WO2021193826A1 - 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法 - Google Patents

無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法 Download PDF

Info

Publication number
WO2021193826A1
WO2021193826A1 PCT/JP2021/012541 JP2021012541W WO2021193826A1 WO 2021193826 A1 WO2021193826 A1 WO 2021193826A1 JP 2021012541 W JP2021012541 W JP 2021012541W WO 2021193826 A1 WO2021193826 A1 WO 2021193826A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
polymer
secondary battery
group
active material
Prior art date
Application number
PCT/JP2021/012541
Other languages
English (en)
French (fr)
Inventor
陽 串田
安田 浩司
宏顕 望月
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022510665A priority Critical patent/JP7292498B2/ja
Priority to EP21775779.8A priority patent/EP4131461A1/en
Priority to KR1020227033223A priority patent/KR20220147630A/ko
Priority to CN202180022617.1A priority patent/CN115298873A/zh
Publication of WO2021193826A1 publication Critical patent/WO2021193826A1/ja
Priority to US17/951,065 priority patent/US20230067637A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an inorganic solid electrolyte-containing composition, an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and a method for producing an all-solid-state secondary battery sheet and an all-solid-state secondary battery.
  • the negative electrode, the electrolyte, and the positive electrode are all solid, which can greatly improve the safety and reliability of the battery using the organic electrolyte. It is also said that it will be possible to extend the service life. Further, the all-solid-state secondary battery can have a structure in which electrodes and electrolytes are directly arranged side by side and arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolyte, and it is expected to be applied to an electric vehicle, a large storage battery, or the like.
  • Patent Document 1 describes an inorganic solid electrolyte (A) having conductivity of an ion of a metal belonging to Group 1 or Group 2 of the Periodic Table, an organic compound (B), and a dispersion medium (E). Described is a solid electrolyte composition contained, wherein the organic compound (B) has a nonionic monovalent halogen atom other than a fluorine atom, and the organic compound (B) has a melting point of 25 ° C. or higher. .. Further, Patent Document 2 describes the conductivity of at least one dendritic polymer selected from the group consisting of dendron, dendrimer and hyperbranched polymer, and the ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table. A solid electrolyte composition containing an inorganic solid electrolyte having a specific functional group and a dendrimer polymer having a specific functional group is described.
  • all-solid-state secondary batteries In the production of all-solid-state secondary batteries, in the manufacturing process, when layers containing solid particle materials (inorganic solid electrolyte, active material, conductive additive, etc.) are laminated and pressed, poor adhesion and stress between the layers are usually obtained. Occurrence of cracks and cracks due to concentration is inevitable. As a method of suppressing this occurrence and improving the yield of the all-solid secondary battery, the layer containing the solid particle material has excellent surface smoothness (the coating surface of the constituent layer forming material becomes flat). Good surface properties) are required. Further, in recent years, research and development such as weight reduction of electric vehicles, which are being put into practical use, are rapidly progressing, and the demand for battery performance is further increasing even for all-solid-state secondary batteries as next-generation batteries.
  • solid particle materials inorganic solid electrolyte, active material, conductive additive, etc.
  • the present invention also provides a method for producing a sheet for an all-solid secondary battery and an all-solid secondary battery, and a sheet for an all-solid secondary battery and an all-solid secondary battery using this inorganic solid electrolyte-containing composition.
  • the challenge is to provide.
  • Equation (1) 0.01 ⁇ ⁇ ⁇ 0.8 Equation (2) Mw ⁇ 2000 Equation (3) Mw ⁇ ⁇ ⁇ 9.3 ⁇ 10 4
  • represents the ratio (mass%) of the content of the polymer binder (B) in 100% by mass of the total solid content contained in the composition containing the inorganic solid electrolyte
  • Mw is the weight average molecular weight of the polymer binder (B). Is shown.
  • n is an integer of 3 to 6.
  • LL indicates an n-valent branching group.
  • L 6 represents a divalent linking group.
  • L 7 represents an oxygen atom or a sulfur atom. * Indicates the bond with the polymer main chain.
  • ⁇ 6> The inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 5>, wherein the inorganic solid electrolyte (A) is a sulfide-based inorganic solid electrolyte.
  • ⁇ 7> The inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 6>, which comprises the active material (E).
  • ⁇ 10> A method for producing a sheet for an all-solid secondary battery, which comprises applying the composition containing an inorganic solid electrolyte according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 11> A method for manufacturing an all-solid-state secondary battery, wherein the all-solid-state secondary battery is manufactured through the manufacturing method according to ⁇ 10>.
  • the composition containing an inorganic solid electrolyte of the present invention as a material for forming a constituent layer of an all-solid secondary battery, it is possible to realize a constituent layer having excellent surface smoothness and excellent ionic conductivity in a temperature range from low temperature to room temperature. .. Further, the sheet for an all-solid secondary battery of the present invention includes a constituent layer composed of the above-mentioned inorganic solid electrolyte-containing composition, which has excellent surface smoothness and excellent ionic conductivity in a temperature range from low temperature to room temperature. ..
  • the all-solid-state secondary battery of the present invention has a constituent layer composed of the above-mentioned inorganic solid electrolyte-containing composition and has excellent surface smoothness, and is excellent in ionic conductivity in a temperature range from low temperature to room temperature. Further, according to the production method of the present invention, it is possible to provide an all-solid-state secondary battery sheet and an all-solid-state secondary battery using the above-mentioned inorganic solid electrolyte-containing composition.
  • FIG. 1 is a vertical sectional view schematically showing an all-solid-state secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view schematically showing the coin-type all-solid-state secondary battery produced in the examples.
  • FIG. 3 shows the total solid content contained in some of the inorganic solid electrolyte-containing compositions prepared in Examples and Comparative Examples (part of the inorganic solid electrolyte-containing compositions shown in Tables 2-1 and 2-4).
  • the graph is a graph in which the content of the polymer binder (B) is on the horizontal axis and Mw of the polymer binder (B) is on the vertical axis.
  • FIG. 4 is a diagram illustrating a layer thickness measurement point in the surface smoothness test in the example.
  • substituents or the like may be the same or different from each other.
  • the polymer means a polymer, but is synonymous with a so-called polymer compound.
  • the polymer binder means a binder composed of a polymer, and includes the polymer itself and a binder formed containing the polymer.
  • the composition containing an inorganic solid electrolyte of the present invention contains an inorganic solid electrolyte (A) having ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and a polymer binder (B), and the polymer binder is described above.
  • (B) contains at least one of polyester, vinyl polymer and (meth) acrylic polymer, and the weight average molecular weight and content of the polymer binder (B) are represented by the following formulas (1) to (3). Satisfy all relationships.
  • Equation (1) 0.01 ⁇ ⁇ ⁇ 0.8 Equation (2) Mw ⁇ 2000 Equation (3) Mw ⁇ ⁇ ⁇ 9.3 ⁇ 10 4
  • represents the ratio (mass%) of the content of the polymer binder (B) in 100% by mass of the total solid content contained in the composition containing the inorganic solid electrolyte
  • Mw is the weight average molecular weight of the polymer binder (B). Is shown.
  • the "weight average molecular weight of the polymer binder (B)" is a mixture of all the polymers contained. It is a weight average molecular weight obtained by attaching to GPC described later.
  • the “content of polymer binder (B)” is the total of polyester, vinyl polymer and (meth) acrylic polymer.
  • the polymer binder (B) may satisfy the above formulas (1) to (3).
  • an all-solid-state secondary battery sheet having a constituent layer having excellent surface smoothness, and all having low resistance in a temperature range from low temperature to normal temperature can be realized.
  • the inorganic solid electrolyte-containing composition of the present invention contains a polymer binder composed of at least one of polyester, vinyl polymer and (meth) acrylic polymer in a small content ⁇ defined in the above formula (1). Therefore, the amount of the insulating component in the composition containing the inorganic solid electrolyte is reduced, and when the constituent layer is formed, the entire surface of the solid particles is covered while maintaining the strong adhesion between the solid particles by the polymer binder. It is considered that it is difficult to secure good interfacial contact.
  • the above-mentioned good interfacial contact is not impaired even when the molecular motion of the polymer is reduced in a low temperature environment, and high ionic conductivity in a normal temperature environment can be maintained even in a low temperature environment.
  • Mw2000 or more the entanglement between molecules increases, so that the strong adhesion of the solid particles can be maintained.
  • the inorganic solid electrolyte-containing composition of the present invention contains a dispersion medium, the spread of the polymer molecular chain in the dispersion medium becomes large, and the dispersibility is improved.
  • the polymer binder can be uniformly present on the surface of the constituent layer (with less unevenness in volume) while maintaining the above-mentioned good interfacial contact when forming the constituent layer.
  • is preferably 0.6% by mass or less, more preferably 0.5% by mass or less, and 0.3. It is more preferably 0% by mass or less, and particularly preferably 0.2% by mass or less. Further, ⁇ is preferably 0.05% by mass or more, more preferably 0.1 or more, and further preferably 0.15 or more.
  • Mw is preferably 8.0 ⁇ 10 6 or less, more preferably 8.0 ⁇ 10 5 or less, 2 .6 ⁇ 10 5 or less is more preferable.
  • the Mw is preferably 2200 or more.
  • Equation (3) can be derived as follows. From the content of the polymer binder Mw and the composition contained in the inorganic solid electrolyte-containing compositions K-12, K-13, Kc12 and Kc14 prepared in the examples below, with ⁇ on the horizontal axis and Mw on the vertical axis. , The point A that bisects the line segment connecting K-13 and Kc14 and the point B that bisects the line segment connecting K-12 and Kc12 are obtained. Sufficient surface smoothness and ionic conductivity in the low temperature range can be obtained by using the polymer binder corresponding to the points A and B. Equation (3) can be derived by creating an approximate curve showing an inverse proportional relationship between points A and B by the method of least squares.
  • the above-mentioned effect exhibited by the present invention is achieved when the polymer binder (B) satisfies the relationships represented by the above-mentioned formulas (1) to (3), and is hardly affected by the type of solid particles. 3) can be similarly applied to the composition for electrodes.
  • the lower limit of Mw ⁇ ⁇ specified by the formula (3) is determined by Mw specified by the formula (2) and ⁇ specified by the formula (1), and may be 20 or more, and is appropriately set.
  • Equation (3b) Mw ⁇ -4.4 ⁇ 10 5 ⁇ ⁇ + 3.4 ⁇ 10 5
  • Equation (3b) can be derived as follows. Equation (3b) is obtained by linearly approximating the polymer binders Mw and ⁇ contained in the inorganic solid electrolyte-containing compositions K-12, K-13, and K-15 prepared in the examples below by the method of least squares. Can be derived (see FIG. 3).
  • the inorganic solid electrolyte-containing composition of the present invention is a material for forming a solid electrolyte layer or an active material layer of an all-solid secondary battery sheet (including an electrode sheet for an all-solid secondary battery) or an all-solid secondary battery. It can be preferably used as a constituent layer forming material).
  • the inorganic solid electrolyte-containing composition of the present invention is preferably a non-aqueous composition.
  • the non-aqueous composition includes not only a water-free aspect but also a form in which the water content (also referred to as water content) is preferably 500 ppm or less.
  • the water content is more preferably 200 ppm or less, further preferably 100 ppm or less, and particularly preferably 50 ppm or less.
  • the water content indicates the amount of water contained in the inorganic solid electrolyte-containing composition (mass ratio to the inorganic solid electrolyte-containing composition). Specifically, the mixture is filtered through a 0.02 ⁇ m membrane filter and Karl Fischer. The value shall be the value measured using titration.
  • the composition containing an inorganic solid electrolyte of the present invention also includes an embodiment containing an active material, a conductive auxiliary agent, and the like in addition to the inorganic solid electrolyte (the composition of this embodiment is referred to as an electrode composition).
  • the composition of this embodiment is referred to as an electrode composition.
  • the inorganic solid electrolyte-containing composition of the present invention contains an inorganic solid electrolyte.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte capable of transferring ions inside the solid electrolyte. Since it does not contain organic substances as the main ionic conductive material, it is an organic solid electrolyte (polyelectrolyte represented by polyethylene oxide (PEO), organic such as lithium bis (trifluoromethanesulfonyl) imide (LiTFSI)). It is clearly distinguished from electrolyte salts).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the inorganic solid electrolyte is a solid in a steady state, it is usually not dissociated or liberated into cations and anions. In this respect, it is clearly distinguished from the electrolyte or inorganic electrolyte salts (LiPF 6 , LiBF 4 , Lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.) that are dissociated or liberated into cations and anions in the polymer. Will be done.
  • the inorganic solid electrolyte is not particularly limited as long as it has the ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is generally one having no electron conductivity.
  • the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
  • a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used.
  • examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte, (ii) an oxide-based inorganic solid electrolyte, (iii) a halide-based inorganic solid electrolyte, and (iv) a hydride-based inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte is preferable from the viewpoint that a better interface can be formed between the active material and the inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. Those having sex are preferable.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but other than Li, S and P may be used depending on the purpose or case. It may contain elements.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (S1).
  • L a1 M b1 P c1 S d1 A e1 (S1)
  • L represents an element selected from Li, Na and K, with Li being preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, more preferably 0 to 1.
  • d1 is preferably 2.5 to 10, more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized.
  • Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramics containing Li, P and S can be used.
  • Sulfide-based inorganic solid electrolytes include, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (eg, lithium halide). It can be produced by the reaction of at least two or more raw materials in sulfides of LiI, LiBr, LiCl) and the element represented by M (for example, SiS 2 , SnS, GeS 2).
  • the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ⁇ It is 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be made high.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 -4 S / cm or more, and more preferably 1 ⁇ 10 -3 S / cm or more. There is no particular upper limit, but it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5- P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3, Li 2 S-GeS 2, Li 2
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. Those having sex are preferable.
  • the oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 -6 S / cm or more, more preferably 5 ⁇ 10 -6 S / cm or more, and 1 ⁇ 10 -5 S / cm or more. It is particularly preferable that it is / cm or more.
  • the upper limit is not particularly limited, but it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • Li xa La ya TiO 3 [xa satisfies 0.3 ⁇ xa ⁇ 0.7, and ya satisfies 0.3 ⁇ ya ⁇ 0.7.
  • LLT Li xb Layb Zr zb M bb mb Onb
  • M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn.
  • Xb satisfies 5 ⁇ xb ⁇ 10, yb satisfies 1 ⁇ yb ⁇ 4, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, and nb satisfies 5 ⁇ nb ⁇ 20. Satisfy.); Li xc Byc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn.
  • Xc is 0 ⁇ xc ⁇ 5 , Yc satisfies 0 ⁇ yc ⁇ 1, zc satisfies 0 ⁇ zc ⁇ 1, nc satisfies 0 ⁇ nc ⁇ 6); Li xd (Al, Ga) yd (Ti, Ge) zd Si.
  • Li xf Si yf O zf (xf satisfies 1 ⁇ xf ⁇ 5, yf satisfies 0 ⁇ yf ⁇ 3 , Zf satisfies 1 ⁇ zf ⁇ 10); Li xg S yg O zg (xg satisfies 1 ⁇ xg ⁇ 3, yg satisfies 0 ⁇ yg ⁇ 2, and zg satisfies 1 ⁇ zg ⁇ 10.
  • Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet-type crystal structure.
  • Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON in which a part of the oxygen element of lithium phosphate is replaced with a nitrogen element
  • LiPOD 1 LiPON in which a part of the oxygen element of lithium phosphate is replaced with a nitrogen element
  • LiPOD 1 is preferably Ti, V, Cr, Mn, Fe, Co, It is one or more elements selected from Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt and Au
  • LiA 1 ON A 1 is one or more elements selected from Si, B, Ge, Al, C and Ga
  • Halide-based inorganic solid electrolyte contains halogen atoms, has the conductivity of ions of metals belonging to Group 1 or Group 2 of the Periodic Table, and has electrons. Insulating compounds are preferred.
  • the halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as Li 3 YBr 6 and Li 3 YCl 6 described in LiCl, LiBr, LiI, ADVANCED MATERIALS, 2018, 30, 1803075. Of these, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
  • the hydride-based inorganic solid electrolyte contains a hydrogen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. A compound having a property is preferable.
  • the hydride-based inorganic solid electrolyte is not particularly limited, and examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, and 3 LiBH 4- LiCl.
  • the inorganic solid electrolyte is preferably particles.
  • the particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the particle size of the inorganic solid electrolyte is measured by the following procedure. Inorganic solid electrolyte particles are prepared by diluting 1% by mass of a dispersion in a 20 mL sample bottle with water (heptane in the case of a water-unstable substance).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately after that, it is used for the test.
  • data was captured 50 times using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA) using a measuring quartz cell at a temperature of 25 ° C. Obtain the volume average particle size.
  • LA-920 trade name, manufactured by HORIBA
  • the inorganic solid electrolyte may contain one kind or two or more kinds.
  • the mass (mg) (grain amount) of the inorganic solid electrolyte per unit area (cm 2) of the solid electrolyte layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
  • the amount of the inorganic solid electrolyte is preferably such that the total amount of the active material and the inorganic solid electrolyte is in the above range.
  • the content of the inorganic solid electrolyte in the composition containing the inorganic solid electrolyte is not particularly limited, but is 50% by mass or more at 100% by mass of the solid content in terms of binding property and dispersibility. Is more preferable, 70% by mass or more is more preferable, and 90% by mass or more is particularly preferable. From the same viewpoint, the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
  • the content of the inorganic solid electrolyte in the inorganic solid electrolyte-containing composition is such that the total content of the active material and the inorganic solid electrolyte is in the above range. Is preferable.
  • the solid content refers to a component that does not disappear by volatilizing or evaporating when the inorganic solid electrolyte-containing composition is dried at 150 ° C. for 6 hours under a pressure of 1 mmHg and a nitrogen atmosphere. .. Typically, it refers to a component other than the dispersion medium described later.
  • the polymer forming the polymer binder (B) contained in the inorganic solid electrolyte-containing composition of the present invention contains at least one of polyester, vinyl polymer and (meth) acrylic polymer.
  • a vinyl polymer or a (meth) acrylic polymer is preferable from the viewpoint of surface smoothness of the sheet for the all-solid-state secondary battery and ionic conductivity of the all-solid-state secondary battery.
  • the vinyl polymer or the (meth) acrylic polymer preferably has a branched structure (a structure having a polymer chain branched via a polymerization initiator residue).
  • polyester, vinyl polymer and (meth) acrylic polymer will be described.
  • polyester In the present invention, ordinary polyester (preferably Mw2000 or more) used in the technical field to which the present invention belongs can be used.
  • the polyester used in the present invention preferably has a repeating unit formed by combining a constituent component represented by the following formula (1) and a constituent component represented by the following formula (2).
  • RP1 and RP2 each represent a molecular chain having a (weight average) molecular weight of 20 or more and 200,000 or less.
  • the molecular weight of this molecular chain cannot be uniquely determined because it depends on the type and the like, but for example, 30 or more is preferable, 50 or more is more preferable, 100 or more is further preferable, and 150 or more is particularly preferable.
  • the upper limit is preferably 100,000 or less, more preferably 10,000 or less.
  • the molecular weight of the molecular chain is measured for the starting compound before it is incorporated into the main chain of the polymer.
  • the molecular chains that can be taken as RP1 and RP2 are not particularly limited, but hydrocarbon chains, polyalkylene oxide chains, polycarbonate chains or polyester chains are preferable, hydrocarbon chains or polyalkylene oxide chains are more preferable, and hydrocarbon chains. , Polyethylene oxide chains or polypropylene oxide chains are more preferred, and hydrocarbon chains are even more preferred.
  • the hydrocarbon chain that can be taken as RP1 and RP2 means a chain of hydrocarbons composed of carbon atoms and hydrogen atoms, and more specifically, at least two compounds composed of carbon atoms and hydrogen atoms. It means a structure in which an atom (for example, a hydrogen atom) or a group (for example, a methyl group) is eliminated.
  • the present invention also includes a chain having a group containing an oxygen atom, a sulfur atom or a nitrogen atom in the chain.
  • the terminal group that can be contained at the end of the hydrocarbon chain shall not be included in the hydrocarbon chain.
  • This hydrocarbon chain may have a carbon-carbon unsaturated bond and may have a ring structure of an aliphatic ring and / or an aromatic ring. That is, the hydrocarbon chain may be any hydrocarbon chain composed of hydrocarbons selected from aliphatic hydrocarbons and aromatic hydrocarbons.
  • Such a hydrocarbon chain may be any one that satisfies the above molecular weight, and both a chain composed of a low molecular weight hydrocarbon group and a hydrocarbon chain composed of a hydrocarbon polymer (also referred to as a hydrocarbon polymer chain).
  • hydrocarbon chains include hydrocarbon chains.
  • a low molecular weight hydrocarbon chain is a chain composed of ordinary (non-polymerizable) hydrocarbon groups, and examples of the hydrocarbon groups include aliphatic or aromatic hydrocarbon groups, and specific examples thereof.
  • Is an alkylene group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms) and an allylene group (preferably 6 to 22 carbon atoms, preferably 6 to 14 carbon atoms, 6 to 10 carbon atoms). Is more preferable), or a group consisting of a combination thereof is preferable.
  • This hydrocarbon chain may have a polymerized chain (for example, (meth) acrylic polymer) as a substituent.
  • aromatic hydrocarbon group examples include a hydrocarbon group contained in each of the constituent components described below, and an arylene group (for example, one or more hydrogen atoms from the aryl group mentioned in the substituent Z described later).
  • the removed group specifically a phenylene group, a trilene group or a xylylene group is preferable.
  • a hydrocarbon polymer chain may be a polymer chain in which (at least two) polymerizable hydrocarbons are polymerized, and may be a chain composed of a hydrocarbon polymer having a larger number of carbon atoms than the above-mentioned low molecular weight hydrocarbon chain.
  • the chain is not particularly limited, but is preferably a chain composed of a hydrocarbon polymer composed of 30 or more, more preferably 50 or more carbon atoms.
  • the upper limit of the number of carbon atoms constituting the hydrocarbon polymer is not particularly limited, and may be, for example, 3,000.
  • the hydrocarbon polymer chain is preferably a chain composed of a hydrocarbon polymer whose main chain satisfies the above-mentioned number of carbon atoms and is composed of an aliphatic hydrocarbon, and is composed of an aliphatic saturated hydrocarbon or an aliphatic unsaturated hydrocarbon. More preferably, it is a chain composed of a polymer (preferably an elastomer). Specific examples of the polymer include a diene polymer having a double bond in the main chain and a non-diene polymer having no double bond in the main chain.
  • diene polymer examples include a styrene-butadiene polymer, a styrene-ethylene-butadiene copolymer, a copolymer of isobutylene and isoprene (preferably butyl rubber (IIR)), a butadiene polymer, an isoprene polymer, and ethylene.
  • IIR butyl rubber
  • non-diene polymer examples include olefin polymers such as ethylene-propylene copolymer and styrene-ethylene-butylene copolymer, and hydrogen-reduced products of the above-mentioned diene polymer.
  • the hydrocarbon to be a hydrocarbon chain preferably has a terminal reactive group (hydroxy group, carboxy group or acid anhydride group) at the terminal thereof, more preferably has a hydroxy group, and by shrink-polymerizing, the above.
  • a polymer backbone is formed as RP1 or RP2 of each formula.
  • Examples of hydrocarbon polymers having terminal reactive groups include NISSO-PB series (manufactured by Nippon Soda Co., Ltd.), Claysol series (manufactured by Tomoe Kosan Co., Ltd.), and PolyVEST-HT series (manufactured by Idemitsu Kosan) under the trade names.
  • Polymer manufactured by Idemitsu Kosan Co., Ltd.
  • poly-ip series manufactured by Idemitsu Kosan Co., Ltd.
  • EPOL manufactured by Idemitsu Kosan Co., Ltd.
  • Polytail series manufactured by Mitsubishi Chemical Corporation
  • polyalkylene oxide chain examples include chains composed of known polyalkyleneoxy groups.
  • the number of carbon atoms of the alkyleneoxy group in the polyalkyleneoxy chain is preferably 1 to 10, more preferably 1 to 6, and further preferably 2 or 3 (polyethylene oxy chain or polypropylene oxy chain).
  • the polyalkyleneoxy chain may be a chain composed of one type of alkyleneoxy group or a chain composed of two or more types of alkyleneoxy groups (for example, a chain composed of an ethyleneoxy group and a propyleneoxy group).
  • Examples of the polycarbonate chain or polyester chain include known chains made of polycarbonate or polyester.
  • the polyalkyleneoxy chain, the polycarbonate chain, or the polyester chain each preferably has an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) at the terminal.
  • Polyalkyleneoxy chain can be taken as R P1 and R P2, end of the polycarbonate chain and a polyester chain, appropriately changing the constituents as R P1 and R P2 are represented by the formulas above the embeddable ordinary chemical structure be able to.
  • the polyalkylene oxy chain is incorporated as RP1 or RP2 of the above-mentioned constituents by removing the terminal oxygen atom.
  • RN is a hydrogen atom
  • RN are hydrogen atoms, inside or at the end of the alkyl group contained in the molecular chain. It may have an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms).
  • RP1 and RP2 are divalent molecular chains, but at least one hydrogen atom is substituted with -NH-CO-, -CO-, -O-, -NH- or -N ⁇ .
  • the molecular chain may be trivalent or higher.
  • R P1 among the molecular chain is preferably a hydrocarbon is a chain, more preferably a hydrocarbon chain of low molecular weight, more preferably a hydrocarbon chain comprised of hydrocarbon groups aliphatic or aromatic, Hydrocarbon chains consisting of aliphatic hydrocarbon groups are particularly preferred.
  • the raw material compound (carboxylic acid or acid chloride thereof, etc.) for deriving the constituent component represented by the above formula (1) is not particularly limited, and is, for example, the carboxylic acid described in paragraph [0074] of International Publication No. 2018/020827.
  • Examples thereof include compounds of acids or acid chlorides and specific examples thereof (for example, adipic acid or an esterified product thereof).
  • the raw material compound (diol compound) for deriving the constituent component represented by the above formula (2) is not particularly limited, and examples thereof include each compound described in International Publication No. 2018/20827 and specific examples thereof. Further, dihydroxyoxamide is also mentioned.
  • the constituent component represented by the formula (2) and the raw material compound derived from the constituent component are not limited to those described in the following specific examples, examples and the above documents.
  • the number of repetitions is an integer of 1 or more, and is appropriately set within a range satisfying the molecular weight or the number of carbon atoms of the molecular chain.
  • the polyester used in the present invention may have components other than the components represented by the above formulas.
  • a constituent component is not particularly limited as long as it can be polycondensed with the raw material compound that leads to the constituent component represented by each of the above formulas.
  • the (total) content of the constituents represented by each of the above formulas (1) or (2) in the polyester used in the present invention is not particularly limited, but is preferably 5 to 100 mol%. It is more preferably to 80 mol%, further preferably 10 to 60 mol%.
  • the content of the constituent components other than the constituent components represented by the above formulas in the polyester used in the present invention is not particularly limited, but is preferably less than 50% by mass.
  • the above-mentioned content of each constituent component shall be the total content.
  • the polyester (each constituent and raw material compound) used in the present invention may have a substituent.
  • the substituent is not particularly limited, but preferably, a group selected from the following substituent Z can be mentioned.
  • the polyester used in the present invention can be synthesized by selecting a raw material compound by a known method and polycondensing the raw material compound or the like.
  • a synthesis method for example, International Publication No. 2018/151118 can be referred to.
  • -Substituent Z- Alkyl groups preferably alkyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl groups preferably alkyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • an alkenyl group having 2 to 20 carbon atoms for example, vinyl, allyl, oleyl, etc.
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, for example, ethynyl, butadynyl, phenylethynyl, etc.
  • a cycloalkyl group having 3 to 20 carbon atoms for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., is usually used in the present specification to include a cycloalkyl group.
  • An aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.), an aralkyl group (preferably having 7 carbon atoms).
  • ⁇ 23 aralkyl groups eg, benzyl, phenethyl, etc.
  • heterocyclic groups preferably heterocyclic groups having 2 to 20 carbon atoms, more preferably 5 or 5 having at least one oxygen atom, sulfur atom, nitrogen atom. It is a 6-membered heterocyclic group.
  • the heterocyclic group includes an aromatic heterocyclic group and an aliphatic heterocyclic group.
  • a tetrahydropyran ring group for example, a tetrahydropyran ring group, a tetrahydrofuran ring group, 2-pyridyl, 4-pyridyl, 2-. Imidazolyl, 2-benzoimidazolyl, 2-thiazolyl, 2-oxazolyl, pyrrolidone group, etc.), alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, for example, methoxy, ethoxy, isopropyloxy, benzyloxy, etc.), aryloxy group.
  • an aryloxy group having 6 to 26 carbon atoms for example, phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.
  • a heterocyclic oxy group a group in which an —O— group is bonded to the heterocyclic group
  • an alkoxycarbonyl group preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, for example, ethoxycarbonyl, 2-ethylhexyloxycarbonyl.
  • aryloxycarbonyl groups preferably aryloxycarbonyl groups with 6-26 carbon atoms, such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-me It contains a tylphenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc.
  • an amino group preferably an amino group having 0 to 20 carbon atoms, an alkylamino group, an arylamino group, for example, amino (-NH 2 ), N, N-dimethyl.
  • Sulfamoyl group (preferably a sulfamoyl group having 0 to 20 carbon atoms, for example, N, N-dimethylsulfamoyl, N-phenylsulfomoyl, etc.)
  • Acyl group alkylcarbonyl group, alkenylcarbonyl group, alkynylcarbonyl group, arylcarbonyl group, heterocyclic carbonyl group, preferably acyl group having 1 to 20 carbon atoms, for example, acetyl, propionyl, butyryl, octanoyl, hexadeca.
  • acyloxy groups (alkylcarbonyloxy groups, alkenylcarbonyloxy groups, alkynylcarbonyloxy groups, arylcarbonyloxy groups, heterocyclic carbonyloxy groups, etc., preferably carbon.
  • acyloxy groups such as acetyloxy, propionyloxy, butyryloxy, octanoyloxy, hexadecanoyloxy, acryloyloxy, methacryloxy, crotonoyloxy, benzoyloxy, naphthoyloxy, nicotineoloxy, etc.), Allyloxy group (preferably an allyloxy group having 7 to 23 carbon atoms, for example, benzoyloxy, etc.), a carbamoyl group (preferably a carbamoyl group having 1 to 20 carbon atoms, for example, N, N-dimethylcarbamoyl, N- Phenylcarbamoyl, etc.), acylamino groups (preferably acylamino groups having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.), alkylthio groups (preferably alkylthio groups having 1 to 20 carbon atoms
  • arylthio groups preferably arylthio groups having 6 to 26 carbon atoms, such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc.
  • heterocyclic thio groups the above heterocycle.
  • a group having an —S— group bonded to the group an alkylsulfonyl group (preferably an alkylsulfonyl group having 1 to 20 carbon atoms, for example, methylsulfonyl, ethylsulfonyl, etc.), an arylsulfonyl group (preferably having 6 to 22 carbon atoms).
  • Aryll sul Honyl groups such as benzenesulfonyl, alkylsilyl groups (preferably alkylsilyl groups having 1 to 20 carbon atoms, such as monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc.), arylsilyl groups (preferably 6 carbon atoms).
  • Arylsilyl groups of ⁇ 42 such as triphenylsilyl
  • alkoxysilyl groups preferably alkoxysilyl groups having 1 to 20 carbon atoms, such as monomethoxysilyl, dimethoxysilyl, trimethoxysilyl, triethoxysilyl, etc.
  • An aryloxysilyl group preferably an aryloxysilyl group having 6 to 42 carbon atoms, for example, triphenyloxysilyl group
  • R P 2
  • a phosphinyl group preferably a phosphinyl group having 0 to 20 carbon atoms,
  • -P (R P) 2) a sulfo group (sulfonic acid group), and carboxy groups, hydroxy group, sulfanyl group, a cyano group, a halogen atom (e.g. fluorine atom, a chlorine atom, a bromine atom, an iodine atom) of Be done.
  • a halogen atom e.g. fluorine atom, a chlorine atom, a bromine atom, an iodine atom
  • RP is a hydrogen atom or a substituent (preferably a group selected from the substituent Z). Further, each group listed in these substituents Z may be further substituted with the above-mentioned substituent Z.
  • the alkyl group, alkylene group, alkenyl group, alkenylene group, alkynyl group and / or alkynylene group and the like may be cyclic or chain-like, or may be linear or branched.
  • a polymer having a content of a component derived from the (meth) acrylic compound (M1), which will be described later, of 50 mol% or more is classified as a (meth) acrylic polymer.
  • the vinyl monomer include a vinyl monomer (not including the (meth) acrylic compound) among the “other polymerizable compounds (M2)” described later, and the compound represented by the following formula (b-1).
  • a vinyl polymer having a styrene-derived component content of 50 mol% or more (preferably 60 mol% or more, more preferably 70 mol% or more) is preferable among all the components.
  • vinyl polymers include polystyrene, styrene-butadiene copolymers, styrene-based thermoplastic elastomers, and hydrogenated (hydrogenated) polymers thereof.
  • the styrene-based thermoplastic elastomer or its hydride is not particularly limited, and for example, styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene-styrene block copolymer (SIS), hydride SIS.
  • Styrene-butadiene-styrene block copolymer SBS
  • hydrogenated SBS styrene-ethylene-ethylene-propylene-styrene block copolymer
  • SEEPS styrene-ethylene-propylene-styrene block copolymer
  • SEPS styrene-ethylene-propylene-styrene block copolymer
  • examples thereof include styrene-butadiene rubber (SBR) and hydride styrene-butadiene rubber (HSBR).
  • specific examples of the vinyl polymer include polyvinyl alcohol, polyvinyl acetal, polyvinyl acetate, and a copolymer containing these.
  • the vinyl polymer used in the present invention has, for example, a constituent component (copolymerization component) derived from the (meth) acrylic compound (M1) that forms the (meth) acrylic polymer described later, in addition to the constituent component derived from the vinyl monomer. You may.
  • the content of the copolymerization component is not particularly limited as long as it is less than 50 mol% in the polymer, but it is preferably 0 to 30 mol%.
  • ((Meta) acrylic polymer) In the present invention, ordinary (meth) acrylic polymers (preferably Mw2000 or higher) used in the technical field to which the present invention belongs can be used.
  • the (meth) acrylic polymer is at least one (meth) acrylic compound (M1) selected from a (meth) acrylic acid compound, a (meth) acrylic acid ester compound, a (meth) acrylamide compound and a (meth) acrylic nitrile compound.
  • (Polymer) is preferably a polymer obtained by copolymerizing. Further, a (meth) acrylic polymer composed of a copolymer of the (meth) acrylic compound (M1) and another polymerizable compound (M2) is also preferable.
  • the other polymerizable compound (M2) (monomer) is not particularly limited, and is styrene compound, vinylnaphthalene compound, vinylcarbazole compound, allyl compound, vinyl ether compound, vinyl ester compound, dialkyl itaconate compound, unsaturated carboxylic acid anhydride.
  • vinyl compounds such as substances.
  • examples of the vinyl compound include "vinyl-based monomers" described in JP-A-2015-88486.
  • the molecular weight of the (meth) acrylic compound (M1) and the other polymerizable compound (M2) is preferably 50 to 300.
  • the (meth) acrylic compound (M1) and the other polymerizable compound (M2) may have a substituent other than the residue of the polymerization initiator.
  • the content of the other polymerizable compound (M2) in the (meth) acrylic polymer is not particularly limited, but can be, for example, less than 50 mol%.
  • (meth) acrylic compound (M1) and the other polymerizable compound (M2) that derive the constituents of the (meth) acrylic polymer a compound represented by the following formula (b-1) is preferable.
  • R 1 is a hydrogen atom, a hydroxy group, a cyano group, a halogen atom, an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms), an alkenyl group (2 carbon atoms).
  • ⁇ 24 is preferred, 2-12 is more preferred, 2-6 is particularly preferred), an alkynyl group (2-24 carbon atoms is preferred, 2-12 is more preferred, 2-6 is particularly preferred), or an aryl group (preferably 2-6).
  • 6 to 22 carbon atoms are preferable, and 6 to 14 carbon atoms are more preferable).
  • a hydrogen atom or an alkyl group is preferable, and a hydrogen atom or a methyl group is more preferable.
  • R 2 represents a hydrogen atom or a substituent.
  • the substituent that can be taken as R 2 is not particularly limited, but an alkyl group (a branched chain is preferable, but a straight chain is preferable) and an alkenyl group (the number of carbon atoms is preferably 2 to 12, more preferably 2 to 6 is preferable, and 2 or 3 is preferable. Particularly preferred), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms), an aralkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 15 carbon atoms), a cyano group and a hydroxy group. ..
  • the alkyl group preferably has 1 to 3 carbon atoms.
  • L 1 is a linking group and is not particularly limited, but for example, an alkylene group having 1 to 50 (preferably 1 to 3) carbon atoms, an alkenylene group having 2 to 6 carbon atoms (preferably 2 to 3), and a carbon number of carbons. 6-24 (preferably 6-10) arylene group, an oxygen atom, a sulfur atom, an imino group (-NR N -:. as is R N above), a carbonyl group, a phosphoric acid linking group (-O-P ( OH) (O) -O-), a phosphonic acid linking group (-P (OH) (O) -O-), or a group related to a combination thereof, etc.
  • the linking group may have any substituent.
  • the number of atoms constituting the linking group and the number of linking atoms are as described later.
  • Examples of the optional substituent include the above-mentioned Substituent Z, and examples thereof include an alkyl group and a halogen atom.
  • n is 0 or 1, preferably 1.
  • -(L 1 ) n- R 2 is a hydrocarbon group having 14 or more carbon atoms (for example, an alkyl group, an alkenyl group, an alkynyl group and an aryl group, preferably an alkyl group, an alkenyl group and an alkynyl group, more preferably an alkyl group. ), More preferably a hydrocarbon group having 14 or more and 50 or less carbon atoms, further preferably a hydrocarbon group having 14 or more and 40 or less carbon atoms, and even more preferably a hydrocarbon group having 14 or more and 30 or less carbon atoms.
  • R 2 is the above-mentioned "hydrocarbon group having 14 or more carbon atoms".
  • the alkyl group, alkenyl group and alkynyl group may be chain, branched or cyclic.
  • (meth) acrylic compound (M1) a compound represented by the following formula (b-2) or (b-3) is also preferable, and a compound represented by the following formula (b-2) is more preferable.
  • R 1 has the same meaning as the above formula (b-1).
  • R 3 is synonymous with R 2.
  • L 2 is a linking group and has the same meaning as L 1 described above.
  • L 3 is a linking group and has the same meaning as L 1 , but an alkylene group having 1 to 6 carbon atoms (preferably 1 to 3) is preferable.
  • m is an integer of 1 to 200, preferably an integer of 1 to 100, and more preferably an integer of 1 to 50.
  • the content of the constituents in the (meth) acrylic polymer is not particularly limited, and the constituents are not particularly limited. It is appropriately selected in consideration of the substituents and the like, and can be set in the following range, for example.
  • the content of the constituent component derived from the (meth) acrylic compound (M1) in the (meth) acrylic polymer is not particularly limited, and the constituent component derived from the monomer (monomer for polymer formation) used for polymer synthesis and the following.
  • the total molar amount of the polymerization initiator residue is 100 mol%, preferably 50 to 99 mol%, more preferably 60 to 99 mol%, and particularly preferably 70 to 99 mol%.
  • the content of the component derived from the (meth) acrylic compound (M1) having a hydrocarbon group having 14 or more carbon atoms in the (meth) acrylic polymer is not particularly limited, and the component derived from the polymer-forming monomer and the component derived from the polymer-forming monomer and
  • the total molar amount of the polymerization initiator residue is 100 mol%, preferably 50 to 99 mol%, more preferably 60 to 99 mol%, and particularly preferably 70 to 99 mol%.
  • the content of the constituent component derived from the vinyl compound (M2) in the (meth) acrylic polymer is 0, for example, assuming that the total moles of the constituent component derived from the monomer for polymer formation and the polymerization initiator residue described later are 100 mol%. It is preferably mol% or more and less than 50 mol%, more preferably 0 mol% or more and less than 40 mol%, and particularly preferably 0 mol% or more and less than 30 mol%.
  • the (meth) acrylic polymer may have a carboxy group in at least one of the main chain and the side chain.
  • the content of the component having a carboxy group in the (meth) acrylic polymer is preferably small, and the total mole of the component derived from the polymer-forming monomer and the polymerization initiator residue described later is 100 mol%, which is 2.0. It is preferably mol% or less, more preferably 1.0 mol% or less, still more preferably less than 0.4 mol%.
  • the (meth) acrylic polymer chain is also preferably a (meth) acrylic polymer chain represented by the following general formula.
  • a2 to c2 represent mol%.
  • a2 is 35 to 100 mol%
  • b2 is 0 to 65 mol%
  • c2 is 0 to 20 mol%.
  • a2 + b2 + c2 100 mol%.
  • R 21 to R 23 represent a hydrogen atom or a methyl group.
  • R 24 represents an alkyl group. The alkyl group may be linear, branched or cyclic, and the number of carbon atoms is preferably 1 to 30, more preferably 3 to 25, and particularly preferably 14 to 20.
  • R 25 to R 27 represent a hydrogen atom or a methyl group.
  • R 28 represents an alkyl group.
  • the alkyl group may be linear, branched or cyclic, and the number of carbon atoms is preferably 1 to 10, and more preferably 1 to 5.
  • R 28 preferably has a substituent, and a hydroxy group is preferable as the substituent.
  • R 29 and R 31 represent a hydrogen atom or a methyl group.
  • R 30 represents a hydrogen atom or a carboxy group.
  • L 21 represents a single bond or linking group, which linking group is synonymous with L 1 and has the same preferred range.
  • the polymer forming the polymer binder (B) has a structure having a hydrocarbon group having 14 or more carbon atoms in the side chain. It preferably contains an ingredient.
  • the number of carbon atoms of the hydrocarbon group is preferably 50 or less, more preferably 40 or less, and even more preferably 30 or less.
  • the hydrocarbon group include an alkyl group, an alkenyl group and an alkynyl group, and an alkyl group is preferable.
  • the alkyl group, alkenyl group and alkynyl group may be in any of linear, branched and cyclic forms, and a straight chain is preferable.
  • the content of the component having a hydrocarbon group having 14 or more carbon atoms in the side chain in the vinyl polymer is not particularly limited, and the polymer is not particularly limited.
  • the total mol of the constituent components derived from the forming monomer and the polymerization initiator residue described later is 100 mol%, preferably 5 to 50 mol%, more preferably 10 to 45 mol%, and 15 to 40 mol. % Is particularly preferable.
  • the content of the component having a hydrocarbon group having 14 or more carbon atoms in the side chain in the polyester is not particularly limited and is derived from the polymer-forming compound.
  • the total moles of the constituent components and the polymerization initiator residues described below may be 100 mol% and 100 mol%, it is preferably 10 to 95 mol%, more preferably 20 to 90 mol%. It is preferably 30 to 80 mol%, and particularly preferably 30 to 80 mol%.
  • the main chain of the polymer is a linear molecular chain in which all other molecular chains constituting the polymer can be regarded as a branched chain or a pendant with respect to the main chain. say. Although it depends on the weight average molecular weight of the molecular chain regarded as a branched chain or a pendant chain, the longest chain among the molecular chains constituting the polymer is typically the main chain. However, the main chain does not include the terminal groups of the polymer ends (one end and / or both ends).
  • the main chain of the polymer means a molecular chain having a degree of polymerization of 2 or more which is formed in a chain by starting the polymerization reaction of the monomer components, and may be present in a plurality of molecules in one polymer molecule.
  • the side chain of the polymer means a molecular chain other than the main chain, and includes a short molecular chain and a long molecular chain.
  • the terminal group possessed by the polymer terminal corresponds to, for example, a polymerization initiator residue introduced into one end of the polymer, which will be described later.
  • all four molecular chains formed by the polymerization reaction of the tetradecyl acrylate correspond to the above-mentioned "main chain" of the chain-polymerized polymer.
  • the vinyl polymer and the (meth) acrylic polymer start polymerization at the main chain end (usually one end) of the polymer. It has an agent residue, and the polymerization initiator residue preferably contains at least one polymerization initiator of an azo polymerization initiator, a chain transfer agent containing a sulfur atom, and a polymerization initiator of an organic peroxide. , It is more preferable to contain at least one polymerization initiator of a chain transfer agent containing a sulfur atom and a polymerization initiator of an organic peroxide, and it is further preferable to contain a chain transfer agent containing a sulfur atom.
  • the polymerization initiator residue becomes the core of the entire polymer and is bonded to the main chain ends of the two or more polymers, respectively, to form a polymer having a branched structure.
  • the polymerization initiator residue (polymerization initiator residue) is a radical portion generated by cleavage of the polymerization initiator used for polymerization (manufacturing) of the polymer forming the polymer binder (B) and is bonded to the end of the polymer. Partial structure, etc. (which is a group and not a radical), and is not included in the main chain of the polymer. Therefore, the polymerization initiator residue has a partial structure (moeity) of the polymerization initiator and does not have a polymerization initiator action. In addition, the polymerization initiator residue exhibits an adhesion improving effect by interacting with solid particles such as an inorganic solid electrolyte and an active material.
  • the polymerization initiator residues of the polymer may be one kind or two or more kinds, and when there are two or more kinds, they may be different from each other.
  • the polymerization initiator residue is preferably a residue represented by any of the following formulas (S1) to (S3), and more preferably a residue represented by the formula (S3).
  • L 4 represents a carbonyl group, an ether bond or an alkylene group, or a group in which these are combined.
  • L 4 is preferably an alkylene group or an "ether bond-carbonyl group-alkylene group (bonding to a sulfur atom with an alkylene group)".
  • the alkylene group may have a substituent, and a hydroxy group is preferable as the substituent.
  • R 4 represents a hydrogen atom, a hydroxy group or an aryl group.
  • the alkylene group may be chain, branched or cyclic.
  • the alkylene group preferably has 1 to 18 carbon atoms, more preferably 1 to 16 carbon atoms, and even more preferably 1 to 14 carbon atoms.
  • the aryl group is preferably an aryl group having 6 to 24 carbon atoms, and more preferably an aryl group having 6 to 10 carbon atoms. * Indicates the bond with the polymer main chain. The same applies to the description of the polymerization initiator residue below.
  • L 5 represents a carbonyl group, an ether bond or an alkylene group, or a group in which these are combined.
  • L 5 is preferably an alkylene group, a carbonyl group or a "alkylene group-carbonyl group (bonded to an oxygen atom with a carbonyl group)".
  • R 5 represents a hydrogen atom or an aryl group.
  • the polymerization initiator residue represented by the formula (S2) does not have "-O-O-".
  • the alkylene group may be chain, branched or cyclic.
  • the alkylene group preferably has 1 to 18 carbon atoms, more preferably 1 to 16 carbon atoms, and even more preferably 1 to 14 carbon atoms.
  • the aryl group is preferably an aryl group having 6 to 24 carbon atoms, and more preferably an aryl group having 6 to 10 carbon atoms.
  • n is an integer of 3 to 6.
  • LL indicates an n-valent branching group.
  • L 6 represents a single bond or a divalent linking group.
  • L 7 represents an oxygen atom or a sulfur atom.
  • LL preferably represents an alkanetriyl group and a trivalent branching group in which an alkanetriyl group and an ether bond are combined.
  • the number of carbon atoms of the alkanetriyl group is preferably 1 to 30, more preferably 2 to 20, and even more preferably 3 to 16.
  • the alkanetriyl group may be in any form of chain, cyclic and a combination thereof.
  • LL preferably represents an alkanetetrayl group and a tetravalent branching group in which an alkanetetrayl group and an ether bond are combined.
  • the number of carbon atoms of the alkanetetrayl group is preferably 1 to 30, more preferably 2 to 20, and even more preferably 3 to 16.
  • the alkanetetrayl group may be in any form of chain, cyclic and a combination thereof.
  • LL represents an alkanepentile group and a pentavalent branched group in which an alkanepentile group and an ether bond are combined.
  • the number of carbon atoms of the alkanepentile group is preferably 2 to 30, more preferably 2 to 20, and even more preferably 3 to 16.
  • the alkanepentile group may be in any form of chain, cyclic and a combination thereof.
  • LL represents an alkanehexayl group, a hexavalent branching group combining an alkanehexayl group and an ether bond, and a hexavalent branching group combining an alkanetetrayl group and an ether bond.
  • the number of carbon atoms of the alkanehexayl group is preferably 2 to 30, more preferably 2 to 20, and even more preferably 3 to 16.
  • the alkanehexayl group may be in any form of chain, cyclic and a combination thereof.
  • the divalent linking group that L 6 can take is preferably a carbonyl group, an alkylene group, or a group in which they are combined.
  • the alkylene group may be chain, branched or cyclic.
  • the alkylene group preferably has 1 to 10 carbon atoms, more preferably 1 to 7 carbon atoms, and even more preferably 1 to 4 carbon atoms.
  • the polymerization initiator residue represented by the formula (2) may have a substituent, and examples of such a substituent include a group selected from the above-mentioned substituent Z, specifically, an alkyl group. Be done.
  • the content of the polymerization initiator residue in the vinyl polymer and the (meth) acrylic polymer is not particularly limited, but is 0, assuming that the total moles of the components derived from the polymer-forming monomer and the polymerization initiator residue are 100 mol%. It is preferably 0.01 mol% or more and 10 mol% or less, more preferably 0.05 mol% or more and 5 mol% or less, further preferably 0.1 mol% or more and 3 mol% or less, and 0. It is more preferably 5.5 mol% or more and 3 mol% or less.
  • the residues of the polymerization initiator and chain transfer agent are usually introduced at one end of the main chain of the polymer being synthesized. Therefore, in the present invention, even when a plurality of residues that can be introduced into the terminal of the main chain are generated from one molecule of the polymerization initiator or the chain transfer agent, one residue is introduced into one molecule of the polymer. As a result, the above content is calculated. Further, even when the polymerization initiator and the chain transfer agent are used in combination, since only one residue is usually introduced at the end of the main chain of one molecule of the polymer, a plurality of polymerization initiators and chain transfer agents are used together. Even if it is a combination that generates residues, the above content is calculated as one.
  • Examples of the exemplary compound for introducing the polymerization initiator residue include the polymerization initiator used in the examples below and the following exemplary compounds, but the present invention is not limited to these exemplary compounds.
  • a polymerization initiator residue can be introduced into a polymer by a radical generated by desorption of a hydrogen radical from the following exemplified compound or a radical generated by cleavage of "-O-O-".
  • the vinyl polymer and (meth) acrylic polymer (each constituent component and raw material compound) used in the present invention may have a substituent.
  • a substituent a group selected from the above-mentioned Substituent Z is preferable.
  • the vinyl polymer and (meth) acrylic polymer used in the present invention can be synthesized by selecting a raw material monomer compound by a known method and polymerizing the raw material monomer compound.
  • polyester, vinyl polymer and (meth) acrylic polymer used in the present invention include, but are not limited to, the polymer synthesized in the examples below and the following polymer.
  • the numbers in parentheses for the example compounds below are the moles of each component.
  • the molar ratio of the polymerization initiator residue and the constituent components derived from the polymer-forming monomer is added below the example compound.
  • the polymer binder (B) contains at least one soluble polymer binder that is soluble in the dispersion medium (dissolved in the dispersion medium).
  • the inorganic solid electrolyte-containing composition contains two or more kinds of polymer binders (B)
  • the fact that the polymer binder (B) is dissolved in the dispersion medium means that the binder is dissolved in the dispersion medium of the composition containing an inorganic solid electrolyte.
  • the solubility is 80% in the solubility measurement. That is all.
  • the method for measuring the solubility is as follows.
  • the polymer binder (B) to be measured is weighed in a glass bottle in a specified amount, 100 g of the dispersion medium contained in the inorganic solid electrolyte-containing composition is added thereto, and the mixture rotor is placed at 80 rpm at a temperature of 25 ° C. Stir at rotational speed for 24 hours.
  • the transmittance of the mixed solution after stirring for 24 hours thus obtained is measured under the following conditions. This test (transmittance measurement) is performed by changing the amount of the binder dissolved (the above-specified amount), and the upper limit concentration X (mass%) at which the transmittance is 99.8% is defined as the solubility of the binder in the above dispersion medium.
  • the molecular weight of the polymer (polymerized chain) containing the polymer binder (B) refers to the weight average molecular weight in terms of standard polystyrene by gel permeation chromatography (GPC) unless otherwise specified.
  • GPC gel permeation chromatography
  • condition 1 or condition 2 (priority) method can be basically mentioned.
  • an appropriate eluent may be appropriately selected and used.
  • the number average molecular weight of the polymer described in the present specification can be measured in the same manner.
  • the inorganic solid electrolyte-containing composition of the present invention preferably contains a dispersion medium for dispersing the contained components.
  • the dispersion medium may be an organic compound that is liquid in the environment of use, and examples thereof include various organic solvents. Specifically, an alcohol compound, an ether compound, an amide compound, an amine compound, a ketone compound, and an aromatic compound. , Aliper compounds, nitrile compounds, ester compounds and the like.
  • the dispersion medium may be a non-polar dispersion medium (hydrophobic dispersion medium) or a polar dispersion medium (hydrophilic dispersion medium), but a non-polar dispersion medium is preferable because it can exhibit excellent dispersibility.
  • the non-polar dispersion medium generally refers to a property having a low affinity for water, and in the present invention, for example, an ester compound, a ketone compound, an ether compound, an aromatic compound, an aliphatic compound and the like can be mentioned.
  • Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and 2 -Methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol can be mentioned.
  • ether compound examples include alkylene glycol (diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.), alkylene glycol monoalkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, etc.).
  • alkylene glycol diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.
  • alkylene glycol monoalkyl ether ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, etc.
  • amide compound examples include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, ⁇ -caprolactam, formamide, N-methylformamide and acetamide. , N-Methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
  • Examples of the ketone compound include acetone, methyl ethyl ketone, methyl isobutyl ketone (MIBK), cyclopentanone, cyclohexanone, cycloheptanone, dipropyl ketone, dibutyl ketone, diisopropyl ketone, diisobutyl ketone (DIBK), isobutyl propyl ketone, sec-. Examples thereof include butyl propyl ketone, pentyl propyl ketone and butyl propyl ketone.
  • Examples of the aromatic compound include benzene, toluene, xylene and the like.
  • Examples of the aliphatic compound include hexane, heptane, octane, decane, cyclohexane, methylcyclohexane, ethylcyclohexane, cyclooctane, decalin, paraffin, gasoline, naphtha, kerosene, and light oil.
  • Examples of the nitrile compound include acetonitrile, propionitrile, isobutyronitrile and the like.
  • ester compound examples include ethyl acetate, butyl acetate, propyl acetate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, butyl pentanate, ethyl isobutyrate, propyl isobutyrate, isopropyl isobutyrate, isobutyl isobutyrate, and pivalic acid.
  • Examples thereof include propyl, isopropyl pivalate, butyl pivalate, and isobutyl pivalate.
  • ether compounds, ketone compounds, aromatic compounds, aliphatic compounds and ester compounds are preferable, and ester compounds, ketone compounds or ether compounds are more preferable.
  • the number of carbon atoms of the compound constituting the dispersion medium is not particularly limited, and is preferably 2 to 30, more preferably 4 to 20, further preferably 6 to 15, and particularly preferably 7 to 12.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher at normal pressure (1 atm), and more preferably 70 ° C. or higher.
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the inorganic solid electrolyte-containing composition of the present invention may contain at least one type of dispersion medium and may contain two or more types.
  • the content of the dispersion medium in the inorganic solid electrolyte-containing composition is not particularly limited and can be appropriately set.
  • 20 to 80% by mass is preferable, 30 to 70% by mass is more preferable, and 40 to 60% by mass is particularly preferable.
  • the inorganic solid electrolyte-containing composition of the present invention may also contain an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table.
  • the active material include a positive electrode active material and a negative electrode active material, which will be described below.
  • an inorganic solid electrolyte-containing composition containing an active material positive electrode active material or negative electrode active material
  • an electrode composition positive electrode composition or negative electrode composition
  • the positive electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element that can be composited with Li such as sulfur, or the like by decomposing the battery.
  • the 1 (Ia) group elements of the transition metal oxide to elemental M b (Table metal periodic other than lithium, the elements of the 2 (IIa) group, Al, Ga, In, Ge , Sn, Pb, Elements such as Sb, Bi, Si, P and B) may be mixed.
  • the mixing amount is preferably 0 to 30 mol% relative to the amount of the transition metal element M a (100 mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphate compound, and (MD).
  • MB transition metal oxide having a layered rock salt type structure
  • MC transition metal oxide having a spinel type structure
  • MD lithium-containing transition metal phosphate compound
  • MD lithium-containing transition metal phosphate compound
  • ME lithium-containing transition metal silicic acid compound and the like can be mentioned.
  • transition metal oxide having a layered rock salt structure examples include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (Lithium Nickel Cobalt Aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Lithium Nickel Manganese Cobalt Oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickel oxide).
  • LiCoO 2 lithium cobalt oxide
  • LiNi 2 O 2 lithium nickel oxide
  • LiNi 0.85 Co 0.10 Al 0. 05 O 2 Lithium Nickel Cobalt Aluminate [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 Lithium Nickel Manganese Cobalt Oxide [NMC]
  • LiNi 0.5 Mn 0.5 O 2 Lithium manganese nickel oxide
  • (MB) Specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO) , LiCoMnO 4, Li 2 FeMn 3 O 8, Li 2 CuMn 3 O 8, Li 2 CrMn 3 O 8 and Li 2 Nimn 3 O 8 can be mentioned.
  • Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4.
  • Examples thereof include cobalt phosphates of Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate) and other monooblique nacicon-type vanadium phosphate salts.
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Fluorophosphate cobalts such as.
  • Examples of the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably in the form of particles.
  • the particle size (volume average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m.
  • the particle size of the positive electrode active material particles can be measured in the same manner as the particle size of the above-mentioned inorganic solid electrolyte.
  • a normal crusher or classifier is used to adjust the positive electrode active material to a predetermined particle size. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill, a sieve, or the like is preferably used.
  • wet pulverization in which a dispersion medium such as water or methanol coexists can also be performed. It is preferable to perform classification in order to obtain a desired particle size.
  • the classification is not particularly limited, and can be performed using a sieve, a wind power classifier, or the like. Both dry and wet classifications can be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the positive electrode active material one type may be used alone, or two or more types may be used in combination.
  • the mass (mg) (grain amount) of the positive electrode active material per unit area (cm 2) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
  • the content of the positive electrode active material in the inorganic solid electrolyte-containing composition is not particularly limited, and is preferably 10 to 97% by mass, more preferably 30 to 95% by mass, and 40 to 93% by mass in terms of solid content of 100% by mass. More preferably, 50 to 90% by mass is particularly preferable.
  • the negative electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a negative electrode activity capable of forming an alloy with a carbonaceous material, a metal oxide, a metal composite oxide, a single lithium substance, a lithium alloy, or lithium. Examples include substances. Of these, carbonaceous materials, metal composite oxides, or elemental lithium are preferably used from the viewpoint of reliability.
  • the carbonaceous material used as the negative electrode active material is a material substantially composed of carbon.
  • carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin.
  • a carbonaceous material obtained by firing a resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-phase-grown carbon fiber, dehydrated PVA (polypoly alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber and activated carbon fiber.
  • carbonaceous materials can also be divided into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials depending on the degree of graphitization. Further, the carbonaceous material preferably has the plane spacing or density and the size of crystallites described in JP-A-62-22066, JP-A-2-6856, and JP-A-3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, and the like should be used. You can also.
  • As the carbonaceous material hard carbon or graphite is preferably used, and graphite is more preferably used.
  • the metal or semi-metal element oxide applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of storing and releasing lithium, and is a composite of a metal element oxide (metal oxide) and a metal element.
  • metal oxide metal oxide
  • examples thereof include oxides or composite oxides of metal elements and semi-metal elements (collectively referred to as metal composite oxides) and oxides of semi-metal elements (semi-metal oxides).
  • metal composite oxides oxides or composite oxides of metal elements and semi-metal elements
  • oxides of semi-metal elements semi-metal elements
  • amorphous oxides are preferable, and chalcogenides, which are reaction products of metal elements and elements of Group 16 of the Periodic Table, are also preferable.
  • the metalloid element means an element exhibiting properties intermediate between a metal element and a non-metalloid element, and usually contains six elements of boron, silicon, germanium, arsenic, antimony and tellurium, and further selenium. , Polonium and Astatin.
  • amorphous means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having an apex in a region of 20 ° to 40 ° in 2 ⁇ value, and a crystalline diffraction line is used. May have.
  • the strongest intensity of the crystalline diffraction lines seen at the 2 ⁇ value of 40 ° to 70 ° is 100 times or less of the diffraction line intensity at the apex of the broad scattering band seen at the 2 ⁇ value of 20 ° to 40 °. It is preferable that it is 5 times or less, and it is particularly preferable that it does not have a crystalline diffraction line.
  • the amorphous oxide of the metalloid element or the chalcogenide is more preferable, and the elements of the Group 13 (IIIB) to 15 (VB) of the Periodic Table (for example).
  • Al, Ga, Si, Sn, Ge, Pb, Sb and Bi) alone or a combination of two or more (composite) oxides, or chalcogenides are particularly preferred.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2.
  • Negative negative active materials that can be used in combination with amorphous oxides such as Sn, Si, and Ge include carbonaceous materials that can occlude and / or release lithium ions or lithium metals, lithium alone, lithium alloys, and lithium.
  • a negative electrode active material that can be alloyed with is preferably mentioned.
  • the oxide of a metal or a metalloid element contains at least one of titanium and lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the lithium-containing metal composite oxide include a composite oxide of lithium oxide and the metal (composite) oxide or the chalcogenide, and more specifically, Li 2 SnO 2.
  • the negative electrode active material for example, a metal oxide, contains a titanium element (titanium oxide).
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • Li 4 Ti 5 O 12 has excellent rapid charge / discharge characteristics because the volume fluctuation during occlusion and release of lithium ions is small, and deterioration of the electrodes is suppressed and lithium ion secondary This is preferable in that the battery life can be improved.
  • the lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of the secondary battery, and examples thereof include a lithium aluminum alloy.
  • the negative electrode active material that can be alloyed with lithium is not particularly limited as long as it is usually used as the negative electrode active material of the secondary battery.
  • examples of such an active material include a (negative electrode) active material having a silicon element or a tin element (alloy, etc.), and metals such as Al and In, and a negative electrode active material having a silicon element that enables a higher battery capacity.
  • (Silicon element-containing active material) is preferable, and a silicon element-containing active material having a silicon element content of 50 mol% or more of all the constituent elements is more preferable.
  • a negative electrode containing these negative electrode active materials Si negative electrode containing a silicon element-containing active material, Sn negative electrode containing an active material having a tin element, etc.
  • a carbon negative electrode graphite, acetylene black, etc.
  • silicon element-containing active material examples include silicon materials such as Si and SiOx (0 ⁇ x ⁇ 1), and silicon-containing alloys containing titanium, vanadium, chromium, manganese, nickel, copper, lanthanum, and the like (for example,).
  • LaSi 2 , VSi 2 , La-Si, Gd-Si, Ni-Si) or organized active material (eg LaSi 2 / Si), as well as other silicon and tin elements such as SnSiO 3 , SnSiS 3 Examples include active materials containing.
  • SiOx itself can be used as a negative electrode active material (metalloid oxide), and since Si is generated by the operation of an all-solid-state secondary battery, a negative electrode active material that can be alloyed with lithium (its). It can be used as a precursor substance).
  • the negative electrode active material having a tin element include Sn, SnO, SnO 2 , SnS, SnS 2 , and the active material containing the above-mentioned silicon element and tin element.
  • a composite oxide with lithium oxide for example, Li 2 SnO 2 can also be mentioned.
  • the above-mentioned negative electrode active material can be used without particular limitation, but in terms of battery capacity, a negative electrode active material that can be alloyed with silicon is a preferred embodiment as the negative electrode active material.
  • a negative electrode active material that can be alloyed with silicon is a preferred embodiment as the negative electrode active material.
  • the above-mentioned silicon material or silicon-containing alloy (alloy containing a silicon element) is more preferable, and it is further preferable to contain silicon (Si) or a silicon-containing alloy.
  • the chemical formula of the compound obtained by the above firing method can be calculated from the inductively coupled plasma (ICP) emission spectroscopic analysis method as a measuring method and the mass difference of the powder before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the negative electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (grain amount) of the negative electrode active material per unit area (cm 2) of the negative electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
  • the content of the negative electrode active material in the inorganic solid electrolyte-containing composition is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and 30 to 30% by mass, based on 100% by mass of the solid content. It is more preferably 80% by mass, and even more preferably 40 to 75% by mass.
  • the negative electrode active material layer when the negative electrode active material layer is formed by charging the secondary battery, instead of the negative electrode active material, a metal belonging to Group 1 or Group 2 of the periodic table generated in the all-solid secondary battery is used. Ions can be used. A negative electrode active material layer can be formed by combining these ions with electrons and precipitating them as a metal.
  • the surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include spinel titanate, tantalate oxide, niobate oxide, lithium niobate compound and the like.
  • the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the surface of the positive electrode active material or the particle surface of the negative electrode active material may be surface-treated with active light rays or an active gas (plasma or the like) before and after the surface coating.
  • the inorganic solid electrolyte-containing composition of the present invention preferably contains a conductive auxiliary agent, and for example, a silicon atom-containing active material as a negative electrode active material is preferably used in combination with a conductive auxiliary agent.
  • the conductive auxiliary agent is not particularly limited, and those known as general conductive auxiliary agents can be used.
  • electron conductive materials such as natural graphite, artificial graphite and other graphite, acetylene black, Ketjen black, furnace black and other carbon blacks, needle coke and other amorphous carbon, vapor-grown carbon fiber or carbon nanotubes.
  • It may be a carbon fiber such as carbon fibers such as graphene or fullerene, a metal powder such as copper or nickel, or a metal fiber, and a conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, or polyphenylene derivative. May be used.
  • a carbon fiber such as carbon fibers such as graphene or fullerene
  • a metal powder such as copper or nickel
  • a metal fiber such as a metal powder such as copper or nickel
  • a metal fiber such as a metal powder such as copper or nickel
  • a metal fiber such as a metal powder such as copper or nickel
  • a metal fiber such as polyaniline, polypyrrole, polythiophene, polyacetylene, or polyphenylene derivative. May be used.
  • metal ions preferably Li
  • a conductive auxiliary agent is one that does not insert and release ions) and does not function as an active material.
  • conductive auxiliary agents those that can function as active materials in the active material layer when the battery is charged and discharged are classified as active materials instead of conductive auxiliary agents. Whether or not the battery functions as an active material when it is charged and discharged is not unique and is determined by the combination with the active material.
  • the conductive auxiliary agent may contain one kind or two or more kinds.
  • the shape of the conductive auxiliary agent is not particularly limited, but is preferably in the form of particles.
  • the content of the conductive auxiliary agent in the inorganic solid electrolyte-containing composition is preferably 0 to 10% by mass based on 100% by mass of the solid content.
  • the inorganic solid electrolyte-containing composition of the present invention preferably contains a lithium salt (supporting electrolyte).
  • the lithium salt the lithium salt usually used for this kind of product is preferable, and there is no particular limitation.
  • the lithium salt described in paragraphs 882 to 985 of JP2015-088486 is preferable.
  • the content of the lithium salt is preferably 0.1 part by mass or more, more preferably 5 parts by mass or more, based on 100 parts by mass of the solid electrolyte.
  • the upper limit is preferably 50 parts by mass or less, more preferably 20 parts by mass or less.
  • the inorganic solid electrolyte-containing composition of the present invention may contain a dispersant.
  • a dispersant those usually used for all-solid-state secondary batteries can be appropriately selected and used.
  • compounds intended for particle adsorption, steric repulsion and / or electrostatic repulsion are preferably used.
  • the composition containing an inorganic solid electrolyte of the present invention contains an ionic liquid, a thickener, and a cross-linking agent (such as those that undergo a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization) as other components other than the above components.
  • a cross-linking agent such as those that undergo a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization
  • Polymerization initiators such as those that generate acids or radicals by heat or light
  • defoaming agents leveling agents, dehydrating agents, antioxidants and the like
  • the ionic liquid is contained in order to further improve the ionic conductivity, and known ones can be used without particular limitation.
  • a polymer other than the polymer forming the polymer binder described above, a commonly used binder and the like may be contained.
  • the composition containing an inorganic solid electrolyte of the present invention contains an inorganic solid electrolyte, a polymer binder, preferably a dispersion medium, a conductive auxiliary agent, and optionally a lithium salt, and any other components, for example, various mixers which are usually used. By mixing with, it can be prepared as a mixture, preferably as a slurry. In the case of the electrode composition, the active material is further mixed.
  • the mixing method is not particularly limited, and the mixture may be mixed all at once or sequentially.
  • the mixing environment is not particularly limited, and examples thereof include under dry air and under an inert gas.
  • the sheet for an all-solid-state secondary battery of the present invention is a sheet-like molded body capable of forming a constituent layer of an all-solid-state secondary battery, and includes various aspects depending on its use.
  • a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte sheet for an all-solid secondary battery
  • an electrode or a sheet preferably used for a laminate of an electrode and a solid electrolyte layer (an electrode for an all-solid secondary battery).
  • Sheet and the like.
  • these various sheets are collectively referred to as an all-solid-state secondary battery sheet.
  • the solid electrolyte sheet for an all-solid secondary battery of the present invention may be a sheet having a solid electrolyte layer, and even a sheet in which the solid electrolyte layer is formed on a base material does not have a base material and is a solid electrolyte layer. It may be a sheet formed of.
  • the solid electrolyte sheet for an all-solid secondary battery may have another layer in addition to the solid electrolyte layer. Examples of other layers include a protective layer (release sheet), a current collector, a coat layer, and the like.
  • the solid electrolyte sheet for an all-solid secondary battery of the present invention for example, a sheet having a layer composed of the inorganic solid electrolyte-containing composition of the present invention, a normal solid electrolyte layer, and a protective layer on a substrate in this order.
  • the solid electrolyte layer contained in the solid electrolyte sheet for an all-solid secondary battery is preferably formed of the inorganic solid electrolyte-containing composition of the present invention.
  • the content of each component in the solid electrolyte layer is not particularly limited, but is preferably synonymous with the content of each component in the solid content of the inorganic solid electrolyte-containing composition of the present invention.
  • the layer thickness of each layer constituting the solid electrolyte sheet for an all-solid-state secondary battery is the same as the layer thickness of each layer described in the all-solid-state secondary battery described later.
  • the electrode sheet for an all-solid-state secondary battery of the present invention may be an electrode sheet having an active material layer, and the active material layer is formed on a base material (current collector).
  • the sheet may be a sheet that does not have a base material and is formed from an active material layer.
  • This electrode sheet is usually a sheet having a current collector and an active material layer, but has an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, and a current collector, an active material layer and a solid electrolyte. An embodiment having a layer and an active material layer in this order is also included.
  • the solid electrolyte layer and the active material layer of the electrode sheet are preferably formed of the inorganic solid electrolyte-containing composition of the present invention.
  • the content of each component in the solid electrolyte layer or the active material layer is not particularly limited, but preferably, the content of each component in the solid content of the inorganic solid electrolyte-containing composition (electrode composition) of the present invention. Is synonymous with.
  • the layer thickness of each layer constituting the electrode sheet of the present invention is the same as the layer thickness of each layer described in the all-solid-state secondary battery described later.
  • the electrode sheet of the present invention may have the other layers described above.
  • the all-solid-state secondary battery sheet of the present invention has a constituent layer having excellent surface smoothness, in which at least one of the solid electrolyte layer and the active material layer is formed of the inorganic solid electrolyte-containing composition of the present invention. .. Therefore, the sheet for an all-solid-state secondary battery of the present invention is less likely to cause poor adhesion between layers, cracks and cracks due to stress concentration during lamination and pressing in the battery manufacturing process. Further, the sheet for an all-solid-state secondary battery of the present invention can realize low resistance (high conductivity) from a low temperature to a normal temperature of the all-solid-state secondary battery. Therefore, the sheet for an all-solid-state secondary battery of the present invention is suitably used as a sheet capable of forming a constituent layer of an all-solid-state secondary battery.
  • the method for producing an all-solid-state secondary battery sheet of the present invention is not particularly limited, and can be produced by forming each of the above layers using the inorganic solid electrolyte-containing composition of the present invention.
  • a layer (coating and drying layer) composed of an inorganic solid electrolyte-containing composition is preferably formed on a base material or a current collector (which may be via another layer) by forming a film (coating and drying).
  • the method can be mentioned. Thereby, an all-solid-state secondary battery sheet having a base material or a current collector and a coating dry layer can be produced.
  • the coating dry layer is a layer formed by applying the inorganic solid electrolyte-containing composition of the present invention and drying the dispersion medium (that is, the inorganic solid electrolyte-containing composition of the present invention is used.
  • the dispersion medium may remain as long as the effects of the present invention are not impaired, and the residual amount may be, for example, 3% by mass or less in each layer.
  • each step such as coating and drying will be described in the following method for producing an all-solid-state secondary battery.
  • the coating dry layer obtained as described above can also be pressurized.
  • the pressurizing conditions and the like will be described later in the method for manufacturing an all-solid-state secondary battery.
  • the base material, the protective layer (particularly the release sheet) and the like can be peeled off.
  • the all-solid secondary battery of the present invention comprises a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer arranged between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer is preferably formed on the positive electrode current collector and constitutes the positive electrode.
  • the negative electrode active material layer is preferably formed on the negative electrode current collector to form the negative electrode.
  • At least one layer of the negative electrode active material layer, the positive electrode active material layer and the solid electrolyte layer is formed of the inorganic solid electrolyte-containing composition of the present invention, and the solid electrolyte layer or at least the negative electrode active material layer and the positive electrode active material layer.
  • One is preferably formed of the inorganic solid electrolyte-containing composition of the present invention. It is also one of the preferred embodiments that all layers are formed of the inorganic solid electrolyte-containing composition of the present invention.
  • the active material layer or solid electrolyte layer formed of the inorganic solid electrolyte-containing composition of the present invention preferably contains the component species and their content ratios in the solid content of the inorganic solid electrolyte-containing composition of the present invention. Is the same as.
  • a known material can be used.
  • the thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited.
  • the thickness of each layer is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m, respectively, in consideration of the dimensions of a general all-solid-state secondary battery.
  • the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is more preferably 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode active material layer and the negative electrode active material layer may each have a current collector on the opposite side of the solid electrolyte layer.
  • the all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above structure, but in order to form a dry battery, it should be further enclosed in a suitable housing.
  • the housing may be made of metal or resin (plastic).
  • a metallic material for example, one made of aluminum alloy or stainless steel can be mentioned.
  • the metallic housing is divided into a positive electrode side housing and a negative electrode side housing, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.
  • FIG. 1 is a cross-sectional view schematically showing an all-solid-state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. ..
  • Each layer is in contact with each other and has an adjacent structure.
  • the lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 6.
  • a light bulb is used as a model for the operating portion 6, and the light bulb is turned on by electric discharge.
  • the all-solid secondary battery having the layer structure shown in FIG. 1 When the all-solid secondary battery having the layer structure shown in FIG. 1 is placed in a 2032 type coin case, the all-solid secondary battery is referred to as an all-solid secondary battery laminate, and the all-solid secondary battery laminate is referred to as an all-solid secondary battery laminate. Batteries manufactured in a 2032 type coin case are sometimes referred to as all-solid secondary batteries.
  • the all-solid secondary battery 10 In the all-solid secondary battery 10, all of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are formed of the inorganic solid electrolyte-containing composition of the present invention.
  • the all-solid-state secondary battery 10 exhibits excellent battery performance.
  • the inorganic solid electrolyte and the polymer binder contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be of the same type or different from each other.
  • either or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer or an electrode active material layer.
  • either or both of the positive electrode active material and the negative electrode active material may be collectively referred to as an active material or an electrode active material.
  • an all-solid-state secondary battery having excellent cycle characteristics and an all-solid-state secondary battery having low resistance can be realized.
  • the negative electrode active material layer can be a lithium metal layer.
  • the lithium metal layer include a layer formed by depositing or molding a lithium metal powder, a lithium foil, a lithium vapor deposition film, and the like.
  • the thickness of the lithium metal layer can be, for example, 1 to 500 ⁇ m regardless of the thickness of the negative electrode active material layer.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
  • either or both of the positive electrode current collector and the negative electrode current collector may be collectively referred to as a current collector.
  • a current collector As a material for forming the positive electrode current collector, in addition to aluminum, aluminum alloy, stainless steel, nickel and titanium, the surface of aluminum or stainless steel is treated with carbon, nickel, titanium or silver (a thin film is formed). Of these, aluminum and aluminum alloys are more preferable.
  • As a material for forming the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel.
  • aluminum, copper, copper alloy and stainless steel are more preferable.
  • the shape of the current collector is usually a film sheet, but a net, a punched body, a lath body, a porous body, a foam body, a molded body of a fiber group, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
  • a layer formed of a known constituent layer-forming material can be applied to the positive electrode active material layer.
  • a functional layer, a member, or the like is appropriately interposed or arranged between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. You may. Further, each layer may be composed of a single layer or a plurality of layers.
  • the all-solid-state secondary battery can be manufactured by a conventional method. Specifically, the all-solid-state secondary battery can be manufactured by forming each of the above layers using the inorganic solid electrolyte-containing composition or the like of the present invention. The details will be described below.
  • the inorganic solid electrolyte-containing composition of the present invention containing a dispersion medium is appropriately applied onto a base material (for example, a metal foil serving as a current collector) and coated. It can be manufactured by performing a method (method of manufacturing a sheet for an all-solid-state secondary battery of the present invention) including (via) a step of forming (forming) a film.
  • a method method of manufacturing a sheet for an all-solid-state secondary battery of the present invention
  • an inorganic solid electrolyte-containing composition containing a positive electrode active material is applied as a positive electrode material (positive electrode composition) on a metal foil which is a positive electrode current collector to form a positive electrode active material layer, and the entire solid is formed.
  • a positive electrode sheet for a secondary battery is produced.
  • an inorganic solid electrolyte-containing composition for forming the solid electrolyte layer is applied onto the positive electrode active material layer to form the solid electrolyte layer.
  • an inorganic solid electrolyte-containing composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on the solid electrolyte layer to form a negative electrode active material layer.
  • a negative electrode current collector metal foil
  • an all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between the positive electrode active material layer and the negative electrode active material layer can be obtained. Can be done. This can be enclosed in a housing to obtain a desired all-solid-state secondary battery.
  • a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collectors are superposed to manufacture an all-solid secondary battery. You can also do it.
  • a positive electrode sheet for an all-solid-state secondary battery is produced. Further, an inorganic solid electrolyte-containing composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on a metal foil which is a negative electrode current collector to form a negative electrode active material layer, and the entire solid is formed. A negative electrode sheet for a secondary battery is manufactured. Next, a solid electrolyte layer is formed on the active material layer of any one of these sheets as described above.
  • the other of the positive electrode sheet for the all-solid secondary battery and the negative electrode sheet for the all-solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • an all-solid-state secondary battery can be manufactured.
  • the following method can be mentioned. That is, as described above, a positive electrode sheet for an all-solid-state secondary battery and a negative electrode sheet for an all-solid-state secondary battery are produced. Separately from this, an inorganic solid electrolyte-containing composition is applied onto a base material to prepare a solid electrolyte sheet for an all-solid secondary battery composed of a solid electrolyte layer.
  • the positive electrode sheet for the all-solid-state secondary battery and the negative electrode sheet for the all-solid-state secondary battery are laminated so as to sandwich the solid electrolyte layer peeled from the base material. In this way, an all-solid-state secondary battery can be manufactured.
  • the solid electrolyte layer or the like can also be formed by, for example, forming an inorganic solid electrolyte-containing composition or the like on a substrate or an active material layer by pressure molding under pressure conditions described later.
  • the inorganic solid electrolyte-containing composition of the present invention may be used as any one of the positive electrode composition, the inorganic solid electrolyte-containing composition and the negative electrode composition, and the inorganic solid electrolyte-containing composition may be used. It is preferable to use the inorganic solid electrolyte-containing composition of the present invention, and the inorganic solid electrolyte-containing composition of the present invention can be used for any of the compositions.
  • the method for applying the composition containing an inorganic solid electrolyte is not particularly limited and can be appropriately selected.
  • coating preferably wet coating
  • spray coating spin coating coating
  • dip coating coating dip coating coating
  • slit coating stripe coating
  • bar coating coating can be mentioned.
  • the inorganic solid electrolyte-containing composition may be subjected to a drying treatment after being applied to each of them, or may be subjected to a drying treatment after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 80 ° C. or higher.
  • the upper limit is preferably 300 ° C.
  • the dispersion medium can be removed and a solid state (coating dry layer) can be obtained. Further, it is preferable because the temperature is not raised too high and each member of the all-solid-state secondary battery is not damaged. As a result, in the all-solid-state secondary battery, it is possible to obtain excellent overall performance, good binding property, and good ionic conductivity even without pressurization.
  • the inorganic solid electrolyte-containing composition of the present invention is applied and dried as described above, it is possible to suppress the variation in the contact state and bind the solid particles, and it is possible to form a coating and drying layer having a flat surface. ..
  • the pressurize it is preferable to pressurize each layer or the all-solid-state secondary battery after applying the inorganic solid electrolyte-containing composition, superimposing the constituent layers, or producing the all-solid-state secondary battery. It is also preferable to pressurize the layers in a laminated state.
  • Examples of the pressurizing method include a hydraulic cylinder press machine and the like.
  • the pressing force is not particularly limited, and is generally preferably in the range of 5 to 1500 MPa.
  • the applied inorganic solid electrolyte-containing composition may be heated at the same time as pressurization.
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It can also be pressed at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be carried out in a state where the coating solvent or the dispersion medium has been dried in advance, or may be carried out in a state where the solvent or the dispersion medium remains.
  • each composition may be applied at the same time, and the application drying press may be performed simultaneously and / or sequentially. After coating on separate substrates, they may be laminated by transfer.
  • the manufacturing process for example, the atmosphere during coating, heating or pressurization, is not particularly limited, and is in air, in dry air (dew point -20 ° C or less), in an inert gas (for example, in argon gas, in helium gas, nitrogen). (In gas) or the like.
  • the pressing time may be short (for example, within several hours) and high pressure may be applied, or medium pressure may be applied for a long time (1 day or more).
  • an all-solid-state secondary battery restraint screw tightening pressure, etc.
  • the press pressure may be uniform or different with respect to the pressed portion such as the sheet surface.
  • the press pressure can be changed according to the area or film thickness of the pressed portion. It is also possible to change the same part step by step with different pressures.
  • the pressed surface may be smooth or roughened.
  • the all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging with the press pressure increased, and then releasing the pressure until the pressure reaches the general working pressure of the all-solid-state secondary battery.
  • the all-solid-state secondary battery of the present invention can be applied to various applications.
  • the application mode is not particularly limited, but for example, when mounted on an electronic device, a laptop computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, or a mobile phone.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). Furthermore, it can be used for various munitions and space. It can also be combined with a solar cell.
  • Synthesis Example 9 Synthesis of Polymer S-9 (Preparation of Binder Solution S-9)
  • branching was carried out in the same manner as in Synthesis Example 7, except that a compound for guiding each component was used so that the polymer S-9 had the composition (type and content of the component) shown in Table 1.
  • Polymer S-9 ((meth) acrylic polymer) was synthesized to obtain a solution S-9 (polymer concentration 40% by mass) of a binder composed of polymer S-9.
  • Synthesis Example 10 Synthesis of Polymer S-10 (Preparation of Binder Solution S-10)]
  • branching was carried out in the same manner as in Synthesis Example 8 except that a compound for guiding each component was used so that the polymer S-10 had the composition (type and content of the component) shown in Table 1.
  • a polymer S-10 ((meth) acrylic polymer) was synthesized to obtain a solution S-10 (polymer concentration 40% by mass) of a binder composed of the polymer S-10.
  • Synthesis Examples 11 to 15 Synthesis of Polymers S-11 to S-15 (Preparation of Binder Solutions S-11 to S-15)]
  • Synthesis Example 2 except that a compound for guiding each component was used so that the polymers S-11 to S-15 had the composition (type and content of the component) shown in Table 1, and the polymerization concentration was changed.
  • the polymer concentrations of the binder solutions S-11 to S-15 were 40% by mass, respectively.
  • Synthesis Examples 16 and 17 Synthesis of Polymers S-16 and S-17 (Preparation of Binder Solutions S-16 and S-17)]
  • Synthesis Example 2 except that a compound for guiding each component was used so that the polymers S-16 and S-17 had the composition (type and content of the component) shown in Table 1, and the polymerization concentration was changed.
  • the polymer concentrations of the binder solutions S-16 and S-17 were 40% by mass, respectively.
  • Synthesis Examples 18 and 19 Synthesis of Polymers 18 and 19 (Preparation of Binder Solutions S-18 and S-19)]
  • Synthesis Example 2 except that a compound for guiding each component was used so that the polymers S-18 and S-19 had the composition (type and content of the component) shown in Table 1, and the polymerization concentration was changed.
  • the polymer concentrations of the binder solutions S-18 and S-19 were 40% by mass, respectively.
  • Synthesis Examples 20 to 22 Synthesis of Polymers T-1 to T-3 (Preparation of Binder Solutions T-1 to T-3)]
  • Synthesis Example 2 except that a compound for guiding each component was used so that the polymers T-1 to T-3 had the composition (type and content of the component) shown in Table 1, and the polymerization concentration was changed.
  • the polymer concentrations of the binder solutions T-1 to T-3 were 40% by mass, respectively.
  • each synthesized polymer is shown below.
  • the content of each component is as shown in Table 1. Since the polymers S-11 to S-15 and T-1 to T-3 have the same chemical structure as the polymer S-3 but different Mw, the description of the chemical structure is omitted. Further, since S-17 is a polymer having the same constituents as S-16 but different contents and Mw of each constituent, the description of the chemical structure is omitted. Further, since S-19 is a polymer having the same constituents as S-18 but different contents and Mw of each constituent, the description of the chemical structure is omitted. In addition, "Me" represents a methyl group.
  • GI1000 Hydrogenated liquid polybutadiene diol (trade name, number average molecular weight 1400, manufactured by Nippon Soda Corporation)
  • THFA Tetrahydrofurfuryl acrylate
  • HEA 2-Hydroxyethyl acrylate
  • 2-HBMA 2-Hydroxybutyl methacrylate
  • HFP Hexafluoropropylene EPOL (registered trademark): Hydroxy hydroxyl-terminated liquid polyolefin manufactured by Idemitsu Showa Shell Co., Ltd.
  • -Component 4- Component 4 shows the residues of the following polymerization initiators.
  • Dodecanethiol V-601 (trade name, chemical name: dimethyl 2,2'-azobis (2-methylpropionate) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) Park Mill D: (Product name, chemical name: Dicumyl Peroxide, manufactured by NOF CORPORATION)
  • PTMP Pentaerythritol tetra (3-mercaptopropionate) Pertetra
  • A (Product name, chemical name: 2,2-bis (4,5-di-t-butylperoxycyclohexyl) propane, manufactured by NOF CORPORATION)
  • Parloyl IPP (trade name, chemical name: diisopropyl peroxydicarbonate, manufactured by NOF CORPORATION)
  • the mol% in the table is a value calculated from the amount used, assuming that the total moles of all the raw material compounds are 100 mol%.
  • Li 2 S lithium sulfide
  • P 2 S diphosphorus pentasulfide
  • Example 1 Each composition shown in Tables 2-1 to 2-4 (collectively referred to as Table 2) was prepared as follows.
  • the inorganic solid electrolyte-containing composition (slurry) K-1 was prepared by mixing at a temperature of 25 ° C. and a rotation speed of 150 rpm for 10 minutes.
  • the inorganic solid electrolyte-containing compositions K-2 instead of the composition of the inorganic solid electrolyte-containing composition K-1 shown in Table 2 below, the inorganic solid electrolyte-containing compositions K-2 to those shown in Table 2 below are used.
  • Inorganic solid electrolyte-containing compositions (slurries) K-2 to K-24 and Kc11 to Kc20 are prepared in the same manner as the inorganic solid electrolyte-containing composition K-1 except that the compositions of K-24 and Kc11 to Kc20 are adopted. Each was prepared.
  • composition PK-1 for positive electrode ⁇ Preparation of composition PK-1 for positive electrode>
  • a 45 mL container made of zirconia manufactured by Fritsch
  • 60 g of zirconia beads having a diameter of 5 mm was put into the container, and 12.6 g of the LPS synthesized in Synthesis Example A and the dispersion medium (butyl butyrate) were put into the container.
  • This container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and stirred at 25 ° C. at a rotation speed of 200 pm for 30 minutes.
  • NMC manufactured by Aldrich
  • a conductive additive acetylene black (AB)
  • the polymer binder solution shown in Table 2 were put into this container as a positive electrode active material, and the container was set in the planetary ball mill P-7. Mixing was continued for 30 minutes at a temperature of 25 ° C. and a rotation speed of 200 rpm to prepare a positive electrode composition (slurry) PK-1.
  • the LPS, NMC, AB, and polymer binder solutions were added in a mass ratio satisfying the solid content content shown in Table 2-2 so that the total mass of the solid content was 36 g.
  • the compositions of the positive electrode compositions PK-2 to PK-18 shown in Table 2 below are used.
  • the positive electrode compositions (slurries) PK-2 to PK-18 were prepared in the same manner as the positive electrode composition PK-1 except that they were adopted.
  • composition NK-1 for negative electrode 60 g of zirconia beads having a diameter of 5 mm was put into a 45 mL container made of zirconia (manufactured by Fritsch), and 36.0 g of the LPS synthesized in Synthesis Example A, the polymer binder solution, and the dispersion medium (butyl butyrate) were put into the container.
  • This container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 pm for 60 minutes.
  • Negative electrode compositions (slurries) NK-2 to NK-19 and NKc21 to NKc30 were prepared in the same manner as the negative electrode composition NK-1 except that the composition of NKc30 was adopted.
  • LPS LPS synthesized in Synthesis Example A
  • LLT Li 0.33 La 0.55 TiO 3 (average particle size 3.25 ⁇ m)
  • NMC LiNi 1/3 Co 1/3 Mn 1/3 O 2 Si: Silicon AB: Acetylene Black VGCF: Carbon Nanotube
  • a solid electrolyte sheet for an all-solid secondary battery (in Table 3). It is referred to as a solid electrolyte sheet.) 101 to 124 and c11 to c19 were prepared, respectively. The film thickness of the solid electrolyte layer was 50 ⁇ m.
  • ⁇ Evaluation 1 Surface smoothness test>
  • the constituent layers of the solid electrolyte sheet for each all-solid-state secondary battery, the positive electrode sheet for each all-solid-state secondary battery, and the negative-negative sheet for each all-solid-state secondary battery are peeled off from the support (aluminum foil or copper foil), and the constituent layers are peeled off.
  • a test piece having a length of 20 mm and a width of 20 mm was cut out from the test piece. Using a constant pressure thickness measuring device (manufactured by Teclock Co., Ltd.), the thickness of 5 points of this test piece was measured, and the arithmetic mean value of the thickness was calculated.
  • the larger deviation value (maximum deviation value) among the deviation values (%) obtained by the following formula (a) or (b) is applied to the following evaluation criteria to determine the surface smoothness. evaluated. “D” or higher is a pass of this test (“D” or higher means that the surface smoothness of the solid electrolyte layer, the positive electrode active material layer and the negative electrode active material layer is high, and the pressure during battery production (for example, 600 MPa) is high. Cracks and cracks are less likely to occur in each layer).
  • the measurement points are the intersection A of the virtual lines x1 and y1, the intersection B of the virtual lines x1 and y3, the intersection C of the virtual lines x2 and y2, the intersection D of the virtual lines x3 and y1, and the virtual lines x3 and y3.
  • - Evaluation criteria - A: Less than 1% B: 1% or more and less than 3% C: 3% or more and less than 5% D: 5% or more and less than 10% E: 10% or more and less than 20% F: 20% or more
  • an inorganic solid electrolyte-containing composition that does not satisfy any of the formulas (1) to (3) specified in the present invention or a polyester or vinyl polymer that satisfies the formulas (1) to (3).
  • the sheets for all-solid-state secondary batteries of c21 to c29 were inferior in surface smoothness.
  • the residue of at least one polymerization initiator of a chain transfer agent and an organic peroxide polymerization initiator containing a sulfur atom at the end of the main chain is further improved.
  • the sheet for the all-solid-state secondary battery of the present invention has a constituent layer having excellent surface smoothness, defects such as cracks and cracks are formed in the constituent layer in the manufacturing process of the all-solid-state secondary battery. Can be prevented and the interlayer adhesion can be improved.
  • the all-solid-state secondary battery sheet of the present invention contributes to the improvement of battery performance such as ionic conductivity, which will be described later, by using the all-solid-state secondary battery sheet of the present invention for manufacturing the all-solid-state secondary battery. can.
  • the negative electrode sheets for all-solid secondary batteries (thickness of the negative electrode active material layer 50 ⁇ m) 143 to 161 and c21 to c29, respectively, were prepared.
  • An all-solid-state secondary battery (No. 101) having the layer structure shown in FIG. 1 was produced as follows. Positive electrode sheet No. for an all-solid secondary battery provided with the solid electrolyte layer obtained above. 125 (the aluminum foil of the solid electrolyte-containing sheet has been peeled off) is cut out into a disk shape with a diameter of 14.5 mm, and as shown in FIG. 2, 2032 made of stainless steel incorporating a spacer and a washer (not shown in FIG. 2). I put it in the mold coin case 11.
  • the all-solid-state secondary battery manufactured in this manner has the layer structure shown in FIG. 1 (however, the lithium foil corresponds to the negative electrode active material layer 2 and the negative electrode current collector 1).
  • An all-solid-state secondary battery (No. 119) having the layer structure shown in FIG. 1 was produced as follows. Negative electrode sheet No. for each all-solid secondary battery having the solid electrolyte layer obtained above. 143 (the aluminum foil of the solid electrolyte-containing sheet has been peeled off) is cut out into a disk shape with a diameter of 14.5 mm, and as shown in FIG. 2, 2032 made of stainless steel incorporating a spacer and a washer (not shown in FIG. 2). I put it in the mold coin case 11. Next, a positive electrode sheet (positive electrode active material layer) punched out from the positive electrode sheet for an all-solid secondary battery prepared below with a diameter of 14.0 mm was superposed on the solid electrolyte layer.
  • a stainless steel foil (positive electrode current collector) is further layered on top of the laminate 12 (stainless steel foil-aluminum foil-positive electrode active material layer-solid electrolyte layer-negative electrode active material layer-copper foil) for an all-solid secondary battery. Laminated body) was formed. After that, by crimping the 2032 type coin case 11, the all-solid-state secondary battery No. 2 shown in FIG. 119 was manufactured.
  • the positive electrode sheet for the solid-state secondary battery used in the production of the all-solid-state secondary battery was prepared as follows. (Preparation of composition for positive electrode) 180 zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), 2.7 g of LPS synthesized in the above synthesis example A, KYNAR FLEX 2500-20 (trade name, PVdF-HFP: polyfluoridene fluoride).
  • Vinylidene hexafluoropropylene copolymer (manufactured by Arkema Co., Ltd.) was added in an amount of 0.3 g as a solid content mass, and butyl butyrate was added in an amount of 22 g.
  • This container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and stirred at 25 ° C. and a rotation speed of 300 rpm for 60 minutes. Then, 7.0 g of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NMC) was added as the positive electrode active material, and in the same manner, the container was set in the planetary ball mill P-7, and the temperature was 25 ° C. and the number of rotations was 25.
  • NMC LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • a positive electrode composition (Preparation of positive electrode sheet for solid secondary battery)
  • the positive electrode composition obtained above is applied onto an aluminum foil (positive electrode current collector) having a thickness of 20 ⁇ m with a baker-type applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.) and heated at 100 ° C. for 2 hours. Then, the composition for the positive electrode was dried (the dispersion medium was removed). Then, using a heat press machine, the dried positive electrode composition is pressurized at 25 ° C. (10 MPa, 1 minute) to prepare a positive electrode sheet for an all-solid secondary battery having a positive electrode active material layer having a thickness of 80 ⁇ m. bottom.
  • the negative electrode sheet No. 1 for an all-solid-state secondary battery provided with a solid electrolyte layer.
  • the all-solid-state secondary battery (No. 119) was used, except that the negative electrode sheet for the all-solid-state secondary battery provided with the solid electrolyte layer represented by 120 to 137 and c101 to c109) were produced, respectively.
  • ⁇ Evaluation 2 Low temperature ion conductivity measurement> The ionic conductivity of each manufactured all-solid-state secondary battery was measured. Specifically, for each all-solid-state secondary battery, AC impedance was measured in a constant temperature bath at 0 ° C. using 1255B FREQUENCY RESPONSE ANALYZER (trade name, manufactured by SOLARTRON) with a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz. As a result, the resistance of the sample for measuring ionic conductivity in the layer thickness direction was determined, and the ionic conductivity was determined by calculating with the following formula (1).
  • Ion conductivity ⁇ (mS / cm) 1000 x sample layer thickness (cm) / [resistance ( ⁇ ) x sample area (cm 2 )]
  • the sample layer thickness is a value obtained by measuring the laminate 12 before putting it in the 2032 type coin case 11 and subtracting the thickness of the current collector (total layer thickness of the solid electrolyte layer and the electrode active material layer). Is.
  • the sample area is the area of a disk-shaped sheet having a diameter of 14.5 mm. It was determined which of the following evaluation criteria the obtained ionic conductivity ⁇ was included in. The ionic conductivity ⁇ in this test passed the evaluation standard "E" or higher.
  • an inorganic solid electrolyte-containing composition that does not satisfy any of the formulas (1) to (3) specified in the present invention or a polyester or vinyl polymer that satisfies the formulas (1) to (3).
  • No. 1 prepared using an inorganic solid electrolyte-containing composition prepared using a polymer binder other than the (meth) acrylic polymer.
  • the all-solid-state secondary batteries of c101 to c109 were inferior in ionic conductivity at low temperatures.
  • No. At least a chain transfer agent and an organic peroxide polymerization initiator containing a sulfur atom at the end of the main chain, as shown in 104, 105, 108, 109, 114, 122, 123, 126, 127 and 132.
  • a (meth) acrylic polymer having a residue of one type of polymerization initiator ionic conductivity in a low temperature range is further improved.
  • No. As shown in 105 and 123, the use of a (meth) acrylic polymer having a branched structure further improves ionic conductivity in a low temperature range.
  • No. As shown in 108, 109, 114, 126, 127 and 132, by reducing ⁇ , the ionic conductivity in the low temperature region is further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

無機固体電解質とポリマーバインダーとを含有する無機固体電解質含有組成物であって、ポリマーバインダーが、特定のポリマーを含み、ポリマーバインダーの重量平均分子量と含有量が特定の式で表される関係を満たす、無機固体電解質含有組成物、この無機固体電解質含有組成物を用いた全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法。

Description

無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
 本発明は、無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法に関する。
 全固体二次電池は負極、電解質、正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性及び信頼性を大きく改善することができる。また長寿命化も可能になるとされる。更に、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車又は大型蓄電池等への応用が期待されている。
 このような全固体二次電池において、構成層(固体電解質層、負極活物質層及び正極活物質層等)を形成する物質として、無機固体電解質、活物質等が挙げられる。この無機固体電解質、特に酸化物系無機固体電解質及び硫化物系無機固体電解質は、近年、有機電解液に迫る高いイオン伝導度を有する電解質材料として期待されている。
 全固体二次電池の構成層を形成する材料(構成層形成材料)として、上述の無機固体電解質等を含有する材料が提案されている。例えば、特許文献1には、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、有機化合物(B)と、分散媒(E)とを含有し、有機化合物(B)が、フッ素原子以外の非イオン性の1価のハロゲン原子を有し、有機化合物(B)の融点が25℃以上である、固体電解質組成物が記載されている。また、特許文献2には、デンドロン、デンドリマー及びハイパーブランチポリマーからなる群から選択される少なくとも1種の樹状ポリマーと、周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質とを含有し、樹状ポリマーが特定の官能基を有する固体電解質組成物が記載されている。
特開2019-67523号公報 国際公開第2017/018456号
 全固体二次電池の製造において、製造過程で、通常、固体粒子材料(無機固体電解質、活物質、導電助剤等)を含有する層を積層しプレス加工する際に、層間の密着不良、応力集中によるヒビ及び割れ等の発生が避けられない。この発生を抑制して全固体二次電池の歩留まりを向上させる方法として、固体粒子材料を含有する層には表面平滑性に優れること(構成層形成材料にはその塗工表面が平坦となって表面性がよいこと)が要求される。
 また、近年、実用化が進む電気自動車は軽量化等の研究開発が急速に進行し、次世代の電池としての全固体二次電池においても、電池性能に対する要求が一層高くなっている。その要求性能の一つとして、全固体二次電池用の温調モジュール等の搭載を不要として電気自動車を軽量化するため、全固体二次電池には、常温だけでなく低温下においても高いイオン伝導度を達成することが求められている。しかし、特許文献1及び2には、この点に関する記載はない。
 本発明は、表面平滑性(以下、表面性ともいう)に優れ、かつ低温から常温の温度域(例えば、0~25℃)におけるイオン伝導性に優れる構成層を備えた全固体二次電池用シート、更には表面平滑性に優れた構成層を組み込んだ、低温から常温の温度域におけるイオン伝導性に優れる全固体二次電池を実現できる無機固体電解質含有組成物を提供することを課題とする。また、本発明は、この無機固体電解質含有組成物を用いた、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法を提供することを課題とする。
 本発明者らは、無機固体電解質等とバインダーとの関連性に着目して種々検討を重ねた結果、無機固体電解質含有組成物において、特定の重量平均分子量(Mw)を有するポリマーバインダー(ポリエステル、(メタ)アクリルポリマー及びビニルポリマーの少なくとも1種)を含むポリマーバインダーを、組成物が含有する全固形分中、0.01~0.8質量%の含有量で含有し、このポリマーバインダーのMwと含有量との積を特定の値以下にすることにより、表面平滑性に優れ、また低温から常温の温度域におけるイオン伝導性に優れる構成層をを実現できることを見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>
 周期律表第1族または第2族に属する金属のイオン伝導性を有する無機固体電解質(A)とポリマーバインダー(B)とを含有する無機固体電解質含有組成物であって、
 上記ポリマーバインダー(B)が、ポリエステル、ビニルポリマー及び(メタ)アクリルポリマーの少なくとも1種を含み、上記ポリマーバインダー(B)の重量平均分子量と含有量とが、下記式(1)~(3)で表される関係をすべて満たす、無機固体電解質含有組成物。
式(1) 0.01≦α≦0.8
式(2) Mw≧2000
式(3) Mw×α≦9.3×10
 式中、αは無機固体電解質含有組成物に含まれる全固形分100質量%中のポリマーバインダー(B)の含有量の割合(質量%)を示し、Mwはポリマーバインダー(B)の重量平均分子量を示す。
<2>
 上記ポリマーバインダー(B)が、ビニルポリマー及び(メタ)アクリルポリマーの少なくとも1種を含む、<1>に記載の無機固体電解質含有組成物。
<3>
 上記ポリマーバインダー(B)を形成するポリマーが、炭素数14以上の炭化水素基を側鎖に有する構成成分を含む、<1>又は<2>に記載の無機固体電解質含有組成物。
<4>
 上記ビニルポリマー及び(メタ)アクリルポリマーが、ポリマーの主鎖末端に、硫黄原子を含有する連鎖移動剤及び有機過酸化物重合開始剤の少なくとも1種の重合開始剤の残基を有する、<1>~<3>のいずれか1つに記載の無機固体電解質含有組成物。
<5>
 上記ビニルポリマー及び(メタ)アクリルポリマーが、ポリマーの主鎖末端に、下記式(S3)で表される構造を有する、<1>~<4>のいずれか1つに記載の無機固体電解質含有組成物。
Figure JPOXMLDOC01-appb-C000002
 式中、nは3~6の整数である。LLはn価の分岐基を示す。Lは2価の連結基を示す。Lは酸素原子又は硫黄原子を示す。*はポリマー主鎖との結合部を示す。
<6>
 上記無機固体電解質(A)が硫化物系無機固体電解質である、<1>~<5>のいずれか1つに記載の無機固体電解質含有組成物。
<7>
 活物質(E)を含む、<1>~<6>のいずれか1つに記載の無機固体電解質含有組成物。
<8>
 <1>~<7>のいずれか1つに記載の無機固体電解質含有組成物で構成した層を有する全固体二次電池用シート。
<9>
 正極活物質層と、負極活物質層と、上記正極活物質層及び上記負極活物質層の間の固体電解質層とを含む全固体二次電池であって、
 上記正極活物質層、上記負極活物質層及び上記固体電解質層の少なくとも1層が、<1>~<7>のいずれか1つに記載の無機固体電解質含有組成物で構成した層である、全固体二次電池。
<10>
 <1>~<7>のいずれか1つに記載の無機固体電解質含有組成物を塗布することを含む、全固体二次電池用シートの製造方法。
<11>
 <10>に記載の製造方法を経て全固体二次電池を製造する、全固体二次電池の製造方法。
 本発明の無機固体電解質含有組成物は、全固体二次電池の構成層形成材料として用いることにより、表面平滑性に優れ、かつ低温から常温の温度域におけるイオン伝導性に優れる構成層を実現できる。また、本発明の全固体二次電池用シートは、上記無機固体電解質含有組成物で構成した、表面平滑性に優れ、また低温から常温の温度域におけるイオン伝導性に優れる構成層を備えている。また、本発明の全固体二次電池は、上記無機固体電解質含有組成物で構成した表面平滑性に優れた構成層を有し、低温から常温の温度域におけるイオン伝導性に優れる。更に、本発明の製造方法によれば、上記無機固体電解質含有組成物を用いた、全固体二次電池用シート及び全固体二次電池を提供できる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 図2は、実施例で作製したコイン型全固体二次電池を模式的に示す縦断面図である。 図3は、実施例及び比較例で調製した一部の無機固体電解質含有組成物(表2-1及び2-4に記載する無機固体電解質含有組成物の一部)が含有する全固形分中のポリマーバインダー(B)の含有量を横軸とし、上記ポリマーバインダー(B)のMwを縦軸としたグラフである。 図4は、実施例での表面平滑性試験における層厚測定箇所を説明する図である。
 本発明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、本発明の効果を損なわない範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本発明において、(メタ)アクリルとは、アクリル及びメタアクリルの一方又は両方を意味する。(メタ)アクリレートについても同様である。
 本発明において、置換又は無置換を明記していない置換基、連結基等(以下、置換基等という。)については、その基に適宜の置換基を有していてもよい意味である。よって、本発明において、単に、YYY基と記載されている場合であっても、このYYY基は、置換基を有しない態様に加えて、更に置換基を有する態様も包含する。これは置換又は無置換を明記していない化合物についても同義である。好ましい置換基としては、例えば後述する置換基Zが挙げられる。
 本発明において、特定の符号で示された置換基等が複数あるとき、又は複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
 本発明において、ポリマーは、重合体を意味するが、いわゆる高分子化合物と同義である。ポリマーバインダーは、ポリマーで構成されたバインダーを意味し、ポリマーそのもの、及びポリマーを含んで形成されたバインダーを包含する。
[無機固体電解質含有組成物]
 本発明の無機固体電解質含有組成物は、周期律表第1族または第2族に属する金属のイオン伝導性を有する無機固体電解質(A)とポリマーバインダー(B)とを含有し、上記ポリマーバインダー(B)が、ポリエステル、ビニルポリマー及び(メタ)アクリルポリマーの少なくとも1種を含み、上記ポリマーバインダー(B)の重量平均分子量及び含有量が、下記式(1)~(3)で表される関係をすべて満たす。
式(1) 0.01≦α≦0.8
式(2) Mw≧2000
式(3) Mw×α≦9.3×10
 式中、αは無機固体電解質含有組成物に含まれる全固形分100質量%中のポリマーバインダー(B)の含有量の割合(質量%)を示し、Mwはポリマーバインダー(B)の重量平均分子量を示す。
 ポリマーバインダー(B)が、ポリエステル、ビニルポリマー及び(メタ)アクリルポリマーの2種又は3種を含む場合、「ポリマーバインダー(B)の重量平均分子量」は、含まれるすべてのポリマーを混合して、後述のGPCに付して得られる重量平均分子量である。
 「ポリマーバインダー(B)の含有量」は、ポリエステル、ビニルポリマー及び(メタ)アクリルポリマーの合計である。
 なお、本発明において、無機固体電解質含有組成物がポリマーバインダー(B)以外のポリマーバインダーを含む場合は、ポリマーバインダー(B)が上記式(1)~(3)を満たせばよい。
 本発明の無機固体電解質含有組成物を構成層形成材料として用いることにより、表面平滑性に優れた構成層を有する全固体二次電池用シート、更には低温から常温の温度域で低抵抗な全固体二次電池を実現できる。
 その理由の詳細はまだ明らかではないが、以下のように考えられる。
 本発明の無機固体電解質含有組成物は、ポリエステル、ビニルポリマー及び(メタ)アクリルポリマーの少なくとも1種で構成したポリマーバインダーを上記式(1)に規定する小さな含有量αで含有する。そのため、無機固体電解質含有組成物中の絶縁成分量が少なくなり、構成層を形成する際に、ポリマーバインダーによる固体粒子間の強固な密着性を維持しながらも、固体粒子の表面全体を被覆しにくく良好な界面接触を確保できると考えられる。上記の良好な界面接触は低温環境下でポリマーの分子運動が低下した状態でも損なわれず、低温環境下でも常温環境下における高いイオン伝導度を維持できる。これに加えて、Mw2000以上であると、分子間の絡み合いが増加することで固体粒子の強固な密着性を維持できる。また、本発明の無機固体電解質含有組成物が分散媒を含有する場合には、ポリマー分子鎖の分散媒中の広がりが大きくなり、分散性が向上する。
 上述のように、Mw及び含有量αを規定した上で、更にMwとαを特定の関係に設定すること、特にMw×αをポリマーバインダーの体積に対応するパラメータとして9.3×10以下に設定することで、構成層を形成する際に、上述の良好な界面接触を維持しながらも、構成層表面にポリマーバインダーを均一に(体積のムラが少なく)存在させることができ、構成層の表面平滑性を高めることができる。
 全固体二次電池用シートの表面平滑性及び全固体二次電池のイオン伝導性の点から、αは、0.6質量%以下が好ましく、0.5質量%以下がより好ましく、0.3質量%以下が更に好ましく、0.2質量%以下が特に好ましい。また、αは、0.05質量%以上が好ましく、0.1以上がより好ましく、0.15以上が更に好ましい。
 全固体二次電池用シートの表面平滑性及び全固体二次電池のイオン伝導性の点から、Mwは、8.0×10以下が好ましく、8.0×10以下がより好ましく、2.6×10以下が更に好ましい。またMwは、2200以上が好ましい。
 上記式(3)は、以下のようにして導出することができる。
 横軸をα、縦軸をMwとして、後記実施例で調製した、無機固体電解質含有組成物K-12、K-13、Kc12及びKc14が含有するポリマーバインダーのMw及び組成物中の含有量から、K-13とKc14を結ぶ線分を二等分する点AおよびK-12とKc12を結ぶ線分を二等分する点Bを求める。点A及びBに対応するポリマーバインダーの使用により、十分な表面平滑性及び低温域でのイオン伝導性が得られる。点A及びBについて、最小二乗法により反比例の関係を示す近似曲線を作成することにより、式(3)を導出することができる。本発明の奏する上記効果はポリマーバインダー(B)が上記式(1)~(3)で表される関係を満たすことで奏するものであり、固体粒子の種類による影響をほとんど受けないため、式(3)は電極用組成物においても同様に適用することができる。
 式(3)で規定されるMw×αの下限値は、式(2)で規定するMw及び(1)で規定するαにより決定され、20以上であればよく、適宜に設定される。
 上記式(3)については、下記式(3a)であることが好ましい。
 式(3a)   Mw×α-0.63≦9.0×10
 式(3a)は、図3のK-12及びK-13に対応する点を通る曲線であり、K-12及びK-13が含有するポリマーバインダーのMw及びαから、最小二乗法による指数近似をして導出される。
 上記式(3)は、下記式(3b)であることも好ましい。
 式(3b)   Mw≦-4.4×10×α+3.4×10
 式(3b)は、以下のようにして導出することができる。
 後記実施例で調製した、無機固体電解質含有組成物K-12、K-13及びK-15が含有するポリマーバインダーのMw及びαから、最小二乗法による線形近似をすることにより、式(3b)を導出することができる(図3参照)。
 本発明の無機固体電解質含有組成物は、全固体二次電池用シート(全固体二次電池用電極シートを含む。)又は全固体二次電池の、固体電解質層又は活物質層の形成材料(構成層形成材料)として好ましく用いることができる。
 本発明の無機固体電解質含有組成物は非水系組成物であることが好ましい。本発明において、非水系組成物とは、水分を含有しない態様に加えて、含水率(水分含有量ともいう。)が好ましくは500ppm以下である形態をも包含する。非水系組成物において、含水率は、200ppm以下であることがより好ましく、100ppm以下であることが更に好ましく、50ppm以下であることが特に好ましい。無機固体電解質含有組成物が非水系組成物であると、無機固体電解質の劣化を抑制することができる。含水量は、無機固体電解質含有組成物中に含有している水の量(無機固体電解質含有組成物に対する質量割合)を示し、具体的には、0.02μmのメンブレンフィルターでろ過し、カールフィッシャー滴定を用いて測定された値とする。
 本発明の無機固体電解質含有組成物は、無機固体電解質に加えて、活物質、更には導電助剤等を含有する態様も包含する(この態様の組成物を電極用組成物という。)。
 以下、本発明の無機固体電解質含有組成物が含有する成分及び含有しうる成分について説明する。
<無機固体電解質>
 本発明の無機固体電解質含有組成物は、無機固体電解質を含有する。
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンに解離若しくは遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
 上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。例えば、無機固体電解質としては、(i)硫化物系無機固体電解質、(ii)酸化物系無機固体電解質、(iii)ハロゲン化物系無機固体電解質、及び、(iv)水素化物系無機固体電解質が挙げられ、活物質と無機固体電解質との間により良好な界面を形成することができる観点から、硫化物系無機固体電解質が好ましい。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 硫化物系無機固体電解質としては、例えば、下記式(S1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 (S1)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に制限されないが、1×10-1S/cm以下であることが実際的である。
 具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO-LiSO; LiO-B-P; LiO-SiO; LiBaLaTa12; LiPO(4-3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素元素の一部を窒素元素で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
 更に、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
(iii)ハロゲン化物系無機固体電解質
 ハロゲン化物系無機固体電解質は、ハロゲン原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 ハロゲン化物系無機固体電解質としては、特に制限されないが、例えば、LiCl、LiBr、LiI、ADVANCED MATERIALS,2018,30,1803075に記載のLiYBr、LiYCl等の化合物が挙げられる。中でも、LiYBr、LiYClが好ましい。
(iv)水素化物系無機固体電解質
 水素化物系無機固体電解質は、水素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 水素化物系無機固体電解質としては、特に制限されないが、例えば、LiBH、Li(BHI、3LiBH-LiCl等が挙げられる。
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の粒子径(体積平均粒子径)は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。
 無機固体電解質の粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散液試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 無機固体電解質は、1種を含有していても、2種以上を含有していてもよい。
 固体電解質層を形成する場合、固体電解質層の単位面積(cm)当たりの無機固体電解質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
 ただし、無機固体電解質含有組成物が後述する活物質を含有する場合、無機固体電解質の目付量は、活物質と無機固体電解質との合計量が上記範囲であることが好ましい。
 無機固体電解質の、無機固体電解質含有組成物中の含有量は、特に制限されないが、結着性の点、更には分散性の点で、固形分100質量%において、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 ただし、無機固体電解質含有組成物が後述する活物質を含有する場合、無機固体電解質含有組成物中の無機固体電解質の含有量は、活物質と無機固体電解質との合計含有量が上記範囲であることが好ましい。
 本発明において、固形分(固形成分)とは、無機固体電解質含有組成物を、1mmHgの気圧下、窒素雰囲気下150℃で6時間乾燥処理したときに、揮発若しくは蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
<ポリマーバインダー(B)>
 本発明の無機固体電解質含有組成物が含有するポリマーバインダー(B)を形成するポリマーは、ポリエステル、ビニルポリマー及び(メタ)アクリルポリマーの少なくとも1種を含有する。
 本発明において、全固体二次電池用シートの表面平滑性及び全固体二次電池のイオン伝導性の点から、ビニルポリマー又は(メタ)アクリルポリマーが好ましい。また、ビニルポリマー又は(メタ)アクリルポリマーは分岐構造(重合開始剤残基を介してポリマー鎖を分岐状に有する構造)を有していることが好ましい。
 以下、ポリエステル、ビニルポリマー及び(メタ)アクリルポリマーについて説明する。
(ポリエステル)
 本発明においては、本発明の属する技術分野で用いられる通常のポリエステル(好ましくはMw2000以上)を用いることができる。
 本発明に用いられるポリエステルは、下記式(1)で表される構成成分と、下記式(2)で表される構成成分とを組合せてなる繰返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式中、「*」は、式(1)で表される構成成分と、式(2)で表される構成成分との結合部又はポリエステル中での結合部を示す。
 RP1及びRP2は、それぞれ(重量平均)分子量が20以上200,000以下の分子鎖を示す。この分子鎖の分子量は、その種類等によるので一義的に決定できないが、例えば、30以上が好ましく、50以上がより好ましく、100以上が更に好ましく、150以上が特に好ましい。上限としては、100,000以下が好ましく、10,000以下がより好ましい。分子鎖の分子量は、ポリマーの主鎖に組み込む前の原料化合物について測定する。
 RP1及びRP2としてとりうる上記分子鎖は、特に制限されないが、炭化水素鎖、ポリアルキレンオキシド鎖、ポリカーボネート鎖又はポリエステル鎖が好ましく、炭化水素鎖又はポリアルキレンオキシド鎖がより好ましく、炭化水素鎖、ポリエチレンオキシド鎖又はポリプロピレンオキシド鎖が更に好ましく、炭化水素鎖が更に好ましい。
 RP1及びRP2としてとりうる炭化水素鎖は、炭素原子及び水素原子から構成される炭化水素の鎖を意味し、より具体的には、炭素原子及び水素原子から構成される化合物の少なくとも2つの原子(例えば水素原子)又は基(例えばメチル基)が脱離した構造を意味する。ただし、本発明において、鎖中に酸素原子、硫黄原子又は窒素原子を含む基を有する鎖も包含する。炭化水素鎖の末端に有し得る末端基は炭化水素鎖には含まれないものとする。この炭化水素鎖は、炭素-炭素不飽和結合を有していてもよく、脂肪族環及び/又は芳香族環の環構造を有していてもよい。すなわち、炭化水素鎖は、脂肪族炭化水素及び芳香族炭化水素から選択される炭化水素で構成される炭化水素鎖であればよい。
 このような炭化水素鎖としては、上記分子量を満たすものであればよく、低分子量の炭化水素基からなる鎖と、炭化水素ポリマーからなる炭化水素鎖(炭化水素ポリマー鎖ともいう。)との両炭化水素鎖を包含する。
 低分子量の炭化水素鎖は、通常の(非重合性の)炭化水素基からなる鎖であり、この炭化水素基としては、例えば、脂肪族若しくは芳香族の炭化水素基が挙げられ、具体的には、アルキレン基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アリーレン基(炭素数は6~22が好ましく、6~14が好ましく、6~10がより好ましい)、又はこれらの組み合わせからなる基が好ましい。RP2としてとりうる低分子量の炭化水素鎖を形成する炭化水素基としては、アルキレン基がより好ましく、炭素数2~6のアルキレン基が更に好ましく、炭素数2又は3のアルキレン基が特に好ましい。この炭化水素鎖は置換基として重合鎖(例えば(メタ)アクリルポリマー)を有していてもよい。
 芳香族の炭化水素基は、例えば、後掲する各例示の構成成分が有する炭化水素基が挙げられ、アリーレン基(例えば、後述する置換基Zで挙げたアリール基から更に水素原子を1つ以上除去した基、具体的にはフェニレン基、トリレン基若しくはキシリレン基)が好ましい。
 炭化水素ポリマー鎖は、重合性の炭化水素が(少なくとも2つ)重合してなるポリマー鎖であって、上述の低分子量の炭化水素鎖よりも炭素原子数が大きい炭化水素ポリマーからなる鎖であれば特に制限されないが、好ましくは30個以上、より好ましくは50個以上の炭素原子から構成される炭化水素ポリマーからなる鎖である。炭化水素ポリマーを構成する炭素原子数の上限は、特に制限されず、例えば3,000個とすることができる。この炭化水素ポリマー鎖は、主鎖が、上記炭素原子数を満たす、脂肪族炭化水素で構成される炭化水素ポリマーからなる鎖が好ましく、脂肪族飽和炭化水素若しくは脂肪族不飽和炭化水素で構成される重合体(好ましくはエラストマー)からなる鎖であることがより好ましい。重合体としては、具体的には、主鎖に二重結合を有するジエン系重合体、及び、主鎖に二重結合を有しない非ジエン系重合体が挙げられる。ジエン系重合体としては、例えば、スチレン-ブタジエン共重合体、スチレン-エチレン-ブタジエン共重合体、イソブチレンとイソプレンの共重合体(好ましくはブチルゴム(IIR))、ブタジエン重合体、イソプレン重合体及びエチレン-プロピレン-ジエン共重合体等が挙げられる。非ジエン系重合体としては、エチレン-プロピレン共重合体及びスチレン-エチレン-ブチレン共重合体等のオレフィン系重合体、並びに、上記ジエン系重合体の水素還元物が挙げられる。
 炭化水素鎖となる炭化水素は、その末端に末端反応性基(ヒドロキシ基、カルボキシ基又は酸無水物基)を有することが好ましく、ヒドロキシ基を有することがより好ましく、縮重合することにより、上記各式のRP1又はRP2としてポリマー主鎖を形成する。
 末端反応性基を有する炭化水素ポリマーとしては、例えば、いずれも商品名で、NISSO-PBシリーズ(日本曹達社製)、クレイソールシリーズ(巴工業社製)、PolyVEST-HTシリーズ(エボニック社製)、poly-bdシリーズ(出光興産社製)、poly-ipシリーズ(出光興産社製)、EPOL(出光興産社製)及びポリテールシリーズ(三菱化学社製)等が好適に用いられる。
 ポリアルキレンオキシド鎖(ポリアルキレンオキシ鎖)としては、公知のポリアルキレンオキシ基からなる鎖が挙げられる。ポリアルキレンオキシ鎖中のアルキレンオキシ基の炭素数は、1~10であることが好ましく、1~6であることがより好ましく、2又は3であること(ポリエチレンオキシ鎖又はポリプロピレンオキシ鎖)が更に好ましい。ポリアルキレンオキシ鎖は、1種のアルキレンオキシ基からなる鎖でもよく、2種以上のアルキレンオキシ基からなる鎖(例えば、エチレンオキシ基及びプロピレンオキシ基からなる鎖)でもよい。
 ポリカーボネート鎖又はポリエステル鎖としては、公知のポリカーボネート又はポリエステルからなる鎖が挙げられる。
 ポリアルキレンオキシ鎖、ポリカーボネート鎖又はポリエステル鎖は、それぞれ、末端にアルキル基(炭素数は1~12が好ましく、1~6がより好ましい)を有することが好ましい。
 RP1及びRP2としてとりうるポリアルキレンオキシ鎖、ポリカーボネート鎖及びポリエステル鎖の末端は、RP1及びRP2として上記各式で表される構成成分に組み込み可能な通常の化学構造に適宜に変更することができる。例えば、ポリアルキレンオキシ鎖は末端酸素原子が取り除かれて上記構成成分のRP1又はRP2として組み込まれる。
 分子鎖が含むアルキル基の内部若しくは末端に、エーテル基(-O-)、チオエーテル基(-S-)、カルボニル基(>C=O)、イミノ基(>NR:Rは水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基)を有していてもよい。
 上記各式において、RP1及びRP2は2価の分子鎖であるが、少なくとも1つの水素原子が-NH-CO-、-CO-、-O-、-NH-又は-N<で置換されて、3価以上の分子鎖となっていてもよい。
 RP1は、上記分子鎖の中でも、炭化水素鎖であることが好ましく、低分子量の炭化水素鎖であることがより好ましく、脂肪族若しくは芳香族の炭化水素基からなる炭化水素鎖が更に好ましく、脂肪族の炭化水素基からなる炭化水素鎖が特に好ましい。
 RP2は、上記分子鎖の中でも、炭化水素ポリマー鎖が好ましい。
 上記式(1)で表される構成成分を導く原料化合物(カルボン酸若しくはその酸クロリド等)は、特に制限されず、例えば、国際公開第2018/020827号の段落[0074]に記載の、カルボン酸又は酸クロリドの化合物及びその具体例(例えばアジピン酸若しくはそのエステル化物)が挙げられる。
 上記式(2)で表される構成成分の具体例を以下及び実施例に示す。また、上記式(2)で表される構成成分を導く原料化合物(ジオール化合物)としては、特に制限されず、例えば、国際公開第2018/020827号に記載の各化合物及びその具体例が挙げられ、更にジヒドロキシオキサミドも挙げられる。なお、本発明において、式(2)で表される構成成分及びこれを導く原料化合物は下記具体例、実施例及び上記文献に記載のものに限定されない。
 なお、下記具体例において、構成成分中に繰り返し構造を有する場合、その繰り返し数は1以上の整数であり、上記分子鎖の分子量又は炭素原子数を満たす範囲で適宜に設定される。
Figure JPOXMLDOC01-appb-C000004
 本発明に用いられるポリエステルは、上記各式で表される構成成分以外の構成成分を有していてもよい。このような構成成分は、上記各式で表される構成成分を導く原料化合物と重縮合可能なものであれば特に制限されない。
 本発明に用いられるポリエステル中の上記各式(1)又は式(2)で表される構成成分の(合計)含有量は、特に限定されないが、5~100モル%であることが好ましく、5~80モル%であることがより好ましく、10~60モル%であることが更に好ましい。
 本発明に用いられるポリエステル中の、上記各式で表される構成成分以外の構成成分の含有量は、特に限定されないが、50質量%未満であることが好ましい。
 なお、本発明に用いられるポリエステルが各式で表される構成成分を複数有する場合、各構成成分の上記含有量は合計含有量とする。
 本発明に用いられるポリエステル(各構成成分及び原料化合物)は、置換基を有していてもよい。置換基としては、特に制限されないが、好ましくは下記置換基Zから選択される基が挙げられる。
 本発明に用いられるポリエステルは、公知の方法により原料化合物を選択し、原料化合物を重縮合等して、合成することができる。合成方法としては、例えば、国際公開第2018/151118号を参照できる。
 - 置換基Z -
 アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、本明細書においてアルキル基というときには通常シクロアルキル基を含む意味であるが、ここでは別記する。)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、アラルキル基(好ましくは炭素数7~23のアラルキル基、例えば、ベンジル、フェネチル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基で、より好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基である。ヘテロ環基には芳香族ヘテロ環基及び脂肪族ヘテロ環基を含む。例えば、テトラヒドロピラン環基、テトラヒドロフラン環基、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等、本明細書においてアリールオキシ基というときにはアリーロイルオキシ基を含む意味である。)、ヘテロ環オキシ基(上記ヘテロ環基に-O-基が結合した基)、アルコキシカルボニル基(好ましくは炭素数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル、ドデシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ(-NH)、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(アルキルカルボニル基、アルケニルカルボニル基、アルキニルカルボニル基、アリールカルボニル基、ヘテロ環カルボニル基を含み、好ましくは炭素数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、オクタノイル、ヘキサデカノイル、アクリロイル、メタクリロイル、クロトノイル、ベンゾイル、ナフトイル、ニコチノイル等)、アシルオキシ基(アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、アリールカルボニルオキシ基、ヘテロ環カルボニルオキシ基を含み、好ましくは炭素数1~20のアシルオキシ基、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、オクタノイルオキシ、ヘキサデカノイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、クロトノイルオキシ、ベンゾイルオキシ、ナフトイルオキシ、ニコチノイルオキシ等)、アリーロイルオキシ基(好ましくは炭素数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、ヘテロ環チオ基(上記ヘテロ環基に-S-基が結合した基)、アルキルスルホニル基(好ましくは炭素数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素数6~42のアリールシリル基、例えば、トリフェニルシリル等)、アルコキシシリル基(好ましくは炭素数1~20のアルコキシシリル基、例えば、モノメトキシシリル、ジメトキシシリル、トリメトキシシリル、トリエトキシシリル等)、アリールオキシシリル基(好ましくは炭素数6~42のアリールオキシシリル基、例えば、トリフェニルオキシシリル等)、ホスホリル基(好ましくは炭素数0~20のリン酸基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素数0~20のホスフィニル基、例えば、-P(R)、スルホ基(スルホン酸基)、カルボキシ基、ヒドロキシ基、スルファニル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。Rは、水素原子又は置換基(好ましくは置換基Zから選択される基)である。
 また、これらの置換基Zで挙げた各基は、上記置換基Zが更に置換していてもよい。
 上記アルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基及び/又はアルキニレン基等は、環状でも鎖状でもよく、また直鎖でも分岐していてもよい。
(ビニルポリマー)
 本願明細書において、「ビニルポリマー」とは、ビニルモノマー(ビニル基「CH=CH-」を有するモノマー)を連鎖重合してなるポリマー(好ましくはMw2000以上)を意味する。ただし、後述の(メタ)アクリル化合物(M1)由来の構成成分の含有量が50モル%以上のポリマーは(メタ)アクリルポリマーに分類されるものとする。
 ビニルモノマーとしては、後述する「その他の重合性化合物(M2)」のうちのビニルモノマー((メタ)アクリル化合物は含まれない)が挙げられ、後記式(b-1)で表される化合物のRが水素原子を示し、Rが結合していない炭素原子が無置換炭素原子(CH=)を示す化合物(ただし、Lはエステル結合を採らない、すなわち、上記化合物には(メタ)アクリル化合物は含まれない)が好ましい。
 本発明では、全構成成分中、スチレン由来の構成成分の含有量が50モル%以上(好ましくは60モル%以上、より好ましくは70モル%以上)のビニルポリマーが好ましい。
 ビニルポリマーの具体例としては、例えば、ポリスチレン、スチレンブタジエン共重合体、スチレン系熱可塑性エラストマー又はこれらの水添(水素化)ポリマーが挙げられる。スチレン系熱可塑性エラストマー又はその水素化物としては、特に制限されないが、例えば、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、水素化SIS、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、水素化SBS、スチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体(SEEPS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、スチレン-ブタジエンゴム(SBR)、水素化スチレン-ブタジエンゴム(HSBR)等が挙げられる。また、ビニルポリマーの具体例として、ポリビニルアルコール、ポリビニルアセタール、ポリ酢酸ビニル、又はこれらを含む共重合体も挙げられる。
 本発明に用いられるビニルポリマーは、ビニルモノマー由来の構成成分以外に、例えば、後述する(メタ)アクリルポリマーを形成する(メタ)アクリル化合物(M1)由来の構成成分(共重合成分)を有してもよい。共重合成分の含有量は、ポリマー中、50モル%未満であれば特に制限されないが、0~30モル%であることが好ましい。
((メタ)アクリルポリマー)
 本発明においては、本発明の属する技術分野で用いられる通常の(メタ)アクリルポリマー(好ましくはMw2000以上)を用いることができる。
 (メタ)アクリルポリマーとしては、(メタ)アクリル酸化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリルアミド化合物及び(メタ)アクリルニトリル化合物から選択される少なくとも1種の(メタ)アクリル化合物(M1)(モノマー)を共重合して得られるポリマーが好ましい。また、(メタ)アクリル化合物(M1)とその他の重合性化合物(M2)との共重合体からなる(メタ)アクリルポリマーも好ましい。その他の重合性化合物(M2)(モノマー)としては、特に制限されず、スチレン化合物、ビニルナフタレン化合物、ビニルカルバゾール化合物、アリル化合物、ビニルエーテル化合物、ビニルエステル化合物、イタコン酸ジアルキル化合物、不飽和カルボン酸無水物等のビニル化合物が挙げられる。ビニル化合物としては、例えば、特開2015-88486号公報に記載の「ビニル系モノマー」が挙げられる。
 (メタ)アクリル化合物(M1)及びその他の重合性化合物(M2)の分子量は50~300が好ましい。
 (メタ)アクリル化合物(M1)及びその他の重合性化合物(M2)は重合開始剤の残基以外の置換基を有していてもよい。置換基としては、好ましくは上記置換基Zから選択される基が挙げられる。
 (メタ)アクリルポリマー中におけるその他の重合性化合物(M2)の含有量は、特に制限されないが、例えば50モル%未満とすることができる。
 (メタ)アクリルポリマーの構成成分を導く(メタ)アクリル化合物(M1)及びその他の重合性化合物(M2)としては、下記式(b-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
 式中、Rは水素原子、ヒドロキシ基、シアノ基、ハロゲン原子、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が特に好ましい)、又はアリール基(炭素数6~22が好ましく、6~14がより好ましい)を示す。中でも水素原子又はアルキル基が好ましく、水素原子又はメチル基がより好ましい。
 Rは、水素原子又は置換基を示す。Rとして採りうる置換基は、特に限定されないが、アルキル基(分岐鎖でもよいが直鎖が好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2又は3が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましい)、シアノ基及びヒドロキシ基が挙げられる。
 アルキル基は、1~3の炭素数を有することも好ましい。
 Lは、連結基であり、特に限定されないが、例えば、炭素数1~50(好ましくは1~3)のアルキレン基、炭素数2~6(好ましくは2~3)のアルケニレン基、炭素数6~24(好ましくは6~10)のアリーレン基、酸素原子、硫黄原子、イミノ基(-NR-:Rは上述の通り。)、カルボニル基、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、又はそれらの組み合わせに係る基等が挙げられ、-CO-O-基、-CO-N(R)-基(Rは上述の通り。)が好ましい。上記連結基は任意の置換基を有していてもよい。連結基を構成する原子の数及び連結原子数は後述する通りである。任意の置換基としては、上記置換基Zが挙げられ、例えば、アルキル基又はハロゲン原子などが挙げられる。
 nは0又は1であり、1が好ましい。
 -(L-Rは、炭素数14以上の炭化水素基(例えば、アルキル基、アルケニル基、アルキニル基及びアリール基、好ましくはアルキル基、アルケニル基及びアルキニル基、より好ましくはアルキル基)を有することが好ましく、炭素数14以上50以下の炭化水素基がより好ましく、炭素数14以上40以下の炭化水素基が更に好ましく、炭素数14以上30以下の炭化水素基が更に好ましい。本発明では、特にRが上記「炭素数14以上の炭化水素基」であることが好ましい。
 アルキル基、アルケニル基及びアルキニル基は、鎖状、分岐及び環状のいずれでもよい。
 上記(メタ)アクリル化合物(M1)としては、下記式(b-2)又は(b-3)で表される化合物も好ましく、下記式(b-2)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000006
 R、nは上記式(b-1)と同義である。
 Rは、Rと同義である。
 Lは、連結基であり、上記Lと同義である。
 Lは、連結基であり、上記Lと同義であるが、炭素数1~6(好ましくは1~3)のアルキレン基が好ましい。
 mは1~200の整数であり、1~100の整数であることが好ましく、1~50の整数であることがより好ましい。
 上記式(b-1)~(b-3)において、重合性基を形成する炭素原子であってRが結合していない炭素原子は無置換炭素原子(CH=)として表しているが、置換基を有していてもよい。置換基としては、特に制限されないが、例えば、Rとしてとりうる上記基が挙げられる。
 また、式(b-1)~(b-3)において、アルキル基、アリール基、アルキレン基、アリーレン基など置換基を取ることがある基については、本発明の効果を損なわない範囲で置換基を有していてもよい。置換基としては、例えば上述の置換基Zから選択される基が挙げられる。
 (メタ)アクリルポリマー((メタ)アクリルポリマーが複数の(メタ)アクリルポリマー鎖を有する場合には、全ての(メタ)アクリルポリマー鎖)における構成成分の含有量は、特に制限されず、構成成分が有する置換基等を考慮して適宜に選択され、例えば、以下の範囲に設定できる。
 (メタ)アクリル化合物(M1)に由来する構成成分の、(メタ)アクリルポリマー中の含有量は、特に限定されず、ポリマーの合成に用いられるモノマー(ポリマー形成用モノマー)由来の構成成分及び後記重合開始剤残基の全モルを100モル%として、50~99モル%であることが好ましく、60~99モル%であることがより好ましく、70~99モル%であることが特に好ましい。
 炭素数14以上の炭化水素基を有する(メタ)アクリル化合物(M1)に由来する構成成分の、(メタ)アクリルポリマー中の含有量は、特に限定されず、ポリマー形成用モノマー由来の構成成分及び後記重合開始剤残基の全モルを100モル%として、50~99モル%であることが好ましく、60~99モル%であることがより好ましく、70~99モル%であることが特に好ましい。
 ビニル化合物(M2)に由来する構成成分の、(メタ)アクリルポリマー中の含有量は、例えば、ポリマー形成用モノマー由来の構成成分及び後記重合開始剤残基の全モルを100モル%として、0モル%以上50モル%未満であることが好ましく、0モル%以上40モル%未満であることがより好ましく、0モル%以上30モル%未満であることが特に好ましい。
 なお、(メタ)アクリルポリマーはカルボキシ基を主鎖及び側鎖の少なくとも一方に有してもよい。(メタ)アクリルポリマー中の、カルボキシ基を有する構成成分の含有量は少ないことが好ましく、ポリマー形成用モノマー由来の構成成分及び後記重合開始剤残基の全モルを100モル%として、2.0モル%以下が好ましく、1.0モル%以下がより好ましく、0.4モル%未満が更に好ましい。
 (メタ)アクリルポリマー鎖は下記一般式で表される(メタ)アクリルポリマー鎖であることも好ましい。
Figure JPOXMLDOC01-appb-C000007
 式中、a2~c2はモル%を示す。a2は35~100モル%であり、b2は0~65モル%であり、c2は0~20モル%である。a2+b2+c2=100モル%である。
 R21~R23は水素原子又はメチル基を示す。R24はアルキル基を示す。アルキル基は直鎖、分岐及び環状のいずれでもよく、炭素数は、1~30が好ましく、3~25がより好ましく、14~20が特に好ましい。
 R25~R27は水素原子又はメチル基を示す。R28はアルキル基を示す。アルキル基は直鎖、分岐及び環状のいずれでもよく、炭素数は、1~10が好ましく、1~5がより好ましい。R28は置換基を有することが好ましく、この置換基としてはヒドロキシ基が好ましい。
 R29及びR31は水素原子又はメチル基を示す。R30は水素原子又はカルボキシ基を示す。L21は単結合又は連結基を示し、この連結基はLと同義であり、好ましい範囲も同じである。
 全固体二次電池用シートの表面平滑性及び全固体二次電池のイオン伝導性の点から、ポリマーバインダー(B)を形成するポリマーは、炭素数14以上の炭化水素基を側鎖に有する構成成分を含むことが好ましい。
 上記炭化水素基の炭素数は、50以下が好ましく、40以下がより好ましく、30以下が更に好ましい。
 上記炭化水素基としては、例えば、アルキル基、アルケニル基及びアルキニル基が挙げられ、アルキル基が好ましい。なお、アルキル基、アルケニル基及びアルキニル基は直鎖、分岐及び環状のいずれの形態でもよく、直鎖が好ましい。
 ビニルポリマー(ビニルポリマーが複数のビニルポリマー鎖を有する場合には、全てのビニルポリマー鎖)における炭素数14以上の炭化水素基を側鎖に有する構成成分の含有量は、特に限定されず、ポリマー形成用モノマー由来の構成成分及び後記重合開始剤残基の全モルを100モル%として、5~50モル%であることが好ましく、10~45モル%であることがより好ましく、15~40モル%であることが特に好ましい。
 ポリエステル(ポリエステルが複数のポリエステル鎖を有する場合には、全てのポリエステル鎖)における炭素数14以上の炭化水素基を側鎖に有する構成成分の含有量は、特に限定されず、ポリマー形成用化合物由来の構成成分及び後記重合開始剤残基の全モルを100モル%として、100モル%とすることもできるが、10~95モル%であることが好ましく、20~90モル%であることがより好ましく、30~80モル%であることが特に好ましい。
 本発明において、逐次重合ポリマーについては、ポリマーの主鎖とは、ポリマーを構成する、それ以外のすべての分子鎖が、主鎖に対して枝分れ鎖若しくはペンダントとみなしうる線状分子鎖をいう。枝分れ鎖若しくはペンダント鎖とみなす分子鎖の重量平均分子量にもよるが、典型的には、ポリマーを構成する分子鎖のうち最長鎖が主鎖となる。ただし、ポリマー末端(片末端及び/又は両末端)が有する末端基は主鎖に含まない。一方、連鎖重合ポリマーにおいては、ポリマーの主鎖とは、モノマー成分の重合反応が開始され、連鎖的に形成される重合度2以上の分子鎖をいい、ポリマー1分子中に複数あってもよい。また、ポリマーの側鎖とは、主鎖以外の分子鎖をいい、短分子鎖及び長分子鎖を含む。なお、ポリマー末端が有する末端基とは、例えば、ポリマーの片末端に導入される、後述の重合開始剤残基が該当する。
 後記ポリマーS-9を例にとって説明すると、テトラデシルアクリレートが重合反応して形成される4つの分子鎖は、いずれも連鎖重合ポリマーの上記「主鎖」に該当する。
 全固体二次電池用シートの表面平滑性及び全固体二次電池のイオン伝導性の点から、ビニルポリマー及び(メタ)アクリルポリマーは、ポリマーの主鎖末端(通常、片末端)に、重合開始剤残基を有し、この重合開始剤残基は、アゾ重合開始剤、硫黄原子を含有する連鎖移動剤及び有機過酸化物の重合開始剤の少なくとも1種の重合開始剤を含むことが好ましく、硫黄原子を含有する連鎖移動剤及び有機過酸化物の重合開始剤の少なくとも1種の重合開始剤を含むことがより好ましく、硫黄原子を含有する連鎖移動剤を含むことが更に好ましい。重合開始剤残基の価数が2価以上である場合、この重合開始剤残基は、ポリマー全体のコアとなって2以上のポリマーの主鎖末端にそれぞれ結合し、分岐状構造のポリマーを形成する。
 重合開始剤の残基(重合開始剤残基)とは、ポリマーバインダー(B)を形成するポリマーの重合(製造)に用いる重合開始剤が開裂して生じるラジカル部分などがポリマーの末端に結合してなる部分構造等(基であってラジカルではない)をいい、ポリマーの主鎖には含まれない。したがって、重合開始剤残基は、重合開始剤の部分構造(moeity)を有し、重合開始作用を有しない。また、重合開始剤残基は、無機固体電解質及び活物質等の固体粒子との相互作用により密着性向上作用を示す。
 ポリマーが有する重合開始剤残基は、1種又は2種以上であってもよく、2種以上である場合、互いに異なっていてもよい。
 重合開始剤残基は、下記式(S1)~(S3)のいずれかで表される残基であることが好ましく、式(S3)で表される残基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000008
 式中、Lはカルボニル基、エーテル結合若しくはアルキレン基又はこれらを組み合わせた基を示す。Lは、アルキレン基又は「エーテル結合-カルボニル基-アルキレン基(アルキレン基で硫黄原子に結合する)」が好ましい。
 アルキレン基は置換基を有してもよく、この置換基としてはヒドロキシ基が好ましい。
 Rは水素原子、ヒドロキシ基又はアリール基を示す。
 アルキレン基は、鎖状、分岐及び環状のいずれでもよい。アルキレン基の炭素数は、1~18が好ましく、1~16がより好ましく、1~14が更に好ましい。
 アリール基は、炭素数6~24のアリール基が好ましく、6~10のアリール基がより好ましい。
 *はポリマー主鎖との結合部を示す。以下の重合開始剤残基の記載についても同様である。
Figure JPOXMLDOC01-appb-C000009
 式中、Lはカルボニル基、エーテル結合若しくはアルキレン基又はこれらを組み合わせた基を示す。Lは、アルキレン基、カルボニル基又は「アルキレン基-カルボニル基(カルボニル基で酸素原子に結合する)」が好ましい。
 Rは水素原子又はアリール基を示す。ただし、式(S2)で表される重合開始剤残基は「-O-O-」を有しない。
 アルキレン基は、鎖状、分岐及び環状のいずれでもよい。アルキレン基の炭素数は、1~18が好ましく、1~16がより好ましく、1~14が更に好ましい。
 アリール基は、炭素数6~24のアリール基が好ましく、6~10のアリール基がより好ましい。
Figure JPOXMLDOC01-appb-C000010
 式中、nは3~6の整数である。LLはn価の分岐基を示す。Lは単結合又は2価の連結基を示す。Lは酸素原子又は硫黄原子を示す。
 n=3である場合、LLはアルカントリイル基、及びアルカントリイル基とエーテル結合とを組合せた3価の分岐基を示すことが好ましい。アルカントリイル基の炭素数は1~30が好ましく、2~20がより好ましく、3~16が更に好ましい。アルカントリイル基は、鎖状、環状及びこれらの組合せのいずれの形態であってもよい。
 n=4である場合、LLはアルカンテトライル基、及びアルカンテトライル基とエーテル結合とを組合せた4価の分岐基を示すことが好ましい。アルカンテトライル基の炭素数は1~30が好ましく、2~20がより好ましく、3~16が更に好ましい。アルカンテトライル基は、鎖状、環状及びこれらの組合せのいずれの形態であってもよい。
 n=5である場合、LLはアルカンペンタイル基、及びアルカンペンタイル基とエーテル結合とを組合せた5価の分岐基を示すことが好ましい。アルカンペンタイル基の炭素数は2~30が好ましく、2~20がより好ましく、3~16が更に好ましい。アルカンペンタイル基は、鎖状、環状及びこれらの組合せのいずれの形態であってもよい。
 n=6である場合、LLはアルカンヘキサイル基、アルカンヘキサイル基とエーテル結合とを組合せた6価の分岐基、及びアルカンテトライル基とエーテル結合とを組合せた6価の分岐基を示すことが好ましい。アルカンテトライル基としては、例えばn=4である場合のアルカンテトライル基を採用することができる。アルカンヘキサイル基の炭素数は2~30が好ましく、2~20がより好ましく、3~16が更に好ましい。アルカンヘキサイル基は、鎖状、環状及びこれらの組合せのいずれの形態であってもよい。
 Lが採り得る2価の連結基は、カルボニル基若しくはアルキレン基又はこれらを組み合わせた基を示すことが好ましい。
 アルキレン基は、鎖状、分岐及び環状のいずれでもよい。アルキレン基の炭素数は、1~10が好ましく、1~7がより好ましく、1~4が更に好ましい。
 式(2)で表される重合開始剤残基は置換基を有してもよく、このような置換基として上記置換基Zから選択される基が挙げられ、具体的にはアルキル基が挙げられる。
 重合開始剤残基の、ビニルポリマー及び(メタ)アクリルポリマー中の含有量は、特に限定されないが、ポリマー形成用モノマー由来の構成成分及び重合開始剤残基の全モルを100モル%として、0.01モル%以上10モル%以下であることが好ましく、0.05モル%以上5モル%以下であることがより好ましく、0.1モル%以上3モル%以下であることが更に好ましく、0.5モル%以上3モル%以下であることが更に好ましい。
 重合開始剤又は連鎖移動剤を用いてポリマーを形成する場合、重合開始剤及び連鎖移動剤の残基は、通常、合成されるポリマーの主鎖における一方の末端に導入される。そのため、本発明においては、1分子の重合開始剤又は連鎖移動剤から主鎖の末端に導入されうる残基が複数発生する場合であっても、1分子のポリマーに導入される残基は1つとして上記含有量を算出する。また、重合開始剤及び連鎖移動剤を併用する場合についても、1分子のポリマーの主鎖末端に導入される残基は通常1つであるので、重合開始剤及び連鎖移動剤が併せて複数の残基を発生する組み合わせであっても1つとして上記含有量を算出する。
 重合開始剤残基を導入するための例示化合物としては後記実施例で使用した重合開始剤及び下記例示化合物が挙げられるが、本発明はこれらの例示化合物に限定されない。下記例示化合物から水素ラジカルが脱離して生じるラジカル又は「-O-O-」が開裂して生じるラジカルにより、ポリマーに重合開始剤残基を導入することができる。
Figure JPOXMLDOC01-appb-C000011
 本発明に用いられるビニルポリマー及び(メタ)アクリルポリマー(各構成成分及び原料化合物)は、置換基を有していてもよい。置換基としては、好ましくは上記置換基Zから選択される基が挙げられる。
 本発明に用いられるビニルポリマー及び(メタ)アクリルポリマーは、公知の方法により、原料モノマー化合物を選択し、これを重合して、合成することができる。
 本発明に用いられるポリエステル、ビニルポリマー及び(メタ)アクリルポリマーの具体例としては、後記実施例で合成したポリマー及び下記ポリマーを挙げることができるが、本発明はこれらに限定されない。下記例示化合物の括弧付した数値は各構成成分のモルである。また、例示化合物の下に重合開始剤残基及びポリマー形成用モノマー由来の構成成分のモル比を付記している。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 ポリマーバインダー(B)は、無機固体電解質含有組成物が分散媒を含有する場合、この分散媒に対して可溶性の(分散媒に溶解している)溶解型ポリマーバインダーを少なくとも1種含む。無機固体電解質含有組成物が2種以上のポリマーバインダー(B)を含有する場合、すべてのポリマーバインダー(B)が可溶性であることが好ましい。
 本発明において、ポリマーバインダー(B)が分散媒に溶解しているとは、無機固体電解質含有組成物の分散媒にバインダーが溶解していることを意味し、例えば、溶解度測定において溶解度が80%以上であることをいう。溶解度の測定方法は下記の通りである。
 すなわち、測定対象とするポリマーバインダー(B)をガラス瓶内に規定量秤量し、そこへ無機固体電解質含有組成物が含有する分散媒100gを添加し、25℃の温度下、ミックスローター上において80rpmの回転速度で24時間攪拌する。こうして得られた24時間攪拌後の混合液の透過率を以下条件により測定する。この試験(透過率測定)をバインダー溶解量(上記規定量)を変更して行い、透過率が99.8%となる上限濃度X(質量%)をバインダーの上記分散媒に対する溶解度とする。
<透過率測定条件>
 動的光散乱(DLS)測定
 装置:大塚電子製DLS測定装置 DLS-8000
 レーザ波長、出力:488nm/100mW
 サンプルセル:NMR管
-分子量の測定-
 本発明において、ポリマーバインダー(B)を含むポリマー(重合鎖)の分子量については、特に断らない限り、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の重量平均分子量をいう。その測定法としては、基本として下記条件1又は条件2(優先)の方法が挙げられる。ただし、ポリマーの種類によっては適宜適切な溶離液を選定して用いればよい。なお、本願明細書に記載のポリマーの数平均分子量も同様にして測定できる。
(条件1)
  カラム:TOSOH TSKgel Super AWM-H(商品名、東ソー社製)を2本つなげる
  キャリア:10mMLiBr/N-メチルピロリドン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(条件2)
  カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000(いずれも商品名、東ソー社製)をつないだカラムを用いる。
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
<分散媒>
 本発明の無機固体電解質含有組成物は、含有成分を分散させる分散媒を含有することが好ましい。
 分散媒としては、使用環境において液状を示す有機化合物であればよく、例えば、各種有機溶媒が挙げられ、具体的には、アルコール化合物、エーテル化合物、アミド化合物、アミン化合物、ケトン化合物、芳香族化合物、脂肪族化合物、ニトリル化合物、エステル化合物等が挙げられる。
 分散媒としては、非極性分散媒(疎水性の分散媒)でも極性分散媒(親水性の分散媒)でもよいが、優れた分散性を発現できる点で、非極性分散媒が好ましい。非極性分散媒とは、一般に水に対する親和性が低い性質をいうが、本発明においては、例えば、エステル化合物、ケトン化合物、エーテル化合物、芳香族化合物、脂肪族化合物等が挙げられる。
 アルコール化合物としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。
 エーテル化合物としては、例えば、アルキレングリコール(ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール等)、アルキレングリコールモノアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等)、アルキレングリコールジアルキルエーテル(エチレングリコールジメチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)が挙げられる。
 アミド化合物としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。
 アミン化合物としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、ジプロピルケトン、ジブチルケトン、ジイソプロピルケトン、ジイソブチルケトン(DIBK)、イソブチルプロピルケトン、sec-ブチルプロピルケトン、ペンチルプロピルケトン、ブチルプロピルケトンなどが挙げられる。
 芳香族化合物としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。
 脂肪族化合物としては、例えば、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、シクロオクタン、デカリン、パラフィン、ガソリン、ナフサ、灯油、軽油等が挙げられる。
 ニトリル化合物としては、例えば、アセトニトリル、プロピオニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、ペンタン酸ブチル、イソ酪酸エチル、イソ酪酸プロピル、イソ酪酸イソプロピル、イソ酪酸イソブチル、ピバル酸プロピル、ピバル酸イソプロピル、ピバル酸ブチル、ピバル酸イソブチルなどが挙げられる。
 本発明においては、中でも、エーテル化合物、ケトン化合物、芳香族化合物、脂肪族化合物、エステル化合物が好ましく、エステル化合物、ケトン化合物又はエーテル化合物がより好ましい。
 分散媒を構成する化合物の炭素数は特に制限されず、2~30が好ましく、4~20がより好ましく、6~15が更に好ましく、7~12が特に好ましい。
 分散媒は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることが更に好ましい。
 本発明の無機固体電解質含有組成物は、分散媒を少なくとも1種含有していればよく、2種以上含有してもよい。
 本発明において、無機固体電解質含有組成物中の、分散媒の含有量は、特に制限されず適宜に設定することができる。例えば、無機固体電解質含有組成物中、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。
<活物質>
 本発明の無機固体電解質含有組成物には、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質を含有することもできる。活物質としては、以下に説明するが、正極活物質及び負極活物質が挙げられる。
 本発明において、活物質(正極活物質又は負極活物質)を含有する無機固体電解質含有組成物を電極用組成物(正極用組成物又は負極用組成物)ということがある。
(正極活物質)
 正極活物質は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質であり、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく電池を分解して、遷移金属酸化物、又は、有機物、硫黄などのLiと複合化できる元素などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P及びBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100モル%)に対して0~30モル%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、LiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の粒子径(体積平均粒子径)は特に制限されない。例えば、0.1~50μmとすることができる。正極活物質粒子の粒子径は、上記無機固体電解質の粒子径と同様にして測定できる。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル又は篩などが好適に用いられる。粉砕時には水又はメタノール等の分散媒を共存させた湿式粉砕も行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級は、特に限定はなく、篩、風力分級機などを用いて行うことができる。分級は乾式及び湿式ともに用いることができる。
 焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。
 正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
 正極活物質の、無機固体電解質含有組成物中における含有量は特に制限されず、固形分100質量%において、10~97質量%が好ましく、30~95質量%がより好ましく、40~93質量が更に好ましく、50~90質量%が特に好ましい。
(負極活物質)
 負極活物質は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質であり、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、金属酸化物、金属複合酸化物、リチウム単体、リチウム合金、リチウムと合金形成可能(合金化可能)な負極活物質等が挙げられる。中でも、炭素質材料、金属複合酸化物又はリチウム単体が信頼性の点から好ましく用いられる。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料(ハードカーボンともいう。)と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔又は密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
 炭素質材料としては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。
 負極活物質として適用される金属若しくは半金属元素の酸化物としては、リチウムを吸蔵及び放出可能な酸化物であれば特に制限されず、金属元素の酸化物(金属酸化物)、金属元素の複合酸化物若しくは金属元素と半金属元素との複合酸化物(纏めて金属複合酸化物という。)、半金属元素の酸化物(半金属酸化物)が挙げられる。これらの酸化物としては、非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイドも好ましく挙げられる。本発明において、半金属元素とは、金属元素と非半金属元素との中間の性質を示す元素をいい、通常、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン及びテルルの6元素を含み、更にはセレン、ポロニウム及びアスタチンの3元素を含む。また、非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°~70°に見られる結晶性の回折線の内最も強い強度が、2θ値で20°~40°に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物又は上記カルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素(例えば、Al、Ga、Si、Sn、Ge、Pb、Sb及びBi)から選択される1種単独若しくはそれらの2種以上の組み合わせからなる(複合)酸化物、又はカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、GeO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Sb、Bi、Bi、GeS、PbS、PbS、Sb又はSbが好ましく挙げられる。
 Sn、Si、Geを中心とする非晶質酸化物に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵及び/又は放出できる炭素質材料、リチウム単体、リチウム合金、リチウムと合金化可能な負極活物質が好適に挙げられる。
 金属若しくは半金属元素の酸化物、とりわけ金属(複合)酸化物及び上記カルコゲナイドは、構成成分として、チタン及びリチウムの少なくとも一方を含有していることが、高電流密度充放電特性の観点で好ましい。リチウムを含有する金属複合酸化物(リチウム複合金属酸化物)としては、例えば、酸化リチウムと上記金属(複合)酸化物若しくは上記カルコゲナイドとの複合酸化物、より具体的には、LiSnOが挙げられる。
 負極活物質、例えば金属酸化物は、チタン元素を含有すること(チタン酸化物)も好ましく挙げられる。具体的には、LiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 負極活物質としてのリチウム合金としては、二次電池の負極活物質として通常用いられる合金であれば特に制限されず、例えば、リチウムアルミニウム合金が挙げられる。
 リチウムと合金形成可能な負極活物質は、二次電池の負極活物質として通常用いられるものであれば特に制限されない。このような活物質として、ケイ素元素若しくはスズ元素を有する(負極)活物質(合金等)、Al及びIn等の各金属が挙げられ、より高い電池容量を可能とするケイ素元素を有する負極活物質(ケイ素元素含有活物質)が好ましく、ケイ素元素の含有量が全構成元素の50モル%以上のケイ素元素含有活物質がより好ましい。
 一般的に、これらの負極活物質を含有する負極(ケイ素元素含有活物質を含有するSi負極、スズ元素を有する活物質を含有するSn負極等)は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 ケイ素元素含有活物質としては、例えば、Si、SiOx(0<x≦1)等のケイ素材料、更には、チタン、バナジウム、クロム、マンガン、ニッケル、銅、ランタン等を含むケイ素含有合金(例えば、LaSi、VSi、La-Si、Gd-Si、Ni-Si)、又は組織化した活物質(例えば、LaSi/Si)、他にも、SnSiO、SnSiS等のケイ素元素及びスズ元素を含有する活物質等が挙げられる。なお、SiOxは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、全固体二次電池の稼働によりSiを生成するため、リチウムと合金化可能な負極活物質(その前駆体物質)として用いることができる。
 スズ元素を有する負極活物質としては、例えば、Sn、SnO、SnO、SnS、SnS、更には上記ケイ素元素及びスズ元素を含有する活物質等が挙げられる。また、酸化リチウムとの複合酸化物、例えば、LiSnOを挙げることもできる。
 本発明においては、上述の負極活物質を特に制限されることなく用いることができるが、電池容量の点では、負極活物質として、リチウムと合金化可能な負極活物質が好ましい態様であり、中でも、上記ケイ素材料又はケイ素含有合金(ケイ素元素を含有する合金)がより好ましく、ケイ素(Si)又はケイ素含有合金を含むことが更に好ましい。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の体積平均粒子径は、特に制限されないが、0.1~60μmが好ましい。負極活物質粒子の体積平均粒子径は、上記無機固体電解質の平均粒子径と同様にして測定できる。所定の粒子径にするには、正極活物質と同様に、通常の粉砕機若しくは分級機が用いられる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
 負極活物質の、無機固体電解質含有組成物中における含有量は特に制限されず、固形分100質量%において、10~90質量%であることが好ましく、20~85質量%がより好ましく、30~80質量%であることがより好ましく、40~75質量%であることが更に好ましい。
 本発明において、負極活物質層を二次電池の充電により形成する場合、上記負極活物質に代えて、全固体二次電池内に発生する周期律表第一族若しくは第二族に属する金属のイオンを用いることができる。このイオンを電子と結合させて金属として析出させることで、負極活物質層を形成できる。
(活物質の被覆)
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
<導電助剤>
 本発明の無機固体電解質含有組成物は、導電助剤を含有していることが好ましく、例えば、負極活物質としてのケイ素原子含有活物質は導電助剤と併用されることが好ましい。
 導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体などの導電性高分子を用いてもよい。
 本発明において、活物質と導電助剤とを併用する場合、上記の導電助剤のうち、電池を充放電した際に周期律表第一族若しくは第二族に属する金属のイオン(好ましくはLiイオン)の挿入と放出が起きず、活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に活物質層中において活物質として機能しうるものは、導電助剤ではなく活物質に分類する。電池を充放電した際に活物質として機能するか否かは、一義的ではなく、活物質との組み合わせにより決定される。
 導電助剤は、1種を含有していてもよいし、2種以上を含有していてもよい。
 導電助剤の形状は、特に制限されないが、粒子状が好ましい。
 本発明の無機固体電解質含有組成物が導電助剤を含む場合、無機固体電解質含有組成物中の導電助剤の含有量は、固形分100質量%において、0~10質量%が好ましい。
<リチウム塩>
 本発明の無機固体電解質含有組成物は、リチウム塩(支持電解質)を含有することも好ましい。
 リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、特開2015-088486の段落0082~0085記載のリチウム塩が好ましい。
 本発明の無機固体電解質含有組成物がリチウム塩を含む場合、リチウム塩の含有量は、固体電解質100質量部に対して、0.1質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
<分散剤>
 本発明の無機固体電解質含有組成物は、分散剤を含有してもよい。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発及び/又は静電反発を意図した化合物が好適に使用される。
<他の添加剤>
 本発明の無機固体電解質含有組成物は、上記各成分以外の他の成分として、適宜に、イオン液体、増粘剤、架橋剤(ラジカル重合、縮合重合又は開環重合により架橋反応するもの等)、重合開始剤(酸又はラジカルを熱又は光によって発生させるものなど)、消泡剤、レベリング剤、脱水剤、酸化防止剤等を含有することができる。イオン液体は、イオン伝導度をより向上させるため含有されるものであり、公知のものを特に制限されることなく用いることができる。また、上述のポリマーバインダーを形成するポリマー以外のポリマー、通常用いられる結着剤等を含有していてもよい。
(無機固体電解質含有組成物の調製)
 本発明の無機固体電解質含有組成物は、無機固体電解質、ポリマーバインダー、好ましくは、分散媒、導電助剤、更には適宜に、リチウム塩、任意の他の成分を、例えば通常用いる各種の混合機で混合することにより、混合物として、好ましくはスラリーとして、調製することができる。電極用組成物の場合は更に活物質を混合する。
 混合方法は特に制限されず、一括して混合してもよく、順次混合してもよい。混合する環境は特に制限されないが、乾燥空気下又は不活性ガス下等が挙げられる。
[全固体二次電池用シート]
 本発明の全固体二次電池用シートは、全固体二次電池の構成層を形成しうるシート状成形体であって、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートともいう。)、電極、又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートという。
 本発明の全固体二次電池用固体電解質シートは、固体電解質層を有するシートであればよく、固体電解質層が基材上に形成されているシートでも、基材を有さず、固体電解質層から形成されているシートであってもよい。全固体二次電池用固体電解質シートは、固体電解質層の他に他の層を有してもよい。他の層としては、例えば、保護層(剥離シート)、集電体、コート層等が挙げられる。
 本発明の全固体二次電池用固体電解質シートとして、例えば、基材上に、本発明の無機固体電解質含有組成物で構成した層、通常固体電解質層と、保護層とをこの順で有するシートが挙げられる。全固体二次電池用固体電解質シートが有する固体電解質層は、本発明の無機固体電解質含有組成物で形成されることが好ましい。この固体電解質層中の各成分の含有量は、特に限定されないが、好ましくは、本発明の無機固体電解質含有組成物の固形分中における各成分の含有量と同義である。全固体二次電池用固体電解質シートを構成する各層の層厚は、後述する全固体二次電池において説明する各層の層厚と同じである。
 基材としては、固体電解質層を支持できるものであれば特に限定されず、後述する集電体で説明する材料、有機材料、無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、セルロース等が挙げられる。無機材料としては、例えば、ガラス、セラミック等が挙げられる。
 本発明の全固体二次電池用電極シート(単に「電極シート」ともいう。)は、活物質層を有する電極シートであればよく、活物質層が基材(集電体)上に形成されているシートでも、基材を有さず、活物質層から形成されているシートであってもよい。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。電極シートが有する固体電解質層及び活物質層は、本発明の無機固体電解質含有組成物で形成されることが好ましい。この固体電解質層又は活物質層中の各成分の含有量は、特に限定されないが、好ましくは、本発明の無機固体電解質含有組成物(電極用組成物)の固形分中における各成分の含有量と同義である。本発明の電極シートを構成する各層の層厚は、後述する全固体二次電池において説明する各層の層厚と同じである。本発明の電極シートは上述の他の層を有してもよい。
 本発明の全固体二次電池用シートは、固体電解質層及び活物質層の少なくとも1層が本発明の無機固体電解質含有組成物で形成され、表面平滑性に優れた構成層を有している。そのため、本発明の全固体二次電池用シートは、電池製造過程における積層及びプレス時に、層間の密着不良、応力集中によるヒビ及び割れ等が発生しにくい。また、本発明の全固体二次電池用シートは、全固体二次電池の低温から常温での低抵抗(高伝導度)を実現できる。したがって、本発明の全固体二次電池用シートは、全固体二次電池の構成層を形成しうるシートとして好適に用いられる。
[全固体二次電池用シートの製造方法]
 本発明の全固体二次電池用シートの製造方法は、特に制限されず、本発明の無機固体電解質含有組成物を用いて、上記の各層を形成することにより、製造できる。例えば、好ましくは基材若しくは集電体上(他の層を介していてもよい。)に、製膜(塗布乾燥)して無機固体電解質含有組成物からなる層(塗布乾燥層)を形成する方法が挙げられる。これにより、基材若しくは集電体と、塗布乾燥層とを有する全固体二次電池用シートを作製することができる。ここで、塗布乾燥層とは、本発明の無機固体電解質含有組成物を塗布し、分散媒を乾燥させることにより形成される層(すなわち、本発明の無機固体電解質含有組成物を用いてなり、本発明の無機固体電解質含有組成物から分散媒を除去した組成からなる層)をいう。活物質層及び塗布乾燥層は、本発明の効果を損なわない範囲であれば分散媒が残存していてもよく、残存量としては、例えば、各層中、3質量%以下とすることができる。
 本発明の全固体二次電池用シートの製造方法において、塗布、乾燥等の各工程については、下記全固体二次電池の製造方法において説明する。
 本発明の全固体二次電池用シートの製造方法においては、上記のようにして得られた塗布乾燥層を加圧することもできる。加圧条件等については、後述する、全固体二次電池の製造方法において説明する。
 また、本発明の全固体二次電池用シートの製造方法においては、基材、保護層(特に剥離シート)等を剥離することもできる。
[全固体二次電池]
 本発明の全固体二次電池は、正極活物質層と、この正極活物質層に対向する負極活物質層と、正極活物質層及び負極活物質層の間に配置された固体電解質層とを有する。正極活物質層は、好ましくは正極集電体上に形成され、正極を構成する。負極活物質層は、好ましくは負極集電体上に形成され、負極を構成する。
 負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層が本発明の無機固体電解質含有組成物で形成されており、固体電解質層、又は負極活物質層及び正極活物質層の少なくとも一方が本発明の無機固体電解質含有組成物で形成されることが好ましい。全ての層が本発明の無機固体電解質含有組成物で形成されることも好ましい態様の1つである。本発明の無機固体電解質含有組成物で形成された活物質層又は固体電解質層は、好ましくは、含有する成分種及びその含有量比について、本発明の無機固体電解質含有組成物の固形分におけるものと同じである。なお、活物質層又は固体電解質層が本発明の無機固体電解質含有組成物で形成されない場合、公知の材料を用いることができる。
 負極活物質層、固体電解質層及び正極活物質層の厚さは、それぞれ、特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
 正極活物質層及び負極活物質層は、それぞれ、固体電解質層とは反対側に集電体を備えていてもよい。
<筐体>
 本発明の全固体二次電池は、用途によっては、上記構造のまま全固体二次電池として使用してもよいが、乾電池の形態とするためには更に適当な筐体に封入して用いることが好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金又は、ステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
 以下に、図1を参照して、本発明の好ましい実施形態に係る全固体二次電池について説明するが、本発明はこれに限定されない。
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、隣接した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。
 図1に示す層構成を有する全固体二次電池を2032型コインケースに入れる場合、この全固体二次電池を全固体二次電池用積層体と称し、この全固体二次電池用積層体を2032型コインケースに入れて作製した電池を全固体二次電池と称して呼び分けることもある。
(正極活物質層、固体電解質層、負極活物質層)
 全固体二次電池10においては、正極活物質層、固体電解質層及び負極活物質層のいずれも本発明の無機固体電解質含有組成物で形成されている。この全固体二次電池10は優れた電池性能を示す。正極活物質層4、固体電解質層3及び負極活物質層2が含有する無機固体電解質及びポリマーバインダーは、それぞれ、互いに同種であっても異種であってもよい。
 本発明において、正極活物質層及び負極活物質層のいずれか、又は、両方を合わせて、単に、活物質層又は電極活物質層と称することがある。また、正極活物質及び負極活物質のいずれか、又は両方を合わせて、単に、活物質又は電極活物質と称することがある。
 本発明において、構成層を本発明の無機固体電解質含有組成物で形成すると、サイクル特性に優れた全固体二次電池、更には低抵抗な全固体二次電池を実現することができる。
 全固体二次電池10においては、負極活物質層をリチウム金属層とすることができる。リチウム金属層としては、リチウム金属の粉末を堆積又は成形してなる層、リチウム箔及びリチウム蒸着膜等が挙げられる。リチウム金属層の厚さは、上記負極活物質層の上記厚さにかかわらず、例えば、1~500μmとすることができる。
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に制限されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 上記全固体二次電池10においては、正極活物質層は公知の構成層形成材料で形成した層を適用することもできる。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層、部材等を適宜介在若しくは配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
[全固体二次電池の製造]
 全固体二次電池は、常法によって、製造できる。具体的には、全固体二次電池は、本発明の無機固体電解質含有組成物等を用いて、上記の各層を形成することにより、製造できる。以下、詳述する。
 本発明の全固体二次電池は、例えば、分散媒を含有する、本発明の無機固体電解質含有組成物を、適宜基材(例えば、集電体となる金属箔)上に、塗布し、塗膜を形成する(製膜する)工程を含む(介する)方法(本発明の全固体二次電池用シートの製造方法)を行って、製造できる。
 例えば、正極集電体である金属箔上に、正極用材料(正極用組成物)として、正極活物質を含有する無機固体電解質含有組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための無機固体電解質含有組成物を塗布して、固体電解質層を形成する。更に、固体電解質層の上に、負極用材料(負極用組成物)として、負極活物質を含有する無機固体電解質含有組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。これを筐体に封入して所望の全固体二次電池とすることもできる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極用組成物)として、負極活物質を含有する無機固体電解質含有組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。更に、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、無機固体電解質含有組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。更に、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 固体電解質層等は、例えば基板若しくは活物質層上で、無機固体電解質含有組成物等を後述する加圧条件下で加圧成形して形成することもできる。
 上記の製造方法においては、正極用組成物、無機固体電解質含有組成物及び負極用組成物のいずれか1つに本発明の無機固体電解質含有組成物を用いればよく、無機固体電解質含有組成物に本発明の無機固体電解質含有組成物を用いることが好ましく、いずれの組成物に本発明の無機固体電解質含有組成物を用いることもできる。
<各層の形成(成膜)>
 無機固体電解質含有組成物の塗布方法は特に制限されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート塗布、スリット塗布、ストライプ塗布、バーコート塗布が挙げられる。
 このとき、無機固体電解質含有組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に制限されない。下限は、30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、分散媒を除去し、固体状態(塗布乾燥層)にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性と、非加圧でも良好なイオン伝導度を得ることができる。
 上記のようにして本発明の無機固体電解質含有組成物を塗布乾燥すると、接触状態のバラツキを抑えて固体粒子を結着させることができ、しかも表面が平坦な塗布乾燥層を形成することができる。
 無機固体電解質含有組成物を塗布した後、構成層を重ね合わせた後、又は全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては特に制限されず、一般的には5~1500MPaの範囲であることが好ましい。
 また、塗布した無機固体電解質含有組成物は、加圧と同時に加熱してもよい。加熱温度としては特に制限されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。なお、ポリマーバインダーに含まれるポリマーのガラス転移温度よりも高い温度でプレスすることもできる。ただし、一般的にはこのポリマーの融点を越えない温度である。
 加圧は塗布溶媒又は分散媒を予め乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布してもよいし、塗布乾燥プレスを同時及び/又は逐次行ってもよい。別々の基材に塗布した後に、転写により積層してもよい。
 製造プロセス、例えば塗布中、加熱若しくは加圧中の雰囲気としては特に制限されず、大気下、乾燥空気下(露点-20℃以下)、不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積又は膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は特に制限されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を解放することにより、行うことができる。
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に制限はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源などが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 以下に、実施例に基づき本発明について更に詳細に説明するが、本発明はこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。本発明において「室温」とは25℃を意味する。
1.ポリマーの合成、及びバインダー溶液の調製
 下記化学式及び表1に示すポリマーを以下のようにして合成した。
[合成例1:ポリマーS-1の合成、及びバインダー溶液S-1の調製]
 300mL3つ口フラスコに、NISSO-PB GI1000(商品名、日本曹達社製)60.0g、セバシン酸ジメチル 8.77gを加えて180℃で撹拌し、均一に溶解させた。得られた溶液に、オルトチタン酸テトラブチル 270mgを添加して180℃で6時間攪伴した。その後、100℃以下まで冷却した溶液に酪酸ブチル 68.8gを加えて撹拌することでポリマーS-1(ポリエステル)からなるバインダーの溶液S-1(ポリマーの濃度50質量%)を得た。
[合成例2:ポリマーS-2の合成(バインダー溶液S-2の調製)]
 100mLメスシリンダーに、アクリル酸ラウリル 36.0及び重合開始剤V-601(商品名、富士フイルム和光純薬社製)0.36gを加え、酪酸ブチル 36gに溶解してモノマー溶液を調製した。300mL3つ口フラスコに酪酸ブチル 18gを加え80℃で撹拌したところへ、上記モノマー溶液を2時間かけて滴下した。滴下終了後、90℃に昇温して2時間撹拌し、ポリマーS-2((メタ)アクリルポリマー)を合成して、ポリマーS-2からなるバインダーの溶液S-2(ポリマーの濃度40質量%)を得た。
[合成例3~6:ポリマーS-3~S-6の合成(バインダー溶液S-3~S-6の調製)]
 合成例2において、ポリマーS-3~S-6が表1に示す組成(構成成分の種類及び含有量)となるように各構成成分を導く化合物を用いたこと以外は、合成例2と同様にして、ポリマーS-3~S-5((メタ)アクリルポリマー)及びポリマーS-6(ビニルポリマー)を合成して、ポリマーS-3~S-6からなるバインダーの溶液S-3~S-6を得た。バインダーの溶液S-3~S-6のポリマー濃度は、それぞれ40質量%であった。
[合成例7:ポリマーS-7の合成(バインダー溶液S-7の調製)]
 100mLメスシリンダーに、アクリル酸テトラデシル 36g、連鎖移動剤ドデカンチオール 0.36g及び重合開始剤V-601(商品名、富士フイルム和光純薬社製)0.24gを加え、酪酸ブチル 36gに溶解してモノマー溶液を調製した。300mL3つ口フラスコに酪酸ブチル 18gを加え80℃で撹拌したところへ、上記モノマー溶液を2時間かけて滴下した。滴下終了後、90℃に昇温し、2時間撹拌してポリマーS-7を合成し、ポリマーS-7からなるバインダーの溶液S-7(ポリマーの濃度40質量%)を得た。
[合成例8:ポリマーS-8の合成(バインダー溶液S-8の調製)]
 100mLメスシリンダーに、アクリル酸ドコシル 36g及び重合開始剤パークミルD(商品名、日本油脂社製)0.36gを加え、酪酸ブチル 36gに溶解してモノマー溶液を調製した。300mL3つ口フラスコに酪酸ブチル 18gを加え80℃で撹拌したところへ、上記モノマー溶液を2時間かけて滴下した。滴下終了後、90℃に昇温し、2時間撹拌してポリマーS-8((メタ)アクリルポリマー)を合成して、ポリマーS-8からなるバインダーの溶液S-8(ポリマーの濃度40質量%)を得た。
[合成例9:ポリマーS-9の合成(バインダー溶液S-9の調製)]
 合成例7において、ポリマーS-9が表1に示す組成(構成成分の種類及び含有量)となるように各構成成分を導く化合物を用いたこと以外は、合成例7と同様にして、分岐状ポリマーS-9((メタ)アクリルポリマー)を合成して、ポリマーS-9からなるバインダーの溶液S-9(ポリマーの濃度40質量%)を得た。
[合成例10:ポリマーS-10の合成(バインダー溶液S-10の調製)]
 合成例8において、ポリマーS-10が表1に示す組成(構成成分の種類及び含有量)となるように各構成成分を導く化合物を用いたこと以外は、合成例8と同様にして、分岐状ポリマーS-10((メタ)アクリルポリマー)を合成して、ポリマーS-10からなるバインダーの溶液S-10(ポリマーの濃度40質量%)を得た。
[合成例11~15:ポリマーS-11~S-15の合成(バインダー溶液S-11~S-15の調製)]
 合成例2において、ポリマーS-11~S-15が表1に示す組成(構成成分の種類及び含有量)となるように各構成成分を導く化合物を用いたこと、重合濃度を変えたこと以外は、合成例2と同様にして、ポリマーS-11~S-15((メタ)アクリルポリマー)を合成して、ポリマーS-11~S-15からなるバインダーの溶液S-11~S-15を得た。バインダーの溶液S-11~S-15のポリマーの濃度は、それぞれ40質量%であった。
[合成例16及び17:ポリマーS-16及びS-17の合成(バインダー溶液S-16及びS-17の調製)]
 合成例2において、ポリマーS-16及びS-17が表1に示す組成(構成成分の種類及び含有量)となるように各構成成分を導く化合物を用いたこと、重合濃度を変えたこと以外は、合成例2と同様にして、ポリマーS-16及びS-17((メタ)アクリルポリマー)を合成して、ポリマーS-16及びS-17からなるバインダーの溶液S-16及びS-17を得た。バインダーの溶液S-16及びS-17のポリマーの濃度は、それぞれ40質量%であった。
[合成例18及び19:ポリマー18及び19の合成(バインダー溶液S-18及びS-19の調製)]
 合成例2において、ポリマーS-18及びS-19が表1に示す組成(構成成分の種類及び含有量)となるように各構成成分を導く化合物を用いたこと、重合濃度を変えたこと以外は、合成例2と同様にして、ポリマーS-18及びS-19((メタ)アクリルポリマー)を合成して、ポリマーS-18及びS-19からなるバインダーの溶液S-18及びS-19を得た。バインダーの溶液S-18及びS-19のポリマーの濃度は、それぞれ40質量%であった。
[合成例20~22:ポリマーT-1~T-3の合成(バインダー溶液T-1~T-3の調製)]
 合成例2において、ポリマーT-1~T-3が表1に示す組成(構成成分の種類及び含有量)となるように各構成成分を導く化合物を用いたこと、重合濃度を変えたこと以外は、合成例2と同様にして、ポリマーT-1~T-3((メタ)アクリルポリマー)を合成して、ポリマーT-1~T-3からなるバインダーの溶液T-1~T-3を得た。バインダーの溶液T-1~T-3のポリマーの濃度は、それぞれ40質量%であった。
[合成例23:ポリマーT-4の合成(バインダー溶液T-4の調製)]
 オートクレーブにイオン交換水 100質量部、フッ化ビニリデン 55質量部、ヘキサフルオロプロペン 20質量部、テトラフルオロエチレン 25質量部を加え、重合開始剤パーロイルIPP(商品名、化学名:ジイソプロピルパーオキシジカーボネート、日本油脂社製) 2質量部を加え、40℃で24時間撹拌した。撹拌後、沈殿物をろ過し、100℃で10時間乾燥させた。得られたポリマー 10質量部に対して酪酸ブチル 40質量部を加えて溶解させ、ポリマーT-4(フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロプロピレン三元共重合体)を合成して、ポリマーT-4からなるバインダーの溶液T-4(ポリマーの濃度20質量%)を得た。
[合成例24:ポリマーT-5の合成(バインダー溶液T-5の調製)]
 300mL3つ口フラスコに、EPOL(商品名、日本曹達社製)46.1g、酪酸ブチル 76.0gに溶解した。この溶液に、ジシクロヘキシルメタン-4,4’-ジイソシアナート 4.99gを加えて80℃で撹拌し、均一に溶解させた。得られた溶液に、ネオスタンU-600(商品名、日東化成社製)100mgを添加して80℃で10時間攪伴して、ポリマーT-5(ポリウレタン)を合成して、ポリマーT-5からなるバインダーの溶液T-5(ポリマーの濃度40質量%)を得た。
 合成した各ポリマーの構造を以下に示す。各構成成分の含有量は、表1に記載したとおりである。なお、ポリマーS-11~S-15及びT-1~T-3は、ポリマーS-3と化学構造が同じでMwが異なるポリマーであるため、化学構造の記載を省略する。また、S-17はS-16と構成成分が同じで、各構成成分の含有量及びMwが異なるポリマーであるため、化学構造の記載を省略する。また、S-19はS-18と構成成分が同じで、各構成成分の含有量及びMwが異なるポリマーであるため、化学構造の記載を省略する。なお、「Me」はメチル基を示す。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-T000018
<表の略号>
 表中、構成成分欄中の「-」は該当する構成成分を有していないことを示す。
 構成成分M1~M3は表中に記載の化合物に由来する構成成分である。
 - 構成成分M1 -
LA:アクリル酸ラウリル
TdA:アクリル酸テトラデシル
DoA:アクリル酸ドコシル
VDF:ビニリデンフルオリド
H12MDI:ジシクロヘキシルメタン 4,4’-ジイソシアナート
BA:アクリル酸ブチル
 - 構成成分M2 -
NISSO-PB GI1000:水素化液状ポリブタジエンジオール(商品名、数平均分子量1400、日本曹達社製)
THFA:アクリル酸テトラヒドロフルフリル
HEA:アクリル酸2-ヒドロキシエチル
2-HBMA:メタクリル酸2-ヒドロキシブチル
HFP:ヘキサフルオロプロピレン
EPOL(登録商標):出光昭和シェル社製水酸基末端液状ポリオレフィン
 - 構成成分M3 -
MA:マレイン酸モノメチル
AA:アクリル酸
TFE:テトラフルオロエチレン
 - 構成成分4 -
 構成成分4は、下記重合開始剤の残基を示す。
ドデカンチオール
V-601(商品名、化学名:ジメチル 2,2'-アゾビス(2-メチルプロピオネート)富士フイルム和光純薬社製)
パークミルD:(商品名、化学名:ジクミルパーオキシド、日本油脂社製)
PTMP:ペンタエリスリトールテトラ(3-メルカプトプロピオナート)
パーテトラA:(商品名、化学名:2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、日本油脂社製)
パーロイルIPP(商品名、化学名:ジイソプロピルパーオキシジカーボネート、日本油脂社製)
 表中のモル%は、全ての原料化合物のモルの合計を100モル%として、使用量から算出した値である。
2.硫化物系無機固体電解質の合成
[合成例A]
 硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235、及び、A.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g及び五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 次いで、ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記の硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃で、回転数510rpmで20時間メカニカルミリングを行うことで、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、以下、LPSと表記することがある。)6.20gを得た。Li-P-S系ガラスの粒子径は15μmであった。
[実施例1]
 表2-1~表2-4(纏めて表2ということがある。)に示す各組成物を以下のようにして調製した。
<無機固体電解質含有組成物K-1の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを60g投入し、上記合成例Aで合成したLPS、表2-1に示すポリマーバインダー溶液、及び分散媒(酢酸ブチル)13.5gを投入した。LPSとポリマーバインダー溶液に関して、固形分の合計質量が9gになるように表2-1に示す固形分含有量を満たす質量割合で投入した。その後に、この容器をフリッチュ社製遊星ボールミルP-7(商品名)にセットした。温度25℃、回転数150rpmで10分間混合して、無機固体電解質含有組成物(スラリー)K-1を調製した。
 無機固体電解質含有組成物K-1の調製において、下記表2に記載の無機固体電解質含有組成物K-1の組成に代えて、下記表2に記載の無機固体電解質含有組成物K-2~K-24及びKc11~Kc20の組成を採用したこと以外は無機固体電解質含有組成物K-1と同様にして、無機固体電解質含有組成物(スラリー)K-2~K-24及びKc11~Kc20をそれぞれ調製した。
<正極用組成物PK-1の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを60g投入し、合成例Aで合成したLPS、及び、分散媒(酪酸ブチル)12.6gを投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数200pmで30分間攪拌した。その後、この容器に、正極活物質としてNMC(アルドリッチ社製)、導電助剤(アセチレンブラック(AB))、表2に示すポリマーバインダー溶液を投入し、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで30分間混合を続け、正極用組成物(スラリー)PK-1を調製した。LPS、NMC、AB、ポリマーバインダー溶液に関して、固形分の合計質量が36gになるように表2-2に示す固形分含有量を満たす質量割合で投入した。
 正極用組成物PK-1の調製において、下記表2に記載の正極用組成物PK-1の組成に代えて、下記表2に記載の正極用組成物PK-2~PK-18の組成を採用したこと以外は正極用組成物PK-1と同様にして、正極用組成物(スラリー)PK-2~PK-18をそれぞれ調製した。
<負極用組成物NK-1の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを60g投入し、合成例Aで合成したLPS、ポリマーバインダー溶液、及び、分散媒(酪酸ブチル)36.0gを投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、温度25℃、回転数300pmで60分間混合した。その後、負極活物質としてケイ素(Si、Aldrich社製)、導電助剤としてVGCF(昭和電工社製)を投入し、同様に、遊星ボールミルP-7に容器をセットして、温度25℃、回転数100rpmで10分間混合して、負極用組成物(スラリー)NK-1を調製した。LPS、Si、VGCF、ポリマーバインダー溶液に関して、固形分の合計質量が36gになるように表2-3に示す固形分含有量を満たす質量割合で投入した。
 負極用組成物NK-1の調製において、下記表2に記載の負極用組成物NK-1の組成に代えて、下記表2に記載の負極用組成物NK-2~NK-19及びNKc21~NKc30の組成を採用したこと以外は負極用組成物NK-1と同様にして、負極用組成物(スラリー)NK-2~NK-19及びNKc21~NKc30をそれぞれ調製した。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
<表の注>
 表2において、組成物含有量は組成物の全質量に対する含有量(質量%)であり、固形分含有量は組成物の固形分100質量%に対する含有量(質量%)であり、表中では単位を省略する。
 なお、表2-4では、「無機固体電解質含有組成物」を「固体電解質含有組成物」と記載している。
<表の略号>
LPS:合成例Aで合成したLPS
LLT:Li0.33La0.55TiO(平均粒径3.25μm)
NMC:LiNi1/3Co1/3Mn1/3
Si:ケイ素
AB:アセチレンブラック
VGCF:カーボンナノチューブ
<全固体二次電池用固体電解質シートの作製>
 上記で得られた表3-1及び表3-2(纏めて表3ということがある。)に示す各無機固体電解質含有組成物を厚み20μmのアルミニウム箔上に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)を用いて塗布し、80℃で2時間加熱して、無機固体電解質含有組成物を乾燥(分散媒を除去)させた。その後、ヒートプレス機を用いて、120℃の温度及び40MPaの圧力で10秒間、乾燥させた無機固体電解質含有組成物を加熱及び加圧して、全固体二次電池用固体電解質シート(表3において固体電解質シートと表記する。)101~124及びc11~c19をそれぞれ作製した。固体電解質層の膜厚は50μmであった。
<全固体二次電池用正極シートの作製>
 上記で得られた表3の「電極用組成物」欄に示す各正極用組成物を厚み20μmのアルミニウム箔上にベーカー式アプリケーター(商品名:SA-201)を用いて塗布し、80℃で1時間加熱し、更に110℃で1時間加熱して、正極用組成物を乾燥(分散媒を除去)した。その後、ヒートプレス機を用いて、乾燥させた正極用組成物を25℃で加圧(10MPa、1分)して、膜厚80μmの正極活物質層を有する全固体二次電池用正極シート(表3-1において正極シートと表記する。)125~142をそれぞれ作製した。
<全固体二次電池用負極シートの作製>
 上記で得られた表3の「電極用組成物」欄に示す各負極用組成物を厚み20μmの銅箔上に、ベーカー式アプリケーター(商品名:SA-201)を用いて塗布し、80℃で1時間加熱し、更に110℃で1時間加熱して、負極用組成物を乾燥(分散媒を除去)させた。その後、ヒートプレス機を用いて、乾燥させた負極用組成物を25℃で加圧(10MPa、1分)して、膜厚70μmの負極活物質層を有する全固体二次電池用負極シート(表3-2において負極シートと表記する。)143~161及びc21~c29をそれぞれ作製した。
<評価1:表面平滑性試験>
 各全固体二次電池用固体電解質シート、各全固体二次電池用正極シート及び各全固体二次電池用負極シートの構成層を支持体(アルミニウム箔又は銅箔)から剥離し、この構成層から縦20mm×横20mmの試験片を切り出した。定圧厚さ測定器(テクロック社製)を用いて、この試験片の5点の厚みを測定し、厚みの算術平均値を算出した。
 各測定値とその算術平均値とから、下記式(a)又は(b)で得られる乖離値(%)のうち大きな乖離値(最大乖離値)を下記評価基準にあてはめて、表面平滑性を評価した。「D」以上が本試験の合格である(「D」以上であると、固体電解質層、正極活物質層及び負極活物質層の表面平滑性が高く、電池製造時の加圧(例えば600MPa)によっても各層にヒビ及び割れが発生しにくい)。
 
式(a) 100×(5点の厚みのうちの最大値-算術平均値)/(算術平均値)
式(b) 100×(5点の厚みのうちの算術平均値-最小値)/(算術平均値)
 
 測定点は、仮想線x1とy1との交点A、仮想線x1とy3との交点B、仮想線x2とy2との交点C、仮想線x3とy1との交点D、及び仮想線x3とy3との交点E、とする(図4参照)。
 
 - 評価基準 -
 A:1%未満
 B:1%以上3%未満
 C:3%以上5%未満
 D:5%以上10%未満
 E:10%以上20%未満
 F:20%以上
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 表3から明らかなように、本発明で規定する式(1)~(3)のいずれかを満たさない無機固体電解質含有組成物又は式(1)~(3)を満たすが、ポリエステル、ビニルポリマー及び(メタ)アクリルポリマー以外のポリマーバインダーを用いて調製した無機固体電解質含有組成物から作製したNo.c11~c19及びNo.c21~c29の全固体二次電池用シートは、表面平滑性が劣った。
 これに対して、本発明の無機固体電解質含有組成物から作製した、No.101~161の全固体二次電池用シートはすべて表面平滑性に優れた。特に、No.107~110、128、129、146及び147に示されているように、主鎖末端に、硫黄原子を含有する連鎖移動剤及び有機過酸化物重合開始剤の少なくとも1種の重合開始剤の残基を有する(メタ)アクリルポリマーを用いることにより、表面平滑性がより向上する。
 このように、本発明の全固体二次電池用シートは、表面平滑性に優れた構成層を有しているため、全固体二次電池の製造過程において、構成層にヒビ、割れ等の欠陥の発生を防止でき、層間密着性を高めることが可能となる。そのため、本発明の全固体二次電池用シートは、本発明の全固体二次電池用シートを全固体二次電池の製造に用いることにより、後述するイオン伝導性等の電池性能の向上に貢献できる。
<固体電解質層を備えた全固体二次電池用正極シートの作製>
 次いで、表4の「電極活物質層」欄に示す各全固体二次電池用正極シートの正極活物質層上に、上記で作製した、表4の「固体電解質層」欄に示す固体電解質シートを固体電解質層が正極活物質層に接するように重ね、プレス機を用いて25℃で50MPa加圧して転写(積層)した後に、25℃で600MPa加圧することで、膜厚30μmの固体電解質層を備えた全固体二次電池用正極シート(正極活物質層の膜厚60μm)125~142をそれぞれ作製した。
<固体電解質層を備えた全固体二次電池用負極シートの作製>
 次いで、表4の「電極活物質層」欄に示す各全固体二次電池用負極シートの負極活物質層上に、上記で作製した、表4の「固体電解質層」欄に示す固体電解質シートを固体電解質層が負極活物質層に接するように重ね、プレス機を用いて25℃で50MPa加圧して転写(積層)した後に、25℃で600MPa加圧することで、膜厚30μmの固体電解質層を備えた全固体二次電池用負極シート(負極活物質層の膜厚50μm)143~161及びc21~c29をそれぞれ作製した。
<全固体二次電池の製造>
 以下のようにして、図1に示す層構成を有する全固体二次電池(No.101)を作製した。
 上記で得られた固体電解質層を備えた全固体二次電池用正極シートNo.125(固体電解質含有シートのアルミニウム箔は剥離済み)を直径14.5mmの円板状に切り出し、図2に示すように、スペーサーとワッシャー(図2において図示せず)を組み込んだステンレス製の2032型コインケース11に入れた。次いで、固体電解質層上に直径15mmの円盤状に切り出したリチウム箔を重ねた。その上に更にステンレス箔を重ねた後、2032型コインケース11をかしめることで、図2に示すNo.101の全固体二次電池13を製造した。
 このようにして製造した全固体二次電池は、図1に示す層構成を有する(ただし、リチウム箔が負極活物質層2及び負極集電体1に相当する)。
 上記全固体二次電池(No.101)の製造において、固体電解質層を備えた全固体二次電池用正極シートNo.125に代えて表4の「電極活物質層」欄に示すNo.で表わされる、固体電解質層を備えた全固体二次電池用正極シートを用いたこと以外は、全固体二次電池(No.101)の製造と同様にして、全固体二次電池(No.102~118)をそれぞれ製造した。
 以下のようにして、図1に示す層構成を有する全固体二次電池(No.119)を作製した。
 上記で得られた固体電解質層を有する各全固体二次電池用負極シートNo.143(固体電解質含有シートのアルミニウム箔は剥離済み)を直径14.5mmの円板状に切り出し、図2に示すように、スペーサーとワッシャー(図2において図示せず)を組み込んだステンレス製の2032型コインケース11に入れた。次いで、下記で作製した全固体二次電池用正極シートから直径14.0mmで打ち抜いた正極シート(正極活物質層)を固体電解質層上に重ねた。その上に更にステンレス鋼箔(正極集電体)を重ねて全固体二次電池用積層体12(ステンレス鋼箔-アルミニウム箔-正極活物質層-固体電解質層-負極活物質層-銅箔からなる積層体)を形成した。その後、2032型コインケース11をかしめることで、図2に示す全固体二次電池No.119を製造した。
 以下のようにして、全固体二次電池(No.119)の製造に用いた固体二次電池用正極シートを調製した。
 (正極用組成物の調製)
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記合成例Aで合成したLPSを2.7g、KYNAR FLEX 2500-20(商品名、PVdF-HFP:ポリフッ化ビニリデンヘキサフルオロプロピレン共重合体、アルケマ社製)を固形分質量として0.3g、及び酪酸ブチルを22g投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数300rpmで60分間攪拌した。その後、正極活物質としてLiNi1/3Co1/3Mn1/3(NMC)7.0gを投入し、同様にして、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで5分間混合を続け、正極用組成物を調製した。
 (固体二次電池用正極シートの作製)
 上記で得られた正極用組成物を厚み20μmのアルミニウム箔(正極集電体)上に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)により塗布し、100℃で2時間加熱し、正極用組成物を乾燥(分散媒を除去)した。その後、ヒートプレス機を用いて、乾燥させた正極用組成物を25℃で加圧(10MPa、1分)し、膜厚80μmの正極活物質層を有する全固体二次電池用正極シートを作製した。
 上記全固体二次電池(No.119)の製造において、固体電解質層を備えた全固体二次電池用負極シートNo.143に代えて表4の「電極活物質層」欄に示すNo.で表わされる、固体電解質層を備えた全固体二次電池用負極シートを用いたこと以外は、全固体二次電池(No.119)の製造と同様にして、全固体二次電池(No.120~137及びc101~c109)をそれぞれ製造した。
<評価2:低温イオン伝導度測定>
 製造した各全固体二次電池のイオン伝導度を測定した。具体的には、各全固体二次電池について、0℃の恒温槽中、1255B FREQUENCY RESPONSE ANALYZER(商品名、SOLARTRON社製)を用いて、電圧振幅5mV、周波数1MHz~1Hzまで交流インピーダンス測定した。これにより、イオン伝導度測定用試料の層厚方向の抵抗を求め、下記式(1)により計算して、イオン伝導度を求めた。
 
 式(1):イオン伝導度σ(mS/cm)=
  1000×試料層厚(cm)/[抵抗(Ω)×試料面積(cm)]
 
 式(1)において、試料層厚は、積層体12を2032型コインケース11に入れる前に測定し、集電体の厚みを差し引いた値(固体電解質層及び電極活物質層の合計層厚)である。試料面積は、直径14.5mmの円板状シートの面積である。
 得られたイオン伝導度σが下記評価基準のいずれに含まれるかを判定した。
 本試験におけるイオン伝導度σは、評価基準「E」以上が合格である。
 
 - 評価基準 -
 A:0.70≦σ
 B:0.60≦σ<0.70
 C:0.50≦σ<0.60
 D:0.40≦σ<0.50
 E:0.30≦σ<0.40
 F:0.20≦σ<0.30
 G:     σ<0.20
 
 さらに、<評価2:低温イオン伝導度測定>において、温度を0℃から25℃に変えたこと以外は同様にして試験を行ったところ、すべての実施例のイオン伝導度が0.50mS/cm以上であった。
Figure JPOXMLDOC01-appb-T000025
 表4から明らかなように、本発明で規定する式(1)~(3)のいずれかを満たさない無機固体電解質含有組成物又は式(1)~(3)を満たすが、ポリエステル、ビニルポリマー及び(メタ)アクリルポリマー以外のポリマーバインダーを用いて調製した無機固体電解質含有組成物を用いて作製したNo.c101~c109の全固体二次電池は、低温でのイオン伝導性が劣った。
 これに対して、本発明の無機固体電解質含有組成物を用いて作製した、No.101~137の全固体二次電池は、いずれも、25℃の常温域でのイオン伝導性だけでなく、低温域でのイオン伝導性にも優れていた。特に、No.104、105、108、109、114、122、123、126、127及び132に示されているように、主鎖末端に、硫黄原子を含有する連鎖移動剤及び有機過酸化物重合開始剤の少なくとも1種の重合開始剤の残基を有する(メタ)アクリルポリマーを用いることにより、低温域でのイオン伝導性がより向上する。なかでも、No.105及び123に示されているように、分岐構造を有する(メタ)アクリルポリマーを用いることにより、低温域でのイオン伝導性が更に向上する。
 また、No.108、109、114、126、127及び132に示されているように、αを小さくすることにより、低温域でのイオン伝導性がより向上する。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2020年3月27日に日本国で特許出願された特願2020-59085、及び2020年10月9日に日本国で特許出願された特願2020-171567に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 2032型コインケース
12 全固体二次電池用積層体
13 コイン型全固体二次電池
14 表2-1のNo.K-13に対応する点
15 表2-1のNo.K-12に対応する点
16 表2-4のNo.Kc14に対応する点
17 表2-4のNo.Kc12に対応する点
TP 試験片

Claims (11)

  1.  周期律表第1族または第2族に属する金属のイオン伝導性を有する無機固体電解質(A)とポリマーバインダー(B)とを含有する無機固体電解質含有組成物であって、
     前記ポリマーバインダー(B)が、ポリエステル、ビニルポリマー及び(メタ)アクリルポリマーの少なくとも1種を含み、前記ポリマーバインダー(B)の重量平均分子量と含有量とが、下記式(1)~(3)で表される関係をすべて満たす、無機固体電解質含有組成物。
    式(1) 0.01≦α≦0.8
    式(2) Mw≧2000
    式(3) Mw×α≦9.3×10
     式中、αは無機固体電解質含有組成物に含まれる全固形分100質量%中のポリマーバインダー(B)の含有量の割合(質量%)を示し、Mwはポリマーバインダー(B)の重量平均分子量を示す。
  2.  前記ポリマーバインダー(B)が、ビニルポリマー及び(メタ)アクリルポリマーの少なくとも1種を含む、請求項1に記載の無機固体電解質含有組成物。
  3.  前記ポリマーバインダー(B)を形成するポリマーが、炭素数14以上の炭化水素基を側鎖に有する構成成分を含む、請求項1又は2に記載の無機固体電解質含有組成物。
  4.  前記ビニルポリマー及び(メタ)アクリルポリマーが、ポリマーの主鎖末端に、硫黄原子を含有する連鎖移動剤及び有機過酸化物重合開始剤の少なくとも1種の重合開始剤の残基を有する、請求項1~3のいずれか1項に記載の無機固体電解質含有組成物。
  5.  前記ビニルポリマー及び(メタ)アクリルポリマーが、ポリマーの主鎖末端に、下記式(S3)で表される構造を有する、請求項1~4のいずれか1項に記載の無機固体電解質含有組成物。
    Figure JPOXMLDOC01-appb-C000001
     式中、nは3~6の整数である。LLはn価の分岐基を示す。Lは単結合又は2価の連結基を示す。Lは酸素原子又は硫黄原子を示す。*はポリマー主鎖との結合部を示す。
  6.  前記無機固体電解質(A)が硫化物系無機固体電解質である、請求項1~5のいずれか1項に記載の無機固体電解質含有組成物。
  7.  活物質(E)を含む、請求項1~6のいずれか1項に記載の無機固体電解質含有組成物。
  8.  請求項1~7のいずれか1項に記載の無機固体電解質含有組成物で構成した層を有する全固体二次電池用シート。
  9.  正極活物質層と、負極活物質層と、前記正極活物質層及び前記負極活物質層の間の固体電解質層とを含む全固体二次電池であって、
     前記正極活物質層、前記負極活物質層及び前記固体電解質層の少なくとも1層が、請求項1~7のいずれか1項に記載の無機固体電解質含有組成物で構成した層である、全固体二次電池。
  10.  請求項1~7のいずれか1項に記載の無機固体電解質含有組成物を塗布することを含む、全固体二次電池用シートの製造方法。
  11.  請求項10に記載の製造方法を経て全固体二次電池を製造する、全固体二次電池の製造方法。
PCT/JP2021/012541 2020-03-27 2021-03-25 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法 WO2021193826A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022510665A JP7292498B2 (ja) 2020-03-27 2021-03-25 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
EP21775779.8A EP4131461A1 (en) 2020-03-27 2021-03-25 Inorganic-solid-electrolyte-containing composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery sheet and all solid-state secondary battery
KR1020227033223A KR20220147630A (ko) 2020-03-27 2021-03-25 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지 및, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법
CN202180022617.1A CN115298873A (zh) 2020-03-27 2021-03-25 含无机固体电解质组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法
US17/951,065 US20230067637A1 (en) 2020-03-27 2022-09-22 Inorganic solid electrolyte-containing composition, sheet for all-solid state secondary battery, and all-solid state secondary battery, and manufacturing methods for sheet for all-solid state secondary battery and all-solid state secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020059085 2020-03-27
JP2020-059085 2020-03-27
JP2020171567 2020-10-09
JP2020-171567 2020-10-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/951,065 Continuation US20230067637A1 (en) 2020-03-27 2022-09-22 Inorganic solid electrolyte-containing composition, sheet for all-solid state secondary battery, and all-solid state secondary battery, and manufacturing methods for sheet for all-solid state secondary battery and all-solid state secondary battery

Publications (1)

Publication Number Publication Date
WO2021193826A1 true WO2021193826A1 (ja) 2021-09-30

Family

ID=77891836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012541 WO2021193826A1 (ja) 2020-03-27 2021-03-25 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法

Country Status (6)

Country Link
US (1) US20230067637A1 (ja)
EP (1) EP4131461A1 (ja)
JP (1) JP7292498B2 (ja)
KR (1) KR20220147630A (ja)
CN (1) CN115298873A (ja)
WO (1) WO2021193826A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222066A (ja) 1985-07-23 1987-01-30 Wako Pure Chem Ind Ltd ラテツクス凝集反応測定装置
JPH026856A (ja) 1988-06-27 1990-01-11 Motonobu Shibata 触媒担体およびその製造方法
JPH0345473A (ja) 1989-07-11 1991-02-27 Toyoda Mach Works Ltd 四輪操舵装置
JPH0590844A (ja) 1991-09-26 1993-04-09 Toshiba Corp 歪補償器
JPH064516A (ja) 1992-06-17 1994-01-14 Toshiba Corp 割当て決定支援方式
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
WO2017018456A1 (ja) 2015-07-30 2017-02-02 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2018020827A1 (ja) 2016-07-26 2018-02-01 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント化ポリマー、ポリマーおよびセグメント化ポリマーの非水溶媒分散物
WO2018151118A1 (ja) 2017-02-16 2018-08-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマー及びその非水溶媒分散物
WO2019054191A1 (ja) * 2017-09-14 2019-03-21 富士フイルム株式会社 固体電解質組成物、その製造方法、保存方法及びキット、固体電解質含有シート、その保存方法及びキット、並びに、全固体二次電池
WO2019074074A1 (ja) * 2017-10-12 2019-04-18 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
JP2019067523A (ja) 2017-09-28 2019-04-25 富士フイルム株式会社 全固体二次電池、固体電解質含有シート及び固体電解質組成物
JP2020059085A (ja) 2018-10-10 2020-04-16 ファナック株式会社 精度調整装置、精度調整方法及び精度調整プログラム
WO2020203882A1 (ja) * 2019-03-29 2020-10-08 帝人株式会社 高分子バインダー及び全固体二次電池
JP2020171567A (ja) 2019-04-12 2020-10-22 株式会社三共 遊技機

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222066A (ja) 1985-07-23 1987-01-30 Wako Pure Chem Ind Ltd ラテツクス凝集反応測定装置
JPH026856A (ja) 1988-06-27 1990-01-11 Motonobu Shibata 触媒担体およびその製造方法
JPH0345473A (ja) 1989-07-11 1991-02-27 Toyoda Mach Works Ltd 四輪操舵装置
JPH0590844A (ja) 1991-09-26 1993-04-09 Toshiba Corp 歪補償器
JPH064516A (ja) 1992-06-17 1994-01-14 Toshiba Corp 割当て決定支援方式
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
WO2017018456A1 (ja) 2015-07-30 2017-02-02 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2018020827A1 (ja) 2016-07-26 2018-02-01 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント化ポリマー、ポリマーおよびセグメント化ポリマーの非水溶媒分散物
WO2018151118A1 (ja) 2017-02-16 2018-08-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマー及びその非水溶媒分散物
WO2019054191A1 (ja) * 2017-09-14 2019-03-21 富士フイルム株式会社 固体電解質組成物、その製造方法、保存方法及びキット、固体電解質含有シート、その保存方法及びキット、並びに、全固体二次電池
JP2019067523A (ja) 2017-09-28 2019-04-25 富士フイルム株式会社 全固体二次電池、固体電解質含有シート及び固体電解質組成物
WO2019074074A1 (ja) * 2017-10-12 2019-04-18 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
JP2020059085A (ja) 2018-10-10 2020-04-16 ファナック株式会社 精度調整装置、精度調整方法及び精度調整プログラム
WO2020203882A1 (ja) * 2019-03-29 2020-10-08 帝人株式会社 高分子バインダー及び全固体二次電池
JP2020171567A (ja) 2019-04-12 2020-10-22 株式会社三共 遊技機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. HAYASHIS. HAMAH. MORIMOTOM. TATSUMISAGOT. MINAMI, CHEM. LETT., 2001, pages 872 - 873
T. OHTOMOA. HAYASHIM. TATSUMISAGOY. TSUCHIDAS. HAMAK. KAWAMOTO, JOURNAL OF POWER SOURCES, vol. 233, 2013

Also Published As

Publication number Publication date
JP7292498B2 (ja) 2023-06-16
KR20220147630A (ko) 2022-11-03
CN115298873A (zh) 2022-11-04
US20230067637A1 (en) 2023-03-02
EP4131461A1 (en) 2023-02-08
JPWO2021193826A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2021039950A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7372340B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021039948A1 (ja) 電極用組成物の製造方法、全固体二次電池用電極シートの製造方法及び全固体二次電池の製造方法
WO2021039468A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021066060A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021060541A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021014852A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2022071392A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021200497A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021166968A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021157278A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7263536B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに全固体二次電池用シート及び全固体二次電池の製造方法
JP6985515B2 (ja) 固体電解質組成物、固体電解質含有シート、及び全固体二次電池、並びに固体電解質含有シート及び全固体二次電池の製造方法
WO2020129802A1 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2020067108A1 (ja) 全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法
WO2023054425A1 (ja) 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極組成物、全固体二次電池用電極シート及び全固体二次電池の製造方法
JPWO2019203334A1 (ja) 固体電解質組成物、全固体二次電池用シート、及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法
WO2021039946A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、全固体二次電池用シート及び全固体二次電池の製造方法、並びに、複合ポリマー粒子
WO2021193826A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7407286B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2022071124A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7373674B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2022059567A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2022085733A1 (ja) 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
WO2021060542A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510665

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227033223

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021775779

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021775779

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE