WO2021157278A1 - 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法 - Google Patents

無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法 Download PDF

Info

Publication number
WO2021157278A1
WO2021157278A1 PCT/JP2021/000354 JP2021000354W WO2021157278A1 WO 2021157278 A1 WO2021157278 A1 WO 2021157278A1 JP 2021000354 W JP2021000354 W JP 2021000354W WO 2021157278 A1 WO2021157278 A1 WO 2021157278A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
inorganic solid
group
containing composition
secondary battery
Prior art date
Application number
PCT/JP2021/000354
Other languages
English (en)
French (fr)
Inventor
広 磯島
鈴木 秀幸
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020227022727A priority Critical patent/KR20220109449A/ko
Priority to JP2021575669A priority patent/JP7455871B2/ja
Priority to CN202180008047.0A priority patent/CN114930594A/zh
Publication of WO2021157278A1 publication Critical patent/WO2021157278A1/ja
Priority to US17/857,144 priority patent/US20220344710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an inorganic solid electrolyte-containing composition, an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and a method for producing an all-solid-state secondary battery sheet and an all-solid-state secondary battery.
  • the secondary battery is a storage battery having a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and can be charged and discharged by reciprocating a specific metal ion such as lithium ion between the two electrodes.
  • a specific metal ion such as lithium ion between the two electrodes.
  • Non-aqueous electrolyte secondary batteries using an organic electrolyte are used in a wide range of applications as such secondary batteries, but they are used in the manufacture of non-aqueous electrolyte secondary batteries for the purpose of further improving battery performance.
  • Various electrolyte compositions and the like have been studied.
  • Patent Document 1 contains a blocking inhibitor such as fatty acid amide, fatty acid ester, and fatty acid metal salt, binder particles, and an aqueous medium, and the ratio of the content of the binder particles to the content of the blocking inhibitor.
  • a composition for a power storage device in which is more than 1 and less than 4000 is described.
  • Patent Document 2 describes a lithium carboxylic acid salt obtained by reacting an organic solvent with a lithium carboxylic acid salt and / or a boron trifluoride complex as an electrolyte for a lithium ion secondary battery.
  • -An electrolytic solution composition containing a boron trifluoride complex is described.
  • non-aqueous electrolyte secondary batteries using organic electrolytes are prone to liquid leakage, and short circuits are likely to occur inside the batteries due to overcharging or overdischarging, so further improvement in safety and reliability is required. ing.
  • an all-solid-state secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has attracted attention.
  • the negative electrode, the electrolyte, and the positive electrode are all made of solid, and the safety and reliability of the battery using the organic electrolytic solution can be greatly improved. It is also said that it will be possible to extend the service life.
  • the all-solid-state secondary battery can have a structure in which electrodes and electrolytes are directly arranged side by side and arranged in series. Therefore, it is possible to increase the energy density as compared with a non-aqueous electrolyte secondary battery using an organic electrolytic solution, and it is expected to be applied to an electric vehicle, a large storage battery, or the like.
  • the constituent layers are formed by using a composition containing an electrolyte, an active material, and the like.
  • Patent Document 2 also describes a composition for a solid electrolyte containing an organic solvent, a lithium carboxylate-boron trifluoride complex as an electrolyte, and a matrix polymer.
  • inorganic solid electrolytes especially oxide-based inorganic solid electrolytes and sulfide-based inorganic solid electrolytes, have been in the limelight as electrolyte materials having high ionic conductivity approaching that of organic electrolytes as substances forming a constituent layer. ..
  • the constituent layer of the all-solid-state secondary battery is formed of solid particles (inorganic solid electrolyte, active material, conductive auxiliary agent, etc.), the interfacial contact state between the solid particles is inherently restricted. Therefore, the all-solid-state secondary battery tends to induce an increase in interfacial resistance (decrease in ionic conductivity) and thus a decrease in the cycle characteristics of the all-solid-state secondary battery as compared with the non-aqueous electrolyte secondary battery. In particular, when a polymer binder is contained in the constituent layer, the interfacial resistance between the solid particles tends to increase.
  • the constituent layer forming material is the battery performance (ion conductivity, cycle characteristics) of the all-solid secondary battery provided with the constituent layer formed thereby. From the viewpoint of improving (etc.), etc., the property of stably maintaining the excellent dispersibility of the solid particles immediately after preparation (dispersion stability) and the property of having an appropriate viscosity and excellent fluidity (handleability). And are required.
  • the present invention is an inorganic solid electrolyte-containing composition having excellent dispersion stability and handleability, which can suppress an increase in interfacial resistance between solid particles and realize a low resistance constituent layer.
  • the challenge is to provide.
  • the present invention provides a method for manufacturing an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet and an all-solid-state secondary battery using this inorganic solid electrolyte-containing composition. The challenge is to provide.
  • the present inventors have compared this polymer binder with respect to the polymer binder in the presence of the inorganic solid electrolyte particles.
  • a metal element-containing compound capable of providing metal element ions and specifying the dispersion state (solubility) of the polymer binder and the metal element-containing compound in the dispersion medium By coexisting a metal element-containing compound capable of providing metal element ions and specifying the dispersion state (solubility) of the polymer binder and the metal element-containing compound in the dispersion medium, the inorganic solid electrolyte particles can be regenerated over time. It has been found that an excessive increase in viscosity (thickening) can be suppressed along with aggregation or sedimentation.
  • this inorganic solid electrolyte composition can form a film by binding inorganic solid electrolytes to each other while suppressing an increase in interfacial resistance between particles by, for example, coating and heating.
  • this inorganic solid electrolyte-containing composition as a constituent layer forming material, an all-solid-state secondary battery sheet provided with a low-resistance constituent layer, and an all-solid-state battery with low resistance and excellent cycle characteristics.
  • the present invention has been further studied based on these findings and has been completed.
  • Inorganic solid electrolyte-containing composition of A metal element-containing compound is a compound that can supply a polymer that forms a polymer binder by using the metal elements that make up the molecule as ions.
  • ⁇ 2> The inorganic solid electrolyte-containing composition according to ⁇ 1>, wherein the metal element-containing compound is dispersed in a dispersion medium.
  • ⁇ 3> The inorganic solid electrolyte-containing composition according to ⁇ 1> or ⁇ 2>, wherein the average particle size of the metal element-containing compound is 0.1 to 5 ⁇ m.
  • ⁇ 4> The inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 3>, wherein the metal element-containing compound is an organometallic salt.
  • ⁇ 5> The method according to any one of ⁇ 1> to ⁇ 4>, wherein the metal element-containing compound has an anion of the conjugate acid having a negative common logarithm [pKa] of the acid dissociation constant of -2 to 20.
  • ⁇ 6> The inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 5>, wherein the metal element-containing compound has an anion derived from an organic compound containing 6 to 21 carbon atoms.
  • the polymer forming the polymer binder has at least one bond selected from a urethane bond, a urea bond, an amide bond, an imide bond and an ester bond, or a polymer chain of a carbon-carbon double bond in the main chain.
  • the inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 8>.
  • ⁇ 10> The inorganic solid electrolyte according to any one of ⁇ 1> to ⁇ 9>, wherein the polymer forming the polymer binder contains a component having a functional group selected from the following functional group group (A).
  • the pKa of the conjugated acid that leads to the anion of the metal element-containing compound is functional.
  • the inorganic solid electrolyte-containing composition according to ⁇ 10> which is larger than the pKa of the group.
  • ⁇ 12> The difference between the pKa of the conjugate acid that leads to the anion of the metal element-containing compound and the pKa of the functional group [(pKa of the conjugate acid)-(pKa of the functional group)] is 2 or more, ⁇ 1> or ⁇ 11>
  • ⁇ 13> When the composition containing an inorganic solid electrolyte is heated to 80 ° C. or higher, the solubility of the polymer binder in the dispersion medium after heating becomes smaller than the solubility of the polymer binder in the dispersion medium before heating.
  • the inorganic solid electrolyte-containing composition according to any one of ⁇ 12>. ⁇ 14> When the inorganic solid electrolyte-containing composition is concentrated to a total concentration of 30% by mass or more in the inorganic solid electrolyte-containing composition of the polymer binder and the metal element-containing compound, the solubility of the concentrated polymer binder in the dispersion medium.
  • the solubility of the polymer binder present in the layer in the dispersion medium contained in the inorganic solid electrolyte-containing composition is that of the inorganic solid electrolyte.
  • An all-solid-state secondary battery sheet having a layer composed of the inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 19> above.
  • the solubility of the polymer binder present in the layer with respect to the dispersion medium contained in the inorganic solid electrolyte-containing composition with respect to the dispersion medium of the polymer binder contained in the inorganic solid electrolyte-containing composition.
  • An all-solid-state secondary battery including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order.
  • An all-solid state in which at least one layer of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is composed of the sheet for the all-solid secondary battery according to any one of ⁇ 20> to ⁇ 22>.
  • ⁇ 24> A method for producing a sheet for an all-solid secondary battery, which forms a film of the inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 19> above.
  • ⁇ 27> The method for producing a sheet for an all-solid secondary battery according to any one of ⁇ 24> to ⁇ 26>, wherein the composition containing an inorganic solid electrolyte is heated to 80 ° C. or higher to form a film.
  • ⁇ 28> A method for manufacturing an all-solid-state secondary battery, wherein the all-solid-state secondary battery is manufactured through the manufacturing method according to any one of ⁇ 24> to ⁇ 27> above.
  • the present invention can provide an inorganic solid electrolyte-containing composition which is excellent in dispersion characteristics of dispersion stability and handleability and can produce a constituent layer capable of realizing a constituent layer having low resistance by suppressing an increase in interfacial resistance between solid particles. ..
  • the present invention can also provide an all-solid-state secondary battery sheet and an all-solid-state secondary battery having a layer composed of the inorganic solid electrolyte-containing composition.
  • the present invention can provide a sheet for an all-solid-state secondary battery and a method for producing an all-solid-state secondary battery using this inorganic solid electrolyte-containing composition.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the indication of a compound is used to mean that the compound itself, a salt thereof, and an ion thereof are included.
  • it is meant to include a derivative which has been partially changed, such as by introducing a substituent, as long as the effect of the present invention is not impaired.
  • (meth) acrylic means one or both of acrylic and methacryl. The same applies to (meth) acrylate.
  • substituents or the like may be the same or different from each other.
  • the polymer means a polymer, but is synonymous with a so-called polymer compound.
  • the inorganic solid electrolyte-containing composition of the present invention contains an inorganic solid electrolyte having ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, a polymer binder, a metal element-containing compound, and a dispersion medium. is doing.
  • the polymer binder is dissolved in the dispersion medium and may or may not be adsorbed on the inorganic solid electrolyte.
  • the polymer binder is composed of solid particles such as inorganic solid electrolytes (further, coexisting active materials and conductive aids) in a layer formed of at least an inorganic solid electrolyte-containing composition (for example, inorganic solid electrolytes and inorganics). It functions as a binder that binds solid electrolytes to active substances and active substances. Furthermore, it may function as a binder that binds the current collector and the solid particles. In the composition containing an inorganic solid electrolyte, the polymer binder may or may not have a function of binding solid particles to each other. On the other hand, in the inorganic solid electrolyte-containing composition, the metal element-containing compound exists in a solid state and is preferably dispersed in a dispersion medium.
  • inorganic solid electrolyte-containing composition the metal element-containing compound exists in a solid state and is preferably dispersed in a dispersion medium.
  • the inorganic solid electrolyte-containing composition of the present invention is preferably a slurry in which the inorganic solid electrolyte and the metal element-containing compound are dispersed in a dispersion medium.
  • the polymer binder preferably has a function of dispersing solid particles in a dispersion medium.
  • the dispersion stability and handling of the composition are equal to or higher than those of the soluble binder.
  • a polymer binder particulate binder
  • the inorganic solid electrolyte-containing composition of the present invention having excellent dispersion characteristics as a constituent layer forming material, a low-resistance constituent layer having a flat surface and excellent surface properties, and an all-solid-state secondary battery having this constituent layer. It is possible to realize an all-solid-state secondary battery with low resistance and excellent cycle characteristics. Further, in the embodiment in which the active material layer formed on the current collector is formed by the inorganic solid electrolyte-containing composition of the present invention, strong adhesion between the current collector and the active material layer can also be realized. , It is possible to further improve the cycle characteristics without causing an increase in resistance.
  • the polymer binder in the dissolved state in the inorganic solid electrolyte-containing composition is allowed to interact with the metal element-containing compound to solidify in the form of particles when forming the constituent layer. It is thought that this is due to the fact that That is, in the inorganic solid electrolyte-containing composition, since the polymer binder is dissolved in the dispersion medium, even if the metal element-containing compound exists in the solid state, it is compared with the case where the polymer binder exists in the form of particles.
  • the reaggregation or precipitation of the inorganic solid electrolyte particles involving the polymer binder can be effectively suppressed not only immediately after the preparation of the inorganic solid electrolyte-containing composition but also after a lapse of time.
  • a high degree of dispersibility immediately after preparation can be stably maintained (excellent in dispersion stability), and good fluidity can be exhibited by suppressing an excessive increase in viscosity (excellent in handleability).
  • the constituent layer is formed using the inorganic solid electrolyte-containing composition of the present invention exhibiting such excellent dispersion stability and handleability, when the constituent layer is formed (for example, when the inorganic solid electrolyte-containing composition is applied), Furthermore, it is considered that the generation of reaggregates or sediments of the inorganic solid electrolyte particles can be suppressed even during drying). As a result, it is possible to suppress variations in the contact state between the inorganic solid electrolyte particles in the constituent layer. In particular, when the composition containing an inorganic solid electrolyte contains an active material or the like, it becomes difficult for specific particles such as the active material to be unevenly distributed in the constituent layer (solid particles are uniformly arranged in the constituent layer).
  • the inorganic solid electrolyte-containing composition flows appropriately (leveling) during film formation, especially during coating, and the surface roughness of the unevenness due to insufficient flow or excessive flow occurs. Furthermore, there is no surface roughness or the like due to clogging of the discharge portion during film formation (excellent surface properties of the coated surface), and the constituent layer has good surface properties. In this way, a constituent layer having a flat surface and low resistance (high conductivity) can be produced.
  • the metal element-containing compound interacts with the polymer binder during film formation of the inorganic solid electrolyte-containing composition to reduce the solubility of the polymer binder in the dispersion medium and solidify the dissolved polymer binder into particles.
  • it is considered to fulfill the function of precipitating. Since the polymer binder solidified into particles partially coats (adsorbs) the surface of the inorganic solid electrolyte particles without completely covering the surface, the contact between the inorganic solid electrolyte particles is not hindered by the presence of the polymer binder, and the inorganic solid electrolyte particles are inorganic. Inorganic solid electrolyte particles can be bound while sufficiently constructing an ion conduction path due to contact between the solid electrolyte particles (suppressing an increase in interfacial resistance between the inorganic solid electrolyte particles).
  • An all-solid-state secondary battery having such a low resistance constituent layer exhibits high conductivity (ionic conductivity, electron conductivity). Further, since the all-solid-state secondary battery has a low resistance, the energy loss is large when used at a large current, and high-speed charging / discharging at a large current can be realized in addition to charging / discharging under normal conditions. Moreover, since overcurrent is unlikely to occur during charging / discharging, the battery characteristics can be maintained not only by charging / discharging under normal conditions but also by repeating high-speed charging / discharging, and the battery characteristics are also excellent.
  • the constituent layer is formed while maintaining a highly (uniform) dispersed state immediately after preparation. Therefore, the contact (adhesion) of the polymer binder with the current collector surface is not hindered by the preferentially precipitated solid particles, and the polymer binder is dispersed with the solid particles and comes into contact with the current collector surface (adhesion). It is thought that it can be done.
  • the electrode sheet for an all-solid-state secondary battery in which the active material layer is formed on the current collector with the inorganic solid electrolyte-containing composition of the present invention can realize strong adhesion between the current collector and the active material.
  • the all-solid-state secondary battery in which the active material layer is formed on the current collector with the inorganic solid electrolyte-containing composition of the present invention shows strong adhesion between the current collector and the active material, and further improves the cycle characteristics. Furthermore, in addition to excellent cycle characteristics, improvement in conductivity can be realized.
  • the inorganic solid electrolyte-containing composition of the present invention is a material for forming a solid electrolyte layer or an active material layer of an all-solid secondary battery sheet (including an electrode sheet for an all-solid secondary battery) or an all-solid secondary battery. It can be preferably used as a constituent layer forming material). In particular, it can be preferably used as a material for forming a negative electrode sheet for an all-solid secondary battery or a negative electrode active material layer containing a negative electrode active material having a large expansion and contraction due to charging and discharging. Can be achieved.
  • the composition containing an inorganic solid electrolyte of the present invention also includes an embodiment containing an active material, a conductive auxiliary agent, and the like in addition to the inorganic solid electrolyte (the composition of this embodiment is referred to as an electrode composition).
  • the composition of this embodiment is referred to as an electrode composition.
  • the inorganic solid electrolyte-containing composition of the present invention contains an inorganic solid electrolyte.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte capable of transferring ions inside the solid electrolyte. Since it does not contain organic substances as the main ionic conductive material, it is an organic solid electrolyte (polymer electrolyte typified by polyethylene oxide (PEO), organic typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from electrolyte salts).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the inorganic solid electrolyte is a solid in a steady state, it is usually not dissociated or liberated into cations and anions. In this respect, it is clearly distinguished from the electrolyte or inorganic electrolyte salts (LiPF 6 , LiBF 4 , Lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.) that are dissociated or liberated into cations and anions in the polymer. Will be done.
  • the inorganic solid electrolyte is not particularly limited as long as it has the ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is generally one having no electron conductivity.
  • the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
  • a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used.
  • examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte, (ii) an oxide-based inorganic solid electrolyte, (iii) a halide-based inorganic solid electrolyte, and (iV) a hydride-based solid electrolyte. Therefore, a sulfide-based inorganic solid electrolyte is preferable from the viewpoint that a better interface can be formed between the active material and the inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. Those having sex are preferable.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but other than Li, S and P may be used depending on the purpose or case. It may contain elements.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (S1).
  • L a1 M b1 P c1 S d1 A e1 (S1)
  • L represents an element selected from Li, Na and K, with Li being preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, more preferably 0 to 1.
  • d1 is preferably 2.5 to 10, more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized.
  • Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramics containing Li, P and S can be used.
  • Sulfide-based inorganic solid electrolytes include, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example). It can be produced by the reaction of at least two or more raw materials in sulfides of LiI, LiBr, LiCl) and the element represented by M (for example, SiS 2 , SnS, GeS 2).
  • the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ⁇ It is 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be made high.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 -4 S / cm or more, and more preferably 1 ⁇ 10 -3 S / cm or more. There is no particular upper limit, but it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5- P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3, Li 2 S-GeS 2, Li 2
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. Those having sex are preferable.
  • the oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 -6 S / cm or more, more preferably 5 ⁇ 10 -6 S / cm or more, and 1 ⁇ 10 -5 S / cm or more. It is particularly preferable that it is / cm or more.
  • the upper limit is not particularly limited, but it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • Li xa La ya TiO 3 [xa satisfies 0.3 ⁇ xa ⁇ 0.7, and ya satisfies 0.3 ⁇ ya ⁇ 0.7.
  • LLT Li xb Layb Zr zb M bb mb Onb
  • M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn.
  • Xb satisfies 5 ⁇ xb ⁇ 10, yb satisfies 1 ⁇ yb ⁇ 4, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, and nb satisfies 5 ⁇ nb ⁇ 20. Satisfy.); Li xc Byc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn.
  • Xc is 0 ⁇ xc ⁇ 5 , Yc satisfies 0 ⁇ yc ⁇ 1, zc satisfies 0 ⁇ zc ⁇ 1, nc satisfies 0 ⁇ nc ⁇ 6); Li xd (Al, Ga) yd (Ti, Ge) zd Si.
  • Li xf Si yf O zf (xf satisfies 1 ⁇ xf ⁇ 5, yf satisfies 0 ⁇ yf ⁇ 3 , Zf satisfies 1 ⁇ zf ⁇ 10); Li xg S yg O zg (xg satisfies 1 ⁇ xg ⁇ 3, yg satisfies 0 ⁇ yg ⁇ 2, and zg satisfies 1 ⁇ zg ⁇ 10.
  • Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet-type crystal structure.
  • Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON in which a part of the oxygen atom of lithium phosphate is replaced with a nitrogen atom
  • LiPOD 1 LiPON in which a part of the oxygen atom of lithium phosphate is replaced with a nitrogen atom
  • LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, It is one or more elements selected from Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt and Au) and the like.
  • LiA 1 ON A 1 is one or more elements selected from Si, B, Ge, Al, C and Ga
  • the halide-based inorganic solid electrolyte contains a halogen atom, has the conductivity of an ion of a metal belonging to Group 1 or Group 2 of the Periodic Table, and has electrons. Insulating compounds are preferred.
  • the halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as Li 3 YBr 6 and Li 3 YCl 6 described in LiCl, LiBr, LiI, ADVANCED MATERIALS, 2018, 30, 1803075. Of these, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
  • the hydride-based inorganic solid electrolyte contains a hydrogen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. A compound having a property is preferable.
  • the hydride-based inorganic solid electrolyte is not particularly limited, and examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, and 3 LiBH 4- LiCl.
  • the inorganic solid electrolyte is preferably particles.
  • the average particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the particle size of the inorganic solid electrolyte is measured by the following procedure. Inorganic solid electrolyte particles are prepared by diluting 1% by mass of a dispersion in a 20 mL sample bottle with water (heptane in the case of a water-unstable substance).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately after that, it is used for the test.
  • data was captured 50 times using a measurement quartz cell at a temperature of 25 ° C. using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA). Obtain the volume average particle size.
  • JIS Z 8828 2013 “Particle size analysis-Dynamic light scattering method” as necessary. Five samples are prepared for each level and the average value is adopted.
  • the inorganic solid electrolyte may contain one kind or two or more kinds.
  • the mass (mg) (grain amount) of the inorganic solid electrolyte per unit area (cm 2) of the solid electrolyte layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
  • the amount of the inorganic solid electrolyte is preferably such that the total amount of the active material and the inorganic solid electrolyte is in the above range.
  • the content of the inorganic solid electrolyte in the composition containing the inorganic solid electrolyte is not particularly limited, but is 50% by mass or more at 100% by mass of the solid content in terms of binding property and dispersibility. Is more preferable, 70% by mass or more is more preferable, and 90% by mass or more is particularly preferable. From the same viewpoint, the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
  • the content of the inorganic solid electrolyte in the inorganic solid electrolyte-containing composition is such that the total content of the active material and the inorganic solid electrolyte is in the above range. Is preferable.
  • the solid content refers to a component that does not disappear by volatilizing or evaporating when the inorganic solid electrolyte-containing composition is dried at 150 ° C. for 6 hours under an atmospheric pressure of 1 mmHg and a nitrogen atmosphere. .. Typically, it refers to a component other than the dispersion medium described later.
  • the polymer binder used in the inorganic solid electrolyte-containing composition of the present invention is a binder formed containing a polymer, and is soluble and soluble in the dispersion medium contained in the inorganic solid electrolyte-containing composition.
  • this polymer binder in combination with solid particles such as an inorganic solid electrolyte and a metal element-containing compound described later, the dispersion stability and handleability of the inorganic solid electrolyte-containing composition (slurry) can be improved, and a low resistance constituent layer can be obtained. Can be produced.
  • the fact that the polymer binder (also referred to as a binder) is dissolved in the dispersion medium is not limited to the mode in which all the polymer binders are dissolved in the dispersion medium, and for example, the solubility in the dispersion medium is 80%. That is all.
  • the method for measuring the solubility is as follows. That is, a specified amount of the binder to be measured is weighed in a glass bottle, 100 g of a dispersion medium of the same type as the dispersion medium contained in the inorganic solid electrolyte-containing composition is added thereto, and the mixture rotor is placed at 80 rpm at a temperature of 25 ° C. Stir for 24 hours at the rotation speed of.
  • the transmittance of the mixed solution after stirring for 24 hours thus obtained is measured under the following conditions.
  • This test (transmittance measurement) is performed by changing the amount of the binder dissolved (the above-specified amount), and the upper limit concentration X (mass%) at which the transmittance is 99.8% is defined as the solubility of the binder in the above dispersion medium.
  • -Transmittance measurement conditions Dynamic Light Scattering (DLS) Measuring Device: Otsuka Electronics DLS Measuring Device DLS-8000 Laser wavelength, output: 488 nm / 100 mW Sample cell: NMR tube
  • the polymer forming the polymer binder (also referred to as the binder-forming polymer) is not particularly limited as long as it is soluble in the dispersion medium, and various polymers usually used for the constituent layers of the all-solid-state secondary battery can be used. .. Among them, a polymer having at least one bond selected from a urethane bond, a urea bond, an amide bond, an imide bond and an ester bond (sequentially polymerized polymer) in the main chain, or a polymer chain having a carbon-carbon double bond as the main chain.
  • a polymer having a polymer (chain-growth polymer) is preferably mentioned.
  • the main chain of a polymer means a linear molecular chain in which all other molecular chains constituting the polymer can be regarded as a branched chain or a pendant with respect to the main chain. Although it depends on the mass average molecular weight of the molecular chain regarded as a branched chain or a pendant chain, the longest chain among the molecular chains constituting the polymer is typically the main chain. However, the terminal group of the polymer terminal is not included in the main chain.
  • the side chain of the polymer means a molecular chain other than the main chain, and includes a short molecular chain and a long molecular chain.
  • the bond is not particularly limited as long as it is contained in the main chain of the polymer, and may be any of the modes contained in the structural unit (repeating unit) and / or the mode contained as a bond connecting different structural units. .. Further, the above-mentioned bond contained in the main chain is not limited to one type, and may be two or more types, preferably 1 to 6 types, and more preferably 1 to 4 types. In this case, the binding mode of the main chain is not particularly limited, and may have two or more kinds of bonds at random, and the segmented main chain of a segment having a specific bond and a segment having another bond. It may be a chain.
  • the polymer having a urethane bond, a urea bond, an amide bond, an imide bond or an ester bond in the main chain includes, for example, sequential polymerization (polycondensation, polyaddition or polycondensation) of polyurethane, polyurea, polyamide, polyimide, polyester and the like. Examples thereof include (additional condensation) polymers and copolymers thereof.
  • the copolymer may be a block copolymer having each of the above polymers as a segment, or a random copolymer in which each component constituting two or more of the above polymers is randomly bonded.
  • Examples of the polymer having a carbon-carbon double bond polymer chain in the main chain include chain polymers such as a fluoropolymer (fluorine-containing polymer), a hydrocarbon polymer, a vinyl polymer, and a (meth) acrylic polymer.
  • chain polymers such as a fluoropolymer (fluorine-containing polymer), a hydrocarbon polymer, a vinyl polymer, and a (meth) acrylic polymer.
  • the chain polymer is a copolymer, it may be a block copolymer or a random copolymer.
  • the binder-forming polymer may be one type or two or more types.
  • the binder-forming polymer is a polymer that interacts with a metal element-containing compound during the formation of a film of an inorganic solid electrolyte-containing composition. It is a receivable polymer (by physical or physical adsorption, etc.). This allows the polymer binder to receive the metal element ions generated from the metal element-containing compound, and imparts the above-mentioned action to the polymer binder.
  • the partial structure for receiving the interaction or metal element ion is not particularly limited as long as these actions or reception are possible, and for example, the chemical structure of the main chain (for example, each of the above bonds), the functional group (a) described later. Can be mentioned.
  • the binder-forming polymer preferably contains a component having a functional group (a) selected from the following functional group group (A) as, for example, a substituent.
  • the component having the functional group (a) preferentially receives the ions of the metal element from the metal element-containing compound at the time of forming the film of the inorganic solid electrolyte-containing composition, for example, by a salt exchange reaction or the like, and the functional group (a). ) Metal salts and the like can be formed.
  • the polymer binder having the metal chloride functional group (a) solidifies into particles in a state of adsorbing solid particles.
  • the number of functional groups (a) contained in one component may be one or more, and the number thereof is not particularly limited.
  • Each functional group contained in the functional group group (A) is not particularly limited, but has the same meaning as the corresponding group of the substituent Z described later.
  • the amino group is more preferably -NH 2
  • corresponding groups of substituent Z may have R P, and more preferably R P is a hydrogen atom.
  • Each functional group may form a salt.
  • the hydroxy group does not contain the -OH group contained in the acid group such as the carboxy group.
  • the carboxylic acid anhydride group contained in the functional group (A) is not particularly limited, but has the same meaning as the anhydrous carboxylic acid group contained in the functional group group (B) described later, and the preferable range is also the same.
  • the functional group contained in the functional group group (A) is a hydroxy group, a carboxy group, a sulfo group, a phosphoric acid group, a phosphonic acid group, or a sulfanyl group in that it easily interacts with a metal element-containing compound, particularly a salt exchange reaction.
  • a group having an active hydrogen atom such as carboxy group is preferable, an acid group such as a carboxy group, a sulfo group, a phosphoric acid group and a phosphonic acid group is more preferable, and a carboxy group is further preferable.
  • the negative common logarithm [pKa] of the acid dissociation constant of each functional group contained in the functional group group (A) is not particularly limited, but the point that the interaction with the metal element-containing compound is effectively exhibited, for example, a salt. It is preferably -2.0 to 8.0, more preferably -1.0 to 6.0, and 0.0 to 6.0, in that the exchange reaction proceeds rapidly and receives the metal element ion. It is more preferably 4.0, and particularly preferably 0.0 to 2.0.
  • pKa is a value (in water) measured by neutralization titration using an automatic potential difference titrator (trade name: Tightland 905, manufactured by Metrohm Japan Limited).
  • the binder-forming polymer has a plurality of types of functional groups (a)
  • the pKa showing at least the lowest value among the pKas of each functional group is included in the above range, and the pKas of the other functional groups are described above. It may or may not be included in the range.
  • the functional group (a) may be incorporated into the main chain or the side chain of the polymer.
  • a side chain it includes an embodiment in which the polymer is bonded directly to the atom forming the main chain or via a linking group.
  • the linking group for binding the functional group (a) and the main chain include an alkylene group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) and an alkenylene group (carbon).
  • the number is preferably 2 to 6, more preferably 2 to 3, an arylene group (preferably 6 to 24 carbon atoms, more preferably 6 to 10 carbon atoms), an oxygen atom, a sulfur atom, and an imino group (-NR N-:.
  • RN represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms), a carbonyl group, a phosphate linking group (-OP (OH) (O) -O-). , Phosphonic acid linking group (-P (OH) (O) -O-), or a group related to a combination thereof and the like.
  • the linking group a group formed by combining an alkylene group, an arylene group, a carbonyl group, an oxygen atom, a sulfur atom and an imino group is preferable.
  • the number of atoms constituting the linking group is preferably 1 to 36, more preferably 1 to 24, further preferably 1 to 12, and preferably 1 to 6. Especially preferable.
  • the number of connecting atoms of the linking group is preferably 10 or less, more preferably 8 or less.
  • the lower limit is 1 or more.
  • the functional group (a) when the functional group (a) is incorporated into the side chain, in addition to the embodiment in which the functional group (a) is bonded via the linking group, the embodiment in which the functional group (a) is included in the polymerized chain of the macromonomer constituting the side chain is also included.
  • a macromonomer examples include a macromonomer having a polymerized chain of a chain-growth polymer, which will be described later, although it is appropriately determined according to the type of the main chain of the binder-forming polymer and is not unique.
  • the functional groups contained in the functional group group (A) are used for interaction with the metal element-containing compound, but some of them may be used for interaction with solid particles as functional groups (b) described later. ..
  • the constituent component having the functional group (a) is not particularly limited as long as it is a constituent component that can constitute the binder-forming polymer, and is appropriately selected according to the type, composition, and the like of the binder-forming polymer.
  • the content of the component having the functional group (a) in the binder-forming polymer (all components) is not particularly limited, but is 0.1 to 0.1 to exhibit sufficient interaction with the metal element-containing compound. It is preferably 10 mol%, more preferably 0.1 to 5 mol%, and even more preferably 0.2 to 4.0 mol%.
  • the content of the constituent components having the functional group (a) is the total amount.
  • the content of the component having a functional group (a) usually means the content of the component when one component has a plurality of or a plurality of kinds of functional groups (a), but in the present invention.
  • the content of each functional group (a) is included in the total amount.
  • a plurality or a plurality of types of functional groups are collectively included in the total amount as one functional group.
  • the binder-forming polymer preferably contains a component having a functional group (b) selected from the following functional group group (B) as, for example, a substituent.
  • the component having the functional group (b) has a function of enhancing the adsorptive power of the polymer binder to the solid particles.
  • the polymer binder is preferably adsorbed on solid particles by physical or chemical action (chemical bond formation, electron transfer, etc.).
  • the functional group (b) may be incorporated into the main chain or the side chain of the polymer. When incorporated into a side chain, it includes an embodiment in which the polymer is bonded directly to the atom forming the main chain or via a linking group.
  • the linking group that binds the functional group (b) to the main chain is not particularly limited, and for example, a linking group that binds the functional group (a) to the main chain is preferable. It also includes an embodiment in which a functional group (b) is incorporated as a substituent into the polymerized chain of the macromonomer constituent component constituting the side chain.
  • the macromonomer for deriving the macromonomer constituent component is appropriately determined according to the type of the main chain of the binder-forming polymer and is not unique, but examples thereof include a macromonomer having a polymerized chain of a chain-polymerized polymer described later. Be done.
  • the functional group (b) contained in one component may be one kind or two or more kinds, and when it has two or more kinds, it may or may not be bonded to each other.
  • ⁇ Functional group (B)> Hydroxyl group, amino group, carboxy group, sulfo group, phosphate group, phosphonic acid group, sulfanyl group, ether bond (-O-), imino group ( NR, -NR-), ester bond (-CO-O-) ), Amid bond (-CO-NR-), Urethane bond (-NR-CO-O-), Urea bond (-NR-CO-NR-), Heterocyclic group, aryl group, carboxylic acid anhydride group, fluoroalkyl Group, siloxane group
  • the amino group, sulfo group, phosphoric acid group, heterocyclic group, and aryl group contained in the functional group group (B) are not particularly limited, but are synonymous with the corresponding groups of the substituent Z described later.
  • the number of carbon atoms of the amino group is more preferably 0 to 12, further preferably 0 to 6, and particularly preferably 0 to 2.
  • the ring structure contains an amino group, an ether bond, an imino group (-NR-), an ester bond, an amide bond, a urethane bond, a urea bond, etc., it is classified as a heterocycle.
  • a fluoroalkyl group is a group in which at least one hydrogen atom of an alkyl group or a cycloalkyl group is replaced with a fluorine atom, and the number of carbon atoms thereof is preferably 1 to 20, more preferably 2 to 15, and further 3 to 10. preferable.
  • the number of fluorine atoms on the carbon atom may be a part of a hydrogen atom replaced or a whole replaced (perfluoroalkyl group).
  • Siloxane groups is not particularly limited, for example - a group having the structure (SiR 2 -O) represented by n- are preferred.
  • the number of repetitions n is preferably an integer of 1 to 100, more preferably an integer of 5 to 50, and even more preferably an integer of 10 to 30.
  • R in each bond or group indicates a hydrogen atom or a substituent, and a hydrogen atom is preferable.
  • the substituent is not particularly limited, and is selected from the substituent Z described later, and an alkyl group is preferable.
  • the anhydrous carboxylic acid group is not particularly limited, but is a group obtained by removing one or more hydrogen atoms from the carboxylic acid anhydride (for example, a group represented by the following formula (2a)), and further, a copolymerizable compound. It includes the constituent component itself (for example, the constituent component represented by the following formula (2b)) formed by copolymerizing the polymerizable carboxylic acid anhydride as.
  • a group formed by removing one or more hydrogen atoms from the cyclic carboxylic acid anhydride is preferable.
  • the anhydrous carboxylic acid group derived from the cyclic carboxylic acid anhydride also corresponds to a heterocyclic group, but is classified as an anhydrous carboxylic acid group in the present invention.
  • the carboxylic acid anhydride group include acyclic carboxylic acid anhydrides such as acetic anhydride, propionic anhydride and benzoic anhydride, and cyclic anhydrides such as maleic anhydride, phthalic anhydride, fumaric anhydride, succinic anhydride and itaconic anhydride. Examples thereof include carboxylic acid anhydride.
  • the polymerizable carboxylic acid anhydride is not particularly limited, and examples thereof include a carboxylic acid anhydride having an unsaturated bond in the molecule, and a polymerizable cyclic carboxylic acid anhydride is preferable. Specific examples thereof include maleic anhydride and itaconic anhydride.
  • Examples of the carboxylic acid anhydride group include, but are not limited to, the group represented by the following formula (2a) or the constituent component represented by the formula (2b). In each equation, * indicates the bonding position.
  • the ester bond (-CO-O-), the amide bond (-CO-NR-), the urethane bond (-NR-CO-O-) and the urea bond (-NR-CO-NR-) are
  • the chemical structure of a polymer is represented by constituents derived from the raw material compound, -CO- group and -O- group, -CO group and -NR- group, -NR-CO- group and -O- group,-, respectively. It is divided into NR-CO- group and -NR- group.
  • the constituent components having these bonds are the constituent components derived from the carboxylic acid compound or the constituent components derived from the isocyanate compound, and do not include the constituent components derived from the polyol or the polyamine compound, regardless of the notation of the polymer. ..
  • a component having an ester bond (excluding an ester bond forming a carboxy group) or an amide bond is a component in which an ester bond or an amide bond is not directly bonded to an atom constituting the main chain.
  • Means, for example, does not include components derived from (meth) acrylic acid alkyl esters.
  • the constituent component having the functional group (b) is not particularly limited as long as it is a constituent component that can constitute the binder-forming polymer, and is appropriately selected according to the type, composition, and the like of the binder-forming polymer.
  • the content of the component having the functional group (b) in the binder-forming polymer (all components) is not particularly limited, but is preferably 1 to 90 mol% in terms of the binding property of the solid particles. , 20-87 mol%, more preferably 30-85 mol%.
  • the binder-forming polymer has a plurality of components having a functional group (b)
  • the content of the components having a functional group (b) is the total amount.
  • the content of the constituent having a functional group (b) is such that one constituent has a plurality or a plurality of functional groups (a).
  • the content of the constituent component having the functional group (b) is such that the functional group (b) exhibits an interaction with the metal element-containing compound.
  • the content of the constituent component having a) is set, but it is more preferable to set the content of the constituent component having the functional group (b) in terms of achieving the binding property of the solid particles.
  • Step-growth polymer examples of the sequential polymerization (hypercondensation, polyaddition or addition condensation) polymer as the binder forming polymer include polyurethane, polyurea, polyamide, polyimide, polyester, polyether, polycarbonate and the like, and polyurethane, polyurea, polyamide, polyimide or polyester may be used. preferable.
  • the step-growth polymerization polymer preferably has the above-mentioned constituent component having a functional group (a) or a functional group (b) as a constituent component thereof.
  • polyurethane, polyurea, polyamide, and polyimide polymers that can be used as step-growth polymerization polymers include polymers having a hard segment and a soft segment described in JP-A-2015-08480 (polymer binder (B)).
  • polymer binder (B) polymer binder
  • a polymer in which a component having a functional group (a) or a functional group (b) is introduced into each polymer or the like described in International Publication No. 2015/046313 can be mentioned.
  • the method for incorporating the functional group is not particularly limited, and for example, a method of copolymerizing a compound having a functional group selected from the functional group group (A) or the functional group group (B), having the above functional group (causing).
  • Examples include a method using a polymerization initiator and a method using a polymer reaction.
  • a functional group can be introduced by using a functional group existing at the side chain or the terminal of the binder-forming polymer as a reaction point.
  • an ene reaction with a double bond remaining in the binder-forming polymer an ene-thiol reaction, and further an anhydrous carboxylic acid group (carboxylic acid anhydride).
  • the functional group (a) and the like can be introduced by various reactions with the physical group).
  • the compound having the above-mentioned functional group is not particularly limited, and examples thereof include a compound having at least one carbon-carbon unsaturated bond and the above-mentioned functional group.
  • a compound in which a carbon-carbon unsaturated bond and the functional group are directly bonded a compound in which a carbon-carbon unsaturated bond and the functional group are bonded via the linking group, and further, the functional group itself is carbon-.
  • the functional group itself is carbon-.
  • a compound capable of introducing a functional group into the constituent component in the binder forming polymer by various reactions for example, a constituent component derived from carboxylic anhydride, a constituent component having a carbon-carbon unsaturated bond. It includes alcohol, amino or mercapto or epoxy compounds (including polymers) capable of addition reaction or condensation reaction with the above.
  • the compound having the functional group includes a compound in which a carbon-carbon unsaturated bond and a macromonomer in which a functional group is incorporated as a substituent in a polymer chain are directly bonded or via the linking group.
  • the macromonomer for deriving the macromonomer constituent component is appropriately determined according to the type of the main chain of the binder-forming polymer and is not unique, but examples thereof include a macromonomer having a polymerized chain of a chain-polymerized polymer described later. Be done.
  • the number average molecular weight of the macromonomer is not particularly limited, but the binding force of the solid particles and the adhesion to the current collector should be further strengthened while maintaining excellent dispersion stability and handleability. It is preferably 500 to 100,000, more preferably 1,000 to 50,000, and even more preferably 2,000 to 20,000.
  • the content of the repeating unit having the functional group (b) incorporated in the macromonomer is preferably 1 to 100 mol%, more preferably 3 to 80 mol%, still more preferably 5 to 70 mol%.
  • the content of the repeating unit having no functional group (b) is preferably 0 to 90 mol%, more preferably 0 to 70 mol%, still more preferably 0 to 50 mol%. Any component can be selected from the viewpoint of solubility and the like.
  • the chain-polymerized polymer preferably has the above-mentioned constituent component having a functional group (a) or a functional group (b) as a constituent component thereof.
  • the fluoropolymer is not particularly limited, and for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP), and the like.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • PVdF-HFP a copolymer of polyvinylidene fluoride and hexafluoropropylene
  • PVdF-HFP-TFE tetrafluoroethylene
  • the copolymerization ratio [PVdF: HFP] (mass ratio) of PVdF and HFP is not particularly limited, but is preferably 9: 1 to 5: 5, and 9: 1 to 7: 3 is adhesive. More preferable from the viewpoint.
  • the copolymerization ratio [PVdF: HFP: TFE] (mass ratio) of PVdF, HFP, and TFE is not particularly limited, but may be 20 to 60:10 to 40: 5 to 30. preferable.
  • the hydrocarbon polymer is not particularly limited, and for example, polyethylene, polypropylene, polyethylene-poly (ethylene-butylene) -polyethylene copolymer, natural rubber, polybutadiene, polyisoprene, polystyrene, polystyrene butadiene copolymer, polypropylene- Examples thereof include polyethylene-polybutylene copolymer (CEBC), styrene-based thermoplastic elastomer, polybutylene, acrylonitrile-butadiene copolymer, and hydrogenated (hydrogenated) polymers thereof.
  • CEBC polyethylene-polybutylene copolymer
  • styrene-based thermoplastic elastomer polybutylene
  • polybutylene acrylonitrile-butadiene copolymer
  • hydrogenated (hydrogenated) polymers thereof hydrogenated (hydrogenated) polymers thereof.
  • the styrene-based thermoplastic elastomer or its hydride is not particularly limited, and for example, styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene-styrene block copolymer (SIS), hydride SIS.
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SIS hydride SIS
  • Styrene-isobutylene-styrene block copolymer SIBS
  • styrene-butadiene-styrene block copolymer SBS
  • hydrogenated SBS styrene-ethylene-ethylene-propylene-styrene block copolymer
  • SEEPS styrene- Random copolymers corresponding to each of the above block copolymers
  • SEPS ethylene-propylene-styrene block copolymer
  • SBR styrene-butadiene rubber
  • HSBR hydride styrene-butadiene rubber
  • SEBS SEBS
  • the hydrocarbon polymer having no unsaturated group (for example, 1,2-butadiene constituent) bonded to the main chain is preferable in that the formation of chemical crosslinks can be suppressed.
  • the hydrocarbon-based polymer may have a functional group (b) selected from the functional group group (B), for example, a fluoroalkyl group or a siloxane group, in its side chain. This is because the adsorption force for solid particles can be adjusted as appropriate.
  • the vinyl-based polymer is not particularly limited, and examples thereof include polymers containing, for example, 50 mol% or more of vinyl-based monomers other than the (meth) acrylic compound (M1).
  • the vinyl-based monomer include vinyl compounds described later.
  • Specific examples of the vinyl polymer include polyvinyl alcohol, polyvinyl acetal, polyvinyl acetate, and a copolymer containing these.
  • this vinyl-based polymer is a constituent component derived from the (meth) acrylic compound (M1) that forms the (meth) acrylic polymer described later, and further a constituent component derived from the macromonomer described later. It is preferable to have (MM).
  • the content of the constituent component derived from the vinyl-based monomer is preferably the same as the content of the constituent component derived from the (meth) acrylic compound (M1) in the (meth) acrylic polymer.
  • the content of the constituent component derived from the (meth) acrylic compound (M1) is not particularly limited as long as it is less than 50 mol% in the polymer, but is preferably 0 to 40 mol%, and is preferably 5 to 35 mol%. Is more preferable.
  • the content of the component (MM) is preferably the same as the content in the (meth) acrylic polymer.
  • the (meth) acrylic polymer is not particularly limited, and is, for example, at least one selected from (meth) acrylic acid compounds, (meth) acrylic acid ester compounds, (meth) acrylamide compounds and (meth) acrylonitrile compounds.
  • a polymer obtained by (co) polymerizing a (meth) acrylic compound (M1) is preferable.
  • a (meth) acrylic polymer composed of a copolymer of the (meth) acrylic compound (M1) and another polymerizable compound (M2) is also preferable.
  • the other polymerizable compound (M2) is not particularly limited, and includes styrene compounds, vinylnaphthalene compounds, vinylcarbazole compounds, allyl compounds, vinyl ether compounds, vinyl ester compounds, dialkyl itaconates, unsaturated carboxylic acid anhydrides, and the like. Vinyl compounds can be mentioned. Examples of the vinyl compound include "vinyl-based monomers" described in JP-A-2015-88486.
  • the content of the other polymerizable compound (M2) in the (meth) acrylic polymer is not particularly limited, but can be, for example, less than 50 mol%. Examples of the (meth) acrylic polymer include those described in Japanese Patent No. 6295332.
  • Examples of the chain-growth polymer include polymers in which a component having a functional group (a) or a functional group (b) is introduced into each of the above-mentioned polymers.
  • the method of incorporating the functional group is the same as that of the step-growth polymerization polymer.
  • the binder-forming polymer (each constituent component and raw material compound) may have a substituent.
  • the substituent is not particularly limited as long as it is a group other than the functional groups contained in the above-mentioned functional group group (A) and functional group group (B), and a group selected from the following substituent Z is preferable. ..
  • -Substituent Z- Alkyl groups preferably alkyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl groups preferably alkyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • an alkenyl group having 2 to 20 carbon atoms for example, vinyl, allyl, oleyl, etc.
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, for example, ethynyl, butadynyl, phenylethynyl, etc.
  • a cycloalkyl group having 3 to 20 carbon atoms for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., is usually used in the present specification to include a cycloalkyl group.
  • An aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.), an aralkyl group (preferably having 7 carbon atoms).
  • ⁇ 23 aralkyl groups eg, benzyl, phenethyl, etc.
  • heterocyclic groups preferably heterocyclic groups having 2 to 20 carbon atoms, more preferably 5 or 5 having at least one oxygen atom, sulfur atom, nitrogen atom. It is a 6-membered heterocyclic group.
  • the heterocyclic group includes an aromatic heterocyclic group and an aliphatic heterocyclic group.
  • a tetrahydropyran ring group for example, a tetrahydropyran ring group, a tetrahydrofuran ring group, 2-pyridyl, 4-pyridyl, 2-. Imidazolyl, 2-benzoimidazolyl, 2-thiazolyl, 2-oxazolyl, pyrrolidone group, etc.), alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, for example, methoxy, ethoxy, isopropyloxy, benzyloxy, etc.), aryloxy group.
  • an aryloxy group having 6 to 26 carbon atoms for example, phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.
  • a heterocyclic oxy group a group in which an —O— group is bonded to the heterocyclic group
  • an alkoxycarbonyl group preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, for example, ethoxycarbonyl, 2-ethylhexyloxycarbonyl.
  • aryloxycarbonyl groups preferably aryloxycarbonyl groups with 6-26 carbon atoms, such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-me It contains a tylphenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc.
  • an amino group preferably an amino group having 0 to 20 carbon atoms, an alkylamino group, an arylamino group, for example, amino (-NH 2 ), N, N-dimethyl.
  • sulfamoyl group (preferably sulfamoyl group having 0 to 20 carbon atoms, for example, N, N-dimethylsulfamoyl, N-phenylsulfamoyl, etc.)
  • Acyl groups alkylcarbonyl groups, alkenylcarbonyl groups, alkynylcarbonyl groups, arylcarbonyl groups, heterocyclic carbonyl groups, preferably acyl groups having 1 to 20 carbon atoms, such as acetyl, propionyl, butyryl, octanoyl, hexadeca.
  • acyloxy groups alkylcarbonyloxy group, alkenylcarbonyloxy group, alkynylcarbonyloxy group, arylcarbonyloxy group, heterocyclic carbonyloxy group, etc., preferably carbon.
  • arylthio groups preferably arylthio groups having 6 to 26 carbon atoms, for example, phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc.
  • heterocyclic thiogroups the above heterocycle.
  • An alkylsulfonyl group preferably an alkylsulfonyl group having 1 to 20 carbon atoms, for example, methylsulfonyl, ethylsulfonyl, etc.
  • an arylsulfonyl group preferably having 6 to 22 carbon atoms.
  • Aryl sul Honyl groups such as benzenesulfonyl, alkylsilyl groups (preferably alkylsilyl groups having 1 to 20 carbon atoms, such as monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc.), arylsilyl groups (preferably 6 carbon atoms).
  • Arylsilyl groups of ⁇ 42 such as triphenylsilyl
  • alkoxysilyl groups preferably alkoxysilyl groups having 1 to 20 carbon atoms, such as monomethoxysilyl, dimethoxysilyl, trimethoxysilyl, triethoxysilyl, etc.
  • An aryloxysilyl group preferably an aryloxysilyl group having 6 to 42 carbon atoms, for example, triphenyloxysilyl group
  • R P 2
  • a phosphinyl group preferably a phosphinyl group having 0 to 20 carbon atoms, for example, -P (R P) 2)
  • phosphonic acid groups preferably phosphonic acid groups having 0 to 20 carbon atoms, e.g., -PO (OR P) 2)
  • a sulfo group sulfonic acid group, -SO 3 R P
  • Carboxy group Carboxy group, hydroxy group, sulfanyl group, cyano group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.).
  • RP is a hydrogen atom or a substituent (preferably a group selected from the substituent Z). Further, each group listed in these substituents Z may be further substituted with the above-mentioned substituent Z.
  • the alkyl group, alkylene group, alkenyl group, alkenylene group, alkynyl group and / or alkynylene group and the like may be cyclic or chain-like, or may be linear or branched.
  • the polymer binder or the binder-forming polymer preferably has the following physical properties or properties.
  • the water concentration of the polymer binder (polymer) is preferably 100 ppm (mass basis) or less.
  • the polymer may be crystallized and dried, or the polymer binder dispersion may be used as it is.
  • the binder-forming polymer is preferably amorphous.
  • the term "amorphous" as a polymer typically means that no endothermic peak due to crystal melting is observed when measured at the glass transition temperature.
  • the binder-forming polymer may be a non-crosslinked polymer or a crosslinked polymer. Further, when the cross-linking of the polymer proceeds by heating or application of a voltage, the molecular weight may be larger than the above molecular weight.
  • the polymer has a mass average molecular weight in the range described below at the start of use of the all-solid-state secondary battery.
  • the mass average molecular weight of the binder-forming polymer is not particularly limited. For example, 15,000 or more is preferable, 30,000 or more is more preferable, and 50,000 or more is further preferable.
  • the upper limit is substantially 5,000,000 or less, preferably 4,000,000 or less, and more preferably 3,000,000 or less.
  • the molecular weights of the polymer, the polymer chain and the macromonomer refer to the mass average molecular weight or the number average molecular weight in terms of standard polystyrene by gel permeation chromatography (GPC) unless otherwise specified.
  • GPC gel permeation chromatography
  • the measuring method basically, the value measured by the method of the following condition 1 or condition 2 (priority) is used.
  • an appropriate eluent may be appropriately selected and used depending on the type of polymer or macromonomer.
  • the inorganic solid electrolyte-containing composition of the present invention may contain one kind or two or more kinds of polymer binders.
  • the (total) content of the polymer binder in the inorganic solid electrolyte-containing composition is not particularly limited, but has a solid content of 100 mass in that it improves dispersion stability and handleability, and also exhibits sufficient binding properties. In%, it is preferably 0.1 to 10.0% by mass, more preferably 0.2 to 8% by mass, further preferably 0.3 to 6% by mass, and 0.5 to 0.5% by mass. It is particularly preferably 3% by mass.
  • the total mass)] is preferably in the range of 1,000 to 1. This ratio is more preferably 500 to 2, and even more preferably 100 to 10.
  • the inorganic solid electrolyte-containing composition of the present invention contains a metal element-containing compound.
  • a metal element-containing compound By coexisting the metal element-containing compound in the solid state with the inorganic solid electrolyte particles and the polymer binder, it interacts with the polymer binder in the dissolved state, and the starting point is, for example, the metal element-containing compound and the ion receiving portion of the metal element.
  • the polymer binder can be solidified into particles.
  • This metal element-containing compound has a property that at least a part of the metal elements constituting the molecule can be supplied as a binder-forming polymer as ions (cations).
  • the property that the metal element-containing compound can supply the metal element ion is not uniquely determined by the chemical structure or the like of the binder-forming polymer that can receive the metal element ion.
  • the negative common logarithm [pKa] (in water) of the acid dissociation constant of the conjugate acid is preferably -2 to 40, preferably -2 to 20. More preferably, it is more preferably 0 to 10, and particularly preferably 2 to 8.
  • the metal element-containing compound can rapidly release and generate metal element ions as cations and effectively supply the binder-forming polymer.
  • the pKa of the conjugate acid can be measured in the same manner as the pKa of the functional group (a).
  • the pKa of the conjugate acid that derives the anion is the pKa of the functional group (a) (when the binder-forming polymer has a plurality of functional groups (a), each functional group is realized in terms of improvement of dispersion characteristics and battery characteristics. It is preferable that it is larger than pKa), which shows at least the lowest value among the pKas of.
  • the pKa difference between the pKa of the conjugate acid and the pKa of the functional group (a) [(pKa of the conjugate acid)-(pKa of the functional group)] is not particularly limited and may be 0.1 or more. However, it is preferably 2 or more, and more preferably 2.5 or more, in that the dispersion characteristics and the resistance can be compatible with each other at a higher level.
  • the upper limit of the pKa difference is not particularly limited, and can be, for example, 35 or less, preferably 30 or less, and more preferably 20 or less.
  • the metal element-containing compound can release metal element ions during film formation of the inorganic solid electrolyte-containing composition, some metal elements are released as ions except during film formation (during preparation, storage, etc.). May be good.
  • the metal element-containing compound is insoluble in the dispersion medium contained in the inorganic solid electrolyte-containing composition, and exists in the inorganic solid electrolyte-containing composition in a solid state. Since it exists in the solid state, even if it covers the surface of the solid particles at the time of film formation, it is only partial, and it is possible to suppress an increase in the interfacial resistance between the solid particles.
  • insoluble means that the solubility in the dispersion medium by the above-mentioned measuring method is 0.05% or less, and a part of the metal element-containing compound becomes the dispersion medium as long as the effect of the present invention is not impaired. It may be dissolved.
  • the metal element-containing compound is preferably dispersed in a dispersion medium in a solid state.
  • the fact that the metal element-containing compound is dispersed in the dispersion medium in a solid state is described later using a dispersion liquid in which the metal element-containing compound is mixed (dispersed) with the dispersion medium at a solid content concentration of 10% by mass. It means that the amount of solid content reduction in the dispersion stability test in the example is less than 5% by mass.
  • the average particle size of the metal element-containing compound existing in the solid state is not particularly limited and can be 0.05 to 35 ⁇ m.
  • the lower limit of the average particle size is preferably 0.05 ⁇ m or more, more preferably 0.07 ⁇ m or more, still more preferably 0.1 ⁇ m or more.
  • the upper limit of the average particle size is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 2 ⁇ m or less.
  • the average particle size is a value measured by the method described in Examples described later.
  • the average particle size of the metal element-containing compound can be adjusted by, for example, the compound structure, for example, the type and content of an anion or metal element, the type of dispersion medium, and the like.
  • the metal element-containing compound is not particularly limited as long as it is a compound exhibiting the property of being able to supply the metal element ion, and various compounds can be mentioned.
  • the metal element-containing compound may be an inorganic compound but preferably an organic compound, and may be a polymer compound but is preferably a small molecule compound (non-polymerizable compound). It is preferable that this metal element-containing compound does not exhibit ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table (lithium ion conductivity: less than 10-6 S / cm).
  • the metal element-containing compound used in the present invention supplies the metal element ion because the pKa of the conjugate acid of the anion is as small as less than -2 in that it exhibits the property of being able to supply the metal element ion, for example, in the point of showing the pKa. It is a group of compounds different from inorganic solid electrolytes, active materials, conductive auxiliaries, lithium salts, ionic liquids, thickeners, etc., which do not show possible properties and are usually used for all-solid secondary batteries.
  • an organometallic compound or an organometallic salt containing an anion derived from an organic compound such as an organic acid, alcohol, or hydrocarbon and a cation derived from the metal element is preferable.
  • the organometallic compound or the organometallic salt is not particularly limited, and for example, an organometallic salt containing an anion derived from an organic acid and a cation derived from a metal element, and an alkoxide containing an anion derived from alcohol and a cation derived from a metal element. (Alkoxide), an organometallic compound containing an anion derived from a hydrocarbon and a cation derived from a metal element can be mentioned.
  • organic acid metal salts or alkoxides are preferable, and organic acid metal salts are more preferable.
  • the anion preferably has a pKa of the conjugate acid (the organic compound) in the above range.
  • the metal element forming the cation is not particularly limited and is appropriately selected from the metal elements belonging to the Group 1 to Group 17 of the Periodic Table. However, in terms of improving the dispersion characteristics and the battery characteristics, the Periodic Table No. 1 It is preferable to contain metal elements belonging to Group 1, Group 2, Group 12 or Group 13, and metal elements belonging to Group 1 of the Periodic Table (alkali metal) or metal elements belonging to Group 2 (alkali earth).
  • a metal further preferably to contain a metal element belonging to Group 1 of the periodic table, and particularly preferably to contain a lithium element.
  • the valence that the metal element or its ion can take is not particularly limited and is selected from, for example, the range of monovalent to heptavalent, but a small valence is preferable in terms of improving dispersion characteristics and battery characteristics, for example. It is more preferably 1 to trivalent, more preferably monovalent or divalent, and particularly preferably monovalent.
  • the metal element is preferably the same as the metal element contained in the inorganic solid electrolyte in relation to the inorganic solid electrolyte.
  • the organic compound forming an anion is a compound in which the metal element of the metal element-containing compound is replaced with a hydrogen atom, and is not particularly limited.
  • an organic acid, an alcohol, and a hydrocarbon are preferable, and an organic acid is more preferable.
  • the organic acid is a hydrocarbon compound having an acid group, and examples thereof include organic carboxylic acid, organic sulfonic acid, organic phosphonic acid, and organic boric acid, and both improvement of dispersion characteristics and reduction of resistance are achieved at a high level.
  • Organic carboxylic acids are preferred because they can.
  • the number of acid groups contained in the organic acid is not particularly limited, and is preferably 1 to 3, preferably 1 or 2.
  • the hydrocarbon compound constituting the organic acid is not particularly limited, and examples thereof include chain or ring-type saturated hydrocarbons, chain-type or ring-type unsaturated hydrocarbons, and aromatic hydrocarbons, and chain-type. Saturated hydrocarbons are preferred. Further, the structure of the chain-type saturated hydrocarbon or unsaturated hydrocarbon may be a linear structure or a branched chain. Each of the above hydrocarbon compounds may have a substituent selected from the above substituent Z.
  • the organic carboxylic acid is not particularly limited, and examples thereof include saturated or unsaturated fatty acids, saturated or unsaturated aliphatic dicarboxylic acids, and aromatic dicarboxylic acids. Formic acid is a compound in which one carboxy group and a hydrogen atom are bonded, and oxalic acid is a compound in which two carboxy groups are bonded, both of which are included in the organic carboxylic acid.
  • the alcohol is a hydrocarbon compound having hydroxyl groups, and the number of hydroxyl groups contained in the hydrocarbon compound is not particularly limited, and is preferably 1 to 3, preferably 1 or 2.
  • the hydrocarbon compound constituting the alcohol is not particularly limited, and a hydrocarbon compound constituting an organic acid is preferably mentioned.
  • the hydrocarbon forming an anion is not particularly limited, and a hydrocarbon compound constituting an organic acid is preferable.
  • the number of carbon atoms of the organic compound forming the anion is not particularly limited and may be 1 to 24, but is preferably 3 to 22 in terms of improving dispersion characteristics and battery characteristics, and 6 to 21. It is more preferably 10 to 20, and particularly preferably 12 to 19.
  • the metal element-containing compound may be present alone in the inorganic solid electrolyte-containing composition, or may form a complex (for example, an adsorbent, a complex, or a solvate) with other components. ..
  • a complex for example, an adsorbent, a complex, or a solvate
  • the organic carboxylic acid metal salt does not form a boron trifluoride complex as in Patent Document 2.
  • metal element-containing compound examples include aluminum, copper, magnesium, calcium, magnesium, calcium, magnesium, calcium, magnesium, calcium, magnesium, calcium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium
  • the inorganic solid electrolyte-containing composition of the present invention may contain one kind or two or more kinds of metal element-containing compounds.
  • the content of the metal element-containing compound in the inorganic solid electrolyte-containing composition is not particularly limited, but it is possible to achieve both improvement in dispersion characteristics and low resistance, and to sufficiently bind solid particles. , 0.005 to 3% by mass, more preferably 0.007 to 1% by mass, still more preferably 0.01 to 0.1% by mass, based on 100% by mass of the solid content. ..
  • the metal element-containing compound supplies preferably 1 to 100 mol%, more preferably 30 to 99 mol% of the metal element as ions with respect to the functional group (a). It can be a possible content.
  • the inorganic solid electrolyte-containing composition of the present invention contains a dispersion medium that dissolves the binder-forming polymer and disperses the metal element-containing compound.
  • the dispersion medium may be an organic compound that is liquid in the environment of use, and examples thereof include various organic solvents. Specifically, an alcohol compound, an ether compound, an amide compound, an amine compound, a ketone compound, and an aromatic compound. , An aliphatic compound, a nitrile compound, an ester compound and the like.
  • the dispersion medium may be a non-polar dispersion medium (hydrophobic dispersion medium) or a polar dispersion medium (hydrophilic dispersion medium), but it is possible to realize a dissolved state of the polymer binder and a dispersed state of the metal element-containing compound.
  • Non-polar dispersion medium is preferred.
  • the non-polar dispersion medium generally has a property of having low affinity for water, but in the present invention, it is preferably a dispersion medium having a ClogP value of 1.5 to 6, for example, an ester compound, a ketone compound, or an ether. Examples thereof include compounds, aromatic compounds and aliphatic compounds.
  • Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and 2 -Methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol can be mentioned.
  • ether compound examples include alkylene glycol (diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.), alkylene glycol monoalkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, etc.).
  • alkylene glycol diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.
  • alkylene glycol monoalkyl ether ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, etc.
  • amide compound examples include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, ⁇ -caprolactam, formamide, N-methylformamide and acetamide. , N-Methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
  • Examples of the ketone compound include acetone, methyl ethyl ketone, methyl isobutyl ketone (MIBK), cyclopentanone, cyclohexanone, cycloheptanone, dipropyl ketone, dibutyl ketone, diisopropyl ketone, diisobutyl ketone (DIBK), isobutyl propyl ketone, sec-. Examples thereof include butyl propyl ketone, pentyl propyl ketone and butyl propyl ketone.
  • Examples of the aromatic compound include benzene, toluene, xylene and the like.
  • Examples of the aliphatic compound include hexane, heptane, octane, decane, cyclohexane, methylcyclohexane, ethylcyclohexane, cyclooctane, decalin, paraffin, gasoline, naphtha, kerosene, and light oil.
  • Examples of the nitrile compound include acetonitrile, propionitrile, isobutyronitrile and the like.
  • ester compound examples include ethyl acetate, butyl acetate, propyl acetate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, butyl pentanate, ethyl isobutyrate, propyl isobutyrate, isopropyl isobutyrate, isobutyl isobutyrate, and pivalic acid.
  • Examples thereof include propyl, isopropyl pivalate, butyl pivalate, and isobutyl pivalate.
  • ether compounds, ketone compounds, aromatic compounds, aliphatic compounds and ester compounds are preferable, and ester compounds, ketone compounds or ether compounds are more preferable.
  • the number of carbon atoms of the compound constituting the dispersion medium is not particularly limited, and is preferably 2 to 30, more preferably 4 to 20, further preferably 6 to 15, and particularly preferably 7 to 12.
  • the compound constituting the dispersion medium preferably has a CLogP value of 1 or more, more preferably 1.5 or more, further preferably 2 or more, and particularly preferably 3 or more.
  • the upper limit is not particularly limited, but it is practically 10 or less, and preferably 6 or less.
  • the CLogP value is a value obtained by calculating the common logarithm LogP of 1-octanol and the partition coefficient P to water.
  • Known methods and software can be used for calculating the CRogP value, but unless otherwise specified, the structure is drawn using ChemDraw of PerkinElmer Co., Ltd., and the calculated value is used.
  • the ClogP value of the dispersion medium is the sum of the products of the ClogP value of each dispersion medium and the mass fraction.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher at normal pressure (1 atm), and more preferably 70 ° C. or higher.
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the inorganic solid electrolyte-containing composition of the present invention may contain at least one type of dispersion medium, and may contain two or more types.
  • the content of the dispersion medium in the inorganic solid electrolyte-containing composition is not particularly limited and can be appropriately set.
  • 20 to 80% by mass is preferable, 30 to 70% by mass is more preferable, and 40 to 60% by mass is particularly preferable.
  • the inorganic solid electrolyte-containing composition of the present invention may also contain an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table.
  • the active material include a positive electrode active material and a negative electrode active material, which will be described below.
  • an inorganic solid electrolyte-containing composition containing an active material positive electrode active material or negative electrode active material
  • an electrode composition positive electrode composition or negative electrode composition
  • the positive electrode active material is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above-mentioned characteristics, and may be a transition metal oxide, an element such as sulfur that can be composited with Li, or the like by decomposing the battery.
  • the 1 (Ia) group elements of the transition metal oxide to elemental M b (Table metal periodic other than lithium, the elements of the 2 (IIa) group, Al, Ga, In, Ge , Sn, Pb, Elements such as Sb, Bi, Si, P and B) may be mixed.
  • the mixing amount is preferably 0 to 30 mol% relative to the amount of the transition metal element M a (100 mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphoric acid compound, and (MD). ) Lithium-containing transition metal halide phosphoric acid compound, (ME) lithium-containing transition metal silicic acid compound and the like.
  • transition metal oxide having a layered rock salt structure examples include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (Lithium Nickel Cobalt Oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Lithium Nickel Manganese Cobalt Oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickel oxide).
  • LiCoO 2 lithium cobalt oxide [LCO]
  • LiNi 2 O 2 lithium nickel oxide
  • LiNi 0.85 Co 0.10 Al 0. 05 O 2 Lithium Nickel Cobalt Oxide [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 Lithium Nickel Manganese Cobalt Oxide [NMC]
  • LiNi 0.5 Mn 0.5 O 2 Lithium manganese nickel oxide
  • (MB) Specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO) , LiCoMnO 4, Li 2 FeMn 3 O 8, Li 2 CuMn 3 O 8, Li 2 CrMn 3 O 8 and Li 2 Nimn 3 O 8 can be mentioned.
  • Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4.
  • Examples thereof include cobalt phosphates of Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate) and other monoclinic panocycon-type vanadium phosphate salts.
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Fluorophosphate cobalts such as.
  • Examples of the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably in the form of particles.
  • the particle size (volume average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m.
  • the particle size of the positive electrode active material particles can be measured in the same manner as the particle size of the above-mentioned inorganic solid electrolyte.
  • a normal crusher or classifier is used to adjust the positive electrode active material to a predetermined particle size. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill, a sieve, or the like is preferably used.
  • wet pulverization in which a dispersion medium such as water or methanol coexists can also be performed. It is preferable to perform classification in order to obtain a desired particle size.
  • the classification is not particularly limited, and can be performed using a sieve, a wind power classifier, or the like. Both dry and wet classifications can be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the positive electrode active material one type may be used alone, or two or more types may be used in combination.
  • the mass (mg) (grain amount) of the positive electrode active material per unit area (cm 2) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
  • the content of the positive electrode active material in the inorganic solid electrolyte-containing composition is not particularly limited, and is preferably 10 to 97% by mass, more preferably 30 to 95% by mass, and 40 to 93% by mass in terms of solid content of 100% by mass. More preferably, 50 to 90% by mass is particularly preferable.
  • the negative electrode active material is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and examples thereof include a carbonaceous material, a metal oxide, a metal composite oxide, a lithium simple substance, a lithium alloy, and a negative electrode active material capable of forming an alloy with lithium. .. Of these, carbonaceous materials, metal composite oxides, or elemental lithium are preferably used from the viewpoint of reliability.
  • the carbonaceous material used as the negative electrode active material is a material substantially composed of carbon.
  • carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin.
  • a carbonaceous material obtained by firing a resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polypoly alcohol) -based carbon fibers, lignin carbon fibers, graphitic carbon fibers, and activated carbon fibers.
  • carbonaceous materials can also be divided into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials depending on the degree of graphitization. Further, the carbonaceous material preferably has the plane spacing or density and the size of crystallites described in JP-A No. 62-22066, JP-A No. 2-6856, and JP-A-3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, and the like should be used. You can also.
  • As the carbonaceous material hard carbon or graphite is preferably used, and graphite is more preferably used.
  • the metal or semi-metal element oxide applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of storing and releasing lithium, and is a composite of a metal element oxide (metal oxide) and a metal element.
  • metal oxide metal oxide
  • examples thereof include oxides or composite oxides of metal elements and semi-metal elements (collectively referred to as metal composite oxides) and oxides of semi-metal elements (semi-metal oxides).
  • metal composite oxides oxides or composite oxides of metal elements and semi-metal elements
  • oxides of semi-metal elements semi-metal elements
  • amorphous oxides are preferable, and chalcogenides, which are reaction products of metal elements and elements of Group 16 of the periodic table, are also preferable.
  • the metalloid element means an element exhibiting properties intermediate between the metalloid element and the non-metalloid element, and usually contains six elements of boron, silicon, germanium, arsenic, antimony and tellurium, and further selenium. , Polonium and astatine.
  • amorphous means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having an apex in a region of 20 ° to 40 ° in 2 ⁇ value, and a crystalline diffraction line is used. You may have.
  • the strongest intensity of the crystalline diffraction lines seen at the 2 ⁇ value of 40 ° to 70 ° is 100 times or less of the diffraction line intensity at the apex of the broad scattering band seen at the 2 ⁇ value of 20 ° to 40 °. It is preferable that it is 5 times or less, and it is particularly preferable that it does not have a crystalline diffraction line.
  • the amorphous oxide of the metalloid element or the chalcogenide is more preferable, and the elements of the groups 13 (IIIB) to 15 (VB) of the periodic table (for example).
  • Al, Ga, Si, Sn, Ge, Pb, Sb and Bi) alone or a combination of two or more (composite) oxides, or chalcogenides are particularly preferred.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2.
  • Negative electrode active materials that can be used in combination with amorphous oxides such as Sn, Si, and Ge include carbonaceous materials that can occlude and / or release lithium ions or lithium metals, lithium alone, lithium alloys, and lithium.
  • a negative electrode active material that can be alloyed with is preferably mentioned.
  • the oxide of a metal or a metalloid element contains at least one of titanium and lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the lithium-containing metal composite oxide include a composite oxide of lithium oxide and the metal (composite) oxide or the chalcogenide, and more specifically, Li 2 SnO 2.
  • the negative electrode active material for example, a metal oxide, contains a titanium element (titanium oxide).
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • LTO lithium titanate
  • the lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of the secondary battery, and examples thereof include a lithium aluminum alloy.
  • the negative electrode active material that can be alloyed with lithium is not particularly limited as long as it is usually used as the negative electrode active material of the secondary battery. Such an active material has a large expansion and contraction due to charging and discharging of an all-solid secondary battery and accelerates a decrease in cycle characteristics.
  • the inorganic solid electrolyte-containing composition of the present invention contains the above-mentioned polymer binder and metal element-containing compound. Since it is contained, deterioration of cycle characteristics can be suppressed.
  • Examples of such an active material include a (negative electrode) active material having a silicon element or a tin element (alloy, etc.), and metals such as Al and In, and a negative electrode active material having a silicon element that enables a higher battery capacity.
  • a silicon element-containing active material (Silicon element-containing active material) is preferable, and a silicon element-containing active material having a silicon element content of 50 mol% or more of all the constituent elements is more preferable.
  • a negative electrode containing these negative electrode active materials Si negative electrode containing a silicon element-containing active material, Sn negative electrode containing an active material containing a tin element, etc.
  • a carbon negative electrode graphite, acetylene black, etc.
  • silicon element-containing active material examples include silicon materials such as Si and SiOx (0 ⁇ x ⁇ 1), and silicon-containing alloys containing titanium, vanadium, chromium, manganese, nickel, copper, lanthanum, and the like (for example,).
  • LaSi 2 , VSi 2 , La-Si, Gd-Si, Ni-Si) or organized active material (eg LaSi 2 / Si), as well as other silicon and tin elements such as SnSiO 3 , SnSiS 3 Examples include active materials containing.
  • SiOx itself can be used as a negative electrode active material (metalloid oxide), and since Si is generated by the operation of an all-solid-state secondary battery, a negative electrode active material that can be alloyed with lithium (its). It can be used as a precursor substance).
  • the negative electrode active material having a tin element include Sn, SnO, SnO 2 , SnS, SnS 2 , and the active material containing the silicon element and the tin element.
  • a composite oxide with lithium oxide for example, Li 2 SnO 2 can also be mentioned.
  • the above-mentioned negative electrode active material can be used without particular limitation, but in terms of battery capacity, a negative electrode active material that can be alloyed with lithium is a preferred embodiment as the negative electrode active material.
  • a negative electrode active material that can be alloyed with lithium is a preferred embodiment as the negative electrode active material.
  • the above-mentioned silicon material or silicon-containing alloy (alloy containing a silicon element) is more preferable, and it is further preferable to contain silicon (Si) or a silicon-containing alloy.
  • the chemical formula of the compound obtained by the above firing method can be calculated from the inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method and the mass difference of the powder before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the shape of the negative electrode active material is not particularly limited, but it is preferably in the form of particles.
  • the volume average particle size of the negative electrode active material is not particularly limited, but is preferably 0.1 to 60 ⁇ m.
  • the volume average particle size of the negative electrode active material particles can be measured in the same manner as the average particle size of the inorganic solid electrolyte. In order to obtain a predetermined particle size, a normal crusher or classifier is used as in the case of the positive electrode active material.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (grain amount) of the negative electrode active material per unit area (cm 2) of the negative electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
  • the content of the negative electrode active material in the inorganic solid electrolyte-containing composition is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and 30 to 30% by mass, based on 100% by mass of the solid content. It is more preferably 80% by mass, and even more preferably 40 to 75% by mass.
  • the negative electrode active material layer when the negative electrode active material layer is formed by charging the secondary battery, instead of the negative electrode active material, a metal belonging to Group 1 or Group 2 of the periodic table generated in the all-solid-state secondary battery is used. Ions can be used. A negative electrode active material layer can be formed by combining these ions with electrons and precipitating them as a metal.
  • the surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include spinel titanate, tantalum oxide, niobate oxide, lithium niobate compound and the like.
  • the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the surface of the positive electrode active material or the particle surface of the negative electrode active material may be surface-treated with active light rays or an active gas (plasma or the like) before and after the surface coating.
  • the inorganic solid electrolyte-containing composition of the present invention preferably contains a conductive auxiliary agent, and for example, a silicon atom-containing active material as a negative electrode active material is preferably used in combination with a conductive auxiliary agent.
  • the conductive auxiliary agent is not particularly limited, and those known as general conductive auxiliary agents can be used.
  • electron conductive materials such as graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fibers or carbon nanotubes.
  • It may be a carbon fiber such as graphene or fullerene, a metal powder such as copper or nickel, or a metal fiber, and a conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, or polyphenylene derivative. May be used.
  • a conductive auxiliary agent is one that does not insert and release ions) and does not function as an active material.
  • conductive auxiliary agents those that can function as active materials in the active material layer when the battery is charged and discharged are classified as active materials instead of conductive auxiliary agents. Whether or not the battery functions as an active material when it is charged and discharged is not unique and is determined by the combination with the active material.
  • the conductive auxiliary agent may contain one kind or two or more kinds.
  • the shape of the conductive auxiliary agent is not particularly limited, but is preferably in the form of particles.
  • the content of the conductive auxiliary agent in the inorganic solid electrolyte-containing composition is preferably 0 to 10% by mass based on 100% by mass of the solid content.
  • the inorganic solid electrolyte-containing composition of the present invention preferably contains a lithium salt (supporting electrolyte).
  • the lithium salt the lithium salt usually used for this kind of product is preferable, and there is no particular limitation.
  • the lithium salt described in paragraphs 882 to 985 of JP2015-088486 is preferable.
  • the content of the lithium salt is preferably 0.1 part by mass or more, more preferably 5 parts by mass or more, based on 100 parts by mass of the solid electrolyte.
  • the upper limit is preferably 50 parts by mass or less, more preferably 20 parts by mass or less.
  • the inorganic solid electrolyte-containing composition of the present invention may not contain a dispersant other than this polymer binder, but may contain a dispersant.
  • the dispersant those usually used for all-solid-state secondary batteries can be appropriately selected and used. Generally, compounds intended for particle adsorption, steric repulsion and / or electrostatic repulsion are preferably used.
  • the composition containing an inorganic solid electrolyte of the present invention contains, as other components other than the above components, an ionic liquid, a thickener, and a cross-linking agent (such as those that undergo a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization).
  • a cross-linking agent such as those that undergo a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization.
  • Polymerization initiators such as those that generate acids or radicals by heat or light
  • defoaming agents leveling agents, dehydrating agents, antioxidants and the like
  • the ionic liquid is contained in order to further improve the ionic conductivity, and known ones can be used without particular limitation.
  • a polymer other than the polymer forming the polymer binder described above, a commonly used binder and the like may be contained.
  • the inorganic solid electrolyte-containing composition of the present invention contains an inorganic solid electrolyte, a polymer binder, a metal element-containing compound, a dispersion medium, a conductive auxiliary agent, an appropriately lithium salt, and any other components, for example, various mixers usually used. Mix with. As a result, the mixture is prepared as a mixture in which the polymer binder is dissolved in the dispersion medium and the metal element-containing compound is not dissolved and is present in the solid state, preferably as a slurry. In the case of the electrode composition, the active material is further mixed.
  • the polymer binder, the metal element-containing compound, and the dispersion medium are appropriately selected in the combination of the above-mentioned dissolution state and dispersion state with respect to the dispersion medium.
  • the mixing method is not particularly limited, and the mixture may be mixed all at once or sequentially.
  • the mixing environment is not particularly limited, and examples thereof include under dry air and under an inert gas.
  • the inorganic solid electrolyte-containing composition of the present invention is preferably a non-aqueous composition.
  • the non-aqueous composition includes not only a water-free aspect but also a form in which the water content (also referred to as water content) is preferably 500 ppm or less.
  • the water content is more preferably 200 ppm or less, further preferably 100 ppm or less, and particularly preferably 50 ppm or less.
  • the water content indicates the amount of water contained in the inorganic solid electrolyte-containing composition (mass ratio to the inorganic solid electrolyte-containing composition).
  • the mixture is filtered through a 0.02 ⁇ m membrane filter and curled fisher.
  • the value shall be the value measured using titration.
  • the viscosity (initial viscosity) after preparation is not particularly limited, but in consideration of coatability and the like, for example, the viscosity under the following measurement conditions is preferably 1000 to 4000 cP, preferably 300 to 300. 4000 cP is more preferable, and 500 cP to 2500 cP is further preferable. Since the inorganic solid electrolyte-containing composition of the present invention exhibits excellent dispersion characteristics as described above, the above initial viscosity can be maintained over time.
  • Measurement condition Temperature: 23 ° C Shear velocity: 10 / s
  • Measuring equipment TV-35 type viscometer (manufactured by Toki Sangyo Co., Ltd.)
  • Measurement method 1.1 ml of the composition was dropped into the sample cup, the sample cup was set in the viscometer body equipped with a standard cone rotor (1 ° 34'x R24), the measurement range was set to "U", and the above shearing was performed. Rotate at speed and read the value after 1 minute.
  • the solubility of the polymer binder in the dispersion medium after heating is preferably smaller than the solubility of the polymer binder in the dispersion medium before heating.
  • the solubility of the polymer binder is reduced by heating, the polymer binder can be solidified as particles from the dispersion medium during film formation (drying) of the inorganic solid electrolyte-containing composition, and resistance is maintained while maintaining excellent dispersion characteristics. The increase can be suppressed and excellent cycle characteristics can be realized.
  • the above-mentioned characteristics (decrease in solubility due to heating) of the inorganic solid electrolyte-containing composition can be evaluated and confirmed with the inorganic solid electrolyte-containing composition of the present invention, but as shown in Example 2 described later, a polymer. It can be evaluated and confirmed more clearly when the content of the binder in the composition is set to 10% by mass and the content of the metal element-containing compound in the composition is set to 0.5% by mass. .. If the heating temperature is 80 ° C. or higher, the above characteristics can be evaluated and confirmed more clearly, and can be, for example, 80 to 120 ° C. Conditions other than the heating temperature and the content are appropriately determined, and for example, the heating time can be 10 minutes or more.
  • the inorganic solid electrolyte-containing composition of the present invention is a dispersion medium of the polymer binder after concentration when the total concentration of the polymer binder and the metal element-containing compound in the inorganic solid electrolyte-containing composition is concentrated to 30% by mass or more. It is preferable that the solubility in the polymer binder before concentration is smaller than the solubility in the dispersion medium of the polymer binder.
  • the solubility of the polymer binder is reduced by concentration, the polymer binder can be solidified as particles from the dispersion medium during film formation (drying) of the inorganic solid electrolyte-containing composition, and resistance is maintained while maintaining excellent dispersion characteristics. The increase can be suppressed and excellent cycle characteristics can be realized.
  • the above-mentioned characteristics (decrease in solubility due to concentration) of the inorganic solid electrolyte-containing composition can be evaluated and confirmed with the inorganic solid electrolyte-containing composition of the present invention, but as shown in Example 2 described later, a polymer. It can be evaluated and confirmed more clearly when the content of the binder in the composition is set to 10% by mass and the content of the metal element-containing compound in the composition is set to 0.5% by mass. .. If the total concentration to be concentrated is 30% by mass or more, the above characteristics can be evaluated and confirmed more clearly, and for example, it can be 50% by mass or more.
  • the heating temperature at the time of concentration is appropriately set and may be 80 ° C. or higher, but is preferably less than 80 ° C., which is unlikely to cause a decrease in solubility due to heating, and can be, for example, 30 to 60 ° C. Conditions other than the total content and heating temperature are appropriately determined.
  • the solubility of the polymer binder present in the constituent layer in the dispersion medium contained in the inorganic solid electrolyte-containing composition is high.
  • the solubility of the polymer binder contained in the inorganic solid electrolyte-containing composition in the dispersion medium is smaller than that of the polymer binder. If the solubility of the polymer binder can be reduced by carrying out the film forming process, the polymer binder can be solidified from the dispersion medium to form particles of the polymer binder in the constituent layer, the increase in resistance can be suppressed, and excellent cycle characteristics can be obtained. realizable.
  • the above-mentioned characteristics (decrease in solubility due to film formation) of the inorganic solid electrolyte-containing composition can be evaluated and confirmed with the inorganic solid electrolyte-containing composition of the present invention, but the content of the polymer binder in the composition can be determined.
  • the composition is set to 10% by mass and the content of the metal element-containing compound in the composition is set to 0.5% by mass, it can be evaluated and confirmed more clearly.
  • the film forming conditions are not particularly limited, and the drying conditions described later can be appropriately selected.
  • the solubility of the polymer binder may be reduced to the solubility at which the polymer binder can solidify and precipitate from the dispersion medium, and the difference in solubility is 20% by mass or more. It is preferable to have. It is considered that such a decrease in solubility is due to the interaction between the polymer binder in the dissolved state and the metal element-containing compound.
  • the sheet for an all-solid-state secondary battery of the present invention is a sheet-like molded body capable of forming a constituent layer of an all-solid-state secondary battery, and includes various aspects depending on its use.
  • a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte sheet for an all-solid secondary battery
  • an electrode or a sheet preferably used for a laminate of an electrode and a solid electrolyte layer (an electrode for an all-solid secondary battery).
  • Sheet and the like.
  • these various sheets are collectively referred to as an all-solid-state secondary battery sheet.
  • the solid electrolyte sheet for an all-solid secondary battery of the present invention may be a sheet having a solid electrolyte layer, and even a sheet in which the solid electrolyte layer is formed on a base material does not have a base material and is a solid electrolyte layer. It may be a sheet formed of.
  • the solid electrolyte sheet for an all-solid secondary battery may have another layer in addition to the solid electrolyte layer. Examples of other layers include a protective layer (release sheet), a current collector, a coat layer, and the like.
  • the solid electrolyte sheet for an all-solid secondary battery of the present invention for example, a sheet having a layer composed of the inorganic solid electrolyte-containing composition of the present invention, a normal solid electrolyte layer, and a protective layer on a substrate in this order.
  • the layer thickness of each layer constituting the solid electrolyte sheet for an all-solid-state secondary battery is the same as the layer thickness of each layer described in the all-solid-state secondary battery described later.
  • the solid electrolyte layer contained in the solid electrolyte sheet for an all-solid secondary battery is formed of the inorganic solid electrolyte-containing composition of the present invention.
  • the dissolved polymer binder interacts with the metal element-containing compound and solidifies into particles while maintaining adsorption with solid particles. Therefore, the solid electrolyte layer composed of this inorganic solid electrolyte-containing composition contains particles (particulate solidified material) derived from the polymer binder.
  • the average particle size of the particles derived from the polymer binder in the solid electrolyte layer is not particularly limited and can be 5 to 1600 nm, but it may be 8 to 1200 nm in terms of improving the dispersion characteristics and the battery characteristics. It is preferably 10 to 800 nm, more preferably 30 to 600 nm.
  • the average particle size is a value measured by the method described in Examples described later.
  • the average particle size of the particles is, for example, the characteristics of the polymer binder (type, composition, molecular weight, etc.), the type of the metal element-containing compound (type of anion or metal element), the content of the polymer binder and the metal element-containing compound, and the dispersion. It can be adjusted according to the type of medium and the film forming conditions.
  • the state of existence of the metal element-containing compound in the solid electrolyte layer is not particularly limited, but the metal element-containing compound supplied with the metal element can be used as an anion or as a conjugated acid in which an anion and a hydrogen atom are bonded by a salt exchange reaction or the like. , May exist.
  • the polymer binder (particulate solidified material) present in the solid electrolyte layer is produced by solidifying from the dissolved state by the above interaction. Therefore, the polymer binder present in the solid electrolyte layer has a solubility in the dispersion medium contained in the inorganic solid electrolyte-containing composition used, and the polymer binder contained in the inorganic solid electrolyte-containing composition (interaction).
  • the content of each component in the solid electrolyte layer is not particularly limited, but is preferably synonymous with the content of each component in the solid content of the inorganic solid electrolyte-containing composition of the present invention.
  • the base material is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include a material described in the current collector described later, a sheet body (plate-shaped body) such as an organic material and an inorganic material.
  • a material described in the current collector described later a sheet body (plate-shaped body) such as an organic material and an inorganic material.
  • the organic material include various polymers, and specific examples thereof include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
  • the inorganic material include glass, ceramic and the like.
  • the electrode sheet for an all-solid-state secondary battery of the present invention may be an electrode sheet having an active material layer, and the active material layer is formed on a base material (current collector).
  • the sheet may be a sheet that does not have a base material and is formed from an active material layer.
  • This electrode sheet is usually a sheet having a current collector and an active material layer, but has an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, and a current collector, an active material layer and a solid electrolyte. An embodiment having a layer and an active material layer in this order is also included.
  • At least one of the solid electrolyte layer and the active material layer of the electrode sheet is formed of the inorganic solid electrolyte-containing composition of the present invention.
  • the presence state of the polymer binder and the metal element-containing compound is the solid electrolyte layer of the above-mentioned solid electrolyte sheet for an all-solid secondary battery. It is the same as the existence state of.
  • the content of each component in the solid electrolyte layer or the active material layer is not particularly limited, but the content of each component in the solid content of the inorganic solid electrolyte-containing composition (electrode composition) of the present invention is preferable.
  • each layer constituting the electrode sheet of the present invention is the same as the layer thickness of each layer described in the all-solid-state secondary battery described later.
  • the electrode sheet of the present invention may have the other layers described above.
  • the solid electrolyte layer or the active material layer is not formed by the inorganic solid electrolyte-containing composition of the present invention, it is formed by a usual constituent layer forming material.
  • the all-solid-state secondary battery sheet of the present invention has at least one solid electrolyte layer and an active material layer formed of the inorganic solid electrolyte-containing composition of the present invention, and has a flat surface and a low resistance constituent layer. There is. Therefore, by using the sheet for an all-solid-state secondary battery of the present invention as a constituent layer of an all-solid-state secondary battery, it is possible to realize low resistance (high conductivity) and excellent cycle characteristics of the all-solid-state secondary battery.
  • the active material layer and the current collector show strong adhesion and cycle. Further improvement of characteristics can be realized. Therefore, the sheet for an all-solid-state secondary battery of the present invention is suitably used as a sheet capable of forming a constituent layer of an all-solid-state secondary battery.
  • the method for producing the sheet for an all-solid secondary battery of the present invention is not particularly limited, and the sheet can be produced by forming each of the above layers using the inorganic solid electrolyte-containing composition of the present invention.
  • a method of forming a film (coating and drying) on a base material or a current collector (which may be via another layer) to form a layer (coating and drying layer) composed of an inorganic solid electrolyte-containing composition is used.
  • a method of forming a film (coating and drying) on a base material or a current collector (which may be via another layer) to form a layer (coating and drying layer) composed of an inorganic solid electrolyte-containing composition is used.
  • an all-solid-state secondary battery sheet having a base material or a current collector and a coating dry layer can be produced.
  • the coating dry layer is a layer formed by applying the inorganic solid electrolyte-containing composition of the present invention and drying the dispersion medium (that is, the inorganic solid electrolyte-containing composition of the present invention is used.
  • the dispersion medium may remain as long as the effects of the present invention are not impaired, and the residual amount may be, for example, 3% by mass or less in each layer.
  • this coating dry layer contains particles derived from the polymer binder.
  • each step such as coating and drying will be described in the following method for producing an all-solid-state secondary battery.
  • the adhesion between the current collector and the active material layer can be strengthened. ..
  • the coating dry layer can also be pressurized.
  • the pressurizing conditions and the like will be described in the method for manufacturing an all-solid-state secondary battery described later.
  • the obtained coated dry layer is appropriately subjected to pressure treatment or the like to become a solid electrolyte layer or an active material layer.
  • the base material, the protective layer (particularly the release sheet) and the like can be peeled off.
  • the all-solid secondary battery of the present invention comprises a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer arranged between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer is preferably formed on the positive electrode current collector and constitutes the positive electrode.
  • the negative electrode active material layer is preferably formed on the negative electrode current collector to form the negative electrode.
  • At least one layer of the negative electrode active material layer, the positive electrode active material layer and the solid electrolyte layer is formed of the inorganic solid electrolyte-containing composition of the present invention, and the solid electrolyte layer or at least the negative electrode active material layer and the positive electrode active material layer.
  • One is preferably formed of the inorganic solid electrolyte-containing composition of the present invention. It is also one of the preferred embodiments that all layers are formed of the inorganic solid electrolyte-containing composition of the present invention.
  • forming the constituent layer of the all-solid-state secondary battery with the inorganic solid electrolyte-containing composition of the present invention means that the sheet for the all-solid-state secondary battery of the present invention (provided that the composition containing the inorganic solid electrolyte of the present invention is used).
  • it has a layer other than the formed layer, it includes an embodiment in which a constituent layer is formed by a sheet) from which this layer is removed.
  • the active material layer or the solid electrolyte layer formed of the inorganic solid electrolyte-containing composition of the present invention preferably contains the component species and the content thereof in the solid content of the inorganic solid electrolyte-containing composition of the present invention. It is the same.
  • a known material can be used.
  • the thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited. The thickness of each layer is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m, respectively, in consideration of the dimensions of a general all-solid-state secondary battery.
  • the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode active material layer and the negative electrode active material layer may each have a current collector on the opposite side of the solid electrolyte layer.
  • the all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above structure, but in order to form a dry battery, it should be further enclosed in a suitable housing.
  • the housing may be made of metal or resin (plastic).
  • a metallic material for example, one made of aluminum alloy or stainless steel can be mentioned.
  • the metallic housing is divided into a positive electrode side housing and a negative electrode side housing, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.
  • FIG. 1 is a cross-sectional view schematically showing an all-solid-state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. ..
  • Each layer is in contact with each other and has an adjacent structure.
  • the lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 6.
  • a light bulb is used as a model for the operating portion 6, and the light bulb is turned on by electric discharge.
  • the all-solid secondary battery having the layer structure shown in FIG. 1 When the all-solid secondary battery having the layer structure shown in FIG. 1 is placed in a 2032 type coin case, the all-solid secondary battery is referred to as an all-solid secondary battery laminate, and the all-solid secondary battery laminate is referred to as an all-solid secondary battery laminate. Batteries manufactured in a 2032 type coin case are sometimes referred to as all-solid secondary batteries.
  • the all-solid-state secondary battery 10 In the all-solid-state secondary battery 10, all of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are formed of the inorganic solid electrolyte-containing composition of the present invention.
  • the all-solid-state secondary battery 10 exhibits excellent battery performance.
  • the presence state of the polymer binder and the metal element-containing compound in the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 is the same as the presence state in the solid electrolyte layer of the above-mentioned solid electrolyte sheet for an all-solid secondary battery. Is.
  • the inorganic solid electrolyte and the polymer binder contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be of the same type or different from each other.
  • either or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer or an electrode active material layer.
  • either or both of the positive electrode active material and the negative electrode active material may be collectively referred to as an active material or an electrode active material.
  • the constituent layer is formed of the composition containing the inorganic solid electrolyte of the present invention, an all-solid secondary battery exhibiting excellent cycle characteristics with low resistance can be realized.
  • the negative electrode active material layer can be a lithium metal layer.
  • the lithium metal layer include a layer formed by depositing or molding a lithium metal powder, a lithium foil, a lithium vapor deposition film, and the like.
  • the thickness of the lithium metal layer can be, for example, 1 to 500 ⁇ m regardless of the thickness of the negative electrode active material layer.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
  • either or both of the positive electrode current collector and the negative electrode current collector may be collectively referred to as a current collector.
  • a current collector As a material for forming the positive electrode current collector, in addition to aluminum, aluminum alloy, stainless steel, nickel and titanium, the surface of aluminum or stainless steel is treated with carbon, nickel, titanium or silver (a thin film is formed). Of these, aluminum and aluminum alloys are more preferable.
  • As a material for forming the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel.
  • aluminum, copper, copper alloy and stainless steel are more preferable.
  • the shape of the current collector is usually a film sheet, but a net, a punched body, a lath body, a porous body, a foam body, a molded body of a fiber group, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
  • a layer formed of a known constituent layer-forming material can be applied to the positive electrode active material layer.
  • a functional layer, a member, or the like is appropriately interposed or arranged between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. You may. Further, each layer may be composed of a single layer or a plurality of layers.
  • the all-solid-state secondary battery can be manufactured by a conventional method. Specifically, the all-solid-state secondary battery can be manufactured by forming each of the above layers using the inorganic solid electrolyte-containing composition or the like of the present invention. The details will be described below.
  • the inorganic solid electrolyte-containing composition of the present invention is appropriately applied and dried on a base material (for example, a metal foil serving as a current collector) to form a coating film. It can be manufactured by performing a method (method of manufacturing a sheet for an all-solid-state secondary battery of the present invention) including (via) a step of forming a film.
  • a method method of manufacturing a sheet for an all-solid-state secondary battery of the present invention
  • an inorganic solid electrolyte-containing composition containing a positive electrode active material is formed as a positive electrode material (positive electrode composition) on a metal foil which is a positive electrode current collector to form a positive electrode active material layer.
  • a positive electrode sheet for a solid secondary battery is produced.
  • an inorganic solid electrolyte-containing composition for forming a solid electrolyte layer is formed on the positive electrode active material layer to form a solid electrolyte layer.
  • an inorganic solid electrolyte-containing composition containing a negative electrode active material is formed on the solid electrolyte layer as a negative electrode material (negative electrode composition) to form a negative electrode active material layer.
  • a negative electrode current collector metal foil
  • an all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between the positive electrode active material layer and the negative electrode active material layer can be obtained. Can be done. This can be enclosed in a housing to obtain a desired all-solid-state secondary battery.
  • a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collectors are superposed to manufacture an all-solid secondary battery. You can also do it.
  • a positive electrode sheet for an all-solid-state secondary battery is produced. Further, an inorganic solid electrolyte-containing composition containing a negative electrode active material is formed as a negative electrode material (negative electrode composition) on a metal foil which is a negative electrode current collector to form a negative electrode active material layer. A negative electrode sheet for a solid secondary battery is manufactured. Next, a solid electrolyte layer is formed on the active material layer of any one of these sheets as described above.
  • the other of the positive electrode sheet for the all-solid secondary battery and the negative electrode sheet for the all-solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • an all-solid-state secondary battery can be manufactured.
  • the following method can be mentioned. That is, as described above, a positive electrode sheet for an all-solid-state secondary battery and a negative electrode sheet for an all-solid-state secondary battery are produced. Separately from this, an inorganic solid electrolyte-containing composition is formed on a substrate to prepare a solid electrolyte sheet for an all-solid secondary battery composed of a solid electrolyte layer.
  • the positive electrode sheet for the all-solid-state secondary battery and the negative electrode sheet for the all-solid-state secondary battery are laminated so as to sandwich the solid electrolyte layer peeled from the base material. In this way, an all-solid-state secondary battery can be manufactured.
  • the solid electrolyte layer or the like can also be formed by, for example, forming an inorganic solid electrolyte-containing composition or the like on a substrate or an active material layer by pressure molding under pressure conditions described later.
  • the inorganic solid electrolyte-containing composition of the present invention may be used as any one of the positive electrode composition, the inorganic solid electrolyte-containing composition and the negative electrode composition, and the inorganic solid electrolyte-containing composition may be used. It is preferable to use the inorganic solid electrolyte-containing composition of the present invention, and the inorganic solid electrolyte-containing composition of the present invention can be used for any of the compositions.
  • the film formation (coating and drying) of the inorganic solid electrolyte-containing composition of the present invention is carried out while solidifying the polymer binder into particles.
  • the method of solidifying into particles is not particularly limited, but for example, a method of forming a film while reducing the solubility of the polymer binder contained in the composition containing an inorganic solid electrolyte in a dispersion medium, an inorganic solid. Examples thereof include a method of heating the electrolyte-containing composition to 80 ° C. or higher to form a film.
  • the method for applying the composition containing an inorganic solid electrolyte is not particularly limited and can be appropriately selected.
  • coating preferably wet coating
  • spray coating spin coating coating
  • dip coating coating dip coating coating
  • slit coating stripe coating
  • bar coating coating can be mentioned.
  • the applied inorganic solid electrolyte-containing composition is subjected to a drying treatment (heat treatment).
  • heat treatment heat treatment
  • the polymer binder in a dissolved state in the applied inorganic solid electrolyte-containing composition solidifies into particles while maintaining adsorption with the solid particles, and binds the solid particles to each other while suppressing an increase in interfacial resistance. You can wear it.
  • the drying treatment may be carried out after each of the inorganic solid electrolyte-containing compositions has been applied, or may be carried out after the multi-layer coating.
  • the drying conditions are not particularly limited as long as the above-mentioned interaction is exhibited, but conditions that can reduce the solubility of the polymer binder in the dispersion medium are preferably selected.
  • a drying method and a drying temperature can be mentioned.
  • the drying method is not particularly limited, and ordinary drying methods such as static drying (air drying), blast drying, and heat drying under an atmospheric pressure or reduced pressure environment can be applied.
  • the inorganic solid electrolyte-containing composition of the present invention exhibits excellent dispersion characteristics.
  • the total concentration of the polymer binder and the metal element-containing compound in the applied inorganic solid electrolyte-containing composition is inevitably 30% by mass or more, and the solubility of the polymer binder is reduced. Therefore, air drying can be applied as a method for drying the inorganic solid electrolyte-containing composition of the present invention.
  • a drying method or drying conditions for positively removing the dispersion medium is preferable, and heat drying is more preferable.
  • the conditions in each drying method are appropriately determined in consideration of the amount of decrease in the solubility of the polymer binder, preferably the amount of volatilization of the dispersion medium (increase in the concentration of the polymer binder and the metal element-containing compound).
  • the drying temperature is not unique depending on the drying method, but for example, 30 ° C. or higher is preferable, 60 ° C. or higher is more preferable, and 80 ° C. or higher is further preferable.
  • the upper limit is not particularly limited, but for example, 300 ° C. or lower is preferable, 250 ° C. or lower is more preferable, and 200 ° C.
  • the all-solid-state secondary battery provided with the constituent layers thus produced can exhibit excellent overall performance, and can realize good binding properties and good ionic conductivity even without pressurization.
  • Examples of the pressurizing method include a hydraulic cylinder press machine and the like.
  • the pressing force is not particularly limited, and is generally preferably in the range of 5 to 1500 MPa.
  • the applied inorganic solid electrolyte-containing composition may be heated at the same time as pressurization.
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It can also be pressed at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • each composition may be applied at the same time, and the application drying press may be performed simultaneously and / or sequentially. After being applied to separate substrates, they may be laminated by transfer.
  • the atmosphere during pressurization is not particularly limited, and may be any of air, dry air (dew point ⁇ 20 ° C. or lower), inert gas (for example, argon gas, helium gas, nitrogen gas) and the like.
  • the pressing time may be short (for example, within several hours) and high pressure may be applied, or medium pressure may be applied for a long time (1 day or more).
  • an all-solid-state secondary battery restraint screw tightening pressure, etc.
  • the press pressure may be uniform or different with respect to the pressed portion such as the seat surface.
  • the press pressure can be changed according to the area or film thickness of the pressed portion. It is also possible to change the same part step by step with different pressures.
  • the pressed surface may be smooth or roughened.
  • the all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging with the press pressure increased, and then releasing the pressure until the pressure reaches the general working pressure of the all-solid-state secondary battery.
  • the all-solid-state secondary battery of the present invention can be applied to various applications.
  • the application mode is not particularly limited, but for example, when mounted on an electronic device, a laptop computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, or a mobile phone. Examples include copying, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini discs, electric shavers, transceivers, electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, etc.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). Furthermore, it can be used for various munitions and space. It can also be combined with a solar cell.
  • the metal element-containing compounds used in the preparation of the inorganic solid electrolyte-containing composition are commercially available products, and the compounds represented by the symbols in Table 1 are the same as the symbols attached to the above-exemplified compounds.
  • the solubility and dispersion state in the inorganic solid electrolyte-containing composition described later the valence (the content of the metal element in the molecule), the pKa of the anionic conjugated acid (according to the above measurement method), Table 1 shows the carbon number of the organic compound forming the anion.
  • Table 1 shows the results of measuring the average particle size of the metal element-containing compound after the preparation of the inorganic solid electrolyte-containing composition by the method described later.
  • the solubility and dispersion states of the metal element-containing compounds in the inorganic solid electrolyte-containing composition were classified based on the following.
  • -Solubility- Dissolved Indicates that the substance exists in a dissolved state, and the solubility in butyl butyrate according to the above measurement method is 80% by mass or more.
  • Solid Indicates that the substance exists in a solid state, and the above solubility is 0.05% by mass or less.
  • a dispersion prepared by mixing (dispersing) a metal element-containing compound with a dispersion medium at a solid content concentration of 10% by mass is used, which will be described later.
  • the dispersibility of the metal element-containing compound was classified according to the amount of solid content reduction obtained in the same manner as in Test>.
  • Dispersion Indicates a dispersed state, and the amount of solid content reduction is less than 5% by mass.
  • Non-dispersed Indicates a non-dispersed state, and the amount of solid content reduction is 5% by mass or more.
  • Synthesis Example 4 Synthesis of Polymer B-4 and Preparation of Binder Solution B-4
  • Polymer B-4 (vinyl-based polymer, mass average molecular weight 60,000) was the same as in Synthesis Example 1 except that maleic anhydride was changed to 0.3 g of vinyl acetate and 1.0 g of phosphoric acid in Synthesis Example 1.
  • the obtained solution was reprecipitated in methanol, and the obtained solid was dried to obtain 100 parts by mass of the polymer, and 3 parts by mass of 2,6-di-t-butyl-p-cresol and maleic anhydride. 0.3 parts by mass was added, and the mixture was reacted at 180 ° C. for 5 hours.
  • the obtained solution was reprecipitated in methanol, and the obtained solid was dried at 80 ° C. to obtain the desired polymer (dry solid product).
  • the mass average molecular weight of this polymer was 89,000.
  • Polymer B-5 (hydrocarbon polymer, mass average molecular weight 89,000) is synthesized by distillation and drying, and dissolved in butyl butyrate to form a binder solution B-5 composed of polymer B-5. (Concentration 10% by mass) was obtained.
  • the obtained solution was reprecipitated in methanol, and the obtained solid was dried to obtain 100 parts by mass of the polymer, and 3 parts by mass of 2,6-di-t-butyl-p-cresol and maleic anhydride. 0.5 parts by mass was added, and the mixture was reacted at 180 ° C. for 5 hours.
  • the obtained solution was reprecipitated in acetonitrile, and the obtained solid was dried at 80 ° C. to obtain a polymer (dry solid product).
  • the mass average molecular weight of this polymer was 90,000.
  • polymer B-6 (mass average molecular weight 99,000) was synthesized to obtain a binder solution B-6 (concentration: 10% by mass) composed of polymer B-6 (hydrocarbon-based polymer).
  • Fujifilm Wako Pure Chemical Industries, Ltd. 330 parts by mass, 1H, 1H, 2H, 2H-tridecafluoro-n-octyl methacrylate (manufactured by Tokyo Kasei Co., Ltd.) 180 parts by mass, and azobisbutyronitrile (Fujifilm Wako Pure Chemical Industries, Ltd.) (Manufactured by Yakusha) 20 parts by mass was added, nitrogen gas was introduced at a flow rate of 200 mL / min for 10 minutes, the temperature was raised to 80 ° C., and stirring was continued for 5 hours. Then, it was added dropwise to methanol to obtain a B-9 precursor (macromonomer) as a precipitate.
  • azobisbutyronitrile Feujifilm Wako Pure Chemical Industries, Ltd.
  • the number average molecular weight of the macromonomer was 4,200.
  • polymer B-9 (mass average molecular weight 102) was obtained in the same manner as in Synthesis Example 6 except that 1H, 1H, 2H, 2H-perfluoro-1-octanol of Synthesis Example 6 was changed to the above-mentioned B-9 precursor. 000) was synthesized to obtain a solution B-9 (concentration: 10% by mass) of a binder composed of polymer B-9 (hydrocarbon-based polymer).
  • Polymers B-1 to B-9 are shown below.
  • the number at the bottom right of each component indicates the content (mol%) of each component in the polymer.
  • Me represents methyl
  • RS1 represents an alkylene group having 1 to 10 carbon atoms
  • RS2 represents an alkyl group having 1 to 10 carbon atoms.
  • Polymers B-10 to B-13 shown in the following chemical formula and Table 2 were synthesized as follows.
  • Synthesis Example 10 Synthesis of Polymer B-10 and Preparation of Binder Solution B-10
  • To the autoclave 150 parts by mass of toluene, 30 parts by mass of styrene and 70 parts by mass of 1,3-butadiene were added, and 1 part by mass of the polymerization initiator V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the temperature was raised to 80 ° C. The mixture was stirred for 3 hours. Then, the temperature was raised to 90 ° C., and the reaction was carried out until the addition conversion rate reached 100%.
  • V-601 manufactured by Wako Pure Chemical Industries, Ltd.
  • the obtained solution was reprecipitated in methanol, and the obtained solid was dried to obtain 100 parts by mass of the polymer, and 3 parts by mass of 2,6-di-t-butyl-p-cresol and maleic anhydride. 0.5 parts by mass was added, and the mixture was reacted at 180 ° C. for 5 hours.
  • the obtained solution was reprecipitated in acetonitrile, and the obtained solid was dried at 80 ° C. to obtain a polymer (dry solid product).
  • the mass average molecular weight of this polymer was 90,000.
  • polymer B-10 mass average molecular weight 94,000 was synthesized to obtain a binder solution B-10 (concentration 10% by mass) composed of polymer B-10.
  • 2-Aminoethanethiol hydrochloride (manufactured by Tokyo Kasei Co., Ltd.) 9.2 parts by mass and ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 parts by mass and lauryl acrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 400 parts by mass Parts, 100 parts by mass of hydroxyethyl acrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 170 parts by mass of xylene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 10 parts by mass of azobisbutyronitrile (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) The mixed solution was separately added dropwise to the three-necked flask over 2 hours.
  • the mixture was further stirred at 80 ° C. for 2 hours. Then, it was added dropwise to methanol to obtain a macromonomer having a terminal amino group (hydrochloride) as a precipitate.
  • the number average molecular weight of the macromonomer was 4,000.
  • 450 parts by mass of xylene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 50 parts by mass of the above hydrocarbon polymer precursor B were placed in a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock to dissolve them.
  • Polymers B-10 to B-13 are shown below.
  • the number at the bottom right of each component indicates the content (mol%) of each component in the polymer.
  • the solubility of the polymer binder composed of each of the synthesized polymers in the dispersion medium (butyl butyrate) used for the preparation of the inorganic solid electrolyte-containing composition described later is measured by the above method and is shown in Table 2.
  • classification was performed based on the solubility of the measured solubility in the composition containing an inorganic solid electrolyte, which will be described later.
  • Table 2 shows the presence / absence (type) of functional groups, the content of each of the synthesized polymers, and the pKa (only the lowest value when having a plurality of types of functional groups) according to the above-mentioned measurement method of functional groups.
  • Solubility of polymer binders was classified based on: -Solubility- Dissolved: Indicates that it exists in a dissolved state, and the measured solubility in butyl butyrate is 80% by mass or more. Solid: Indicates that it exists in a solid state, and the above solubility is 30% by mass or less.
  • Li 2 S lithium sulfide
  • P 2 S diphosphorus pentasulfide
  • Example 1 ⁇ Preparation of composition containing inorganic solid electrolyte> 60 g of zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), and the LPS synthesized in Synthesis Example A, the binder solution or dispersion shown in Tables 3-3 and 3-4, and a metal element were contained. The compound and butyl butyrate as a dispersion medium were added in a mass ratio having the contents shown in Tables 3-3 and 3-4 (however, the solution or dispersion was solid content mass). Then, this container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch. The inorganic solid electrolyte-containing compositions (slurries) S-31 and S-32 were prepared by mixing at a temperature of 25 ° C. and a rotation speed of 150 rpm for 10 minutes, respectively.
  • composition for positive electrode 60 g of zirconia beads having a diameter of 5 mm were put into a zirconia 45 mL container (manufactured by Fritsch), and the LPS synthesized in Synthesis Example A and the dispersion media shown in Tables 3-1 and 3-3 are shown in each table. It was added in a mass ratio that was the content.
  • This container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and stirred at 25 ° C. at a rotation speed of 200 pm for 30 minutes.
  • NMC positive electrode active material
  • acetylene black (AB) as the conductive auxiliary agent
  • the binder solution or dispersion shown in Tables 3-2 and 3-4 the binder solution or dispersion shown in Tables 3-2 and 3-4
  • the metal element-containing compound are added to Table 3-1.
  • the mass ratio of the content shown in Table 3-3 (however, the solution or dispersion is the solid content mass)
  • put in set the container on the planetary ball mill P-7, and set the container at a temperature of 25 ° C. and a rotation speed of 200 rpm to 30.
  • Mixing was continued for 1 minute to prepare positive electrode compositions (slurries) S-1 to S-28 and S-33 to 36, respectively.
  • composition for negative electrode 60 g of zirconia beads having a diameter of 5 mm were put into a zirconia 45 mL container (manufactured by Fritsch), and the LPS synthesized in Synthesis Example A, the binder solution or dispersion shown in Table 3-4, and the dispersion medium shown in Table 3-3. was added in a mass ratio having the content shown in Tables 3-3 and 3-4.
  • This container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 pm for 60 minutes.
  • silicon (Si) as the negative electrode active material, acetylene black (AB) as the conductive auxiliary agent, and the metal element-containing compound are added in a mass ratio (however, a solution or a solution) having the contents shown in Tables 3-3 and 3-4.
  • the dispersion liquid is charged with a solid content mass), and similarly, the container is set in the planetary ball mill P-7 and mixed at a temperature of 25 ° C. and a rotation speed of 100 rpm for 10 minutes to prepare the negative electrode composition (slurry) S-. 29 and S-30 were prepared, respectively.
  • the separated supernatant (mixture of metal element-containing compound) is subjected to a dispersion medium (dispersion used for preparation of each composition) using a laser diffraction / scattering particle size distribution measuring device (trade name: LA-920, manufactured by HORIBA, Ltd.).
  • the mixture was diluted and adjusted so that the absorbance was 80 to 95% (same as the medium), and the measurement was performed.
  • the measurement conditions the same conditions as the average particle size of the above-mentioned inorganic solid electrolyte can be applied.
  • ⁇ Table abbreviation> In the table, "-" in each column indicates that it does not have the corresponding component, or that it does not have the corresponding property or cannot be measured.
  • the content of the dispersion medium indicates the content (% by mass) with respect to the total amount of the composition, and the content of other components indicates the content (% by mass) with respect to the solid content of the composition.
  • PKa (D)” and “pKa difference” in the table indicate the difference between the lowest pKa value and the lowest pKa value when the polymer has a plurality of functional groups (a).
  • LPS LPS synthesized in Synthesis Example A BB: Butyl butyrate LiTFSI: Lithium bis (trifluoromethanesulfonyl) imide (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • C-111 The above-mentioned exemplary compound C-11 C-12: The above-exemplified compound C-12 C-14: The above-exemplified compound C-14 C-15: The above-exemplified compound C-15 C-16: The above compound C-16 B-1 to B-13: Polymer binder synthesized in the above synthesis examples 1 to 13
  • NMC LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Aldrich)
  • Si Silicon (manufactured by Aldrich)
  • AB Acetylene Black (manufactured by Denka)
  • Dispersion stability test> Each of the prepared compositions was placed in a glass test tube having a diameter of 10 mm and a height of 4 cm up to a height of 3.5 cm, and allowed to stand at 25 ° C. for 24 hours.
  • the solid content reduction rate for the upper 20% (height) of the slurry before and after standing was calculated from the following formula.
  • the ease of sedimentation (precipitation) of the inorganic solid electrolyte and the active material was evaluated as the dispersion stability of the composition depending on which of the following evaluation criteria the solid content reduction rate was included in.
  • the solid content concentration was calculated by placing the collected slurry on an aluminum cup and heating at 120 ° C. for 2 hours to distill off the dispersion medium.
  • Solid content reduction rate (%) [(solid content concentration of upper 20% before standing-solid content concentration of upper 20% after standing) / solid content concentration of upper 20% before standing] ⁇ 100 - Evaluation criteria - A: Solid content reduction rate ⁇ 1% B: 1% ⁇ solid content reduction rate ⁇ 2% C: 2% ⁇ solid content reduction rate ⁇ 3% D: 3% ⁇ solid content reduction rate ⁇ 4% E: 4% ⁇ solid content reduction rate ⁇ 5% F: 5% ⁇ solid content reduction rate ⁇ 6% G: 6% ⁇ solid content reduction rate
  • the tare (self-weight) of the poly dropper was set to W 0 , it was determined that the slurry mass W-W 0 was less than 0.1 g and could not be sucked by the dropper.
  • the upper limit solid content concentration that could be sucked with a dropper was grasped while gradually adding the dispersion medium.
  • the handleability of the composition (whether it has an appropriate viscosity to form a flat, surface-friendly constituent layer) is evaluated based on which of the following evaluation criteria the obtained upper limit solid content concentration is included. did.
  • the solid content concentration was calculated by placing 0.30 g of the prepared slurry on an aluminum cup and heating at 120 ° C.
  • the film thickness of the solid electrolyte layer was 50 ⁇ m.
  • the positive electrode compositions S-1 to S-28 and S-33 to 36 obtained above were applied onto an aluminum foil having a thickness of 20 ⁇ m using a baker-type applicator (trade name: SA-201), and the temperature was 80 ° C. And then heated at 110 ° C. for 1 hour to dry the positive electrode composition (remove the dispersion medium and cause a salt exchange reaction). Then, the dried positive electrode composition is pressurized at 25 ° C. (10 MPa, 1 minute) using a heat press machine to obtain a positive electrode sheet S for an all-solid secondary battery having a positive electrode active material layer having a thickness of 100 ⁇ m. -1 to S-28 and S-33 to 36 were prepared, respectively.
  • the negative electrode compositions S-29 and S-30 obtained above were applied onto a copper foil having a thickness of 20 ⁇ m using a baker-type applicator (trade name: SA-201), and heated at 80 ° C. for 1 hour. Further, the composition was heated at 110 ° C. for 1 hour to dry the composition for the negative electrode (remove the dispersion medium and cause a salt exchange reaction). Then, using a heat press machine, the dried composition for the negative electrode is pressurized at 25 ° C. (10 MPa, 1 minute), and the negative electrode sheet S for an all-solid secondary battery having a negative electrode active material layer having a thickness of 70 ⁇ m. -29 and S-30 were prepared, respectively.
  • ⁇ Evaluation 3 Measurement of average particle size of polymer binder in solid electrolyte layer or active material layer>
  • the prepared solid electrolyte sheet for all-solid-state secondary battery, positive electrode sheet for all-solid-state secondary battery, and negative electrode sheet for all-solid-state secondary battery were pressed at 350 MPa for 30 seconds, then bent at 180 ° and cut.
  • a cross section of the solid electrolyte layer or the active material layer exposed by fracture was observed (SEM photograph was taken) at a magnification of 10,000 times using a scanning electron microscope (SEM, model number: JSM-7401F, manufactured by JEOL Ltd.).
  • ⁇ Evaluation 4 Measurement of solubility of polymer binder extracted from solid electrolyte layer or active material layer>
  • the polymer binder was extracted from each of the prepared solid electrolyte sheet for all-solid-state secondary battery, positive electrode sheet for all-solid-state secondary battery, and negative electrode sheet for all-solid-state secondary battery as follows.
  • the solubility of the obtained polymer binder in the dispersion medium used for the preparation of each composition is measured by the above method and is shown in the “Solubility after extraction” column of Table 3. If the solubility of the extracted polymer binder is less than the solubility of the polymer binder used to prepare each composition, it is presumed that the polymer binder present in each layer receives metal element ions from the metal element-containing compound.
  • the solid electrolyte layer or active material layer peeled off from each sheet is immersed in butyl butyrate, vibrated for 1 hour with an ultrasonic cleaner, and then centrifuged (500 rpm, 1 minute) with a centrifuge to make an inorganic solid.
  • the electrolyte and active material were precipitated and a polymer binder was obtained from the supernatant.
  • the current collector side of the positive electrode sheet for the all-solid-state secondary battery and the LPS were pressurized by applying a pressure of 350 MPa with a SUS rod.
  • the removed SUS rod was reinserted into the cylinder and fixed under a pressure of 50 MPa.
  • the current collector side of the negative electrode sheet for the all-solid-state secondary battery and the LPS were pressurized by applying a pressure of 350 MPa with a SUS rod.
  • a disk-shaped indium (In) sheet (thickness 20 ⁇ m) with a diameter of 9 mm and a disk-shaped lithium (Li) sheet (thickness 20 ⁇ m) with a diameter of 9 mm are placed in a cylinder in this order.
  • the removed SUS rod was reinserted into the cylinder and fixed under a pressure of 50 MPa.
  • the positive electrode sheet (S-8) for an all-solid-state secondary battery was punched into a disk shape having a diameter of 10 mm and placed in a PET cylinder having an inner diameter of 10 mm.
  • the solid electrolyte sheets S-31 and S-32 for all-solid secondary batteries are punched into a disk shape with a diameter of 10 mm on the positive electrode active material layer side in the cylinder and put into the cylinder, and a 10 mm SUS rod is inserted from both ends of the cylinder. did.
  • the collector side of the positive electrode sheet for the all-solid-state secondary battery and the aluminum foil side of the solid electrolyte sheet for the all-solid-state secondary battery were pressurized by applying a pressure of 350 MPa with a SUS rod. Remove the SUS rod on the side of the solid electrolyte sheet for all-solid-state secondary battery, gently peel off the aluminum foil of the solid-state electrolyte sheet for all-solid-state secondary battery, and then use a disk-shaped In sheet (thickness 20 ⁇ m) with a diameter of 9 mm.
  • Discharge capacity retention rate (%) (Discharge capacity in the 1000th cycle / Discharge capacity in the 1st cycle) x 100
  • the higher the evaluation standard the better the battery performance (cycle characteristics), and the initial battery performance can be maintained even if high-speed charging / discharging is repeated multiple times (even in long-term use).
  • the discharge capacities of the evaluation all-solid-state secondary batteries of the present invention in the first cycle all showed sufficient values to function as the all-solid-state secondary batteries.
  • the evaluation all-solid-state secondary battery of the present invention maintained excellent cycle characteristics even when a normal charge / discharge cycle was repeated under the same conditions as the above initialization instead of the above-mentioned high-speed charge / discharge.
  • - Evaluation criteria - A: 90% ⁇ discharge capacity maintenance rate B: 85% ⁇ discharge capacity maintenance rate ⁇ 90% C: 80% ⁇ discharge capacity retention rate ⁇ 85% D: 75% ⁇ discharge capacity retention rate ⁇ 80% E: 70% ⁇ discharge capacity retention rate ⁇ 75% F: 60% ⁇ discharge capacity retention rate ⁇ 70% G: Discharge capacity retention rate ⁇ 60%
  • Ion conductivity measurement> The ionic conductivity of each of the manufactured all-solid-state secondary batteries for evaluation was measured. Specifically, for each evaluation all-solid-state secondary battery, AC impedance was measured from a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz using a 1255B FREENCY RESPONSE ANALYZER (trade name, manufactured by SOLARTRON) in a constant temperature bath at 25 ° C. did. As a result, the resistance of the sample for measuring ionic conductivity in the layer thickness direction was determined, and the ionic conductivity was determined by calculating with the following formula (1).
  • Ion conductivity ⁇ (mS / cm) 1000 x sample layer thickness (cm) / [resistance ( ⁇ ) x sample area (cm 2 )]
  • the sample layer thickness is a value obtained by subtracting the thickness of the current collector in each evaluation all-solid-state secondary battery (total layer thickness of the solid electrolyte layer and the electrode active material layer).
  • the sample area is the area of a disk-shaped sheet having a diameter of 10 mm. It was determined which of the following evaluation criteria the obtained ionic conductivity ⁇ was included in.
  • Example 2 the polymer binder B-1 composed of the polymer B-1 synthesized in Synthesis Example 1 and lithium stearate as the metal element-containing compound were used, and the solubility of the polymer binder B-1 under temperature or concentration conditions. The change in the temperature and the effect on the resistance when the layer was formed were confirmed. Specifically, butyl butyrate as a dispersion medium, polymer binder B-1 and lithium stearate are mixed, and the content of polymer binder B-1 is 10.0% by mass and the content of lithium stearate is 0. A mixture set at .5% by weight was prepared. In the obtained mixture, the polymer binder B-1 was dissolved and lithium stearate was dispersed (average particle size 0.80 ⁇ m).
  • the solubility of the polymer binder B-1 contained in the obtained mixture in butyl butyrate was measured by the above method and found to be 80% by mass.
  • the obtained mixture was heated and further concentrated so as to have the concentration and temperature shown in the "Treatment conditions" column of Table 5 to obtain post-treatment mixtures E-1 to E-9.
  • Table 5 shows the results of recovering the polymer binder from each of the post-treatment mixtures E-1 to E-9 by the following method and measuring the solubility in butyl butyrate, which is the dispersion medium used for preparing the mixture, by the above method.
  • positive electrode sheets for all-solid-state secondary batteries were prepared in the same manner as in Example 1, and then positive electrode sheet evaluation batteries for all-solid-state secondary batteries. Was manufactured respectively.
  • the inorganic solid electrolyte-containing composition shown in Comparative Example S-21 which contains a particulate binder that does not dissolve in the dispersion medium and does not contain a polymer binder that dissolves in the dispersion medium, contains the metal element-containing compound specified in the present invention. Even if it is contained, the dispersion stability and handleability are inferior.
  • the evaluation all-solid-state secondary battery using this composition S-21 does not have sufficient cycle characteristics and ionic conductivity.
  • the polymer binder and the metal element-containing compound shown in S-5 to S-19, S-22 to S-29, S-31 and S-33 to S-36 of the present invention are used.
  • All of the inorganic solid electrolyte-containing compositions contained in the specified dispersed state (solubility) have a high level of dispersion stability and handleability. It can be seen that by using these inorganic solid electrolyte-containing compositions for forming the constituent layers of the all-solid-state secondary battery, high ionic conductivity can be realized in addition to excellent cycle characteristics for the obtained all-solid-state secondary battery.
  • Example 2 (Table 5), in the film forming process of the inorganic solid electrolyte-containing composition, the composition after coating is heated to a drying temperature of 80 ° C. or higher, or the concentration is 30% by mass or higher. It can be seen that when concentrated to, the polymer binder in the treated composition is less soluble than the polymer binder in the dissolved state before the treatment. It is presumed that this decrease in solubility is due to the polymer binder in the dissolved state receiving lithium metal ions from the metal element-containing compound. Further, it can be seen that the larger the decrease in solubility, the larger the ionic conductivity of the evaluation battery and the lower the resistance. It is presumed that this is because the polymer binder tends to solidify into particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

分散安定性及びハンドリング性に優れ、固体粒子間の界面抵抗の上昇を抑えて低抵抗な構成層を実現可能な無機固体電解質含有組成物、この無機固体電解質含有組成物を用いた全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法を提供する。無機固体電解質含有組成物は、無機固体電解質とポリマーバインダーと金属元素含有化合物と分散媒とを含有する全固体二次電池用の無機固体電解質含有組成物であって、金属元素含有化合物が分子を構成する金属元素をイオンとしてポリマーバインダーを形成するポリマーに供給しうる化合物であり、ポリマーバインダーが分散媒中に溶解しており、金属元素含有化合物が固体状態で存在する。

Description

無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
 本発明は、無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法に関する。
 二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオン等の特定の金属イオンを往復移動させることにより充放電を可能とした蓄電池である。
 このような二次電池として有機電解液を用いた非水電解質二次電池が幅広い用途に用いられているが、電池性能の更なる向上等を目的として、非水電解質二次電池の製造に用いる電解液組成物等が種々検討されている。例えば、特許文献1には、脂肪酸アミド、脂肪酸エステル、脂肪酸金属塩等のブロッキング防止剤と、バインダー粒子と、水系媒体とを含有し、記ブロッキング防止剤の含有量に対するバインダー粒子の含有量の比が1を超え4000未満である蓄電デバイス用組成物が記載されている。また、特許文献2には、有機溶媒と、リチウムイオン二次電池の電解質として、カルボン酸リチウム塩と三フッ化ホウ素及び/又は三フッ化ホウ素錯体とを反応させて得られたカルボン酸リチウム塩-三フッ化ホウ素錯体とを含有する電解液組成物が記載されている。
 しかし、有機電解液を用いた非水電解質二次電池は液漏れを生じやすく、また、過充電又は過放電により電池内部で短絡が生じやすいため、安全性と信頼性の更なる向上が求められている。
 このような状況下、有機電解液に代えて無機固体電解質を用いた全固体二次電池が注目されている。この全固体二次電池は負極、電解質及び正極の全てが固体からなり、有機電解液を用いた電池の安全性及び信頼性を大きく改善することができる。また長寿命化も可能になるとされる。更に、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた非水電解質二次電池に比べて高エネルギー密度化が可能となり、電気自動車又は大型蓄電池等への応用が期待されている。
 このような全固体二次電池において、構成層(固体電解質層、負極活物質層、正極活物質層等)は、電解質、活物質等を含む組成物を用いて形成される。例えば、特許文献2には、有機溶媒と、電解質としてのカルボン酸リチウム塩-三フッ化ホウ素錯体と、マトリクスポリマーとを含有する固体電解質用組成物も記載されている。
 ところが、近年、構成層を形成する物質として、無機固体電解質、特に酸化物系無機固体電解質及び硫化物系無機固体電解質が有機電解液に迫る高いイオン伝導度を有する電解質材料として脚光を浴びている。しかし、全固体二次電池の構成層を形成する材料(構成層形成材料)として、上記の無機固体電解質を含有する材料(組成物)については、特許文献1及び2では何ら検討されていない。
特開2015-005526号公報 特開2013-209355号公報
 全固体二次電池の構成層は固体粒子(無機固体電解質、活物質、導電助剤等)で形成されるため、固体粒子同士の界面接触状態は本来的に制約される。そのため、全固体二次電池は、非水電解質二次電池に比して、界面抵抗の上昇(イオン伝導度の低下)を誘起し、ひいては全固体二次電池のサイクル特性の低下を招きやすい。特に、構成層中にポリマーバインダーを含有する場合には、固体粒子間の界面抵抗が増大しやすい。
 また、固体粒子で全固体二次電池の構成層を形成する場合、構成層形成材料には、それにより形成される構成層を備えた全固体二次電池の電池性能(イオン伝導度、サイクル特性等)の向上等の観点から、調製直後の固体粒子の優れた分散性を安定して維持する特性(分散安定性)と、適度な粘度を有して流動性に優れた特性(ハンドリング性)とが要求される。
 しかし、近年、電気自動車の高性能化、実用化等の研究開発が急速に進行し、全固体二次電池に求められる電池性能に対する要求が一層高くなっている。このような近年の要求に応えるためには、分散安定性とハンドリング性とをより高い水準で兼ね備え、低抵抗な構成層を形成可能な構成層形成材料の開発が求められている。
 本発明は、分散安定性及びハンドリング性に優れた無機固体電解質含有組成物であって、固体粒子間の界面抵抗の上昇を抑えて低抵抗な構成層を実現可能な無機固体電解質含有組成物を提供することを課題とする。また、本発明は、この無機固体電解質含有組成物を用いた、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法を提供することを課題とする。
 本発明者らは、無機固体電解質を用いた構成層構成材料とこれにより形成される構成層について種々検討を重ねた結果、無機固体電解質粒子の存在下において、ポリマーバインダーに対して、このポリマーバインダーに金属元素イオンを提供可能な金属元素含有化合物を共存させたうえで、ポリマーバインダー及び金属元素含有化合物の分散媒に対する分散状態(溶解性)を特定することにより、無機固体電解質粒子の経時による再凝集若しくは沈降等とともに、過度な粘度の増加(増粘)を抑制できることを見出した。また、この無機固体電解質組成物は、例えば塗布加熱等により、粒子間の界面抵抗の上昇を抑えながら無機固体電解質同士を結着させて製膜できることを見出した。その結果、この無機固体電解質含有組成物を構成層形成材料として用いることにより、低抵抗な構成層を備えた全固体二次電池用シート、更には低抵抗でサイクル特性にも優れた全固体二次電池を実現できることを見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>周期律表第1族若しくは第2族に属する金属のイオン伝導性を有する無機固体電解質と、ポリマーバインダーと、金属元素含有化合物と、分散媒とを含有する、全固体二次電池用の無機固体電解質含有組成物であって、
 金属元素含有化合物が、分子を構成する金属元素をイオンとしてポリマーバインダーを形成するポリマーに供給しうる化合物であり、
 ポリマーバインダーが分散媒中に溶解しており、金属元素含有化合物が固体状態で存在する、無機固体電解質含有組成物。
<2>金属元素含有化合物が分散媒に分散している、<1>に記載の無機固体電解質含有組成物。
<3>金属元素含有化合物の平均粒径が0.1~5μmである、<1>又は<2>に記載の無機固体電解質含有組成物。
<4>金属元素含有化合物が有機金属塩である、<1>~<3>のいずれか1つに記載の無機固体電解質含有組成物。
<5>金属元素含有化合物が、共役酸の、酸解離定数の負の常用対数[pKa]が-2~20であるアニオンを有する、<1>~<4>のいずれか1つに記載の無機固体電解質含有組成物。
<6>金属元素含有化合物が、炭素原子を6~21個含む有機化合物由来のアニオンを有する、<1>~<5>のいずれか1つに記載の無機固体電解質含有組成物。
<7>金属元素含有化合物を構成する金属元素が、周期律表第1族又は第2族に属する金属元素を含む、<1>~<6>のいずれか1つに記載の無機固体電解質含有組成物。
<8>金属元素含有化合物を構成する金属元素がリチウム元素を含む、<1>~<7>のいずれか1つに記載の無機固体電解質含有組成物。
<9>ポリマーバインダーを形成するポリマーが、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合から選ばれる少なくとも1種の結合、又は炭素-炭素二重結合の重合鎖を主鎖に有する、<1>~<8>のいずれか1つに記載の無機固体電解質含有組成物。
<10>ポリマーバインダーを形成するポリマーが、下記官能基群(A)から選択される官能基を有する構成成分を含む、<1>~<9>のいずれか1つに記載の無機固体電解質含有組成物。
<官能基群(A)>
 ヒドロキシ基、アミノ基、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、スルファニル基、ヘテロ環基、カルボン酸無水物基
<11>金属元素含有化合物が有するアニオンを導く共役酸のpKaが官能基のpKaよりも大きい、<10>に記載の無機固体電解質含有組成物。
<12>金属元素含有化合物が有するアニオンを導く共役酸のpKaと官能基のpKaとの差[(共役酸のpKa)-(官能基のpKa)]が2以上である、<1>又は<11>に記載の無機固体電解質含有組成物。
<13>無機固体電解質含有組成物を80℃以上に加熱した場合に、加熱後のポリマーバインダーの分散媒に対する溶解度が加熱前のポリマーバインダーの上記分散媒に対する溶解度よりも小さくなる、<1>~<12>のいずれか1つに記載の無機固体電解質含有組成物。
<14>ポリマーバインダーと金属元素含有化合物との無機固体電解質含有組成物中の合計濃度を30質量%以上に無機固体電解質含有組成物を濃縮した場合に、濃縮後のポリマーバインダーの分散媒に対する溶解度が濃縮前のポリマーバインダーの上記分散媒に対する溶解度よりも小さくなる、<1>~<13>のいずれか1つに記載の無機固体電解質含有組成物。
<15>無機固体電解質含有組成物を製膜して層を形成した場合に、層中に存在するポリマーバインダーの無機固体電解質含有組成物中に含有していた分散媒に対する溶解度が無機固体電解質含有組成物中に含有されていたポリマーバインダーの上記分散媒に対する溶解度よりも小さくなる、<1>~<14>のいずれか1つに記載の無機固体電解質含有組成物。
<16>活物質を含有する、<1>~<15>のいずれか1つに記載の無機固体電解質含有組成物。
<17>導電助剤を含有する、<1>~<16>のいずれか1つに記載の無機固体電解質含有組成物。
<18>無機固体電解質が硫化物系無機固体電解質である、<1>~<17>のいずれか1つに記載の無機固体電解質含有組成物。
<19>温度23℃、せん断速度10/sにおける粘度が300~4000cPである、<1>~<18>のいずれか1つに記載の無機固体電解質含有組成物。
<20>上記<1>~<19>のいずれか1つに記載の無機固体電解質含有組成物で構成した層を有する全固体二次電池用シート。
<21>ポリマーバインダーが10~800nmの平均粒径を有する粒子として層中に存在する、<20>に記載の全固体二次電池用シート。
<22>上記層中に存在するポリマーバインダーの、無機固体電解質含有組成物中に含有していた分散媒に対する溶解度が、無機固体電解質含有組成物中に含有されていたポリマーバインダーの上記分散媒に対する溶解度よりも小さくなっている、<20>又は<21>に記載の全固体二次電池用シート。
<23>正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
 正極活物質層、固体電解質層及び負極活物質層の少なくとも1つの層が、<20>~<22>のいずれか1つに記載の全固体二次電池用シートで構成されている、全固体二次電池。
<24>上記<1>~<19>のいずれか1つに記載の無機固体電解質含有組成物を製膜する、全固体二次電池用シートの製造方法。
<25>無機固体電解質含有組成物中に含有されているポリマーバインダーを粒子状に固化させながら製膜する、<24>に記載の全固体二次電池用シートの製造方法。
<26>無機固体電解質含有組成物中に含有されているポリマーバインダーの分散媒に対する溶解度を低下させながら無機固体電解質含有組成物を製膜する、<24>又は<25>に記載の全固体二次電池用シートの製造方法。
<27>無機固体電解質含有組成物を80℃以上に加熱して製膜する、<24>~<26>のいずれか1つに記載の全固体二次電池用シートの製造方法。
<28>上記<24>~<27>のいずれか1つに記載の製造方法を経て全固体二次電池を製造する、全固体二次電池の製造方法。
 本発明は、分散安定性及びハンドリング性の分散特性に優れ、固体粒子間の界面抵抗の上昇を抑えて低抵抗な構成層を実現可能な構成層を作製できる無機固体電解質含有組成物を提供できる。また、本発明は、この無機固体電解質含有組成物で構成した層を有する、全固体二次電池用シート及び全固体二次電池を提供できる。更に、本発明は、この無機固体電解質含有組成物を用いた、全固体二次電池用シート及び全固体二次電池の製造方法を提供できる。
本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。
 本発明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、本発明の効果を損なわない範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本発明において、(メタ)アクリルとは、アクリル及びメタアクリルの一方又は両方を意味する。(メタ)アクリレートについても同様である。
 本発明において、置換又は無置換を明記していない置換基、連結基等(以下、置換基等という。)については、その基に適宜の置換基を有していてもよい意味である。よって、本発明において、単に、YYY基と記載されている場合であっても、このYYY基は、置換基を有しない態様に加えて、更に置換基を有する態様も包含する。これは置換又は無置換を明記していない化合物についても同義である。好ましい置換基としては、例えば後述する置換基Zが挙げられる。
 本発明において、特定の符号で示された置換基等が複数あるとき、又は複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
 本発明において、ポリマーは、重合体を意味するが、いわゆる高分子化合物と同義である。
[無機固体電解質含有組成物]
 本発明の無機固体電解質含有組成物は、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有する無機固体電解質と、ポリマーバインダーと、金属元素含有化合物と、分散媒とを含有している。
 この無機固体電解質含有組成物において、ポリマーバインダーは、分散媒中に溶解しており、無機固体電解質に吸着していてもいなくてもよい。ポリマーバインダーは、少なくとも無機固体電解質含有組成物で形成した層中において、無機固体電解質(更には、共存しうる、活物質、導電助剤)等の固体粒子同士(例えば、無機固体電解質同士、無機固体電解質と活物物質、活物質同士)を結着させる結着剤として、機能する。更には、集電体と固体粒子とを結着させる結着剤として機能することもある。無機固体電解質含有組成物中において、ポリマーバインダーは固体粒子同士を結着させる機能を有していてもいなくてもよい。
 一方、無機固体電解質含有組成物において、金属元素含有化合物は、固体状態で存在しており、好ましくは分散媒に分散している。
 本発明の無機固体電解質含有組成物は、無機固体電解質及び金属元素含有化合物が分散媒中に分散したスラリーであることが好ましい。この場合、ポリマーバインダーは、固体粒子を分散媒中に分散させる機能を有することが好ましい。
 本発明は、分散媒に可溶性のポリマーバインダー(溶解型バインダー)に対して分散媒に不溶性の金属元素含有化合物を共存させることにより、組成物においては溶解型バインダーと同等以上の分散安定性及びハンドリング性(分散特性)を実現しながらも、構成層においては分散媒に不溶性のポリマーバインダー(粒子状バインダー)と同等以上の低抵抗化の実現を初めて可能にしたものである。
 分散特性に優れた本発明の無機固体電解質含有組成物を構成層形成材料として用いることにより、表面が平坦で表面性に優れた低抵抗の構成層、及びこの構成層を有する全固体二次電池用シート、更には低抵抗でサイクル特性にも優れた全固体二次電池を実現できる。
 また、集電体上に形成される活物質層を本発明の無機固体電解質含有組成物で形成する態様においては、集電体と活物質層との強固な密着性をも実現することができ、抵抗の上昇を招くことなく、サイクル特性の更なる向上を図ることができる。
 その理由の詳細はまだ明らかではないが、無機固体電解質含有組成物中で溶解状態にあるポリマーバインダーを、構成層を形成する際に、金属元素含有化合物と相互作用させて粒子状に固化させることができることによるものと考えられる。
 すなわち、無機固体電解質含有組成物において、ポリマーバインダーは分散媒中に溶解しているから、金属元素含有化合物が固体状態で存在していても、ポリマーバインダーが粒子状で存在している場合に比して、ポリマーバインダーを巻き込んでの無機固体電解質粒子の再凝集若しくは沈降等を無機固体電解質含有組成物の調製直後だけでなく経時後においても効果的に抑えることができると考えられる。その結果、調製直後の高度な分散性を安定して維持できる(分散安定性に優れる)とともに、粘度の過度な増加をも抑えて良好な流動性を発現できる(ハンドリング性に優れる)。
 このような優れた分散安定性及びハンドリング性を示す本発明の無機固体電解質含有組成物を用いて構成層を形成すると、構成層の製膜時(例えば、無機固体電解質含有組成物の塗布時、更には乾燥時)においても、無機固体電解質粒子の再凝集物若しくは沈降物等の発生を抑制できると考えられる。これにより、構成層中の無機固体電解質粒子同士の接触状態のバラツキを抑えることができる。特に、無機固体電解質含有組成物が活物質等を含有する場合、活物質等の特定の粒子が構成層中で偏在にしにくくなる(構成層中に固体粒子が均一に配置される)。その結果、固体粒子間の界面抵抗、更には構成層の抵抗の上昇を抑制できる。これに加えて、無機固体電解質含有組成物の製膜時、特に塗布時に無機固体電解質含有組成物が適度に流動(レべリング)して、流動不足又は過剰な流動に起因する凹凸の表面粗れ、更には成膜時に吐出部への詰りに起因する表面粗れ等がなく(塗工面の表面性に優れ)、表面性のよい構成層となる。こうして、表面が平坦で低抵抗な(高伝導度の)構成層を作製できる。
 一方、金属元素含有化合物は、無機固体電解質含有組成物の製膜時に、ポリマーバインダーと相互作用することにより、ポリマーバインダーの分散媒に対する溶解度を低下させて、溶解状態のポリマーバインダーを粒子状に固化若しくは析出させる機能を果たすと考えられる。粒子状に固化したポリマーバインダーは無機固体電解質粒子の表面を全体的に被覆せずに部分的に被覆(吸着)するから、無機固体電解質粒子同士の接触をポリマーバインダーの存在によって阻害せず、無機固体電解質粒子同士の接触によるイオン伝導パスを十分に構築(無機固体電解質粒子同士の界面抵抗の増大を抑制)しながら、無機固体電解質粒子を結着できる。
 このような低抵抗な構成層を備えた全固体二次電池は、高い伝導度(イオン伝導度、電子伝導度)を示す。また、全固体二次電池は低抵抗であるため大電流での使用時におけるエネルギー損失が大きく、通常条件での充放電に加えて大電流での高速充放電をも実現できる。しかも、充放電時に過電流が発生しにくいため、通常条件での充放電だけでなく高速充放電を繰り返しても電池特性を維持でき、優れたサイクル特性をも示す。
 活物質層を本発明の無機固体電解質含有組成物で形成する場合、上述のように、調製直後の高度(均一)な分散状態を維持したままで構成層が形成される。そのため、優先的に沈降等した固体粒子によってポリマーバインダーの集電体表面への接触(密着)が阻害されることなく、ポリマーバインダーが固体粒子と分散した状態で集電体表面と接触(密着)できると考えられる。これにより、本発明の無機固体電解質含有組成物で活物質層を集電体上に形成した全固体二次電池用電極シートは集電体と活物質との強固な密着性を実現できる。また集電体上に活物質層を本発明の無機固体電解質含有組成物で形成した全固体二次電池は、集電体と活物質との強固な密着性を示してサイクル特性の更なる向上、更には優れたサイクル特性に加えて伝導度の向上を実現できる。
 本発明の無機固体電解質含有組成物は、全固体二次電池用シート(全固体二次電池用電極シートを含む。)又は全固体二次電池の、固体電解質層又は活物質層の形成材料(構成層形成材料)として好ましく用いることができる。特に、充放電による膨張収縮が大きい負極活物質を含む全固体二次電池用負極シート又は負極活物質層の形成材料として好ましく用いることができ、この態様においても高いサイクル特性、更には高伝導度を達成できる。
 本発明の無機固体電解質含有組成物は、無機固体電解質に加えて、活物質、更には導電助剤等を含有する態様も包含する(この態様の組成物を電極用組成物という。)。
 以下、本発明の無機固体電解質含有組成物が含有する成分及び含有しうる成分について説明する。
<無機固体電解質>
 本発明の無機固体電解質含有組成物は、無機固体電解質を含有する。
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンに解離若しくは遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
 上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。例えば、無機固体電解質としては、(i)硫化物系無機固体電解質、(ii)酸化物系無機固体電解質、(iii)ハロゲン化物系無機固体電解質、及び、(iV)水素化物系固体電解質が挙げられ、活物質と無機固体電解質との間により良好な界面を形成することができる観点から、硫化物系無機固体電解質が好ましい。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 硫化物系無機固体電解質としては、例えば、下記式(S1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 (S1)

 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に制限されないが、1×10-1S/cm以下であることが実際的である。
 具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO-LiSO; LiO-B-P; LiO-SiO; LiBaLaTa12; LiPO(4-3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素原子の一部を窒素原子で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
 更に、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
(iii)ハロゲン化物系無機固体電解質
 ハロゲン化物系無機固体電解質は、ハロゲン原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 ハロゲン化物系無機固体電解質としては、特に制限されないが、例えば、LiCl、LiBr、LiI、ADVANCED MATERIALS,2018,30,1803075に記載のLiYBr、LiYCl等の化合物が挙げられる。中でも、LiYBr、LiYClが好ましい。
(iV)水素化物系無機固体電解質
 水素化物系無機固体電解質は、水素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 水素化物系無機固体電解質としては、特に制限されないが、例えば、LiBH、Li(BHI、3LiBH-LiCl等が挙げられる。
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の平均粒径(体積平均粒子径)は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。
 無機固体電解質の粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散液試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 無機固体電解質は、1種を含有していても、2種以上を含有していてもよい。
 固体電解質層を形成する場合、固体電解質層の単位面積(cm)当たりの無機固体電解質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
 ただし、無機固体電解質含有組成物が後述する活物質を含有する場合、無機固体電解質の目付量は、活物質と無機固体電解質との合計量が上記範囲であることが好ましい。
 無機固体電解質の、無機固体電解質含有組成物中の含有量は、特に制限されないが、結着性の点、更には分散性の点で、固形分100質量%において、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 ただし、無機固体電解質含有組成物が後述する活物質を含有する場合、無機固体電解質含有組成物中の無機固体電解質の含有量は、活物質と無機固体電解質との合計含有量が上記範囲であることが好ましい。
 本発明において、固形分(固形成分)とは、無機固体電解質含有組成物を、1mmHgの気圧下、窒素雰囲気下150℃で6時間乾燥処理したときに、揮発若しくは蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
<ポリマーバインダー>
 本発明の無機固体電解質含有組成物に用いられるポリマーバインダーは、ポリマーを含んで形成されたバインダーであり、無機固体電解質含有組成物が含有する分散媒に対して可溶性を示し、溶解している。このポリマーバインダーを無機固体電解質等の固体粒子及び後述する金属元素含有化合物と併用することにより、無機固体電解質含有組成物(スラリー)の分散安定性とハンドリング性とを改善でき、低抵抗な構成層を作製できる。
 本発明において、ポリマーバインダー(バインダーともいう。)が分散媒に溶解しているとは、分散媒にすべてのポリマーバインダーが溶解している態様に限定されず、例えば、分散媒に対する溶解度が80%以上であることをいう。溶解度の測定方法は下記の通りである。
 すなわち、測定対象とするバインダーをガラス瓶内に規定量秤量し、そこへ無機固体電解質含有組成物が含有する分散媒と同種の分散媒100gを添加し、25℃の温度下、ミックスローター上において80rpmの回転速度で24時間攪拌する。こうして得られた24時間攪拌後の混合液の透過率を以下条件により測定する。この試験(透過率測定)をバインダー溶解量(上記規定量)を変更して行い、透過率が99.8%となる上限濃度X(質量%)をバインダーの上記分散媒に対する溶解度とする。
 
 - 透過率測定条件 -
 動的光散乱(DLS)測定
 装置:大塚電子製DLS測定装置 DLS-8000
 レーザ波長、出力:488nm/100mW
 サンプルセル:NMR管 
 (ポリマーバインダーを形成するポリマー)
 ポリマーバインダーを形成するポリマー(バインダー形成ポリマーともいう。)は、分散媒に溶解するものであれば特に制限されず、全固体二次電池の構成層に通常用いられる各種のポリマーを用いることができる。中でも、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合から選ばれる少なくとも1種の結合を主鎖に有するポリマー(逐次重合ポリマー)、又は炭素-炭素二重結合の重合鎖を主鎖に有するポリマー(連鎖重合ポリマー)が好ましく挙げられる。
 本発明において、ポリマーの主鎖とは、ポリマーを構成する、それ以外のすべての分子鎖が、主鎖に対して枝分れ鎖若しくはペンダントとみなしうる線状分子鎖をいう。枝分れ鎖若しくはペンダント鎖とみなす分子鎖の質量平均分子量にもよるが、典型的には、ポリマーを構成する分子鎖のうち最長鎖が主鎖となる。ただし、ポリマー末端が有する末端基は主鎖に含まない。また、ポリマーの側鎖とは、主鎖以外の分子鎖をいい、短分子鎖及び長分子鎖を含む。
 上記結合は、ポリマーの主鎖中に含まれる限り特に制限されるものでなく、構成単位(繰り返し単位)中に含まれる態様及び/又は異なる構成単位同士を繋ぐ結合として含まれる態様のいずれでもよい。また、主鎖に含まれる上記結合は、1種に限定されず、2種以上であってもよく、1~6種が好ましく、1~4種がより好ましい。この場合、主鎖の結合様式は、特に制限されず、2種以上の結合をランダムに有していてもよく、特定の結合を有するセグメントと他の結合を有するセグメントとのセグメント化された主鎖でもよい。
 上記結合のうち、ウレタン結合、ウレア結合、アミド結合、イミド結合又はエステル結合を主鎖に有するポリマーとしては、例えば、ポリウレタン、ポリウレア、ポリアミド、ポリイミド、ポリエステル等の逐次重合(重縮合、重付加若しくは付加縮合)ポリマー、又は、これらの共重合体が挙げられる。共重合体は、上記各ポリマーをセグメントとするブロック共重合体、上記各ポリマーのうち2つ以上のポリマーを構成する各構成成分がランダムに結合したランダム共重合体でもよい。
 炭素-炭素二重結合の重合鎖を主鎖に有するポリマーとしては、含フッ素ポリマー(含フッ素ポリマー)、炭化水素系ポリマー、ビニル系ポリマー、(メタ)アクリルポリマー等の連鎖重合ポリマーが挙げられる。連鎖重合ポリマーが共重合体である場合、ブロック共重合体でもランダム共重合体でもよい。
 バインダー形成ポリマーは、1種でもよく2種以上であってもよい。
 バインダー形成ポリマーは、無機固体電解質含有組成物の製膜時に、金属元素含有化合物と相互作用するポリマーであり、具体的には、後述する金属元素含有化合物から金属元素のイオンを(化学反応、化学的若しくは物理的な吸着等により)受領可能なポリマーである。これによりポリマーバインダーが金属元素含有化合物から発生する金属元素イオンの受領を可能にしてポリマーバインダーに上記作用を付与する。相互作用又は金属元素イオンを受領する部分構造は、これらの作用又は受領を可能とする限り、特に制限されず、例えば、主鎖の化学構造(例えば上記各結合)、後述する官能基(a)が挙げられる。
 バインダー形成ポリマーは、下記官能基群(A)から選択される官能基(a)を例えば置換基として有する構成成分を含むことが好ましい。官能基(a)を有する構成成分は、無機固体電解質含有組成物の製膜時に、例えば塩交換反応等により、金属元素含有化合物から金属元素のイオンを優先的に受領して、官能基(a)の金属塩等を形成できる。金属塩化された官能基(a)を有するポリマーバインダーは、固体粒子を吸着した状態で粒子状に固化する。1つの構成成分が有する官能基(a)は1種でも2種以上でもよく、その数も特に限定されない。
<官能基群(A)>
 ヒドロキシ基、アミノ基、カルボキシ基、スルホ基(スルホン酸基:-SOH)、リン酸基(ホスホリル基:-OPO(OH))、ホスホン酸基(-PO(OH))、スルファニル基、ヘテロ環基、カルボン酸無水物基(無水カルボン酸基)
 官能基群(A)に含まれる各官能基は、それぞれ、特に制限されないが、後述する置換基Zの対応する基と同義である。ただし、アミノ基は-NHがより好ましく、置換基Zの対応する基がRを有する場合、Rは水素原子であることがより好ましい。各官能基は塩を形成していてもよい。ヒドロキシ基はカルボキシ基等の酸基中に有する-OH基を含まない。官能基群(A)に含まれるカルボン酸無水物基は、特に限定されないが、後述する官能基群(B)に含まれる無水カルボン酸基と同義であり、好ましい範囲も同じである。
 官能基群(A)に含まれる官能基は、金属元素含有化合物との相互作用、特に塩交換反応しやすい点で、ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、スルファニル基等の活性水素原子を有する基が好ましく、カルボキシ基、スルホ基、リン酸基、ホスホン酸基等の酸基がより好ましく、カルボキシ基が更に好ましい。
 官能基群(A)に含まれる各官能基の、酸解離定数の負の常用対数[pKa]は、特に制限されないが、金属元素含有化合物との相互作用が効果的に発現する点、例えば塩交換反応が速やかに進行して金属元素イオンを受領する点で、-2.0~8.0であることが好ましく、-1.0~6.0であることがより好ましく、0.0~4.0であることが更に好ましく、0.0~2.0であることが特に好ましい。
 本発明において、pKaは、電位差自動滴定装置(商品名:タイトランド905型、メトロームジャパン社製)を用いて中和滴定により測定される(水中での)値とする。
 バインダー形成ポリマーが複数種の官能基(a)を有する場合、各官能基のpKaのうち少なくとも最も低い値を示すpKaが上記範囲に含まれていればよく、それ以外の官能基のpKaは上記範囲に含まれていても含まれていなくてもよい。
 官能基(a)は、ポリマーの主鎖に組み込まれてもよく、側鎖に組み込まれてもよい。
 側鎖に組み込まれる場合、ポリマーの主鎖を形成する原子に直接若しくは連結基を介して結合する態様を包含する。官能基(a)と主鎖とを結合する連結基としては、例えば、アルキレン基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アルケニレン基(炭素数は2~6が好ましく、2~3がより好ましい)、アリーレン基(炭素数は6~24が好ましく、6~10がより好ましい)、酸素原子、硫黄原子、イミノ基(-NR-:Rは水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基を示す。)、カルボニル基、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、又はこれらの組み合わせに係る基等が挙げられる。連結基としては、アルキレン基、アリーレン基、カルボニル基、酸素原子、硫黄原子及びイミノ基を組み合わせてなる基が好ましい。
 本発明において、連結基を構成する原子の数は、1~36であることが好ましく、1~24であることがより好ましく、1~12であることが更に好ましく、1~6であることが特に好ましい。連結基の連結原子数は10以下であることが好ましく、8以下であることがより好ましい。下限としては、1以上である。上記連結原子数とは所定の構造部間を結ぶ最少の原子数をいう。例えば、-CH-C(=O)-O-の場合、連結基を構成する原子の数は6となるが、連結原子数は3となる。
 また、官能基(a)が側鎖に組み込まれる場合、上記連結基を介して結合する態様に加えて、側鎖を構成するマクロモノマーの重合鎖に官能基(a)を有する態様も包含される。このようなマクロモノマーとしては、バインダー形成ポリマーの主鎖の種類等に応じて適宜に決定され、一義的ではないが、例えば、後述する連鎖重合ポリマーの重合鎖を有するマクロモノマーが挙げられる。
 官能基群(A)に含まれる官能基は、金属元素含有化合物との相互作用に用いられるが、その一部は後述する官能基(b)として固体粒子との相互作用に用いられてもよい。
 官能基(a)を有する構成成分は、バインダー形成ポリマーを構成しうる構成成分であれば特に制限されず、バインダー形成ポリマーの種類、組成等に応じて適宜に選択される。
 上記官能基(a)を有する構成成分の、バインダー形成ポリマー(全構成成分)中の含有量は、特に制限されないが、金属元素含有化合物と十分な相互作用を発現する点で、0.1~10モル%であることが好ましく、0.1~5モル%であることがより好ましく、0.2~4.0モル%であることが更に好ましい。バインダー形成ポリマーが官能基(a)を有する構成成分を複数有する場合、官能基(a)を有する構成成分の含有量は合計量とする。また、官能基(a)を有する構成成分の含有量は、1つの構成成分が複数若しくは複数種の官能基(a)を有する場合、通常、当該構成成分の含有量をいうが、本発明においては、金属元素含有化合物との相互作用、固体粒子の結着性との関係で、各官能基についての含有量の合計量とする。ただし、複数若しくは複数種の官能基(a)が1つの分子鎖に存在しているとき(共通の原料化合物に由来するとき)、上記合計量には、各官能基(a)の含有量を算入せず、複数若しくは複数種の官能基をまとめて1つの官能基として合計量に算入する。
 バインダー形成ポリマーは、下記官能基群(B)から選択される官能基(b)を例えば置換基として有する構成成分を含むことが好ましい。官能基(b)を有する構成成分は、ポリマーバインダーの固体粒子に対する吸着力を強化する機能を有する。ポリマーバインダーは、固体粒子に対して、物理的若しくは化学的な作用(化学結合形成、電子の授受等)により吸着することが好ましい。官能基(b)は、ポリマーの主鎖に組み込まれてもよく、側鎖に組み込まれてもよい。側鎖に組み込まれる場合、ポリマーの主鎖を形成する原子に直接若しくは連結基を介して結合する態様を包含する。官能基(b)と主鎖とを結合する連結基としては、特に制限されないが、例えば、上記官能基(a)と主鎖とを結合する連結基が好ましく挙げられる。また、側鎖を構成するマクロモノマー構成成分の重合鎖に置換基として官能基(b)を組み込む態様も包含する。マクロモノマー構成成分を導くマクロモノマーとしては、バインダー形成ポリマーの主鎖の種類等に応じて適宜に決定され、一義的ではないが、例えば、後述する連鎖重合ポリマーの重合鎖を有するマクロモノマーが挙げられる。1の構成成分が有する官能基(b)は1種でも2種以上でもよく、2種以上有する場合は、互いに結合していてもいなくてもよい。
<官能基群(B)>
 ヒドロキシ基、アミノ基、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、スルファニル基、エーテル結合(-O-)、イミノ基(=NR、-NR-)、エステル結合(-CO-O-)、アミド結合(-CO-NR-)、ウレタン結合(-NR-CO-O-)、ウレア結合(-NR-CO-NR-)、ヘテロ環基、アリール基、無水カルボン酸基、フルオロアルキル基、シロキサン基
 官能基群(B)に含まれる、アミノ基、スルホ基、リン酸基、ヘテロ環基、アリール基は、それぞれ、特に制限されないが、後述する置換基Zの対応する基と同義である。ただし、アミノ基の炭素数は、0~12がより好ましく、0~6が更に好ましく、0~2が特に好ましい。アミノ基、エーテル結合、イミノ基(-NR-)、エステル結合、アミド結合、ウレタン結合、ウレア結合等が環構造に含まれる場合、ヘテロ環に分類する。
 ヒドロキシ基、アミノ基、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、スルファニル基は塩を形成していてもよい。
 フルオロアルキル基は、アルキル基若しくはシクロアルキル基の少なくとも1つの水素原子をフッ素原子で置換した基であり、その炭素数は、1~20が好ましく、2~15がより好ましく、3~10が更に好ましい。炭素原子上のフッ素原子数は水素原子の一部を置き換えたものでもよく、すべて置き換えたもの(パーフルオロアルキル基)でもよい。
 シロキサン基は、特に制限されず、例えば-(SiR-O)n-で表される構造を有する基が好ましい。繰り返し数nは1~100の整数が好ましく、5~50の整数がより好ましく、10~30の整数が更に好ましい。
 各結合若しくは基中のRは、水素原子又は置換基を示し、水素原子が好ましい。置換基としては特に制限されず、後述する置換基Zから選択され、アルキル基が好ましい。
 無水カルボン酸基としては、特に制限されないが、カルボン酸無水物から1つ以上の水素原子を除去してなる基(例えば下記式(2a)で表される基)、更には共重合可能な化合物としての重合性カルボン酸無水物が共重合してなる構成成分自体(例えば下記式(2b)で表される構成成分)を包含する。カルボン酸無水物から1つ以上の水素原子を除去してなる基としては、環状カルボン酸無水物から1つ以上の水素原子を除去してなる基が好ましい。環状カルボン酸無水物から導かれる無水カルボン酸基は、ヘテロ環基にも相当するが、本発明においては無水カルボン酸基に分類する。無水カルボン酸基としては、例えば、無水酢酸、無水プロピオン酸、無水安息香酸等の非環状カルボン酸無水物、無水マレイン酸、無水フタル酸、無水フマル酸、無水コハク酸、無水イタコン酸等の環状カルボン酸無水物等が挙げられる。重合性カルボン酸無水物としては、特に制限されないが、分子内に不飽和結合を有するカルボン酸無水物が挙げられ、好ましくは重合性環状カルボン酸無水物である。具体的には、無水マレイン酸、無水イタコン酸等が挙げられる。
 無水カルボン酸基の一例として、下記式(2a)で表される基又は式(2b)で表される構成成分が挙げられるが、本発明はこれらに限定されない。各式中、*は結合位置を示す。
Figure JPOXMLDOC01-appb-C000001
 逐次重合ポリマーにおいて、エステル結合(-CO-O-)、アミド結合(-CO-NR-)、ウレタン結合(-NR-CO-O-)及びウレア結合(-NR-CO-NR-)は、ポリマーの化学構造を原料化合物に由来する構成成分で表す場合、それぞれ、-CO-基及び-O-基、-CO基及び-NR-基、-NR-CO-基及び-O-基、-NR-CO-基及び-NR-基に分割して表わされる。そのため、本発明においては、これら結合を有する構成成分としては、ポリマーの表記に関わらず、カルボン酸化合物由来の構成成分又はイソシアネート化合物由来の構成成分とし、ポリオール若しくはポリアミン化合物由来の構成成分を含めない。
 また、連鎖重合ポリマーにおいて、エステル結合(カルボキシ基を形成するエステル結合を除く)又はアミド結合を有する構成成分は、主鎖を構成する原子にエステル結合又はアミド結合が直接結合していない構成成分を意味し、例えば、(メタ)アクリル酸アルキルエステルに由来する構成成分を包含しない。
 官能基(b)を有する構成成分は、バインダー形成ポリマーを構成しうる構成成分であれば特に制限されず、バインダー形成ポリマーの種類、組成等に応じて適宜に選択される。
 官能基(b)を有する構成成分の、バインダー形成ポリマー(全構成成分)中の含有量は、特に制限されないが、固体粒子の結着性の点で、1~90モル%であることが好ましく、20~87モル%であることがより好ましく、30~85モル%であることが更に好ましい。バインダー形成ポリマーが官能基(b)を有する構成成分を複数有する場合、官能基(b)を有する構成成分の含有量は合計量とする。また、1つの構成成分が複数若しくは複数種の官能基(b)を有する場合、官能基(b)を有する構成成分の含有量は、1つの構成成分が複数若しくは複数種の官能基(a)を有する場合の、官能基(a)を有する構成成分の含有量と同様にして算出した合計量とする。
 なお、官能基(b)が官能基(a)にも相当する場合、官能基(b)を有する構成成分の含有量は、金属元素含有化合物との相互作用を発現する点では上記官能基(a)を有する構成成分の含有量とされるが、更に、固体粒子の結着性を達成する点では上記官能基(b)を有する構成成分の含有量に設定されることが好ましい。
 - 逐次重合ポリマー -
 バインダー形成ポリマーとしての逐次重合(重縮合、重付加若しくは付加縮合)ポリマーとしては、ポリウレタン、ポリウレア、ポリアミド、ポリイミド、ポリエステル、ポリエーテル、ポリカーボネート等が挙げられ、ポリウレタン、ポリウレア、ポリアミド、ポリイミド又はポリエステルが好ましい。逐次重合ポリマーは、その構成成分として、上述の、官能基(a)若しくは官能基(b)を有する構成成分を有することが好ましい。
 逐次重合ポリマーとしてとりうる、ポリウレタン、ポリウレア、ポリアミド、ポリイミドの各ポリマーとしては、例えば、特開2015-088480号公報に記載のハードセグメントとソフトセグメントとを有するポリマー(高分子バインダー(B))、及び国際公開第2015/046313号に記載の各ポリマー等に、官能基(a)若しくは官能基(b)を有する構成成分を導入したポリマーを挙げることができる。
 官能基を組み込む方法としては、特に制限されず、例えば、官能基群(A)又は官能基群(B)から選択される官能基を有する化合物を共重合する方法、上記官能基を有する(生じる)重合開始剤を用いる方法、高分子反応を利用する方法等が挙げられる。ほかにも、バインダー形成ポリマーの側鎖や末端に存在する官能基を反応点として官能基を導入することもできる。例えば、後述する実施例に示すように、官能基を有する化合物を用いて、バインダー形成ポリマー中に残存する二重結合とのエン反応、エン-チオール反応、更には無水カルボン酸基(カルボン酸無水物基)との各種反応等により、官能基(a)等を導入することができる。
 上記官能基を有する化合物としては、特に制限されないが、例えば、炭素-炭素不飽和結合と上記官能基とそれぞれ少なくとも1つ有する化合物が挙げられる。例えば、炭素-炭素不飽和結合と上記官能基とが直接結合した化合物、炭素-炭素不飽和結合と上記官能基とが上記連結基を介して結合した化合物、更には、官能基自体が炭素-炭素不飽和結合を含む化合物(例えば上記重合性環状カルボン酸無水物)を包含する。また、上記官能基を有する化合物としては、バインダー形成ポリマー中の構成成分に各種反応により官能基を導入可能な化合物(例えば、無水カルボン酸由来の構成成分、炭素-炭素不飽和結合を有する構成成分等と付加反応若しくは縮合反応等が可能な、アルコール、アミノ若しくはメルカプト若しくはエポキシの各化合物(重合体を含む))を包含する。更に、上記官能基を有する化合物としては、炭素-炭素不飽和結合と、重合鎖に置換基として官能基を組み込んだマクロモノマーとが直接若しくは上記連結基を介して結合した化合物も包含する。マクロモノマー構成成分を導くマクロモノマーとしては、バインダー形成ポリマーの主鎖の種類等に応じて適宜に決定され、一義的ではないが、例えば、後述する連鎖重合ポリマーの重合鎖を有するマクロモノマーが挙げられる。
 マクロモノマーの数平均分子量は、特に制限されないが、優れた分散安定性及びハンドリング性を維持しつつも、固体粒子の結着力、更には集電体との密着性を更に強固なものとすることができる点で、500~100,000が好ましく、1,000~50,000がより好ましく、2,000~20,000が更に好ましい。また、マクロモノマー中に組み込まれる官能基(b)を有する繰り返し単位の含有量は1~100モル%が好ましく、3~80モル%がより好ましく、5~70モル%が更に好ましい。官能基(b)を有さない繰り返し単位の含有量は、0~90モル%が好ましく、0~70モル%より好ましく、0~50モル%が更に好ましい。溶解性などの観点で、任意の成分を選択することができる。
 - 連鎖重合ポリマー -
 バインダー形成ポリマーとしての連鎖重合ポリマーとしては、含フッ素ポリマー、炭化水素系ポリマー、ビニル系ポリマー、(メタ)アクリルポリマー等が挙げられ、ビニル系ポリマー、炭化水素系ポリマー又は(メタ)アクリルポリマーが好ましい。連鎖重合ポリマーは、その構成成分として、上述の、官能基(a)若しくは官能基(b)を有する構成成分を有することが好ましい。
 含フッ素ポリマーとしては、特に制限されないが、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとテトラフルオロエチレンの共重合体(PVdF-HFP-TFE)が挙げられる。PVdF-HFPにおいて、PVdFとHFPとの共重合比[PVdF:HFP](質量比)は、特に限定されないが、9:1~5:5が好ましく、9:1~7:3が密着性の観点からより好ましい。PVdF-HFP-TFEにおいて、PVdFとHFPとTFEとの共重合比[PVdF:HFP:TFE](質量比)は、特に限定されないが、20~60:10~40:5~30であることが好ましい。
 炭化水素系ポリマーとしては、特に制限されないが、例えば、ポリエチレン、ポリプロピレン、ポリエチレン-ポリ(エチレン-ブチレン)-ポリエチレン共重合体、天然ゴム、ポリブタジエン、ポリイソプレン、ポリスチレン、ポリスチレンブタジエン共重合体、ポリプロピレン-ポリエチレン-ポリブチレン共重合体(CEBC)、スチレン系熱可塑性エラストマー、ポリブチレン、アクリロニトリルブタジエン共重合体、又はこれらの水添(水素化)ポリマーが挙げられる。スチレン系熱可塑性エラストマー又はその水素化物としては、特に制限されないが、例えば、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、水素化SIS、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、水素化SBS、スチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体(SEEPS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、スチレン-ブタジエンゴム(SBR)、水素化スチレン-ブタジエンゴム(HSBR)等、更にはSEBS等の上記各ブロック共重合体に対応するランダム共重合体が挙げられる。本発明において、炭化水素系ポリマーは、主鎖に結合する不飽和基(例えば1,2-ブタジエン構成成分)を有しないものが化学架橋の形成を抑制できる点で好ましい。
 炭化水素系ポリマーは、その側鎖に、官能基群(B)から選択される官能基(b)、例えば、フルオロアルキル基、シロキサン基を有していてもよい。固体粒子に対する吸着力を適宜調整できるためである。
 ビニル系ポリマーとしては、特に制限されないが、例えば、(メタ)アクリル化合物(M1)以外のビニル系モノマーを例えば50モル%以上含有するポリマーが挙げられる。ビニル系モノマーとしては、後述するビニル化合物等が挙げられる。ビニル系ポリマーとしては、具体的には、例えば、ポリビニルアルコール、ポリビニルアセタール、ポリ酢酸ビニル、又はこれらを含む共重合体等が挙げられる。
 このビニル系ポリマーは、ビニル系モノマー由来の構成成分以外に、後述する(メタ)アクリルポリマーを形成する(メタ)アクリル化合物(M1)由来の構成成分、更には後述するマクロモノマーに由来する構成成分(MM)を有することが好ましい。ビニル系モノマー由来の構成成分の含有量は、(メタ)アクリルポリマーにおける(メタ)アクリル化合物(M1)由来の構成成分の含有量と同じであることが好ましい。(メタ)アクリル化合物(M1)由来の構成成分の含有量は、ポリマー中、50モル%未満であれば特に制限されないが、0~40モル%であることが好ましく、5~35モル%であることがより好ましい。構成成分(MM)の含有量は(メタ)アクリルポリマーにおける含有量と同じであることが好ましい。
 (メタ)アクリルポリマーとしては、特に制限されないが、例えば、(メタ)アクリル酸化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリルアミド化合物及び(メタ)アクリルニトリル化合物から選択される少なくとも1種の(メタ)アクリル化合物(M1)を(共)重合して得られるポリマーが好ましい。また、(メタ)アクリル化合物(M1)とその他の重合性化合物(M2)との共重合体からなる(メタ)アクリルポリマーも好ましい。その他の重合性化合物(M2)としては、特に制限されず、スチレン化合物、ビニルナフタレン化合物、ビニルカルバゾール化合物、アリル化合物、ビニルエーテル化合物、ビニルエステル化合物、イタコン酸ジアルキル化合物、不飽和カルボン酸無水物等のビニル化合物が挙げられる。ビニル化合物としては、例えば、特開2015-88486号公報に記載の「ビニル系モノマー」が挙げられる。
 (メタ)アクリルポリマー中におけるその他の重合性化合物(M2)の含有量は、特に制限されないが、例えば50モル%未満とすることができる。
 (メタ)アクリルポリマーとしては、例えば、特許第6295332号に記載のものが挙げられる。
 連鎖重合ポリマーは、上述の各ポリマーに、官能基(a)若しくは官能基(b)を有する構成成分を導入したポリマーを挙げることができる。官能基を組み込む方法は、逐次重合ポリマーと同じである。
 バインダー形成ポリマー(各構成成分及び原料化合物)は、置換基を有していてもよい。置換基としては、上述の官能基群(A)及び官能基群(B)に含まれる官能基以外の基であれば特に制限されず、好ましくは下記置換基Zから選択される基が挙げられる。
 - 置換基Z -
 アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、本明細書においてアルキル基というときには通常シクロアルキル基を含む意味であるが、ここでは別記する。)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、アラルキル基(好ましくは炭素数7~23のアラルキル基、例えば、ベンジル、フェネチル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基で、より好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基である。ヘテロ環基には芳香族ヘテロ環基及び脂肪族ヘテロ環基を含む。例えば、テトラヒドロピラン環基、テトラヒドロフラン環基、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等、本明細書においてアリールオキシ基というときにはアリーロイルオキシ基を含む意味である。)、ヘテロ環オキシ基(上記ヘテロ環基に-O-基が結合した基)、アルコキシカルボニル基(好ましくは炭素数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル、ドデシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ(-NH)、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(アルキルカルボニル基、アルケニルカルボニル基、アルキニルカルボニル基、アリールカルボニル基、ヘテロ環カルボニル基を含み、好ましくは炭素数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、オクタノイル、ヘキサデカノイル、アクリロイル、メタクリロイル、クロトノイル、ベンゾイル、ナフトイル、ニコチノイル等)、アシルオキシ基(アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、アリールカルボニルオキシ基、ヘテロ環カルボニルオキシ基を含み、好ましくは炭素数1~20のアシルオキシ基、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、オクタノイルオキシ、ヘキサデカノイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、クロトノイルオキシ、ベンゾイルオキシ、ナフトイルオキシ、ニコチノイルオキシ等)、アリーロイルオキシ基(好ましくは炭素数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、ヘテロ環チオ基(上記ヘテロ環基に-S-基が結合した基)、アルキルスルホニル基(好ましくは炭素数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素数6~42のアリールシリル基、例えば、トリフェニルシリル等)、アルコキシシリル基(好ましくは炭素数1~20のアルコキシシリル基、例えば、モノメトキシシリル、ジメトキシシリル、トリメトキシシリル、トリエトキシシリル等)、アリールオキシシリル基(好ましくは炭素数6~42のアリールオキシシリル基、例えば、トリフェニルオキシシリル等)、ホスホリル基(好ましくは炭素数0~20のリン酸基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素数0~20のホスフィニル基、例えば、-P(R)、ホスホン酸基(好ましくは炭素数0~20のホスホン酸基、例えば、-PO(OR)、スルホ基(スルホン酸基、-SO)、カルボキシ基、ヒドロキシ基、スルファニル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。Rは、水素原子又は置換基(好ましくは置換基Zから選択される基)である。
 また、これらの置換基Zで挙げた各基は、上記置換基Zが更に置換していてもよい。
 上記アルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基及び/又はアルキニレン基等は、環状でも鎖状でもよく、また直鎖でも分岐していてもよい。
(ポリマーバインダー又はバインダー形成ポリマーの物性若しくは特性等)
 上記ポリマーバインダー、又はバインダー形成ポリマーは下記物性若しくは特性等を有することが好ましい。
 ポリマーバインダー(ポリマー)の水分濃度は、100ppm(質量基準)以下が好ましい。また、このポリマーバインダーは、ポリマーを晶析させて乾燥させてもよく、ポリマーバインダー分散液をそのまま用いてもよい。
 バインダー形成ポリマーは、非晶質であることが好ましい。本発明において、ポリマーが「非晶質」であるとは、典型的には、ガラス転移温度で測定したときに結晶融解に起因する吸熱ピークが見られないことをいう。
 バインダー形成ポリマーは、非架橋ポリマーであっても架橋ポリマーであってもよい。また、加熱又は電圧の印加によってポリマーの架橋が進行した場合には、上記分子量より大きな分子量となっていてもよい。好ましくは、全固体二次電池の使用開始時にポリマーが後述する範囲の質量平均分子量であることである。
 バインダー形成ポリマーの質量平均分子量は、特に制限されない。例えば、15,000以上が好ましく、30,000以上がより好ましく、50,000以上が更に好ましい。上限としては、5,000,000以下が実質的であるが、4,000,000以下が好ましく、3,000,000以下がより好ましい。
-分子量の測定-
 本発明において、ポリマー、ポリマー鎖及びマクロモノマーの分子量については、特に断らない限り、ゲルパーミエーションクロマトグラフィー(GPC)による標準ポリスチレン換算の質量平均分子量又は数平均分子量をいう。その測定法としては、基本として下記条件1又は条件2(優先)の方法により測定した値とする。ただし、ポリマー又はマクロモノマーの種類によっては適宜適切な溶離液を選定して用いればよい。
(条件1)
  カラム:TOSOH TSKgel Super AWM-H(商品名、東ソー社製)を2本つなげる
  キャリア:10mMLiBr/N-メチルピロリドン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(条件2)
  カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000(いずれも商品名、東ソー社製)をつないだカラムを用いる。
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
 本発明の無機固体電解質含有組成物は、ポリマーバインダーを1種含有しても2種以上含有してもよい。
 ポリマーバインダーの、無機固体電解質含有組成物中の(合計)含有量は、特に制限されないが、分散安定性及びハンドリング性を改善し、更には十分な結着性も示す点で、固形分100質量%中、0.1~10.0質量%であることが好ましく、0.2~8質量%であることがより好ましく、0.3~6質量%であることが更に好ましく、0.5~3質量%であることが特に好ましい。
 本発明において、固形分100質量%において、ポリマーバインダーの合計質量に対する、無機固体電解質と活物質の合計質量(総量)の質量比[(無機固体電解質の質量+活物質の質量)/(ポリマーバインダーの合計質量)]は、1,000~1の範囲が好ましい。この比率は更に500~2がより好ましく、100~10が更に好ましい。
<金属元素含有化合物>
 本発明の無機固体電解質含有組成物は金属元素含有化合物を含有している。無機固体電解質粒子及びポリマーバインダーに対して金属元素含有化合物を固体状態で共存させることにより、溶解状態のポリマーバインダーに相互作用して、例えば金属元素含有化合物、金属元素のイオン受領部が起点となって、ポリマーバインダーを粒子状に固化させることができる。
 この金属元素含有化合物は、分子を構成する金属元素の少なくとも一部をイオン(カチオン)としてバインダー形成ポリマー供給しうる特性を有している。
 金属元素含有化合物が金属元素イオンを供給しうる特性は、バインダー形成ポリマーにおける、金属元素イオンを受領可能な化学構造等により、一義的に決定されるものではない。例えば、金属元素含有化合物を構成するアニオンについては、その共役酸の、酸解離定数の負の常用対数[pKa](水中)が、-2~40であることが好ましく、-2~20であることがより好ましく、0~10であることが更に好ましく、2~8であることが特に好ましい。共役酸のpKaが上記範囲内にあると、金属元素含有化合物が金属元素イオンをカチオンとして速やかに遊離、発生させてバインダー形成ポリマーに効果的に供給することができる。共役酸のpKaは、上記官能基(a)のpKaと同様にして測定できる。
 上記アニオンを導く共役酸のpKaは、分散特性及び電池特性の改善の実現の点で、官能基(a)のpKa(バインダー形成ポリマーが複数種の官能基(a)を有する場合、各官能基のpKaのうち少なくとも最も低い値を示すpKa)よりも大きいことが好ましい。その際の、共役酸のpKaと官能基(a)のpKaとのpKa差[(共役酸のpKa)-(官能基のpKa)]は、特に制限されず、0.1以上とすることができるが、分散特性と抵抗とをより高い水準で両立できる点で、2以上であることが好ましく、2.5以上であることがより好ましい。pKa差の上限は、特に制限されず、例えば、35以下とすることができ、30以下であることが好ましく、20以下であることがより好ましい。
 金属元素含有化合物は、無機固体電解質含有組成物の製膜時に金属元素イオンを遊離することができれば、製膜時以外(調製時、保管時等)に一部の金属元素をイオンとして遊離してもよい。
 金属元素含有化合物は、無機固体電解質含有組成物が含有する分散媒に対して不溶性であり、無機固体電解質含有組成物中に固体状態で存在している。固体状態で存在していることにより、製膜時に固体粒子の表面を被覆するとしても部分的であり、固体粒子同士の界面抵抗の上昇を抑制できる。本発明において、不溶性とは、上述の測定方法による、分散媒に対する溶解度が0.05%以下であることをいい、本発明の効果を損なわない範囲で金属元素含有化合物の一部が分散媒に溶解していてもよい。
 無機固体電解質含有組成物において、金属元素含有化合物は固体状態で分散媒に分散していることが好ましい。金属元素含有化合物が固体状態で分散媒に分散しているとは、金属元素含有化合物を固形分濃度10質量%の割合で分散媒と混合(分散)させた分散液を用いて、後述する実施例における分散安定性試験における固形分減少量が5質量%未満であることをいう。
 固体状態で存在する金属元素含有化合物の平均粒径は、特に制限されず、0.05~35μmとすることができる。分散特性及び電池特性の改善の点で、平均粒径の下限は、0.05μm以上であることが好ましく、0.07μm以上であることがより好ましく、0.1μm以上であることが更に好ましく、平均粒径の上限は、5μm以下であることが好ましく、3μm以下であることがより好ましく、2μm以下であることが更に好ましい。平均粒径は、後述する実施例で説明する方法で測定した値である。金属元素含有化合物の平均粒径は、例えば、化合物構造、例えばアニオン若しくは金属元素の種類、含有量、分散媒の種類等により、調整できる。
 金属元素含有化合物は、上記金属元素イオンを供給しうる特性を示す化合物であれば特に制限されず、各種の化合物が挙げられる。金属元素含有化合物としては、無機化合物でもよいが有機化合物であることが好ましく、また高分子化合物でもよいが低分子化合物(非重合性化合物)であることが好ましい。この金属元素含有化合物は周期律表第1族若しくは第2族に属する金属のイオン伝導性を示さない(リチウムイオン伝導度:10-6S/cm未満)ことが好ましい。
 本発明に用いる金属元素含有化合物は、上記金属元素イオンを供給しうる特性を示す点で、例えば上記pKaを示す点で、アニオンの共役酸のpKaが-2未満と小さく、金属元素イオンを供給しうる特性を示さない、全固体二次電池に通常用いられる、無機固体電解質、活物質、導電助剤、リチウム塩、イオン液体、更には増粘剤等とは異なる化合物群である。
 金属元素含有化合物としては、例えば、有機酸、アルコール、炭化水素等の有機化合物由来のアニオンと、金属元素由来のカチオンとを含む有機金属化合物若しくは有機金属塩が好ましい。有機金属化合物若しくは有機金属塩としては、特に制限されず、例えば、有機酸由来のアニオンと金属元素由来のカチオンとを含む有機酸金属塩、アルコール由来のアニオンと金属元素由来のカチオンとを含むアルコキシド(アルコラート)、炭化水素由来のアニオンと金属元素由来のカチオンとを含む有機金属化合物が挙げられる。なかでも、有機酸金属塩又はアルコキシドが好ましく、有機酸金属塩がより好ましい。このアニオンは、その共役酸(上記有機化合物)のpKaが上記範囲にあるものが好ましい。
 カチオンを形成する金属元素は、特に制限されず、周期律表第1族~第17族に属する金属元素から適宜に選択されるが、分散特性及び電池特性の改善の点で、周期律表第1族、第2族、第12族又は第13族に属する金属元素を含むことが好ましく、周期律表第1族に属する金属元素(アルカリ金属)又は第2族に属する金属元素(アルカリ土類金属)を含むことがより好ましく、周期律表第1族に属する金属元素を含むことが更に好ましく、リチウム元素を含むことが特に好ましい。
 金属元素又はそのイオンがとりうる価数としては、特に限定されず、例えば1価~7価の範囲から選択されるが、分散特性及び電池特性の改善の点で、小さな価数が好ましく、例えば、1~3価がより好ましく、1価又は2価であることが更に好ましく、1価であることが特に好ましい。
 金属元素は、無機固体電解質との関係では、無機固体電解質が含有する金属元素と同種であることが好ましい。
 アニオンを形成する有機化合物は、金属元素含有化合物の金属元素を水素原子で置換した化合物であり、特に制限されないが、上記の中でも、有機酸、アルコール、炭化水素が好ましく、有機酸がより好ましい。
 有機酸は、酸基を有する炭化水素化合物であり、例えば、有機カルボン酸、有機スルホン酸、有機ホスホン酸、有機ボロン酸等が挙げられ、分散特性の改善と低抵抗化とを高いレベルで両立できる点で、有機カルボン酸が好ましい。有機酸が有する酸基の数は、特に制限されず、1~3個であることが好ましく、1個又は2個であることが好ましい。
 有機酸を構成する炭化水素化合物としては、特に制限されず、例えば、鎖式若しくは環式の飽和炭化水素、鎖式若しくは環式の不飽和炭化水素、又は芳香族炭化水素が挙げられ、鎖式の飽和炭化水素が好ましい。また、鎖式の飽和炭化水素若しくは不飽和炭化水素の構造は直鎖構造でも分岐鎖でもよい。上記各炭化水素化合物は上記置換基Zから選択される置換基を有していてもよい。
 有機カルボン酸としては、特に制限されないが、飽和若しくは不飽和の脂肪酸、飽和若しくは不飽和の脂肪族ジカルボン酸、芳香族ジカルボン酸等が挙げられる。なお、ギ酸は1つのカルボキシ基と水素原子が結合した化合物であり、シュウ酸は2つのカルボキシ基が結合した化合物であるが、いずれも有機カルボン酸に含む。
 アルコールは、水酸基を有する炭化水素化合物であり、炭化水素化合物が有する水酸基の数は、特に制限されず、1~3個であることが好ましく、1個又は2個であることが好ましい。アルコールを構成する炭化水素化合物としては、特に制限されず、有機酸を構成する炭化水素化合物が好ましく挙げられる。
 アニオンを形成する炭化水素は、特に制限されず、有機酸を構成する炭化水素化合物が好ましく挙げられる。
 アニオンを形成する有機化合物の炭素数は、特に制限されず、1~24とすることができるが、分散特性及び電池特性の改善の点で、3~22であることが好ましく、6~21であることがより好ましく、10~20であることが更に好ましく、12~19であることが特に好ましい。
 金属元素含有化合物は、無機固体電解質含有組成物中において、単独で存在していてもよく、他の成分と複合体(例えば、吸着体、錯体、溶媒和したもの)を形成していてもよい。ただし、有機カルボン酸金属塩は特許文献2のように三フッ化ホウ素錯体を形成していない。
 金属元素含有化合物の具体例を以下及び実施例に示すが、本発明はこれらに限定されない。なお、例示化合物C-4~C-26はいずれもリチウム塩として示すが、リチウム塩には限定されない。
Figure JPOXMLDOC01-appb-C000002
 本発明の無機固体電解質含有組成物は、金属元素含有化合物を1種含有しても、2種以上含有してもよい。
 金属元素含有化合物の、無機固体電解質含有組成物中の含有量は、特に制限されないが、分散特性の改善と低抵抗化との両立、更には固体粒子を十分に結着させることができる点で、固形分100質量%中、0.005~3質量%であることが好ましく、0.007~1質量%であることがより好ましく、0.01~0.1質量%であることが更に好ましい。
 ポリマーバインダーが官能基(a)を有する場合、金属元素含有化合物は、官能基(a)に対して、好ましくは1~100モル%、より好ましくは30~99モル%の金属元素をイオンとして供給可能な含有量とすることができる。
<分散媒>
 本発明の無機固体電解質含有組成物は、バインダー形成ポリマーを溶解し、かつ金属元素含有化合物を分散させる分散媒を含有する。
 分散媒としては、使用環境において液状を示す有機化合物であればよく、例えば、各種有機溶媒が挙げられ、具体的には、アルコール化合物、エーテル化合物、アミド化合物、アミン化合物、ケトン化合物、芳香族化合物、脂肪族化合物、ニトリル化合物、エステル化合物等が挙げられる。
 分散媒としては、非極性分散媒(疎水性の分散媒)でも極性分散媒(親水性の分散媒)でもよいが、ポリマーバインダーの溶解状態及び金属元素含有化合物の分散状態を実現できる点で、非極性分散媒が好ましい。非極性分散媒とは、一般に水に対する親和性が低い性質をいうが、本発明においては、ClogP値が1.5~6の分散媒であることが好ましく、例えば、エステル化合物、ケトン化合物、エーテル化合物、香族化合物、脂肪族化合物等が挙げられる。
 アルコール化合物としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。
 エーテル化合物としては、例えば、アルキレングリコール(ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール等)、アルキレングリコールモノアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、アルキレングリコールジアルキルエーテル(エチレングリコールジメチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)が挙げられる。
 アミド化合物としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。
 アミン化合物としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、ジプロピルケトン、ジブチルケトン、ジイソプロピルケトン、ジイソブチルケトン(DIBK)、イソブチルプロピルケトン、sec-ブチルプロピルケトン、ペンチルプロピルケトン、ブチルプロピルケトンなどが挙げられる。
 芳香族化合物としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。
 脂肪族化合物としては、例えば、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、シクロオクタン、デカリン、パラフィン、ガソリン、ナフサ、灯油、軽油等が挙げられる。
 ニトリル化合物としては、例えば、アセトニトリル、プロピオニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、ペンタン酸ブチル、イソ酪酸エチル、イソ酪酸プロピル、イソ酪酸イソプロピル、イソ酪酸イソブチル、ピバル酸プロピル、ピバル酸イソプロピル、ピバル酸ブチル、ピバル酸イソブチルなどが挙げられる。
 本発明においては、中でも、エーテル化合物、ケトン化合物、芳香族化合物、脂肪族化合物、エステル化合物が好ましく、エステル化合物、ケトン化合物又はエーテル化合物がより好ましい。
 分散媒を構成する化合物の炭素数は特に制限されず、2~30が好ましく、4~20がより好ましく、6~15が更に好ましく、7~12が特に好ましい。
 分散媒を構成する化合物は、CLogP値が1以上であることが好ましく、1.5以上であることがより好ましく、2以上であることが更に好ましく、3以上であることが特に好ましい。上限は特に制限されないが、10以下であることが実際的であり、6以下であることが好ましい。
 本発明において、CLogP値とは、1-オクタノールと水への分配係数Pの常用対数LogPを計算によって求めた値である。CLogP値の計算に用いる方法やソフトウェアについては公知のものを用いることができるが、特に断らない限り、PerkinElmer社のChemDrawを用いて構造を描画し、算出した値とする。
 分散媒を2種以上含有する場合、分散媒のClogP値は、各分散媒のClogP値と質量分率との積の和とする。
 このような分散媒を上記したものの中から挙げると、トルエン(CLogP=2.5)、キシレン(ClogP=3.12)、ヘキサン(CLogP=3.9)、ヘプタン(Hep、CLogP=4.4)、オクタン(CLogP=4.9)、シクロヘキサン(CLogP=3.4)、シクロオクタン(CLogP=4.5)、デカリン(CLogP=4.8)、ジイソブチルケトン(DIBK、CLogP=3.0)、ジブチルエーテル(DBE、CLogP=2.57)、酪酸ブチル(CLogP=2.8)、トリブチルアミン(CLogP=4.8)、メチルイソブチルケトン(MIBK、ClogP=1.31)、エチルシクロヘキサン(ECH、ClogP=3.4)等がある。
 分散媒は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることが更に好ましい。
 本発明の無機固体電解質含有組成物は、分散媒を少なくとも1種含有していればよく、2種以上含有してもよい。
 本発明において、無機固体電解質含有組成物中の、分散媒の含有量は、特に制限されず適宜に設定することができる。例えば、無機固体電解質含有組成物中、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。
<活物質>
 本発明の無機固体電解質含有組成物には、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質を含有することもできる。活物質としては、以下に説明するが、正極活物質及び負極活物質が挙げられる。
 本発明において、活物質(正極活物質又は負極活物質)を含有する無機固体電解質含有組成物を電極用組成物(正極用組成物又は負極用組成物)ということがある。
(正極活物質)
 正極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく電池を分解して、遷移金属酸化物、又は、硫黄などのLiと複合化できる元素などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P及びBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100モル%)に対して0~30モル%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、LiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の粒子径(体積平均粒子径)は特に制限されない。例えば、0.1~50μmとすることができる。正極活物質粒子の粒子径は、上記無機固体電解質の粒子径と同様にして測定できる。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル又は篩などが好適に用いられる。粉砕時には水又はメタノール等の分散媒を共存させた湿式粉砕も行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級は、特に限定はなく、篩、風力分級機などを用いて行うことができる。分級は乾式及び湿式ともに用いることができる。
 焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。
 正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
 正極活物質の、無機固体電解質含有組成物中における含有量は特に制限されず、固形分100質量%において、10~97質量%が好ましく、30~95質量%がより好ましく、40~93質量が更に好ましく、50~90質量%が特に好ましい。
(負極活物質)
 負極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、金属酸化物、金属複合酸化物、リチウム単体、リチウム合金、リチウムと合金形成可能な負極活物質等が挙げられる。中でも、炭素質材料、金属複合酸化物又はリチウム単体が信頼性の点から好ましく用いられる。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料(ハードカーボンともいう。)と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔又は密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
 炭素質材料としては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。
 負極活物質として適用される金属若しくは半金属元素の酸化物としては、リチウムを吸蔵及び放出可能な酸化物であれば特に制限されず、金属元素の酸化物(金属酸化物)、金属元素の複合酸化物若しくは金属元素と半金属元素との複合酸化物(纏めて金属複合酸化物という。)、半金属元素の酸化物(半金属酸化物)が挙げられる。これらの酸化物としては、非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイドも好ましく挙げられる。本発明において、半金属元素とは、金属元素と非半金属元素との中間の性質を示す元素をいい、通常、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン及びテルルの6元素を含み、更にはセレン、ポロニウム及びアスタチンの3元素を含む。また、非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°~70°に見られる結晶性の回折線の内最も強い強度が、2θ値で20°~40°に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物又は上記カルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素(例えば、Al、Ga、Si、Sn、Ge、Pb、Sb及びBi)から選択される1種単独若しくはそれらの2種以上の組み合わせからなる(複合)酸化物、又はカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、GeO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Sb、Bi、Bi、GeS、PbS、PbS、Sb又はSbが好ましく挙げられる。
 Sn、Si、Geを中心とする非晶質酸化物に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵及び/又は放出できる炭素質材料、リチウム単体、リチウム合金、リチウムと合金化可能な負極活物質が好適に挙げられる。
 金属若しくは半金属元素の酸化物、とりわけ金属(複合)酸化物及び上記カルコゲナイドは、構成成分として、チタン及びリチウムの少なくとも一方を含有していることが、高電流密度充放電特性の観点で好ましい。リチウムを含有する金属複合酸化物(リチウム複合金属酸化物)としては、例えば、酸化リチウムと上記金属(複合)酸化物若しくは上記カルコゲナイドとの複合酸化物、より具体的には、LiSnOが挙げられる。
 負極活物質、例えば金属酸化物は、チタン元素を含有すること(チタン酸化物)も好ましく挙げられる。具体的には、LiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから高速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 負極活物質としてのリチウム合金としては、二次電池の負極活物質として通常用いられる合金であれば特に制限されず、例えば、リチウムアルミニウム合金が挙げられる。
 リチウムと合金形成可能な負極活物質は、二次電池の負極活物質として通常用いられるものであれば特に制限されない。このような活物質は、全固体二次電池の充放電による膨張収縮が大きく、サイクル特性の低下を加速させるが、本発明の無機固体電解質含有組成物は上述のポリマーバインダー及び金属元素含有化合物を含有するため、サイクル特性の低下を抑制できる。このような活物質として、ケイ素元素若しくはスズ元素を有する(負極)活物質(合金等)、Al及びIn等の各金属が挙げられ、より高い電池容量を可能とするケイ素元素を有する負極活物質(ケイ素元素含有活物質)が好ましく、ケイ素元素の含有量が全構成元素の50モル%以上のケイ素元素含有活物質がより好ましい。
 一般的に、これらの負極活物質を含有する負極(ケイ素元素含有活物質を含有するSi負極、スズ元素を有する活物質を含有するSn負極等)は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 ケイ素元素含有活物質としては、例えば、Si、SiOx(0<x≦1)等のケイ素材料、更には、チタン、バナジウム、クロム、マンガン、ニッケル、銅、ランタン等を含むケイ素含有合金(例えば、LaSi、VSi、La-Si、Gd-Si、Ni-Si)、又は組織化した活物質(例えば、LaSi/Si)、他にも、SnSiO、SnSiS等のケイ素元素及びスズ元素を含有する活物質等が挙げられる。なお、SiOxは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、全固体二次電池の稼働によりSiを生成するため、リチウムと合金化可能な負極活物質(その前駆体物質)として用いることができる。
 スズ元素を有する負極活物質としては、例えば、Sn、SnO、SnO、SnS、SnS、更には上記ケイ素元素及びスズ元素を含有する活物質等が挙げられる。また、酸化リチウムとの複合酸化物、例えば、LiSnOを挙げることもできる。
 本発明においては、上述の負極活物質を特に制限されることなく用いることができるが、電池容量の点では、負極活物質として、リチウムと合金化可能な負極活物質が好ましい態様であり、中でも、上記ケイ素材料又はケイ素含有合金(ケイ素元素を含有する合金)がより好ましく、ケイ素(Si)又はケイ素含有合金を含むことが更に好ましい。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の体積平均粒子径は、特に制限されないが、0.1~60μmが好ましい。負極活物質粒子の体積平均粒子径は、上記無機固体電解質の平均粒子径と同様にして測定できる。所定の粒子径にするには、正極活物質と同様に、通常の粉砕機若しくは分級機が用いられる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
 負極活物質の、無機固体電解質含有組成物中における含有量は特に制限されず、固形分100質量%において、10~90質量%であることが好ましく、20~85質量%がより好ましく、30~80質量%であることがより好ましく、40~75質量%であることが更に好ましい。
 本発明において、負極活物質層を二次電池の充電により形成する場合、上記負極活物質に代えて、全固体二次電池内に発生する周期律表第一族若しくは第二族に属する金属のイオンを用いることができる。このイオンを電子と結合させて金属として析出させることで、負極活物質層を形成できる。
(活物質の被覆)
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
<導電助剤>
 本発明の無機固体電解質含有組成物は、導電助剤を含有していることが好ましく、例えば、負極活物質としてのケイ素原子含有活物質は導電助剤と併用されることが好ましい。
 導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体などの導電性高分子を用いてもよい。
 本発明において、活物質と導電助剤とを併用する場合、上記の導電助剤のうち、電池を充放電した際に周期律表第一族若しくは第二族に属する金属のイオン(好ましくはLiイオン)の挿入と放出が起きず、活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に活物質層中において活物質として機能しうるものは、導電助剤ではなく活物質に分類する。電池を充放電した際に活物質として機能するか否かは、一義的ではなく、活物質との組み合わせにより決定される。
 導電助剤は、1種を含有していてもよいし、2種以上を含有していてもよい。
 導電助剤の形状は、特に制限されないが、粒子状が好ましい。
 本発明の無機固体電解質含有組成物が導電助剤を含む場合、無機固体電解質含有組成物中の導電助剤の含有量は、固形分100質量%において、0~10質量%が好ましい。
<リチウム塩>
 本発明の無機固体電解質含有組成物は、リチウム塩(支持電解質)を含有することも好ましい。
 リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、特開2015-088486の段落0082~0085記載のリチウム塩が好ましい。
 本発明の無機固体電解質含有組成物がリチウム塩を含む場合、リチウム塩の含有量は、固体電解質100質量部に対して、0.1質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
<分散剤>
 本発明の無機固体電解質含有組成物は、上述のポリマーバインダーが分散剤としても機能するため、このポリマーバインダー以外の分散剤を含有していなくてもよいが、分散剤を含有してもよい。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発及び/又は静電反発を意図した化合物が好適に使用される。
<他の添加剤>
 本発明の無機固体電解質含有組成物は、上記各成分以外の他の成分として、適宜に、イオン液体、増粘剤、架橋剤(ラジカル重合、縮合重合又は開環重合により架橋反応するもの等)、重合開始剤(酸又はラジカルを熱又は光によって発生させるものなど)、消泡剤、レベリング剤、脱水剤、酸化防止剤等を含有することができる。イオン液体は、イオン伝導度をより向上させるため含有されるものであり、公知のものを特に制限されることなく用いることができる。また、上述のポリマーバインダーを形成するポリマー以外のポリマー、通常用いられる結着剤等を含有していてもよい。
(無機固体電解質含有組成物の調製)
 本発明の無機固体電解質含有組成物は、無機固体電解質、ポリマーバインダー、金属元素含有化合物、分散媒、更に導電助剤、適宜にリチウム塩、任意の他の成分を、例えば通常用いる各種の混合機で混合する。これにより、分散媒に対して、ポリマーバインダーを溶解させ、かつ金属元素含有化合物を溶解させずに固体状態で存在させた混合物として、好ましくはスラリーとして、調製する。電極用組成物の場合は更に活物質を混合する。組成物の調製に際して、ポリマーバインダー及び金属元素含有化合物と分散媒とは、分散媒に対する上述の溶解状態及び分散状態となる組み合わせで、適宜に選択される。
 混合方法は特に制限されず、一括して混合してもよく、順次混合してもよい。混合する環境は特に制限されないが、乾燥空気下又は不活性ガス下等が挙げられる。
 本発明の無機固体電解質含有組成物は、特に上述の含有量を満たしていると、常温では、ポリマーバインダーと金属元素含有化合物とは相互反応をしにくく、例えば上述の塩交換反応を生起してもその割合は組成物の分散安定性を十分維持できるほど小さい。本発明において、ポリマーバインダーを固化させるのに十分な相互作用を生起させるには、好ましくは後述する成膜条件を適用する。
<無機固体電解質含有組成物の特性ないし物性>
 本発明の無機固体電解質含有組成物は非水系組成物であることが好ましい。本発明において、非水系組成物とは、水分を含有しない態様に加えて、含水率(水分含有量ともいう。)が好ましくは500ppm以下である形態をも包含する。非水系組成物において、含水率は、200ppm以下であることがより好ましく、100ppm以下であることが更に好ましく、50ppm以下であることが特に好ましい。無機固体電解質含有組成物が非水系組成物であると、無機固体電解質の劣化を抑制することができる。含水量は、無機固体電解質含有組成物中に含有している水の量(無機固体電解質含有組成物に対する質量割合)を示し、具体的には、0.02μmのメンブレンフィルターでろ過し、カールフィッシャー滴定を用いて測定された値とする。
 本発明の無機固体電解質含有組成物において、調製後の粘度(初期粘度)は、特に制限されないが、塗布性等を考慮すると、例えば、下記測定条件における粘度として、1000~4000cPが好ましく、300~4000cPがより好ましく、500cP~2500cPが更に好ましい。本発明の無機固体電解質含有組成物は、上述のように優れた分散特性を示すため、上記初期粘度を経時によっても維持できる。
 
 - 測定条件 -
  温度:23℃
  せん断速度:10/s
  測定機器:TV-35型粘度計(東機産業社製)
  測定法:サンプルカップに組成物を1.1ml滴下し、標準コーンロータ(1°34’×R24)を備えた粘度計本体にサンプルカップをセットし、測定レンジを「U」とし、上記のせん断速度で回転させ1分後の値を読み取る。
 
 本発明の無機固体電解質含有組成物は、80℃以上に加熱した場合に、加熱後のポリマーバインダーの分散媒に対する溶解度が加熱前のポリマーバインダーの分散媒に対する溶解度よりも小さくなることが好ましい。加熱によりポリマーバインダーの溶解度が小さくなると、無機固体電解質含有組成物の製膜時(乾燥時)にポリマーバインダーを粒子として分散媒から固化させることができ、優れた分散特性を維持しながらも、抵抗増大を抑制でき、優れたサイクル特性を実現できる。
 無機固体電解質含有組成物の上記特性(加熱による溶解度の低下)は、本発明の無機固体電解質含有組成物であれば評価、確認することができるが、後述する実施例2に示すように、ポリマーバインダーの組成物中の含有量を10質量%に、かつ金属元素含有化合物の組成物中の含有量を0.5質量%に設定した組成物に対して行うと、より明確に評価、確認できる。
 加熱温度は、80℃以上であれば上記特性をより明確に評価、確認でき、例えば80~120℃とすることができる。なお、加熱温度、更には含有量以外の条件は適宜に決定され、例えば加熱時間は10分以上とすることができる。
 本発明の無機固体電解質含有組成物は、ポリマーバインダーと金属元素含有化合物との無機固体電解質含有組成物中の合計濃度を30質量%以上に濃縮された場合に、濃縮後のポリマーバインダーの分散媒に対する溶解度が濃縮前のポリマーバインダーの分散媒に対する溶解度よりも小さくなることが好ましい。濃縮によりポリマーバインダーの溶解度が小さくなると、無機固体電解質含有組成物の製膜時(乾燥時)にポリマーバインダーを粒子として分散媒から固化させることができ、優れた分散特性を維持しながらも、抵抗増大を抑制でき、優れたサイクル特性を実現できる。
 無機固体電解質含有組成物の上記特性(濃縮による溶解度の低下)は、本発明の無機固体電解質含有組成物であれば評価、確認することができるが、後述する実施例2に示すように、ポリマーバインダーの組成物中の含有量を10質量%に、かつ金属元素含有化合物の組成物中の含有量を0.5質量%に設定した組成物に対して行うと、より明確に評価、確認できる。
 濃縮する合計濃度は、30質量%以上であれば上記特性をより明確に評価、確認でき、例えば50質量%以上とすることができる。なお、濃縮時の加熱温度は、適宜に設定され、80℃以上でもよいが、加熱による溶解度の低下を起こしにくい80℃未満であることが好ましく、例えば30~60℃とすることができる。なお、合計含有量及び加熱温度以外の条件は適宜に決定される。
 本発明の無機固体電解質含有組成物は、製膜されて構成層を形成した場合に、構成層中に存在するポリマーバインダーの、無機固体電解質含有組成物中に含有していた分散媒に対する溶解度が、無機固体電解質含有組成物中に含有されていたポリマーバインダーの分散媒に対する溶解度よりも小さくなることが好ましい。製膜工程の実施によりポリマーバインダーの溶解度を小さくできると、ポリマーバインダーを分散媒から固化させてポリマーバインダーの粒子を構成層中に形成することができ、抵抗増大を抑制でき、優れたサイクル特性を実現できる。
 無機固体電解質含有組成物の上記特性(製膜による溶解度の低下)は、本発明の無機固体電解質含有組成物であれば評価、確認することができるが、ポリマーバインダーの組成物中の含有量を10質量%に、かつ金属元素含有化合物の組成物中の含有量を0.5質量%に設定した組成物に対して行うと、より明確に評価、確認できる。
 製膜条件は、特に制限されず、後述する乾燥条件を適宜に選択できる。
 上記の、加熱、濃縮又は製膜による溶解度の低下特性において、ポリマーバインダーの溶解度は、分散媒からポリマーバインダーが固化、析出しうる溶解度まで低下させることができればよく、溶解度差として20質量%以上であることが好ましい。このような溶解度の低下は、溶解状態のポリマーバインダーと金属元素含有化合物とが相互作用したことによるものと考えられる。
[全固体二次電池用シート]
 本発明の全固体二次電池用シートは、全固体二次電池の構成層を形成しうるシート状成形体であって、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートともいう。)、電極、又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートという。
 本発明の全固体二次電池用固体電解質シートは、固体電解質層を有するシートであればよく、固体電解質層が基材上に形成されているシートでも、基材を有さず、固体電解質層から形成されているシートであってもよい。全固体二次電池用固体電解質シートは、固体電解質層の他に他の層を有してもよい。他の層としては、例えば、保護層(剥離シート)、集電体、コート層等が挙げられる。
 本発明の全固体二次電池用固体電解質シートとして、例えば、基材上に、本発明の無機固体電解質含有組成物で構成した層、通常固体電解質層と、保護層とをこの順で有するシートが挙げられる。全固体二次電池用固体電解質シートを構成する各層の層厚は、後述する全固体二次電池において説明する各層の層厚と同じである。
 全固体二次電池用固体電解質シートが有する固体電解質層は本発明の無機固体電解質含有組成物で形成されている。
 本発明の無機固体電解質含有組成物の製膜過程において、溶解状態のポリマーバインダーは金属元素含有化合物と相互作用して、固体粒子との吸着を維持しながら粒子状に固化する。そのため、この無機固体電解質含有組成物で構成した固体電解質層は、ポリマーバインダー由来の粒子(粒子状固化物)を含有している。固体電解質層中の、ポリマーバインダー由来の粒子の平均粒径は、特に制限されず、5~1600nmとすることができるが、分散特性及び電池特性の改善の点で、8~1200nmであることが好ましく、10~800nmであることがより好ましく、30~600nmであることが更に好ましい。平均粒径は後述する実施例で説明する方法で測定した値である。
 この粒子の平均粒径は、例えば、ポリマーバインダーの特性(種類、組成、分子量等)、金属元素含有化合物の種類(アニオン若しくは金属元素の種類)、ポリマーバインダー及び金属元素含有化合物の含有量、分散媒の種類、更には製膜条件等により、調整できる。
 固体電解質層中の金属元素含有化合物の存在状態は、特に制限されないが、金属元素を供給した金属元素含有化合物は、アニオンとして、又は塩交換反応等によりアニオンと水素原子とが結合した共役酸として、存在していてもよい。
 固体電解質層中に存在するポリマーバインダー(粒子状固化物)は、上記相互作用により溶解状態から固化して生成したものである。そのため、固体電解質層中に存在するポリマーバインダーは、用いた無機固体電解質含有組成物中に含有していた分散媒に対する溶解度が、無機固体電解質含有組成物中に含有されていたポリマーバインダー(相互作用前)の上記分散媒に対する溶解度よりも小さくなっている。金属元素含有化合物との相互作用前後におけるポリマーバインダー溶解度の低下は、後述する実施例での測定方法により、確認することができる。
 この固体電解質層中の各成分の含有量は、特に限定されないが、好ましくは、本発明の無機固体電解質含有組成物の固形分中における各成分の含有量と同義である。
 基材としては、固体電解質層を支持できるものであれば特に限定されず、後述する集電体で説明する材料、有機材料、無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、セルロース等が挙げられる。無機材料としては、例えば、ガラス、セラミック等が挙げられる。
 本発明の全固体二次電池用電極シート(単に「電極シート」ともいう。)は、活物質層を有する電極シートであればよく、活物質層が基材(集電体)上に形成されているシートでも、基材を有さず、活物質層から形成されているシートであってもよい。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。
 電極シートが有する固体電解質層及び活物質層の少なくとも一方は本発明の無機固体電解質含有組成物で形成される。本発明の無機固体電解質含有組成物で形成された固体電解質層及び活物質層において、ポリマーバインダー及び金属元素含有化合物の存在状態は上述の全固体二次電池用固体電解質シートが有する固体電解質層での存在状態と同じである。また、固体電解質層又は活物質層中の各成分の含有量は、特に限定されないが、好ましくは、本発明の無機固体電解質含有組成物(電極用組成物)の固形分中における各成分の含有量と同義である。本発明の電極シートを構成する各層の層厚は、後述する全固体二次電池において説明する各層の層厚と同じである。本発明の電極シートは上述の他の層を有してもよい。
 なお、固体電解質層又は活物質層が本発明の無機固体電解質含有組成物で形成されない場合、通常の構成層形成材料で形成される。
 本発明の全固体二次電池用シートは、固体電解質層及び活物質層の少なくとも1層が本発明の無機固体電解質含有組成物で形成され、表面が平坦で低抵抗な構成層を有している。そのため、本発明の全固体二次電池用シートは、全固体二次電池の構成層として用いることにより、全固体二次電池の低抵抗(高伝導度)化及び優れたサイクル特性を実現できる。特に活物質層を本発明の無機固体電解質含有組成物で形成した全固体二次電池用電極シート及び全固体二次電池は、活物質層と集電体とが強固な密着性を示し、サイクル特性の更なる向上を実現できる。したがって、本発明の全固体二次電池用シートは、全固体二次電池の構成層を形成しうるシートとして好適に用いられる。
[全固体二次電池用シートの製造方法]
 本発明の全固体二次電池用シートの製造方法は、特に制限されず、本発明の無機固体電解質含有組成物を用いて、上記の各層を形成することにより、製造できる。好ましくは基材若しくは集電体上(他の層を介していてもよい。)に、製膜(塗布乾燥)して無機固体電解質含有組成物からなる層(塗布乾燥層)を形成する方法が挙げられる。これにより、基材若しくは集電体と塗布乾燥層とを有する全固体二次電池用シートを作製することができる。ここで、塗布乾燥層とは、本発明の無機固体電解質含有組成物を塗布し、分散媒を乾燥させることにより形成される層(すなわち、本発明の無機固体電解質含有組成物を用いてなり、本発明の無機固体電解質含有組成物から分散媒を除去した組成からなる層)をいう。活物質層及び塗布乾燥層は、本発明の効果を損なわない範囲であれば分散媒が残存していてもよく、残存量としては、例えば、各層中、3質量%以下とすることができる。この塗布乾燥層は、上述のように、ポリマーバインダー由来の粒子を含有している。
 本発明の全固体二次電池用シートの製造方法において、塗布、乾燥等の各工程については、下記全固体二次電池の製造方法において説明する。
 上記の好ましい方法において、本発明の無機固体電解質含有組成物を集電体上で製膜して全固体二次電池用シートを作製すると、集電体と活物質層との密着を強固にできる。
 本発明の全固体二次電池用シートの製造方法においては、塗布乾燥層を加圧することもできる。加圧条件等については、後述する全固体二次電池の製造方法において説明する。
 得られた塗布乾燥層は適宜に加圧処理等が施されて固体電解質層又は活物質層となる。
 また、本発明の全固体二次電池用シートの製造方法においては、基材、保護層(特に剥離シート)等を剥離することもできる。
[全固体二次電池]
 本発明の全固体二次電池は、正極活物質層と、この正極活物質層に対向する負極活物質層と、正極活物質層及び負極活物質層の間に配置された固体電解質層とを有する。正極活物質層は、好ましくは正極集電体上に形成され、正極を構成する。負極活物質層は、好ましくは負極集電体上に形成され、負極を構成する。
 負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層が本発明の無機固体電解質含有組成物で形成されており、固体電解質層、又は負極活物質層及び正極活物質層の少なくとも一方が本発明の無機固体電解質含有組成物で形成されることが好ましい。
全ての層が本発明の無機固体電解質含有組成物で形成されることも好ましい態様の1つである。本発明において、全固体二次電池の構成層を本発明の無機固体電解質含有組成物で形成するとは、本発明の全固体二次電池用シート(ただし、本発明の無機固体電解質含有組成物で形成した層以外の層を有する場合はこの層を除去したシート)で構成層を形成する態様を包含する。本発明の無機固体電解質含有組成物で形成された活物質層又は固体電解質層は、好ましくは、含有する成分種及びその含有量について、本発明の無機固体電解質含有組成物の固形分におけるものと同じである。なお、活物質層又は固体電解質層が本発明の無機固体電解質含有組成物で形成されない場合、公知の材料を用いることができる。
 負極活物質層、固体電解質層及び正極活物質層の厚さは、それぞれ、特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
 正極活物質層及び負極活物質層は、それぞれ、固体電解質層とは反対側に集電体を備えていてもよい。
<筐体>
 本発明の全固体二次電池は、用途によっては、上記構造のまま全固体二次電池として使用してもよいが、乾電池の形態とするためには更に適当な筐体に封入して用いることが好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金又は、ステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
 以下に、図1を参照して、本発明の好ましい実施形態に係る全固体二次電池について説明するが、本発明はこれに限定されない。
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、隣接した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。
 図1に示す層構成を有する全固体二次電池を2032型コインケースに入れる場合、この全固体二次電池を全固体二次電池用積層体と称し、この全固体二次電池用積層体を2032型コインケースに入れて作製した電池を全固体二次電池と称して呼び分けることもある。
(正極活物質層、固体電解質層、負極活物質層)
 全固体二次電池10においては、正極活物質層、固体電解質層及び負極活物質層のいずれも本発明の無機固体電解質含有組成物で形成されている。この全固体二次電池10は優れた電池性能を示す。正極活物質層4、固体電解質層3及び負極活物質層2におけるポリマーバインダー及び金属元素含有化合物の存在状態は上述の全固体二次電池用固体電解質シートが有する固体電解質層での存在状態と同じである。正極活物質層4、固体電解質層3及び負極活物質層2が含有する無機固体電解質及びポリマーバインダーは、それぞれ、互いに同種であっても異種であってもよい。
 本発明において、正極活物質層及び負極活物質層のいずれか、又は、両方を合わせて、単に、活物質層又は電極活物質層と称することがある。また、正極活物質及び負極活物質のいずれか、又は両方を合わせて、単に、活物質又は電極活物質と称することがある。
 本発明において、構成層を本発明の無機固体電解質含有組成物で形成すると、低抵抗で優れたサイクル特性を示す全固体二次電池を実現することができる。
 全固体二次電池10においては、負極活物質層をリチウム金属層とすることができる。リチウム金属層としては、リチウム金属の粉末を堆積又は成形してなる層、リチウム箔及びリチウム蒸着膜等が挙げられる。リチウム金属層の厚さは、上記負極活物質層の上記厚さにかかわらず、例えば、1~500μmとすることができる。
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に制限されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 上記全固体二次電池10においては、正極活物質層は公知の構成層形成材料で形成した層を適用することもできる。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層、部材等を適宜介在若しくは配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
[全固体二次電池の製造]
 全固体二次電池は、常法によって、製造できる。具体的には、全固体二次電池は、本発明の無機固体電解質含有組成物等を用いて、上記の各層を形成することにより、製造できる。以下、詳述する。
 本発明の全固体二次電池は、本発明の無機固体電解質含有組成物を、適宜基材(例えば、集電体となる金属箔)上に、塗布乾燥して、塗膜を形成する(製膜する)工程を含む(介する)方法(本発明の全固体二次電池用シートの製造方法)を行って、製造できる。
 例えば、正極集電体である金属箔上に、正極用材料(正極用組成物)として、正極活物質を含有する無機固体電解質含有組成物を製膜して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための無機固体電解質含有組成物を製膜して、固体電解質層を形成する。更に、固体電解質層の上に、負極用材料(負極用組成物)として、負極活物質を含有する無機固体電解質含有組成物を製膜して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。これを筐体に封入して所望の全固体二次電池とすることもできる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極用組成物)として、負極活物質を含有する無機固体電解質含有組成物を製膜して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。更に、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、無機固体電解質含有組成物を基材上に製膜して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。更に、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 固体電解質層等は、例えば基板若しくは活物質層上で、無機固体電解質含有組成物等を後述する加圧条件下で加圧成形して形成することもできる。
 上記の製造方法においては、正極用組成物、無機固体電解質含有組成物及び負極用組成物のいずれか1つに本発明の無機固体電解質含有組成物を用いればよく、無機固体電解質含有組成物に本発明の無機固体電解質含有組成物を用いることが好ましく、いずれの組成物に本発明の無機固体電解質含有組成物を用いることもできる。
<各層の形成(製膜)>
 本発明の無機固体電解質含有組成物の成膜(塗布乾燥)は、ポリマーバインダーを粒子状に固化させながら行う。粒子状に固化させる方法としては、特に限定されるものではないが、例えば、無機固体電解質含有組成物中に含有されているポリマーバインダーの分散媒に対する溶解度を低下させながら製膜する方法、無機固体電解質含有組成物を80℃以上に加熱して製膜する方法等が挙げられる。
 無機固体電解質含有組成物の塗布方法は特に制限されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート塗布、スリット塗布、ストライプ塗布、バーコート塗布が挙げられる。
 塗布された無機固体電解質含有組成物は乾燥処理(加熱処理)される。乾燥処理において、塗布された無機固体電解質含有組成物中に溶解状態のポリマーバインダーが固体粒子との吸着を維持しながら粒子状に固化して、界面抵抗の上昇を抑制しながら固体粒子同士を結着させることができる。このようなポリマーバインダーの固化により、無機固体電解質含有組成物の優れた分散特性と相まって、接触状態のバラツキと界面抵抗の上昇を抑えながらも固体粒子を結着させることができ、しかも表面が平坦な塗布乾燥層を形成することができる。
 乾燥処理において、本発明の無機固体電解質含有組成物が加熱されると、温度の上昇とともに分散媒が揮発して固形分濃度が次第に上昇(濃縮)して、ポリマーバインダーと金属元素含有化合物との相互作用の発現(例えば塩交換反応)が促進され、ポリマーバインダーの分散媒に対する溶解度が次第に低下すると考えられる。こうして、ポリマーバインダーが粒子状に固化する。
 乾燥処理は、無機固体電解質含有組成物をそれぞれ塗布した後に施してもよいし、重層塗布した後に施してもよい。
 乾燥条件は、上述の相互作用が発現する限り特に制限されないが、ポリマーバインダーの分散媒に対する溶解度を低下させることができる条件が好適に選択される。例えば、乾燥方法、乾燥温度が挙げられる。
 乾燥方法としては、特に制限されず、大気圧若しくは減圧環境下における、静置乾燥(風乾)、送風乾燥、加熱乾燥等の通常の乾燥方法を適用できる。本発明の無機固体電解質含有組成物は優れた分散特性を示す。また、上記乾燥処理においては、塗布された無機固体電解質含有組成物中の、ポリマーバインダーと金属元素含有化合物との合計濃度は必然的に30質量%以上となってポリマーバインダーの溶解度が低減する。そのため、本発明の無機固体電解質含有組成物の乾燥方法として風乾を適用できる。しかし、本発明においては、上述の相互作用を速やかに発現させるため、分散媒を積極的に除去する乾燥方法若しくは乾燥条件が好ましく、加熱乾燥がより好ましい。各乾燥方法における条件は、ポリマーバインダーの溶解度の低下量、好ましくは分散媒の揮発量(ポリマーバインダー及び金属元素含有化合物の濃度上昇)を考慮して、適宜に決定される。本発明においては、塗布された無機固体電解質含有組成物の乾燥温度を設定することが好ましい。乾燥温度は、乾燥方法により一義的ではないが、例えば、30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、特に制限されないが、例えば、全固体二次電池の各部材の損傷を防止できる点で、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。
 こうして作製した構成層を備えた全固体二次電池は、優れた総合性能を示し、かつ良好な結着性と非加圧でも良好なイオン伝導度を実現できる。
 無機固体電解質含有組成物を塗布した後、構成層を重ね合わせた後、又は全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては特に制限されず、一般的には5~1500MPaの範囲であることが好ましい。
 また、塗布した無機固体電解質含有組成物は、加圧と同時に加熱してもよい。加熱温度としては特に制限されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。なお、ポリマーバインダーに含まれるポリマーのガラス転移温度よりも高い温度でプレスすることもできる。ただし、一般的にはこのポリマーの融点を越えない温度である。
 加圧は塗布溶媒又は分散媒を予め乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布してもよいし、塗布乾燥プレスを同時及び/又は逐次行ってもよい。別々の基材に塗布した後に、転写により積層してもよい。
 加圧中の雰囲気としては特に制限されず、大気下、乾燥空気下(露点-20℃以下)、不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積又は膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は特に制限されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を解放することにより、行うことができる。
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に制限はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源などが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 以下に、実施例に基づき本発明について更に詳細に説明するが、本発明はこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。本発明において「室温」とは25℃を意味する。
1.金属元素含有化合物の準備
 無機固体電解質含有組成物の調製に用いた金属元素含有化合物は市販品であり、表1において記号で示した化合物は上記例示化合物に付した記号と同一である。
 各金属元素含有化合物について、後述する無機固体電解質含有組成物中での溶解性及び分散状態、価数(分子中の金属元素の含有数)、アニオンの共役酸のpKa(上記測定法による)、アニオンを形成する有機化合物の炭素数を表1に示す。また、無機固体電解質含有組成物の調製後における金属元素含有化合物の平均粒径を後述する方法により測定した結果を表1に示す。
 無機固体電解質含有組成物中の金属元素含有化合物の溶解性及び分散状態は下記に基づいて分類した。
 - 溶解性 -
 溶解:溶解状態で存在することを示し、上記測定方法による酪酸ブチルに対する溶解度が80質量%以上
 固体:固体状態で存在することを示し、上記溶解度が0.05質量%以下
 - 分散性 -
 各組成物の調製と同様にして、金属元素含有化合物を固形分濃度10質量%の割合で分散媒と混合(分散)させて調製した分散液を用いて、後述する<評価1:分散安定性試験>と同様にして求めた固形分減少量によって、金属元素含有化合物の分散性を分類した。
 分散:分散状態を示し、固形分減少量が5質量%未満
 非分散:非分散状態を示し、固形分減少量が5質量%以上
Figure JPOXMLDOC01-appb-T000003
<表の略号>
C-11:上記例示化合物C-11
C-12:上記例示化合物C-12
C-14:上記例示化合物C-14
C-15:上記例示化合物C-15
C-16:下記化合物C-16
LiTFSI:リチウムビス(トリフルオロメタンスルホニル)イミド(東京化成工業社製)
Figure JPOXMLDOC01-appb-C000004
2.ポリマーの合成、及びバインダー溶液若しくは分散液の調製
 下記化学式及び表2に示すポリマーB-1~B-9を以下のようにして合成した。
[合成例1:ポリマーB-1の合成、及びバインダー溶液B-1の調製]
 100mLフラスコに、スチレン(富士フイルム和光純薬社製)70g、アクリル酸ドデシル(東京化成工業社製)29.7g、無水マレイン酸(富士フイルム和光純薬社製)0.3g、及び重合開始剤V-601(商品名、富士フイルム和光純薬社製)0.36gを加え、酪酸ブチル36gに溶解してモノマー溶液を調製した。300mL3つ口フラスコに酪酸ブチル18gを加え80℃で撹拌したところへ、上記モノマー溶液を2時間かけて滴下した。滴下終了後、90℃に昇温し、2時間撹拌した。得られた溶液をメタノールに再沈させ、得られた固体を80℃で乾燥した後に酪酸ブチルに溶解することで目的の重合体を得た。
 こうして、ポリマーB-1(ビニル系ポリマー、質量平均分子量77,000)を合成し、ポリマーB-1からなるバインダーの溶液B-1(濃度10質量%)を得た。
[合成例2:バインダー分散液B-2の調製]
 メタクリル酸メチル(商品番号:M0088、質量平均分子量90,000、東京化成工業社製社製)を酪酸ブチルに分散させて、(メタ)アクリルポリマーB-2からなるバインダーの分散液B-2(濃度10質量%)を得た。
[合成例3:ポリマーB-3の合成、及びバインダー溶液B-3の調製]
 200mL3つ口フラスコに、NISSO-PB GI1000(商品名、日本曹達社製)28.80g、及びポリプロピレングリコール(PPG400、富士フイルム和光純薬社製)1.92g、2,2-ビス(ヒドロキシメチル)酪酸(東京化成工業社製)0.11gを加え、酪酸ブチル(東京化成工業社製)55.5gに溶解した。この溶液に、ジシクロヘキシルメタン-4,4’-ジイソシアナート(東京化成工業社製)6.30gを加えて80℃で撹拌し、均一に溶解させた。得られた溶液にネオスタンU-600(商品名、日東化成社製)100mgを添加して80℃で10時間攪伴した。
 こうして、ポリマーB-3(ポリウレタン、質量平均分子量32,000)を合成し、ポリマーB-3からなるバインダーの溶液B-3(濃度10質量%)を得た。
[合成例4:ポリマーB-4の合成、及びバインダー溶液B-4の調製]
 合成例1において、無水マレイン酸を酢酸ビニル0.3g及びリン酸1.0gに変更したこと以外は合成例1と同様にして、ポリマーB-4(ビニル系ポリマー、質量平均分子量60,000)を合成し、ポリマーB-4からなるバインダーの溶液B-4(濃度10質量%)を得た。
[合成例5:ポリマーB-5の合成、及びバインダー溶液B-5の調製]
 オートクレーブに、トルエン150質量部、スチレン30質量部及び1,3-ブタジエン70質量部を加え、重合開始剤V-601(和光純薬工業社製)1質量部を加え、80℃に昇温し、3時間攪拌した。その後90℃に昇温し、添加転化率が100%になるまで反応を行った。得られた溶液をメタノールに再沈させ、得られた固体を乾燥して得た重合体100質量部に対して、2,6-ジ-t-ブチル-p-クレゾール3質量部、無水マレイン酸0.3質量部を加え、180℃で5時間反応させた。得られた溶液をメタノールに再沈させ、得られた固体を80℃で乾燥することで目的の重合体(乾固品)を得た。この重合体の質量平均分子量は89,000であった。その後、シクロヘキサン50質量部及びTHF(テトラヒドロフラン)150質量部に上記で得られた重合体(乾固品)50質量部を溶解させた後、溶液を70℃にし、n-ブチルリチウム3質量部、2,6-ジ-t-ブチル-p-クレゾール3質量部、ビス(シクロペンタジエニル)チタニウムジクロライド1質量部及びジエチルアルミニウムクロライド2質量部を加え、水素圧10kg/cmで1時間反応させ、留去し、乾燥させることでポリマーB-5(炭化水素系ポリマー、質量平均分子量89,000)を合成し、酪酸ブチルに溶解することで、ポリマーB-5からなるバインダーの溶液B-5(濃度10質量%)を得た。
[合成例6:ポリマーB-6の合成、及びバインダー溶液B-6の調製]
 オートクレーブに、トルエン150質量部、スチレン30質量部及び1,3-ブタジエン70質量部を加え、重合開始剤V-601(和光純薬工業社製)1質量部を加え、80℃に昇温し、3時間攪拌した。その後90℃に昇温し、添加転化率が100%になるまで反応を行った。得られた溶液をメタノールに再沈させ、得られた固体を乾燥して得た重合体100質量部に対して、2,6-ジ-t-ブチル-p-クレゾール3質量部、無水マレイン酸0.5質量部を加え、180℃で5時間反応させた。得られた溶液をアセトニトリルに再沈させ、得られた固体を80℃で乾燥することで重合体(乾固品)を得た。この重合体の質量平均分子量は90,000であった。その後、シクロヘキサン50質量部及びTHF(テトラヒドロフラン)150質量部に上記で得られた重合体(乾固品)50質量部を溶解させた後、溶液を70℃にし、n-ブチルリチウム3質量部、2,6-ジ-t-ブチル-p-クレゾール3質量部、ビス(シクロペンタジエニル)チタニウムジクロライド1質量部及びジエチルアルミニウムクロライド2質量部を加え、水素圧10kg/cmで1時間反応させ、留去し、乾燥させることで炭化水素系ポリマー前駆体A(質量平均分子量90,000)を得た。
 次いで、還流冷却管、ガス導入コックを付した1L三口フラスコにキシレン(富士フイルム和光純薬社製)450質量部と、上記炭化水素系ポリマー前駆体A 50質量部とを入れ、溶解させた。その後、1H,1H,2H,2H-パーフルオロ-1-オクタノール(富士フイルム和光純薬社製)2質量部を加え、130℃に昇温し、20時間攪拌を継続した。その後、メタノールに滴下し、沈殿物としてポリマーB-6を得た。60℃での減圧乾燥を5時間行った後、任意の溶媒に再溶解した。こうして、ポリマーB-6(質量平均分子量99,000)を合成し、ポリマーB-6(炭化水素系ポリマー)からなるバインダーの溶液B-6(濃度10質量%)を得た。
[合成例7:ポリマーB-7の合成、及びバインダー溶液B-7の調製]
 還流冷却管、ガス導入コックを付した1L三口フラスコにキシレン(富士フイルム和光純薬社製)450質量部と、上記炭化水素系ポリマー前駆体A 50質量部とを入れ、溶解させた。その後、1H,1H,2H,2H-パーフルオロ-1-ドデカンチオール(シグマアルドリッチ社製)10質量部と、アゾビスブチロニトリル(富士フイルム和光純薬社製)2質量部を加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温し、5時間攪拌を継続した。その後、メタノールに滴下し、沈殿物としてポリマーB-7を得た。60℃での減圧乾燥を5時間行った後、任意の溶媒に再溶解した。
 こうして、ポリマーB-7(質量平均分子量99,000)を合成し、ポリマーB-7(炭化水素系ポリマー)からなるバインダーの溶液B-7(濃度10質量%)を得た。
[合成例8:ポリマーB-8の合成、及びバインダー溶液B-8の調製]
 合成例6の1H,1H,2H,2H-パーフルオロ-1-オクタノールを片末端に水酸基を有する変性シリコーンオイル(商品名:X-22-170BX、信越化学工業社製)に変えた他は合成例6と同様にして、ポリマーB-8(質量平均分子量101,000)を合成し、ポリマーB-8(炭化水素系ポリマー)からなるバインダーの溶液B-8(濃度10質量%)を得た。
[合成例9:ポリマーB-9の合成、及びバインダー溶液B-9の調製]
 還流冷却管、ガス導入コックを付した1L三口フラスコにキシレン(富士フイルム和光純薬社製)500質量部と、6-メルカプト-1-ヘキサノール(東京化成社製)10質量部と、ラウリルアクリレート(富士フイルム和光純薬社製)330質量部と、1H,1H,2H,2H-トリデカフルオロ-n-オクチルメタクリレート(東京化成社製)180質量部と、アゾビスブチロニトリル(富士フイルム和光純薬社製)20質量部を加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温し、5時間攪拌を継続した。その後、メタノールに滴下し、沈殿物として、B-9前駆体(マクロモノマー)を得た。マクロモノマーの数平均分子量は4,200であった。
 次いで、合成例6の1H,1H,2H,2H-パーフルオロ-1-オクタノールを前述のB-9前駆体に変えた他は合成例6と同様にして、ポリマーB-9(質量平均分子量102,000)を合成し、ポリマーB-9(炭化水素系ポリマー)からなるバインダーの溶液B-9(濃度10質量%)を得た。
 ポリマーB-1~B-9を以下に示す。各構成成分の右下に記載の数字は各構成成分のポリマー中の含有量(モル%)を示す。下記式において、Meはメチル、RS1は炭素数1~10のアルキレン基を示し、RS2は炭素数1~10のアルキル基を示す。
Figure JPOXMLDOC01-appb-C000005
 下記化学式及び表2に示すポリマーB-10~B-13を以下のようにして合成した。[合成例10:ポリマーB-10の合成、及びバインダー溶液B-10の調製]
 オートクレーブに、トルエン150質量部、スチレン30質量部及び1,3-ブタジエン70質量部を加え、重合開始剤V-601(和光純薬工業社製)1質量部を加え、80℃に昇温し、3時間攪拌した。その後90℃に昇温し、添加転化率が100%になるまで反応を行った。得られた溶液をメタノールに再沈させ、得られた固体を乾燥して得た重合体100質量部に対して、2,6-ジ-t-ブチル-p-クレゾール3質量部、無水マレイン酸0.5質量部を加え、180℃で5時間反応させた。得られた溶液をアセトニトリルに再沈させ、得られた固体を80℃で乾燥することで重合体(乾固品)を得た。この重合体の質量平均分子量は90,000であった。その後、シクロヘキサン50質量部及びTHF(テトラヒドロフラン)150質量部に上記で得られた重合体(乾固品)50質量部を溶解させた後、溶液を70℃にし、n-ブチルリチウム3質量部、2,6-ジ-t-ブチル-p-クレゾール3質量部、ビス(シクロペンタジエニル)チタニウムジクロライド1質量部及びジエチルアルミニウムクロライド2質量部を加え、水素圧10kg/cmで1時間反応させ、留去し、乾燥させることで炭化水素系ポリマー前駆体A(質量平均分子量90,000)を得た。
 次いで、還流冷却管、ガス導入コックを付した1L三口フラスコにキシレン(富士フイルム和光純薬社製)450質量部と、上記炭化水素系ポリマー前駆体A 50質量部とを入れ、溶解させた。その後、N-メチルエタノールアミン(東京化成工業社製)4質量部を加え、90℃に昇温し、20時間攪拌を継続した。その後、1規定塩酸水溶液を加え分液して有機層を取り出し、その有機層をメタノールに滴下して沈殿物としてポリマーB-10を得た。60℃での減圧乾燥を5時間行った後、任意の溶媒に再溶解した。こうして、ポリマーB-10(質量平均分子量94,000)を合成し、ポリマーB-10からなるバインダーの溶液B-10(濃度10質量%)を得た。
[合成例11:ポリマーB-11の合成、及びバインダー溶液B-11の調製]
 還流冷却管、ガス導入コックを付した1L三口フラスコにキシレン(富士フイルム和光純薬社製)450質量部と、上記炭化水素系ポリマー前駆体Aの合成において無水マレイン酸0.5質量部を無水マレイン酸2.2質量部へ変更して合成した炭化水素系ポリマー前駆体B 50質量部とを入れ、溶解させた。その後、ジエタノールアミン(東京化成工業社製)5.6質量部を加え、90℃に昇温し、20時間攪拌を継続した。その後、1規定塩酸水溶液を加え分液して有機層を取り出し、その有機層をメタノールに滴下して沈殿物としてポリマーB-11を得た。60℃での減圧乾燥を5時間行った後、任意の溶媒に再溶解した。こうして、ポリマーB-11(質量平均分子量95,000)を合成し、ポリマーB-11からなるバインダーの溶液B-11(濃度10質量%)を得た。
[合成例12:ポリマーB-12の合成、及びバインダー溶液B-12の調製]
 還流冷却管、ガス導入コックを付した1L三口フラスコにキシレン(富士フイルム和光純薬社製)450質量部と、上記炭化水素系ポリマー前駆体A 50質量部とを入れ、溶解させた。その後、α-チオグリセロール(東京化成工業社製)2.3質量部と、アゾビスブチロニトリル(富士フイルム和光純薬社製)2質量部を加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温し、5時間攪拌を継続した。その後、メタノールに滴下して沈殿物としてポリマーB-12を得た。60℃での減圧乾燥を5時間行った後、任意の溶媒に再溶解した。こうして、ポリマーB-12(質量平均分子量98,000)を合成し、ポリマーB-12からなるバインダーの溶液B-12(濃度10質量%)を得た。
[合成例13:ポリマーB-13の合成、及びバインダー溶液B-13の調製]
 還流冷却管、ガス導入コックを付した2L三口フラスコにキシレン(富士フイルム和光純薬社製)100質量部を加え、流速100mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。2-アミノエタンチオール塩酸塩(東京化成社製)9.2質量部及びエタノール(富士フイルム和光純薬社製)100質量部の混合液と、ラウリルアクリレート(富士フイルム和光純薬社製)400質量部、ヒドロキシエチルアクリレート(富士フイルム和光純薬社製)100質量部、キシレン(富士フイルム和光純薬社製)170質量部及びアゾビスブチロニトリル(富士フイルム和光純薬社製)10質量部の混合液とを、それぞれ別に、上記三口フラスコへ2時間かけて滴下した。滴下した後、更に2時間、80℃で攪拌した。その後、メタノールに滴下し、沈殿物として、末端アミノ基(塩酸塩)のマクロモノマーを得た。マクロモノマーの数平均分子量は4,000であった。
 次いで、還流冷却管、ガス導入コックを付した1L三口フラスコにキシレン(富士フイルム和光純薬社製)450質量部と、上記炭化水素系ポリマー前駆体B 50質量部とを入れ、溶解させた。その後、前述の末端アミノ基のマクロモノマー68質量部、1,8-ジアザビシクロウンデセン(DBU、富士フイルム和光純薬社製)1.6質量部を加え、130℃に昇温し、10時間攪拌を継続した。その後、1規定塩酸水溶液を加え分液して有機層を取り出し、その有機層をアセトンに滴下して沈殿物としてポリマーB-13を得た。60℃での減圧乾燥を5時間行った後、任意の溶媒に再溶解した。こうして、ポリマーB-13(質量平均分子量110,000)を合成し、ポリマーB-13からなるバインダーの溶液B-13(濃度10質量%)を得た。
 ポリマーB-10~B-13を以下に示す。各構成成分の右下に記載の数字は各構成成分のポリマー中の含有量(モル%)を示す。
Figure JPOXMLDOC01-appb-C000006
 合成した各ポリマーからなるポリマーバインダーの、後述する無機固体電解質含有組成物の調製に用いた分散媒(酪酸ブチル)に対する溶解度を上記方法により測定して表2に示す。また、後述する無機固体電解質含有組成物中での溶解性を測定した溶解度に基づいて分類した。更に、合成した各ポリマーの、官能基の有無(種類)、含有量及び官能基の上記測定法によるpKa(複数種の官能基を有する場合、最も低い値のみ)を表2に示す。
 ポリマーバインダーの溶解性は下記に基づいて分類した。
 - 溶解性 -
 溶解:溶解状態で存在することを示し、測定した酪酸ブチルに対する溶解度が80質量%以上
 固体:固体状態で存在することを示し、上記溶解度が30質量%以下
Figure JPOXMLDOC01-appb-T000007
3.硫化物系無機固体電解質の合成[合成例A]
 硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235、及び、A.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g及び五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 次いで、ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記の硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7(商品名、フリッチュ社製)に容器をセットし、温度25℃で、回転数510rpmで20時間メカニカルミリングを行うことで、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、以下、LPSと表記することがある。)6.20gを得た。Li-P-S系ガラスの平均粒径は15μmであった。
[実施例1]
<無機固体電解質含有組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを60g投入し、上記合成例Aで合成したLPS、表3-3及び表3-4に示すバインダー溶液若しくは分散液、金属元素含有化合物、及び分散媒として酪酸ブチルを、表3-3及び表3-4に示す含有量となる質量割合(ただし、溶液又は分散液は固形分質量)で、投入した。その後、この容器をフリッチュ社製遊星ボールミルP-7(商品名)にセットした。温度25℃、回転数150rpmで10分間混合して、無機固体電解質含有組成物(スラリー)S-31及びS-32をそれぞれ調製した。
<正極用組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを60g投入し、合成例Aで合成したLPS及び分散媒として表3-1及び表3-3に示す分散媒を各表に示す含有量となる質量割合で投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数200pmで30分間攪拌した。その後、この容器に、正極活物質としてNMC、導電助剤としてアセチレンブラック(AB)、表3-2及び表3-4に示すバインダー溶液若しくは分散液、更に金属元素含有化合物を、表3-1及び表3-3に示す含有量となる質量割合(ただし、溶液又は分散液は固形分質量)で、投入し、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで30分間混合を続け、正極用組成物(スラリー)S-1~S-28及びS-33~36をそれぞれ調製した。
<負極用組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを60g投入し、合成例Aで合成したLPS、表3-4に示すバインダー溶液若しくは分散液、及び表3-3に示す分散媒を表3-3及び表3-4に示す含有量となる質量割合で投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、温度25℃、回転数300pmで60分間混合した。その後、負極活物質としてケイ素(Si)、導電助剤としてアセチレンブラック(AB)、更に金属元素含有化合物を、表3-3及び表3-4に示す含有量となる質量割合(ただし、溶液又は分散液は固形分質量)で、投入し、同様に、遊星ボールミルP-7に容器をセットして、温度25℃、回転数100rpmで10分間混合して、負極用組成物(スラリー)S-29及びS-30をそれぞれ調製した。
 調製した各組成物の粘度を上記測定方法により測定した結果、また金属元素含有化合物における共役酸のpKaと官能基のpKaとの差を、表3-1~表3-4(合わせて表3という。)に示す。
<金属元素含有化合物の平均粒径の測定>
 調製した各組成物中に固体状態で存在する金属元素含有化合物の平均粒径を下記方法により測定して、その結果を表1及び表3に示す。
 
 - 測定方法 -
 調製した各組成物をろ布(口径10μm)を通して無機固体電解質等の凝集物を取り除き、次いで遠心分離機にて遠心(500rpm30分間)した。分離した上澄み(金属元素含有化合物混合液)をレーザ回折/散乱式粒子径分布測定装置(商品名:LA-920、堀場製作所社製)にて、分散媒(各組成物の調製に用いた分散媒と同種)で吸光度80~95%になるように希釈調整し、測定した。測定条件は、上記無機固体電解質の平均粒径と同じ条件を適用できる。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
<表の略号>
 表中、各欄中の「-」は該当する成分を有していないこと、又は該当する特性を有さない若しくは測定不能であることを示す。
 分散媒の含有量は組成物の総量に対する含有量(質量%)を示し、その他の成分の含有量は組成物の固形分に対する含有量(質量%)を示す。
 表中の「pKa(D)」及び「pKa差」は、ポリマーが複数種の官能基(a)を有する場合、最も低いpKa値、及び最も低いpKa値との差を示す。
LPS:合成例Aで合成したLPS
BB:酪酸ブチル
LiTFSI:リチウムビス(トリフルオロメタンスルホニル)イミド(東京化成工業社製)
C-11:上記例示化合物C-11
C-12:上記例示化合物C-12
C-14:上記例示化合物C-14
C-15:上記例示化合物C-15
C-16:上記化合物C-16
B-1~B-13:上記合成例1~13で合成したポリマーバインダー
NMC:LiNi1/3Co1/3Mn1/3(アルドリッチ社製)
Si:ケイ素(Aldrich社製)
AB:アセチレンブラック(デンカ社製)
<評価1:分散安定性試験>
 調製した各組成物を直径10mm、高さ4cmのガラス試験管に高さ3.5cmまで投入し、25℃で24時間静置した。静置前後のスラリーの上部20%(高さ)分の固形分減少率を下記式から算出した。この固形分減少率が下記評価基準のいずれに含まれるかにより、組成物の分散安定性として無機固体電解質及び活物質の沈降のしやすさ(沈降性)を評価した。固形分濃度は、採取したスラリーをアルミニウム製カップ上に乗せ、120℃で2時間加熱させて分散媒を留去して算出した。
 本試験において、上記固形分減少率が小さいほど、分散安定性に優れることを示し、評価基準「F」以上が合格レベルである。結果を表4に示す。
 
 固形分減少率(%)=[(静置前の上部20%の固形分濃度-静置後の上部20%の固形分濃度)/静置前の上部20%の固形分濃度]×100 
 - 評価基準 -
 A:      固形分減少率<1%
 B:   1%≦固形分減少率<2%
 C:   2%≦固形分減少率<3%
 D:   3%≦固形分減少率<4%
 E:   4%≦固形分減少率<5%
 F:   5%≦固形分減少率<6%
 G:   6%≦固形分減少率 
<評価2:ハンドリング性>
 調製した各組成物と同様にして、分散媒以外は同一の混合割合とし、分散媒の量を減らして、固形分濃度75質量%のスラリーを調製した。2mLポリスポイト(アテクト社製)を先端10mmがスラリー界面下に入るように垂直に配置し、25℃でスラリーを10秒間吸引し、吸引したスラリーを含むポリスポイトの質量Wを測定した。ポリスポイトの風袋(自重)をWとしたとき、スラリー質量W-Wが0.1g未満であることをスポイトで吸うことができないと判断した。スラリーをスポイトで吸うことができない場合、分散媒を徐々に足しながらスポイトで吸うことができる上限固形分濃度を把握した。得られた上限固形分濃度が下記評価基準のいずれに含まれるかにより、組成物のハンドリング性(平坦な、表面性の良い構成層を形成するのに適度な粘度を有しているか)を評価した。固形分濃度は、調製したスラリー0.30gをアルミニウム製カップ上に乗せ、120℃で2時間加熱させて分散媒を留去して算出した。
 本試験において、上記上限固形分濃度が高いほど、ハンドリング性に優れることを示し、評価基準「F」以上が合格レベルである。結果を表4に示す。
 
 - 評価基準 -
 A: 75%≦上限固形分濃度
 B: 70%≦上限固形分濃度<75%
 C: 65%≦上限固形分濃度<70%
 D: 60%≦上限固形分濃度<65%
 E: 55%≦上限固形分濃度<60%
 F: 50%≦上限固形分濃度<55%
 G:     上限固形分濃度<50% 
<全固体二次電池用固体電解質シートの作製>
 上記で得られた各無機固体電解質含有組成物S-31及びS-32を厚み20μmのアルミニウム箔上に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)を用いて塗布し、80℃で2時間加熱して、無機固体電解質含有組成物を乾燥(分散媒を除去するとともに塩交換反応を生起)させた。その後、ヒートプレス機を用いて、120℃の温度及び40MPaの圧力で10秒間、乾燥させた無機固体電解質含有組成物を加熱及び加圧して、全固体二次電池用固体電解質シートS-31及びS-32をそれぞれ作製した。固体電解質層の膜厚は50μmであった。
<全固体二次電池用正極シートの作製>
 上記で得られた各正極用組成物S-1~S-28及びS-33~36を厚み20μmのアルミニウム箔上にベーカー式アプリケーター(商品名:SA-201)を用いて塗布し、80℃で1時間加熱し、更に110℃で1時間加熱して、正極用組成物を乾燥(分散媒を除去するとともに塩交換反応を生起)した。その後、ヒートプレス機を用いて、乾燥させた正極用組成物を25℃で加圧(10MPa、1分)して、膜厚100μmの正極活物質層を有する全固体二次電池用正極シートS-1~S-28及びS-33~36をそれぞれ作製した。
<全固体二次電池用負極シートの作製>
 上記で得られた各負極用組成物S-29及びS-30を厚み20μmの銅箔上にベーカー式アプリケーター(商品名:SA-201)を用いて塗布し、80℃で1時間加熱し、更に110℃で1時間加熱して、負極用組成物を乾燥(分散媒を除去するとともに塩交換反応を生起)させた。その後、ヒートプレス機を用いて、乾燥させた負極用組成物を25℃で加圧(10MPa、1分)して、膜厚70μmの負極活物質層を有する全固体二次電池用負極シートS-29及びS-30をそれぞれ作製した。
<評価3:固体電解質層又は活物質層中のポリマーバインダーの平均粒径の測定>
 調製した全固体二次電池用固体電解質シート、全固体二次電池用正極シート及び全固体二次電池用負極シートをそれぞれ350MPaで30秒間プレスした後、180°に折り曲げて割断した。割断により露出した固体電解質層又は活物質層の断面を走査型電子顕微鏡(SEM、型番:JSM-7401F、JEOL社製)を用いて、倍率10,000倍で観察(SEM写真を撮影)した。
 SEM写真において、ポリマーバインダーに由来する領域を10点抽出して、各領域について円相当径を算出して、その平均値を各層中のポリマーバインダー(製膜過程で固化したポリマーバインダー)の平均粒径とした。その結果を表3の「層中平均粒径」欄に示す。ポリマーバインダーに由来する領域は、SEM写真において、固体電解質とのコントラストの差により、特定した。
 上記ポリマーバインダーの平均粒径の測定(SEM写真)により、各組成物中に溶解しているポリマーバインダーが粒子状に固化していることが判明し、ポリマーバインダーが固体粒子の表面に部分的に吸着して表面を全体的に被覆していないことが確認できる。
 なお、No.S-2~S-4、S-20、S-30及びS-32は、溶解型ポリマーバインダーが粒子状に固化していないため、層中の平均粒径を測定できなかった(表3において「測定不能」と表記した。)。
<評価4:固体電解質層又は活物質層から抽出したポリマーバインダーの溶解度の測定>
 調製した全固体二次電池用固体電解質シート、全固体二次電池用正極シート及び全固体二次電池用負極シートそれぞれから以下のようにしてポリマーバインダーを抽出した。得られたポリマーバインダーの、各組成物の調製に用いた分散媒に対する溶解度を、上記方法により測定して、表3の「抽出後の溶解度」欄に示す。
 抽出したポリマーバインダーの溶解度が、各組成物の調製に用いたポリマーバインダーの溶解度よりも小さい場合、各層中に存在するポリマーバインダーは金属元素含有化合物から金属元素イオンを受領していると推定される。
 
 - 抽出方法 -
 各シートから剥離した固体電解質層又は活物質層を、酪酸ブチルにて浸漬し超音波洗浄機にて1時間振動を加え、その後、遠心分離機にて遠心(500rpm、1分間)し、無機固体電解質及び活物質を沈殿させ、上澄みからポリマーバインダーを得た。
 
<全固体二次電池の製造>
<全固体二次電池用正極シート(No.S-1~S-28及びS-33~36)評価用電池の製造>
 作製した各全固体二次電池用正極シートS-1~S-28及びS-33~36を直径10mmの円盤状に打ち抜き、内径10mmのPET製の円筒に入れた。円筒内の正極活物質層側に合成例Aで合成したLPSを30mg入れ、円筒の両端開口から直径10mmのSUS棒を挿入した。全固体二次電池用正極シートの集電体側と、LPSをSUS棒により、350MPaの圧力を加えて加圧した。LPS側のSUS棒を一旦外し、直径9mmの円盤状のInシート(厚さ20μm)と、直径9mmの円盤状のLiシート(厚さ20μm)を、この順で円筒内のLPSの上に挿入した。外していたSUS棒を円筒内に再度挿入し、50MPaの圧力をかけた状態で固定した。このようにして、アルミニウム箔(厚さ20μm)-正極活物質層(厚さ80μm)-固体電解質層(厚さ200μm)-負極活物質(対極)層(In/Liシート、厚さ30μm)の構成を有する評価用全固体二次電池(ハーフセル)S-1~S-28及びS-33~36を得た。
<全固体二次電池用負極シート(S-29及びS-30)評価用電池の製造>
 作製した全固体二次電池用負極シートS-29及びS-30を直径10mmの円盤状に打ち抜き、内径10mmのポリエチレンテレフタラート(PET)製の円筒に入れた。円筒内の負極活物質層側に合成例Aで合成したLPSを30mg入れ、円筒の両端開口から直径10mmのステンレス鋼(SUS)棒を挿入した。全固体二次電池用負極シートの集電体側と、LPSをSUS棒により、350MPaの圧力を加えて加圧した。LPS側のSUS棒を一旦外し、直径9mmの円盤状のインジウム(In)シート(厚さ20μm)と、直径9mmの円盤状のリチウム(Li)シート(厚さ20μm)を、この順で円筒内のLPSの上に挿入した。外していたSUS棒を円筒内に再度挿入し、50MPaの圧力をかけた状態で固定した。このようにして、銅箔(厚さ20μm)-負極活物質層(厚さ60μm)-固体電解質層(厚さ200μm)-正極活物質(対極)層(In/Liシート、厚さ30μm)の構成を有する評価用全固体二次電池(ハーフセル)S-29及びS-30を得た。
(全固体二次電池用固体電解質シート(S-31及びS-32)評価用電池の製造)
 全固体二次電池用正極シート(S-8)を直径10mmの円盤状に打ち抜き、内径10mmのPET製の円筒に入れた。円筒内の正極活物質層側に全固体二次電池用固体電解質シートS-31及びS-32を直径10mmの円盤状に打ち抜いて円筒内に入れ、円筒の両端開口から10mmのSUS棒を挿入した。全固体二次電池用正極シートの集電体側と、全固体二次電池用固体電解質シートのアルミニウム箔側とをSUS棒により、350MPaの圧力を加えて加圧した。全固体二次電池用固体電解質シート側のSUS棒を一旦外して全固体二次電池用固体電解質シートのアルミニウム箔を静かに剥離し、その後、直径9mmの円盤状のInシート(厚さ20μm)と、直径9mmの円盤状のLiシート(厚さ20μm)を、この順で円筒内の全固体二次電池用固体電解質シートの固体電解質層上に挿入した。外していたSUS棒を円筒内に再度挿入し、50MPaの圧力をかけた状態で固定した。このようにして、アルミニウム箔(厚さ20μm)-正極活物質層(厚さ80μm)-固体電解質層(厚さ45μm)-負極活物質(対極)層(In/Liシート、厚さ30μm)の構成を有する評価用全固体二次電池(ハーフセル)S-31及びS-32を得た。
<評価5:高速充放電条件でのサイクル特性試験>
 製造した各評価用全固体二次電池について、放電容量維持率を充放電評価装置TOSCAT-3000(商品名、東洋システム社製)により測定した。
 具体的には、各評価用全固体二次電池を、それぞれ、25℃の環境下で、電流密度0.1mA/cmで電池電圧が3.6Vに達するまで充電した。その後、電流密度0.1mA/cmで電池電圧が2.5Vに達するまで放電した。この充電1回と放電1回とを充放電1サイクルとして、同じ条件で充放電を3サイクル繰り返して、初期化した。その後、電流密度3.0mA/cmで電池電圧が3.6Vに達するまで充電し、電流密度3.0mA/cmで電池電圧が2.5Vに達するまで放電する高速充放電を1サイクルとして、この高速充放電サイクルを1000サイクル繰り返して行った。各評価用全固体二次電池の、高速充放電1サイクル目の放電容量と、高速充放電1000サイクル目の放電容量とを、充放電評価装置:TOSCAT-3000(商品名)により、測定した。下記式により放電容量維持率を求め、この放電容量維持率を下記評価基準にあてはめて、全固体二次電池のサイクル特性を評価した。本試験において、評価基準「F」以上が合格レベルである。結果を表4に示す。
 
 放電容量維持率(%)=(1000サイクル目の放電容量/1サイクル目の放電容量)×100 
 本試験において、評価基準が高いほど、電池性能(サイクル特性)に優れ、高速充放電を複数回繰り返しても(長期の使用においても)初期の電池性能を維持できる。
 なお、本発明の評価用全固体二次電池の1サイクル目の放電容量は、いずれも、全固体二次電池として機能するのに十分な値を示した。また、上記高速充放電ではなく、上記の初期化と同条件で通常の充放電サイクルを繰り返して行っても、本発明の評価用全固体二次電池は優れたサイクル特性を維持していた。

 - 評価基準 -
 A: 90%≦放電容量維持率
 B: 85%≦放電容量維持率<90%
 C: 80%≦放電容量維持率<85%
 D: 75%≦放電容量維持率<80%
 E: 70%≦放電容量維持率<75%
 F: 60%≦放電容量維持率<70%
 G:     放電容量維持率<60% 
<評価6:イオン伝導度測定>
 製造した各評価用全固体二次電池のイオン伝導度を測定した。具体的には、各評価用全固体二次電池について、25℃の恒温槽中、1255B FREQUENCY RESPONSE ANALYZER(商品名、SOLARTRON社製)を用いて、電圧振幅5mV、周波数1MHz~1Hzまで交流インピーダンス測定した。これにより、イオン伝導度測定用試料の層厚方向の抵抗を求め、下記式(1)により計算して、イオン伝導度を求めた。イオン伝導度が大きいほど評価用全固体二次電池の抵抗が低くなることを示す。 
 式(1):イオン伝導度σ(mS/cm)=
  1000×試料層厚(cm)/[抵抗(Ω)×試料面積(cm)]
 
 式(1)において、試料層厚は、各評価用全固体二次電池において集電体の厚みを差し引いた値(固体電解質層及び電極活物質層の合計層厚)である。試料面積は、直径10mmの円板状シートの面積である。
 得られたイオン伝導度σが下記評価基準のいずれに含まれるかを判定した。本試験におけるイオン伝導度σは評価基準「F」以上が合格レベルである。結果を表4に示す。
 
 - 評価基準 -
 A: 1.5≦σ(mS/cm)
 B: 1.4≦σ(mS/cm)<1.5
 C: 1.3≦σ(mS/cm)<1.4
 D: 1.2≦σ(mS/cm)<1.3
 E: 1.1≦σ(mS/cm)<1.2
 F: 1.0≦σ(mS/cm)<1.1
 G:     σ(mS/cm)<1.0 
Figure JPOXMLDOC01-appb-T000012
[実施例2]
 実施例2では、合成例1で合成したポリマーB-1からなるポリマーバインダーB-1と、金属元素含有化合物としてステアリン酸リチウムとを用いて、温度条件又は濃度条件とポリマーバインダーB-1の溶解度の変化、更には層を形成した場合の抵抗への影響を確認した。
 具体的には、分散媒としての酪酸ブチルとポリマーバインダーB-1とステアリン酸リチウムとを混合して、ポリマーバインダーB-1の含有量を10.0質量%、ステアリン酸リチウムの含有量を0.5質量%に設定した混合物を調製した。得られた混合物において、ポリマーバインダーB-1は溶解しており、ステアリン酸リチウムは分散していた(平均粒径0.80μm)。得られた混合物に含有するポリマーバインダーB-1の酪酸ブチルに対する溶解度を上記方法により測定したところ、80質量%であった。
 得られた混合物を、表5の「処理条件」欄に示す濃度及び温度となるように、加熱、更には濃縮して、処理後混合物E-1~E-9を得た。
 処理後混合物E-1~E-9それぞれから下記方法によりポリマーバインダーを回収して、混合物調製に用いた分散媒である酪酸ブチルに対する溶解度を上記方法により測定した結果を表5に示す。
 
 - 処理後混合物からのポリマーバインダーの回収方法 -
 処理後混合物を真空検体乾燥機(商品名:HD-15D、石井理化機器製作所社製)にて室温下で20時間真空乾燥することで、ポリマーバインダーを回収した。
 次いで、処理後混合物E-1~E-9に、実施例1で調製した正極用組成物S-8(ポリマーバインダーとステアリン酸リチウムの合計含有量は1.05質量%であり、ポリマーバインダー:ステアリン酸リチウム=100:5である。)と同じ組成となるように、無機固体電解質、酪酸ブチル、正極活物質及び導電助剤を混合して、正極用組成物E-1~E-9をそれぞれ調製した。
 正極用組成物E-1~E-9をそれぞれ用いて、実施例1と同様にして、全固体二次電池用正極シートをそれぞれ作製し、次いで、全固体二次電池用正極シート評価用電池をそれぞれ製造した。
 製造した全固体二次電池用正極シート評価用電池E-1~E-9について、実施例1の上記<評価6:イオン伝導度測定>と同様にして、イオン伝導度σを測定して、抵抗を評価した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000013
 表1~表5に示す結果から次のことが分かる。
 比較例S-1、S-3、S-4、S-20、S-30及びS-32に示す、本発明で規定する金属元素含有化合物を含有しない無機固体電解質含有組成物は、いずれも、分散安定性及びハンドリング性を両立できず、分散特性に劣る。これらの組成物を用いた評価用全固体二次電池は、サイクル特性及びイオン伝導度の少なくとも一方に劣ることが分かる。また、比較例S-2に示す、本発明で規定する金属元素含有化合物を含有しない無機固体電解質含有組成物はイオン伝導度に劣る。更に、比較例S-21に示す、分散媒に溶解しない粒子状バインダーを含有し、分散媒に溶解するポリマーバインダーを含有しない無機固体電解質含有組成物は、本発明で規定する金属元素含有化合物を含有していても、分散安定性もハンドリング性も劣る。この組成物S-21を用いた評価用全固体二次電池は、サイクル特性及びイオン伝導度のいずれも十分ではない。
 これに対して、本発明のS-5~S-19、S-22~S-29、S-31及びS-33~S-36で示した、ポリマーバインダー及び金属元素含有化合物を本発明で規定する分散状態(溶解性)で含有する無機固体電解質含有組成物は、いずれも、分散安定性及びハンドリング性を高い水準で兼ね備えている。これらの無機固体電解質含有組成物を全固体二次電池の構成層の形成に用いることにより、得られる全固体二次電池について優れたサイクル特性に加えて高いイオン伝導度を実現できることが分かる。
 その理由は、実施例2(表5)に示すように、無機固体電解質含有組成物の製膜過程において、塗布後の組成物を、乾燥温度80℃以上に加熱し、又は濃度30質量%以上まで濃縮すると、処理後の組成物中のポリマーバインダーは、処理前の溶解状態のポリマーバインダーよりも溶解度が低下することがわかる。この溶解度低下は、溶解状態のポリマーバインダーが金属元素含有化合物からリチウム金属イオンを受領したことによるものと推定される。また、溶解度の低下が大きいほど、評価用電池のイオン伝導度が大きく低抵抗であることが分かる。これは、ポリマーバインダーが粒子状に固化しやすくなるためと推定される。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池

Claims (28)

  1.  周期律表第1族若しくは第2族に属する金属のイオン伝導性を有する無機固体電解質と、ポリマーバインダーと、金属元素含有化合物と、分散媒とを含有する、全固体二次電池用の無機固体電解質含有組成物であって、
     前記金属元素含有化合物が、分子を構成する金属元素をイオンとして前記ポリマーバインダーを形成するポリマーに供給しうる化合物であり、
     前記ポリマーバインダーが前記分散媒中に溶解しており、前記金属元素含有化合物が固体状態で存在する、無機固体電解質含有組成物。
  2.  前記金属元素含有化合物が前記分散媒に分散している、請求項1に記載の無機固体電解質含有組成物。
  3.  前記金属元素含有化合物の平均粒径が0.1~5μmである、請求項1又は2に記載の無機固体電解質含有組成物。
  4.  前記金属元素含有化合物が有機金属塩である、請求項1~3のいずれか1項に記載の無機固体電解質含有組成物。
  5.  前記金属元素含有化合物が、共役酸の、酸解離定数の負の常用対数[pKa]が-2~20であるアニオンを有する、請求項1~4のいずれか1項に記載の無機固体電解質含有組成物。
  6.  前記金属元素含有化合物が、炭素原子を6~21個含む有機化合物由来のアニオンを有する、請求項1~5のいずれか1項に記載の無機固体電解質含有組成物。
  7.  前記金属元素含有化合物を構成する金属元素が、周期律表第1族又は第2族に属する金属元素を含む、請求項1~6のいずれか1項に記載の無機固体電解質含有組成物。
  8.  前記金属元素含有化合物を構成する金属元素がリチウム元素を含む、請求項1~7のいずれか1項に記載の無機固体電解質含有組成物。
  9.  前記ポリマーバインダーを形成するポリマーが、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合から選ばれる少なくとも1種の結合、又は炭素-炭素二重結合の重合鎖を主鎖に有する、請求項1~8のいずれか1項に記載の無機固体電解質含有組成物。
  10.  前記ポリマーバインダーを形成するポリマーが、下記官能基群(A)から選択される官能基を有する構成成分を含む、請求項1~9のいずれか1項に記載の無機固体電解質含有組成物。
    <官能基群(A)>
     ヒドロキシ基、アミノ基、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、スルファニル基、ヘテロ環基、カルボン酸無水物基
  11.  前記金属元素含有化合物が有するアニオンを導く共役酸のpKaが前記官能基のpKaよりも大きい、請求項10に記載の無機固体電解質含有組成物。
  12.  前記金属元素含有化合物が有するアニオンを導く共役酸のpKaと前記官能基のpKaとの差[(共役酸のpKa)-(官能基のpKa)]が2以上である、請求項10又は11に記載の無機固体電解質含有組成物。
  13.  前記無機固体電解質含有組成物を80℃以上に加熱した場合に、加熱後のポリマーバインダーの分散媒に対する溶解度が加熱前のポリマーバインダーの該分散媒に対する溶解度よりも小さくなる、請求項1~12のいずれか1項に記載の無機固体電解質含有組成物。
  14.  ポリマーバインダーと金属元素含有化合物との前記無機固体電解質含有組成物中の合計濃度を30質量%以上に前記無機固体電解質含有組成物を濃縮した場合に、濃縮後のポリマーバインダーの分散媒に対する溶解度が濃縮前のポリマーバインダーの該分散媒に対する溶解度よりも小さくなる、請求項1~13のいずれか1項に記載の無機固体電解質含有組成物。
  15.  前記無機固体電解質含有組成物を製膜して層を形成した場合に、前記層中に存在するポリマーバインダーの前記無機固体電解質含有組成物中に含有していた分散媒に対する溶解度が前記無機固体電解質含有組成物中に含有されていたポリマーバインダーの該分散媒に対する溶解度よりも小さくなる、請求項1~14のいずれか1項に記載の無機固体電解質含有組成物。
  16.  活物質を含有する、請求項1~15のいずれか1項に記載の無機固体電解質含有組成物。
  17.  導電助剤を含有する、請求項1~16のいずれか1項に記載の無機固体電解質含有組成物。
  18.  前記無機固体電解質が硫化物系無機固体電解質である、請求項1~17のいずれか1項に記載の無機固体電解質含有組成物。
  19.  温度23℃、せん断速度10/sにおける粘度が300~4000cPである、請求項1~18のいずれか1項に記載の無機固体電解質含有組成物。
  20.  請求項1~19のいずれか1項に記載の無機固体電解質含有組成物で構成した層を有する全固体二次電池用シート。
  21.  前記ポリマーバインダーが10~800nmの平均粒径を有する粒子として前記層中に存在する、請求項20に記載の全固体二次電池用シート。
  22.  前記層中に存在するポリマーバインダーの、前記無機固体電解質含有組成物中に含有していた分散媒に対する溶解度が、前記無機固体電解質含有組成物中に含有されていたポリマーバインダーの該分散媒に対する溶解度よりも小さくなっている、請求項20又は21に記載の全固体二次電池用シート。
  23.  正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
     前記正極活物質層、前記固体電解質層及び前記負極活物質層の少なくとも1つの層が、請求項20~22のいずれか1項に記載の全固体二次電池用シートで構成されている、全固体二次電池。
  24.  請求項1~19のいずれか1項に記載の無機固体電解質含有組成物を製膜する、全固体二次電池用シートの製造方法。
  25.  前記無機固体電解質含有組成物中に含有されているポリマーバインダーを粒子状に固化させながら製膜する、請求項24に記載の全固体二次電池用シートの製造方法。
  26.  前記無機固体電解質含有組成物中に含有されているポリマーバインダーの分散媒に対する溶解度を低下させながら前記無機固体電解質含有組成物を製膜する、請求項24又は25に記載の全固体二次電池用シートの製造方法。
  27.  前記無機固体電解質含有組成物を80℃以上に加熱して製膜する、請求項24~26のいずれか1項に記載の全固体二次電池用シートの製造方法。
  28.  請求項24~27のいずれか1項に記載の製造方法を経て全固体二次電池を製造する、全固体二次電池の製造方法。
PCT/JP2021/000354 2020-02-07 2021-01-07 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法 WO2021157278A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227022727A KR20220109449A (ko) 2020-02-07 2021-01-07 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지 및, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법
JP2021575669A JP7455871B2 (ja) 2020-02-07 2021-01-07 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
CN202180008047.0A CN114930594A (zh) 2020-02-07 2021-01-07 含无机固体电解质组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法
US17/857,144 US20220344710A1 (en) 2020-02-07 2022-07-04 Inorganic solid electrolyte-containing composition, sheet for all-solid state secondary battery, and all-solid state secondary battery, and manufacturing methods for sheet for all-solid state secondary battery and all-solid state secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020019581 2020-02-07
JP2020-019581 2020-02-07
JP2020054261 2020-03-25
JP2020-054261 2020-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/857,144 Continuation US20220344710A1 (en) 2020-02-07 2022-07-04 Inorganic solid electrolyte-containing composition, sheet for all-solid state secondary battery, and all-solid state secondary battery, and manufacturing methods for sheet for all-solid state secondary battery and all-solid state secondary battery

Publications (1)

Publication Number Publication Date
WO2021157278A1 true WO2021157278A1 (ja) 2021-08-12

Family

ID=77199507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000354 WO2021157278A1 (ja) 2020-02-07 2021-01-07 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法

Country Status (5)

Country Link
US (1) US20220344710A1 (ja)
JP (1) JP7455871B2 (ja)
KR (1) KR20220109449A (ja)
CN (1) CN114930594A (ja)
WO (1) WO2021157278A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292484A (zh) * 2021-12-02 2022-04-08 厦门大学 一种互穿网络结构层和原位制备的方法及其应用
WO2023234357A1 (ja) * 2022-06-01 2023-12-07 富士フイルム株式会社 活物質の回収方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225114A (ja) * 2015-05-29 2016-12-28 日本化学産業株式会社 リチウム二次電池用正極活物質の処理方法
WO2017099247A1 (ja) * 2015-12-11 2017-06-15 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及びその製造方法、並びに、全固体二次電池及びその製造方法
WO2018016525A1 (ja) * 2016-07-22 2018-01-25 ユミコア リチウム金属複合酸化物粉末
JP2018147899A (ja) * 2018-06-27 2018-09-20 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
WO2019116964A1 (ja) * 2017-12-15 2019-06-20 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池
WO2020022195A1 (ja) * 2018-07-27 2020-01-30 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、及び全固体二次電池、並びに固体電解質含有シート及び全固体二次電池の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6262932B2 (ja) 2012-01-13 2018-01-17 積水化学工業株式会社 カルボン酸リチウム塩−三フッ化ホウ素錯体の製造方法
JP5652633B1 (ja) 2013-05-24 2015-01-14 Jsr株式会社 リチウムイオン二次電池用組成物、リチウムイオン二次電池用スラリー、リチウムイオン二次電池用電極、リチウムイオン二次電池用セパレーターおよびリチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225114A (ja) * 2015-05-29 2016-12-28 日本化学産業株式会社 リチウム二次電池用正極活物質の処理方法
WO2017099247A1 (ja) * 2015-12-11 2017-06-15 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及びその製造方法、並びに、全固体二次電池及びその製造方法
WO2018016525A1 (ja) * 2016-07-22 2018-01-25 ユミコア リチウム金属複合酸化物粉末
WO2019116964A1 (ja) * 2017-12-15 2019-06-20 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池
JP2018147899A (ja) * 2018-06-27 2018-09-20 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
WO2020022195A1 (ja) * 2018-07-27 2020-01-30 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、及び全固体二次電池、並びに固体電解質含有シート及び全固体二次電池の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292484A (zh) * 2021-12-02 2022-04-08 厦门大学 一种互穿网络结构层和原位制备的方法及其应用
WO2023234357A1 (ja) * 2022-06-01 2023-12-07 富士フイルム株式会社 活物質の回収方法

Also Published As

Publication number Publication date
JPWO2021157278A1 (ja) 2021-08-12
KR20220109449A (ko) 2022-08-04
JP7455871B2 (ja) 2024-03-26
US20220344710A1 (en) 2022-10-27
CN114930594A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2021039950A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021100362A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021039948A1 (ja) 電極用組成物の製造方法、全固体二次電池用電極シートの製造方法及び全固体二次電池の製造方法
WO2021039468A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021066060A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021060541A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021014852A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
US20220344710A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid state secondary battery, and all-solid state secondary battery, and manufacturing methods for sheet for all-solid state secondary battery and all-solid state secondary battery
WO2021166968A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021200497A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021085549A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに全固体二次電池用シート及び全固体二次電池の製造方法
WO2021039949A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021039947A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の各製造方法
WO2020129802A1 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2023054425A1 (ja) 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極組成物、全固体二次電池用電極シート及び全固体二次電池の製造方法
JPWO2020022195A1 (ja) 固体電解質組成物、固体電解質含有シート、及び全固体二次電池、並びに固体電解質含有シート及び全固体二次電池の製造方法
WO2021039946A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、全固体二次電池用シート及び全固体二次電池の製造方法、並びに、複合ポリマー粒子
WO2021193826A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021261526A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2022065477A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2022059567A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2022071124A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021060542A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2022085733A1 (ja) 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
WO2022138752A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21751463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575669

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227022727

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21751463

Country of ref document: EP

Kind code of ref document: A1