WO2021039947A1 - 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の各製造方法 - Google Patents

無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の各製造方法 Download PDF

Info

Publication number
WO2021039947A1
WO2021039947A1 PCT/JP2020/032524 JP2020032524W WO2021039947A1 WO 2021039947 A1 WO2021039947 A1 WO 2021039947A1 JP 2020032524 W JP2020032524 W JP 2020032524W WO 2021039947 A1 WO2021039947 A1 WO 2021039947A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
group
active material
inorganic solid
secondary battery
Prior art date
Application number
PCT/JP2020/032524
Other languages
English (en)
French (fr)
Inventor
陽 串田
宏顕 望月
安田 浩司
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021543026A priority Critical patent/JP7218441B2/ja
Publication of WO2021039947A1 publication Critical patent/WO2021039947A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a composition containing an inorganic solid electrolyte, a sheet for an all-solid secondary battery and an all-solid secondary battery, and a method for producing a sheet for an all-solid secondary battery and an all-solid secondary battery.
  • a lithium ion secondary battery is a storage battery having a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and capable of charging and discharging by reciprocating lithium ions between the two electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolytic solution is liable to leak, and there is a risk of short-circuiting and ignition inside the battery due to overcharging or overdischarging, and further improvement in safety and reliability is required.
  • an all-solid-state secondary battery using an inorganic solid electrolyte instead of the organic electrolyte has attracted attention.
  • the negative electrode, the electrolyte, and the positive electrode are all made of solid, and the safety and reliability of the battery using the organic electrolytic solution can be greatly improved.
  • an inorganic solid electrolyte, an active material, a binder (binder) and the like are contained as materials for forming a constituent layer such as a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer.
  • the material has been proposed.
  • Patent Document 1 describes an inorganic solid electrolyte (A) having conductivity of an ion of a metal belonging to Group 1 or Group 2 of the Periodic Table, and urethane bond, urea bond, amide bond, and imide in the main chain.
  • a solid electrolyte composition containing a binder (B) having at least one of a bond and an ester bond and having a graft structure, and optionally containing an active material (D). ing.
  • the constituent layer (solid electrolyte layer or active material layer) of the all-solid secondary battery is usually formed of solid particles such as an inorganic solid electrolyte, binder particles, and an active material
  • the binding property between the solid particles is improved. It is important to maintain. If the binding property is not sufficient, charging / discharging (release and absorption of lithium ions) of the all-solid-state secondary battery causes poor contact between the solid particles, resulting in an increase in electrical resistance and battery performance (for example, cycle characteristics). It causes a decline.
  • Patent Document 1 the combined use of a binder with solid particles has been studied in order to enhance the adhesion between solid particles.
  • Patent Document 1 describes a (meth) acrylic acid ester having a short-chain alkyl group having a substituent such as a hydroxyethyl group, a dimethylaminoethyl group and a diethylaminoethyl group as a group bonded to an oxygen atom of the ester group.
  • binder constituent polymers containing the constituents of are specifically described.
  • the binder when a binder is used in combination, the binder usually does not have ionic conductivity, so that the resistance increases and the battery performance (ion conductivity) greatly decreases. This deterioration in performance becomes remarkable especially when the amount of binder added is increased.
  • the present invention enhances the binding property between solid particles in the all-solid-state secondary battery sheet constituent layer, can impart ionic conductivity to the all-solid-state secondary battery sheet at a high level, and has excellent cycle characteristics.
  • An object of the present invention is to provide an inorganic solid electrolyte-containing composition capable of realizing a solid secondary battery.
  • Another object of the present invention is to provide an all-solid-state secondary battery sheet and an all-solid-state secondary battery using the above-mentioned inorganic solid electrolyte-containing composition, and a method for producing these.
  • the present inventors have introduced at least one bond of urethane bond, urea bond, amide bond, imide bond and ester bond into the main chain of the polymer, and the polymer main chain or
  • An inorganic solid electrolyte-containing composition containing a binder composed of a polymer in which at least one partial structure represented by the general formula (1) described later is introduced into a side chain is used as a material for forming a constituent layer of an all-solid-state secondary battery.
  • a constituent layer that suppresses an increase in interfacial resistance between the solid particles (showing high ionic conductivity) can be formed, and the all-solid-state secondary battery can be used. It was found that excellent cycle characteristics can be imparted.
  • the present invention has been further studied based on these findings and has been completed.
  • the polymer containing the inorganic solid electrolyte (A) and binder (B) having ionic conductivity of the metal belonging to Group 1 or Group 2 of the Periodic Table and constituting the binder (B) is a urethane bond or a urea bond.
  • R 1 to R 3 represent a hydrogen atom, an alkyl group or an aryl group.
  • R 4 represents a methyl group, an ethyl group or a propyl group.
  • R 4 does not have a substituent. * Indicates the binding site in the polymer.
  • n1 and n2 indicate the content in all the constituents of the segment, n1 is more than 0 mol% and less than 100 mol%, and n2 is 0 mol% or more and less than 100 mol%.
  • ⁇ 5> The inorganic solid electrolyte-containing composition according to ⁇ 4>, wherein the polymer constituting the binder (B) has a segment represented by the general formula (2) in the side chain.
  • ⁇ 6> The inorganic solid electrolyte-containing composition according to ⁇ 4> or ⁇ 5>, wherein the number average molecular weight of the segments represented by the general formula (2) is 1,000 to 100,000.
  • ⁇ 7> The inorganic solid electrolyte according to any one of ⁇ 4> to ⁇ 6>, wherein the segment represented by the general formula (2) has at least one of a carboxy group, a sulfonic acid group and a phosphoric acid group. Containing composition.
  • ⁇ 8> The inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 7>, which comprises the active material (C).
  • ⁇ 9> The inorganic solid electrolyte-containing composition according to ⁇ 8>, wherein the active material (C) is a negative electrode active material.
  • the negative electrode active material contains Si as a constituent element.
  • ⁇ 11> The inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 10>, which contains a conductive auxiliary agent (D).
  • ⁇ 12> The inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 11>, wherein the inorganic solid electrolyte (A) is a sulfide-based inorganic solid electrolyte.
  • An all-solid-state secondary battery sheet having a layer formed by using the inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 12>.
  • An all-solid secondary battery including a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer.
  • An all-solid-state secondary battery in which at least one layer of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is composed of the all-solid-state secondary battery sheet according to ⁇ 13>.
  • a method for producing a sheet for an all-solid secondary battery which comprises a step of applying the inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 12> onto a substrate to form a coating film.
  • a method for producing an all-solid secondary battery which comprises a step of applying the inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 12> onto a substrate to form a coating film.
  • the composition containing an inorganic solid electrolyte of the present invention comprises an all-solid-state secondary battery sheet having excellent ionic conductivity and binding properties between solid particles in the constituent layer, and an all-solid-state secondary battery having excellent cycle characteristics. It can be realized. Further, the sheet for an all-solid-state secondary battery of the present invention is excellent in ionic conductivity and binding properties between solid particles in the constituent layer, and the all-solid-state secondary battery of the present invention is excellent in cycle characteristics. Further, the method for manufacturing an all-solid-state secondary battery sheet and the method for manufacturing an all-solid-state secondary battery of the present invention can provide the above-mentioned all-solid-state secondary battery sheet and all-solid-state secondary battery.
  • FIG. 1 is a vertical sectional view schematically showing an all-solid-state secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view schematically showing the test piece for ionic conductivity measurement produced in the examples.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • acrylic or “(meth) acrylic
  • it means acrylic and / or methacrylic.
  • acryloyl or “(meth) acryloyl
  • it means acryloyl and / or methacryloyl.
  • the indication of a compound is used to mean that the compound itself, its salt, and its ion are included.
  • this carbon number means the carbon number of the entire group. That is, when this group is in the form of further having a substituent, it means the total number of carbon atoms including this substituent.
  • substituents, etc. when there are a plurality of substituents, linking groups, etc. (hereinafter referred to as substituents, etc.) indicated by specific reference numerals, or when a plurality of substituents, etc. are specified simultaneously or selectively, respectively. It means that the substituents and the like of the above may be the same or different from each other. Further, even if it is not particularly specified, when a plurality of substituents and the like are adjacent to each other, they may be linked to each other or condensed to form a ring.
  • the mass average molecular weight (Mw) and the number average molecular weight (Mn) can be measured as polystyrene-equivalent molecular weights by gel permeation chromatography (GPC) unless otherwise specified.
  • GPC gel permeation chromatography
  • a GPC apparatus "HLC-8220" (trade name, manufactured by Tosoh Corporation) is used, and G3000HXL + G2000HXL (both trade names, manufactured by Tosoh Corporation) are used as columns, and the differential refractometer is performed at a measurement temperature of 23 ° C. It shall be detected by a meter (RI detector).
  • the eluent can be selected from THF (tetrahydrofuran), chloroform, NMP (N-methyl-2-pyrrolidone), and m-cresol / chloroform mixed solution (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). If the measurement sample dissolves, THF shall be used.
  • the inorganic solid electrolyte-containing composition of the present invention contains an inorganic solid electrolyte (A) and a binder (B) having ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
  • This binder (B) has at least one bond of urethane bond, urea bond, amide bond, imide bond and ester bond in the main chain, and has at least a partial structure represented by the following general formula (1). It is composed of a polymer having one kind.
  • R 1 to R 3 represent a hydrogen atom, an alkyl group or an aryl group.
  • R 4 represents a methyl group, an ethyl group or a propyl group. However, R 4 does not have a substituent. * Indicates the binding site in the polymer.
  • the composition containing an inorganic solid electrolyte of the present invention as a material for forming a constituent layer of an all-solid secondary battery, it is possible to form a constituent layer in which the binding property between solid particles is strengthened while suppressing an increase in resistance. It is possible to impart excellent battery performance (cycle characteristics) to an all-solid-state secondary battery having this configuration.
  • the polymer constituting the binder has at least one of the above-mentioned specific bonds and contains at least one of the partial structures represented by the general formula (1), thereby enhancing the cohesive force of the binder itself and solid.
  • the (chemical or physical) interaction with the particles is increased, and the solid particles can be bound to each other with a strong binding force.
  • the partial structure defined by the general formula (1) exhibits high polarity due to its chemical structure, and the wettability of the polymer with respect to solid particles is further improved. Conceivable.
  • the above-mentioned partial structure that improves the wettability to the solid particles does not excessively improve the wettability to the inorganic solid electrolyte, and has an appropriate wettability to the extent that the entire coating of the inorganic solid electrolyte is suppressed. Can be added to the polymer.
  • the ionic conduction path formed by the contact of the inorganic solid electrolyte can be maintained without being blocked by the presence of the polymer, and the decrease in ionic conductivity (increase in the interfacial resistance of solid particles) can be suppressed. ..
  • the partial structure having a small terminal alkyl group can suppress an excessive decrease in the strength of the polymer itself even if it is introduced into the polymer. Therefore, the binder composed of the polymer can exhibit high resistance to expansion and contraction of the constituent layer due to charge and discharge (prevention of destruction of the polymer), and can suppress deterioration of battery performance.
  • the all-solid-state secondary battery provided with the constituent layer formed by using the inorganic solid electrolyte-containing composition of the present invention has a constituent layer having high binding property and low resistance. As shown, high battery performance can be realized.
  • the binder used in the present invention exhibits the above-mentioned function and function, it can be used in combination with an active material, particularly a negative electrode active material having a large expansion and contraction due to charging and discharging of an all-solid-state secondary battery.
  • an active material particularly a negative electrode active material having a large expansion and contraction due to charging and discharging of an all-solid-state secondary battery.
  • the active material coexists with the inorganic solid electrolyte
  • the wettability (affinity) of the polymer with the active material is lower than that with respect to the inorganic solid electrolyte due to the above partial structure, and the surface of the active material during layer formation It is thought that it only covers a part (the adhesion to the active material is maintained even in this state).
  • the inorganic solid electrolyte-containing composition containing the active material is usually provided on the surface of the current collector, the binder also exhibits high wettability to the current collector and firmly adheres to the current collector. (Develops strong interlayer adhesion). Therefore, even when the inorganic solid electrolyte-containing composition of the present invention contains an active material, the constituent layers have high binding properties and low resistance, and also firmly adhere to the current collector, resulting in high battery performance. Can be realized.
  • the components contained in the inorganic solid electrolyte-containing composition may be described without a reference numeral.
  • the inorganic solid electrolyte (A) is also described as an inorganic solid electrolyte.
  • the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of transferring ions inside the solid electrolyte. Since it does not contain organic substances as the main ionic conductive material, it is an organic solid electrolyte (polymer electrolyte typified by polyethylene oxide (PEO), organic typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from electrolyte salts). Further, since the inorganic solid electrolyte is a solid in a steady state, it is usually not dissociated or liberated into cations and anions.
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the electrolyte or the inorganic electrolyte salt (LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.) in which cations and anions are dissociated or released in the polymer.
  • the inorganic solid electrolyte is not particularly limited as long as it has the ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is generally one that does not have electron conductivity.
  • the inorganic solid electrolyte has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
  • the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
  • a solid electrolyte material applicable to this kind of product can be appropriately selected and used.
  • examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte, (ii) an oxide-based inorganic solid electrolyte, (iii) a halide-based inorganic solid electrolyte, and (iV) a hydride-based solid electrolyte.
  • a sulfide-based inorganic solid electrolyte is preferably used because a better interface can be formed between the active material and the inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte preferably contains a sulfur atom (S), has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and has electronic insulation. ..
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but other than Li, S and P may be used depending on the purpose or case. It may contain elements.
  • the sulfide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 -6 S / cm or more, more preferably 5 ⁇ 10 -6 S / cm or more, and 1 ⁇ 10 -5 S / cm or more. It is particularly preferable that it is / cm or more. The upper limit is not particularly limited, and it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (I).
  • L represents an element selected from Li, Na and K, with Li being preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3.
  • the d1 is preferably 2.5 to 10, more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be non-crystal (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized.
  • Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramics containing Li, P and S can be used.
  • Sulfide-based inorganic solid electrolytes include, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example). It can be produced by the reaction of at least two or more raw materials in the sulfides of the elements represented by LiI, LiBr, LiCl) and M (for example, SiS 2 , SnS, GeS 2).
  • the ratio of Li 2 S to P 2 S 5 in Li-PS-based glass and Li-PS-based glass ceramics is the molar ratio of Li 2 S: P 2 S 5, preferably 60:40 to It is 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be made high.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 -4 S / cm or more, and more preferably 1 ⁇ 10 -3 S / cm or more.
  • the upper limit is not particularly limited, and it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5- P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2- LiCl, Li 2 S-P 2 S 5- SnS, Li 2 S-P 2 S 5- Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S-GeS 2 , Li 2 S-Ge
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte is preferably a compound containing an oxygen atom (O), having ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and having electron insulating properties. ..
  • the oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 -6 S / cm or more, more preferably 5 ⁇ 10 -6 S / cm or more, and 1 ⁇ 10 -5 S / cm or more. It is particularly preferable that it is / cm or more.
  • the upper limit is not particularly limited, and it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • nb (M bb is at least one element of Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, Sn, xb satisfies 5 ⁇ xb ⁇ 10, and yb is 1 ⁇ yb.
  • zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, nb satisfies 5 ⁇ nb ⁇ 20), Li xc Byc M cc zc Onc (M cc is). At least one or more elements of C, S, Al, Si, Ga, Ge, In, Sn, xc satisfies 0 ⁇ xc ⁇ 5, yc satisfies 0 ⁇ yc ⁇ 1, and zc satisfies 0 ⁇ zc ⁇ .
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON in which a part of oxygen of lithium phosphate is replaced with nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON LiA 1 is at least one selected from Si, B, Ge, Al, C, Ga and the like
  • Si, B, Ge, Al, C, Ga and the like can also be preferably used.
  • the halide-based inorganic solid electrolyte is preferably a compound containing a halogen atom, having ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and having electron insulating properties.
  • the halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as Li 3 YBr 6 and Li 3 YCl 6 described in LiCl, LiBr, LiI, ADVANCED MATERIALS, 2018, 30, 1803075. Of these, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
  • the hydride-based inorganic solid electrolyte is preferably a compound containing a hydrogen atom, having ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and having electronic insulation.
  • the hydride-based inorganic solid electrolyte is not particularly limited, and examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, and LiBH 4- LiCl.
  • the inorganic solid electrolyte is preferably particles.
  • the volume average particle size of the particulate inorganic solid electrolyte is not particularly limited, and is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the average particle size of the inorganic solid electrolyte particles is measured by the following procedure.
  • the inorganic solid electrolyte particles are diluted and adjusted by 1% by mass of a dispersion in a 20 ml sample bottle with water (heptane in the case of a water-unstable substance).
  • the diluted dispersed sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately after that, it is used for the test.
  • data was captured 50 times using a laser diffraction / scattering particle size distribution measuring device LA-920 (manufactured by HORIBA) at a temperature of 25 ° C. using a measuring quartz cell, and the volume average particles were used. Get the diameter.
  • LA-920 manufactured by HORIBA
  • JISZ8828 2013 "Particle size analysis-Dynamic light scattering method" as necessary. Five samples are prepared for each level and the average value is adopted.
  • the above-mentioned inorganic solid electrolyte may be used alone or in combination of two or more.
  • the content of the inorganic solid electrolyte in the solid component in the inorganic solid electrolyte-containing composition is 100 when considering the reduction of the interfacial resistance when used in an all-solid secondary battery and the maintenance of the reduced interfacial resistance.
  • mass% it is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 20% by mass or more, and further preferably 25% by mass or more.
  • the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
  • the content of the inorganic solid electrolyte in the inorganic solid electrolyte-containing composition is such that the total content of the active material and the inorganic solid electrolyte is in the above range. Is preferable.
  • the solid component solid content means a component that does not volatilize or evaporate and disappear when it is dried at 170 ° C. for 6 hours in a nitrogen atmosphere. Typically, it refers to a component other than the dispersion medium described later.
  • the inorganic solid electrolyte-containing composition of the present invention contains a binder (B) constituting the following polymer.
  • This polymer has a main chain containing at least one of a urethane bond, a urea bond, an amide bond, an imide bond and an ester bond. Further, this polymer is preferably a step-growth polymerization polymer, and has at least one partial structure represented by the following general formula (1) in the main chain or side chain.
  • the main chain of a polymer means a linear molecular chain in which all other molecular chains constituting the polymer can be regarded as a branched chain or a pendant with respect to the main chain.
  • the longest chain among the molecular chains constituting the polymer is the main chain.
  • the functional group possessed by the polymer terminal is not included in the main chain.
  • the side chain of the polymer means a molecular chain other than the main chain, and includes a short molecular chain and a long molecular chain.
  • the mode in which the polymer has the above-mentioned partial structure in the main chain or the side chain is not particularly limited, and the form having the partial structure alone represented by the general formula (1) and the partial structure represented by the general formula (1) ( (Co) Examples include a form having a polymer and a form including both forms, which are usually incorporated as a part of a constituent component constituting the polymer.
  • a form having a partial structure represented by the general formula (1) as a (co) polymer is preferable.
  • this partial structure is preferably contained in the side chain of the polymer when incorporated into the polymer, and is used as a (co) polymer in the side chain of the polymer. It is more preferable to have.
  • the number of types of the partial structure contained in the polymer is not particularly limited, and may be, for example, 1 to 10 types, preferably 1 type or 2 types.
  • R 1 to R 3 represent a hydrogen atom, an alkyl group or an aryl group.
  • R 4 represents a methyl group, an ethyl group or a (n- or i-) propyl group, and a methyl group or an ethyl group is preferable. * Indicates the binding site in the polymer. However, R 4 does not have a substituent (for example, a substituent T described later). When the partial structure represented by the general formula (1) is incorporated in the main chain, both * indicate the binding site in the main chain.
  • R 1 and R 2 preferably represent a hydrogen atom, and R 3 preferably represents a hydrogen atom or an alkyl group.
  • the alkyl group may be linear, branched or cyclic, preferably a linear or branched alkyl group, and more preferably a linear alkyl group.
  • the number of carbon atoms of the alkyl group is preferably 1 to 20, more preferably 1 to 10, more preferably 1 to 5, and even more preferably 1.
  • Specific examples of the above-mentioned alkyl group include those mentioned in the alkyl group contained in the substituent T described later.
  • aryl group examples include an aryl group contained in the substituent T described later, and an aryl group having 6 to 10 carbon atoms is preferable.
  • the polymer preferably has at least one of a carboxy group, a sulfonic acid group and a phosphoric acid group.
  • these groups are referred to as functional groups (a).
  • the functional group (a) can interact with inorganic particles such as an inorganic solid electrolyte, an active material, and a conductive additive to enhance the binding property.
  • Functional group (a) may be introduced into any of the components, but not introduced into R 4.
  • the partial structure represented by the general formula (1) is preferably incorporated into the polymer as its (co) polymer, and in this case, it is represented as the (co) polymer by the following general formula (2).
  • the polymer preferably has a segment represented by the following general formula (2) in the main chain or side chain (as a partial structure represented by the general formula (1)), and more preferably in the side chain. preferable.
  • R 1 to R 4 have the same meaning as R 1 to R 4 in the general formula (1), respectively, and the preferable range is also the same.
  • R 5 to R 7 represent a hydrogen atom, an alkyl group or an aryl group.
  • R 8 represents a hydrogen atom, an alkyl group or an aryl group.
  • n1 and n2 indicate the content in all the constituents of the segment, n1 is more than 0 mol% and 100 mol% or less, and n2 is 0 mol% or more and less than 100 mol%.
  • the binding form of the constituents in [] may be either random or block, and block is preferable.
  • R 5 and R 6 have the same meaning as R 1 in the general formula (1), and the preferable range is also the same.
  • R 7 has the same meaning as R 3 in the general formula (1), and the preferable range is also the same.
  • the alkyl group represented by R 8 may be linear, branched or cyclic, and a linear or branched alkyl group is preferable, and a linear alkyl group is more preferable.
  • the number of carbon atoms of the alkyl group is preferably 1 to 30, more preferably 1 to 20, further preferably 1 to 12, and particularly preferably 1 to 6. However, when the number of carbon atoms of the alkyl group that can be taken as R 8 is 1 to 3, these alkyl groups have a substituent described later.
  • alkyl group examples include methyl, ethyl, propyl, t-butyl, pentyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecylic and dodecyl.
  • R 8 the aryl group that can be taken as R 8
  • R 1 in the general formula (1) can be adopted.
  • the alkyl group and the aryl group that can be taken as R 8 may each have a substituent.
  • a substituent is not particularly limited, and for example, each of the substituents mentioned in Substituent T described later can be mentioned, which is preferable in that it contributes to the improvement of the adhesion to the solid particle or the current collector.
  • the substituent that R 8 may have may be one kind or two or more kinds, and when it has two or more kinds of substituents, it may be a substituent that combines two or more kinds of substituents.
  • n1 is more than 0 mol% and 100 mol% or less, preferably 10 mol% or more, more preferably 20 mol% or more, more preferably 25 mol% or more, still more preferably 30 mol% or more. Further, n1 is preferably 80 mol% or less, more preferably 60 mol% or less. n2 is 0 mol% or more and less than 100 mol%, preferably 20 mol% or more, more preferably 40 mol% or more, still more preferably 60 mol% or more. Further, n2 is preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 75 mol% or less.
  • the segment represented by the general formula (2) is not limited to the form having one kind of each of the above-mentioned constituent components, and includes the form having two or more kinds.
  • the segment represented by the general formula (2) When the segment represented by the general formula (2) is incorporated into a polymer, a functional group capable of polymerizing with a compound that leads to a constituent component constituting the polymer is introduced into at least one of the bonding portions.
  • the constituent components represented by the formula (I-7) or the formula (I-8) described later can be mentioned.
  • the segment represented by the general formula (2) is incorporated into the side chain of the polymer, the group (atom) bonded to the bond portion on the end side of the segment is not particularly limited, and is the end group of the side chain. It is preferably present, and is appropriately determined according to the synthetic reaction conditions (quenching conditions) and the like.
  • the number average molecular weight of the segment represented by the general formula (2) is preferably 1,000 to 100,000, preferably 1,000 to 10,000, in terms of binding property, resistance and battery performance. More preferably.
  • the segment represented by the general formula (2) preferably has the functional group (a), and the component having the content n2 more preferably has the functional group (a), and R 8 Is even more preferably having a functional group (a).
  • the main chain of the polymer has at least one bond of urethane bond, urea bond, amide bond, imide bond and ester bond, and preferably has urethane bond, urea bond, amide bond and imide bond.
  • These bonds contained in the main chain contribute to improving the binding property of solid particles and the like in the seat for an all-solid-state secondary battery or the constituent layers of the all-solid-state secondary battery by forming hydrogen bonds. Therefore, the hydrogen bond formed by these bonds may be the above-mentioned bonds, or may be a partial structure other than that of the above-mentioned bond and the main chain.
  • the above bonds have hydrogen atoms that form hydrogen bonds at the point where they can form hydrogen bonds with each other (the nitrogen atoms of urethane bonds, urea bonds, amide bonds, and imide bonds are unsubstituted). preferable.
  • the bond is not particularly limited as long as it is contained in the main chain of the polymer, and may be any of the modes contained in the structural unit (repeating unit) and / or the mode contained as a bond connecting different structural units. .. Further, the above-mentioned bond contained in the main chain is not limited to one type, and may be two or more types. In this case, the binding mode of the main chain is not particularly limited, and may have two or more kinds of bonds at random, and is composed of a segment having a specific bond and a segment having another bond. It may be the main chain.
  • the main chain having the above bond is not particularly limited, and a main chain having at least one segment of urethane bond, urea bond, amide bond, imide bond and ester bond is preferable, and urethane bond, urea bond and amide bond are preferable.
  • a main chain having at least one segment of an imide bond is more preferred, a chain made of polyurethane, polyurea, polyamide or polyimide is preferably held in the main chain, and a main chain made of polyurethane, polyurea, polyamide or polyimide is further preferable.
  • the polymer having the above bond in the main chain includes at least one of the constituents represented by any of the following formulas (I-1) to (I-4) and the following formula (I).
  • a polymer containing at least one of the constituents represented by any of -7) and (I-8) is preferable.
  • the constituents represented by any of the formulas (I-1) to (I-4) (monomer-derived constituents), and any of the formulas (I-5) and (I-6).
  • the number of types of constituents selected from the constituents derived from the compound (monomer) represented by is not particularly limited, and is preferably 2 to 8, more preferably 2 to 5, and even more preferably 3 or 4. It is a seed.
  • the combination of each component is appropriately selected according to the above binding.
  • the constituent component represented by the formula (I-1) and the constituent component represented by the formula (I-3) are bonded.
  • the constituent component represented by the formula (I-1) and the constituent component represented by the formula (I-4) are bonded.
  • the amide bond the constituent component represented by the formula (I-2) and the constituent component represented by the formula (I-4) are bonded.
  • the imide bond the constituent component derived from the compound represented by the formula (I-5) and the constituent component derived from the compound represented by the formula (I-6) are bonded.
  • the ester bond the constituent component represented by the formula (I-2) and the constituent component represented by the formula (I-3) are bonded.
  • RP1 and RP2 each indicate a molecular chain having a molecular weight or mass average molecular weight of 20 or more and 200,000 or less.
  • the molecular chains that can be taken as RP1 and RP2 are not particularly limited, and a hydrocarbon chain, a polyalkylene oxide chain, a polycarbonate chain, or a polyester chain is preferable, and a hydrocarbon chain or a polyalkylene oxide chain is more preferable.
  • the hydrocarbon chain that can be taken as RP1 and RP2 means a chain of hydrocarbons composed of carbon atoms and hydrogen atoms, and more specifically, at least two compounds composed of carbon atoms and hydrogen atoms. It means a structure in which an atom (for example, a hydrogen atom) or a group (for example, a methyl group) is eliminated.
  • This hydrocarbon chain may have a carbon-carbon unsaturated bond and may have a ring structure of an aliphatic ring and / or an aromatic ring. That is, the hydrocarbon chain may be a hydrocarbon chain composed of a hydrocarbon selected from an aliphatic hydrocarbon and an aromatic hydrocarbon.
  • Such a hydrocarbon chain may satisfy the above molecular weight, and both a chain composed of a low molecular weight hydrocarbon group and a hydrocarbon chain composed of a hydrocarbon polymer (also referred to as a hydrocarbon polymer chain).
  • hydrocarbon chains A low molecular weight hydrocarbon chain is a chain composed of ordinary (non-polymerizable) hydrocarbon groups, and examples of the hydrocarbon groups include aliphatic or aromatic hydrocarbon groups, and specific examples thereof.
  • the aliphatic hydrocarbon group is not particularly limited, and is a hydrogen-reduced product of an aromatic hydrocarbon group represented by the following formula (M2), or a group composed of a partial structure (for example, isophorone) of a known aliphatic diisosoanate compound. ) Etc. can be mentioned.
  • the aromatic hydrocarbon group is preferably a phenylene group or a hydrocarbon group represented by the following formula (M2).
  • X represents a single bond, -CH 2- , -C (CH 3 ) 2- , -SO 2- , -S-, -CO- or -O-, and is a viewpoint of binding property. Therefore, -CH 2- or -O- is preferable, and -CH 2- is more preferable.
  • the alkylene group exemplified here may be substituted with a halogen atom (preferably a fluorine atom).
  • RM2 to RM5 each represent a hydrogen atom or a substituent, and a hydrogen atom is preferable.
  • the substituent which can be taken as RM2 to RM5 is not particularly limited, and for example, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, -OR M6 , -N ( RM6 ) 2 , -SR M6 ( RM6 represents a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms), a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom). Can be mentioned.
  • the —N ( RM6 ) 2 is an alkylamino group (preferably 1 to 20 carbon atoms, more preferably 1 to 6 carbon atoms) or an arylamino group (preferably 6 to 40 carbon atoms, 6 to 20 carbon atoms). More preferred).
  • a hydrocarbon polymer chain may be a polymer chain in which (at least two) polymerizable hydrocarbons are polymerized, and may be a chain composed of a hydrocarbon polymer having a larger number of carbon atoms than the above-mentioned low molecular weight hydrocarbon chain.
  • the chain is not particularly limited, and is preferably a chain composed of a hydrocarbon polymer composed of 30 or more, more preferably 50 or more carbon atoms.
  • the upper limit of the number of carbon atoms constituting the hydrocarbon polymer is not particularly limited, and can be, for example, 3,000.
  • the hydrocarbon polymer chain is preferably a chain composed of an aliphatic hydrocarbon having a main chain satisfying the above number of carbon atoms, and is composed of an aliphatic saturated hydrocarbon or an aliphatic unsaturated hydrocarbon. It is more preferable that the chain is made of a polymer (preferably an elastomer). Specific examples of the polymer include a diene polymer having a double bond in the main chain and a non-diene polymer having no double bond in the main chain.
  • diene polymer examples include a styrene-butadiene copolymer, a styrene-ethylene-butadiene copolymer, a copolymer of isobutylene and isoprene (preferably butyl rubber (IIR)), a butadiene polymer, an isoprene polymer, and ethylene.
  • IIR butyl rubber
  • non-diene polymer include olefin polymers such as ethylene-propylene copolymer and styrene-ethylene-butylene copolymer, and hydrogen-reduced products of the above-mentioned diene polymer.
  • the hydrocarbon to be a hydrocarbon chain preferably has a reactive group at its terminal, and more preferably has a terminal reactive group capable of polycondensation or polyaddition.
  • the polycondensation or polyaddition-capable terminal reactive group forms a group bonded to RP1 to RP3 of each of the above formulas by polycondensation or polyaddition.
  • Examples of such a terminal reactive group include an isocyanato group, a hydroxy group, a carboxy group, an amino group, an acid anhydride and the like, and a hydroxy group is preferable.
  • hydrocarbon polymers having terminal reactive groups examples include NISSO-PB series (manufactured by Nippon Soda), clay sole series (manufactured by Tomoe Kosan), and PolyVEST-HT series (manufactured by Ebonic) under the trade names.
  • Poly-bd series manufactured by Idemitsu Kosan Co., Ltd.
  • poly-ip series manufactured by Idemitsu Kosan Co., Ltd.
  • EPOL manufactured by Idemitsu Kosan Co., Ltd.
  • Polytail series manufactured by Mitsubishi Chemical Co., Ltd.
  • RP1 is preferably a low molecular weight hydrocarbon chain, and more preferably a hydrocarbon chain composed of an aromatic hydrocarbon group.
  • RP2 is preferably an aliphatic hydrocarbon group or a molecular chain other than a low molecular weight hydrocarbon chain, and more preferably an embodiment containing an aliphatic hydrocarbon group and a molecular chain other than a low molecular weight hydrocarbon chain, respectively.
  • the constituent component represented by the formula (I-3), the constituent component represented by the formula (I-4), and the constituent component derived from the compound represented by the formula (I-6) are R P2. It is preferable that the compound contains at least two components, which is an aliphatic hydrocarbon group and whose RP2 is a molecular chain other than a low molecular weight hydrocarbon chain.
  • the carbon number of the alkyleneoxy group in the polyalkylene oxide chain is preferably 1 to 10, more preferably 1 to 6, and 2 to 4 (for example, polyethylene oxide). Chains, polypropylene oxide chains and polybutylene oxide chains) are more preferred.
  • the polyalkylene oxide chain may be a chain composed of one kind of alkylene oxide or a chain composed of two or more kinds of alkylene oxides (for example, a chain composed of ethylene oxide and propylene oxide).
  • Examples of the polycarbonate chain or polyester chain include known chains made of polycarbonate or polyester.
  • the polyalkylene oxide chain, the polycarbonate chain, or the polyester chain each preferably has an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) at the terminal.
  • the molecular weight or mass average molecular weight of the molecular chain is preferably 30 or more, more preferably 50 or more, further preferably 100 or more, and particularly preferably 150 or more.
  • the upper limit is preferably 100,000 or less, more preferably 10,000 or less.
  • the molecular weight or mass average molecular weight of the molecular chain is measured for the starting compound before it is incorporated into the main chain of the polymer.
  • R P3 represents an aromatic or aliphatic linking group (tetravalent), preferred linking group represented by any one of the following formulas (i) ⁇ (iix).
  • X 1 represents a single bond or a divalent linking group.
  • divalent linking group an alkylene group having 1 to 6 carbon atoms (for example, methylene, ethylene, propylene) is preferable.
  • propylene 1,3-hexafluoro-2,2-propanediyl is preferable.
  • RX and RY represent hydrogen atoms or substituents, respectively.
  • * indicates the binding site with the carbonyl group in formula (1-5).
  • the substituents can take as R X and R Y, not particularly limited, include later-described substituent T, an alkyl group (carbon number is preferably from 1 to 12, more preferably 1 to 6, 1-3 More preferably) or an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, even more preferably 6 to 10 carbon atoms).
  • R b1 to R b4 represent a hydrogen atom or a substituent, preferably a hydrogen atom.
  • this substituent include a substituent T described later, and an alkyl group is preferable.
  • R P1 , R P2 and R P3 may each have a substituent.
  • the substituent group is not particularly limited, for example, include the substituent T which will be described later, the substituents which can take as R M2 are preferably exemplified. However, formula (I-3) or formula (I-4) If R P2 in has a substituent of the formula (I-7) or a substituent which does not correspond to the constituents of the formula (I-8) , For example, it is selected from the substituent T described later.
  • the constituent component represented by the following formula (I-7) is a constituent component containing a partial structure represented by the general formula (1) or a (co) polymer thereof, and is preferably represented by the general formula (2). It is a component containing a segment. This component can be incorporated into either the main chain or the side chain of the polymer, and is preferably incorporated into the main chain.
  • R 1 ⁇ R 8 is, R 1 ⁇ are synonymous preferable range as R 8 in each of the above general formula (2) is also the same.
  • n1 and n2 are synonymous with n1 and n2 of the above general formula (2), respectively, and the preferable range is also the same.
  • Y 1 and Y 2 represent an oxygen atom or -NH-. * Indicates the binding site in the polymer.
  • the alkylene group may be linear, branched or cyclic, and an alkylene group having 1 to 10 carbon atoms is preferable, and 1 to 5 is more preferable.
  • Specific examples of the alkylene group include methylene, ethylene, propylene, isopropylene and cycloalkylene.
  • the above-mentioned "combined group” specifically includes, for example, a group in which -NH- and an alkylene group are combined, a group in which -O- and an alkylene group are combined, and -S- and an alkylene group.
  • the numerical value under parentheses indicates the content rate in all the constituents in [] of the formula (I-7), and the unit is mol%.
  • the present invention is not limited to the content rate described in the above specific examples, and can be appropriately set within the range described in the above n1 and n2.
  • the constituent component represented by the following formula (I-8) is a constituent component containing a partial structure represented by the general formula (1) or a (co) polymer thereof, and is preferably represented by the general formula (2). It is a component containing a segment. This component is usually incorporated into the main chain of the polymer, and the (co) polymer or segment of the above partial structure is incorporated into the side chain.
  • L 3 represents an -O-, -S-, -NR-, -CO- or an alkylene group or a group in which two or more of these groups are combined.
  • Y 3 and Y 4 represent an oxygen atom or -NH-. * Indicates the binding site in the polymer.
  • R represents a hydrogen atom, an alkyl group or an aryl group, and preferably represents a hydrogen atom.
  • the alkyl group may be linear, branched or cyclic, and examples thereof include the alkyl group of the substituent T described later.
  • the aryl group is not particularly limited, and examples thereof include the aryl group of the substituent T described later.
  • the above-mentioned "combined group” is preferably a group in which 2 to 10 groups of -O-, -S-, -NR-, -CO- and an alkylene group are combined, and more preferably a group in which 2 to 8 groups are combined.
  • a group of 2 to 6 is more preferable, a group of 2 to 4 is more preferable, and a group of 2 is more preferable.
  • each group is counted as one group.
  • the above-mentioned "combined group” includes, for example, a group in which -S- and an alkylene group are combined, a group in which -O- and an alkylene group are combined, and -CO-, -O- and an alkylene.
  • Examples thereof include a group in which a group and —S— are combined. More specifically, for example, -alkylene group-S- and -alkylene group-CO-O-alkylene-S- can be mentioned.
  • L 3 and bonded to base at the junction of the opposite (atoms) is not particularly limited, as appropriate depending on preferably an end group of the side chain, the synthetic reaction conditions (quenching conditions), etc. Will be decided.
  • the numerical value under parentheses indicates the content rate in all the constituents in [] of the formula (I-8), and the unit is mol%.
  • the present invention is not limited to the content rate described in the above specific examples, and can be appropriately set within the range described in the above n1 and n2.
  • Polymer constituting the binder of the formula (I-3) or formula (I-4), preferably as a component of the formula (I-3), above the hydrocarbon polymer chain R P2 is as a molecular chain It preferably has certain constituents. Further, the polymer constituting the binder has the above-mentioned polyalkylene oxide chain in which RP2 is a molecular chain for the constituent components represented by the formula (I-3) or the formula (I-4), preferably the formula (I-3).
  • the constituent component and RP2 are at least one of the constituent constituents which are an aliphatic hydrocarbon group (preferably an ether group and / or a carbonyl group, more preferably a group having a carboxy group).
  • a hydrocarbon group (preferably an ether group or carbonyl group, or both, more preferably a group having a carboxyl group) of the component and R P2 are aliphatic
  • R P2 is the polyalkylene oxide chain as a molecular chain It is more preferable to have a certain component.
  • the polymer constituting this binder include the constituent components represented by the following formula (I-1), the constituent components represented by the formula (I-3A), and the constituent components represented by the formula (I-7) or (I-8). It is preferable to have at least the constituent components to be used.
  • R P2 is the component which is (for example ether group or carbonyl group, or both without a) hydrocarbon group of aliphatic (e.g. derived components butanediol), which does not include Can be taken.
  • RP1 is as described above.
  • RP2A represents a hydrocarbon polymer chain.
  • RP2B represents an aliphatic hydrocarbon group (preferably 3 to 30, more preferably 3 to 20 carbon atoms), preferably an ether group and / or a carbonyl group, more preferably. It has a carboxy group. Examples thereof include bis (hydroxymethyl) acetic acid compounds such as 2,2-bis (hydroxymethyl) butyric acid.
  • RP2C represents a polyalkylene oxide chain.
  • Hydrocarbon polymer chain which can be taken as R P2A, polyalkylene oxide chain which can be taken as a hydrocarbon group and R P2C aliphatic which may take as R P2B are each a hydrocarbon which can be taken as R P2 in the above formula (I-3) It is synonymous with polymer chains, aliphatic hydrocarbon groups and polyalkylene oxide chains, and preferred ones are also the same.
  • the constituents represented by the formula (I-7) and the constituents represented by the formula (I-8) are as described above. The content of the constituent components represented by the above formulas in the polymer constituting the binder will be described later.
  • the polymer (each constituent) constituting the binder may have a substituent.
  • substituents include a group selected from the following substituent T.
  • substituents T are listed below, but are not limited thereto.
  • Alkyl groups preferably alkyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl groups preferably alkyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • an alkenyl group having 2 to 20 carbon atoms for example vinyl, allyl, oleyl, etc.
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, for example, ethynyl, butadiynyl, phenylethynyl, etc.
  • a cycloalkyl group for example, a cycloalkyl group.
  • a cycloalkyl group having 3 to 20 carbon atoms for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.
  • an aryl group preferably an aryl group having 6 to 26 carbon atoms, for example, phenyl, 1-naphthyl). , 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.
  • heterocyclic group preferably a heterocyclic group having 2 to 20 carbon atoms, preferably having at least one oxygen atom, sulfur atom, nitrogen atom. It is a 5- or 6-membered heterocyclic group.
  • the heterocyclic group includes an aromatic heterocyclic group (heteroaryl group) and an aliphatic heterocyclic group, for example, a tetrahydropyran ring group, a tetrahydrofuran ring group, and 2-pyridyl.
  • alkoxy groups preferably alkoxy groups having 1 to 20 carbon atoms, such as methoxy, ethoxy, isopropyloxy, benzyloxy, etc.
  • Aryloxy groups preferably aryloxy groups having 6 to 26 carbon atoms, for example, phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.
  • heterocyclic oxy groups (-O to the above heterocyclic groups).
  • alkoxycarbonyl group preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, for example, ethoxycarbonyl, 2-ethylhexyloxycarbonyl, dodecyloxycarbonyl, etc.
  • aryloxycarbonyl group preferably having 2 to 20 carbon atoms.
  • 6-26 aryloxycarbonyl groups such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-methylphenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc., amino groups (preferably amino groups with 0-20 carbon atoms, alkylaminos, etc.) Group, including arylamino group, for example, amino (-NH 2 ), N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anilino, etc.), sulfa Moyl group (preferably sulfamoyl group having 0 to 20 carbon atoms, for example, N, N-dimethylsulfamoyl, N-phenylsulfamoyl, etc.), acyl group (alkylcarbonyl group, alkenylcarbonyl group, alkynylcarbonyl group, aryl) A carbonyl group, a heterocyclic carbonyl group, preferably
  • alkylcarbonyloxy groups alkenylcarbonyloxy groups, alkynylcarbonyloxy groups, arylcarbonyloxy groups, heterocyclic carbonyloxy groups, preferably acyloxy groups having 1 to 20 carbon atoms, such as acetyloxy, propionyloxy, butyryloxy. , Octanoyloxy, hexadecanoyloxy, acryloyloxy, methacryloyloxy, crotonoyloxy, benzoyloxy, naphthoyloxy, nicotinoyyloxy, etc.), allyloloyloxy groups (preferably allyloxy groups having 7 to 23 carbon atoms).
  • carbamoyl group preferably carbamoyl group having 1 to 20 carbon atoms, for example, N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc.
  • acylamino group preferably acylamino having 1 to 20 carbon atoms.
  • Groups such as acetylamino, benzoylamino, etc., alkylthio groups (preferably alkylthio groups having 1 to 20 carbon atoms, such as methylthio, ethylthio, isopropylthio, benzylthio, etc.), arylthio groups (preferably having 6 to 26 carbon atoms).
  • Arylthio groups such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc., heterocyclic thio groups (groups in which an —S— group is bonded to the heterocyclic group), alkylsulfonyl groups (preferably).
  • Alkylsilyl groups having 1 to 20 carbon atoms such as monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc., arylsilyl groups (preferably arylsilyl groups having 6 to 42 carbon atoms, such as triphenylsiri.
  • a phosphinyl group preferably a phosphinyl group having 0 to 20 carbon atoms, for example, -P (R P) 2)
  • a sulfo group sulfonic acid group
  • a compound, a substituent, a linking group, etc. contains an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group and / or an alkynylene group, etc., they may be cyclic, chain-like, or linearly branched. May be good.
  • the content of the component derived from the anhydride is not particularly limited, and is preferably 10 to 50 mol%, more preferably 20 to 50 mol%, still more preferably 30 to 50 mol%. ..
  • the content of the constituents represented by the formula (I-3), the formula (I-4) or the formula (I-6) in the total content of the constituents of the polymer constituting the binder is particularly limited. However, it is preferably 10 to 50 mol%, more preferably 20 to 50 mol%, still more preferably 30 to 50 mol%.
  • the content of the component in which RP2 is the above-mentioned hydrocarbon polymer chain as a molecular chain in the polymer constituting the binder is determined. It is not particularly limited, and for example, it is preferably 0 to 50 mol%, more preferably 1 to 45 mol%, further preferably 3 to 40 mol%, and 3 to 30 mol%. Is more preferably 3 to 20 mol%, further preferably 3 to 15 mol%.
  • the content of the component in which RP2 is an aliphatic hydrocarbon group in the polymer constituting the binder is particularly limited.
  • the content of the component in which RP2 is the polyalkylene oxide chain as the molecular chain in the polymer constituting the binder is determined. It is not particularly limited, and for example, it is preferably 0 to 50 mol%, more preferably 10 to 45 mol%, further preferably 20 to 40 mol%.
  • the content of the component represented by the formula (I-7) or the formula (I-8) in the total content of the components of the polymer constituting the binder is not particularly limited and is 1 to 50 mol%. It is preferably 1 to 20 mol%, more preferably 1 to 12 mol%, still more preferably 1 to 8 mol%.
  • the polymer constituting the binder may have components other than the components represented by the above formulas.
  • a constituent component is not particularly limited as long as the raw material compound for deriving the constituent component represented by each of the above formulas and the target polymer can be synthesized.
  • the content of the constituent components other than the constituent components represented by the above formulas in the polymer constituting the binder is not particularly limited, and is preferably 20 mol% or less.
  • the above-mentioned content of each constituent component shall be the total content.
  • the polymer can be synthesized by selecting a raw material compound by a known method according to the type of bond possessed by the main chain and subjecting the raw material compound to polyaddition or polycondensation.
  • a synthesis method for example, International Publication No. 2018/151118 can be referred to.
  • the raw material compound (diisocyanate compound) for deriving the constituent component represented by the above formula (I-1) is not particularly limited, and is, for example, the diisocyanate represented by the formula (M1) described in International Publication No. 2018/20827. Examples thereof include compounds and specific examples thereof.
  • the raw material compound (carboxylic acid or acid chloride thereof, etc.) for deriving the constituent component represented by the above formula (I-2) is not particularly limited, and for example, the compound described in International Publication No. 2018/20827 and the compound thereof. Specific examples can be given.
  • the raw material compound (diol compound or diamine compound) for deriving the constituents represented by the above formula (I-3) or the formula (I-4) is not particularly limited, and for example, see International Publication No. 2018/20827.
  • the above-mentioned compounds and specific examples thereof are mentioned, and dihydroxyoxamid is also mentioned.
  • the carboxylic acid dianhydride represented by the above formula (I-5) and the raw material compound (diamine compound) leading to the constituent components represented by the above formula (I-6) are not particularly limited, and for example, Examples of each compound described in WO2018 / 020827 and WO2015 / 046313 and specific examples thereof can be mentioned.
  • the raw material compound for deriving the constituent component represented by the formula (I-7) a commercially available product can be used, and it can also be synthesized according to a usual method.
  • the raw material compounds that lead to the constituents A-3 and the like described below are 2-hydroxyethyl 2-bromoisobutyrate, copper (I) bromide, tris (2-pyridylmethyl) amine, and (meth) acrylic that derives the above partial structure.
  • the acid ester compound can be synthesized by radically polymerizing the acid ester compound in a solvent such as propylene glycol monomethyl ether acetate using a polymerization initiator such as azobisisobutyronitrile and then reacting metallic zinc with an aldehyde compound.
  • Specific examples of the synthesis method and the synthesis method of the raw material compound and the like for deriving the constituent component A-1 and the like include the synthesis method in the examples described later.
  • the raw material compound for deriving the constituents represented by the formula (I-8) can be synthesized by referring to, for example, International Publication No. 2018/151161.
  • the above-mentioned polymer may be soluble in the dispersion medium, and is preferably insoluble (particles) in the dispersion medium, particularly in terms of ionic conductivity.
  • the term "insoluble in the dispersion medium” means that the polymer is added to the dispersion medium at 30 ° C. (the amount used is 10 times the mass of the polymer) and allowed to stand for 24 hours to the dispersion medium. It means that the dissolved amount of is 3% by mass or less, preferably 2% by mass or less, and more preferably 1% by mass or less.
  • the amount of dissolution is the ratio of the mass of the polymer obtained by solid-liquid separation from the dispersion medium after 24 hours to the mass of the polymer added to the dispersion medium.
  • the polymer (binder) may be present in the composition containing an inorganic solid electrolyte, for example, dissolved in a dispersion medium, or may be present in a solid state (preferably dispersed) without being dissolved in the dispersion medium.
  • a binder that exists in a solid state is called a particulate binder.
  • the polymer (binder) is a particulate binder in the inorganic solid electrolyte-containing composition, and further in the solid electrolyte layer or the active material layer (coating and drying layer), in terms of battery resistance and cycle characteristics. preferable.
  • the binder is a particulate binder
  • its shape is not particularly limited, and it may be flat, amorphous, or the like, and is preferably spherical or granular.
  • the average particle size of the particulate binder is not particularly limited, and is preferably 1000 nm or less, more preferably 500 nm or less, and further preferably 300 nm or less.
  • the lower limit is 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and further preferably 50 nm or more.
  • the average particle size can be measured in the same manner as the average particle size of the inorganic solid electrolyte.
  • the mass average molecular weight of the polymer is not particularly limited. For example, 15,000 or more is preferable, 30,000 or more is more preferable, and 50,000 or more is further preferable.
  • the upper limit is substantially 400,000 or less, preferably 200,000 or less, and more preferably 100,000 or less.
  • This polymer may be a non-crosslinked polymer or a crosslinked polymer. Further, when the cross-linking of the polymer proceeds by heating or application of a voltage, the molecular weight may be larger than the above molecular weight. Preferably, the polymer has a mass average molecular weight in the above range at the start of use of the all-solid-state secondary battery.
  • the water concentration of the polymer is preferably 100 ppm (mass basis) or less. Further, this polymer may be crystallized and dried, or the polymer dispersion may be used as it is.
  • the content of the binder (B) in the inorganic solid electrolyte-containing composition is solid in terms of both binding properties with solid particles such as inorganic solid electrolyte particles, active materials and conductive aids, and ionic conductivity.
  • 100% by mass of the component 1% by mass or more is preferable, 2% by mass or more is more preferable, 3% by mass or more is further preferable, and 3.5% by mass or more is further preferable.
  • the upper limit is preferably 16% by mass or less, more preferably 12% by mass or less, and even more preferably 8% by mass or less.
  • the mass ratio of the total mass (total amount) of the inorganic solid electrolyte and the active material to the mass of the binder (B) [(mass of the inorganic solid electrolyte + mass of the active material) / (binder). Mass)] is preferably in the range of 1,000 to 1. This ratio is more preferably 500 to 2, and even more preferably 100 to 5.
  • the inorganic solid electrolyte-containing composition of the present invention may contain one type of binder (B) alone or two or more types.
  • the inorganic solid electrolyte-containing composition of the present invention may contain an active material capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the periodic table.
  • the active material include a positive electrode active material and a negative electrode active material, and a transition metal oxide which is a positive electrode active material or a metal oxide which is a negative electrode active material is preferable.
  • an inorganic solid electrolyte-containing composition containing an active material positive electrode active material and negative electrode active material
  • an electrode composition positive electrode composition and negative electrode composition.
  • the positive electrode active material that may be contained in the inorganic solid electrolyte-containing composition of the present invention is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above-mentioned properties, and may be an element that can be composited with Li such as a transition metal oxide, an organic substance, or sulfur, or a composite of sulfur and a metal.
  • the 1 (Ia) group elements of the transition metal oxide to elemental M b (Table metal periodic other than lithium, the elements of the 2 (IIa) group, Al, Ga, In, Ge , Sn, Pb, Elements such as Sb, Bi, Si, P or B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphoric acid compound, and (MD). ) Lithium-containing transition metal halide phosphoric acid compound, (ME) lithium-containing transition metal silicic acid compound, and the like.
  • transition metal oxide having a layered rock salt structure examples include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (Lithium Nickel Cobalt Oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Lithium Nickel Manganese Cobalt Oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickel oxide).
  • LiCoO 2 lithium cobalt oxide [LCO]
  • LiNi 2 O 2 lithium nickel oxide
  • LiNi 0.85 Co 0.10 Al 0. 05 O 2 Lithium Nickel Cobalt Oxide [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 Lithium Nickel Manganese Cobalt Oxide [NMC]
  • LiNi 0.5 Mn 0.5 O 2 Lithium manganese nickel oxide
  • (MB) Specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO) , LiCoMnO 4, Li 2 FeMn 3 O 8, Li 2 CuMn 3 O 8, Li 2 CrMn 3 O 8 and Li 2 Nimn 3 O 8 can be mentioned.
  • Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4.
  • Examples thereof include cobalt phosphates of the above and monoclinic panocycon-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Fluorophosphate cobalts and the like.
  • Examples of the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO, LMO, NCA or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but it is preferably in the form of particles.
  • the volume average particle size (sphere-equivalent average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m. In order to make the positive electrode active material have a predetermined particle size, a normal crusher or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the volume average particle size (sphere-equivalent average particle size) of the positive electrode active material particles can be measured using a laser diffraction / scattering type particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA).
  • the positive electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (grain amount) of the positive electrode active material per unit area (cm 2) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.
  • the content of the positive electrode active material in the composition containing an inorganic solid electrolyte is not particularly limited, and is preferably 10 to 95% by mass, more preferably 15 to 90% by mass, and 20 to 85% by mass in terms of solid content of 100% by mass. Is more preferable, and 25 to 80% by mass is particularly preferable.
  • the negative electrode active material that may be contained in the inorganic solid electrolyte-containing composition of the present invention is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a metal oxide such as tin oxide, a silicon oxide, a metal composite oxide, a lithium alloy such as lithium simple substance and a lithium aluminum alloy, and a lithium alloy. , Sn, Si, Al, In and other metals that can be alloyed with lithium. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability. Further, as the metal composite oxide, it is preferable that lithium can be occluded and released.
  • the material is not particularly limited, and it is preferable that the material contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially composed of carbon.
  • carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin.
  • a carbonaceous material obtained by firing a resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polypoly alcohol) -based carbon fibers, lignin carbon fibers, graphitic carbon fibers and activated carbon fibers.
  • kind, mesophase microspheres, graphite whisker, flat graphite and the like can also be mentioned.
  • an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. Be done.
  • Amorphous means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having an apex in a region of 20 ° to 40 ° in 2 ⁇ value, and is a crystalline diffraction line. May have.
  • the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and the elements of the groups 13 (IIIB) to 15 (VB) of the periodic table, Al. , Ga, Si, Sn, Ge, Pb, Sb and Bi alone or a combination of two or more of them oxides, and chalcogenides are particularly preferred.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSi S 3 are preferred. Further, these may be a composite oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) has excellent rapid charge / discharge characteristics due to small volume fluctuations during storage and release of lithium ions, and electrode deterioration is suppressed and lithium ion secondary It is preferable in that the life of the battery can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • the Si negative electrode can occlude more Li ions than the carbon negative electrode (graphite, acetylene black, etc.). That is, the amount of Li ions occluded per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery drive time can be lengthened.
  • the negative electrode active material used for the Si negative electrode include a negative electrode active material containing Si as a constituent element, and specific examples thereof include Si and SiOx (0 ⁇ x ⁇ 1).
  • the shape of the negative electrode active material is not particularly limited, and is preferably in the form of particles.
  • the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • a normal crusher or classifier is used to obtain a predetermined particle size.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill, a sieve, or the like is preferably used.
  • wet pulverization in which water or an organic solvent such as methanol coexists can also be performed, if necessary. It is preferable to perform classification in order to obtain a desired particle size.
  • the classification method is not particularly limited, and a sieve, a wind power classifier, or the like can be used as needed. Both dry and wet classifications can be used.
  • the average particle size of the negative electrode active material particles can be measured by the same method as the above-mentioned method for measuring the volume average particle size of the positive electrode active material.
  • the chemical formula of the compound obtained by the above firing method can be calculated from the inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method and the mass difference of the powder before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the negative electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (grain amount) of the negative electrode active material per unit area (cm 2) of the negative electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.
  • the content of the negative electrode active material in the inorganic solid electrolyte-containing composition is not particularly limited, and is preferably 10 to 80% by mass, more preferably 20 to 80% by mass, based on 100% by mass of the solid content.
  • the surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include spinel titanate, tantalum oxide, niobate oxide, lithium niobate compound and the like.
  • Li 4 Ti 5 O 12 Li 2 Ti 2 O 5 , LiTaO 3 , LiNbO 3 , LiAlO 2 , Li 2 ZrO 3 , Li 2 WO 4 , Li 2 TiO 3 , Li 2 B 4 O 7 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 , SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , B 2 O 3, and the like.
  • the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the surface of the positive electrode active material or the particle surface of the negative electrode active material may be surface-treated with active light rays or an active gas (plasma or the like) before and after the surface coating.
  • the inorganic solid electrolyte-containing composition of the present invention may contain a conductive auxiliary agent.
  • the conductive auxiliary agent is not particularly limited, and those known as general conductive auxiliary agents can be used.
  • graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fibers or carbon nanotubes, which are electron conductive materials.
  • the conductive auxiliary agent is one that does not insert and release Li when the battery is charged and discharged and does not function as the negative electrode active material.
  • the conductive auxiliary agents those that can function as the negative electrode active material in the negative electrode active material layer when the battery is charged and discharged are classified into the negative electrode active material instead of the conductive auxiliary agent. Whether or not the battery functions as a negative electrode active material when the battery is charged and discharged cannot be unambiguously stated, and is determined in combination with the negative electrode active material.
  • the content of the conductive auxiliary agent is preferably 0 to 10% by mass, more preferably 3 to 7% by mass, based on 100% by mass of the solid content in the composition containing the inorganic solid electrolyte.
  • the inorganic solid electrolyte-containing composition of the present invention preferably contains a dispersion medium in order to disperse the solid components.
  • the dispersion medium may be any one that disperses each of the above components, and examples thereof include various organic solvents. Specific examples of the dispersion medium include the following.
  • Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, 1,3-butanediol and 1,4-butanediol. Examples include diols.
  • alkylene glycol alkyl ether ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol
  • dialkyl ether dimethyl ether, diethyl ether, dibutyl ether, etc.
  • tetrahydrofuran and dioxane (1,2-, 1,3- and 1,4- Including each isomer of).
  • amide compound solvent examples include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, and N.
  • amino compound solvent examples include triethylamine and tributylamine.
  • ketone compound solvent examples include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone and dibutyl ketone.
  • ester compound solvent examples include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, butyric acid.
  • ester compound solvent examples include propyl, butyl butylate, pentyl butyrate, methyl valerate, ethyl valerate, propyl valerate, butyl valerate, methyl caproate, ethyl caproate, propyl caproate and butyl caproate.
  • aromatic compound solvent examples include benzene, toluene, ethylbenzene, xylene and mesitylene.
  • aliphatic compound solvent examples include hexane, heptane, cyclohexane, methylcyclohexane, ethylcyclohexane, octane, nonane, decane, pentane, cyclopentane, decalin and cyclooctane.
  • nitrile compound solvent examples include acetonitrile, propyronitrile and butyronitrile.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher at normal pressure (1 atm), and more preferably 70 ° C. or higher.
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the dispersion medium one type may be used alone, or two or more types may be used in combination.
  • an aliphatic compound solvent and an ester compound solvent it is preferable to use.
  • the content of the dispersion medium in the composition containing the inorganic solid electrolyte is not particularly limited and may be 0% by mass or more.
  • the content thereof is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
  • the inorganic solid electrolyte-containing composition of the present invention may contain a lithium salt.
  • the lithium salt is not particularly limited, and for example, the lithium salt described in paragraphs 882 to 985 of JP2015-088486 is preferable.
  • the content of the lithium salt is preferably 0 parts by mass or more, more preferably 2 parts by mass or more, based on 100 parts by mass of the solid content in the composition containing the inorganic solid electrolyte.
  • the upper limit is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less.
  • the inorganic solid electrolyte-containing composition of the present invention may contain a commonly used binder in addition to the above-mentioned binder (B) as long as the effects of the present invention are not impaired.
  • the binder usually used include an organic polymer, and for example, a binder made of the resin described below is preferably used.
  • fluororesin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene-butadiene rubber (SBR), hydrogenated styrene-butadiene rubber (HSBR), butylene rubber, acrylonitrile-butadiene rubber, polybutadiene, and polyisoprene.
  • acrylic resin examples include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of the monomers constituting these resins (preferably copolymers of acrylic acid and methyl acrylate). Be done. Further, a copolymer (copolymer) with other vinyl-based monomers is also preferably used.
  • other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, cellulose derivative resin and the like. These may be used alone or in combination of two or more.
  • a commercially available product can be used for the above binder. It can also be prepared by a conventional method.
  • composition containing inorganic solid electrolyte In the composition containing an inorganic solid electrolyte of the present invention, the inorganic solid electrolyte (A) and the binder (B), and if necessary, the dispersion medium (E) or other components are mixed using, for example, various mixers.
  • the slurry of the inorganic solid electrolyte-containing composition can be prepared using various mixers.
  • the mixing device is not particularly limited, and examples thereof include a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, and a disc mill.
  • the mixing conditions are not particularly limited, and for example, when a ball mill is used, mixing is preferably performed at 150 to 700 rpm (rotation per minute) for 1 to 24 hours.
  • a ball mill when preparing an inorganic solid electrolyte-containing composition containing no dispersion medium, it may be added and mixed at the same time as the above-mentioned dispersion step of the inorganic solid electrolyte (A), or it may be added and mixed separately.
  • the binder (B) may be added and mixed at the same time as the dispersion step of the components such as the inorganic solid electrolyte (A) and / or the active material (C) or the conductive additive (D), and may be added and mixed separately. You may. Further, the form of the binder (B) when added to and / or mixed with the inorganic solid electrolyte-containing composition of the present invention is the binder (B) itself or the solution of the binder (B). It may be the dispersion solution (non-aqueous solvent dispersion of polymer) of (B). Above all, the binder dispersion is preferable from the viewpoint of suppressing the decomposition of the inorganic solid electrolyte and interspersing the active material and the inorganic solid electrolyte on the particle surface to ensure the ionic conductivity.
  • the sheet for an all-solid-state secondary battery of the present invention has a layer containing an inorganic solid electrolyte (A) having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table and a binder (B).
  • A inorganic solid electrolyte
  • B binder
  • the binder (B) is synonymous with the binder (B) in the inorganic solid electrolyte-containing composition of the present invention.
  • the sheet for an all-solid secondary battery of the present invention produced by using the inorganic solid electrolyte-containing composition of the present invention contains a binder (B), and therefore has excellent binding properties and ionic conductivity.
  • B binder
  • the all-solid-state secondary battery incorporating the sheet for the all-solid-state secondary battery of the present invention has high ionic conductivity and can improve the cycle characteristics.
  • the solid electrolyte layer of the all-solid-state secondary battery sheet exhibits high binding properties, even if the all-solid-state secondary battery sheet is punched out during the manufacture of the all-solid-state secondary battery, the solid electrolyte layer is chipped and cracked.
  • the excellent battery performance of the all-solid-state secondary battery can be maintained even if a punched sheet for the all-solid-state secondary battery is used.
  • the all-solid-state secondary battery sheet is an electrode sheet for an all-solid-state secondary battery, which will be described later
  • the active material layer also exhibits high binding properties in addition to the solid electrolyte layer, and also has interlayer adhesion with the current collector. Since it is strong, it is possible to prevent chipping and cracking during punching.
  • the all-solid-state secondary battery can be manufactured by the roll-to-roll method, and defects are less likely to occur in the solid electrolyte layer or the active material layer, and the active material or the inorganic solid electrolyte falls off from the active material or the solid electrolyte layer. Hateful.
  • the sheet for an all-solid-state secondary battery of the present invention can be suitably used for an all-solid-state secondary battery, and includes various aspects depending on its use.
  • a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte sheet for an all-solid secondary battery or a solid electrolyte sheet
  • an electrode or a sheet preferably used for a laminate of an electrode and a solid electrolyte layer all-solid secondary battery.
  • Electrode sheet and the like.
  • these various sheets may be collectively referred to as an all-solid-state secondary battery sheet.
  • the sheet for an all-solid secondary battery may be a sheet having a solid electrolyte layer or an active material layer (electrode layer), and may be a sheet having a solid electrolyte layer or an active material layer (electrode layer) formed on a base material. , It may be a sheet having no base material and formed from a solid electrolyte layer or an active material layer (electrode layer).
  • a sheet having a solid electrolyte layer or an active material layer (electrode layer) on the base material will be described in detail as an example.
  • the sheet for the all-solid-state secondary battery may have another layer as long as it has the solid electrolyte layer or the active material layer, and the sheet containing the active material is used as the electrode sheet for the all-solid-state secondary battery. being classified.
  • the other layer include a protective layer, a current collector, a conductor layer and the like.
  • the solid electrolyte sheet for an all-solid secondary battery include a sheet having a solid electrolyte layer and, if necessary, a protective layer on a substrate in this order.
  • the base material is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include a material described in the current collector described later, a sheet body (plate-like body) such as an organic material and an inorganic material.
  • a material described in the current collector described later a sheet body (plate-like body) such as an organic material and an inorganic material.
  • the organic material include various polymers, and specific examples thereof include polyethylene terephthalate, polypropylene, polyethylene and cellulose.
  • the inorganic material include glass and ceramics.
  • the solid electrolyte layer and the active material layer in the all-solid-state secondary battery sheet preferably contain the solid content of the inorganic solid electrolyte-containing composition, unless otherwise specified, regarding the component species and their content ratios. Same as in.
  • the layer thickness of the solid electrolyte layer of the sheet for the all-solid-state secondary battery is the same as the layer thickness of the solid electrolyte layer described in the all-solid-state secondary battery of the present invention.
  • This sheet is composed of the inorganic solid electrolyte-containing composition of the present invention, preferably an inorganic solid electrolyte-containing composition containing an inorganic solid electrolyte (A), a binder (B), and a dispersion medium (E) on a substrate.
  • the inorganic solid electrolyte-containing composition of the present invention can be prepared by the above method.
  • the electrode sheet for an all-solid-state secondary battery of the present invention (also simply referred to as an "electrode sheet”) is a sheet for forming an active material layer of an all-solid-state secondary battery, and is on a metal foil as a current collector. It is an electrode sheet having an active material layer.
  • This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, and a current collector, an active material layer and a solid electrolyte. An embodiment having a layer and an active material layer in this order is also included.
  • each layer constituting the electrode sheet are the same as the configuration and layer thickness of each layer described later in the all-solid-state secondary battery of the present invention.
  • the electrode sheet can be obtained by forming a film (coating and drying) on a metal foil of the inorganic solid electrolyte-containing composition containing an active material of the present invention to form an active material layer on the metal foil. Details will be described later.
  • the all-solid-state secondary battery of the present invention has a positive electrode, a negative electrode facing the positive electrode, and a solid electrolyte layer between the positive electrode and the negative electrode.
  • the positive electrode has a positive electrode active material layer on the positive electrode current collector.
  • the negative electrode has a negative electrode active material layer on the negative electrode current collector. At least one layer of the negative electrode active material layer, the positive electrode active material layer and the solid electrolyte layer is formed by using the inorganic solid electrolyte-containing composition of the present invention, and contains the inorganic solid electrolyte (A) and the binder (B). ..
  • the active material layer and / or the solid electrolyte layer formed by using the inorganic solid electrolyte-containing composition is preferably an inorganic solid electrolyte-containing composition, unless otherwise specified, regarding the component species and the content ratio thereof. It is the same as that in the solid content of.
  • the all-solid-state secondary battery of the present invention may be a laminated type, and this laminated all-solid-state secondary battery has 1 to 100 units including a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer as one unit.
  • the form is preferable, and the form having 2 to 50 units is more preferable.
  • FIG. 1 is a schematic cross-sectional view showing an all-solid-state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. ..
  • Each layer is in contact with each other and has a laminated structure.
  • the lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 6.
  • a light bulb is used for the operating portion 6, and the light bulb is turned on by electric discharge.
  • the inorganic solid electrolyte-containing composition of the present invention can be preferably used as a material for forming the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer.
  • the sheet for an all-solid secondary battery of the present invention is suitable as the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer.
  • the all-solid-state secondary battery having the layer structure of FIG.
  • the positive electrode active material layer (hereinafter, also referred to as a positive electrode layer) and the negative electrode active material layer (hereinafter, also referred to as a negative electrode layer) may be collectively referred to as an electrode layer or an active material layer. Further, either or both of the positive electrode active material and the negative electrode active material may be collectively referred to as an active material or an electrode active material.
  • any one of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is produced by using the inorganic solid electrolyte-containing composition of the present invention.
  • the all-solid-state secondary battery 10 exhibits excellent battery performance. That is, when the solid electrolyte layer 3 is produced by using the inorganic solid electrolyte-containing composition of the present invention, the solid electrolyte layer 3 contains the inorganic solid electrolyte (A) and the binder (B).
  • the solid electrolyte layer usually does not contain a positive electrode active material and / or a negative electrode active material.
  • the positive electrode active material layer 4 and / or the negative electrode active material layer 2 are produced by using the inorganic solid electrolyte-containing composition of the present invention containing the active material, the positive electrode active material layer 4 and the negative electrode active material layer 2 are Each contains a positive electrode active material or a negative electrode active material, and further contains an inorganic solid electrolyte (A) and a binder (B).
  • the active material layer contains an inorganic solid electrolyte, the ionic conductivity can be improved.
  • the inorganic solid electrolytes (A) and binders (B) contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be of the same type or different from each other.
  • any one of the negative electrode active material layer, the positive electrode active material layer and the solid electrolyte layer in the all-solid secondary battery contains an inorganic solid electrolyte containing an inorganic solid electrolyte (A) and a binder (B). It is a layer prepared by using the composition and containing an inorganic solid electrolyte (A) and a binder (B).
  • the negative electrode active material layer, the positive electrode active material layer and the solid electrolyte layer in the all-solid secondary battery are all made of the above-mentioned inorganic solid electrolyte-containing composition.
  • the thickness of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 is not particularly limited. Considering the dimensions of a general battery, the thickness of each of the above layers is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m. In the all-solid-state secondary battery of the present invention, the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 is more preferably 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
  • either or both of the positive electrode current collector and the negative electrode current collector may be collectively referred to as a current collector.
  • Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel, titanium, etc., as well as aluminum or stainless steel whose surface is treated with carbon, nickel, titanium, or silver (a thin film is formed). Of these, aluminum and aluminum alloys are more preferable.
  • As a material for forming the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel, titanium, etc., carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel.
  • aluminum, copper, copper alloy and stainless steel are more preferable.
  • the shape of the current collector is usually a film sheet, but a net, a punched body, a lath body, a porous body, a foam body, a molded body of a fiber group, or the like can also be used.
  • the thickness of the current collector is not particularly limited, and is preferably 1 to 500 ⁇ m. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
  • a functional layer or a member or the like is appropriately interposed or arranged between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer and the positive electrode current collector. You may. Further, each layer may be composed of a single layer or a plurality of layers.
  • the basic structure of an all-solid-state secondary battery can be produced by arranging each of the above layers. Depending on the application, it may be used as it is as an all-solid-state secondary battery, but in order to form a dry battery, it is further enclosed in a suitable housing.
  • the housing may be made of metal or resin (plastic). When metallic materials are used, for example, those made of aluminum alloy and stainless steel can be mentioned. It is preferable that the metallic housing is divided into a positive electrode side housing and a negative electrode side housing, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.
  • the inorganic solid electrolyte-containing composition of the present invention (preferably containing the dispersion medium (E)) is placed on a base material (via another layer such as a conductor layer). It may be obtained by forming a film (coating and drying) on the substrate to form a solid electrolyte layer on the substrate. According to the above aspect, a sheet for an all-solid secondary battery having an inorganic solid electrolyte (A) and a binder (B) on a base material (containing a solid electrolyte layer) can be produced.
  • the constituent layer of the all-solid-state secondary battery sheet may contain the dispersion medium (E) within a range that does not affect the battery performance. Specifically, it may be contained in an amount of 1 ppm or more and 10000 ppm or less in the total mass of each constituent layer.
  • the content ratio of the dispersion medium (E) in the sheet for the all-solid-state secondary battery of the present invention can be measured by the following method.
  • the all-solid-state secondary battery sheet is punched out at a size of 20 mm square and immersed in heavy tetrahydrofuran in a glass bottle.
  • the obtained eluate is filtered through a syringe filter and subjected to a quantitative operation by 1 1 H-NMR. 1
  • the correlation between the 1 H-NMR peak area and the amount of solvent is obtained by preparing a calibration curve.
  • the all-solid-state secondary battery and the electrode sheet for the all-solid-state secondary battery can be manufactured by a conventional method. Specifically, the all-solid-state secondary battery and the electrode sheet for the all-solid-state secondary battery can be produced by forming each of the above layers using the inorganic solid electrolyte-containing composition of the present invention or the like. It will be described in detail below.
  • the all-solid-state secondary battery of the present invention is subjected to a step of applying the inorganic solid electrolyte-containing composition of the present invention on a base material (for example, a metal foil serving as a current collector) to form a coating film (film formation). It can be manufactured by a method including (via). For example, an inorganic solid electrolyte-containing composition containing a positive electrode active material is applied as a positive electrode material (positive electrode composition) on a metal foil which is a positive electrode current collector to form a positive electrode active material layer, and the entire solid is formed. A positive electrode sheet for a secondary battery is produced.
  • an inorganic solid electrolyte-containing composition for forming the solid electrolyte layer is applied onto the positive electrode active material layer to form the solid electrolyte layer.
  • an inorganic solid electrolyte-containing composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on the solid electrolyte layer to form a negative electrode active material layer.
  • a negative electrode current collector metal foil
  • an all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between the positive electrode active material layer and the negative electrode active material layer can be obtained. Can be done. If necessary, this can be enclosed in a housing to obtain a desired all-solid-state secondary battery.
  • a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collectors are superposed to manufacture an all-solid secondary battery. You can also do it.
  • a positive electrode sheet for an all-solid-state secondary battery is produced. Further, an inorganic solid electrolyte-containing composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on a metal foil which is a negative electrode current collector to form a negative electrode active material layer, and the entire solid is formed. A negative electrode sheet for a secondary battery is manufactured. Next, a solid electrolyte layer is formed on the active material layer of any one of these sheets as described above.
  • the other of the positive electrode sheet for the all-solid-state secondary battery and the negative electrode sheet for the all-solid-state secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • an all-solid-state secondary battery can be manufactured.
  • the following method can be mentioned. That is, as described above, a positive electrode sheet for an all-solid-state secondary battery and a negative electrode sheet for an all-solid-state secondary battery are produced. Separately from this, an inorganic solid electrolyte-containing composition is applied onto a substrate to prepare a solid electrolyte sheet for an all-solid secondary battery composed of a solid electrolyte layer.
  • the positive electrode sheet for the all-solid-state secondary battery and the negative electrode sheet for the all-solid-state secondary battery are laminated so as to sandwich the solid electrolyte layer peeled from the base material. In this way, an all-solid-state secondary battery can be manufactured.
  • An all-solid-state secondary battery can also be manufactured by combining the above forming methods. For example, as described above, a positive electrode sheet for an all-solid-state secondary battery, a negative electrode sheet for an all-solid-state secondary battery, and a solid electrolyte sheet for an all-solid-state secondary battery are produced. Next, an all-solid-state secondary battery can be manufactured by laminating a solid electrolyte layer peeled off from the base material on the negative electrode sheet for the all-solid-state secondary battery and then laminating the positive electrode sheet for the all-solid-state secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for the all-solid secondary battery and laminated with the negative electrode sheet for the all-solid secondary battery.
  • the method for applying the composition containing an inorganic solid electrolyte is not particularly limited and can be appropriately selected.
  • coating preferably wet coating
  • spray coating spin coating coating
  • dip coating dip coating
  • slit coating stripe coating
  • bar coating coating can be mentioned.
  • the inorganic solid electrolyte-containing composition may be subjected to a drying treatment after being applied to each of them, or may be subjected to a drying treatment after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 80 ° C. or higher.
  • the upper limit is preferably 300 ° C.
  • the dispersion medium (E) can be removed and a solid state can be obtained. Further, it is preferable because the temperature is not raised too high and each member of the all-solid-state secondary battery is not damaged. As a result, in the all-solid-state secondary battery, excellent overall performance can be exhibited and good binding property can be obtained.
  • the pressurizing method include a hydraulic cylinder press machine and the like.
  • the pressing force is not particularly limited, and is generally preferably in the range of 50 to 1500 MPa.
  • the applied inorganic solid electrolyte-containing composition may be heated at the same time as pressurization.
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It can also be pressed at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be carried out in a state where the coating solvent or the dispersion medium has been dried in advance, or may be carried out in a state where the solvent or the dispersion medium remains.
  • Each composition may be applied simultaneously, or the application drying press may be performed simultaneously and / or sequentially. After coating on separate substrates, they may be laminated by transfer.
  • the atmosphere during pressurization is not particularly limited, and may be any of air, dry air (dew point ⁇ 20 ° C. or lower), inert gas (for example, argon gas, helium gas, nitrogen gas) and the like.
  • the pressing time may be short (for example, within several hours) and high pressure may be applied, or medium pressure may be applied for a long time (1 day or more).
  • an all-solid-state secondary battery restraint screw tightening pressure, etc.
  • the press pressure may be uniform or different with respect to the pressed portion such as the sheet surface.
  • the press pressure can be changed according to the area or film thickness of the pressed portion. It is also possible to change the same part step by step with different pressures.
  • the pressed surface may be smooth or roughened.
  • the all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging with the press pressure increased, and then releasing the pressure until the pressure reaches the general working pressure of the all-solid-state secondary battery.
  • the all-solid-state secondary battery of the present invention can be applied to various applications.
  • the application mode is not particularly limited, but for example, when it is mounted on an electronic device, it is a notebook computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, or a mobile phone. Examples include copying, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini discs, electric shavers, transceivers, electronic notebooks, calculators, portable tape recorders, radios, backup power supplies, memory cards, etc.
  • Other consumer products include automobiles (electric vehicles, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). .. Furthermore, it can be used for various munitions and space. It can also be combined with a solar cell.
  • the all-solid-state secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery that uses a carbonate-based solvent as an electrolyte.
  • the present invention presupposes an inorganic all-solid-state secondary battery.
  • the all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery that uses a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state battery that uses the above-mentioned Li-PS-based glass, LLT, LLZ, or the like. It is classified as a secondary battery.
  • the application of the organic compound to the inorganic all-solid secondary battery is not hindered, and the organic compound can be applied as a binder or an additive for the positive electrode active material, the negative electrode active material, and the inorganic solid electrolyte.
  • the inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-mentioned polymer compound as an ionic conduction medium, and the inorganic compound serves as an ionic conduction medium. Specific examples include the above-mentioned Li-PS-based glass, LLT or LLZ.
  • the inorganic solid electrolyte itself does not release cations (Li ions), but exhibits an ion transport function.
  • electrolyte a material that is added to an electrolytic solution or a solid electrolyte layer and serves as a source of ions that release cations (Li ions) may be called an electrolyte.
  • electrolyte salt When distinguishing from the above-mentioned electrolyte as an ion transport material, this is referred to as “electrolyte salt” or “supporting electrolyte”.
  • electrolyte salt include LiTFSI.
  • composition means a mixture in which two or more kinds of components are uniformly mixed. However, it is sufficient that the uniformity is substantially maintained, and agglomeration or uneven distribution may occur in a part within a range in which the desired effect is obtained.
  • Li 2 S lithium sulfide
  • Aldrich Corp. purity> 99.98%
  • diisobutyl ketone was added dropwise to the solution obtained by adding 81 g of THF to the polymer solution obtained above over 10 minutes while stirring at 150 rpm to obtain an emulsion of polymer S-1.
  • This emulsion was heated at 85 ° C. for 120 minutes while flowing nitrogen gas.
  • 50 g of diisobutyl ketone was added to the obtained residue, and the mixture was further heated at 85 ° C. for 60 minutes. This operation was repeated 4 times to remove THF. In this way, a diisobutylketone dispersion of a binder composed of polymer S-1 was obtained.
  • A-1 ⁇ Synthesis of a compound for introducing component A-1 (hereinafter, simply referred to as "A-1")> A-1, which will be described later, was synthesized as follows.
  • ethyl acrylate manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • ⁇ -thioglycerol manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • ethanol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • V- 2.65 g of 601 (trade name, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., oil-soluble azo polymerization initiator) was weighed and stirred at room temperature to obtain a uniformly dissolved solution.
  • the binder polymer S-2 is the same as the binder polymer S-1 except that the composition of the raw material compounds (type and content of the raw material compounds) shown in Table 1 below is adopted.
  • -S-20 and T-1 to T-4 were synthesized, respectively.
  • the binder polymer S-15 has an ester bond in its main chain
  • the binder polymer S-16 has a urea bond and a urethane bond in its main chain
  • the binder polymer S-17 has an amide bond and an ester bond.
  • Other binder polymers have a urethane bond in their main chain.
  • the compounds for introducing the constituents A-2 to A-10 shown in Table 1 below were synthesized as follows. ⁇ Synthesis of compounds for introducing constituents A-2, A-4 to AA-6, A-9, A-10 and B-1 to B-3> In the above synthesis of A-1, ethyl acrylate is a compound corresponding to the segment in the constituent components A-2, A-4 to AA-6, A-9, A-10 and B-1 to B-3 described later. A-2, A-4 to AA-6, A-9, A-10 and B-1 in the same manner as in the synthesis of A-1, except that the amount used (number average molecular weight) was changed. ⁇ B-3 were synthesized respectively.
  • the molecular weight of the component (I) means the number average molecular weight of the compound for introducing the component (I).
  • Constituents M1 to M5 are constituents derived from the compounds listed in each column.
  • Component M1 Component represented by the formula (I-1) or formula (I-2)
  • Component M2 Component represented by the formula (I-3C)
  • Component M3 Component represented by the formula (I-3B)
  • Component component M4 Component represented by the formula (I-3C)
  • Component M5 Component represented by formula (I-3A)
  • Component (I) Component represented by formula (I-7) or formula (I-8)
  • Each of the above components is introduced into the table. The compounds for are listed.
  • MDI Diphenylmethane diisocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.) H12MDI: Dicyclohexylmethane-4,4'-diisocyanate
  • PEG200 Polyethylene glycol 200 (trade name, number average molecular weight 200, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • PEG400 Polyethylene glycol 400 (trade name, number average molecular weight 400, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • PEG600 Polyethylene glycol 600 (trade name, number average molecular weight 600, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • DMBA 2,2-bis (hydroxymethyl) butyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • DMPA 2,2-bis (hydroxymethyl) propionic acid
  • D-400 Jeffamine D-400 (trade name, polyoxypropylene diamine, number average molecular weight 400, manufactured by Huntsman)
  • PTMG250
  • the components A-1 to A-10 and B-1 to B-3 are shown below.
  • the numbers in the segment indicate the content, and the unit is mol%.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents an n-butyl group.
  • C 12 H 25 of A-10 below is a linear dodecyl group.
  • Example 1 ⁇ Preparation of Inorganic Solid Electrolyte-Containing Composition, Positive Electrode Composition and Negative Electrode Composition> Using the above-synthesized binder polymer, the inorganic solid electrolyte-containing composition, the positive electrode composition, and the negative electrode composition described in Table 2 below were prepared as follows.
  • Negative electrode compositions NK-1 to NK-17 and NKc21 to NKc24 were prepared, respectively.
  • the positive electrode composition or negative electrode composition obtained above is placed on an aluminum foil (positive electrode current collector) or copper foil (negative electrode current collector) having a thickness of 20 ⁇ m by a baker type applicator (trade name: SA-201). It was applied, heated at 80 ° C. for 2 hours, and dried (dispersion medium was removed). Then, using a heat press machine, the dried positive electrode or negative electrode composition was pressurized at 25 ° C. (10 MPa, 1 minute) to prepare each sheet having the positive electrode active material layer or the negative electrode active material layer.
  • the inorganic solid electrolyte-containing composition (solid electrolyte sheet) shown in Table 3 prepared above was layered on the active material layer of each sheet so that the solid electrolyte layer was in contact with the positive electrode active material layer or the negative electrode active material layer.
  • pressurize 600 MPa at 25 ° C. to press the positive electrode sheets 122 to 124, the negative electrode sheets 125 to 141, and c21 to c24 having a solid electrolyte layer.
  • the film thickness of the electrode active material layer of each sheet was 80 ⁇ m, and the film thickness of the solid electrolyte layer was 50 ⁇ m.
  • a test piece for measuring ionic conductivity was prepared as follows. (1) Preparation of Specimen for Ion Conductivity Measurement Using Solid Electrolyte Sheet The solid electrolyte sheet obtained above was cut into a disk shape having a diameter of 14.5 mm, and the solid electrolyte sheet 12 was formed into a 2032 type shown in FIG. I put it in the coin case 11. Specifically, an aluminum foil (not shown in FIG. 2) cut into a disk shape having a diameter of 15 mm is brought into contact with a solid electrolyte layer, and a spacer and a washer (both not shown in FIG. 2) are incorporated to make 2032 made of stainless steel. I put it in the mold coin case 11. By crimping the 2032 type coin case 11, a test body 13 for measuring ionic conductivity was produced, which was tightened with a force of 8 Newton (N).
  • N 8 Newton
  • the ionic conductivity was measured using the ionic conductivity measuring test piece 13 obtained as the ionic conductivity measuring test piece. Specifically, the test body 13 for ionic conductivity measurement is measured for AC impedance from a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz using 1255B FREQUENCY RESPONSE ANALYZER (trade name, manufactured by SOLARTRON) in a constant temperature bath at 30 ° C. did. As a result, the resistance of the sample for measuring ionic conductivity in the layer thickness direction was determined, and the ionic conductivity was determined by calculating with the following formula (1). As is clear from the following equation, the ionic conductivity is high enough to suppress the increase in resistance.
  • Ion conductivity ⁇ (mS / cm) 1000 x sample layer thickness (cm) / [resistance ( ⁇ ) x sample area (cm 2 )]
  • the sample layer thickness is measured before the laminate 12 is placed in the 2032 type coin case 11, and the value obtained by subtracting the thickness of the two current collectors (when a solid electrolyte sheet is used, the solid electrolyte). It means the layer thickness of the layer, and when an electrode sheet is used, it means the total layer thickness of the solid electrolyte layer and the electrode active material layer).
  • the sample area is the area of a disk-shaped sheet having a diameter of 14.5 mm.
  • a test piece having a length of 20 mm and a width of 20 mm was cut out from each of the prepared all-solid-state secondary battery sheets. Eleven cuts were made in the test piece using a utility knife so as to reach the base material (aluminum foil or copper foil) at 1 mm intervals parallel to one side. In addition, 11 cuts were made so as to reach the base material at 1 mm intervals in the direction perpendicular to the cuts. In this way, 100 squares were formed on the test piece.
  • a cellophane (registered trademark, Nichiban Co., Ltd.) tape having a length of 15 mm and a width of 18 mm was attached to the surface of the solid electrolyte layer to cover all the 100 squares.
  • the surface of the cellophane tape was rubbed with an eraser and pressed against the solid electrolyte layer to adhere. Two minutes after the cellophane tape was attached, the end of the cellophane tape was held and pulled upward perpendicular to the solid electrolyte layer to peel it off. After the cellophane tape was peeled off, it was visually observed and the number of squares in which the active material layer was not peeled off from the current collector was counted to evaluate the adhesion of the active material layer to the current collector.
  • C11 to c14 and c21 to c24 failed in ionic conductivity and binding property.
  • An all-solid-state secondary battery (No. 101) having the layer structure shown in FIG. 1 was produced as follows. Positive electrode sheet No. for all-solid-state secondary battery obtained above. 122 is punched into a disk shape with a diameter of 14.5 mm, placed in a stainless steel 2032 type coin case 11 incorporating a spacer and a washer (not shown in FIG. 2), and then placed in a disk shape with a diameter of 15 mm on a solid electrolyte layer. The lithium foil cut out was piled up. After further stacking the stainless steel foil on it, the 2032 type coin case 11 was crimped to obtain the No. 2 shown in FIG. The 101 all-solid-state secondary battery 13 was manufactured. The all-solid-state secondary battery manufactured in this manner has the layer structure shown in FIG. 1 (however, the lithium foil corresponds to the negative electrode active material layer 2 and the negative electrode current collector 1).
  • All-solid-state secondary battery No. except that the sheet for all-solid-state secondary battery used in manufacturing was changed as shown in Table 4 below. In the same manner as in 101, the all-solid-state secondary battery No. 102 to 104 were prepared.
  • An all-solid-state secondary battery (No. 122) having the layer structure shown in FIG. 1 was produced as follows. Negative electrode sheet No.
  • the positive electrode composition prepared as described below is applied onto 125 solid electrolyte layers by a baker type applicator (trade name: SA-201), heated at 80 ° C. for 2 hours, and dried (dispersion medium is removed).
  • SA-201 baker type applicator
  • a positive electrode active material layer was formed to obtain a laminate.
  • This laminate was punched into a disk shape with a diameter of 14.5 mm, placed in a stainless steel 2032 type coin case 11 incorporating a spacer and a washer (not shown in FIG. 2), and cut into a 15 mm ⁇ shape on the positive electrode active material layer.
  • Aluminum foils were laminated to prepare a laminate for an all-solid-state secondary battery. By crimping the 2032 type coin case 11, the No. 2 shown in FIG. 2 is displayed. 122 all-solid-state secondary batteries 13 were manufactured.
  • the composition for the positive electrode used for producing the all-solid-state secondary battery (No. 122) was prepared as follows. 180 zirconia beads with a diameter of 5 mm were placed in a 45 mL container made of zirconia (manufactured by Fritsch), 2.7 g of LPS synthesized above, KYNAR FLEX 2500-20 (trade name, PVdF-HFP: polyvinylidene fluoride hexafluoro). A propylene copolymer (manufactured by Arkema) was added as a solid content mass of 0.3 g, and butyl butyrate was added in an amount of 22 g.
  • This container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and stirred at 25 ° C. and a rotation speed of 300 rpm for 60 minutes. Then, 7.0 g of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NMC) was added as the positive electrode active material, and in the same manner, the container was set in the planetary ball mill P-7, and the temperature was 25 ° C. Mixing was continued at 100 rpm for 5 minutes to prepare a positive electrode composition.
  • NMC LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • All-solid-state secondary battery No. except that the sheet for all-solid-state secondary battery used in manufacturing was changed as shown in Table 4 below. In the same manner as 122, the all-solid-state secondary battery No. 105-121, 123-128 and c101-c104 were made.
  • the all-solid-state secondary battery was initialized by repeating charging and discharging for three cycles with one charge and one discharge as one charge and discharge cycle.
  • discharge capacity initial discharge capacity
  • discharge capacity retention rate discharge capacity with respect to the initial discharge capacity
  • the inorganic solid electrolyte-containing composition and the electrode composition used in the production of the electrode sheet are referred to as the inorganic solid electrolyte-containing composition No. And the composition for electrodes No. It is described in the column of. No.
  • the electrode sheets of 143 to 150 and c25 to c28 were produced in the same manner as the electrode sheets shown in Table 3.
  • Negative electrode current collector Negative electrode active material layer 3 Solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode current collector 6 Operating part 10 All-solid secondary battery 11 2032 type coin case 12 Solid electrolyte sheet for all-solid secondary battery, laminated Body or laminate for all-solid secondary battery 13 Specimen for ionic conductivity measurement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

周期律表第1族若しくは第2族に属する金属のイオン伝導性を有する無機固体電解質(A)及びバインダ(B)を含有し、上記バインダ(B)を構成するポリマーが、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合のうちの少なくとも1種の結合を主鎖に有し、かつ特定の部分構造を少なくとも1種有する無機固体電解質含有組成物、この組成物で構成した層を有する、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池。

Description

無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の各製造方法
 本発明は、無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の各製造方法に関する。
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電又は過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性の更なる向上が求められている。
 このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質及び正極の全てが固体からなり、有機電解液を用いた電池の安全性及び信頼性を大きく改善することができる。
 このような全固体二次電池において、負極活物質層、固体電解質層及び正極活物質層等の構成層を形成する材料として、無機固体電解質、活物質及びバインダ(結着剤)等を含有する材料が、提案されている。
 例えば、特許文献1には、周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、主鎖に、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合のうちの少なくとも1種の結合を有し、かつ、グラフト構造を有するバインダ(B)とを含有し、必要に応じて活物質(D)を含有する固体電解質組成物が記載されている。
国際公開第2018/151161号
 全固体二次電池の構成層(固体電解質層又は活物質層)は、通常、無機固体電解質、バインダ粒子、更には活物質等の固体粒子で形成されるため、固体粒子同士の結着性を維持することが重要となる。結着性が十分でないと、全固体二次電池の充放電(リチウムイオンの放出吸収)によって、固体粒子同士の接触不良が惹起され、電気抵抗の上昇、更には電池性能(例えばサイクル特性)の低下を招く。
 特許文献1のように、固体粒子同士の密着性を強化すべく固体粒子に対してバインダの併用が検討されている。しかし、特許文献1には、エステル基の酸素原子に結合する基として、ヒドロキシエチル基、ジメチルアミノエチル基及びジエチルアミノエチル基等の置換基を有する短鎖アルキル基を有する(メタ)アクリル酸エステル由来の構成成分を含むバインダ構成ポリマーしか具体的に記載されていない。
 ところで、バインダを併用する場合、バインダは通常イオン伝導性を有しないため、抵抗が増加して電池性能(イオン伝導度)が大きく低下する。この性能低下は特にバインダの添加量を増大させた場合に顕著となる。
 本発明は、全固体二次電池用シート構成層中の固体粒子間等の結着性を高め、全固体二次電池用シートにイオン伝導度を高い水準で付与でき、サイクル特性に優れた全固体二次電池を実現することができる無機固体電解質含有組成物を提供することを課題とする。また、本発明は、上述の無機固体電解質含有組成物を用いた全固体二次電池用シート及び全固体二次電池、並びに、これらの製造方法を提供することを課題とする。
 本発明者らは、種々検討を重ねた結果、ポリマーの主鎖に、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合のうちの少なくとも1つの結合を導入し、かつ、ポリマー主鎖又は側鎖に後記一般式(1)で表される部分構造を少なくとも1種導入したポリマーで構成したバインダを含有する無機固体電解質含有組成物を全固体二次電池の構成層を形成する材料として用いることにより、固体粒子を強固に結着させることができるにもかかわらず、固体粒子間の界面抵抗の上昇を抑制した(高いイオン伝導度を示す)構成層を形成でき、全固体二次電池に優れたサイクル特性を付与できること、を見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>
 周期律表第1族若しくは第2族に属する金属のイオン伝導性を有する無機固体電解質(A)及びバインダ(B)を含有し、上記バインダ(B)を構成するポリマーが、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合のうちの少なくとも1種の結合を主鎖に有し、かつ、下記一般式(1)で示される部分構造を少なくとも1種有する無機固体電解質含有組成物。
Figure JPOXMLDOC01-appb-C000003
 式中、R~Rは、水素原子、アルキル基又はアリール基を示す。Rは、メチル基、エチル基又はプロピル基を示す。ただし、Rは置換基を有しない。*はポリマー中の結合部位を示す。
<2>
 上記バインダ(B)を構成するポリマーが、カルボキシ基、スルホン酸基及びリン酸基のうちの少なくとも1種を有する、<1>に記載の無機固体電解質含有組成物。
<3>
 上記バインダ(B)を構成するポリマーが、ウレタン結合、ウレア結合、アミド結合及びイミド結合のうちの少なくとも1種の結合を主鎖に有する、<1>又は<2>に記載の無機固体電解質含有組成物。
<4>
 上記バインダ(B)を構成するポリマーが、下記一般式(2)で表されるセグメントを主鎖又は側鎖に有する、<1>~<3>のいずれか1つに記載の無機固体電解質含有組成物。
Figure JPOXMLDOC01-appb-C000004
 式中、R~Rは、水素原子、アルキル基又はアリール基を示す。Rは、メチル基、エチル基又はプロピル基を示す。ただし、Rは置換基を有しない。R~Rは、水素原子、アルキル基又はアリール基を示す。Rは、水素原子、アルキル基又はアリール基を示す。n1及びn2はセグメントの全構成成分中の含有率を示し、n1は0モル%を越え100モル%以下であり、n2は0モル%以上100モル%未満である。
<5>
 上記バインダ(B)を構成するポリマーが、上記一般式(2)で表されるセグメントを側鎖に有する、<4>に記載の無機固体電解質含有組成物。
<6>
 上記一般式(2)で表されるセグメントの数平均分子量が1,000~100,000である、<4>又は<5>に記載の無機固体電解質含有組成物。
<7>
 上記一般式(2)で表されるセグメントが、カルボキシ基、スルホン酸基及びリン酸基のうちの少なくとも1種を有する、<4>~<6>のいずれか1つに記載の無機固体電解質含有組成物。
<8>
 活物質(C)を含む、<1>~<7>のいずれか1つに記載の無機固体電解質含有組成物。
<9>
 上記活物質(C)が負極活物質である、<8>に記載の無機固体電解質含有組成物。
<10>
 上記負極活物質が、構成元素にSiを含む、<9>に記載の無機固体電解質含有組成物。
<11>
 導電助剤(D)を含む、<1>~<10>のいずれか1つに記載の無機固体電解質含有組成物。
<12>
 上記無機固体電解質(A)が硫化物系無機固体電解質である、<1>~<11>のいずれか記載の無機固体電解質含有組成物。
<13>
 <1>~<12>のいずれか1つに記載の無機固体電解質含有組成物を用いて形成した層を有する、全固体二次電池用シート。
<14>
 正極活物質層と、負極活物質層と、正極活物質層及び負極活物質層の間の固体電解質層とを含む全固体二次電池であって、
 上記正極活物質層、上記負極活物質層及び上記固体電解質層の少なくとも1層が、<13>に記載の全固体二次電池用シートで構成された全固体二次電池。
<15>
 <1>~<12>のいずれか1つに記載の無機固体電解質含有組成物を基材上に塗布して塗布膜を形成する工程を含む、全固体二次電池用シートの製造方法。
<16>
 <1>~<12>のいずれか1つに記載の無機固体電解質含有組成物を基材上に塗布して塗布膜を形成する工程を含む、全固体二次電池の製造方法。
 本発明の無機固体電解質含有組成物は、イオン伝導度と構成層中の固体粒子間等の結着性に優れた全固体二次電池用シート、及びサイクル特性に優れた全固体二次電池を実現することができる。また、本発明の全固体二次電池用シートは、イオン伝導度及び構成層中の固体粒子間等の結着性に優れ、本発明の全固体二次電池はサイクル特性に優れる。更に、本発明の全固体二次電池用シートの製造方法及び全固体二次電池の製造方法は、上記全固体二次電池用シート及び全固体二次電池を提供することができる。
図1は本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 図2は実施例で作製したイオン伝導度測定用試験体を模式的に示す縦断面図である。
 本発明の説明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明の説明において、単に「アクリル」又は「(メタ)アクリル」と記載するときは、アクリル及び/又はメタアクリルを意味する。また、単に「アクリロイル」又は「(メタ)アクリロイル」と記載するときは、アクリロイル及び/又はメタクリロイルを意味する。
 本発明の説明において、化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのものの他、その塩、そのイオンを含む意味に用いる。
 本発明の説明において、ある基の炭素数を規定する場合、この炭素数は、基全体の炭素数を意味する。つまり、この基がさらに置換基を有する形態である場合、この置換基を含めた全体の炭素数を意味する。
 本発明の説明において、特定の符号で示された置換基や連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
 本明細書において、質量平均分子量(Mw)及び数平均分子量(Mn)は、特段の断りがない限り、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography:GPC)によってポリスチレン換算の分子量として計測することができる。このとき、GPC装置「HLC-8220」(商品名、東ソー社製)を用い、カラムとしてG3000HXL+G2000HXL(いずれも商品名、東ソー社製)を用い、測定温度23℃で流量1mL/minで、示差屈折計(RI検出器)により検出することとする。溶離液としては、THF(テトラヒドロフラン)、クロロホルム、NMP(N-メチル-2-ピロリドン)、及び、m-クレゾール/クロロホルム混合液(富士フイルム和光純薬社製)から選定することができる。測定試料が溶解する場合、THFを用いることとする。
[無機固体電解質含有組成物]
 本発明の無機固体電解質含有組成物は、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有する無機固体電解質(A)及びバインダ(B)を含有する。このバインダ(B)は、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合のうちの少なくとも1種の結合を主鎖に有し、かつ下記一般式(1)で示される部分構造を少なくとも1種有するポリマーで構成されている。
Figure JPOXMLDOC01-appb-C000005
 式中、R~Rは、水素原子、アルキル基又はアリール基を示す。Rは、メチル基、エチル基又はプロピル基を示す。ただし、Rは置換基を有しない。*はポリマー中の結合部位を示す。
 本発明の無機固体電解質含有組成物は、全固体二次電池の構成層形成材料として用いることにより、固体粒子同士の結着性を、抵抗の上昇を抑えつつ強化した構成層を形成することができ、この構成を備えた全固体二次電池に優れた電池性能(サイクル特性)を付与することができる。
 その理由の詳細はまだ明らかではないが、次のように考えられる。すなわち、バインダを構成するポリマーが上記特定の結合を少なくとも1種有し、かつ一般式(1)で表される部分構造を少なくとも1種含有することにより、バインダ自身の凝集力を高めるとともに、固体粒子との(化学的若しくは物理的な)相互作用が増大して強固な結着力で固体粒子同士を結着させることができる。これは、上記結合による相互作用の発現に加えて、一般式(1)で規定される部分構造がその化学構造のため高極性を示して、固体粒子に対するポリマーの濡れ性が一層向上するためと考えられる。しかし、固体粒子に対する濡れ性を向上させる上記部分構造は、無機固体電解質に対しては濡れ性を過度に向上させることなく、無機固体電解質の全面的な被覆が抑制される程度の適度な濡れ性をポリマーに付与できると考えられる。上記無機固体電解質に対する作用により、無機固体電解質の接触により形成されるイオン伝導パスをポリマーの存在によって遮断することなく維持でき、イオン伝導度の低下(固体粒子の界面抵抗等の上昇)を抑制できる。しかも、末端アルキル基が小さな上記部分構造は、ポリマー中に導入されても、ポリマー自体の強度の過度な低下を抑制できると考えられる。そのため、ポリマーで構成したバインダは、充放電による構成層の膨張収縮に対して高い耐性(ポリマーの破壊防止)を発現して、電池性能の低下を抑制できる。
 このようなバインダの作用機能が相俟って、本発明の無機固体電解質含有組成物を用いて形成した構成層を備えた全固体二次電池は、構成層が高結着性及び低抵抗を示して、高い電池性能を実現できる。
 本発明に用いるバインダは、上記作用機能を示すため、活物質、特に全固体二次電池の充放電による膨張収縮が大きい負極活物質と併用することもできる。例えば、無機固体電解質に対して活物質が共存すると、ポリマーは上記部分構造により活物質に対する濡れ性(親和性)が無機固体電解質に対する濡れ性よりも低下して、層構成時に活物質の表面の一部を被覆する程度にとどまると考えられる(この状態でも活物質に対する密着力は維持している)。これにより、固体粒子との強固な結着性を維持しつつも、無機固体電解質同士のイオン伝導パス以外に、活物質を含むイオン伝導パスも構築できる。しかも、活物質を含有する無機固体電解質含有組成物は通常集電体表面に設けられるが、バインダは集電体に対しても高い濡れ性を発現して、集電体に対して強固に密着する(強固な層間密着性を発現する)。
 そのため、本発明の無機固体電解質含有組成物が活物質を含有する場合においても、構成層は高結着性及び低抵抗に加えて集電体に対しても強固に密着して、高い電池性能を実現できる。
 以下に、好ましい実施形態について説明する。
 なお、無機固体電解質含有組成物に含まれる成分に符号を付さずに記載することもある。例えば、無機固体電解質(A)を無機固体電解質とも記載する。
<無機固体電解質(A)>
 無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンが解離若しくは遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
 本発明において、無機固体電解質は、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有する。本発明の全固体二次電池が全固体リチウムイオン二次電池である場合、無機固体電解質はリチウムイオンのイオン伝導度を有することが好ましい。
 上記無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。例えば、無機固体電解質としては、(i)硫化物系無機固体電解質、(ii)酸化物系無機固体電解質、(iii)ハロゲン化物系無機固体電解質、及び、(iV)水素化物系固体電解質が挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができるため、硫化物系無機固体電解質が好ましく用いられる。
((i)硫化物系無機固体電解質)
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 硫化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に限定されず、1×10-1S/cm以下であることが実際的である。
 硫化物系無機固体電解質として、例えば、下記式(I)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
   La1b1c1d1e1 式(I)
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mであらわされる元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特に制限されず、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
((ii)酸化物系無機固体電解質)
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に限定されず、1×10-1S/cm以下であることが実際的である。
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 また、Li、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれる少なくとも1種)等が挙げられる。
 更に、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれる少なくとも1種)等も好ましく用いることができる。
((iii)ハロゲン化物系無機固体電解質)
 ハロゲン化物系無機固体電解質は、ハロゲン原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 ハロゲン化物系無機固体電解質としては、特に制限されず、例えば、LiCl、LiBr、LiI、ADVANCED MATERIALS,2018,30,1803075に記載のLiYBr、LiYCl等の化合物が挙げられる。中でも、LiYBr、LiYClを好ましい。
((iv)水素化物系無機固体電解質)
 水素化物系無機固体電解質は、水素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 水素化物系無機固体電解質としては、特に制限されず、例えば、LiBH、Li(BHI、3LiBH-LiCl等が挙げられる。
 無機固体電解質は粒子であることが好ましい。粒子状の無機固体電解質の体積平均粒子径は特に限定されず、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、無機固体電解質粒子の平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 上記無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 無機固体電解質の無機固体電解質含有組成物中の固形成分における含有量は、全固体二次電池に用いたときの界面抵抗の低減と、低減された界面抵抗の維持を考慮したとき、固形成分100質量%において、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、25質量%以上であることが更に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 ただし、無機固体電解質含有組成物が後述する活物質を含有する場合、無機固体電解質含有組成物中の無機固体電解質の含有量は、活物質と無機固体電解質との合計含有量が上記範囲であることが好ましい。
 本明細書において、固形成分(固形分)とは、窒素雰囲気下170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
<バインダ(B)>
 本発明の無機固体電解質含有組成物は、下記のポリマーを構成するバインダ(B)を含んでいる。
 このポリマーは、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合のうちの少なくとも1つの結合を含む主鎖を有している。また、このポリマーは好ましくは逐次重合系ポリマーであり、主鎖又は側鎖に下記一般式(1)で表される部分構造を少なくとも1種有している。
 本発明において、ポリマーの主鎖とは、ポリマーを構成する、それ以外のすべての分子鎖が、主鎖に対して枝分れ鎖若しくはペンダントとみなしうる線状分子鎖をいう。典型的には、ポリマーを構成する分子鎖のうち最長鎖が主鎖となる。ただし、ポリマー末端が有する官能基は主鎖に含まれない。また、ポリマーの側鎖とは、主鎖以外の分子鎖をいい、短分子鎖及び長分子鎖を含む。
 ポリマーが上記部分構造を主鎖又は側鎖に有する態様は、特に制限されず、一般式(1)で表される部分構造単独で有する形態、一般式(1)で表される部分構造の(共)重合物として有する形態、及び両形態を含む形態等が挙げられ、通常、ポリマーを構成する構成成分の一部分として組み込まれる。本発明においては、結着性、抵抗及び電池性能の点で、一般式(1)で表される部分構造の(共)重合物として有する形態が好ましい。また、この部分構造は、結着性、抵抗及び電池性能の点で、ポリマーに組み込まれた際にポリマーの側鎖に有していることが好ましく、ポリマーの側鎖に(共)重合物として有していることがより好ましい。ポリマーが有する上記部分構造の種類数は、特に制限されず、例えば、1~10種とすることができ、1種又は2種が好ましい。
Figure JPOXMLDOC01-appb-C000006
 式中、R~Rは、水素原子、アルキル基又はアリール基を示す。Rは、メチル基、エチル基又は(n-若しくはi-)プロピル基を示し、メチル基又はエチル基が好ましい。*はポリマー中の結合部位を示す。ただし、Rは置換基(例えば後述する置換基T)を有しない。一般式(1)で表される部分構造が主鎖に組込まれている場合、2つの*は、いずれも主鎖中の結合部位を示す。
 R及びRは水素原子を示すことが好ましく、Rは水素原子又はアルキル基を示すことが好ましい。
 上記アルキル基は直鎖、分岐及び環状のいずれでもよく、直鎖又は分岐アルキル基が好ましく、直鎖アルキル基がより好ましい。アルキル基の炭素数は、1~20が好ましく、1~10がより好ましく、1~5がより好ましく、1がさらに好ましい。上記アルキル基の具体例としては、後述の置換基Tに含まれるアルキル基で挙げたものが挙げられる。
 上記アリール基として、例えば、後述の置換基Tに含まれるアリール基が挙げられ、炭素数6~10のアリール基が好ましい。
 上記ポリマーは、カルボキシ基、スルホン酸基及びリン酸基のうちの少なくとも1種を有することが好ましい。以下これらの基を官能基(a)と称する。官能基(a)は無機固体電解質、活物質及び導電助剤等の無機粒子と相互作用して結着性を高めることができる。官能基(a)はいずれの構成成分に導入されてもよいが、Rには導入されない。
 本発明において、一般式(1)で表される部分構造は、その(共)重合物としてポリマーに組み込まれることが好ましく、この場合、(共)重合物として下記一般式(2)で表されるセグメントが挙げられる。
 すなわち、上記ポリマーは、(一般式(1)で表される部分構造として)下記一般式(2)で表されるセグメントを主鎖又は側鎖に有することが好ましく、側鎖に有することがより好ましい。
Figure JPOXMLDOC01-appb-C000007
 式中、R~Rは、それぞれ上記一般式(1)中のR~Rと同義であり、好ましい範囲も同じである。R~Rは、水素原子、アルキル基又はアリール基を示す。Rは、水素原子、アルキル基又はアリール基を示す。n1及びn2は、セグメントの全構成成分中の含有率を示し、n1は0モル%を越え100モル%以下であり、n2は0モル%以上100モル%未満である。
 上記一般式中、[ ]内の構成成分の結合形態は、ランダム及びブロックのいずれでもよく、ブロックが好ましい。
 R及びRは一般式(1)中のRと同義であり、好ましい範囲も同じである。また、Rは一般式(1)中のRと同義であり、好ましい範囲も同じである。
 Rで示されるアルキル基は、直鎖、分岐及び環状のいずれでもよく、直鎖又は分岐アルキル基が好ましく、直鎖アルキル基がより好ましい。アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~12がさらに好ましく、1~6が特に好ましい。ただし、Rとしてとりうるアルキル基の炭素数が1~3である場合、これらのアルキル基は後述する置換基を有している。
 上記アルキル基の具体例としては、メチル、エチル、プロピル、t-ブチル、ペンチル、シクロヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル及びドデシルが挙げられる。
 Rとして採りうるアリール基は、例えば、一般式(1)中のRとして採りうるアリール基を採用することができる。
 Rとして採りうるアルキル基及びアリール基は、それぞれ、置換基を有していてもよい。このような置換基としては、特に制限されず、例えば後述する置換基Tで挙げた各置換基を挙げることができ、固体粒子若しくは集電体との密着性の向上に寄与する点で、好ましくは極性基(ヘテロ原子を含む基)が好ましく、ヘテロ環基、アミノ基、カルボキシ基、スルホン酸基又はリン酸基がより好ましく、カルボキシ基、スルホン酸基又はリン酸基が更に好ましい。Rが有していてもよい置換基は1種でも2種以上でもよく、2種以上の置換基を有する場合、2種以上の置換基を組み合わせた置換基としてもよい。
 n1は、0モル%を越え100モル%以下であり、10モル%以上が好ましく、20モル%以上がより好ましく、25モル%以上がより好ましく、30モル%以上が更に好ましい。また、n1は、80モル%以下が好ましく、60モル%以下がより好ましい。
 n2は、0モル%以上100モル%未満であり、20モル%以上が好ましく、40モル%以上がより好ましく、60モル%以上が更に好ましい。また、n2は、90モル%以下が好ましく、80モル%以下がより好ましく、75モル%以下が更に好ましい。
 上記一般式(2)において、-COOR基を有する構成成分(含有率n1を有する構成成分)、及び-COOR基を有する構成成分(含有率n2を有する構成成分)を便宜上1種示しているが、本発明において、一般式(2)で表されるセグメントは、上記各構成成分を1種有する形態に限定されず、2種以上を有する形態を包含する。
 一般式(2)で表されるセグメントは、ポリマーに組み込まれる場合、少なくとも一方の結合部に、ポリマーを構成する構成成分を導く化合物と重合反応可能な官能基等が導入される。例えば、後述する式(I-7)又は式(I-8)で表される構成成分が挙げられる。
 一般式(2)で表されるセグメントは、ポリマーの側鎖に組み込まれる場合、セグメントの端部側の結合部に結合する基(原子)は、特に制限されず、側鎖の端部基であることが好ましく、合成反応条件(クエンチ条件)等に応じて適宜に決定される。
 上記一般式(2)で表されるセグメントの数平均分子量は、結着性、抵抗及び電池性能の点で、1,000~100,000であることが好ましく、1,000~10,000であることがより好ましい。
 上記ポリマー中、上記一般式(2)で表されるセグメントが上記官能基(a)を有することが好ましく、含有率n2を有する構成成分が官能基(a)を有することがより好ましく、Rが官能基(a)を有することがより更に好ましい。
 ポリマーの主鎖は、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合のうちの少なくとも1つの結合を有し、ウレタン結合、ウレア結合、アミド結合及びイミド結合を有することが好ましい。主鎖が含むこれら結合は、水素結合を形成することにより、全固体二次電池用シート又は全固体二次電池の構成層中の固体粒子等の結着性向上に寄与する。したがって、これらの結合が形成する水素結合は、上記結合同士であってもよく、上記結合と主鎖が有するそれ以外の部分構造であってもよい。上記結合は、互いに水素結合を形成可能な点で、水素結合を形成する水素原子を有していること(ウレタン結合、ウレア結合、アミド結合及びイミド結合の窒素原子が無置換であること)が好ましい。
 上記結合は、ポリマーの主鎖中に含まれる限り特に制限されるものでなく、構成単位(繰り返し単位)中に含まれる態様及び/又は異なる構成単位同士を繋ぐ結合として含まれる態様のいずれでもよい。また、主鎖に含まれる上記結合は、1種に限定されず、2種以上であってもよい。この場合、主鎖の結合様式は、特に制限されず、2種以上の結合をランダムに有していてもよく、特定の結合を有するセグメントと他の結合を有するセグメントとのセグメントで構成された主鎖でもよい。
 上記結合を有する主鎖としては、特に制限されず、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合のうちの少なくとも1つのセグメントを有する主鎖が好ましく、ウレタン結合、ウレア結合、アミド結合及びイミド結合のうちの少なくとも1つのセグメントを有する主鎖がより好ましく、ポリウレタン、ポリウレア、ポリアミド又はポリイミドからなる鎖を主鎖に有することが好ましく、ポリウレタン、ポリウレア、ポリアミド又はポリイミドからなる主鎖が更に好ましい。また、ポリウレタンからなる鎖を主鎖に有することが好ましく、ポリウレタンからなる主鎖がさらに好ましい。
 上記結合を主鎖に有する上記ポリマーは、具体的には、下記式(I-1)~式(I-4)のいずれかで表される構成成分の少なくとも1種と、下後記式(I-7)及び式(I-8)のいずれかで表される構成成分の少なくとも1種とを含むポリマーが好ましい。ここで、式(I-1)~式(I-4)のいずれかで表される構成成分(モノマー由来の構成成分)、並びに、式(I-5)及び(I-6)のいずれかで表される化合物(モノマー)由来の構成成分から選択される構成成分の種類の数は、特に制限されず、好ましくは2~8種、より好ましくは2~5種、さらに好ましくは3又は4種である。各構成成分の組み合わせは、上記結合に応じて適宜に選択される。
 ウレタン結合により、式(I-1)で表される構成成分と式(I-3)で表される構成成分とが結合する。
 ウレア結合により、式(I-1)で表される構成成分と式(I-4)で表される構成成分とが結合する。
 アミド結合により、式(I-2)で表される構成成分と式(I-4)で表される構成成分とが結合する。
 イミド結合により、式(I-5)で表される化合物由来の構成成分と式(I-6)で表される化合物由来の構成成分とが結合する。
 エステル結合により、式(I-2)で表される構成成分と式(I-3)で表される構成成分とが結合する。
Figure JPOXMLDOC01-appb-C000008
 式中、RP1及びRP2は、それぞれ分子量又は質量平均分子量が20以上200,000以下の分子鎖を示す。
 RP1及びRP2としてとりうる上記分子鎖は、特に制限されず、炭化水素鎖、ポリアルキレンオキシド鎖、ポリカーボネート鎖又はポリエステル鎖が好ましく、炭化水素鎖又はポリアルキレンオキシド鎖がより好ましい。
 RP1及びRP2としてとりうる炭化水素鎖は、炭素原子及び水素原子から構成される炭化水素の鎖を意味し、より具体的には、炭素原子及び水素原子から構成される化合物の少なくとも2つの原子(例えば水素原子)又は基(例えばメチル基)が脱離した構造を意味する。この炭化水素鎖は、炭素-炭素不飽和結合を有していてもよく、脂肪族環及び/又は芳香族環の環構造を有していてもよい。すなわち、炭化水素鎖は、脂肪族炭化水素及び芳香族炭化水素から選択される炭化水素で構成される炭化水素鎖であればよい。
 このような炭化水素鎖としては、上記分子量を満たすものであればよく、低分子量の炭化水素基からなる鎖と、炭化水素ポリマーからなる炭化水素鎖(炭化水素ポリマー鎖ともいう。)との両炭化水素鎖を包含する。
 低分子量の炭化水素鎖は、通常の(非重合性の)炭化水素基からなる鎖であり、この炭化水素基としては、例えば、脂肪族若しくは芳香族の炭化水素基が挙げられ、具体的には、アルキレン基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アリーレン基(炭素数は6~22が好ましく、6~14が好ましく、6~10がより好ましい)、又はこれらの組み合わせからなる基が好ましい。RP2としてとりうる低分子量の炭化水素鎖を形成する炭化水素基としては、アルキレン基がより好ましく、炭素数2~6のアルキレン基が更に好ましく、炭素数2又は3のアルキレン基が特に好ましい。
 脂肪族の炭化水素基としては、特に制限されず、下記式(M2)で表される芳香族の炭化水素基の水素還元体、公知の脂肪族ジイソソアネート化合物が有する部分構造(例えばイソホロンからなる基)等が挙げられる。
 芳香族の炭化水素基は、フェニレン基又は下記式(M2)で表される炭化水素基が好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(M2)中、Xは、単結合、-CH-、-C(CH-、-SO-、-S-、-CO-又は-O-を示し、結着性の観点で、-CH-または-O-が好ましく、-CH-がより好ましい。ここで例示した上記アルキレン基はハロゲン原子(好ましくはフッ素原子)で置換されていてもよい。
 RM2~RM5は、それぞれ、水素原子又は置換基を示し、水素原子が好ましい。RM2~RM5としてとりうる置換基としては、特に制限されず、例えば、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、-ORM6、―N(RM6、-SRM6(RM6は置換基を示し、好ましくは炭素数1~20のアルキル基又は炭素数6~10のアリール基を示す。)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)が挙げられる。―N(RM6としては、アルキルアミノ基(炭素数は、1~20が好ましく、1~6がより好ましい)又はアリールアミノ基(炭素数は、6~40が好ましく、6~20がより好ましい)が挙げられる。
 炭化水素ポリマー鎖は、重合性の炭化水素が(少なくとも2つ)重合してなるポリマー鎖であって、上述の低分子量の炭化水素鎖よりも炭素原子数が大きい炭化水素ポリマーからなる鎖であれば特に制限されず、好ましくは30個以上、より好ましくは50個以上の炭素原子から構成される炭化水素ポリマーからなる鎖である。炭化水素ポリマーを構成する炭素原子数の上限は、特に制限されず、例えば3,000個とすることができる。この炭化水素ポリマー鎖は、主鎖が、上記炭素原子数を満たす、脂肪族炭化水素で構成される炭化水素ポリマーからなる鎖が好ましく、脂肪族飽和炭化水素若しくは脂肪族不飽和炭化水素で構成される重合体(好ましくはエラストマー)からなる鎖であることがより好ましい。重合体としては、具体的には、主鎖に二重結合を有するジエン系重合体、及び、主鎖に二重結合を有しない非ジエン系重合体が挙げられる。ジエン系重合体としては、例えば、スチレン-ブタジエン共重合体、スチレン-エチレン-ブタジエン共重合体、イソブチレンとイソプレンの共重合体(好ましくはブチルゴム(IIR))、ブタジエン重合体、イソプレン重合体及びエチレン-プロピレン-ジエン共重合体等が挙げられる。非ジエン系重合体としては、エチレン-プロピレン共重合体及びスチレン-エチレン-ブチレン共重合体等のオレフィン系重合体、並びに、上記ジエン系重合体の水素還元物が挙げられる。
 炭化水素鎖となる炭化水素は、その末端に反応性基を有することが好ましく、縮重合又は重付加可能な末端反応性基を有することがより好ましい。縮重合又は重付加可能な末端反応性基は、縮重合又は重付加することにより、上記各式のRP1~RP3に結合する基を形成する。このような末端反応性基としては、イソシアナト基、ヒドロキシ基、カルボキシ基、アミノ基及び酸無水物等が挙げられ、中でもヒドロキシ基が好ましい。
 末端反応性基を有する炭化水素ポリマーとしては、例えば、いずれも商品名で、NISSO-PBシリーズ(日本曹達社製)、クレイソールシリーズ(巴工業社製)、PolyVEST-HTシリーズ(エボニック社製)、poly-bdシリーズ(出光興産社製)、poly-ipシリーズ(出光興産社製)、EPOL(出光興産社製)及びポリテールシリーズ(三菱化学社製)等が好適に用いられる。
 上記炭化水素鎖の中でも、RP1は、低分子量の炭化水素鎖であることが好ましく、芳香族の炭化水素基からなる炭化水素鎖がより好ましい。RP2は、脂肪族の炭化水素基、又は低分子量の炭化水素鎖以外の分子鎖が好ましく、脂肪族の炭化水素基及び低分子量の炭化水素鎖以外の分子鎖をそれぞれ含む態様がより好ましい。この態様においては、式(I-3)で表される構成成分、式(I-4)で表される構成成分及び式(I-6)で表される化合物由来の構成成分は、RP2が脂肪族の炭化水素基である構成成分と、RP2が低分子量の炭化水素鎖以外の分子鎖である構成成分の少なくとも2種を含むことが好ましい。
 ポリアルキレンオキシド鎖(ポリアルキレンオキシ鎖)中のアルキレンオキシ基の炭素数は、1~10であることが好ましく、1~6であることがより好ましく、2~4であること(例えば、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖及びポリブチレンオキシド鎖)が更に好ましい。ポリアルキレンオキシド鎖は、1種のアルキレンオキシドからなる鎖でもよく、2種以上のアルキレンオキシドからなる鎖(例えば、エチレンオキシド及びプロピレンオキシドからなる鎖)でもよい。
 ポリカーボネート鎖又はポリエステル鎖としては、公知のポリカーボネート又はポリエステルからなる鎖が挙げられる。
 ポリアルキレンオキシド鎖、ポリカーボネート鎖又はポリエステル鎖は、それぞれ、末端にアルキル基(炭素数は1~12が好ましく、1~6がより好ましい)を有することが好ましい。
 分子鎖が含むアルキル基中に、エーテル基(-O-)、チオエーテル基(-S-)、カルボニル基(>C=O)、イミノ基(>NR:Rは水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基)を有していてもよい。
 上記分子鎖の分子量又は質量平均分子量は、30以上が好ましく、50以上がより好ましく、100以上が更に好ましく、150以上が特に好ましい。上限としては、100,000以下が好ましく、10,000以下がより好ましい。分子鎖の分子量又は質量平均分子量は、ポリマーの主鎖に組み込む前の原料化合物について測定する。
 式(I-5)において、RP3は芳香族若しくは脂肪族の連結基(4価)を示し、下記式(i)~(iix)のいずれかで表される連結基が好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(i)~(iix)中、Xは単結合又は2価の連結基を示す。2価の連結基としては、炭素数1~6のアルキレン基(例えば、メチレン、エチレン、プロピレン)が好ましい。プロピレンとしては、1,3-ヘキサフルオロ-2,2-プロパンジイルが好ましい。Lは-CH=CH-又は-CH-を示す。R及びRはそれぞれ水素原子又は置換基を表す。各式において、*は式(1-5)中のカルボニル基との結合部位を示す。R及びRとして採りうる置換基としては、特に制限されず、後述する置換基Tが挙げられ、アルキル基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)又はアリール基(炭素数は6~22が好ましく、6~14がより好ましく、6~10が更に好ましい)が好ましく挙げられる。
 式(I-6)において、Rb1~Rb4は水素原子又は置換基を示し、水素原子を示すことが好ましい。この置換基として後述の置換基Tが挙げられ、アルキル基が好ましい。
 RP1、RP2及びRP3は、それぞれ、置換基を有していてもよい。この置換基としては、特に制限されず、例えば、後述する置換基Tが挙げられ、RM2として採りうる上記置換基が好適に挙げられる。
 ただし、式(I-3)又は式(I-4)中のRP2が置換基を有する場合、式(I-7)又は式(I-8)で表される構成成分に相当しない置換基、例えば後述する置換基Tから選択される。
(式(I-7)で表される構成成分)
 下記式(I-7)で表される構成成分は、一般式(1)で表される部分構造又はその(共)重合物を含む構成成分であり、好ましくは一般式(2)で表されるセグメントを含む構成成分である。この構成成分は、ポリマーの主鎖及び側鎖のいずれにも組み込むことができ、主鎖に組み込まれることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 式中、R~Rは、それぞれ上記一般式(2)のR~Rと同義であり好ましい範囲も同じである。n1及びn2は、それぞれ上記一般式(2)のn1及びn2と同義であり好ましい範囲も同じである。L及びLは、単結合、-O-、-NH-、-S-、-C(=O)-若しくはアルキレン基、又はこれらの基を2つ以上組合わせた基を示す。Y及びYは、酸素原子又は-NH-を示す。*はポリマー中の結合部位を示す。
 上記アルキレン基は、直鎖、分枝及び環状のいずれでもよく、炭素数1~10のアルキレン基が好ましく、1~5がより好ましい。アルキレン基の具体例として、メチレン、エチレン、プロピレン、イソプロピレン及びシクロアルキレンが挙げられる。
 上記「組合わせた基」は、-O-、-NH-、-S-、-C(=O)-及びアルキレン基を2~10個組合わせた基が好ましく、2~8個組合わせた基がより好ましく、2~6個組合わせた基がより好ましく、2~4個組合わせた基がさらに好ましい。なお、同種の基を用いる場合はそれぞれを1個の基として数える。
 上記「組合わせた基」は具体的には、例えば、-NH-とアルキレン基とを組合わせた基、-O-とアルキレン基とを組合わせた基、-S-とアルキレン基とを組合わせた基、アルキレン基と-O-と-C(=O)-とを組合わせた基が挙げられる。より具体的には、例えば、-アルキレン基-NH-、-アルキレン基-S-及び-アルキレン基-O-C(=O)-アルキレン基-が挙げられる。
 以下に、式(I-7)で表される構成成分の具体例を挙げるが本発明はこれらに限定されない。下記具体例においてMeはメチル基を、Etはエチル基を示す。
Figure JPOXMLDOC01-appb-C000012
 括弧下付きの数値は、式(I-7)の[ ]中の全構成成分中の含有率を示し、単位はモル%である。なお、本発明は上記具体例中に記載の含有率に限定されず、上記n1及びn2で説明した範囲内で適宜に設定できる。
(式(I-8)で表される構成成分)
 下記式(I-8)で表される構成成分は、一般式(1)で表される部分構造又はその(共)重合物を含む構成成分であり、好ましくは一般式(2)で表されるセグメントを含む構成成分である。この構成成分は、通常、ポリマーの主鎖に組み込まれて、上記部分構造の(共)重合体又はセグメントが側鎖中に組み込まれる。
Figure JPOXMLDOC01-appb-C000013
 式中、[ ]内の構造は、式(I-7)の[ ]内の構造と同義であり、好ましい範囲も同じである。Lは、-O-、-S-、-NR-、-CO-若しくはアルキレン基又はこれらの基を2つ以上組合わせた基を示す。Y及びYは、酸素原子又は-NH-を示す。*はポリマー中の結合部位を示す。Rは水素原子、アルキル基又はアリール基を示し、水素原子を示すことが好ましい。アルキル基は、直鎖、分岐及び環状のいずれでもよく、例えば後述する置換基Tのアルキル基を挙げることができる。アリール基は、特に制限されず、例えば後述する置換基Tのアリール基を挙げることができる。
 上記「組合わせた基」は、-O-、-S-、-NR-、-CO-及びアルキレン基を2~10個組合わせた基が好ましく、2~8個組合わせた基がより好ましく、2~6個組合わせた基がより好ましく、2~4個組合わせた基がより好ましく、2個組合わせた基がさらに好ましい。なお、同種の基を用いる場合はそれぞれを1個の基として数える。
 上記「組合わせた基」は具体的には、例えば、-S-とアルキレン基とを組合わせた基、-O-とアルキレン基とを組合わせた基、-CO-と-O-とアルキレン基と-S-とを組合わせた基が挙げられる。より具体的には、例えば、-アルキレン基-S-及び-アルキレン基-CO-O-アルキレン-S-が挙げられる。
 式中の、Lと反対側の結合部に結合する基(原子)は、特に制限されず、側鎖の端部基であることが好ましく、合成反応条件(クエンチ条件)等に応じて適宜に決定される。
 以下、式(I-8)で表される構成成分の具体例を記載するが、本発明はこれらに限定されない。下記具体例においてMeはメチル基を、Etはエチル基を示す。
Figure JPOXMLDOC01-appb-C000014
 括弧下付きの数値は、式(I-8)の[ ]中の全構成成分中の含有率を示し、単位はモル%である。なお、本発明は上記具体例中に記載の含有率に限定されず、上記n1及びn2で説明した範囲内で適宜に設定できる。
 バインダを構成するポリマーは、式(I-3)又は式(I-4)、好ましくは式(I-3)で表される構成成分として、RP2が分子鎖として上記の炭化水素ポリマー鎖である構成成分を有していることが好ましい。また、バインダを構成するポリマーは、式(I-3)又は式(I-4)、好ましくは式(I-3)で表される構成成分について、RP2が分子鎖として上記ポリアルキレンオキシド鎖である構成成分及びRP2が脂肪族の炭化水素基(好ましくはエーテル基若しくはカルボニル基又はその両方、より好ましくはカルボキシ基を有する基)である構成成分の少なくとも1種を有していることがより好ましく、RP2が分子鎖として上記ポリアルキレンオキシド鎖である構成成分及びRP2が脂肪族の炭化水素基(好ましくはエーテル基若しくはカルボニル基又はその両方、より好ましくはカルボキシ基を有する基)である構成成分を有していることが更に好ましい。
 このバインダを構成するポリマーとしては、下記式(I-1)で表される構成成分、式(I-3A)で表される構成成分及び式(I-7)又は(I-8)で表される構成成分を少なくとも有することが好ましい。また、これらの構成成分に加えて式(I-3B)で表される構成成分を有することがより好ましく、式(I-3C)で表される構成成分を有することが更に好ましい。
 ポリマーは、RP2が(例えばエーテル基若しくはカルボニル基又はその両方を有しない)脂肪族の炭化水素基である構成成分(例えばブタンジオール由来の構成成分)を含む形態と、含まない形態の両形態をとることができる。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 式(I-1)において、RP1は上述の通りである。
 式(I-3A)において、RP2Aは、炭化水素ポリマー鎖を示す。
 式(I-3B)において、RP2Bは脂肪族の炭化水素基(好ましくは炭素数3~30、より好ましくは3~20)を示し、好ましくはエーテル基若しくはカルボニル基又はその両方、より好ましくはカルボキシ基を有している。例えば2,2-ビス(ヒドロキシメチル)酪酸等のビス(ヒドロキシメチル)酢酸化合物が挙げられる。
 式(I-3C)において、RP2Cはポリアルキレンオキシド鎖を示す。
 RP2Aとしてとりうる炭化水素ポリマー鎖、RP2Bとしてとりうる脂肪族の炭化水素基及びRP2Cとしてとりうるポリアルキレンオキシド鎖は、それぞれ、上記式(I-3)におけるRP2としてとりうる炭化水素ポリマー鎖、脂肪族の炭化水素基及びポリアルキレンオキシド鎖と同義であり、好ましいものも同じである。
 式(I-7)で表される構成成分及び式(I-8)で表される構成成分は上述の通りである。
 なお、バインダを構成するポリマー中における上記各式で表される構成成分の含有量は後述する。
 バインダを構成するポリマー(各構成成分)は、置換基を有していてもよい。置換基としては、下記置換基Tから選択される基が挙げられる。以下に置換基Tを挙げるが、これらに限定されない。
 アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基で、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基である。ヘテロ環基には芳香族ヘテロ環基(ヘテロアリール基)及び脂肪族ヘテロ環基を含む。例えば、テトラヒドロピラン環基、テトラヒドロフラン環基、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、ヘテロ環オキシ基(上記ヘテロ環基に-O-基が結合した基)、アルコキシカルボニル基(好ましくは炭素数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル、ドデシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ(-NH)、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(アルキルカルボニル基、アルケニルカルボニル基、アルキニルカルボニル基、アリールカルボニル基、ヘテロ環カルボニル基を含み、好ましくは炭素数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、オクタノイル、ヘキサデカノイル、アクリロイル、メタクリロイル、クロトノイル、ベンゾイル、ナフトイル、ニコチノイル等)、アシルオキシ基(アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、アリールカルボニルオキシ基、ヘテロ環カルボニルオキシ基を含み、好ましくは炭素数1~20のアシルオキシ基、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、オクタノイルオキシ、ヘキサデカノイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、クロトノイルオキシ、ベンゾイルオキシ、ナフトイルオキシ、ニコチノイルオキシ等)、アリーロイルオキシ基(好ましくは炭素数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、ヘテロ環チオ基(上記ヘテロ環基に-S-基が結合した基)、アルキルスルホニル基(好ましくは炭素数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素数6~42のアリールシリル基、例えば、トリフェニルシリル等)、ホスホリル基(好ましくは炭素数0~20のリン酸基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素数0~20のホスフィニル基、例えば、-P(R)、スルホ基(スルホン酸基)、カルボキシ基、ヒドロキシ基、スルファニル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。Rは、水素原子又は置換基(好ましくは置換基Tから選択される基)である。
 また、これらの置換基Tで挙げた各基は、上記置換基Tが更に置換していてもよい。
 化合物、置換基及び連結基等がアルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基及び/又はアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよい。
 バインダを構成するポリマーの構成成分の含有量の合計中の、式(I-1)若しくは式(I-2)で表される構成成分、又は式(I-5)で表されるカルボン酸二無水物由来の構成成分の含有量は、特に制限されず、10~50モル%であることが好ましく、20~50モル%であることがより好ましく、30~50モル%であることが更に好ましい。
 バインダを構成するポリマーの構成成分の含有量の合計中の、式(I-3)、式(I-4)又は式(I-6)で表される構成成分の含有量は、特に制限されず、10~50モル%であることが好ましく、20~50モル%であることがより好ましく、30~50モル%であることが更に好ましい。
 式(I-3)又は式(I-4)で表される構成成分のうち、RP2が分子鎖として上記炭化水素ポリマー鎖である構成成分の、バインダを構成するポリマー中の含有量は、特に制限されず、例えば、0~50モル%であることが好ましく、1~45モル%であることがより好ましく、3~40モル%であることが更に好ましく、3~30モル%であることが更に好ましく、3~20モル%であることが更に好ましく、3~15モル%であることが更に好ましい。
 式(I-3)又は式(I-4)で表される構成成分のうち、RP2が脂肪族の炭化水素基である構成成分の、バインダを構成するポリマー中の含有量は、特に制限されず、例えば、0~50モル%であることが好ましく、1~30モル%であることがより好ましく、2~20モル%であることが更に好ましく、4~10モル%であることが更に好ましい。
 式(I-3)又は式(I-4)で表される構成成分のうち、RP2が分子鎖として上記ポリアルキレンオキシド鎖である構成成分の、バインダを構成するポリマー中の含有量は、特に制限されず、例えば、0~50モル%であることが好ましく、10~45モル%であることがより好ましく、20~40モル%であることが更に好ましい。
 バインダを構成するポリマーの構成成分の含有量の合計中の、式(I-7)又は式(I-8)で表される構成成分の含有量は、特に制限されず、1~50モル%であることが好ましく、1~20モル%であることがより好ましく、1~12モル%であることがより好ましく、1~8モル%であることが更に好ましい。
 バインダを構成するポリマーは、上記各式で表される構成成分以外の構成成分を有していてもよい。このような構成成分は、上記各式で表される構成成分を導く原料化合物と目的とするポリマーを合成可能なものであれば特に制限されない。
 バインダを構成するポリマー中の、上記各式で表される構成成分以外の構成成分の含有量は、特に限定されず、20モル%以下であることが好ましい。
 なお、バインダを構成するポリマーが各式で表される構成成分を複数有する場合、各構成成分の上記含有量は合計含有量とする。
 上記ポリマーは、主鎖が有する結合の種類に応じて公知の方法により原料化合物を選択し、この原料化合物を重付加又は縮重合等して、合成することができる。合成方法としては、例えば、国際公開第2018/151118号を参照できる。
 上記式(I-1)で表される構成成分を導く原料化合物(ジイソシアネート化合物)は、特に制限されず、例えば、国際公開第2018/020827号に記載の、式(M1)で表されるジイソシアネート化合物及びその具体例が挙げられる。また、上記式(I-2)で表される構成成分を導く原料化合物(カルボン酸若しくはその酸クロリド等)は、特に制限されず、例えば、国際公開第2018/020827号に記載の化合物及びその具体例が挙げられる。
 上記式(I-3)又は式(I-4)で表される構成成分を導く原料化合物(ジオール化合物又はジアミン化合物)は、それぞれ、特に制限されず、例えば、国際公開第2018/020827号に記載の各化合物及びその具体例が挙げられ、更にジヒドロキシオキサミドも挙げられる。
 上記式(I-5)で表されるカルボン酸二無水物、及び上記式(I-6)で表される構成成分を導く原料化合物(ジアミン化合物)は、それぞれ、特に制限されず、例えば、国際公開第2018/020827号及び国際公開第2015/046313号に記載の各化合物及びその具体例が挙げられる。
 式(I-7)で表される構成成分を導く原料化合物は、市販品を用いることができ、通常の方法に準拠して合成することもできる。例えば、後述する構成成分A-3等を導く原料化合物は、2-ブロモイソ酪酸2-ヒドロキシエチル、臭化銅(I)、トリス(2-ピリジルメチル)アミン及び上記部分構造を導く(メタ)アクリル酸エステル化合物をプロピレングリコールモノメチルエーテルアセテート等の溶媒中でアゾビスイソブチロニトリル等の重合開始剤を用いてラジカル重合したのちに、金属亜鉛とアルデヒド化合物を反応させることで合成できる。具体的な合成方法、更に構成成分A-1等を導く原料化合物等の合成方法は、後述する実施例における合成方法が挙げられる。
 式(I-8)で表される構成成分を導く原料化合物は、例えば国際公開第2018/151161号を参照して合成することができる。
(ポリマーの物性等)
 上述のポリマー(ポリマーからなるバインダ)は、分散媒に対して可溶であってもよく、特にイオン伝導性の点で、分散媒に対して不溶(の粒子)であることが好ましい。
 本発明において、分散媒に対して不溶であるとは、ポリマーを30℃の分散媒(使用量はポリマーの質量に対して10倍)に添加し、24時間静置しても、分散媒への溶解量が3質量%以下であることを意味し、2質量%以下であることが好ましく、1質量%以下であることがより好ましい。ここの溶解量は、分散媒に添加したポリマー質量に対する、24時間経過後に分散媒から固液分離して得られるポリマー質量の割合とする。
 上記ポリマー(バインダ)は、無機固体電解質含有組成物中において、例えば分散媒に溶解して存在していてもよく、分散媒に溶解せず固体状で存在(好ましくは分散)していてもよい(固体状で存在するバインダを粒子状バインダという。)。本発明において、ポリマー(バインダ)は、無機固体電解質含有組成物中、更には固体電解質層又は活物質層(塗布乾燥層)において粒子状バインダであることが、電池抵抗及びサイクル特性の点で、好ましい。
 バインダが粒子状バインダである場合、その形状は特に制限されず、偏平状、無定形等であってもよく、球状若しくは顆粒状が好ましい。
 粒子状バインダの平均粒径は、特に制限されず、1000nm以下であることが好ましく、500nm以下であることがより好ましく、300nm以下であることが更に好ましい。下限値は1nm以上であり、5nm以上であることが好ましく、10nm以上であることがより好ましく、50nm以上であることが更に好ましい。平均粒径は、上記無機固体電解質の平均粒径と同様にして測定できる。
 - 質量平均分子量 -
 上記ポリマーの質量平均分子量は、特に制限されない。例えば、15000以上が好ましく、30000以上がより好ましく、50000以上が更に好ましい。上限としては、400000以下が実質的であり、200000以下が好ましく、100000以下がより好ましい。
 このポリマーは、非架橋ポリマーであっても架橋ポリマーであってもよい。また、加熱又は電圧の印加によってポリマーの架橋が進行した場合には、上記分子量より大きな分子量となっていてもよい。好ましくは、全固体二次電池の使用開始時にポリマーが上記範囲の質量平均分子量であることである。
 - 水分濃度 -
 上記ポリマーの水分濃度は、100ppm(質量基準)以下が好ましい。また、このポリマーは、晶析させて乾燥させてもよく、ポリマー分散液をそのまま用いてもよい。
 バインダ(B)の、無機固体電解質含有組成物中の含有量は、無機固体電解質粒子、活物質及び導電助剤等の固体粒子との結着性と、イオン伝導性の両立の点で、固形成分100質量%において、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上が更に好ましく、3.5質量%以上が更に好ましい。上限としては、電池容量の観点から、16質量%以下が好ましく、12質量%以下がより好ましく、8質量%以下が更に好ましい。
 本発明の無機固体電解質含有組成物において、バインダ(B)の質量に対する、無機固体電解質と活物質の合計質量(総量)の質量比[(無機固体電解質の質量+活物質の質量)/(バインダの質量)]は、1,000~1の範囲が好ましい。この比率は500~2がより好ましく、100~5が更に好ましい。
 本発明の無機固体電解質含有組成物は、バインダ(B)を1種単独で、又は2種以上、含有していてもよい。
<活物質(C)>
 本発明の無機固体電解質含有組成物は、周期律表第1族若しくは第2族に属する金属元素のイオンの挿入放出が可能な活物質を含有してもよい。
 活物質としては、正極活物質及び負極活物質が挙げられ、正極活物質である遷移金属酸化物、又は、負極活物質である金属酸化物が好ましい。
 本発明において、活物質(正極活物質及び負極活物質)を含有する無機固体電解質含有組成物を、電極用組成物(正極用組成物及び負極用組成物)ということがある。
(正極活物質)
 本発明の無機固体電解質含有組成物が含有してもよい正極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、有機物、硫黄などのLiと複合化できる元素、又は、硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P又はBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO及びLiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO、LMO、NCA又はNMCがより好ましい。
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 正極活物質の、無機固体電解質含有組成物中における含有量は、特に限定されず、固形分100質量%において、10~95質量%が好ましく、15~90質量%がより好ましく、20~85質量が更に好ましく、25~80質量%が特に好ましい。
(負極活物質)
 本発明の無機固体電解質含有組成物が含有してもよい負極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体及びリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、Al及びIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵及び放出可能であることが好ましい。その材料は、特には制限されず、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb及びBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、並びにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb及びSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 Si負極に用いられる負極活物質の具体例として、構成元素にSiを含む負極活物質が挙げられ、具体的にはSi及びSiOx(0<x≦1)が挙げられる。
 負極活物質の形状は特に制限されず、粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機又は分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル又は篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式及び湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 負極活物質の、無機固体電解質含有組成物中における含有量は、特に限定されず、固形分100質量%において、10~80質量%であることが好ましく、20~80質量%がより好ましい。
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi,Nb、Ta,W,Zr、Al,Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12,LiTi,LiTaO,LiNbO,LiAlO,LiZrO,LiWO,LiTiO,Li,LiPO,LiMoO,LiBO,LiBO,LiCO,LiSiO,SiO,TiO,ZrO,Al,B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
<導電助剤(D)>
 本発明の無機固体電解質含有組成物は、導電助剤を含有してもよい。導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いてもよい。またこれらの内1種を用いてもよいし、2種以上を用いてもよい。
 本発明において、負極活物質と導電助剤とを併用する場合、電池を充放電した際にLiの挿入と放出が起きず、負極活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に負極活物質層中において負極活物質として機能しうるものは、導電助剤ではなく負極活物質に分類する。電池を充放電した際に負極活物質として機能するか否かは、一義的に言うことができず、負極活物質との組み合わせにおいて決定される。
 導電助剤の含有量は、無機固体電解質含有組成物中の固形分100質量%に対して、0~10質量%が好ましく、3~7質量%がより好ましい。
<分散媒(E)>
 本発明の無機固体電解質含有組成物は、固形成分を分散させるため分散媒を含有することが好ましい。
 分散媒体は、上記の各成分を分散させるものであればよく、例えば、各種の有機溶媒が挙げられる。分散媒の具体例としては下記のものが挙げられる。
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、1,3-ブタンジオール及び1,4-ブタンジオールが挙げられる。
 エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジブチルエーテル等)、テトラヒドロフラン及びジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)が挙げられる。
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド及びヘキサメチルホスホリックトリアミドが挙げられる。
 アミノ化合物溶媒としては、例えば、トリエチルアミン、及びトリブチルアミンが挙げられる。
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン及びジブチルケトンが挙げられる。
 エステル系化合物溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸ブチル、酪酸ペンチル、吉草酸メチル、吉草酸エチル、吉草酸プロピル、吉草酸ブチル、カプロン酸メチル、カプロン酸エチル、カプロン酸プロピル及びカプロン酸ブチルが挙げられる。
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、エチルベンゼン、キシレン及びメシチレンが挙げられる。
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、オクタン、ノナン、デカン、ペンタン、シクロペンタン、デカリン及びシクロオクタンが挙げられる。
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル及びブチロニトリルが挙げられる。
 分散媒は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることが更に好ましい。
 上記分散媒は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 本発明において、脂肪族化合物溶媒及びエステル系化合物溶媒を用いることが好ましい。
 無機固体電解質含有組成物中の分散媒の含有量は、特に制限されず、0質量%以上であればよい。本発明の無機固体電解質含有組成物が分散媒を含有する場合、その含有量は、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。
<リチウム塩(F)>
 本発明の無機固体電解質含有組成物は、リチウム塩を含有してもよい。
 リチウム塩としては、特に制限はなく、例えば、特開2015-088486号公報の段落0082~0085記載のリチウム塩が好ましい。
 リチウム塩の含有量は、無機固体電解質含有組成物中の固形分100質量部に対して、0質量部以上が好ましく、2質量部以上がより好ましい。上限としては、20質量部以下が好ましく、10質量部以下がより好ましい。
<その他のバインダ>
 本発明の無機固体電解質含有組成物は、本発明の効果を損なわない範囲内で、上述のバインダ(B)の他に、通常用いられるバインダを含有してもよい。
 通常用いられるバインダとしては有機ポリマーが挙げられ、例えば、以下に述べる樹脂からなるバインダが好ましく使用される。
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリル-ブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。アクリル樹脂としては、各種の(メタ)アクリルモノマー類、(メタ)アクリルアミドモノマー類、及びこれら樹脂を構成するモノマーの共重合体(好ましくは、アクリル酸とアクリル酸メチルとの共重合体)が挙げられる。
 また、その他のビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。
 その他の樹脂としては例えばポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
 これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 なお、上記バインダは市販品を用いることができる。また、常法により調製することもできる。
<無機固体電解質含有組成物の調製>
 本発明の無機固体電解質含有組成物は、無機固体電解質(A)及びバインダ(B)、必要により、分散媒(E)又は他の成分を、例えば、各種の混合機を用いて、混合することにより、調製することができる。好ましくは、無機固体電解質(A)及びバインダ(B)と、必要により分散媒(E)、他の成分を分散媒に分散させたスラリーとして、調製できる。
 無機固体電解質含有組成物のスラリーは、各種の混合機を用いて調製できる。混合装置としては、特に限定されず、例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダー及びディスクミルが挙げられる。混合条件は特に制限されず、例えば、ボールミルを用いた場合、150~700rpm(rotation per minute)で1時間~24時間混合することが好ましい。
 分散媒を含有しない無機固体電解質含有組成物を調製する場合には、上記の無機固体電解質(A)の分散工程と同時に添加及び混合してもよく、別途添加及び混合してもよい。なお、バインダ(B)は、無機固体電解質(A)及び/又は活物質(C)若しくは導電助剤(D)等の成分の分散工程と同時に添加及び混合してもよく、別途添加及び混合してもよい。また、本発明の無機固体電解質含有組成物に添加及び/又は混合する際のバインダ(B)の形態は、バインダ(B)そのものであっても、バインダ(B)の溶液であっても、バインダ(B)の分散液(ポリマーの非水溶媒分散物)であってもよい。中でも、無機固体電解質の分解を抑制し、かつ、活物質と無機固体電解質の粒子表面に点在化してイオン伝導度を担保できる点からは、バインダの分散液が好ましい。
[全固体二次電池用シート]
 本発明の全固体二次電池用シートは、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、バインダ(B)とを含有する層を有する。このバインダ(B)は、特に断りがない限り、本発明の無機固体電解質含有組成物におけるバインダ(B)と同義である。
 本発明の無機固体電解質含有組成物を用いて作製される本発明の全固体二次電池用シートは、バインダ(B)を含有するため、結着性及びイオン伝導度に優れる。この結果、本発明の全固体二次電池用シートを組み込んだ全固体二次電池は、イオン伝導度が高く、サイクル特性を向上できると考えられる。また、全固体二次電池用シートの固体電解質層は高結着性を示すため、全固体二次電池の製造に際して、全固体二次電池用シートを打ち抜いても、固体電解質層に欠け及び割れが発生しにくく、打ち抜いた全固体二次電池用シートを用いても全固体二次電池の優れた電池性能を維持できる。全固体二次電池用シートが後述する全固体二次電池用電極シートである場合は、固体電解質層に加えて活物質層も高結着性を示すうえ、集電体との層間密着性も強固であるため、打ち抜き時の欠け及び割れの発生を防止できる。更には、全固体二次電池をロール トゥ ロール法により製造することができ、しかも固体電解質層又は活物質層に欠陥が生じにくく、活物質又は固体電解質層から活物質又は無機固体電解質が脱落しにくい。
 本発明の全固体二次電池用シートは、全固体二次電池に好適に用いることができ、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シート又は固体電解質シートともいう)、電極又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートということがある。
 全固体二次電池用シートは、固体電解質層又は活物質層(電極層)を有するシートであればよく、固体電解質層又は活物質層(電極層)が基材上に形成されているシートでも、基材を有さず、固体電解質層又は活物質層(電極層)から形成されているシートであってもよい。以降、基材上に固体電解質層又は活物質層(電極層)を有する態様のシートを例に、詳細に説明する。
 この全固体二次電池用シートは、固体電解質層又は活物質層を有していれば、他の層を有してもよく、活物質を含有するものは全固体二次電池用電極シートに分類される。他の層としては、例えば、保護層、集電体、導電体層等が挙げられる。
 全固体二次電池用固体電解質シートとして、例えば、固体電解質層と、必要により保護層とを基材上に、この順で有するシートが挙げられる。
 基材としては、固体電解質層を支持できるものであれば特に限定されず、後記集電体で説明した材料、有機材料及び無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン及びセルロース等が挙げられる。無機材料としては、例えば、ガラス及びセラミック等が挙げられる。
 全固体二次電池用シートにおける、固体電解質層及び活物質層は、それぞれ、好ましくは、含有する成分種及びその含有量比について、特段の断りをしない限り、無機固体電解質含有組成物の固形分におけるものと同じである。
 全固体二次電池用シートの固体電解質層の層厚は、本発明の全固体二次電池において説明する固体電解質層の層厚と同じである。
 このシートは、本発明の無機固体電解質含有組成物、好ましくは、無機固体電解質(A)と、バインダ(B)と、分散媒(E)とを含有する無機固体電解質含有組成物を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。詳細は後述する。
 ここで、本発明の無機固体電解質含有組成物は、上記の方法によって、調製できる。
 本発明の全固体二次電池用電極シート(単に「電極シート」ともいう。)は、全固体二次電池の活物質層を形成するためのシートであって、集電体としての金属箔上に活物質層を有する電極シートである。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。
 電極シートを構成する各層の構成及び層厚は、後記の、本発明の全固体二次電池において説明した各層の構成及び層厚と同じである。
 電極シートは、本発明の、活物質を含有する無機固体電解質含有組成物を金属箔上に製膜(塗布乾燥)して、金属箔上に活物質層を形成することにより、得られる。詳細は後述する。
[全固体二次電池]
 本発明の全固体二次電池は、正極と、この正極に対向する負極と、正極及び負極の間の固体電解質層とを有する。正極は、正極集電体上に正極活物質層を有する。負極は、負極集電体上に負極活物質層を有する。
 負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層は、本発明の無機固体電解質含有組成物を用いて形成され、無機固体電解質(A)とバインダ(B)とを含有する。
 無機固体電解質含有組成物を用いて形成された活物質層及び/又は固体電解質層は、好ましくは、含有する成分種及びその含有量比について、特段の断りをしない限り、無機固体電解質含有組成物の固形分におけるものと同じである。
 本発明の全固体二次電池は積層型であってもよく、この積層型全固体二次電池は、負極活物質層、固体電解質層及び正極活物質層を1ユニットとして、1~100ユニット有する形態が好ましく、2~50ユニット有する形態がより好ましい。
 以下に、図1を参照して、本発明の好ましい実施形態について説明するが、本発明はこれに限定されない。
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。本発明の無機固体電解質含有組成物は、上記負極活物質層、正極活物質層、固体電解質層の形成材料として好ましく用いることができる。また、本発明の全固体二次電池用シートは、上記負極活物質層、正極活物質層、固体電解質層として好適である。以下、図1の層構成を有する全固体二次電池を全固体二次電池シートと称することもある。
 本明細書において、正極活物質層(以下、正極層とも称す。)と負極活物質層(以下、負極層とも称す。)を合わせて電極層又は活物質層と称することがある。また、正極活物質及び負極活物質のいずれか、又は両方を合わせて、単に、活物質又は電極活物質と称することがある。
(正極活物質層、固体電解質層、負極活物質層)
 全固体二次電池10においては、正極活物質層、固体電解質層及び負極活物質層のいずれかが本発明の無機固体電解質含有組成物を用いて作製されている。この全固体二次電池10は優れた電池性能を示す。
 すなわち、固体電解質層3が本発明の無機固体電解質含有組成物を用いて作製されている場合、固体電解質層3は、無機固体電解質(A)とバインダ(B)とを含む。固体電解質層は、通常、正極活物質及び/又は負極活物質を含まない。
 正極活物質層4及び/又は負極活物質層2が、活物質を含有する本発明の無機固体電解質含有組成物を用いて作製されている場合、正極活物質層4及び負極活物質層2は、それぞれ、正極活物質又は負極活物質を含み、更に、無機固体電解質(A)とバインダ(B)とを含む。活物質層が無機固体電解質を含有するとイオン伝導度を向上させることができる。
 正極活物質層4、固体電解質層3及び負極活物質層2が含有する無機固体電解質(A)及びバインダ(B)は、それぞれ、互いに同種であっても異種であってもよい。
 本発明においては、全固体二次電池における負極活物質層、正極活物質層及び固体電解質層のいずれかの層が、無機固体電解質(A)とバインダ(B)とを含有する無機固体電解質含有組成物を用いて作製され、無機固体電解質(A)とバインダ(B)とを含有する層である。
 本発明において、全固体二次電池における負極活物質層、正極活物質層及び固体電解質層が、いずれも、上記無機固体電解質含有組成物で作製されることが好ましい態様の1つである。
 正極活物質層4、固体電解質層3、負極活物質層2の厚さは特に限定されない。一般的な電池の寸法を考慮すると、上記各層の厚さは、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層4、固体電解質層3及び負極活物質層2の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
(集電体(金属箔))
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル、チタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に限定されず、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層若しくは部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
(筐体)
 上記の各層を配置して全固体二次電池の基本構造を作製することができる。用途によってはこのまま全固体二次電池として使用してもよいが、乾電池の形態とするためには更に適当な筐体に封入して用いる。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金及びステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[全固体二次電池用シートの製造]
 本発明の全固体二次電池用シートは、本発明の無機固体電解質含有組成物(好ましくは分散媒(E)を含有する。)を基材上(導電体層等の他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。
 上記態様により、無機固体電解質(A)とバインダ(B)とを(含有する固体電解質層を)基材上に有する全固体二次電池用シートを作製することができる。また、作製した全固体二次電池用シートから基材を剥がし、固体電解質層からなる全固体二次電池用シートを作製することもできる。
 その他、塗布等の工程については、下記全固体二次電池の製造に記載の方法を使用することができる。
 全固体二次電池用シートの構成層は、電池性能に影響を与えない範囲内で分散媒(E)を含有してもよい。具体的には、各構成層の全質量中1ppm以上10000ppm以下含有してもよい。
 本発明の全固体二次電池用シート中の分散媒(E)の含有割合は、以下の方法で測定することができる。
 全固体二次電池用シートを20mm角で打ち抜き、ガラス瓶中で重テトラヒドロフランに浸漬させる。得られた溶出物をシリンジフィルターでろ過してH-NMRにより定量操作を行う。H-NMRピーク面積と溶媒の量の相関性は検量線を作成して求める。
[全固体二次電池及び全固体二次電池用電極シートの製造]
 全固体二次電池及び全固体二次電池用電極シートの製造は、常法によって行うことができる。具体的には、全固体二次電池及び全固体二次電池用電極シートは、本発明の無機固体電解質含有組成物等を用いて、上記の各層を形成することにより、製造できる。以下詳述する。
 本発明の全固体二次電池は、本発明の無機固体電解質含有組成物を、基材(例えば、集電体となる金属箔)上に塗布し、塗膜を形成(製膜)する工程を含む(介する)方法により、製造できる。
 例えば、正極集電体である金属箔上に、正極用材料(正極用組成物)として、正極活物質を含有する無機固体電解質含有組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための無機固体電解質含有組成物を塗布して、固体電解質層を形成する。更に、固体電解質層の上に、負極用材料(負極用組成物)として、負極活物質を含有する無機固体電解質含有組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極用組成物)として、負極活物質を含有する無機固体電解質含有組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。更に、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、無機固体電解質含有組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。更に、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 上記の形成法の組み合わせによっても全固体二次電池を製造することができる。例えば、上記のようにして、全固体二次電池用正極シート、全固体二次電池用負極シート及び全固体二次電池用固体電解質シートをそれぞれ作製する。次いで、全固体二次電池用負極シート上に、基材から剥がした固体電解質層を積層した後に、上記全固体二次電池用正極シートと張り合わせることで全固体二次電池を製造することができる。この方法において、固体電解質層を全固体二次電池用正極シートに積層し、全固体二次電池用負極シートと張り合わせることもできる。
<各層の形成(成膜)>
 無機固体電解質含有組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布及びバーコート塗布が挙げられる。
 このとき、無機固体電解質含有組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、分散媒(E)を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
 塗布した無機固体電解質含有組成物、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した無機固体電解質含有組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は分散媒をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
 各組成物は同時に塗布してもよいし、塗布乾燥プレスを同時及び/又は逐次行ってもよい。別々の基材に塗布した後に、転写により積層してもよい。
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)及び不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積又は膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を解放することにより、行うことができる。
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池をいう。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。この中で、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi-P-S系ガラス、LLT若しくはLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に有機化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質のバインダ若しくは添加剤として有機化合物を適用することができる。
 無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-S系ガラス、LLT若しくはLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがある。上記のイオン輸送材料としての電解質と区別する際には、これを「電解質塩」又は「支持電解質」と呼ぶ。電解質塩としては、例えばLiTFSIが挙げられる。
 本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集又は偏在が生じていてもよい。
 以下に、実施例に基づき本発明について更に詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「%」は、特に断らない限り質量基準である。
[硫化物系無機固体電解質(A):Li-P-S系ガラスの合成]
 硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.HamGa,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g及び五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記の硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP-7(商品名、フリッチュ社製)に容器をセットし、温度25℃で、回転数510rpmで20時間メカニカルミリングを行うことで、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、LPSと表記することがある。)6.20gを得た。
[(B)バインダを構成するポリマー(バインダポリマー)の合成]
<バインダポリマーS-1の合成>
 200mL3つ口フラスコに、ポリエチレングリコール(富士フイルム和光純薬社製、商品名:ポリエチレングリコール 200)3.72gと、2,2-ビス(ヒドロキシメチル)酪酸(東京化成工業社製)0.92g、NISSO-PB GI-1000(商品名、日本曹達社製)4.65g、後記合成した、構成成分A-1を導入するための化合物3.10gとを加え、THF(テトラヒドロフラン)81gに溶解した。この溶液に、ジフェニルメタンジイソシアネート(富士フイルム和光純薬社製)7.76gを加えて60℃で撹拌し、均一に溶解させた。得られた溶液に、ネオスタンU-600(商品名、日東化成社製)640mgを添加して60℃で5時間攪伴し、粘性ポリマー溶液を得た。このポリマー溶液にメタノール(富士フイルム和光純薬社製)0.23gを加えてポリマー末端を封止して、重合反応を停止し、ポリマーS-1の20質量%THF溶液(ポリマー溶液)を得た。
 次に、上記で得られたポリマー溶液に対してTHF81gを加えた溶液に、150rpmで撹拌しながら、ジイソブチルケトン222gを10分間かけて滴下し、ポリマーS-1の乳化液を得た。窒素ガスをフローしながらこの乳化液を85℃で120分加熱した。得られた残留物にジイソブチルケトン50gを加えて更に85℃で60分加熱した。この操作を4回繰り返し、THFを除去した。こうして、ポリマーS-1からなるバインダのジイソブチルケトン分散液を得た。
<構成成分A-1を導入するための化合物(以下、単に「A-1」と称する)の合成>
 後記するA-1は以下のようにして合成した。
 500mLメスシリンダーに、アクリル酸エチル(東京化成工業社製)79.3g、α-チオグリセロール(東京化成工業社製)5.0g、エタノール(富士フイルム和光純薬社製)96.7g、V-601(商品名、富士フイルム和光純薬社製、油溶性アゾ重合開始剤)2.65gを秤量し、室温で攪拌して均一に溶解させた溶液を得た。500mL3口ナスフラスコにエタノール100gを入れて80℃に昇温し、エタノールへ上記溶液を2時間かけて滴下した。滴下完了後の溶液を90℃に昇温して2時間撹拌後、静置して室温に戻した。この溶液をトルエン1000gに流し入れて生成物を沈殿させ、上澄みを除くことで洗浄した。この洗浄作業を3回繰り返した後、回収した沈殿物を70℃で6時間真空乾燥することでA-1を得た。A-1の数平均分子量は1,000であった。
<バインダポリマーS-2~S-20及びT-1~T-4の合成>
 バインダポリマーS-1の合成において、下記表1に記載の原料化合物の組成(原料化合物の種類及び含有率)を採用したこと以外は、バインダポリマーS-1と同様にして、バインダポリマーS-2~S-20及びT-1~T-4をそれぞれ合成した。
 バインダポリマーS-15はその主鎖にエステル結合を有し、バインダポリマーS-16はその主鎖にウレア結合及びウレタン結合を有し、バインダポリマーS-17はアミド結合及びエステル結合を有し、他のバインダポリマーはその主鎖にウレタン結合を有している。
 下記表1に記載の構成成分A-2~A-10を導入するための化合物は以下のようにして合成した。
<構成成分A-2、A-4~A-A-6、A-9、A-10及びB-1~B-3を導入するための化合物の合成>
 上記A-1の合成において、アクリル酸エチルを後記構成成分A-2、A-4~A-A-6、A-9、A-10及びB-1~B-3におけるセグメントに相当する化合物及び使用量(数平均分子量)に変更したこと以外は、A-1の合成と同様にして、A-2、A-4~A-A-6、A-9、A-10及びB-1~B-3をそれぞれ合成した。
<構成成分A-3を導入するための化合物の合成>
 1Lメスフラスコに、2-ブロモイソ酪酸2-ヒドロキシエチル(アルドリッチ社製)3.0g、臭化銅(I)(アルドリッチ社製)0.5g、トリス(2-ピリジルメチル)アミン(アルドリッチ社製)1.0gおよびアクリル酸エチル(富士フイルム和光純薬社製)180g、プロピレングリコールモノメチルエーテルアセテート343gを加え、70℃で攪拌して溶解させた。アゾビスイソブチロニトリル1,5gを加え、70℃で8時間撹拌後、静置して室温に戻した。亜鉛(富士フイルム和光純薬社製)12.5g バレルアルデヒド(東京化成社製)5.0gを加え、室温で12時間撹拌した。得られたポリマー溶液を1200gのトルエンに流し入れ、上澄みを捨て沈殿物を回収した。この沈殿物を恒温槽中120℃で5時間乾燥することで、A-3を得た。
<構成成分A-7を導入するための化合物の合成>
 上記A-3の合成において、アクリル酸エチルを後記構成成分A-7におけるセグメントに相当する化合物及び使用量(数平均分子量)に変更したこと以外は、A-3の合成と同様にして、A-7を合成した。
<構成成分A-8を導入するための化合物の合成>
 100mLメスフラスコに、2-(ヒドロキシメチル)アクリル酸エチル(東京化成社製)30.0g、2-アミノエタノール(東京化成社製)14.1gを加え、室温で攪拌して混合した。トリエチルアミン0.2gを加え、室温で3時間撹拌することで、A-8を合成した。
Figure JPOXMLDOC01-appb-T000017
(表の注)
 構成成分(I)の分子量は、構成成分(I)を導入するための化合物の数平均分子量を意味する。
 構成成分M1~M5は、各列に記載の化合物由来の構成成分である。
 構成成分M1:式(I-1)又は式(I-2)で表される構成成分
 構成成分M2:式(I-3C)で表される構成成分
 構成成分M3:式(I-3B)で表される構成成分、又は式(I-3A)で表される構成成分において両末端の酸素原子をNHに変更した構成成分
 構成成分M4:式(I-3C)で表される構成成分
 構成成分M5:式(I-3A)で表される構成成分
 構成成分(I):式(I-7)又は式(I-8)で表される構成成分
 表には、上記各構成成分を導入するための化合物を記載している。
MDI:ジフェニルメタンジイソシアネート(東京化成工業社製)
H12MDI:ジシクロヘキシルメタン-4,4'-ジイソシアネート
PEG200:ポリエチレングリコール 200(商品名、数平均分子量200、富士フイルム和光純薬社製)
PEG400:ポリエチレングリコール 400(商品名、数平均分子量400、富士フイルム和光純薬社製)
PEG600:ポリエチレングリコール 600(商品名、数平均分子量600、富士フイルム和光純薬社製)
DMBA:2,2-ビス(ヒドロキシメチル)酪酸(東京化成工業社製)
DMPA:2,2-ビス(ヒドロキシメチル)プロピオン酸
D-400:ジェファーミンD-400(商品名、ポリオキシプロピレンジアミン、数平均分子量400、ハンツマン社製)
PTMG250:ポリテトラメチレングリコール 250(商品名、数平均分子量250、ALDRICH社製)
NISSO-PB GI1000:商品名、両末端水酸基水素化ポリブタジエン、数平均分子量1400、日本曹達社製
M-1:アジピルクロリド(東京化成工業社製)
 以下に、構成成分A-1~A-10及びB-1~B-3を示す。セグメント中の数字は含有率を示し、単位はモル%である。
 下記化合物において、Meはメチル基を、Etはエチル基を、Buはn-ブチル基を示す。下記A-10のC1225は直鎖ドデシル基である。
Figure JPOXMLDOC01-appb-C000018
[実施例1]
<無機固体電解質含有組成物、正極用組成物及び負極用組成物の調製>
 上記合成したバインダポリマーを用いて以下のようにして、後記表2に記載する、無機固体電解質含有組成物、正極用組成物及び負極用組成物を調製した。
(無機固体電解質含有組成物K-1~K-21及びKc11~Kc14の調製)
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記合成したLPSを4.0g、下記表2に記載の組成で各成分を投入した。その際に、分散媒(E)は無機固体電解質含有組成物の固形分濃度が50%になるように調整した。その後に、この容器をフリッチュ社製遊星ボールミルP-7(商品名)にセットし、温度25℃、回転数150rpmで10分間混合を続けて、無機固体電解質含有組成物K-1~K-21及びKc11~Kc14をそれぞれ調製した。
<正極用組成物PK-1~PK-3又は負極用組成物NK-1~NK-17、NKc21~NKc24の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記合成したLPSを2.7g、表1に示すバインダポリマーの分散液又は溶液、及び分散媒を投入した。その際に、分散媒(E)は正極用組成物又は負極用組成物の固形分濃度が70%になるように調整した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数150rpmで10分間攪拌した。その後、表2に示す活物質を投入し、同様にして、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで5分間混合を続け、正極用組成物PK-1~PK-3、負極用組成物NK-1~NK-17、NKc21~NKc24をそれぞれ調製した。
Figure JPOXMLDOC01-appb-T000019
<全固体二次電池用シートの作製>
 以下のようにして、後記表3に記載する固体電解質シート及び電極シートを作製した。
(固体電解質シートの作製)
 上記で得られた各無機固体電解質含有組成物を厚み20μmのアルミニウム箔上に、アプリケーター(商品名:SA-201ベーカー式アプリケーター、テスター産業社製)により塗布し、80℃で2時間加熱し、乾燥(分散媒を除去)した。その後、ヒートプレス機を用いて、120℃の温度及び600MPaの圧力で10秒間、乾燥させた無機固体電解質含有組成物を加熱及び加圧し、固体電解質シート101~121及びc11~c14をそれぞれ作製した。固体電解質層の膜厚は50μmであった。
<電極シートの作製>
 上記で得られた正極用組成物又は負極用組成物を厚み20μmのアルミニウム箔(正極集電体)又は銅箔(負極集電体)上に、ベーカー式アプリケーター(商品名:SA-201)により塗布し、80℃で2時間加熱し、乾燥(分散媒を除去)した。その後、ヒートプレス機を用いて、乾燥させた正極又は負極用組成物を25℃で加圧(10MPa、1分)し、正極活物質層又は負極活物質層を有する各シートを作製した。
 次いで、各シートの活物質層上に、上記で作製した表3に示す無機固体電解質含有組成物(固体電解質シート)を固体電解質層が正極活物質層又は負極活物質層に接するように重ね、プレス機を用いて25℃で50MPa加圧して転写(積層)した後に、25℃で600MPa加圧することで、固体電解質層を備えた正極シート122~124、負極シート125~141及びc21~c24をそれぞれ作製した。各シートの電極活物質層の膜厚は80μmであり、固体電解質層の膜厚は50μmであった。
[試験例]
 上記で作製した全固体二次電池用シートについて、以下の試験を行った。以下に試験方法を記載し、結果を下記表3にまとめて記載する。
[試験例:イオン電導度測定]
 以下のようにして、イオン伝導度測定用試験体を作製した。
(1)固体電解質シートを用いたイオン伝導度測定用試験体の作製
 上記で得られた固体電解質シートを直径14.5mmの円板状に切り出し、この固体電解質シート12を図2に示す2032型コインケース11に入れた。具体的には、直径15mmの円板状に切り出したアルミニウム箔(図2に図示しない)を固体電解質層と接触させ、スペーサーとワッシャー(ともに図2において図示しない)を組み込んで、ステンレス製の2032型コインケース11に入れた。2032型コインケース11をかしめることで、8ニュートン(N)の力で締め付けられた、イオン伝導度測定用試験体13を作製した。
(2)電極シートを用いたイオン伝導度測定用試験体の作製
 上記で作製した同一のシートNo.を付した2枚の電極シート(電極シートのうち、固体電解質層側のアルミニウム箔は剥離済み)から、それぞれ、直径14.5mmの円板状シートを切り出した。切り出した2枚の円盤状シートの固体電解質層同士を貼り合わせて、積層体(集電体-電極活物質層-固体電解質層-固体電解質層-電極活物質層-集電体からなる積層体)12を作製した。この積層体12をイオン伝導度測定用試料として、スペーサーとワッシャー(図2において図示せず)を組み込んで、ステンレス製の2032型コインケース11に入れた。2032型コインケース11をかしめることで、8ニュートン(N)の力で締め付けられた、図2に示す構成を有するイオン伝導度測定用試験体13を作製した。
 イオン伝導度測定用試験体として得られたイオン伝導度測定用試験体13を用いて、イオン伝導度を測定した。具体的には、イオン伝導度測定用試験体13について、30℃の恒温槽中、1255B FREQUENCY RESPONSE ANALYZER(商品名、SOLARTRON社製)を用いて、電圧振幅5mV、周波数1MHz~1Hzまで交流インピーダンス測定した。これにより、イオン伝導度測定用試料の層厚方向の抵抗を求め、下記式(1)により計算して、イオン伝導度を求めた。下記式から明らかなように、抵抗の上昇を抑制できるほど高いイオン伝導度を示す。
 
 式(1):イオン伝導度σ(mS/cm)=
  1000×試料層厚(cm)/[抵抗(Ω)×試料面積(cm)]
 
 式(1)において、試料層厚は、積層体12を2032型コインケース11に入れる前に測定し、2枚の集電体の厚みを差し引いた値(固体電解質シートを用いた場合、固体電解質層の層厚を意味し、電極シートを用いた場合、固体電解質層及び電極活物質層の合計層厚を意味する)である。試料面積は、直径14.5mmの円板状シートの面積である。
 得られたイオン伝導度が下記評価ランクのいずれに含まれるかを判定した。
 本試験におけるイオン伝導度は、評価ランク「D」以上が合格である。
 -イオン伝導度の評価ランク-
 A:0.60≦σ
 B:0.50≦σ<0.60
 C:0.40≦σ<0.50
 D:0.30≦σ<0.40
 E:0.20≦σ<0.30
 F:     σ<0.20
<密着性試験>
 上記作製した各全固体二次電池用シートから縦20mm×横20mmの試験片を切り出した。この試験片に対し、カッターナイフを用いて1つの辺に平行に1mm間隔で基材(アルミニウム箔又は銅箔)に到達するように11本の切り込みを入れた。また、この切り込みに対して垂直方向に、1mm間隔で基材に到達するように11本の切り込みを入れた。このようにして、試験片にマス目を100個形成した。
 縦15mm×横18mmのセロハン(登録商標、ニチバン社)テープを固体電解質層表面に貼り付け、上記100個のマス目を全て覆った。セロハンテープの表面を消しゴムでこすって固体電解質層に押付け付着させた。セロハンテープを付着させてから2分後に、セロハンテープの端を持って固体電解質層に対して垂直上向きに引っ張り、剥がした。セロハンテープを引き剥がした後、目視で観察して、活物質層が集電体から全く剥離していないマス目の数を計数して、集電体に対する活物質層の密着性を評価した。また、固体電解質層の表面を目視で観察して、固体電解質層内で破壊(固体電解質層にヒビ、欠けが発生又は固体電解質層が活物質層から剥離)しているマス目の数を計数して、固体粒子間の密着性を評価した。いずれも評価ランク「A」~「D」が合格レベルである。
 -集電体に対する活物質層の密着性の評価ランク-
 A:80マス以上
 B:60マス以上80マス未満
 C:40マス以上60マス未満
 D:30マス以上40マス未満
 E:10マス以上30マス未満
 F:10マス未満
 -固体電解質粒子に対する密着性の評価ランク-
 A:10マス未満
 B:10マス以上20マス未満
 C:20マス以上30マス未満
 D:30マス以上40マス未満
 E:40マス以上50マス未満
 F:50マス以上
Figure JPOXMLDOC01-appb-T000020
 表3から明らかなように、本発明で規定するバインダ(B)を用いていないシートNo.c11~c14及びc21~c24は、イオン伝導性及び結着性が不合格であった。
 これに対し、本発明の無機固体電解質含有組成物を用いて作製したシートNo.101~141は、いずれも、イオン伝導性、及び固体粒子間の結着性、(電極シートについては)更に集電体密着性にも、優れていた。
[実施例2]
<全固体二次電池の作製>
 以下のようにして、図1に示す層構成を有する全固体二次電池(No.101)を作製した。
 上記で得られた全固体二次電池用正極シートNo.122を直径14.5mmの円板状に打ち抜き、スペーサーとワッシャー(図2において図示せず)を組み込んだステンレス製の2032型コインケース11に入れ、次いで、固体電解質層上に直径15mmの円盤状に切り出したリチウム箔を重ねた。その上にさらにステンレス箔を重ねた後、2032型コインケース11をかしめることで、図2に示すNo.101の全固体二次電池13を作製した。
 このようにして製造した全固体二次電池は、図1に示す層構成を有する(ただし、リチウム箔が、負極活物質層2及び負極集電体1に相当する)。
 製造に用いる全固体二次電池用シートを下記表4に記載のように変えたこと以外は、全固体二次電池No.101と同様にして、全固体二次電池No.102~104を作製した。
 以下のようにして、図1に示す層構成を有する全固体二次電池(No.122)を作製した。
 負極シートNo.125の固体電解質層上に下記のようにして調製した正極用組成物をベーカー式アプリケーター(商品名:SA-201)により塗布し、80℃で2時間加熱し、乾燥(分散媒を除去)することにより正極活物質層を形成して積層体を得た。この積層体を直径14.5mmの円板状に打ち抜き、スペーサーとワッシャー(図2において図示せず)を組み込んだステンレス製の2032型コインケース11に入れ、正極活物質層上に15mmφに切り出したアルミニウム箔を重ね、全固体二次電池用積層体を作製した。2032型コインケース11をかしめることで、図2に示すNo.122の全固体二次電池13を作製した。
 以下のようにして、全固体二次電池(No.122)の作製に用いた正極用組成物を調製した。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPSを2.7g、KYNAR FLEX 2500-20(商品名、PVdF-HFP:ポリフッ化ビニリデンヘキサフルオロプロピレン共重合体、アルケマ社製)を固形分質量として0.3g、及び酪酸ブチルを22g投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数300rpmで60分間攪拌した。その後、正極活物質としてLiNi1/3Co1/3Mn1/3(NMC)7.0gを投入し、同様にして、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで5分間混合を続け、正極用組成物を調製した。
 製造に用いる全固体二次電池用シートを下記表4に記載のように変えたこと以外は、全固体二次電池No.122と同様にして、全固体二次電池No.105~121、123~128及びc101~c104を作製した。
[試験例]
 上記で作製した全固体二次電池について、以下の試験を行った。以下に試験方法を記載し、結果を下記表4に記載する。
<試験例:サイクル特性(放電容量維持率)の評価>
 上記のようにして作製した全固体二次電池No.101~128及びc101~c104について、その放電容量維持率を測定して、サイクル特性を評価した。
 具体的には、各全固体二次電池の放電容量維持率を、充放電評価装置:TOSCAT-3000(商品名、東洋システム社製)により測定した。充電は、電流密度0.1mA/cmで電池電圧が3.6Vに達するまで行った。放電は、電流密度0.1mA/cmで電池電圧が2.5Vに達するまで行った。この充電1回と放電1回とを充放電1サイクルとして3サイクル充放電を繰り返して、全固体二次電池を初期化した。初期化後の充放電1サイクル目の放電容量(初期放電容量)を100%としたときに、放電容量維持率(初期放電容量に対する放電容量)が80%に達した際の充放電サイクル数が、下記評価ランクのいずれに含まれるかにより、サイクル特性を評価した。下記評価ランクにおいて、「C」以上が合格である。
 -放電容量維持率の評価ランク-
 A:500サイクル以上
 B:300サイクル以上500サイクル未満
 C:200サイクル以上300サイクル未満
 D:100サイクル以上200サイクル未満
 E: 50サイクル以上100サイクル未満
 F: 50サイクル未満
Figure JPOXMLDOC01-appb-T000021
<表の注>
 電極シートの製造に用いた無機固体電解質含有組成物及び電極用組成物を、無機固体電解質含有組成物No.及び電極用組成物No.の列に記載している。No.143~150及びc25~c28の電極シートは、表3に記載の電極シートと同様にして作製したものである。
 表4から明らかなように、本発明で規定する(B)を用いていない全固体二次電池No.c101~c104は、サイクル特性が不合格であった。
 これに対し、本発明の無機固体電解質含有組成物を用いて作製した全固体二次電池No.101~128は、すべてサイクル特性が合格であった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2019年8月30日に日本国で特許出願された特願2019-157940に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 2032型コインケース
12 全固体二次電池用固体電解質シート、積層体又は全固体二次電池用積層体
13 イオン伝導度測定用試験体

Claims (16)

  1.  周期律表第1族若しくは第2族に属する金属のイオン伝導性を有する無機固体電解質(A)及びバインダ(B)を含有し、前記バインダ(B)を構成するポリマーが、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合のうちの少なくとも1種の結合を主鎖に有し、かつ、下記一般式(1)で示される部分構造を少なくとも1種有する無機固体電解質含有組成物。
    Figure JPOXMLDOC01-appb-C000001
     式中、R~Rは、水素原子、アルキル基又はアリール基を示す。Rは、メチル基、エチル基又はプロピル基を示す。ただし、Rは置換基を有しない。*はポリマー中の結合部位を示す。
  2.  前記バインダ(B)を構成するポリマーが、カルボキシ基、スルホン酸基及びリン酸基のうちの少なくとも1種を有する、請求項1に記載の無機固体電解質含有組成物。
  3.  前記バインダ(B)を構成するポリマーが、ウレタン結合、ウレア結合、アミド結合及びイミド結合のうちの少なくとも1種の結合を主鎖に有する、請求項1又は2に記載の無機固体電解質含有組成物。
  4.  前記バインダ(B)を構成するポリマーが、下記一般式(2)で表されるセグメントを主鎖又は側鎖に有する、請求項1~3のいずれか1項に記載の無機固体電解質含有組成物。
    Figure JPOXMLDOC01-appb-C000002
     式中、R~Rは、水素原子、アルキル基又はアリール基を示す。Rは、メチル基、エチル基又はプロピル基を示す。ただし、Rは置換基を有しない。R~Rは、水素原子、アルキル基又はアリール基を示す。Rは、水素原子、アルキル基又はアリール基を示す。n1及びn2はセグメントの全構成成分中の含有率を示し、n1は0モル%を越え100モル%以下であり、n2は0モル%以上100モル%未満である。
  5.  前記バインダ(B)を構成するポリマーが、前記一般式(2)で表されるセグメントを側鎖に有する、請求項4に記載の無機固体電解質含有組成物。
  6.  前記一般式(2)で表されるセグメントの数平均分子量が1,000~100,000である、請求項4又は5に記載の無機固体電解質含有組成物。
  7.  前記一般式(2)で表されるセグメントが、カルボキシ基、スルホン酸基及びリン酸基のうちの少なくとも1種を有する、請求項4~6のいずれか1項に記載の無機固体電解質含有組成物。
  8.  活物質(C)を含む、請求項1~7のいずれか1項に記載の無機固体電解質含有組成物。
  9.  前記活物質(C)が負極活物質である、請求項8に記載の無機固体電解質含有組成物。
  10.  前記負極活物質が、構成元素にSiを含む、請求項9に記載の無機固体電解質含有組成物。
  11.  導電助剤(D)を含む、請求項1~10のいずれか1項に記載の無機固体電解質含有組成物。
  12.  前記無機固体電解質(A)が硫化物系無機固体電解質である、請求項1~11のいずれか記載の無機固体電解質含有組成物。
  13.  請求項1~12のいずれか1項に記載の無機固体電解質含有組成物を用いて形成した層を有する、全固体二次電池用シート。
  14.  正極活物質層と、負極活物質層と、正極活物質層及び負極活物質層の間の固体電解質層とを含む全固体二次電池であって、
     前記正極活物質層、前記負極活物質層及び前記固体電解質層の少なくとも1層が、請求項13に記載の全固体二次電池用シートで構成された全固体二次電池。
  15.  請求項1~12のいずれか1項に記載の無機固体電解質含有組成物を基材上に塗布して塗布膜を形成する工程を含む、全固体二次電池用シートの製造方法。
  16.  請求項1~12のいずれか1項に記載の無機固体電解質含有組成物を基材上に塗布して塗布膜を形成する工程を含む、全固体二次電池の製造方法。
PCT/JP2020/032524 2019-08-30 2020-08-28 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の各製造方法 WO2021039947A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021543026A JP7218441B2 (ja) 2019-08-30 2020-08-28 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の各製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019157940 2019-08-30
JP2019-157940 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021039947A1 true WO2021039947A1 (ja) 2021-03-04

Family

ID=74684247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032524 WO2021039947A1 (ja) 2019-08-30 2020-08-28 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の各製造方法

Country Status (2)

Country Link
JP (1) JP7218441B2 (ja)
WO (1) WO2021039947A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138752A1 (ja) * 2020-12-25 2022-06-30 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7385499B2 (ja) 2020-02-27 2023-11-22 株式会社日本触媒 バインダー及びその利用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048462A (ja) * 2005-07-13 2007-02-22 Nippon Soda Co Ltd 電極作製用結着剤、電極及びポリマー電池
JP2010174058A (ja) * 2009-01-27 2010-08-12 Hitachi Chem Co Ltd ポリマー粒子及びこのポリマー粒子を用いた非水電解液エネルギーデバイス用バインダ樹脂組成物
JP2013161538A (ja) * 2012-02-01 2013-08-19 Fujifilm Corp 二次電池電極用組成物、これを用いた電極合材及び二次電池
JP2013179041A (ja) * 2012-02-01 2013-09-09 Fujifilm Corp 二次電池電極用組成物及び二次電池
JP2015003998A (ja) * 2013-06-21 2015-01-08 日立化成株式会社 アクリルポリマー粒子の製造方法及びそれにより得られるアクリルポリマー粒子
WO2019087652A1 (ja) * 2017-10-30 2019-05-09 ダイキン工業株式会社 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6587394B2 (ja) * 2015-02-12 2019-10-09 富士フイルム株式会社 固体電解質組成物、電池用電極シートおよび全固体二次電池ならびに電池用電極シートおよび全固体二次電池の製造方法
JP6595348B2 (ja) * 2016-01-18 2019-10-23 富士フイルム株式会社 固体電解質組成物、全固体二次電池用固体電解質シート、全固体二次電池用電極シート、全固体二次電池及び分岐状ポリマーの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048462A (ja) * 2005-07-13 2007-02-22 Nippon Soda Co Ltd 電極作製用結着剤、電極及びポリマー電池
JP2010174058A (ja) * 2009-01-27 2010-08-12 Hitachi Chem Co Ltd ポリマー粒子及びこのポリマー粒子を用いた非水電解液エネルギーデバイス用バインダ樹脂組成物
JP2013161538A (ja) * 2012-02-01 2013-08-19 Fujifilm Corp 二次電池電極用組成物、これを用いた電極合材及び二次電池
JP2013179041A (ja) * 2012-02-01 2013-09-09 Fujifilm Corp 二次電池電極用組成物及び二次電池
JP2015003998A (ja) * 2013-06-21 2015-01-08 日立化成株式会社 アクリルポリマー粒子の製造方法及びそれにより得られるアクリルポリマー粒子
WO2019087652A1 (ja) * 2017-10-30 2019-05-09 ダイキン工業株式会社 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385499B2 (ja) 2020-02-27 2023-11-22 株式会社日本触媒 バインダー及びその利用
WO2022138752A1 (ja) * 2020-12-25 2022-06-30 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法

Also Published As

Publication number Publication date
JPWO2021039947A1 (ja) 2021-12-23
JP7218441B2 (ja) 2023-02-06

Similar Documents

Publication Publication Date Title
WO2016017758A1 (ja) 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
JP6621443B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP7104800B2 (ja) 全固体二次電池の製造方法、並びに、全固体二次電池用電極シート及びその製造方法
WO2021039950A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7372340B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021039948A1 (ja) 電極用組成物の製造方法、全固体二次電池用電極シートの製造方法及び全固体二次電池の製造方法
US20210143472A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, method of manufacturing all-solid state secondary battery, and method of manufacturing particle binder
WO2021039468A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP6839264B2 (ja) 固体電解質含有シート、固体電解質組成物および全固体二次電池、ならびに、固体電解質含有シートおよび全固体二次電池の製造方法
JP7320062B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021039947A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の各製造方法
WO2020138122A1 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2021157278A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021166968A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7165750B2 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2020067108A1 (ja) 全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法
WO2023054425A1 (ja) 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極組成物、全固体二次電池用電極シート及び全固体二次電池の製造方法
JP7096367B2 (ja) 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法
JP7373674B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021193826A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7301141B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021020031A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2022059567A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021261526A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
CN116325233A (zh) 含无机固体电解质组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857339

Country of ref document: EP

Kind code of ref document: A1