WO2019116964A1 - 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池 - Google Patents

全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池 Download PDF

Info

Publication number
WO2019116964A1
WO2019116964A1 PCT/JP2018/044562 JP2018044562W WO2019116964A1 WO 2019116964 A1 WO2019116964 A1 WO 2019116964A1 JP 2018044562 W JP2018044562 W JP 2018044562W WO 2019116964 A1 WO2019116964 A1 WO 2019116964A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
solid secondary
solid
mass
active material
Prior art date
Application number
PCT/JP2018/044562
Other languages
English (en)
French (fr)
Inventor
耕一郎 前田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020207013839A priority Critical patent/KR20200097688A/ko
Priority to JP2019559565A priority patent/JP7192791B2/ja
Priority to US16/768,882 priority patent/US11557766B2/en
Priority to CN201880077887.0A priority patent/CN111433961B/zh
Priority to EP18887412.7A priority patent/EP3726634A4/en
Publication of WO2019116964A1 publication Critical patent/WO2019116964A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/02Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for an all solid secondary battery, a slurry composition for an all solid secondary battery, a functional layer for an all solid secondary battery, and an all solid secondary battery.
  • Patent Document 1 As a solid electrolyte, a polymer solid electrolyte using polyethylene oxide or the like is known (see, for example, Patent Document 1). However, this polymer solid electrolyte has room for improvement in that it is a flammable material. Therefore, development of an all-solid secondary battery having a solid electrolyte layer made of an inorganic material which is a noncombustible material and made of an inorganic solid electrolyte having a very high safety compared to a solid polymer electrolyte is progressed between the positive electrode and the negative electrode (See, for example, Patent Document 2).
  • the solid electrolyte layer in the all solid lithium secondary battery is formed, for example, by a method (coating method) in which a slurry composition for solid electrolyte layer containing solid electrolyte particles and a solvent is applied onto a positive electrode or a negative electrode and dried.
  • a coating method in which a slurry composition for solid electrolyte layer containing solid electrolyte particles and a solvent is applied onto a positive electrode or a negative electrode and dried.
  • Patent No. 4134617 gazette JP-A-59-151770 JP, 2009-176484, A JP, 2009-211950, A
  • the present invention provides a binder composition for an all-solid secondary battery, which is excellent in processability in the production of an all-solid secondary battery and enables obtaining an all-solid secondary battery having good battery characteristics. With the goal. Another object of the present invention is to provide a slurry composition for an all solid secondary battery including the above-described binder composition for an all solid secondary battery. Another object of the present invention is to provide an all solid secondary battery functional layer comprising the above-mentioned slurry composition for all solid secondary battery. Furthermore, it aims at providing the all solid rechargeable battery provided with the above-mentioned functional layer for all solid rechargeable batteries.
  • the present inventor uses the unsaturated acid metal monomer having a divalent metal to provide a slurry composition for all solid secondary batteries having good dispersion stability even at high concentration of solid content concentration of 50% by mass or more. Products are obtained, and a functional layer for an all solid secondary battery having good pressability obtained by using the slurry composition for an all solid secondary battery is obtained, and an all solid secondary provided with a functional layer for an all solid secondary battery It has been found that the resistance value of the battery can be reduced, that is, it is possible to obtain an all solid secondary battery having excellent processability in producing an all solid secondary battery and having good battery characteristics. It came to complete.
  • the following binder composition for an all solid secondary battery, a slurry composition for an all solid secondary battery, a functional layer for an all solid secondary battery, and an all solid secondary battery are provided.
  • the binder composition for an all solid secondary battery of the present invention comprises a polymer, an unsaturated metal acid monomer, and a solvent, which is not particularly limited.
  • the saturated acid metal monomer is characterized by having a divalent metal.
  • the content ratio of the unsaturated acid metal monomer is 0.01 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the polymer. preferable.
  • the effect of adding the unsaturated acid metal monomer While being able to acquire the effect that solid content concentration of a composition can be raised, it can suppress that particles of a polymer aggregate (binder aggregation).
  • the divalent metal is preferably at least one selected from calcium, magnesium, copper, and zinc.
  • the unsaturated acid metal monomer preferably has two or more double bonds.
  • the unsaturated acid metal monomer has two or more double bonds, it is possible to obtain an all solid secondary battery having better battery characteristics and better processability in the production of the all solid secondary battery.
  • the binder composition for all the solid secondary batteries of this invention it is preferable that the said unsaturated acid metal monomer is a (meth) acrylic-acid metal monomer.
  • the unsaturated acid metal monomer is a (meth) acrylic acid metal monomer, it is possible to obtain an all solid secondary battery having more excellent battery characteristics and better processability in the production of an all solid secondary battery. .
  • the slurry composition for all the solid secondary batteries of this invention is a binder composition for all the solid rechargeable batteries mentioned above, and solid And an electrolyte.
  • the dispersion stability of the slurry composition for an all solid secondary battery can be improved by including the above-described binder composition for an all solid secondary battery and a solid electrolyte.
  • Another object of the present invention is to advantageously solve the above-mentioned problems, and the functional layer for an all-solid secondary battery of the present invention comprises the above-described slurry composition for an all-solid secondary battery. It is characterized by Thus, if it consists of a slurry composition for all solid secondary batteries mentioned above, press nature of a functional layer for all solid secondary batteries can be improved.
  • Another object of the present invention is to advantageously solve the above-mentioned problems, and an all-solid secondary battery of the present invention comprises the above-described functional layer for all-solid secondary battery. .
  • the functional layer for the all solid secondary battery described above is provided, the resistance value of the all solid secondary battery can be reduced.
  • an all solid secondary battery binder composition which is excellent in processability in the production of the all solid secondary battery and enables obtaining an all solid secondary battery having good battery characteristics
  • Slurry composition for all solid secondary battery including binder composition for all solid secondary battery, functional layer for all solid secondary battery comprising the slurry composition for all solid secondary battery, and for all solid battery
  • An all solid secondary battery provided with a functional layer can be obtained.
  • the binder composition for an all solid secondary battery of the present invention is characterized by comprising a polymer, an unsaturated metal acid monomer, and a solvent, wherein the unsaturated metal acid monomer has a divalent metal.
  • the solid content concentration of the binder composition for a solid electrolyte battery used in the present invention is preferably 1% by mass or more, more preferably 3% by mass or more, and 5.6% by mass or more
  • the content is more preferably 40% by mass or less, more preferably 15% by mass or less, and still more preferably 7% by mass or less. If the solid content concentration of the binder composition for a solid electrolyte battery is 1% by mass or more, a slurry that can be easily applied can be obtained. Moreover, if solid content concentration of the binder composition for solid electrolyte batteries is 40 mass% or less, handling of weighing etc. can be easy.
  • the binder composition for an all solid secondary battery of the present invention when a polymer is present in an aqueous dispersion, it is necessary to solvent exchange water with an organic solvent.
  • the solvent exchange can be carried out by a known method.
  • the aqueous dispersion of the polymer and the organic solvent can be placed in a rotary evaporator, and the solvent exchange and dehydration operation can be performed at a predetermined temperature under reduced pressure.
  • the water content (binder composition water content) in the organic solvent containing the polymer after solvent exchange is preferably less than 1000 ppm, more preferably less than 500 ppm, and still more preferably less than 100 ppm. It is even more preferably 95 ppm or less, particularly preferably 90 ppm or less, and most preferably 85 ppm or less.
  • the binder composition for an all solid secondary battery of the present invention is used for at least one of a positive electrode active material layer, a negative electrode active material layer, or a solid electrolyte layer.
  • the positive electrode has a positive electrode active material layer on the current collector
  • the negative electrode has a negative electrode active material layer on the current collector.
  • the positive electrode active material layer and the negative electrode active material layer may be collectively referred to as an electrode active material layer.
  • ⁇ Polymer> The polymer contained in the binder composition for an all-solid secondary battery of the present invention, for example, when the binder composition for an all-solid secondary battery is used in a solid electrolyte layer, solid polymers contained in the solid electrolyte layer Used to form a solid electrolyte layer.
  • the polymer contained in the binder composition for all the solid secondary batteries of this invention is a particulate-form polymer formed by superposing
  • the average particle size of the particulate polymer is preferably 0.1 ⁇ m or more, more preferably 0.15 ⁇ m or more, and preferably 1 ⁇ m or less, more preferably 0.70 ⁇ m or less . If the average particle diameter of the particulate polymer is 0.1 ⁇ m or more and 1 ⁇ m or less, the number and contact area of contact points between the solid electrolyte particles increase, and as a result, the internal resistance decreases.
  • the average particle size of the particulate polymer is a number average particle size which can be determined by measuring the particle size distribution by laser diffraction.
  • the glass transition temperature of the particulate polymer is preferably 0 ° C. or less, more preferably ⁇ 10 ° C. or less, particularly preferably ⁇ 32 ° C. or less, and preferably ⁇ 60 ° C. or more
  • the temperature is more preferably ⁇ 50 ° C. or more, and particularly preferably ⁇ 43 ° C. or more. If the glass transition temperature of the particulate polymer is 0 ° C. or less, the phenomenon that the glass transition temperature is too high and the adhesion is insufficient can be suppressed. In addition, when the glass transition temperature of the particulate polymer is ⁇ 60 ° C. or higher, a decrease in battery performance at a low temperature can be suppressed.
  • the conjugated diene-based polymer is not particularly limited as long as it is a polymer containing conjugated diene-based monomer units obtained by polymerizing conjugated diene-based monomers, and conjugated diene-based homopolymers and conjugated diene-based copolymer polymers It may be any.
  • a conjugated diene polymer a conjugated diene homopolymer and a conjugated diene copolymer can be used alone or in combination of two or more.
  • the conjugated diene-based homopolymer is not particularly limited as long as it is a polymer obtained by polymerizing only conjugated diene-based monomers, and is generally used industrially for polybutadiene, polyisoprene, polycyanobutadiene, polypentadiene, etc. The thing is mentioned.
  • the conjugated diene homopolymers described above may be used alone or in combination of two or more at an arbitrary ratio. Among these, polybutadiene and polyisoprene are preferable, and polybutadiene is more preferable, in terms of easy availability.
  • conjugated diene-based monomers constituting the conjugated diene-based monomer unit in the conjugated diene-based homopolymer include, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene And 1,3-hexadiene chloroprene and cyanobutadiene.
  • the conjugated diene type monomer mentioned above may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Among these, in view of easy availability, 1,3-butadiene and isoprene are preferable, and 1,3-butadiene is more preferable.
  • polymerization form of a conjugated diene type monomer here According to the intended purpose, it selects suitably.
  • the conjugated diene-based copolymer is not particularly limited as long as it is a copolymer containing at least a conjugated diene-based monomer unit (a monomer unit formed by a conjugated diene-based monomer).
  • a conjugated diene-based monomer unit a monomer unit formed by a conjugated diene-based monomer.
  • the conjugated diene monomer constituting the conjugated diene monomer unit the same one as used in the polymerization of the conjugated diene homopolymer described above can be used.
  • the monomer constituting the monomer unit other than the conjugated diene-based monomer unit in the conjugated diene-based copolymer is not particularly limited as long as it is a monomer copolymerizable with the conjugated diene-based monomer, for example, And cyano group-containing vinyl monomers, amino group-containing vinyl monomers, pyridyl group-containing vinyl monomers, alkoxyl group-containing vinyl monomers, aromatic vinyl monomers, and the like.
  • the monomer copolymerizable with the conjugated diene type monomer mentioned above may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the conjugated diene copolymer is composed of an aromatic vinyl monomer and a conjugated diene monomer unit, that is, a copolymer of an aromatic vinyl compound and a conjugated diene compound, a conjugated diene copolymer
  • the vinyl structure derived from the compound is preferably 10% by mass or more, and more preferably 60% by mass or less, of the structural units derived from the conjugated diene compound.
  • aromatic vinyl monomer-- examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t -Butylstyrene, 5-t-butyl-2-methylstyrene, N, N-dimethylaminoethylstyrene, N, N-diethylaminoethylstyrene, and the like.
  • the aromatic vinyl monomer mentioned above may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Among these, styrene and ⁇ -methylstyrene are preferable.
  • Cyano group-containing vinyl monomer-- examples include acrylonitrile and methacrylonitrile.
  • the above-mentioned cyano group-containing vinyl monomers may be used singly or in combination of two or more at an arbitrary ratio.
  • the ratio of the monomer unit derived from the conjugated diene-based monomer to the monomer unit derived from the monomer copolymerizable with the conjugated diene-based monomer in the conjugated diene-based copolymer may be appropriately selected according to the purpose.
  • the mass ratio of “monomer unit derived from conjugated diene-based monomer / monomer unit derived from monomer copolymerizable with conjugated diene-based monomer” is preferably 70/30 to 100/0. And 80/20 to 100/0 are more preferable.
  • the (meth) acrylate polymer is not particularly limited as long as it is a polymer obtained by polymerizing a (meth) acrylate monomer.
  • “(meth) acrylate” means acrylate or methacrylate.
  • (meth) acrylate monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, nonyl acrylate, Alkyl acrylates such as decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate, 2-ethylhexyl acrylate, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate; 2- (perfluorobutyl) ethyl acrylate, 2- 2- (perfluoroalkyl) ethyl acrylates such as (perfluoropentyl) ethy
  • the (meth) acrylate type monomer mentioned above may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • n-butyl acrylate, t-butyl acrylate and 2-ethylhexyl acrylate are preferable in terms of reactivity.
  • a monomer constituting a monomer unit other than a (meth) acrylate monomer unit (a monomer unit constituted by a (meth) acrylate monomer) in a (meth) acrylate polymer, (meth) )
  • a monomer copolymerizable with the acrylate monomer is not particularly limited.
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid and fumaric acid; styrene, chlorostyrene, vinyl toluene, t-butyl Styrene monomers such as styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, divinyl benzene, etc .; acrylamide, N-methylol acrylamide, acrylamido-2-methyl propane Amide-based unit such as sulfonic acid ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; olefins such as ethylene and propylene; diene monomers such as butadiene and isoprene; halogen atom-containing monomers such as vinyl chloride and vinylidene chloride
  • the monomer which comprises monomer units other than the (meth) acrylate type monomer unit (The monomer unit which the (meth) acrylate monomer comprises) in the acrylate type polymer mentioned above uses 1 type individually. It may be used, or two or more kinds may be used in combination at an arbitrary ratio.
  • the thing which has multiple functional groups by the monomer which comprises monomer units other than the (meth) acrylate type monomer unit (The monomer unit which the (meth) acrylate monomer comprises) in a (meth) acrylate type polymer is mentioned. It can be used as a crosslinking agent.
  • crosslinking agent for example, carboxylic acid esters having two or more carbon-carbon double bonds such as ethylene glycol dimethacrylate (EGDMA), diethylene glycol dimethacrylate, trimethylolpropane triacrylate, etc .; acrylic acid And glycidyl group-containing monomers such as glycidyl, glycidyl methacrylate and allyl glycidyl ether.
  • ethylene glycol dimethacrylate EGDMA
  • diethylene glycol dimethacrylate diethylene glycol dimethacrylate, trimethylolpropane triacrylate, etc .
  • acrylic acid And glycidyl group-containing monomers such as glycidyl, glycidyl methacrylate and allyl glycidyl ether.
  • a manufacturing method of a particulate-form polymer For example, an emulsion polymerization method, a suspension polymerization method, etc. are mentioned. Among these, the emulsion polymerization method is preferable in that the particle diameter can be easily controlled.
  • a monomer is emulsion-polymerized in an aqueous dispersion of seed particles.
  • a polymerization system any system of batch system, semi-continuous system, and continuous system may be used.
  • the polymerization pressure, the polymerization temperature and the polymerization time known conditions can be adopted.
  • the emulsion polymerization is usually carried out by a conventional method. For example, it is carried out by the method described in "Experimental Chemistry Course", Vol. 28, (issuer: Maruzen Co., Ltd., edited by The Chemical Society of Japan). That is, in the emulsion polymerization method, (i) water, (ii) additives such as a dispersing agent, an emulsifying agent, and a crosslinking agent, (iii) a polymerization initiator, (iv) in a closed container equipped with a stirrer and a heating device.
  • the emulsion polymerization method is a method of emulsifying the above-mentioned monomer composition and then putting it in a closed container to similarly start the reaction.
  • various additives such as surfactants (emulsifiers), polymerization initiators, molecular weight regulators (chain transfer agents), chelating agents, electrolytes, oxygen scavengers, etc., which are generally used in emulsion polymerization reactions, are polymerized. It can be used as an auxiliary material.
  • surfactant used in the emulsion polymerization method
  • any one can be used as long as a desired particulate polymer can be obtained.
  • sodium dodecylbenzene sulfonate (DBS) sodium lauryl sulfate
  • dodecyl Examples include sodium diphenyl ether disulfonate, sodium succinic acid dialkyl ester sulfonate, and the like.
  • surfactant mentioned above may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of surfactant described above is optional as long as the desired particulate polymer can be obtained, but preferably 0 parts per 100 parts by mass of the total amount of monomers used to make the particulate polymer. 0.5 parts by mass or more, more preferably 1 part by mass or more, preferably 10 parts by mass or less, more preferably 5 parts by mass or less. When the amount of surfactant is 0.5 parts by mass or more, emulsion polymerization can be stably performed. In addition, when the amount of surfactant is 10 parts by mass or less, the influence on the battery can be reduced.
  • a polymerization initiator is usually used.
  • this polymerization initiator any one can be used as long as the desired particulate polymer can be obtained, for example, sodium persulfate (NaPS), ammonium persulfate (APS), potassium persulfate (KPS), etc. It can be mentioned.
  • the polymerization initiator mentioned above may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Among these, sodium persulfate and potassium persulfate are preferable, and potassium persulfate is more preferable, from the point of being able to suppress a decrease in cycle characteristics of the obtained all-solid secondary battery.
  • the polymerization system may contain a chain transfer agent (molecular weight modifier).
  • chain transfer agents molecular weight modifiers
  • chain transfer agents include alkyl mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-stearyl mercaptan; dimethylxanthogen Xanthogen compounds such as sulfide, diisopropyl xanthogen disulfide; terpinole; thiuram compounds such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide; 2,6-di-t-butyl-4-methylphenol
  • the unsaturated acid metal monomer is not particularly limited as long as it has a divalent metal, and, for example, calcium dimethacrylate, magnesium dimethacrylate, copper dimethacrylate, zinc dimethacrylate, calcium diacrylate, magnesium diacrylate And (meth) acrylic acid metal monomers such as copper diacrylate, zinc diacrylate and the like.
  • the unsaturated acid metal monomer mentioned above may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Among these, magnesium diacrylate and copper diacrylate are preferable, and magnesium diacrylate is more preferable, from the viewpoint of being water soluble.
  • the number of double bonds in the unsaturated acid metal monomer is preferably 2 or more, more preferably 2.
  • the content ratio of the above-mentioned unsaturated acid metal monomer is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and more preferably 0.3 parts by mass with respect to 100 parts by mass of the polymer.
  • the content is particularly preferably 10 parts by mass or less, more preferably 5 parts by mass or less, particularly preferably 4 parts by mass or less, and most preferably 3 parts by mass or less . If the content ratio of the unsaturated acid metal monomer is 0.01 parts by mass or more with respect to 100 parts by mass of the polymer, the effect of adding the unsaturated acid metal monomer (solid content of the slurry composition for all solid secondary batteries) It is possible to obtain the effect that the concentration can be increased.
  • the particles of the polymer aggregate due to the formation of the crosslinked structure on the surface of the polymer particles (binder aggregation Can be suppressed.
  • aromatic hydrocarbons such as toluene (boiling point: 111 ° C.) and xylene (boiling point: 144 ° C.); cyclopentyl methyl ether (boiling point: 106 ° C.) Ethers; esters such as butyl acetate (boiling point: 126 ° C.) and butyl butyrate (boiling point: 164 ° C.); and the like are preferably mentioned.
  • aromatic hydrocarbons such as toluene (boiling point: 111 ° C.) and xylene (boiling point: 144 ° C.); cyclopentyl methyl ether (boiling point: 106 ° C.) Ethers; esters such as butyl acetate (boiling point: 126 ° C.) and butyl butyrate (boiling point: 164 ° C.); and the like are preferably mentioned.
  • the organic solvents having a boiling point of 100 ° C. to 250 ° C. may be used alone or in combination of two or more at an arbitrary ratio. Among these, xylene is preferable in terms of easy availability. Further, as the organic solvent in the solvent exchange from water to the organic solvent described above, it is preferable to use the organic solvent having a boiling point of 100 ° C. or more and 250 ° C. or less exemplified above.
  • binder composition for an all solid secondary battery of the present invention makes it possible to obtain an all solid secondary battery having excellent processability in the production of an all solid secondary battery and good battery characteristics.
  • the slurry composition for an all solid secondary battery of the present invention includes the above-described binder composition for an all solid secondary battery of the present invention and a solid electrolyte.
  • the solid content concentration of the slurry composition for all solid secondary batteries of the present invention is preferably 40% by mass or more, more preferably 55% by mass or more, and particularly preferably 60% by mass or more And 62 mass% or more is the most preferable, 70 mass% or less is preferable, and 65 mass% or less is more preferable. If the solid content concentration of the slurry composition for all solid secondary batteries is 40% by mass or more, the process of coating and drying can be facilitated, the drying time can be shortened, and the amount of heat necessary for drying can be reduced. As a result, the processability in the manufacture of the all-solid secondary battery can be improved.
  • the solid electrolyte is usually in the form of particles because it has been subjected to a grinding process.
  • the particulate form is not perfect spherical but amorphous.
  • the size of the solid electrolyte particles is generally measured as an average particle diameter by irradiating laser light to the particles and measuring scattered light.
  • the particle size in this case is a value assuming that the shape of the particle is spherical.
  • the proportion of particles of the corresponding particle diameter can be expressed as a particle size distribution.
  • the average particle diameter of the solid electrolyte particles is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, from the viewpoint of the dispersibility of the slurry composition for a solid secondary battery and the coatability.
  • the thickness is particularly preferably not less than 0 ⁇ m, preferably not more than 1.3 ⁇ m, and more preferably not more than 1.2 ⁇ m.
  • the average particle size of the solid electrolyte particles is a number average particle size which can be determined by measuring the particle size distribution by laser diffraction.
  • a solid electrolyte For example, a crystalline inorganic lithium ion conductor, an amorphous inorganic lithium ion conductor, etc. are mentioned suitably.
  • the solid electrolyte mentioned above may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Among these, amorphous inorganic lithium ion conductors are preferable in terms of conductivity.
  • the crystalline inorganic lithium ion conductor is not particularly limited, and examples thereof include Li 3 N, LISICON (Li 14 Zn (GeO 4 ) 4 ), perovskite Li 0.5 La 0.5 TiO 3 , garnet Li 7 La 3 Zr 2 O 10 , LIPON (Li 3 + y PO 4 ⁇ x N x ), Thio-LISICON (Li 3.25 Ge 0.25 P 0.75 S 4 ), and the like.
  • the amorphous inorganic lithium ion conductor is not particularly limited, and examples thereof include glass Li—Si—S—O and Li—P—S. Among these, in terms of conductivity, those containing S (sulfur atom) and having ion conductivity (sulfide solid electrolyte material) are preferable.
  • the all-solid secondary battery using the binder composition for all-solid secondary battery of the present invention is an all-solid lithium secondary battery
  • a non-crystalline material containing Li and P as a sulfide solid electrolyte material Sulfide is preferable, and a raw material composition containing Li 2 S and a sulfide of an element of Groups 13 to 15 is more preferable.
  • an amorphization method such as a mechanical milling method, a melting and quenching method and the like.
  • mechanical milling is preferable in that processing at normal temperature is possible and simplification of the manufacturing process can be achieved.
  • the amorphous sulfide containing Li and P has high lithium ion conductivity, and therefore, when used as an inorganic solid electrolyte, the internal resistance of the battery can be reduced and the output characteristics can be improved.
  • the amorphous sulfide containing Li and P is preferably a sulfide glass consisting of Li 2 S and P 2 S 5 from the viewpoint of lowering the internal resistance of the battery and improving the output characteristics, Li 2 S:
  • the sulfide glass is more preferably a sulfide glass manufactured from a mixed material of Li 2 S and P 2 S 5 in which the molar ratio of P 2 S 5 is 65: 35 to 85: 15.
  • amorphous sulfides containing Li and P can be prepared by mixing mechanochemical mixtures of Li 2 S and P 2 S 5 at a molar ratio of Li 2 S: P 2 S 5 of 65:35 to 85:15.
  • the mixed raw material preferably has a molar ratio of Li 2 S: P 2 S 5 of 68:32 to 80:20.
  • Examples of sulfides of Group 13 to Group 15 elements include Al 2 S 3 , SiS 2 , GeS 2 , P 2 S 3 , P 2 S 5 , As 2 S 3 , Sb 2 S 3 , and the like. It can be mentioned.
  • the above-mentioned sulfides of the Group 13 to Group 15 elements may be used alone or in combination of two or more at an arbitrary ratio. Among these, from the viewpoint of lowering the internal resistance of the battery and improving the output characteristics, sulfides of Group 14 or Group 15 are preferable, and P 2 S 5 is more preferable.
  • Li 2 S—P 2 S 5 material Li 2 S-SiS 2 material, Li 2 S-GeS 2 material, Li 2 S-Al 2 S 3 material, and the like.
  • the Li 2 S—P 2 S 5 material is preferable in terms of excellent Li ion conductivity.
  • the sulfide solid electrolyte material is selected from the group consisting of Al 2 S 3 , B 2 S 3 and SiS 2 as a starting material in addition to the above Li 2 S and P 2 S 5 to the extent that the ion conductivity is not reduced. And at least one sulfide. The addition of such sulfides can stabilize the glass component in the sulfide solid electrolyte material.
  • the sulfide solid electrolyte material is selected from the group consisting of Li 3 PO 4 , Li 4 SiO 4 , Li 4 GeO 4 , Li 3 BO 3 and Li 3 AlO 3 in addition to Li 2 S and P 2 S 5 And at least one lithium ortho oxoate. By including such lithium ortho oxoate, the glass component in the sulfide solid electrolyte material can be stabilized.
  • Mo 2 mole fraction of Li 2 S in solid electrolyte materials such as Li 2 S-P 2 S 5 material, Li 2 S-SiS 2 material, Li 2 S-GeS 2 material, Li 2 S-Al 2 S 3 material Is preferably 50% or more, more preferably 60% or more, and preferably 74% or less, from the viewpoint that a sulfide solid electrolyte material having crosslinked sulfur can be obtained more reliably.
  • the sulfide solid electrolyte material preferably has crosslinked sulfur from the viewpoint of increasing the ion conductivity.
  • “having crosslinked sulfur” can be determined from, for example, a measurement result by Raman spectroscopy, a raw material composition ratio, a measurement result by NMR, and the like.
  • the sulfide solid electrolyte material has crosslinked sulfur, usually, the reactivity with the positive electrode active material is high, and a high resistance layer is easily formed.
  • the binder composition for all solid secondary batteries usually contains a copolymer containing an aromatic vinyl compound monomer unit and a conjugated diene compound monomer unit, the generation of a high resistance layer can be suppressed. The effects of the invention can be sufficiently exhibited.
  • the sulfide solid electrolyte material may be a sulfide glass, or may be a crystallized sulfide glass obtained by heat-treating the sulfide glass.
  • “sulfide glass” can be obtained, for example, by the above-described amorphization method.
  • the crystallized sulfide glass can be obtained, for example, by heat-treating the sulfide glass.
  • the crystallized sulfide glass is preferably represented by Li 7 P 3 S 11 in terms of Li ion conductivity.
  • a method of synthesizing Li 7 P 3 S 11 for example, sulfide glass is obtained by mixing Li 2 S and P 2 S 5 at a molar ratio of 70:30 and amorphizing with a ball mill.
  • Li 7 P 3 S 11 can be synthesized by heat-treating the obtained sulfide glass at 150 ° C. to 360 ° C.
  • the functional layer for an all solid secondary battery of the present invention is formed using the above-described slurry composition for an all solid secondary battery of the present invention, and comprises at least one of a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer. , Preferably all layers are meant.
  • the functional layer for an all-solid secondary battery of the present invention is, for example, applying the above-described slurry composition for an all-solid secondary battery of the present invention on a positive electrode active material layer or a negative electrode active material layer described later and drying. It is a solid electrolyte layer formed by
  • the all-solid-state secondary battery of the present invention comprises the above-described all-solid-state secondary battery functional layer of the present invention. That is, the all solid secondary battery of the present invention comprises at least one layer, preferably all of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer, using the binder composition for the all solid secondary battery of the present invention. Obtained by forming a layer of Here, the all solid secondary battery of the present invention usually has a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer formed between the positive and negative electrode active material layers. .
  • the positive electrode has a positive electrode active material layer on a current collector
  • the negative electrode has a negative electrode active material layer on a current collector.
  • the solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer will be described.
  • the solid electrolyte layer is formed by applying the slurry composition for solid electrolyte layer on the surface of the current collector described later and drying it.
  • the slurry composition for a solid electrolyte layer comprises a solid electrolyte, a binder (polymer) for a solid electrolyte layer, an unsaturated acid metal monomer having a divalent metal, an organic solvent, and other components added as needed. Manufactured by mixing.
  • the solid electrolyte layer is not particularly limited, and, for example, JP-A-2012-243476, JP-A-2013-143299 and Any solid electrolyte layer described in Open 2016-143614 can be used.
  • Solid electrolyte As the solid electrolyte, the same one as exemplified in the slurry composition for all solid secondary batteries can be used.
  • the binder for solid electrolyte layer is used to bind a solid electrolyte to form a solid electrolyte layer.
  • a binder for solid electrolyte layers you may contain the polymer which comprises the binder composition for all the solid secondary batteries.
  • Unsaturated acid metal monomer As the unsaturated acid metal monomer, the same one as exemplified in the binder composition for all solid secondary batteries can be used.
  • organic solvent As the organic solvent, the “organic solvent having a boiling point of 100 ° C. or more and 250 ° C. or less” exemplified in the above-mentioned binder composition for all solid secondary battery can be suitably used.
  • the slurry composition for a solid electrolyte layer is a conductive agent as another component added as needed in addition to the above components (solid electrolyte, binder for solid electrolyte layer, unsaturated acid metal monomer, and organic solvent)
  • the conductive agent is not particularly limited as long as it can impart conductivity, and generally includes carbon powders such as acetylene black, carbon black and graphite; fibers of various metals; foils of various metals;
  • spherical, plate, rod-like or fibrous inorganic fillers or organic fillers can be used as the reinforcing material.
  • Non-conductive particles there is no particular limitation on the nonconductive particles, and inorganic particles and organic particles can be used.
  • the inorganic particles for example, oxide particles such as aluminum oxide (alumina), silicon oxide, magnesium oxide, titanium oxide, BaTiO 2 , ZrO, alumina-silicic composite oxide; nitride particles such as aluminum nitride and boron nitride Covalent crystalline particles such as silicon and diamond; poorly soluble ionic crystalline particles such as barium sulfate, calcium fluoride and barium fluoride; and fine clay particles such as talc and montmorillonite.
  • oxide particles such as aluminum oxide (alumina), silicon oxide, magnesium oxide, titanium oxide, BaTiO 2 , ZrO, alumina-silicic composite oxide
  • nitride particles such as aluminum nitride and boron nitride Covalent crystalline particles such as silicon and diamond
  • poorly soluble ionic crystalline particles such as barium sulfate, calcium flu
  • organic particles include various cross-linked polymer particles such as polyethylene, polystyrene, polydivinyl benzene, styrene-divinyl benzene copolymer cross-linked product, polyimide, polyamide, polyamide imide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensate and the like
  • Heat-resistant polymer particles such as polysulfone, polyacrylonitrile, polyaramid, polyacetal, thermoplastic polyimide and the like;
  • the positive electrode active material layer applies a slurry composition for a positive electrode active material layer to the surface of a current collector to be described later and dries it. It is formed by
  • the slurry composition for the positive electrode active material layer includes a positive electrode active material, a solid electrolyte, a binder (polymer) for a positive electrode, an unsaturated acid metal monomer having a divalent metal, an organic solvent, and others added as needed.
  • the positive electrode active material layer is not particularly limited, and, for example, described in JP-A-2016-181471 and JP-A-2016-181472. Any positive electrode active material layer can be used.
  • the positive electrode active material is a compound capable of absorbing and releasing lithium ions.
  • Examples of the positive electrode active material include a positive electrode active material composed of an inorganic compound, a positive electrode active material composed of an organic compound, and a mixture of an inorganic compound and an organic compound.
  • the average particle diameter of the positive electrode active material is (i) battery characteristics such as load characteristics, charge / discharge cycle characteristics, charge / discharge capacity, (ii) handling of the slurry composition for the positive electrode active material layer, (iii) when manufacturing the positive electrode From the viewpoint of handling, it is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the average particle diameter of a positive electrode active material is a number average particle diameter which can be calculated
  • a positive electrode active material comprising an inorganic compound, (i) transition metal oxides, (ii) complex oxides of transition metals such as Fe, Co, Ni, Mn, etc. and lithium (lithium-containing complex metal oxides), (iii) And the like) and transition metal sulfides.
  • transition metal oxides include Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 , and the like. These compounds may be partially element-substituted.
  • lithium-containing composite metal oxide examples include LiCoO 2 (lithium cobaltate), LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 , and the like. These compounds may be partially element-substituted.
  • transition metal sulfide examples include TiS 2 , TiS 3 , amorphous MoS 2 , and the like. These compounds may be partially element-substituted.
  • Positive electrode active materials made of organic compounds include polyaniline, polypyrrole, polyacene, disulfide compounds, polysulfide compounds, N-fluoropyridinium salts, and the like.
  • Solid electrolyte As the solid electrolyte, the same one as exemplified in the slurry composition for all solid secondary batteries can be used.
  • the mass ratio of the positive electrode active material to the solid electrolyte (positive electrode active material: solid electrolyte) is preferably 90:10 to 50:50, and more preferably 80:20 to 60:40.
  • the mass ratio of the positive electrode active material to the solid electrolyte is within the above range, so the mass ratio of the positive electrode active material is too small, so the mass of the positive electrode active material in the battery is reduced, leading to a decrease in battery capacity.
  • the mass ratio of the solid electrolyte is too small, the conductivity can not be sufficiently obtained and the positive electrode active material can not be effectively used. It can suppress the phenomenon of being connected.
  • the positive electrode binder is used to bind a positive electrode active material and a solid electrolyte to form a positive electrode active material layer.
  • a binder for positive electrodes the polymer which comprises the binder composition for all the solid secondary batteries should just be included.
  • the content of the positive electrode binder in the slurry composition for the positive electrode active material layer is equivalent to the solid content of the positive electrode active material from the viewpoint of preventing the positive electrode active material from falling off from the electrode without inhibiting the battery reaction.
  • 0.1 mass part or more is preferable with respect to 100 mass parts, 0.2 mass part or more is more preferable, 5 mass parts or less are preferable, and 4 mass parts or less are more preferable.
  • Unsaturated acid metal monomer As the unsaturated acid metal monomer, the same one as exemplified in the binder composition for all solid secondary batteries can be used.
  • the organic solvent As the organic solvent, the “organic solvent having a boiling point of 100 ° C. or more and 250 ° C. or less” exemplified in the above-mentioned binder composition for all solid secondary battery can be suitably used.
  • the content of the organic solvent in the slurry composition for the positive electrode active material layer is 20 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoint of obtaining good paint characteristics while maintaining the dispersibility of the solid electrolyte. It is preferably at least parts by mass, more preferably at least 30 parts by mass, and preferably at most 80 parts by mass, and more preferably at most 70 parts by mass.
  • the slurry composition for a positive electrode active material layer contains, as other components added as necessary, in addition to the above components (a positive electrode active material, a solid electrolyte, a binder for a positive electrode, a unsaturated acid metal monomer, and an organic solvent)
  • the negative electrode active material layer applies a slurry composition for a negative electrode active material layer to the surface of a current collector to be described later and dries it. It is formed by
  • the slurry composition for the negative electrode active material layer is a mixture of a negative electrode active material, a solid electrolyte, a binder for the negative electrode, an unsaturated acid metal monomer having a divalent metal, an organic solvent, and other components added as needed. It is manufactured by doing.
  • the negative electrode active material layer is not particularly limited, and, for example, described in Japanese Patent Application Laid-Open Nos. 2016-181471 and 2016-181472. Any negative electrode active material layer can be used.
  • the negative electrode active material carbon allotropes such as graphite and coke; oxides or sulfates such as silicon, tin, zinc, manganese, iron, nickel and the like; metallic lithium; Li-Al, Li-Bi-Cd, Li-Sn- Lithium alloys such as Cd; lithium transition metal nitrides; silicon;
  • the negative electrode active material is made of a carbon allotrope, it may be in the form of a mixture with a metal, a metal salt, an oxide or the like, or a covering.
  • the negative electrode active material is a metal material
  • the metal foil or the metal plate may be used as an electrode as it is, or may be in the form of particles.
  • the average particle diameter of the negative electrode active material is preferably 1 ⁇ m or more, and 15 ⁇ m or more from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, charge / discharge cycle characteristics. Is more preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the average particle diameter of a negative electrode active material is a number average particle diameter which can be calculated
  • Solid electrolyte As the solid electrolyte, the same one as exemplified in the slurry composition for all solid secondary batteries can be used.
  • the mass ratio of the negative electrode active material to the solid electrolyte (negative electrode active material: solid electrolyte) is preferably 90:10 to 50:50, and more preferably 80:20 to 60:40.
  • the mass ratio of the negative electrode active material to the solid electrolyte is in the above range, so the mass ratio of the negative electrode active material is too small, so the mass of the negative electrode active material in the battery is reduced, which leads to a decrease in battery capacity.
  • the mass ratio of the solid electrolyte is too small, the conductivity can not be sufficiently obtained and the negative electrode active material can not be effectively used, leading to a decrease in capacity as a battery. Can be suppressed.
  • the negative electrode binder is used to bind the negative electrode active material and the solid electrolyte to form a negative electrode active material layer.
  • the polymer which comprises the binder composition for all the solid secondary batteries should just be included.
  • the content of the binder for the negative electrode in the slurry composition for the negative electrode active material layer can prevent the negative electrode active material from falling off from the electrode without inhibiting the battery reaction, so that the negative electrode active material has a solid content equivalent 0.1 mass part or more is preferable with respect to 100 mass parts, 0.2 mass part or more is more preferable, 5 mass parts or less are preferable, and 4 mass parts or less are more preferable.
  • Unsaturated acid metal monomer As the unsaturated acid metal monomer, the same one as exemplified in the binder composition for all solid secondary batteries can be used.
  • organic solvent As the organic solvent, the “organic solvent having a boiling point of 100 ° C. or more and 250 ° C. or less” exemplified in the above-mentioned binder composition for all solid secondary battery can be suitably used.
  • the slurry composition for the negative electrode active material layer contains, as other components added as necessary, in addition to the above components (a negative electrode active material, a solid electrolyte, a binder for a negative electrode, an unsaturated acid metal monomer, and an organic solvent)
  • the current collector used for forming the positive electrode active material layer and the negative electrode active material layer is not particularly limited as long as it is a current collector having an electric conductivity and having an electrochemical durability.
  • a current collector made of a metal material such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum and the like can be suitably mentioned.
  • the metal material mentioned above may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • a current collector made of aluminum is particularly preferable as the current collector for the positive electrode
  • a current collector made of copper is particularly preferable as the current collector for the negative electrode.
  • the shape of the current collector is not particularly limited, but is preferably in the form of a sheet having a thickness of about 0.001 mm to 0.5 mm.
  • the current collector is preferably subjected to surface roughening treatment in advance in order to increase the adhesion strength between the positive electrode active material layer / the negative electrode active material layer described above.
  • Examples of the roughening method include mechanical polishing, electrolytic polishing, and chemical polishing.
  • a coated abrasive having an abrasive particle fixed thereon, a grindstone, an emery wheel, a wire brush provided with a steel wire or the like, and the like are used.
  • an intermediate layer such as a conductive adhesive layer may be formed on the surface of the current collector.
  • the method of mixing the above-mentioned slurry compositions is not particularly limited. There is a method using a mixing device such as a rotary type or rotary type.
  • a method using a dispersion-kneading apparatus such as a homogenizer, a ball mill, a bead mill, a planetary mixer, a sand mill, a roll mill, or a planetary kneader can be mentioned.
  • a method using a planetary mixer, a ball mill, and a bead mill is preferable from the viewpoint of the suppression of aggregation of the solid electrolyte.
  • the positive electrode in the all solid secondary battery is obtained by forming a positive electrode active material layer on a current collector.
  • the positive electrode active material layer is formed by applying and drying the above-described slurry composition for a positive electrode active material layer on a current collector.
  • the negative electrode active material is a metal foil or a metal plate
  • the negative electrode in the all solid secondary battery may be used as the negative electrode as it is.
  • the negative electrode active material is in the form of particles, it can be obtained by forming a negative electrode active material layer on a current collector other than the current collector of the positive electrode.
  • the negative electrode active material layer is formed by applying and drying the above-described slurry composition for a negative electrode active material layer on a current collector other than the current collector of the positive electrode.
  • the slurry composition for solid electrolyte layer is applied and dried to form a solid electrolyte layer.
  • the all-solid-state secondary battery element is manufactured by bonding together the electrode in which the solid electrolyte layer was not formed, and the electrode in which the solid electrolyte layer was formed.
  • a coating method to the collector of the slurry composition for electrode active material layers For example, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, brush coating , Etc.
  • the application amount of the slurry composition for the electrode active material layer is not particularly limited, but the thickness of the active material layer formed after removing the organic solvent is usually 5 ⁇ m to 300 ⁇ m, preferably 10 ⁇ m to 250 ⁇ m. It is an amount of order.
  • drying method of the slurry composition for electrode active material layers For example, (i) drying by warm air, hot air, low humidity air etc., (ii) vacuum drying, (iii) (far) infrared rays, electron Drying by irradiation with a line or the like, and the like can be mentioned.
  • the drying conditions are usually such that the organic solvent is volatilized as soon as possible within a speed range in which stress concentration occurs and the electrode active material layer is cracked or the electrode active material layer does not peel off the current collector. Adjust to Furthermore, the electrode may be stabilized by pressing the dried electrode.
  • the pressing method includes, but is not limited to, methods such as a mold press and a calendar press.
  • the drying temperature is a temperature at which the organic solvent fully evaporates. Specifically, from the viewpoint of forming a good active material layer without the thermal decomposition of the positive electrode binder and the negative electrode binder, 50 ° C. or higher is preferable, 80 ° C. or higher is more preferable, 250 ° C. or lower is preferable, and 200 C. or less is more preferable.
  • the drying time is not particularly limited, but is usually 10 minutes or more and 60 minutes or less.
  • the application amount of the slurry composition for solid electrolyte layer is not particularly limited, but the thickness of the solid electrolyte layer formed after removing the organic solvent is usually 2 ⁇ m to 20 ⁇ m, preferably 3 ⁇ m to 15 ⁇ m.
  • Amount of The method for drying the slurry composition for the solid electrolyte layer, the drying conditions and the drying temperature are the same as the method for drying the slurry composition for the electrode active material layer described above.
  • the laminated body in which the electrode on which the solid electrolyte layer is formed and the electrode on which the solid electrolyte layer is not formed may be bonded may be pressurized.
  • the pressing method is not particularly limited, and examples thereof include flat press, roll press, CIP (Cold Isostatic Press), and the like.
  • the pressure for pressure-pressing is 5 MPa or more from the viewpoint of obtaining good battery characteristics by lowering the resistance at each interface between the electrode and the solid electrolyte layer and the contact resistance between particles in each layer.
  • 7 MPa or more is more preferable, 700 MPa or less is preferable, and 500 MPa or less is more preferable.
  • the solid electrolyte layer may be applied to the active material layer having the larger particle diameter of the electrode active material. It is preferable to apply a slurry composition for use. When the particle diameter of the electrode active material is large, unevenness is formed on the surface of the active material layer, so that the unevenness of the surface of the electrode active material layer can be alleviated by applying the slurry composition for the solid electrolyte layer.
  • the contact area of a solid electrolyte layer and an electrode becomes large, and it suppresses interface resistance. it can.
  • the all solid secondary battery element obtained as described above is placed in the battery container as it is or is rolled or folded depending on the battery shape, and sealed to obtain an all solid secondary battery. . Further, if necessary, expanded metal; fuse; over current preventing element such as PTC element; lead plate; etc. may be placed in the battery container to prevent pressure rise and overcharge and discharge inside the battery.
  • the shape of the all solid secondary battery may be any of coin type, button type, sheet type, cylindrical type, square type, flat type and the like.
  • the slurry composition for a solid electrolyte layer prepared in Examples and Comparative Examples is applied on one side of a 14 ⁇ m thick aluminum foil by a coater with a gap of 200 ⁇ m and dried on a hot plate at 80 ° C. to form a solid electrolyte layer. This was used as a test piece. The test piece was punched out with a metal punch of 10 mm in diameter. At this time, the presence or absence of occurrence of chipping on the crack and the end of the test piece was examined. Press the pressure at 2MPa to compact the ones that did not generate cracks or cracks.
  • the slurry composition for a solid electrolyte layer prepared in Examples and Comparative Examples is applied on one side of a 14 ⁇ m thick aluminum foil by a coater with a gap of 200 ⁇ m and dried on a hot plate at 80 ° C. to form a solid electrolyte layer. Then, the test piece is punched with the same aluminum foil and punched with a metal punch of 10 mm in diameter, and then consolidated in a press at a pressure of 2 MPa.
  • the resistance value of the solid electrolyte layer produced in the example and the comparative example used for press processing was measured using an impedance meter, and the resistance value was calculated from the Nyquist plot. The results are shown in Table 1. It shows that the smaller the value of the resistance value, the better the battery performance is to obtain an all solid secondary battery.
  • Example 1 Preparation of Binder Composition for All-Solid Secondary Battery>
  • a reactor equipped with a stirrer 59 parts of 2-ethylhexyl acrylate, 20 parts of styrene, 20 parts of butyl acrylate, 1 part of ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent, 1 part of sodium dodecylbenzene sulfonate (DBS) as an emulsifier, 150 parts of ion-exchanged water and 0.5 parts of potassium persulfate (KPS) as a polymerization initiator were added, sufficiently stirred, and then heated to 70 ° C. to start polymerization.
  • EGDMA ethylene glycol dimethacrylate
  • DBS sodium dodecylbenzene sulfonate
  • KPS potassium persulfate
  • the glass transition temperature of the obtained particulate polymer was measured as follows. ⁇ Measurement of glass transition temperature of particulate polymer >> Using an aqueous dispersion of the prepared particulate polymer as a measurement sample, measure 10 mg of the measurement sample in an aluminum pan, and measure the temperature range-100 with a differential thermal analyzer ("EXSTAR DSC 6220" manufactured by SII Nano Technology Inc.) The measurement was carried out at a temperature rising rate of 10 ° C./min between ° C.
  • the polymer aqueous dispersion having its pH adjusted to 7 was heated under reduced pressure to remove unreacted monomers, and ion-exchanged water was then added to adjust the solid content concentration to 30 wt%.
  • 10 g of a 1% by mass aqueous solution of magnesium diacrylate (Aldrich reagent) as an unsaturated acid metal monomer was added while stirring.
  • 500 g of xylene was added, and water was removed while heating to 80 ° C. with an evaporator to prepare a binder composition (solid content concentration 7 mass%) for a total solid secondary battery having a water content of 82 ppm.
  • Sulfide glass Li 2 S and P 2 S 5 as solid electrolyte particles in a glove box (water concentration 0.6 ppm, oxygen concentration 1.8 ppm) under an argon gas atmosphere 70 mol% / 30 mol%, number average particle diameter: 1.2 ⁇ m, particle diameter of cumulative 90%: 2.1 ⁇ m) 100 parts and 2 parts as solid content equivalent of the binder composition for all solid secondary battery are mixed Further, xylene as an organic solvent was added and adjusted to a solid content concentration of 65% by mass, and then mixed with a planetary mixer to prepare a slurry composition for solid electrolyte layer (slurry composition for all solid secondary battery) .
  • the solid content concentration of the slurry composition for solid electrolyte layer was 65% by mass.
  • a coated film was prepared, and after observing the appearance, it was punched out to a diameter of 10 mm, and after observing stains of cracks, punches and press indenter during pressing, the resistance value was measured. The results are shown in Table 1.
  • Example 2 Measurement of glass transition temperature of particulate polymer, same as in Example 1, except that the addition amount of a 1% by mass aqueous solution of magnesium diacrylate in Example 1 was changed from 10 g to 300 g, all solid secondary Preparation of Binder Composition for Battery, Preparation of Slurry Composition for All Solid Secondary Battery, Observation of Appearance of Coating Film, Observation of Wrinkling / Picking at Press, Dirt of Press Indenter, and Measurement of Resistance Value. The results are shown in Table 1.
  • the binder composition for all solid secondary batteries had a water content of 74 ppm and a solid content concentration of 7% by mass.
  • Example 3 In a reactor equipped with a stirrer, 49 parts of 2-ethylhexyl acrylate, 20 parts of styrene, 15 parts of butyl acrylate, 15 parts of acrylonitrile, 1 part of ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent, sodium dodecylbenzene sulfonate as an emulsifier (DBS 1) 1 part, 150 parts of ion exchange water, and 0.5 parts of potassium persulfate (KPS) as a polymerization initiator were added, sufficiently stirred, and then heated to 70 ° C. to start polymerization.
  • EGDMA ethylene glycol dimethacrylate
  • DBS 1 part sodium dodecylbenzene sulfonate
  • KPS potassium persulfate
  • Example 1 When the polymerization conversion reached 96%, cooling was started and the reaction was stopped to obtain an aqueous dispersion of particulate polymer.
  • Example 2 measurement of glass transition temperature of particulate polymer, preparation of binder composition for all solid secondary battery, preparation of slurry composition for all solid secondary battery, observation of appearance of coated film, press Observation of stains of cracks and punches and press indenter, and measurement of resistance value were performed.
  • the results are shown in Table 1.
  • the water content of the binder composition for all the solid secondary batteries was 66 ppm, and solid content concentration was 6.2 mass%.
  • the solid electrolyte layer slurry composition (all-solid secondary battery slurry composition) had a solid content concentration of 62% by mass.
  • Example 4 In a pressure resistant reactor with a stirrer, 59 parts of 1,2-butadiene, 30 parts of styrene, 10 parts of butyl acrylate, 1 part of ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent, sodium dodecylbenzene sulfonate (DBS) 1 as an emulsifier A portion, 150 parts of ion exchange water, and 0.5 parts of potassium persulfate (KPS) as a polymerization initiator were added and sufficiently stirred, and then heated to 60 ° C. to start polymerization.
  • GSDMA ethylene glycol dimethacrylate
  • DBS sodium dodecylbenzene sulfonate
  • KPS potassium persulfate
  • Example 1 When the polymerization conversion reached 96%, cooling was started and the reaction was stopped to obtain an aqueous dispersion of particulate polymer.
  • Example 2 As in Example 1, measurement of glass transition temperature of particulate polymer, preparation of binder composition for all solid secondary battery, preparation of slurry composition for all solid secondary battery, observation of appearance of coated film, press Observation of stains of cracks and punches and press indenter, and measurement of resistance value were performed. The results are shown in Table 1.
  • the binder composition for all solid secondary batteries had a water content of 95 ppm and a solid content concentration of 5.6 mass%.
  • Example 5 the glass transition temperature of the particulate polymer is the same as in Example 1, except that an aqueous solution of 1% by mass of copper diacrylate is added instead of the aqueous solution of 1% by mass of magnesium diacrylate.
  • the water content of the binder composition for all the solid secondary batteries was 90 ppm, and solid content concentration was 6.6 mass%.
  • Example 6 Measurement of glass transition temperature of particulate polymer, same as Example 3, except that the addition amount of a 1% by mass aqueous solution of magnesium diacrylate in Example 3 was changed from 10 g to 30 g, all solid secondary Preparation of Binder Composition for Battery, Preparation of Slurry Composition for All Solid Secondary Battery, Observation of Appearance of Coating Film, Observation of Wrinkling / Picking at Press, Dirt of Press Indenter, and Measurement of Resistance Value. The results are shown in Table 1.
  • the binder composition for all solid secondary batteries had a water content of 85 ppm and a solid content concentration of 5.8 mass%.
  • Example 7 Measurement of glass transition temperature of particulate polymer, same as in Example 1, except that the addition amount of a 1% by mass aqueous solution of magnesium diacrylate in Example 1 was changed from 10 g to 400 g, all solid secondary Preparation of Binder Composition for Battery, Preparation of Slurry Composition for All Solid Secondary Battery, Observation of Appearance of Coating Film, Observation of Wrinkling / Picking at Press, Dirt of Press Indenter, and Measurement of Resistance Value. The results are shown in Table 1.
  • the binder composition for all the solid secondary batteries had a water content of 74 ppm and a solid content concentration of 5.8 mass%.
  • Example 1 A particulate polymer dispersion having a solid concentration of 30% similar to that of Example 1 is prepared, and 500 g of xylene is added to 50 g of the particulate polymer dispersion without adding the unsaturated acid metal monomer aqueous solution, and an evaporator 80 is used. Water was removed while heating to ⁇ RTIgt; C ⁇ / RTI> to prepare a binder composition (solid concentration 7% by mass) for a total solid secondary battery having a water content of 85 ppm.
  • Example 2 the glass transition temperature of the particulate polymer is the same as in Example 1 except that an aqueous solution of 1% by mass of sodium acrylate is added instead of the aqueous solution of 1% by mass of magnesium diacrylate.
  • the water content of the binder composition for all the solid secondary batteries was 77 ppm, and solid content concentration was 5.2 mass%.
  • a comparative example 1 is the same as comparative example 1 except that the solid content concentration of the slurry composition for solid electrolyte layer (slurry composition for all solid secondary batteries) is changed from 65 mass% to 30 mass%. Measurement of glass transition temperature of particulate polymer, preparation of binder composition for all solid secondary battery, preparation of slurry composition for all solid secondary battery, observation of appearance of coating film, cracking / break during pressing and pressing indenter Observation of dirt and measurement of resistance were performed. The results are shown in Table 1.
  • the binder composition for all solid secondary batteries is (i) a polymer, (ii) an unsaturated acid having a divalent metal.
  • a metal monomer and (iii) a solvent it is possible to obtain an all solid secondary battery having excellent processability in the production of an all solid secondary battery and good battery characteristics (low resistance value). I understood.
  • an all solid secondary battery binder composition which is excellent in processability in the production of the all solid secondary battery and enables obtaining an all solid secondary battery having good battery characteristics
  • Slurry composition for all solid secondary battery including binder composition for all solid secondary battery, functional layer for all solid secondary battery comprising the slurry composition for all solid secondary battery, and for all solid battery
  • An all solid secondary battery provided with a functional layer can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

全固体二次電池の製造の際のプロセス性に優れ、良好な電池特性を有する全固体二次電池を得ることを可能とする全固体二次電池用バインダー組成物、該全固体二次電池用バインダー組成物を含む全固体二次電池用スラリー組成物、該全固体二次電池用スラリー組成物からなる全固体二次電池用機能層、および該全固体二次電池用機能層を備える全固体二次電池を提供する。重合体、不飽和酸金属モノマー、および溶媒を含み、前記不飽和酸金属モノマーが2価の金属を有する、全固体二次電池用バインダー組成物。

Description

全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池
 本発明は、全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池に関する。
 近年、リチウムイオン電池等の二次電池は、携帯情報端末や携帯電子機器等の携帯端末に加えて、家庭用小型電力貯蔵装置、電動二輪車、電気自動車、ハイブリッド電気自動車、など、様々な用途での需要が増加している。
 このように、用途が広がるに伴い、二次電池の安全性の更なる向上が要求されている。二次電池の安全性の更なる向上を確保するために、固体電解質を用いる方法が有効である。
 固体電解質としては、ポリエチレンオキサイド等を用いた高分子固体電解質が知られている(例えば、特許文献1参照)。しかしながら、この高分子固体電解質は可燃性材料である点で改良の余地がある。
 よって、不燃性材料である無機材料からなり、高分子固体電解質に比べて安全性が非常に高い無機固体電解質からなる固体電解質層を正極及び負極の間に有する全固体二次電池の開発が進んでいる(例えば、特許文献2参照)。
 全固体リチウム二次電池における固体電解質層は、例えば、固体電解質粒子と溶媒とを含む固体電解質層用スラリー組成物を正極または負極の上に塗布して乾燥する方法(塗布法)により形成されている(例えば、特許文献3および4参照)。このように、塗布法で固体電解質層を形成する場合には、活物質や固体電解質を含むスラリー組成物の粘度や流動性が、塗布可能な条件の範囲にあることが必要であり、また、スラリー組成物を塗布したのち溶剤を乾燥してなる電極および固体電解質層には、電池特性を良好に発現させるために活物質や固体電解質以外に全固体二次電池用バインダー組成物などを添加することが必要である。しかしながら、スラリー組成物の粘度や流動性塗布可能な条件の範囲にあり、且つ、電池特性を良好に発現させるスラリー組成物を実現し得る全固体二次電池用バインダー組成物は未だ得られていなかった。
特許第4134617号公報 特開昭59-151770号公報 特開2009-176484号公報 特開2009-211950号公報
 本発明は、全固体二次電池の製造の際のプロセス性に優れ、良好な電池特性を有する全固体二次電池を得ることを可能とする全固体二次電池用バインダー組成物を提供することを目的とする。
 また、上述の全固体二次電池用バインダー組成物を含む全固体二次電池用スラリー組成物を提供することを目的とする。
 また、上述の全固体二次電池用スラリー組成物からなる全固体二次電池用機能層を提供することを目的とする。
 さらに、上述の全固体二次電池用機能層を備える全固体二次電池を提供することを目的とする。
 本発明者は、鋭意検討の結果、2価の金属を有する不飽和酸金属モノマーを用いることにより、固形分濃度50質量%以上の高濃度でも分散安定性の良い全固体二次電池用スラリー組成物が得られ、該全固体二次電池用スラリー組成物を用いてなるプレス性が良好な全固体二次電池用機能層を得られ、全固体二次電池用機能層を備える全固体二次電池の抵抗値を小さくすることができる、即ち、全固体二次電池の製造の際のプロセス性に優れ、良好な電池特性を有する全固体二次電池を得ることができることを見出し、本発明を完成するに至った。
 かくして本発明によれば、下記に示す全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池が提供される。
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明の全固体二次電池用バインダー組成物は、重合体、不飽和酸金属モノマー、および溶媒を含み、前記不飽和酸金属モノマーが2価の金属を有する、ことを特徴とする。このように、全固体二次電池用バインダー組成物が、重合体、2価の金属を有する不飽和酸金属モノマー、および溶媒を含むことで、全固体二次電池の製造の際のプロセス性に優れ、良好な電池特性を有する全固体二次電池を得ることを可能とする。
 また、本発明の全固体二次電池用バインダー組成物は、前記不飽和酸金属モノマーの含有割合が、前記重合体100質量部に対し、0.01質量部以上10質量部以下であることが好ましい。不飽和酸金属モノマーの含有割合が、重合体100質量部に対し、0.01質量部以上10質量部以下であることにより、不飽和酸金属モノマーを添加する効果(全固体二次電池用スラリー組成物の固形分濃度を上げることができるという効果)を得ることができると共に、重合体の粒子同士が凝集すること(バインダー凝集)を抑制することができる。
 また、本発明の全固体二次電池用バインダー組成物は、2価の金属が、カルシウム、マグネシウム、銅、および亜鉛から選択される少なくとも1種であることが好ましい。2価の金属が、カルシウム、マグネシウム、銅、および亜鉛から選択される少なくとも1種であることにより、全固体二次電池の製造の際のプロセス性により優れ、より良好な電池特性を有する全固体二次電池を得ることができる。
 また、本発明の全固体二次電池用バインダー組成物は、前記不飽和酸金属モノマーが二重結合を2つ以上有することが好ましい。不飽和酸金属モノマーが二重結合を2つ以上有することにより、全固体二次電池の製造の際のプロセス性により優れ、より良好な電池特性を有する全固体二次電池を得ることができる。
 また、本発明の全固体二次電池用バインダー組成物は、前記不飽和酸金属モノマーが(メタ)アクリル酸金属モノマーであることが好ましい。不飽和酸金属モノマーが(メタ)アクリル酸金属モノマーであることにより、全固体二次電池の製造の際のプロセス性により優れ、より良好な電池特性を有する全固体二次電池を得ることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の全固体二次電池用スラリー組成物は、上述した全固体二次電池用バインダー組成物と、固体電解質とを含む、ことを特徴とする。このように、上述した全固体二次電池用バインダー組成物と、固体電解質とを含めば、全固体二次電池用スラリー組成物の分散安定性を向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の全固体二次電池用機能層は、上述した全固体二次電池用スラリー組成物からなる、ことを特徴とする。このように、上述した全固体二次電池用スラリー組成物からなれば、全固体二次電池用機能層のプレス性を向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の全固体二次電池は、上述した全固体二次電池用機能層を備える、ことを特徴とする。このように、上述した全固体二次電池用機能層を備えれば、全固体二次電池の抵抗値を小さくすることができる。
 本発明によれば、全固体二次電池の製造の際のプロセス性に優れ、良好な電池特性を有する全固体二次電池を得ることを可能とする全固体二次電池用バインダー組成物、該全固体二次電池用バインダー組成物を含む全固体二次電池用スラリー組成物、該全固体二次電池用スラリー組成物からなる全固体二次電池用機能層、および該全固体二次電池用機能層を備える全固体二次電池を得ることができる。
(全固体二次電池用バインダー組成物)
 以下、本発明の全固体二次電池用バインダー組成物について説明する。本発明の全固体二次電池用バインダー組成物は、重合体、不飽和酸金属モノマー、および溶媒を含み、前記不飽和酸金属モノマーが2価の金属を有する、ことを特徴とする。
 本発明に用いられる固体電解質電池用バインダー組成物の固形分濃度としては、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5.6質量%以上であることがより好ましく、40質量%以下であることが好ましく、15質量%以下であることがより好ましく、7質量%以下であることがより好ましい。固体電解質電池用バインダー組成物の固形分濃度が1質量%以上であれば、容易に塗工できるスラリーを得ることができる。また、固体電解質電池用バインダー組成物の固形分濃度が40質量%以下であれば、秤量等の取扱いが容易であることができる。
 本発明の全固体二次電池用バインダー組成物において、重合体が水系分散液中に存在する場合、水を有機溶媒に溶媒交換することが必要である。溶媒交換は、公知の方法により行うことができ、例えば、ロータリーエバポレーターに、重合体の水系分散液および有機溶媒を入れ、減圧して所定の温度にて溶媒交換及び脱水操作を行うことができる。
 なおここで、溶媒交換後の重合体を含む有機溶媒中の水分量(バインダー組成物水分量)は、好ましくは1000ppm未満であり、より好ましくは500ppm未満であり、さらに好ましくは100ppm未満であり、さらにより好ましくは95ppm以下であり、特に好ましくは90ppm以下であり、最も好ましくは85ppm以下である。
 本発明の全固体二次電池用バインダー組成物は、正極活物質層、負極活物質層または固体電解質層の少なくとも1つに用いられる。なお、正極は集電体上に正極活物質層を有し、負極は集電体上に負極活物質層を有する。また、正極活物質層および負極活物質層を総称して電極活物質層ということがある。
<重合体>
 本発明の全固体二次電池用バインダー組成物に含まれる重合体は、例えば、全固体二次電池用バインダー組成物が固体電解質層に用いられる場合、固体電解質層に含まれる固体電解質同士を結着して固体電解質層を形成するために用いられる。
 本発明の全固体二次電池用バインダー組成物に含まれる重合体は、単量体組成物を重合または共重合してなる粒子状ポリマーであることが好ましい。
[粒子状ポリマー]
 粒子状ポリマーの平均粒子径は、0.1μm以上であることが好ましく、0.15μm以上であることがより好ましく、また、1μm以下であることが好ましく、0.70μm以下であることがより好ましい。粒子状ポリマーの平均粒子径が0.1μm以上1μm以下であれば、固体電解質粒子同士の接触点の数や接触面積が増加し、その結果、内部抵抗が小さくなるためである。なお、粒子状ポリマーの平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる個数平均粒子径である。
 粒子状ポリマーのガラス転移温度は、0℃以下であることが好ましく、-10℃以下であることがより好ましく、-32℃以下であることが特に好ましく、-60℃以上であることが好ましく、-50℃以上であることがより好ましく、-43℃以上であることが特に好ましい。粒子状ポリマーのガラス転移温度が0℃以下であれば、ガラス転移温度が高過ぎて密着力が不足する、という現象を抑制することができる。また、粒子状ポリマーのガラス転移温度が-60℃以上であれば、電池性能の低温での低下を抑制することができる。
 粒子状ポリマーの種類としては、特に制限はなく、共役ジエン系ポリマー、(メタ)アクリレート系ポリマー、などが好適に挙げられる。
[[共役ジエン系ポリマー]]
 共役ジエン系ポリマーとしては、共役ジエン系モノマーを重合することにより得られる共役ジエン系単量体単位を含むポリマーであれば、特に制限はなく、共役ジエン系ホモポリマーおよび共役ジエン系共重合ポリマーのいずれであってもよい。
 共役ジエン系ポリマーとして、共役ジエン系ホモポリマーおよび共役ジエン系共重合ポリマーを、それぞれ単独で、または、2種以上組み合わせて用いることができる。
-共役ジエン系ホモポリマー-
 共役ジエン系ホモポリマーとしては、共役ジエン系モノマーのみを重合してなる重合体であれば、特に制限はなく、ポリブタジエン、ポリイソプレン、ポリシアノブタジエン、ポリペンタジエン、などの工業的に用いられる一般的なものが挙げられる。
 なお、上述した共役ジエン系ホモポリマーは、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、入手が容易であるという点で、ポリブタジエン、ポリイソプレンが好ましく、ポリブタジエンがより好ましい。
 共役ジエン系ホモポリマーにおける共役ジエン系単量体単位を構成する共役ジエン系モノマーとしては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエンクロロプレン、シアノブタジエン、などが挙げられる。なお、上述した共役ジエン系モノマーは、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、入手が容易である点で、1,3-ブタジエン、イソプレンが好ましく、1,3-ブタジエンがより好ましい。
 なお、ここで、共役ジエン系モノマーの重合様式としては、特に限定はなく、使用目的に応じて適宜選択される。
-共役ジエン系共重合ポリマー-
 共役ジエン系共重合ポリマーは、共役ジエン系単量体単位(共役ジエン系モノマーが構成する単量体単位)を少なくとも含む共重合ポリマーであれば、特に制限はない。共役ジエン系単量体単位を構成する共役ジエン系モノマーとしては、上述した共役ジエン系ホモポリマーの重合で用いたものと同様のものを用いることができる。
 ここで、共役ジエン系共重合ポリマーにおける共役ジエン系単量体単位以外の単量体単位を構成するモノマーとしては、共役ジエン系モノマーと共重合可能なモノマーであれば、特に制限はなく、例えば、シアノ基含有ビニル単量体、アミノ基含有ビニル単量体、ピリジル基含有ビニル単量体、アルコキシル基含有ビニル単量体、芳香族ビニル単量体、などが挙げられる。なお、上述した共役ジエン系モノマーと共重合可能なモノマーは、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、反応性の点で、芳香族ビニル単量体、シアノ基含有ビニル単量体、が好ましく、芳香族ビニル単量体がより好ましい。
 共役ジエン系共重合ポリマーが、芳香族ビニル単量体と共役ジエン系単量体単位とからなる場合、即ち、芳香族ビニル化合物と共役ジエン系化合物との共重合体である場合、共役ジエン系化合物由来のビニル構造が共役ジエン系化合物由来の構造単位のうちの、10質量%以上であることが好ましく、60質量%以下であることが好ましい。
--芳香族ビニル単量体--
 芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、N,N-ジメチルアミノエチルスチレン、N,N-ジエチルアミノエチルスチレン、などが挙げられる。なお、上述した芳香族ビニル単量体は、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、スチレン、α-メチルスチレン、が好ましい。
--シアノ基含有ビニル単量体--
 シアノ基含有ビニル単量体としては、例えば、アクリロニトリル、メタクリロニトリル、などが挙げられる。なお、上述したシアノ基含有ビニル単量体は、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 共役ジエン系共重合ポリマー中における、共役ジエン系モノマー由来の単量体単位と、共役ジエン系モノマーと共重合可能なモノマー由来の単量体単位との割合は、目的に応じて適宜選択することができるが、「共役ジエン系モノマー由来の単量体単位/共役ジエン系モノマーと共重合可能なモノマー由来の単量体単位」の質量比で、70/30~100/0であることが好ましく、80/20~100/0であることがより好ましい。「共役ジエン系モノマー由来の単量体単位/共役ジエン系モノマーと共重合可能なモノマー由来の単量体単位」の質量比が、70/30~100/0であれば、全固体二次電池の製造の際のプロセス性により優れ、より良好な電池特性を有する全固体二次電池を得ることができる。
[[(メタ)アクリレート系ポリマー]]
 (メタ)アクリレート系ポリマーとしては、(メタ)アクリレート系モノマーを重合することにより得られるポリマーであれば、特に制限はない。
 なお、本発明において、「(メタ)アクリレート」とは、アクリレートまたはメタアクリレートのことを意味する。
-(メタ)アクリレート系モノマー-
 (メタ)アクリレート系モノマーとしては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート、2-エチルヘキシルアクリレート、2-メトキシエチルアクリレート、2-エトキシエチルアクリレート等のアクリル酸アルキルエステル;2-(パーフルオロブチル)エチルアクリレート、2-(パーフルオロペンチル)エチルアクリレート等の2-(パーフルオロアルキル)エチルアクリレート;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、へプチルメタクリレート、オクチルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、トリデシルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート、2-エチルヘキシルメタクリレート等のメタクリル酸アルキルエステル;2-(パーフルオロブチル)エチルメタクリレート、2-(パーフルオロペンチル)エチルメタクリレート等の2-(パーフルオロアルキル)エチルメタクリレート;ベンジルアクリレート;ベンジルメタクリレート;などが挙げられる。なお、上述した(メタ)アクリレート系モノマーは、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、反応性の点で、n-ブチルアクリレート、t-ブチルアクリレート、2-エチルヘキシルアクリレートが好ましい。
 また、ここで、(メタ)アクリレート系ポリマーにおける(メタ)アクリレート系単量体単位((メタ)アクリレートモノマーが構成する単量体単位)以外の単量体単位を構成するモノマーとしては、(メタ)アクリレート系モノマーと共重合可能なモノマーであれば、特に制限はなく、例えば、アクリル酸、メタクリル酸、イタコン酸、フマル酸等の不飽和カルボン酸類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸等のアミド系単量体;アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル化合物;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;などが挙げられる。なお、上述したアクリレート系ポリマーにおける(メタ)アクリレート系単量体単位((メタ)アクリレートモノマーが構成する単量体単位)以外の単量体単位を構成するモノマーは、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、(メタ)アクリレート系ポリマーにおける(メタ)アクリレート系単量体単位((メタ)アクリレートモノマーが構成する単量体単位)以外の単量体単位を構成するモノマーで官能基を複数有するものを架橋剤として用いることができる。架橋剤として用いることができるものは、例えば、エチレングリコールジメタクリレート(EGDMA)、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート等の2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;アクリル酸グリシジル、メタクリル酸グリシジル、アリルグリシジルエーテル等のグリシジル基含有単量体;などである。
 ここで、エチレングリコールジメタクリレート(EGDMA)等の架橋剤を適量添加すると、系全体が硬くなり、バインダーの結着力が低下するのを防止し、ワレカケが発生するのを防止することができる。
[粒子状ポリマーの製造方法]
 粒子状ポリマーの製造方法としては、特に制限はなく、例えば、乳化重合法、懸濁重合法、などが挙げられる。
 これらの中でも、粒径制御しやすい点で、乳化重合法が好ましい。なお、乳化重合法では、例えば、シード粒子の水性分散液中にて、単量体が乳化重合される。
 重合方式としては、回分式、半連続式、連続式のいずれの方式を用いてもよい。また、重合圧力、重合温度および重合時間としては、公知の条件を採用することができる。
[[乳化重合法]]
 乳化重合法は、通常は常法により行う。例えば、「実験化学講座」第28巻、(発行元:丸善(株)、日本化学会編)に記載された方法で行う。すなわち、乳化重合法は、攪拌機および加熱装置付きの密閉容器に、(i)水と、(ii)分散剤、乳化剤、架橋剤等の添加剤と、(iii)重合開始剤と、(iv)単量体の溶液と、を所定の組成になるように加え、容器中の単量体組成物を攪拌して単量体等を水に乳化させ、攪拌しながら温度を上昇させて重合を開始する方法である。あるいは、乳化重合法は、上記単量体組成物を乳化させた後に密閉容器に入れ、同様に反応を開始させる方法である。乳化重合に際しては、乳化重合反応に一般に使用される、界面活性剤(乳化剤)、重合開始剤、分子量調整剤(連鎖移動剤)、キレート剤、電解質、脱酸素剤等の各種添加剤を、重合用副資材として使用することができる。
-界面活性剤(乳化剤)-
 乳化重合法にて用いる界面活性剤(乳化剤)としては、所望の粒子状ポリマーが得られる限り、任意のものを用いることができ、例えば、ドデシルベンゼンスルホン酸ナトリウム(DBS)、ラウリル硫酸ナトリウム、ドデシルジフェニルエーテルジスルホン酸ナトリウム、コハク酸ジアルキルエステルスルホン酸ナトリウム、などが挙げられる。なお、上述した界面活性剤は、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 上述した界面活性剤の量は、所望の粒子状ポリマーが得られる限り、任意であるが、粒子状ポリマーを作製するために用いられる単量体の合計量100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上であり、好ましくは10質量部以下、より好ましくは5質量部以下である。界面活性剤の量が0.5質量部以上であれば、乳化重合を安定に行うことができる。また、界面活性剤の量が10質量部以下であれば、電池への影響を小さくすることができる。
-重合開始剤-
 また、重合反応に際しては、通常、重合開始剤を用いる。この重合開始剤としては、所望の粒子状ポリマーが得られる限り、任意のものを用いることができ、例えば、過硫酸ナトリウム(NaPS)、過硫酸アンモニウム(APS)、過硫酸カリウム(KPS)、などが挙げられる。なお、上述した重合開始剤は、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、得られる全固体二次電池のサイクル特性の低下を抑制することができる点で、過硫酸ナトリウム、過硫酸カリウムが好ましく、過硫酸カリウムがより好ましい。
-連鎖移動剤(分子量調整剤)-
 また、重合反応に際しては、その重合系には、連鎖移動剤(分子量調整剤)が含まれていてもよい。連鎖移動剤(分子量調整剤)としては、例えば、n-ヘキシルメルカプタン、n-オクチルメルカプタン、t-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ステアリルメルカプタン等のアルキルメルカプタン;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物;ターピノレン;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のフェノール系化合物;アリルアルコール等のアリル化合物;ジクロロメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物;チオグリコール酸、チオリンゴ酸、2-エチルヘキシルチオグリコレート等のチオ化合物;ジフェニルエチレン;α-メチルスチレンダイマー;などが挙げられる。なお、上述した分子量調整剤または連鎖移動剤は、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
<不飽和酸金属モノマー>
 不飽和酸金属モノマーとしては、2価の金属を有する限り、特に制限はなく、例えば、ジメタクリル酸カルシウム、ジメタクリル酸マグネシウム、ジメタクリル酸銅、ジメタクリル酸亜鉛、ジアクリル酸カルシウム、ジアクリル酸マグネシウム、ジアクリル酸銅、ジアクリル酸亜鉛、等の(メタ)アクリル酸金属モノマー、などが挙げられる。
 なお、上述した不飽和酸金属モノマーは、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、水溶性である点で、ジアクリル酸マグネシウム、ジアクリル酸銅が好ましく、ジアクリル酸マグネシウムがより好ましい。
 不飽和酸金属モノマーにおける二重結合の数は、2以上であることが好ましく、2であることがより好ましい。
 なお、不飽和酸金属モノマーを添加することにより、重合体の分散安定性を低下させずに、重合体の表面を架橋することができると推定される。
 上述した不飽和酸金属モノマーの含有割合は、重合体100質量部に対し、0.01質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、0.3質量部以上であることが特に好ましく、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、4質量部以下であることが特に好ましく、3質量部以下であることが最も好ましい。不飽和酸金属モノマーの含有割合が、重合体100質量部に対し、0.01質量部以上であれば、不飽和酸金属モノマーを添加する効果(全固体二次電池用スラリー組成物の固形分濃度を上げることができるという効果)を得ることができる。また、不飽和酸金属モノマーの含有割合が、重合体100質量部に対し、10質量部以下であれば、ポリマー粒子表面の架橋構造の生成により、重合体の粒子同士が凝集すること(バインダー凝集)を抑制することができる。
<溶媒>
 本発明の全固体二次電池用バインダー組成物に含まれる溶媒としては、特に制限はなく、例えば、沸点が100℃以上250℃以下の有機溶媒が好適に挙げられる。
 沸点が100℃以上250℃以下の有機溶媒としては、例えば、トルエン(沸点:111℃)、キシレン(沸点:144℃)等の芳香族炭化水素類;シクロペンチルメチルエーテル(沸点:106℃)等のエーテル類;酢酸ブチル(沸点:126℃)、酪酸ブチル(沸点:164℃)等のエステル類;などが好適に挙げられる。
 沸点が250℃超の有機溶媒の場合、電極等を製造する際の乾燥工程に必要な温度が立高くなるため、装置が大型になる等の問題がある。
 なお、上述した沸点が100℃以上250℃以下の有機溶媒は、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、入手が容易である点で、キシレンが好ましい。
 また、上述した水から有機溶媒への溶媒交換における有機溶媒として、上記にて例示した沸点が100℃以上250℃以下の有機溶媒を用いることが好ましい。
 本発明の全固体二次電池用バインダー組成物を用いると、全固体二次電池の製造の際のプロセス性に優れ、良好な電池特性を有する全固体二次電池を得ることができる。
(全固体二次電池用スラリー組成物)
 本発明の全固体二次電池用スラリー組成物は、上述した本発明の全固体二次電池用バインダー組成物と、固体電解質とを含む。
 本発明の全固体二次電池用スラリー組成物の固形分濃度としては、40質量%以上であることが好ましく、55質量%以上であることがより好ましく、60質量%以上であることが特に好ましく、62質量%以上であることが最も好ましく、70質量%以下であることが好ましく、65質量%以下であることがより好ましい。全固体二次電池用スラリー組成物の固形分濃度が40質量%以上であれば、塗工乾燥するプロセスを容易にしたり、乾燥時間を短縮したり、乾燥に必要な熱量を低減したりすることができ、ひいては、全固体二次電池の製造の際のプロセス性を向上させることができる。
<固体電解質>
 固体電解質は、通常、粉砕工程を経たものを用いるため粒子状である。ここで、粒子状とは、完全な球形ではなく不定形である。
 固体電解質粒子の大きさは、一般に、レーザー光を粒子に照射し散乱光を測定する方法などにより、平均粒子径として測定される。この場合の粒子径は、粒子の形状を球形と仮定した値である。複数の粒子をまとめて測定した場合、相当する粒子径の粒子の存在割合を粒度分布として表すことができる。
 固体電解質粒子の平均粒子径は、固体二次電池用スラリー組成物の分散性および塗工性の観点から、0.3μm以上であることが好ましく、0.5μm以上であることがより好ましく、1.0μm以上であることが特に好ましく、また、1.3μm以下であることが好ましく、1.2μm以下であることがより好ましい。なお、固体電解質粒子の平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる個数平均粒子径である。
 固体電解質としては、特に制限はなく、例えば、結晶性の無機リチウムイオン伝導体、非晶性の無機リチウムイオン伝導体、などが好適に挙げられる。
 なお、上述した固体電解質は、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、導電性の点で、非晶性の無機リチウムイオン伝導体が好ましい。
[結晶性の無機リチウムイオン伝導体]
 結晶性の無機リチウムイオン伝導体としては、特に制限はなく、例えば、LiN、LISICON(Li14Zn(GeO)、ペロブスカイト型Li0.5La0.5TiO、ガーネット型LiLaZr10、LIPON(Li3+yPO4-x)、Thio-LISICON(Li3.25Ge0.250.75)、などが挙げられる。
[非晶性の無機リチウムイオン伝導体]
 非晶性の無機リチウムイオン伝導体は、特に制限はなく、ガラスLi-Si-S-O、Li-P-S、などが挙げられる。
 これらの中でも、導電性の点で、S(硫黄原子)を含有し、且つ、イオン伝導性を有するもの(硫化物固体電解質材料)が好ましい。
 ここで、本発明の全固体二次電池用バインダー組成物が用いられる全固体二次電池が全固体リチウム二次電池である場合、硫化物固体電解質材料としては、LiおよびPを含む非晶性の硫化物が好ましく、LiSと第13族~第15族の元素の硫化物とを含有する原料組成物がより好ましい。このような原料組成物を用いて硫化物固体電解質材料を合成する方法としては、例えば、メカニカルミリング法、溶融急冷法等の非晶質化法を挙げることができる。これらの中でも、常温での処理が可能になり、製造工程の簡略化を図ることができる点で、メカニカルミリング法が好ましい。
 LiおよびPを含む非晶性の硫化物は、リチウムイオン伝導性が高いため、無機固体電解質として用いることで電池の内部抵抗を低下させることができると共に、出力特性を向上させることができる。
 LiおよびPを含む非晶性の硫化物は、電池の内部抵抗低下および出力特性向上という観点から、LiSとPとからなる硫化物ガラスであることが好ましく、LiS:Pのモル比が65:35~85:15であるLiSとPとの混合原料から製造された硫化物ガラスであることがより好ましい。また、LiおよびPを含む非晶性の硫化物は、LiS:Pのモル比が65:35~85:15のLiSとPとの混合原料をメカノケミカル法によって反応させて得られる硫化物ガラスセラミックスであることが好ましい。なお、リチウムイオン伝導度を高い状態で維持する観点からは、混合原料は、LiS:Pのモル比が68:32~80:20であることが好ましい。
 第13族~第15族の元素の硫化物としては、例えば、Al、SiS、GeS、P、P、As、Sb、などが挙げられる。
 なお、上述した第13族~第15族の元素の硫化物は、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、電池の内部抵抗低下および出力特性向上という観点から、第14族または第15族の硫化物が好ましく、Pがより好ましい。
[[硫化物固体電解質材料]]
 LiSと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなる硫化物固体電解質材料しては、例えば、LiS-P材料、LiS-SiS材料、LiS-GeS材料、LiS-Al材料、などが挙げられる。
 これらの中でも、Liイオン伝導性が優れている点で、LiS-P材料が好ましい。
 なお、硫化物固体電解質材料は、イオン伝導性を低下させない程度において、上記LiS、Pの他に出発原料としてAl、BおよびSiSからなる群より選ばれる少なくとも1種の硫化物を含んでいてもよい。かかる硫化物を加えると、硫化物固体電解質材料中のガラス成分を安定化させることができる。
 同様に、硫化物固体電解質材料は、LiSおよびPに加え、LiPO、LiSiO、LiGeO、LiBOおよびLiAlOからなる群より選ばれる少なくとも1種のオルトオキソ酸リチウムを含んでいてもよい。かかるオルトオキソ酸リチウムを含ませると、硫化物固体電解質材料中のガラス成分を安定化させることができる。
 LiS-P材料、LiS-SiS材料、LiS-GeS材料、LiS-Al材料等の硫化物固体電解質材料におけるLiSのモル分率は、より確実に架橋硫黄を有する硫化物固体電解質材料を得ることができる観点から、50%以上であることが好ましく、60%以上であることがより好ましく、74%以下であることが好ましい。
 また、硫化物固体電解質材料は、イオン伝導性を高くすることができる観点から、架橋硫黄を有することが好ましい。ここで、「架橋硫黄を有する」ことは、例えば、ラマン分光スペクトルによる測定結果、原料組成比、NMRによる測定結果、などから判断することができる。
 なお、硫化物固体電解質材料が架橋硫黄を有する場合、通常、正極活物質との反応性が高く、高抵抗層が生じやすい。しかしながら、全固体二次電池用バインダー組成物は、通常、芳香族ビニル化合物単量体単位と共役ジエン化合物単量体単位を含む共重合体を含むため、高抵抗層の発生を抑制できるという本発明の効果を充分に発揮することができる。
 また、硫化物固体電解質材料は、硫化物ガラスであってもよく、その硫化物ガラスを熱処理して得られる結晶化硫化物ガラスであってもよい。ここで、「硫化物ガラス」は、例えば、上述した非晶質化法により得ることができる。結晶化硫化物ガラスは、例えば、硫化物ガラスを熱処理することにより得ることができる。
 結晶化硫化物ガラスは、Liイオン伝導性の点で、Li11で表されることが好ましい。ここで、Li11を合成する方法としては、例えば、LiSおよびPを、モル比70:30で混合し、ボールミルで非晶質化することで、硫化物ガラスを合成し、得られた硫化物ガラスを150℃~360℃で熱処理することにより、Li11を合成することができる。
(全固体二次電池用機能層)
 本発明の全固体二次電池用機能層は、上述した本発明の全固体二次電池用スラリー組成物を用いて形成され、正極活物質層、負極活物質層、および固体電解質層の少なくとも一層、好ましくは、全ての層を意味する。
 本発明の全固体二次電池用機能層は、例えば、上述した本発明の全固体二次電池用スラリー組成物を、後述する正極活物質層または負極活物質層の上に塗布し、乾燥することにより形成される固体電解質層である。
(全固体二次電池)
 本発明の全固体二次電池は、上述した本発明の全固体二次電池用機能層を備える。即ち、本発明の全固体二次電池は、本発明の全固体二次電池用バインダー組成物を用いて、正極活物質層、負極活物質層、および固体電解質層の少なくとも一層、好ましくは、全ての層を形成することにより、得られる。ここで、本発明の全固体二次電池は、通常、正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に形成された固体電解質層とを有する。正極は集電体上に正極活物質層を有し、負極は集電体上に負極活物質層を有する。以下、固体電解質層、正極活物質層、および負極活物質層について説明する。
<固体電解質層>
 本発明の全固体二次電池用機能層が固体電解質層である場合、固体電解質層は、固体電解質層用スラリー組成物を、後述する集電体の表面に塗布し、乾燥することにより形成される。固体電解質層用スラリー組成物は、固体電解質、固体電解質層用バインダー(重合体)、2価の金属を有する不飽和酸金属モノマー、有機溶媒、および、必要に応じて添加される他の成分を混合することにより製造される。
 本発明の全固体二次電池用機能層が固体電解質層でない場合、固体電解質層としては、特に限定されることなく、例えば、特開2012-243476号公報、特開2013-143299号公報および特開2016-143614号公報に記載の任意の固体電解質層を用いることができる。
[固体電解質]
 固体電解質は、全固体二次電池用スラリー組成物において例示したものと同じものを用いることができる。
[固体電解質層用バインダー]
 固体電解質層用バインダーは、固体電解質を結着して固体電解質層を形成するために用いられる。固体電解質層用バインダーとしては、全固体二次電池用バインダー組成物を構成する重合体を含んでいてもよい。
[不飽和酸金属モノマー]
 不飽和酸金属モノマーは、全固体二次電池用バインダー組成物において例示したものと同じものを用いることができる。
[有機溶媒]
 有機溶媒は、上記の全固体二次電池用バインダー組成物で例示した「沸点が100℃以上250℃以下の有機溶媒」を好適に用いることができる。
[他の成分]
 固体電解質層用スラリー組成物は、上記成分(固体電解質、固体電解質層用バインダー、不飽和酸金属モノマー、および有機溶媒)の他に、必要に応じて添加される他の成分として、導電剤、補強材、等の各種の機能を発現する添加剤を含んでいてもよい。これらは、電池反応に影響を及ぼさないものであれば、特に制限はない。
[[導電剤]]
 導電剤としては、導電性を付与できるものであれば、特に制限はなく、通常、アセチレンブラック、カーボンブラック、黒鉛等の炭素粉末;各種金属のファイバー;各種金属の箔;などが挙げられる。
[[補強材]]
 補強材としては、球状、板状、棒状または繊維状の無機フィラーまたは有機フィラーを使用することができる。
[[非導電性粒子]]
 非導電性粒子としては、特に制限はなく、無機粒子および有機粒子を使用することができる。
 無機粒子としては、例えば、酸化アルミニウム(アルミナ)、酸化珪素、酸化マグネシウム、酸化チタン、BaTiO、ZrO、アルミナ-シリ力複合酸化物等の酸化物粒子;窒化アルミニウム、窒化硼素等の窒化物粒子;シリコン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイトなどの粘土微粒子;などが挙げられる。
 有機粒子としては、例えば、ポリエチレン、ポリスチレン、ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、ポリアミド、ポリアミドイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物等の各種架橋高分子粒子;ポリスルフォン、ポリアクリロニトリル、ポリアラミド、ポリアセタール、熱可塑性ポリイミド等の耐熱性高分子粒子;などが挙げられる。
<正極活物質層>
 本発明の全固体二次電池用機能層が正極活物質層である場合、正極活物質層は、正極活物質層用スラリー組成物を、後述する集電体の表面に塗布し、乾燥することにより形成される。正極活物質層用スラリー組成物は、正極活物質、固体電解質、正極用バインダー(重合体)、2価の金属を有する不飽和酸金属モノマー、有機溶媒、および、必要に応じて添加される他の成分を混合することにより製造される。
 本発明の全固体二次電池用機能層が正極活物質層でない場合、正極活物質層は、特に制限はなく、例えば、特開2016-181471号公報、特開2016-181472号公報に記載の任意の正極活物質層を用いることができる。
[正極活物質]
 正極活物質は、リチウムイオンを吸蔵および放出可能な化合物である。正極活物質としては、無機化合物からなる正極活物質、有機化合物からなる正極活物質、無機化合物と有機化合物との混合物、が挙げられる。
 正極活物質の平均粒子径は、(i)負荷特性、充放電サイクル特性、充放電容量等の電池特性、(ii)正極活物質層用スラリー組成物の取扱い、(iii)正極を製造する際の取扱いの観点から、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、また、50μm以下であることが好ましく、20μm以下であることがより好ましい。なお、正極活物質の平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる個数平均粒子径である。
[[無機化合物からなる正極活物質]]
 無機化合物からなる正極活物質としては、(i)遷移金属酸化物、(ii)Fe、Co、Ni、Mn等の遷移金属とリチウムとの複合酸化物(リチウム含有複合金属酸化物)、(iii)遷移金属硫化物、などが挙げられる。
 上記(i)遷移金属酸化物としては、Cu、非晶質VO-P、MoO、V、V13、などが挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。
 上記(ii)リチウム含有複合金属酸化物としては、LiCoO(コバルト酸リチウム)、LiNiO、LiMnO、LiMn、LiFePO、LiFeVO、などが挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。
 上記(iii)遷移金属硫化物としては、TiS、TiS、非晶質MoS、などが挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。
[[有機化合物からなる正極活物質]]
 有機化合物からなる正極活物質としては、例えば、ポリアニリン、ポリピロール、ポリアセン、ジスルフィド系化合物、ポリスルフィド系化合物、N-フルオロピリジニウム塩、などが挙げられる。
[固体電解質]
 固体電解質は、全固体二次電池用スラリー組成物において例示したものと同じものを用いることができる。
 正極活物質と固体電解質との質量比率(正極活物質:固体電解質)は、90:10~50:50であることが好ましく、80:20~60:40であることがより好ましい。正極活物質と固体電解質との質量比率が上記範囲内であると、正極活物質の質量比率が少な過ぎるために、電池内の正極活物質の質量が低減して、電池としての容量低下につながる、という現象を抑えることができ、また、固体電解質の質量比率が少なすぎるために、導電性が十分に得られず正極活物質を有効に利用することができずに、電池としての容量低下につながる、という現象を抑えることができる。
[正極用バインダー]
 正極用バインダーは、正極活物質および固体電解質を結着して正極活物質層を形成するために用いられる。正極用バインダーとしては、全固体二次電池用バインダー組成物を構成する重合体を含んでいればよい。
 正極活物質層用スラリー組成物中における正極用バインダーの含有量は、電池反応を阻害せずに、電極から正極活物質が脱落するのを防ぐことができる観点から、固形分相当で正極活物質100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましく、また、5質量部以下が好ましく、4質量部以下がより好ましい。
[不飽和酸金属モノマー]
 不飽和酸金属モノマーは、全固体二次電池用バインダー組成物において例示したものと同じものを用いることができる。
[有機溶媒]
 有機溶媒は、上記の全固体二次電池用バインダー組成物で例示した「沸点が100℃以上250℃以下の有機溶媒」を好適に用いることができる。
 正極活物質層用スラリー組成物中における有機溶媒の含有量は、固体電解質の分散性を保持しながら、良好な塗料特性を得ることができる観点から、正極活物質100質量部に対して、20質量部以上が好ましく、30質量部以上がより好ましく、また、80質量部以下が好ましく、70質量部以下がより好ましい。
[他の成分]
 正極活物質層用スラリー組成物は、上記成分(正極活物質、固体電解質、正極用バインダー、不飽和酸金属モノマー、および有機溶媒)の他に、必要に応じて添加される他の成分として、上述の導電剤、上述の補強材、上述の非導電性粒子等の各種の機能を発現する添加剤を含んでいてもよい。これらは、電池反応に影響を及ぼさないものであれば、特に制限はない。
<負極活物質層>
 本発明の全固体二次電池用機能層が負極活物質層である場合、負極活物質層は、負極活物質層用スラリー組成物を、後述する集電体の表面に塗布し、乾燥することにより形成される。負極活物質層用スラリー組成物は、負極活物質、固体電解質、負極用バインダー、2価の金属を有する不飽和酸金属モノマー、有機溶媒、および、必要に応じて添加される他の成分を混合することにより製造される。
 本発明の全固体二次電池用機能層が負極活物質層でない場合、負極活物質層は、特に制限はなく、例えば、特開2016-181471号公報、特開2016-181472号公報に記載の任意の負極活物質層を用いることができる。
[負極活物質]
 負極活物質としては、グラファイト、コークス等の炭素同素体;ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の酸化物または硫酸塩;金属リチウム;Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金;リチウム遷移金属窒化物;シリコン;などが挙げられる。負極活物質が炭素同素体からなる場合は、金属、金属塩、酸化物等との混合体、被覆体の形態であってもよい。また、負極活物質が金属材料である場合は、金属箔または金属板をそのまま電極として用いてもよく、また、粒子状であってもよい。
 負極活物質が粒子状の場合、負極活物質の平均粒子径は、初期効率、負荷特性、充放電サイクル特性等の電池特性の向上の観点から、1μm以上であることが好ましく、15μm以上であることがより好ましく、50μm以下であることが好ましく、30μm以下であることがより好ましい。なお、負極活物質の平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる個数平均粒子径である。
[固体電解質]
 固体電解質は、全固体二次電池用スラリー組成物において例示したものと同じものを用いることができる。
 負極活物質と固体電解質との質量比率(負極活物質:固体電解質)は、90:10~50:50であることが好ましく、80:20~60:40であることがより好ましい。負極活物質と固体電解質との質量比率が上記範囲内であると、負極活物質の質量比率が少な過ぎるために、電池内の負極活物質の質量が低減し、電池としての容量低下につながる、という現象を抑えることができ、また、固体電解質の質量比率が少なすぎるために、導電性が十分に得られず負極活物質を有効に利用することができずに、電池としての容量低下につながる、という現象を抑えることができる。
[負極用バインダー]
 負極用バインダーは、負極活物質および固体電解質を結着して負極活物質層を形成するために用いられる。負極用バインダーとしては、全固体二次電池用バインダー組成物を構成する重合体を含んでいればよい。
 負極活物質層用スラリー組成物中における負極用バインダーの含有量は、電池反応を阻害せずに、電極から負極活物質が脱落するのを防ぐことができる観点から、固形分相当で負極活物質100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましく、5質量部以下が好ましく、4質量部以下がより好ましい。
[不飽和酸金属モノマー]
 不飽和酸金属モノマーは、全固体二次電池用バインダー組成物において例示したものと同じものを用いることができる。
[有機溶媒]
 有機溶媒は、上記の全固体二次電池用バインダー組成物で例示した「沸点が100℃以上250℃以下の有機溶媒」を好適に用いることができる。
[他の成分]
 負極活物質層用スラリー組成物は、上記成分(負極活物質、固体電解質、負極用バインダー、不飽和酸金属モノマー、および有機溶媒)の他に、必要に応じて添加される他の成分として、上述の導電剤、上述の補強材、上述の非導電性粒子等の各種の機能を発現する添加剤を含んでいてもよい。これらは、電池反応に影響を及ぼさないものであれば、特に制限はない。
[集電体]
 正極活物質層および負極活物質層の形成に用いる集電体としては、電気導電性を有し、且つ、電気化学的に耐久性のある材料からなる集電体であれば、特に制限はないが、耐熱性の観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金等の金属材料からなる集電体、が好適に挙げられる。なお、上述した金属材料は、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、正極用集電体としてはアルミニウムからなる集電体が特に好ましく、負極用集電体としては銅からなる集電体が特に好ましい。
 集電体の形状としては、特に制限はないが、厚さ0.001mm~0.5mm程度のシート状のものが好ましい。集電体は、上述した正極活物質層/負極活物質層との接着強度を高めるため、予め粗面化処理して使用することが好ましい。粗面化処理方法としては、機械的研磨法、電解研磨法、化学研磨法、などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線等を備えたワイヤーブラシ、などが使用される。また、集電体と正極活物質層/負極活物質層との接着強度や導電性を高めるために、集電体の表面に、導電性接着剤層等の中間層を形成してもよい。
 上記の各スラリー組成物(固体電解質層用スラリー組成物、正極活物質層用スラリー組成物および負極活物質層用スラリー組成物)の混合法としては、特に制限はなく、例えば、撹拌式、振とう式、回転式等の混合装置を使用した方法が挙げられる。
 また、上記の各スラリー組成物の混合法としては、ホモジナイザー、ボールミル、ビーズミル、プラネタリーミキサー、サンドミル、ロールミル、遊星式混練機等の分散混練装置を使用した方法が挙げられる。これらの中でも、固体電解質の凝集抑制の観点から、プラネタリーミキサー、ボールミル、ビーズミル、を使用した方法が好ましい。
<全固体二次電池の製造>
 全固体二次電池における正極は、集電体上に正極活物質層を形成することにより得られる。ここで、正極活物質層は、上述した正極活物質層用スラリー組成物を集電体上に塗布、乾燥することにより形成される。
 また、全固体二次電池における負極は、負極活物質が金属箔又は金属板である場合にはそのまま負極として用いてもよい。また、負極活物質が粒子状である場合には、正極の集電体とは別の集電体上に負極活物質層を形成することにより得られる。ここで、負極活物質層は、上記の負極活物質層用スラリー組成物を正極の集電体とは別の集電体上に塗布、乾燥することにより形成される。
 次いで、形成した正極活物質層または負極活物質層の上に、固体電解質層用スラリー組成物を塗布し、乾燥して固体電解質層を形成する。そして、固体電解質層を形成しなかった電極と、固体電解質層を形成した電極とを貼り合わせることで、全固体二次電池素子を製造する。
 電極活物質層用スラリー組成物の集電体への塗布方法としては、特に制限はなく、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り、などが挙げられる。
 電極活物質層用スラリー組成物の塗布量としては、特に制限はないが、有機溶媒を除去した後に形成される活物質層の厚さが、通常、5μm~300μm、好ましくは10μm~250μmになる程度の量である。
 電極活物質層用スラリー組成物の乾燥方法としては、特に制限がなく、例えば、(i)温風、熱風、低湿風等による乾燥、(ii)真空乾燥、(iii)(遠)赤外線、電子線等の照射による乾燥、などが挙げられる。乾燥条件は、通常は、応力集中が起こって電極活物質層に亀裂が入ったり、電極活物質層が集電体から剥離しない程度の速度範囲の中で、できるだけ早く、有機溶媒が揮発するように調整する。
 さらに、乾燥後の電極をプレスすることにより電極を安定させてもよい。プレス方法は、金型プレス、カレンダープレス等の方法が挙げられるが、限定されるものではない。
 乾燥温度は、有機溶媒が十分に揮発する温度である。具体的には、正極用バインダーおよび負極用バインダーが熱分解することなく、良好な活物質層を形成する観点から、50℃以上が好ましく、80℃以上がより好ましく、250℃以下が好ましく、200℃以下がより好ましい。乾燥時間としては、特に制限はないが、通常、10分間以上であり、60分間以下である。
 固体電解質層用スラリー組成物を正極活物質層又は負極活物質層へ塗布する方法としては、特に制限はなく、上述した電極活物質層用スラリー組成物の集電体への塗布方法と同様の方法により行うことができるが、固体電解質層の薄膜化の観点からは、グラビア法が好ましい。
 固体電解質層用スラリー組成物の塗布量としては、特に制限はないが、有機溶媒を除去した後に形成される固体電解質層の厚さが、通常、2μm~20μm、好ましくは3μm~15μmになる程度の量である。
 固体電解質層用スラリー組成物の乾燥方法、乾燥条件及び乾燥温度としては、上述の電極活物質層用スラリー組成物の乾燥方法と同様である。
 さらに、固体電解質層を形成した電極と固体電解質層を形成しなかった電極とを貼り合わせた積層体を、加圧してもよい。
 加圧方法としては、特に制限はなく、例えば、平板プレス、ロールプレス、CIP(Cold Isostatic Press)、などが挙げられる。
 加圧プレスする圧力としては、電極と固体電解質層との各界面における抵抗、さらには各層内の粒子間の接触抵抗が低くして、良好な電池特性を得る観点から、5MPa以上であることが好ましく、7MPa以上であることがより好ましく、700MPa以下であることが好ましく、500MPa以下であることがより好ましい。
 正極活物質層および負極活物質層のいずれかに固体電解質層用スラリー組成物を塗布するかについては、特に制限はないが、電極活物質の粒子径が大きい方の活物質層に固体電解質層用スラリー組成物を塗布することが好ましい。電極活物質の粒子径が大きいと、活物質層表面に凹凸が形成されるため、固体電解質層用スラリー組成物を塗布することで、電極活物質層表面の凹凸を緩和することができる。そのため、固体電解質層を形成した電極と、固体電解質層を形成しなかった電極とを貼り合わせて積層する際に、固体電解質層と電極との接触面積が大きくなり、界面抵抗を抑制することができる。
 上述したようにして得られた全固体二次電池素子を、電池形状に応じて、そのままの状態、または、巻く、折るなどして電池容器に入れ、封口して全固体二次電池が得られる。
 また、必要に応じて、エキスパンドメタル;ヒューズ;PTC素子等の過電流防止素子;リード板;などを電池容器に入れ、電池内部の圧力上昇および過充放電の防止をすることもできる。
 全固体二次電池の形状は、コイン型、ボタン型、シート型、円筒型、角型、扁平型、などのいずれであってもよい。
 以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。なお、本実施例における部および%は、特記しない限り、質量基準である。実施例及び比較例において、「塗膜の外観の観察」、「プレス時のワレ・カケおよびプレス圧子の汚れの観察」、「抵抗値の測定」は、以下のように行った。
<塗膜の外観の観察>
 実施例および比較例で作製した全固体電解質層用スラリー組成物を厚さ14μmのアルミ箔の片面にギャップ200μmのコーターで塗布し、80℃のホットプレートで乾燥することにより、固体電解質層を形成し、これを試験片とした。
 得られた試験片表面のヒビの有無を目視で確認した。ヒビが確認されなかったものを「○」、ヒビが確認されたものを「×」として、結果を表1に示す。ヒビが発生した塗膜を固体電解質層として用いた全固体二次電池は、電池性能に劣ることが想定される。
<プレス時のワレ・カケおよびプレス圧子の汚れの観察>
 実施例および比較例で作製した固体電解質層用スラリー組成物を厚さ14μmのアルミ箔の片面にギャップ200μmのコーターで塗布し、80℃のホットプレートで乾燥することにより、固体電解質層を形成し、これを試験片とした。この試験片を直径10mmの金属パンチで打ち抜いた。この時、試験片にワレや端部にカケの発生の有無を調べた。
 ワレ・カケが発生しなかったものを、プレス機で2MPaの圧力で圧密化する。プレス処理の際に圧子として用いた金属丸棒の端面を観察した。表面に固体電解質が付着したり、バインダーポリマーが残存する等により、汚れが発生していないことを目視で確認した。汚れが付着しないものはプロセス性に優れていることを示す。
 20個中で1個も汚れが確認できなかったものを「○」、汚れが確認できたものを「×」として、結果を表1に示す。
<抵抗値の測定>
 実施例および比較例で作製した固体電解質層用スラリー組成物を厚さ14μmのアルミ箔の片面にギャップ200μmのコーターで塗布し、80℃のホットプレートで乾燥することにより、固体電解質層を形成し、次いで同じアルミ箔で挟みこの試験片を直径10mmの金属パンチで打ち抜いた後、プレス機で2MPaの圧力で圧密化する。プレス処理に用い実施例および比較例にて作製した固体電解質層の抵抗値を、インピーダンスメーターを用いて測定し、ナイキストプロットから抵抗値を算出した。結果を表1に示す。抵抗値の値が小さいほど、電池性能が良好な全固体二次電池が得られることを示す。
(実施例1)
<全固体二次電池用バインダー組成物の調製>
 攪拌機付き反応器に、2-エチルヘキシルアクリレート59部、スチレン20部、ブチルアクリレート20部、架橋剤としてのエチレングリコールジメタクリレート(EGDMA)1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム(DBS)1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム(KPS)0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子状ポリマーの水分散液を得た。
 次いで、得られた水分散液を10wt%のNaOH水溶液を用いてpHを7に調整した。
 なお、得られた粒子状ポリマーのガラス転移温度を以下のように測定した。
<<粒子状ポリマーのガラス転移温度の測定>>
 調製した粒子状ポリマーの水分散液を測定試料として、測定試料10mgをアルミパンに計量し、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製「EXSTAR DSC6220」)にて、測定温度範囲-100℃~500℃の間で、昇温速度10℃/分で、JIS Z 8703に規定された条件下で測定を実施し、示差走査熱量分析(DSC)曲線を得た。なお、リファレンスとして空のアルミパンを用いた。この昇温過程で、微分信号(DDSC)が0.05mW/分/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点を、ガラス転移温度(℃)として求めた。
 pHを7に調整したポリマーの水分散液に対しては、未反応単量体を除去するため加熱減圧処理を行った後、イオン交換水を添加し、固形分濃度を30wt%に調整した。
 得られたポリマー水分散液50gに、不飽和酸金属モノマーとしてのジアクリル酸マグネシウム(アルドリッチ社試薬)の1質量%の水溶液を、撹拌しながら10g添加した。
 次いで、キシレン500gを添加し、エバポレーターで80℃に加熱しながら水を除去して、水分量82ppmの全固体二次電池用バインダー組成物(固形分濃度7質量%)を調製した。
 なお、全固体二次電池用バインダー組成物におけるジアクリル酸マグネシウムの含有割合は、粒子状ポリマー100質量部に対し、0.67(=10×0.01×(100/(50×0.3)))質量部であった。
<全固体二次電池用スラリー組成物の調製>
 アルゴンガス雰囲気下のグローブボックス(水分濃度0.6ppm、酸素濃度1.8ppm)で、固体電解質粒子としてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、個数平均粒子径:1.2μm、累積90%の粒子径:2.1μm)100部と、全固体二次電池用バインダー組成物を固形分相当で2部とを混合し、さらに、有機溶媒としてのキシレンを加えて、固形分濃度65質量%に調整した後にプラネタリーミキサーで混合して固体電解質層用スラリー組成物(全固体二次電池用スラリー組成物)を調製した。
 さらに、固体電解質層用スラリー組成物(全固体二次電池用スラリー組成物)は、固形分濃度が65質量%であった。
 塗膜を作製し、外観を観察した後、直径10mmに打ち抜き、プレス時のワレ・カケおよびプレス圧子の汚れを観察した後、抵抗値の測定を行った。結果を表1に示す。
(実施例2)
 実施例1において、ジアクリル酸マグネシウムの1質量%の水溶液の添加量を、10gから300gに変更したこと以外は、実施例1と同様に、粒子状ポリマーのガラス転移温度の測定、全固体二次電池用バインダー組成物の調製、全固体二次電池用スラリー組成物の調製、塗膜の外観観察、プレス時のワレ・カケおよびプレス圧子の汚れの観察、および抵抗値の測定を行った。結果を表1に示す。
 なお、全固体二次電池用バインダー組成物は、水分量が74ppmであり、固形分濃度が7質量%であった。
 また、全固体二次電池用バインダー組成物におけるジアクリル酸マグネシウムの含有割合は、粒子状ポリマー100質量部に対し、20(=300×0.01×(100/(50×0.3)))質量部であった。
 さらに、固体電解質層用スラリー組成物は、固形分濃度が62質量%であった。
(実施例3)
 攪拌機付き反応器に、2-エチルヘキシルアクリレート49部、スチレン20部、ブチルアクリレート15部、アクリロニトリル15部、架橋剤としてのエチレングリコールジメタクリレート(EGDMA)1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム(DBS)1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム(KPS)0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子状ポリマーの水分散液を得た。
 以下、実施例1と同様に、粒子状ポリマーのガラス転移温度の測定、全固体二次電池用バインダー組成物の調製、全固体二次電池用スラリー組成物の調製、塗膜の外観観察、プレス時のワレ・カケおよびプレス圧子の汚れの観察、および抵抗値の測定を行った。結果を表1に示す。
 なお、全固体二次電池用バインダー組成物は、水分量が66ppmであり、固形分濃度が6.2質量%であった。
 また、全固体二次電池用バインダー組成物におけるジアクリル酸マグネシウムの含有割合は、粒子状ポリマー100質量部に対し、0.67(=10×0.01×(100/(50×0.3)))質量部であった。
 さらに、固体電解質層用スラリー組成物(全固体二次電池用スラリー組成物)は、固形分濃度が62質量%であった。
(実施例4)
 攪拌機付き耐圧反応器に、1,2-ブタジエン59部、スチレン30部、ブチルアクリレート10部、架橋剤としてのエチレングリコールジメタクリレート(EGDMA)1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム(DBS)1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム(KPS)0.5部を添加し、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子状ポリマーの水分散液を得た。
 以下、実施例1と同様に、粒子状ポリマーのガラス転移温度の測定、全固体二次電池用バインダー組成物の調製、全固体二次電池用スラリー組成物の調製、塗膜の外観観察、プレス時のワレ・カケおよびプレス圧子の汚れの観察、および抵抗値の測定を行った。結果を表1に示す。
 なお、全固体二次電池用バインダー組成物は、水分量が95ppmであり、固形分濃度が5.6質量%であった。
 また、全固体二次電池用バインダー組成物におけるジアクリル酸マグネシウムの含有割合は、粒子状ポリマー100質量部に対し、0.67(=10×0.01×(100/(50×0.3)))質量部であった。
 さらに、固体電解質層用スラリー組成物は、固形分濃度が62質量%であった。
(実施例5)
 実施例1において、ジアクリル酸マグネシウムの1質量%の水溶液を添加する代わりに、ジアクリル酸銅の1質量%の水溶液を添加したこと以外は、実施例1と同様に、粒子状ポリマーのガラス転移温度の測定、全固体二次電池用バインダー組成物の調製、全固体二次電池用スラリー組成物の調製、塗膜の外観観察、プレス時のワレ・カケおよびプレス圧子の汚れの観察、および抵抗値の測定を行った。結果を表1に示す。
 なお、全固体二次電池用バインダー組成物は、水分量が90ppmであり、固形分濃度が6.6質量%であった。
 また、全固体二次電池用バインダー組成物におけるジアクリル酸銅の含有割合は、粒子状ポリマー100質量部に対し、0.67(=10×0.01×(100/(50×0.3)))質量部であった。
 さらに、固体電解質層用スラリー組成物は、固形分濃度が65質量%であった。
(実施例6)
 実施例3において、ジアクリル酸マグネシウムの1質量%の水溶液の添加量を、10gから30gに変更したこと以外は、実施例3と同様に、粒子状ポリマーのガラス転移温度の測定、全固体二次電池用バインダー組成物の調製、全固体二次電池用スラリー組成物の調製、塗膜の外観観察、プレス時のワレ・カケおよびプレス圧子の汚れの観察、および抵抗値の測定を行った。結果を表1に示す。
 なお、全固体二次電池用バインダー組成物は、水分量が85ppmであり、固形分濃度が5.8質量%であった。
 また、全固体二次電池用バインダー組成物におけるジアクリル酸マグネシウムの含有割合は、粒子状ポリマー100質量部に対し、2(=30×0.01×(100/(50×0.3)))質量部であった。
 さらに、固体電解質層用スラリー組成物は、固形分濃度が60質量%であった。
(実施例7)
 実施例1において、ジアクリル酸マグネシウムの1質量%の水溶液の添加量を、10gから400gに変更したこと以外は、実施例1と同様に、粒子状ポリマーのガラス転移温度の測定、全固体二次電池用バインダー組成物の調製、全固体二次電池用スラリー組成物の調製、塗膜の外観観察、プレス時のワレ・カケおよびプレス圧子の汚れの観察、および抵抗値の測定を行った。結果を表1に示す。
 なお、全固体二次電池用バインダー組成物は、水分量が74ppmであり、固形分濃度が5.8質量%であった。
 また、全固体二次電池用バインダー組成物におけるジアクリル酸マグネシウムの含有割合は、粒子状ポリマー100質量部に対し、26.7(=400×0.01×(100/(50×0.3)))質量部であった。
 さらに、固体電解質層用スラリー組成物は、固形分濃度が65質量%であった。
(比較例1)
 実施例1と同様の固形分濃度30%の粒子状ポリマー分散液を調製し、該粒子状ポリマー分散液50gに、不飽和酸金属モノマー水溶液を添加しないで、キシレン500gを添加し、エバポレーターで80℃に加熱しながら水を除去して、水分量85ppmの全固体二次電池用バインダー組成物(固形分濃度7質量%)を調製した。
 調製された全固体二次電池用バインダー組成物を用いて、実施例1にと同様に、粒子状ポリマーのガラス転移温度の測定、全固体二次電池用スラリー組成物の調製、塗膜の外観観察、プレス時のワレ・カケおよびプレス圧子の汚れの観察、および抵抗値の測定を行った。結果を表1に示す。
 なお、塗膜の外観観察では、塗膜表面の一部にヒビが観察された。プレス時のワレ・カケの観察では、直径10mmの打ち抜き機で試験片を打ち抜いたところ、円周状の周囲の一部にカケが観察された。
 また、固体電解質層用スラリー組成物(全固体二次電池用スラリー組成物)は、固形分濃度が65質量%であった。
(比較例2)
 実施例1において、ジアクリル酸マグネシウムの1質量%の水溶液を添加する代わりに、アクリル酸ナトリウムの1質量%の水溶液を添加したこと以外は、実施例1と同様に、粒子状ポリマーのガラス転移温度の測定、全固体二次電池用バインダー組成物の調製、全固体二次電池用スラリー組成物の調製、塗膜の外観観察、プレス時のワレ・カケおよびプレス圧子の汚れの観察、および抵抗値の測定を行った。結果を表1に示す。
 なお、全固体二次電池用バインダー組成物は、水分量が77ppmであり、固形分濃度が5.2質量%であった。
 また、全固体二次電池用バインダー組成物におけるジアクリル酸マグネシウムの含有割合は、粒子状ポリマー100質量部に対し、0.67(=10×0.01×(100/(50×0.3)))質量部であった。
 さらに、固体電解質層用スラリー組成物は、固形分濃度が60質量%であった。
(比較例3)
 比較例1において、固体電解質層用スラリー組成物(全固体二次電池用スラリー組成物)の固形分濃度を、65質量%から30質量%に変更したこと以外は、比較例1と同様に、粒子状ポリマーのガラス転移温度の測定、全固体二次電池用バインダー組成物の調製、全固体二次電池用スラリー組成物の調製、塗膜の外観観察、プレス時のワレ・カケおよびプレス圧子の汚れの観察、および抵抗値の測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、実施例1~7と比較例1~3と比較することで、全固体二次電池用バインダー組成物が、(i)重合体、(ii)2価の金属を有する不飽和酸金属モノマー、および(iii)溶媒を含むことで、全固体二次電池の製造の際のプロセス性に優れ、良好な電池特性(低抵抗値)を有する全固体二次電池を得ることができることが分かった。
 表1における比較例1の結果から、不飽和酸金属モノマーを含まない二次電池用バインダー組成物を用いた場合、固体電解質層用スラリー組成物の固形分濃度が65質量%では、ゲル化してしまい平滑な塗膜を形成することができないことが分かった。
 表1における比較例2の結果から、不飽和酸金属モノマーにおける金属が1価である二次電池用バインダー組成物を用いた場合、固体電解質層用スラリー組成物の固形分濃度が60質量%では、ゲル化してしまい平滑な塗膜を形成することができないことが分かった。
 表1における比較例3の結果から、不飽和酸金属モノマーを含まない二次電池用バインダー組成物を用いた場合、固形分濃度を低濃度にしないと、固体電解質層用スラリー組成物(全固体二次電池用スラリー組成物)を作製することができない、即ち、全固体二次電池の製造の際のプロセス性が劣ることが分かった。
 本発明によれば、全固体二次電池の製造の際のプロセス性に優れ、良好な電池特性を有する全固体二次電池を得ることを可能とする全固体二次電池用バインダー組成物、該全固体二次電池用バインダー組成物を含む全固体二次電池用スラリー組成物、該全固体二次電池用スラリー組成物からなる全固体二次電池用機能層、および該全固体二次電池用機能層を備える全固体二次電池を得ることができる。

Claims (8)

  1.  重合体、不飽和酸金属モノマー、および溶媒を含み、
     前記不飽和酸金属モノマーが2価の金属を有する、全固体二次電池用バインダー組成物。
  2.  前記不飽和酸金属モノマーの含有割合が、前記重合体100質量部に対し、0.01質量部以上10質量部以下である、請求項1に記載の全固体二次電池用バインダー組成物。
  3.  前記2価の金属が、カルシウム、マグネシウム、銅および亜鉛から選択される少なくとも1種である、請求項1または2に記載の全固体二次電池用バインダー組成物。
  4.  前記不飽和酸金属モノマーが二重結合を2つ以上有する、請求項1~3のいずれか一項に記載の全固体二次電池用バインダー組成物。
  5.  前記不飽和酸金属モノマーが(メタ)アクリル酸金属モノマーである、請求項1~4のいずれか一項に記載の全固体二次電池用バインダー組成物。
  6.  請求項1~5のいずれか一項に記載の全固体二次電池用バインダー組成物と、固体電解質とを含む、全固体二次電池用スラリー組成物。
  7.  請求項6に記載の全固体二次電池用スラリー組成物からなる、全固体二次電池用機能層。
  8.  請求項7に記載の全固体二次電池用機能層を備える、全固体二次電池。
PCT/JP2018/044562 2017-12-15 2018-12-04 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池 WO2019116964A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207013839A KR20200097688A (ko) 2017-12-15 2018-12-04 전고체 이차 전지용 바인더 조성물, 전고체 이차 전지용 슬러리 조성물, 전고체 이차 전지용 기능층, 및 전고체 이차 전지
JP2019559565A JP7192791B2 (ja) 2017-12-15 2018-12-04 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池
US16/768,882 US11557766B2 (en) 2017-12-15 2018-12-04 Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery, functional layer for all-solid-state secondary battery, and all-solid-state secondary battery
CN201880077887.0A CN111433961B (zh) 2017-12-15 2018-12-04 全固体二次电池用粘结剂组合物、功能层和二次电池
EP18887412.7A EP3726634A4 (en) 2017-12-15 2018-12-04 COMPOSITION OF BINDER FOR FULLY SOLID SECONDARY BATTERY, COMPOSITION OF SLURRY FOR FULLY SOLID SECONDARY BATTERY, FUNCTIONAL LAYER FOR FULLY SOLID SECONDARY BATTERY, AND FULLY SOLID SECONDARY BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017240974 2017-12-15
JP2017-240974 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019116964A1 true WO2019116964A1 (ja) 2019-06-20

Family

ID=66820255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044562 WO2019116964A1 (ja) 2017-12-15 2018-12-04 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池

Country Status (6)

Country Link
US (1) US11557766B2 (ja)
EP (1) EP3726634A4 (ja)
JP (1) JP7192791B2 (ja)
KR (1) KR20200097688A (ja)
CN (1) CN111433961B (ja)
WO (1) WO2019116964A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029315A1 (ja) * 2019-08-09 2021-02-18 出光興産株式会社 固体電解質の製造方法
WO2021085141A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
WO2021157278A1 (ja) * 2020-02-07 2021-08-12 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151770A (ja) 1983-02-16 1984-08-30 Sanyo Electric Co Ltd 固体電解質電池
JP2003268053A (ja) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd 電池用バインダ樹脂、これを含有する電極及び電池
JP4134617B2 (ja) 2001-07-23 2008-08-20 日本ゼオン株式会社 高分子固体電解質用組成物の製造方法、高分子固体電解質の製造方法および電池の製造方法
JP2009176484A (ja) 2008-01-22 2009-08-06 Idemitsu Kosan Co Ltd 全固体リチウム二次電池用正極及び負極、並びに全固体リチウム二次電池
JP2009211950A (ja) 2008-03-04 2009-09-17 Idemitsu Kosan Co Ltd 固体電解質及びその製造方法
JP2012243476A (ja) 2011-05-17 2012-12-10 Nippon Zeon Co Ltd 全固体二次電池の製造方法
JP2013143299A (ja) 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd 電極材料、電極及びそれを用いた電池
JP2015035316A (ja) * 2013-08-08 2015-02-19 三菱化学株式会社 非水系二次電池負極用活物質並びにそれを用いた負極及び非水系二次電池
WO2015108109A1 (ja) * 2014-01-20 2015-07-23 住友精化株式会社 非水電解質二次電池の電極用バインダー、当該バインダーを含む非水電解質二次電池用電極、及び当該電極を備える非水電解質二次電池
JP2016143614A (ja) 2015-02-04 2016-08-08 トヨタ自動車株式会社 全固体電池
JP2016181471A (ja) 2015-03-25 2016-10-13 日本ゼオン株式会社 全固体二次電池
JP2016181472A (ja) 2015-03-25 2016-10-13 日本ゼオン株式会社 全固体二次電池
JP2017004682A (ja) * 2015-06-08 2017-01-05 凸版印刷株式会社 非水電解質二次電池用負極剤、非水電解質二次電池負極、および非水電解質二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875166A (en) * 1954-09-20 1959-02-24 Rohm & Haas Method of thickening aqueous dispersions with a divalent metal acrylate and product thereof
JPH1150046A (ja) * 1997-08-06 1999-02-23 Toagosei Co Ltd シーリング材組成物
FR2798661B1 (fr) * 1999-09-16 2001-11-02 Coatex Sa Procede d'obtention de polymeres hydrosolubles, polymeres obtenus et leurs utilisations
DE60206931T2 (de) 2001-06-29 2006-07-27 Zeon Corp. Polyetherpolymer, verfahren zu seiner herstellung, zusammensetzung für polymerfestelektrolyt und verwendung davon
JP2004281055A (ja) * 2003-01-23 2004-10-07 Hitachi Chem Co Ltd カルボキシル基含有樹脂を用いた電池用バインダ樹脂組成物、合剤スラリー、電極および電池
ATE521645T1 (de) * 2004-01-28 2011-09-15 Basf Se Verfahren zur herstellung von polymeren
JP6187468B2 (ja) * 2012-09-28 2017-08-30 日本ゼオン株式会社 全固体二次電池用スラリー、全固体二次電池用電極の製造方法及び全固体二次電池用電解質層の製造方法
KR102278446B1 (ko) * 2014-11-21 2021-07-16 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
US10797304B2 (en) 2015-03-25 2020-10-06 Zeon Corporation All-solid-state secondary battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151770A (ja) 1983-02-16 1984-08-30 Sanyo Electric Co Ltd 固体電解質電池
JP4134617B2 (ja) 2001-07-23 2008-08-20 日本ゼオン株式会社 高分子固体電解質用組成物の製造方法、高分子固体電解質の製造方法および電池の製造方法
JP2003268053A (ja) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd 電池用バインダ樹脂、これを含有する電極及び電池
JP2009176484A (ja) 2008-01-22 2009-08-06 Idemitsu Kosan Co Ltd 全固体リチウム二次電池用正極及び負極、並びに全固体リチウム二次電池
JP2009211950A (ja) 2008-03-04 2009-09-17 Idemitsu Kosan Co Ltd 固体電解質及びその製造方法
JP2012243476A (ja) 2011-05-17 2012-12-10 Nippon Zeon Co Ltd 全固体二次電池の製造方法
JP2013143299A (ja) 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd 電極材料、電極及びそれを用いた電池
JP2015035316A (ja) * 2013-08-08 2015-02-19 三菱化学株式会社 非水系二次電池負極用活物質並びにそれを用いた負極及び非水系二次電池
WO2015108109A1 (ja) * 2014-01-20 2015-07-23 住友精化株式会社 非水電解質二次電池の電極用バインダー、当該バインダーを含む非水電解質二次電池用電極、及び当該電極を備える非水電解質二次電池
JP2016143614A (ja) 2015-02-04 2016-08-08 トヨタ自動車株式会社 全固体電池
JP2016181471A (ja) 2015-03-25 2016-10-13 日本ゼオン株式会社 全固体二次電池
JP2016181472A (ja) 2015-03-25 2016-10-13 日本ゼオン株式会社 全固体二次電池
JP2017004682A (ja) * 2015-06-08 2017-01-05 凸版印刷株式会社 非水電解質二次電池用負極剤、非水電解質二次電池負極、および非水電解質二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Experimental Chemistry", vol. 28, MARUZEN
See also references of EP3726634A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029315A1 (ja) * 2019-08-09 2021-02-18 出光興産株式会社 固体電解質の製造方法
JPWO2021029315A1 (ja) * 2019-08-09 2021-09-13 出光興産株式会社 固体電解質の製造方法
JP7008848B2 (ja) 2019-08-09 2022-01-25 出光興産株式会社 固体電解質の製造方法
WO2021085141A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
CN114556636A (zh) * 2019-10-31 2022-05-27 日本瑞翁株式会社 全固态二次电池用粘结剂组合物、全固态二次电池用浆料组合物、含固态电解质层以及全固态二次电池
WO2021157278A1 (ja) * 2020-02-07 2021-08-12 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7455871B2 (ja) 2020-02-07 2024-03-26 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法

Also Published As

Publication number Publication date
EP3726634A4 (en) 2021-06-30
US20210167389A1 (en) 2021-06-03
JPWO2019116964A1 (ja) 2020-12-24
EP3726634A1 (en) 2020-10-21
CN111433961A (zh) 2020-07-17
CN111433961B (zh) 2023-08-08
JP7192791B2 (ja) 2022-12-20
US11557766B2 (en) 2023-01-17
KR20200097688A (ko) 2020-08-19

Similar Documents

Publication Publication Date Title
KR102369486B1 (ko) 고체 전해질 전지용 바인더 조성물
JP5644851B2 (ja) 全固体二次電池及び全固体二次電池の製造方法
US10985401B2 (en) Binder composition for solid electrolyte battery and slurry composition for solid electrolyte battery
JP7074121B2 (ja) 全固体電池用バインダーおよび全固体電池用バインダー組成物、並びに、全固体電池用バインダー組成物の製造方法
KR102425398B1 (ko) 전고체 전지용 바인더 조성물, 전고체 전지용 슬러리 조성물, 전고체 전지용 전극, 및 전고체 전지
WO2017047379A1 (ja) 全固体二次電池用バインダーおよび全固体二次電池
JP7192791B2 (ja) 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池
JP2016181472A (ja) 全固体二次電池
WO2020137435A1 (ja) 全固体二次電池電極用導電材ペースト
JPWO2020137435A5 (ja)
WO2022249933A1 (ja) 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559565

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018887412

Country of ref document: EP

Effective date: 20200715