に順に記載した。
MDI:ジフェニルメタンジイソシアネート(富士フイルム和光純薬社製)
PEG200:ポリエチレングリコール(数平均分子量:200 富士フイルム和光純薬社製)
GI1000:NISSO-PB GI-1000(商品名、日本曹達社製)
4A1B:4-アミノ-1-ブタノール(富士フイルム和光純薬社製)
DMBA:2,2-ビス(ヒドロキシメチル)酪酸(東京化成工業社製)
3A1P:3-アミノ-1-プロパノール(富士フイルム和光純薬社製)
4ACE:4-アミノシクロヘキサンエタノール(東京化成工業社製)
Bis-A:2,2-ビス(4-ヒドロキシフェニル)プロパン(富士フイルム和光純薬社製)
G3450J:Duranol G3450J(商品名、数平均分子量:800 旭化成社製)
PTMG250:ポリテトラメチレングリコール(数平均分子量:250 SIGMA-Aldrich社製)
4AP:2-(4-アミノフェニル)エタノール(東京化成工業社製)
DEGA:ジエチレングリコールアミン(東京化成工業社製)
G1000:NISSO-PB G-1000(商品名、日本曹達社製)
D-2000:(商品名、ハンツマン社製、ポリオキシプロピレンジアミン、数平均分子量2,000)
BA:ブチルアミン
H12MDI:ジシクロヘキシルメタンジイソシアネート(東京化成工業社製)
BD:1,4-ブタンジオール(富士フイルム和光純薬社製)
P-1020:クラレポリオールP-1020(商品名、クラレ社製)
IPDI:イソホロンジイソシアネート(富士フイルム和光純薬社製)
IPDA:イソホロンジアミン(富士フイルム和光純薬社製)
TPDC:テレフタル酸ジクロリド(富士フイルム和光純薬社製)
DDA:ドデカンジアミン(富士フイルム和光純薬社製)
BDA:1,4-ブタンジアミン(富士フイルム和光純薬社製)
DOPMD:上記末端ジオール変性ポリメタクリル酸ドデシル
 ポリマーB-2の分散液の調製において、4A1B(4-アミノ-1-ブタノール)を用いないこと以外は、ポリマーB-2と同様にしてポリマーBC-4の分散液を調製した。
 ポリマーB-2の分散液をガラスシャーレに入れて100℃で3時間乾燥して膜厚80μmの乾燥フィルムを得た。得られたフィルムを幅10mm長さ40mmに切りだし、フォースゲージ(IMADA社製)にチャック間距離が30mmになるようにセットした。速度10mm/minで引っ張り、変位量と応力を測定し、初期の傾きから弾性率を算出し、破断した変位量から破断伸びを算出した。同様に、ポリマーBC-4の分散液からフィルムを作製して、弾性率及び破断伸びを算出した。
 ポリマーB-2から作製したフィルムの弾性率及び破断伸びは、ポリマーBC-4から作製したフィルムの弾性率及び破断伸びに対して、1.6倍、1.5倍であった。
(ポリマーB-2から作製したフィルムの弾性率/ポリマーBC-4から作製したフィルムの弾性率=1.6、ポリマーB-2から作製したフィルムの破断伸び/ポリマーBC-4から作製したフィルムの破断伸び=1.5)
<硫化物系無機固体電解質の合成>
 硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.HamGa,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235およびA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、乳鉢に投入した。LiS及びPはモル比でLiS:P=75:25とした。メノウ製乳鉢上において、メノウ製乳棒を用いて、5分間混合した。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、25℃で、回転数510rpmで20時間メカニカルミリングを行うことで黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、LPS)6.20gを得た。体積平均粒子径は15μmであった。
[実施例1]
 固体電解質組成物及び固体電解質含有シートをそれぞれ製造して、この固体電解質組成物及び固体電解質含有シートについて下記特性を評価した。その結果を表2及び3に示す。
<固体電解質組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記合成したLPS4.85g、表2に示すポリマーの分散液若しくは溶液(固形分質量として0.15g)、及び表2に示す分散媒を16.0g投入した。その後に、この容器をフリッチュ社製遊星ボールミルP-7(商品名)にセットし、温度25℃、回転数150rpmで10分間混合を続けて、固体電解質組成物C-1~C-22及びBC-1~BC-3をそれぞれ調製した。
<固体電解質含有シートの作製>
 上記で得られた各固体電解質組成物C-1~C-22及びBC-1~BC-3を厚み20μmのアルミニウム箔上に、アプリケーター(商品名:SA-201ベーカー式アプリケーター、テスター産業社製)により塗布し、80℃で2時間加熱し、固体電解質組成物を乾燥させた。その後、ヒートプレス機を用いて、120℃の温度及び600MPaの圧力で10秒間、乾燥させた固体電解質組成物を加熱及び加圧し、固体電解質含有シートS-1~S-22及びBS-1~BS-3をそれぞれ作製した。固体電解質層の膜厚は50μmであった。
<評価1:分散性の評価>
 固体電解質組成物を、直径10mm、高さ15cmのガラス試験管に高さ10cmまで加え、25℃で2時間静置した後に、分離した上澄みの高さを目視で確認して測定した。固体電解質組成物の全量(高さ10cm)に対する上澄みの高さの比:上澄みの高さ/全量の高さを求めた。この比が下記評価ランクのいずれに含まれるかにより、固体電解質組成物の分散性(分散安定性)を評価した。上記比を算出するに際し、全量とはガラス試験管に投入した固体電解質組成物の全量(10cm)をいい、上澄みの高さとは固体電解質組成物の固形成分が沈降して生じた(固液分離した)上澄み液の量(cm)をいう。
 本試験において、上記比が小さいほど、分散性に優れることを示し、評価ランク「4」以上が合格レベルである。
 -評価ランク-
 8:     上澄みの高さ/全量の高さ<0.1
 7: 0.1≦上澄みの高さ/全量の高さ<0.2
 6: 0.2≦上澄みの高さ/全量の高さ<0.3
 5: 0.3≦上澄みの高さ/全量の高さ<0.4
 4: 0.4≦上澄みの高さ/全量の高さ<0.5
 3: 0.5≦上澄みの高さ/全量の高さ<0.7
 2: 0.7≦上澄みの高さ/全量の高さ<0.9
 1: 0.9≦上澄みの高さ/全量の高さ
<評価2:結着性の評価>
 固体電解質含有シートを径の異なる棒に巻きつけ、固体電解質層の欠け、割れ若しくはヒビの有無、及び、固体電解質層のアルミニウム箔(集電体)からの剥がれの有無を確認した。これらの欠陥等の異常が発生することなく巻きつけられた棒の最小径が下記評価ランクのいずれに含まれるかにより、結着性を評価した。
 本発明において、棒の最小径が小さいほど、結着性が強固であることを示し、評価ランク「4」以上が合格である。
 -結着性の評価ランク-
 8:      最少径<2mm
 7:  2mm≦最少径<4mm
 6:  4mm≦最少径<6mm
 5:  6mm≦最少径<10mm
 4: 10mm≦最少径<14mm
 3: 14mm≦最少径<20mm
 2: 20mm≦最少径<32mm
 1: 32mm≦最少径
<評価3:イオン伝導度の測定>
 上記で得られた固体電解質含有シートを直径14.5mmの円板状に切り出し、この固体電解質含有シートを図2に示す2032型コインケース11に入れた。具体的には、直径15mmの円板状に切り出したアルミニウム箔(図2に図示しない)を、固体電解質含有シートの固体電解質層と接触させてイオン伝導度測定用試料12(アルミニウム-固体電解質層-アルミニウムからなる積層体)を形成し、スペーサーとワッシャー(ともに図2において図示しない)を組み込んで、ステンレス製の2032型コインケース11に入れた。2032型コインケース11をかしめることで、イオン伝導度測定用試験体13を作製した。
 得られたイオン伝導度測定用試験体13を用いて、イオン伝導度を測定した。具体的には、25℃の恒温槽中、SOLARTRON社製 1255B FREQUENCY RESPONSE ANALYZER(商品名)を用いて電圧振幅5mV、周波数1MHz~1Hzまで交流インピーダンス測定した。これにより試料の膜厚方向の抵抗を求め、下記式(1)により計算して求めた。
 イオン伝導度(mS/cm)=
  1000×試料膜厚(cm)/{抵抗(Ω)×試料面積(cm)}・・・式(1)
 式(1)において、試料膜厚及び試料面積は、積層体12を2032型コインケース16に入れる前に測定し、アルミニウム箔の厚みを差し引いた値(すなわち、固体電解質層の膜厚及び面積)である。
 得られたイオン伝導度が下記評価ランクのいずれに含まれるかを判定した。
 本試験におけるイオン伝導度は評価ランク「4」以上が合格である。
 -評価ランク-
 8:  0.5mS/cm≦イオン伝導度
 7:  0.4mS/cm≦イオン伝導度<0.5mS/cm
 6:  0.3mS/cm≦イオン伝導度<0.4mS/cm
 5:  0.2mS/cm≦イオン伝導度<0.3mS/cm
 4:  0.1mS/cm≦イオン伝導度<0.2mS/cm
 3: 0.05mS/cm≦イオン伝導度<0.1mS/cm
 2: 0.01mS/cm≦イオン伝導度<0.05mS/cm
 1:           イオン伝導度<0.01mS/cm
Figure JPOXMLDOC01-appb-T000025
 表2から明らかなように、本発明の規定を満たさない固体電解質組成物は分散性評価が不合格であった。また、本発明の規定を満たさない固体電解質組成物から作製した固体電解質含有シートは、結着性評価及びイオン伝導度評価が不合格であった。
 これに対して、本発明の固体電解質組成物は分散性評価が合格であり、本発明の固体電解質組成物から作製した固体電解質含有シートは、結着性評価及びイオン伝導度評価が合格であった。また、固体電解質組成物C-8とC-21との比較及び固体電解質含有シートS-8とS-21との比較から、逐次重合系ポリマーのウレア価が0より大きく0.5mmol/g以下であることで、分散性評価及び結着性評価がより優れることが分かる。
[実施例2]
 全固体二次電池を製造して、下記特性を評価した。その結果を表3に示す。
<正極用組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記合成したLPSを2.7g、KYNAR FLEX 2500-20KYNAR FLEX 2500-20(商品名、PVdF-HFP:ポリフッ化ビニリデンヘキサフルオロプロピレン共重合体)を固形分質量として0.3g、及び酪酸ブチルを22g投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数300pmで60分間攪拌した。その後、正極活物質としてLiNi1/3Co1/3Mn1/3(NMC)7.0gを投入し、同様にして、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで5分間混合を続け、正極用組成物を調製した。
<全固体二次電池用正極シートの作製>
 上記で得られた正極用組成物を厚み20μmのアルミニウム箔(正極集電体)上に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)により塗布し、100℃で2時間加熱し、正極用組成物を乾燥(分散媒を除去)した。その後、ヒートプレス機を用いて、乾燥させた正極用組成物を25℃で加圧(10MPa、1分)し、膜厚80μmの正極活物質層を有する全固体二次電池用正極シートを作製した。
<負極用組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記合成したLPSを4.0g、表3に示すポリマーの分散液若しくは溶液(固形分質量として0.3g)、及び表に示す分散媒を22g投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数300pmで60分間攪拌した。その後、負極活物質としてケイ素(Si Aldrich社製)5.3g、アセチレンブラック(デンカ社製)0.4gを投入し、同様にして、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで10分間混合を続け、負極用組成物U-1~U-24及びV-1~V-3をそれぞれ調製した。
Figure JPOXMLDOC01-appb-T000026
Si:ケイ素(Aldrich社製)
AB:アセチレンブラック(デンカ社製)
THF:テトラヒドロフラン(富士フイルム和光純薬社製)
<全固体二次電池用負極シートの作製>
 上記で得られた負極用組成物を厚み10μmのステンレス鋼箔(負極集電体)上に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)により塗布し、100℃で2時間加熱し、負極用組成物を乾燥(分散媒を除去)した。その後、ヒートプレス機を用いて、乾燥させた負極用組成物を25℃で加圧(10MPa、1分)し、膜厚50μmの負極活物質層を有する全固体二次電池用負極シートを作製した。
 次いで、表4に示す各全固体二次電池用負極シートの負極活物質層上に、上記実施例1で作製した、表4の「固体電解質層」欄に示す固体電解質含有シートを固体電解質層が負極活物質層に接するように重ね、プレス機を用いて25℃で50MPa加圧して転写(積層)した後に、25℃で600MPa加圧することで、膜厚50μmの固体電解質層を備えた全固体二次電池用負極シートPU-1~PU-24及びPV-1~PV-3をそれぞれ作製した。
<全固体二次電池の製造>
 作製した各全固体二次電池用負極シート(固体電解質含有シートのアルミニウム箔は剥離済み)を直径14.5mmの円板状に切り出し、図2に示すように、スペーサーとワッシャー(図2において図示せず)を組み込んだステンレス製の2032型コインケース11に入れて、固体電解質層上に直径14.0mmで打ち抜いた正極シート(正極活物質層)を重ねた。その上に更にステンレス鋼箔(負極集電体)を重ねて全固体二次電池用積層体12(アルミニウム-正極活物質層-固体電解質層-負極活物質層-ステンレス鋼からなる積層体)を形成した。その後、2032型コインケース11をかしめることで、図2に示す全固体二次電池201~225及びc21~c23をそれぞれ製造した。このようにして製造した全固体二次電池13は、図1に示す層構成を有する。
<評価1:電池特性1(放電容量維持率)>
 全固体二次電池201~225及びc21~c23の電池特性として、放電容量維持率を測定して、サイクル特性を評価した。
 具体的には、各全固体二次電池の放電容量維持率を、充放電評価装置:TOSCAT-3000(商品名、東洋システム社製)により測定した。充電は、電流密度0.1mA/cmで電池電圧が4.2Vに達するまで行った。放電は、電流密度0.1mA/cmで電池電圧が2.5Vに達するまで行った。この充電1回と放電1回とを充放電1サイクルとして1サイクル充放電を繰り返して、全固体二次電池を初期化した。初期化後の充放電1サイクル目の放電容量(初期放電容量)を100%としたときに、放電容量維持率(初期放電容量に対する放電容量)が80%に達した際の充放電サイクル数が、下記評価ランクのいずれに含まれるかにより、サイクル特性を評価した。
 本試験において、放電容量維持率は、評価ランク「4」以上が合格である。
 なお、全固体二次電池201~225の初期放電容量は、いずれも、全固体二次電池として機能するのに十分な値を示した。
 -放電容量維持率の評価ランク-
 8: 100サイクル≦充放電サイクル数
 7:  50サイクル≦充放電サイクル数<100サイクル未満
 6:  30サイクル≦充放電サイクル数<50サイクル未満
 5:  20サイクル≦充放電サイクル数<30サイクル未満
 4:  10サイクル≦充放電サイクル数<20サイクル未満
 3:   5サイクル≦充放電サイクル数<10サイクル未満
 2:   2サイクル≦充放電サイクル数<5サイクル未満
 1:         充放電サイクル数<2サイクル未満
<評価2:電池特性2(抵抗)>
 全固体二次電池201~214及びc21~c23の電池特性として、その抵抗を測定して、抵抗の高低を評価した。
 各全固体二次電池の抵抗を、充放電評価装置:TOSCAT-3000(商品名、東洋システム社製)により評価した。充電は、電流密度0.1mA/cmで電池電圧が4.2Vに達するまで行った。放電は、電流密度0.2mA/cmで電池電圧が2.5Vに達するまで行った。この充電1回と放電1回とを充放電1サイクルとして繰り返して2サイクル充放電して、2サイクル目の5mAh/g(活物質質量1g当たりの電気量)放電後の電池電圧を読み取った。この電池電圧が下記評価ランクのいずれに含まれるかにより、全固体二次電池の抵抗を評価した。電池電圧が高いほど低抵抗であることを示す。本試験において、評価ランク「4」以上が合格である。
 -抵抗の評価ランク-
 8: 4.1V≦電池電圧
 7: 4.0V≦電池電圧<4.1V
 6: 3.9V≦電池電圧<4.0V
 5: 3.7V≦電池電圧<3.9V
 4: 3.5V≦電池電圧<3.7V
 3: 3.2V≦電池電圧<3.5V
 2: 2.5V≦電池電圧<3.2V
 1: 充放電できず
<評価3:活物質容量>
 全固体二次電池201~224及びc21~c23の電池特性として、活物質の理論容量を下記のようにして算出して評価した。容量が高いほどエネルギー密度が高いことを示す。
 - 理論容量の算出 -
 リチウムの挿入時の飽和組成から算出した。
 
 黒鉛:黒鉛はC→LiCとなるため、黒鉛1gあたりのLi挿入量は1340(クーロン)となる([(1(g)/6(黒鉛1分子当たりのLi挿入量))/12(黒鉛分子量)]×96500(ファラデー定数))。
 3.6クーロンが1mAhのため、黒鉛の理論容量は372(mAh/g)(1340/3.6)となる。
 
 ケイ素:ケイ素はSi→Li4.4Siとなるため、ケイ素1gあたりのLi挿入量は15110(クーロン)となる([(1(g)×4.4(ケイ素1分子当たりのLi挿入量))/28.1(ケイ素分子量)]×96500(ファラデー定数))。
 よって、ケイ素の理論容量は、4197(mAh/g)(15110/3.6)となる。
 
 - 評価ランク -
 5: 1500mAh/g≦活物質理論容量
 4: 1200mAh/g≦活物質理論容量<1500mAh/g
 3:  800mAh/g≦活物質理論容量<1200mAh/g
 2:  400mAh/g≦活物質理論容量< 800mAh/g
 1:           活物質理論容量≦ 400mAh/g
Figure JPOXMLDOC01-appb-T000027
 表4から明らかなように、比較例の全固体二次電池は、放電容量維持率が低く、抵抗が大きかった。これに対して、本発明の放電容量維持率が高く、抵抗が小さかった。
 また、負極活物質としてケイ素を用いると高いエネルギー密度を示すことが分かる。
 上記固体電解質組成物C-2において、LPSに代えて酸化物系無機固体電解質(LiLaZr12(豊島製作所社製))を用いたこと以外は、上記固体電解質組成物C-2と同様にして調製した固体電解質組成物について上記分散性を評価したところ良好な結果であった。また、この固体電解質組成物を用いて作製した固体電解質含有シートについて上記結着性及びイオン伝導度を評価したところ良好な結果であった。
 さらに、上記負極用組成物U-2において、LPSに代えて酸化物系無機固体電解質(LiLaZr12(豊島製作所社製))を用いたこと以外は、上記負極用組成物U-2と同様にして負極用組成物Aを調製した。全固体二次電池202において、上記負極用組成物U-2に代えて負極用組成物Aを用いたこと以外は、全固体二次電池202と同様にして全固体二次電池を作製した。この全固体二次電池について上記放電容量維持率及び抵抗を評価したところ良好な結果であった。
 本発明に規定のバインダーを用いて正極シート及びこの正極シートを組込んだ全固体二次電池について、放電容量維持率及び抵抗を評価したところ良好な結果であった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2018年12月27日に日本国で特許出願された特願2018-245977に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 2032型コインケース
12 イオン伝導度測定用試料又は全固体二次電池用積層体
13 イオン伝導度測定用試験体又は全固体二次電池

Claims (18)

  1.  周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、下記式(H-1)で表わされる構成成分を有する逐次重合系ポリマーを含むバインダーと、分散媒とを含む、固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000001
     式中、L11は、炭素数1~12のアルキレン基、炭素数6~18のアリーレン基、炭素数2~12のアルケニレン基、炭素数4~18の2価のヘテロ環基、酸素原子、カルボニル基、-N(RN1)-若しくはイミン連結基又はこれらを組合せた基を示す。X11及びX12は酸素原子、硫黄原子又は-N(RN1)-を示す。ただし、X11及びX12は互いに異なる。RN1は水素原子、アルキルシリル基、炭素数6~18のアリール基又は炭素数1~12のアルキル基を示す。
  2.  前記逐次重合系ポリマーが、下記式(H-2)で表わされる部分構造を有する、請求項1に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000002
     式中、L21は前記L11と同義である。RN2は前記RN1と同義である。*は前記部分構造が逐次重合系ポリマーに導入されるための結合部を示す。
  3.  前記逐次重合系ポリマーが、下記式(H-3)で表わされる部分構造を有する、請求項1又は2に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000003
     L31は、炭素数1~12のアルキレン基、炭素数6~12のアリーレン基、酸素原子、イミン連結基、又はこれらを組合せた分子量400以下の基を示す。*は前記部分構造が逐次重合系ポリマーに導入されるための結合部を示す。
  4.  前記逐次重合系ポリマーが、下記式で表されるポリマーである、請求項1~3のいずれか1項に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000004
     式中、Lは分子量が14以上200,000以下の分子鎖を示す。
     X、X及びLは、それぞれ前記X11、前記X12及び前記L11と同義である。
     X及びXは、いずれも-NH-又は酸素原子を示し、Lは炭化水素基を示す。
     X及びXは、いずれも-NH-又は酸素原子を示し、Lはポリカーボネート鎖、ポリエステル鎖又はポリアルキレンオキシド鎖を示す。
     X及びXは、いずれも-NH-又は酸素原子を示し、Lは炭化水素ポリマー鎖を示す。
     s1~s5は、各構成成分の含有量を示し、合計100質量%である。
  5.  前記逐次重合系ポリマーのウレア価が0より大きく0.5mmol/g以下である、請求項1~4のいずれか1項に記載の固体電解質組成物。
  6.  前記バインダーが、平均粒径5nm以上10μm以下の粒子である、請求項1~5のいずれか1項に記載の固体電解質組成物。
  7.  前記バインダーの含有量が、固体電解質組成物の全固形分中、0.001~10質量%である、請求項1~6のいずれか1項に記載の固体電解質組成物。
  8.  前記逐次重合系ポリマーが、下記官能基群(I)から選択される官能基を少なくとも1種有する、請求項1~7のいずれか1項に記載の固体電解質組成物。
    <官能基群(I)>
    カルボキシ基、スルホン酸基、ケトン基、リン酸基
  9.  前記逐次重合系ポリマーの質量平均分子量が10000~90000である、請求項1~8のいずれか1項に記載の固体電解質組成物。
  10.  導電助剤を含有する、請求項1~9のいずれか1項に記載の固体電解質組成物。
  11.  活物質を含む、請求項1~10のいずれか1項に記載の固体電解質組成物。
  12.  前記活物質がケイ素原子を含有する負極活物質である、請求項11に記載の固体電解質組成物。
  13.  前記無機固体電解質が下記式(1)で表される硫化物系無機固体電解質である、請求項1~12のいずれか1項に記載の固体電解質組成物。
       式(1):La1
     式中、LはLi、Na及びKから選択される元素を示す。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。
  14.  前記分散媒が、ケトン化合物溶媒、エステル化合物溶媒、芳香族化合物溶媒及び脂肪族化合物溶媒のうちの少なくとも1種である、請求項1~13のいずれか1項に記載の固体電解質組成物。
  15.  請求項1~14のいずれか1項に記載の固体電解質組成物で構成した層を有する、固体電解質含有シート。
  16.  正極活物質層と負極活物質層と固体電解質層とをこの順で具備する全固体二次電池であって、
     前記正極活物質層、前記負極活物質層及び前記固体電解質層の少なくともいずれかを請求項1~14のいずれか1項に記載の固体電解質組成物で構成した層である全固体二次電池。
  17.  請求項1~14のいずれか1項に記載の固体電解質組成物を塗布する工程を含む、固体電解質含有シートの製造方法。
  18.  請求項1~14のいずれか1項に記載の固体電解質組成物を塗布する工程を含む、全固体二次電池の製造方法。
PCT/JP2019/050711 2018-12-27 2019-12-24 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 WO2020138122A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020563329A JP7096366B2 (ja) 2018-12-27 2019-12-24 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
CN201980085639.5A CN113228343A (zh) 2018-12-27 2019-12-24 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法
KR1020217018255A KR20210089759A (ko) 2018-12-27 2019-12-24 고체 전해질 조성물, 고체 전해질 함유 시트와 전고체 이차 전지, 및 고체 전해질 함유 시트와 전고체 이차 전지의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-245977 2018-12-27
JP2018245977 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138122A1 true WO2020138122A1 (ja) 2020-07-02

Family

ID=71129401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050711 WO2020138122A1 (ja) 2018-12-27 2019-12-24 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法

Country Status (4)

Country Link
JP (1) JP7096366B2 (ja)
KR (1) KR20210089759A (ja)
CN (1) CN113228343A (ja)
WO (1) WO2020138122A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282333A1 (ja) * 2021-07-07 2023-01-12 富士フイルム株式会社 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
CN116368643A (zh) * 2020-10-23 2023-06-30 富士胶片株式会社 含无机固体电解质组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200477371Y1 (ko) * 2014-12-29 2015-06-03 김중기 냉동탑차용 냉동시스템
CN114597487B (zh) * 2022-03-18 2024-07-09 中汽创智科技有限公司 一种固体电解质膜及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149238A (ja) * 2015-02-12 2016-08-18 富士フイルム株式会社 固体電解質組成物、電池用電極シートおよび全固体二次電池ならびに電池用電極シートおよび全固体二次電池の製造方法
WO2018020827A1 (ja) * 2016-07-26 2018-02-01 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント化ポリマー、ポリマーおよびセグメント化ポリマーの非水溶媒分散物
JP2018088306A (ja) * 2016-11-28 2018-06-07 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに、固体電解質含有シートおよび全固体二次電池の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6110823B2 (ja) 2013-09-25 2017-04-05 富士フイルム株式会社 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
JP2016035912A (ja) * 2014-07-31 2016-03-17 富士フイルム株式会社 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149238A (ja) * 2015-02-12 2016-08-18 富士フイルム株式会社 固体電解質組成物、電池用電極シートおよび全固体二次電池ならびに電池用電極シートおよび全固体二次電池の製造方法
WO2018020827A1 (ja) * 2016-07-26 2018-02-01 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント化ポリマー、ポリマーおよびセグメント化ポリマーの非水溶媒分散物
JP2018088306A (ja) * 2016-11-28 2018-06-07 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに、固体電解質含有シートおよび全固体二次電池の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116368643A (zh) * 2020-10-23 2023-06-30 富士胶片株式会社 含无机固体电解质组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法
WO2023282333A1 (ja) * 2021-07-07 2023-01-12 富士フイルム株式会社 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法

Also Published As

Publication number Publication date
JPWO2020138122A1 (ja) 2021-09-30
JP7096366B2 (ja) 2022-07-05
KR20210089759A (ko) 2021-07-16
CN113228343A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN108370061B (zh) 固体电解质组合物、粘合剂粒子、全固态二次电池、片、电极片及它们的制造方法
JP6295332B2 (ja) 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
KR102244414B1 (ko) 고체 전해질 조성물, 고체 전해질 함유 시트 및 전고체 이차 전지와 고체 전해질 함유 시트 및 전고체 이차 전지의 제조 방법
WO2016017759A1 (ja) 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
US11967681B2 (en) Method of manufacturing all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and method of manufacturing electrode sheet for all-solid state secondary battery
WO2020138122A1 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
US12057582B2 (en) Electrode composition, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and respective methods of manufacturing electrode composition, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery
JP7455871B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
US20220140395A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery, and manufacturing methods for sheet for all-solid state secondary battery and all-solid state secondary battery
JP7292498B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021039947A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の各製造方法
JP7165750B2 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
JP6982682B2 (ja) 固体電解質組成物、全固体二次電池用シート、及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法
WO2023054425A1 (ja) 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極組成物、全固体二次電池用電極シート及び全固体二次電池の製造方法
WO2022202902A1 (ja) 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
WO2021020031A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2020067108A1 (ja) 全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法
WO2024071056A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7407286B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7436692B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7096367B2 (ja) 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法
JP7266152B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7373674B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2023282333A1 (ja) 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
WO2023249014A1 (ja) 二次電池用バインダー組成物、二次電池用固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563329

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217018255

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906129

Country of ref document: EP

Kind code of ref document: A1