WO2019074074A1 - 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 - Google Patents

固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 Download PDF

Info

Publication number
WO2019074074A1
WO2019074074A1 PCT/JP2018/037994 JP2018037994W WO2019074074A1 WO 2019074074 A1 WO2019074074 A1 WO 2019074074A1 JP 2018037994 W JP2018037994 W JP 2018037994W WO 2019074074 A1 WO2019074074 A1 WO 2019074074A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
active material
solid
average particle
particle size
Prior art date
Application number
PCT/JP2018/037994
Other languages
English (en)
French (fr)
Inventor
智則 三村
宏顕 望月
雅臣 牧野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201880065264.1A priority Critical patent/CN111194492B/zh
Priority to JP2019548243A priority patent/JP6942810B2/ja
Priority to EP18865753.0A priority patent/EP3696886A4/en
Publication of WO2019074074A1 publication Critical patent/WO2019074074A1/ja
Priority to US16/833,669 priority patent/US20200227751A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte composition, a solid electrolyte-containing sheet and an all solid secondary battery, and a method of manufacturing a solid electrolyte containing sheet and an all solid secondary battery.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and enables charge and discharge by reciprocating lithium ions between the two electrodes.
  • organic electrolytes have been used as electrolytes.
  • the organic electrolyte is liable to leak, and a short circuit may occur inside the battery due to overcharge or overdischarge, which may cause ignition, and further improvement of safety and reliability is required. Under such circumstances, an all solid secondary battery using an inorganic solid electrolyte in place of the organic electrolyte has attracted attention.
  • all solid secondary batteries all of the negative electrode, electrolyte and positive electrode are solid, which can greatly improve the safety and reliability of the battery using organic electrolyte solution, and also can extend the life. It will be. Furthermore, the all-solid secondary battery can have a structure in which the electrode and the electrolyte are directly arranged in series. Therefore, energy density can be increased as compared with a secondary battery using an organic electrolytic solution, and application to an electric car or a large storage battery is expected.
  • a material containing an inorganic solid electrolyte, an active material, a binder (binder) and the like as a material for forming a negative electrode active material layer, a solid electrolyte layer or a positive electrode active material layer is proposed. It is done.
  • dispersions in which the respective components are dispersed in a dispersion medium (Patent Documents 1 to 3), or powder mixtures in which each component is mixed in a solid state without using a dispersion medium (Patent Documents 4 and 5) Can be mentioned.
  • Patent Document 1 describes a positive electrode active material slurry containing an inorganic solid electrolyte, a binder comprising a core-shell type particulate polymer having a specific average particle diameter, a positive electrode active material, and a conductive support agent. It is done.
  • Patent Documents 2 and 3 describe a solid electrolyte composition containing an inorganic solid electrolyte, a particulate polymer, an active material, a conductive aid and a dispersion medium.
  • the active material layer of the all solid secondary battery is usually formed of solid particles such as an inorganic solid electrolyte, an active material, and a binder resin particle, so that interfacial contact between solid particles, for example, active material and inorganic solid electrolyte is sufficient. Interface resistance increases.
  • the binding property between the solid particles is weak, the active material layer is easily peeled off from the current collector, and solid particles, particularly active material and inorganic solid, due to shrinkage and expansion of the active material layer accompanying release and absorption of lithium ions. Poor contact with the electrolyte occurs, and battery performance can not be maintained.
  • the present invention can suppress the increase in the interfacial resistance between solid particles in the obtained all-solid secondary battery by using it as a material constituting the active material layer of the all-solid secondary battery, and further, the solid bonding It is an object of the present invention to provide a solid electrolyte composition which can realize also the conductivity. Another object of the present invention is to provide a solid electrolyte-containing sheet and an all solid secondary battery using the solid electrolyte composition, and a method for producing them.
  • the inventor of the present invention disperses a specific high molecular weight binder (resin) particle, an inorganic solid electrolyte, an active material and a conductive additive in a dispersion medium in a combination satisfying a specific particle size ratio.
  • this solid electrolyte composition exhibits high dispersibility.
  • an active material layer in which solid particles are firmly bound is formed while suppressing the interfacial resistance between solid particles. It has been found that it is possible to impart excellent battery performance to all solid secondary batteries.
  • the present invention has been further studied based on these findings and has been completed.
  • Binder resin particles comprising a polymer having a weight average molecular weight of 5,000 or more, an inorganic solid electrolyte having conductivity of an ion of a metal belonging to Periodic Table 1 Group or Group 2, Periodic Table 1 Group or Containing an active material capable of inserting and releasing ions of a metal belonging to Group 2, a conductive aid, and a dispersion medium;
  • the solid electrolyte composition in which a binder resin particle, an inorganic solid electrolyte, an active material, and a conductive support agent satisfy the following particle size ratio.
  • the average particle diameter D B is 1 ⁇ m or less than 0.005 ⁇ m solid electrolyte composition according to ⁇ 1> of the binder resin particles.
  • inorganic solid average particle diameter D SE of the electrolyte is 0.2 ⁇ m or more 4 ⁇ m or less ⁇ 1> or solid electrolyte composition according to ⁇ 2>.
  • ⁇ 4> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 3>, wherein the average particle diameter D AM of the active material is 1 ⁇ m to 5 ⁇ m.
  • the average particle diameter D CA conductive auxiliary agent is 0.01 ⁇ m or more 0.5 ⁇ m or less ⁇ 1> to a solid electrolyte composition according to any one of ⁇ 4>.
  • ⁇ 6> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 5>, wherein the dispersion medium contains any one of an ester compound solvent, a ketone compound solvent, and an amine compound solvent.
  • ⁇ 7> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 6>, wherein the binder resin particles are particles of an acrylic resin or a polyurethane resin.
  • ⁇ 8> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 7>, wherein the product of the average particle diameter D AM of the active material and the specific surface area S AM of the active material is less than 2 cm 3 / g.
  • ⁇ 9> A solid electrolyte-containing sheet having a layer composed of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 8>.
  • a binder resin particle comprising a polymer having a weight average molecular weight of 5,000 or more, an inorganic solid electrolyte having conductivity of an ion of a metal belonging to Periodic Table 1 Group or Group 2, Periodic Table 1 Group or Containing an active material capable of inserting and releasing ions of a metal belonging to Group 2, and a conductive aid;
  • a solid electrolyte-containing sheet wherein the binder resin particles, the inorganic solid electrolyte, the active material and the conductive additive satisfy the following particle size ratio.
  • Average particle size of binder resin particles D B Average particle size of inorganic solid electrolyte
  • D SE Average particle size of active material
  • D AM Average particle size of conductive aid
  • D CA 1: 1 to 100: 2 to 200: 0 .01 to 100
  • An all-solid secondary battery including a ⁇ 11> positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer, An all solid secondary battery, wherein at least one of the positive electrode active material layer and the negative electrode active material layer is a layer composed of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 8>.
  • ⁇ 12> A method for producing a solid electrolyte-containing sheet, including the step of forming a film of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 8>.
  • the manufacturing method of the all-solid-state secondary battery which manufactures an all-solid-state secondary battery through the manufacturing method as described in ⁇ 13> said ⁇ 12>.
  • the solid electrolyte composition and the solid electrolyte-containing sheet of the present invention are each used as a material of the active material layer of the all solid secondary battery, thereby suppressing an increase in the interfacial resistance between solid particles, and the solid particles are solid Can form an active material layer bonded to the Further, the all solid secondary battery of the present invention is provided with the active material layer exhibiting the above-mentioned excellent characteristics, has a low resistance, and can maintain excellent battery performance even if charge and discharge are repeated. Furthermore, the method for producing a solid electrolyte-containing sheet and the all-solid secondary battery of the present invention can produce a solid electrolyte-containing sheet and an all-solid secondary battery exhibiting the above-mentioned excellent properties.
  • FIG. 1 is a longitudinal sectional view schematically showing an all solid secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a longitudinal cross-sectional view which shows typically the all-solid-state secondary battery (coin battery) produced in the Example.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the solid electrolyte composition of the present invention comprises a binder resin particle comprising a polymer having a weight average molecular weight of 5000 or more, an inorganic solid electrolyte having conductivity of an ion of a metal belonging to Group 1 or Group 2 of the periodic table, and a period It contains an active material capable of inserting and releasing ions of a metal belonging to the first group or the second group, a conductive auxiliary agent, and a dispersion medium.
  • the binder resin particles, the inorganic solid electrolyte, the active material, and the conductive additive satisfy the following particle size ratio.
  • the solid electrolyte composition of the present invention is in a mixed state with the dispersant as long as the binder resin particles, the inorganic solid electrolyte, the active material and the conductive additive as solid particles are contained in a specific combination satisfying the above particle size ratio Is not particularly limited.
  • the solid electrolyte composition is preferably dispersed in a dispersion medium at least before or at the time of use, and more preferably a slurry is formed.
  • This solid electrolyte composition is suitable for the formation of the active material layer of the all solid secondary battery in that it contains an active material and a conductive additive, and may be referred to as a composition for an electrode.
  • the solid electrolyte composition of the present invention having the above-described configuration can form an active material layer having high bondability between solid particles and suppressing an increase in electrical resistance. Since the active material layer of the all solid secondary battery is formed of solid particles, it is important in terms of battery performance to improve the binding between solid particles and to reduce the interfacial resistance. In order to further improve the battery performance, it is effective to add a conductive support agent to the active material layer containing an active material or the like to construct a conductive path composed of the conductive support agent.
  • a conductive path it is possible to disperse not only the active material and the like but also the conductive aid in a high degree (uniformly) in the dispersion medium or layer when forming the material forming the active material layer or the active material layer. desirable.
  • the conductive aid decreases, the viscosity increases and the dispersibility decreases due to reaggregation.
  • the present invention sets the particle size ratio of each solid particle in relation to other solid particles used in combination, rather than merely reducing the particle size of the conductive additive, and the specific molecular weight Binder resin particles of the present invention, solid particles of an inorganic solid electrolyte, an active material, and a conductive additive are used in a combination satisfying a specific particle size ratio.
  • the solid electrolyte composition of the present invention can control the sedimentation velocity of each solid particle, and each solid particle becomes highly dispersed in the dispersion medium.
  • the contact state between the solid particles, the construction of the conductive path, and the bonding state between the solid particles are improved in a well-balanced manner, and as a result, the conductive path is built. Also, it is considered that solid particles are firmly attached to each other to be bound, and furthermore, the interfacial resistance between the solid particles is reduced.
  • the all-solid secondary battery provided with the active material layer exhibiting such excellent characteristics has a small electric resistance, and can maintain excellent battery performance even if charge and discharge are repeated.
  • the particle size ratio which the solid particles in the solid electrolyte composition of the present invention should satisfy will be described.
  • the binder resin particles, the inorganic solid electrolyte, the active material and the conductive additive used in the present invention satisfy the following (particle size ratio).
  • D B represents the average particle size of the binder resin particles
  • D SE represents the average particle size of the inorganic solid electrolyte
  • D AM represents the average particle size of the active material
  • D CA conductive additive Indicates the average particle size of When each of the particles contained in the solid electrolyte composition of the present invention satisfies the above particle size ratio, as described above, high binding between solid particles and suppression of interface resistance can be imparted to the active material layer, It is possible to manufacture an all-solid secondary battery capable of maintaining excellent battery performance even after repeated charge and discharge.
  • the settling velocity of each solid particle can be controlled, and each solid particle can be highly dispersed in the dispersion medium.
  • the ion conductivity of the inorganic solid electrolytes and the amount of contact area (resistance) with respect to the active material can be balanced with each other in a balanced manner. For example, if D SE with respect to D B is too small, the interface amount between the inorganic solid electrolytes may be increased to lower the ion conductivity. On the other hand, if this DSE is too large, the sedimentation speed will be faster and the dispersion state will be worse. In addition, the contact area with the active material may be reduced to increase the resistance.
  • a conductive auxiliary agent and the like can be highly dispersed in the dispersion medium.
  • the conductive path can be sufficiently formed, and the conductive auxiliary agent is not coated on the binder more than necessary, so that the interface resistance can be reduced, and the contact area can be secured at a certain level or more.
  • D CA is too small relative to D B
  • the formation of conductive paths may become high resistance becomes insufficient.
  • the uniformity decreases, which may deteriorate when the battery is used faster.
  • the particle diameter of the binder resin particle by setting the particle diameter of the binder resin particle relative to the active material, the inorganic solid electrolyte and the conductive auxiliary agent in the above range, it is possible to achieve both resistance and binding property. If the particle size of the binder resin particles is too small, the surface of the active material or the inorganic solid electrolyte may be coated more than necessary to increase the resistance. On the other hand, when the particle diameter of the binder resin particles is too large, the number of particles for improving the binding between the particles of the active material or the inorganic solid electrolyte may be reduced to deteriorate the binding.
  • the above-described action exerted by the definition of the particle size ratio for each solid particle cooperates,
  • the dispersibility of the solid particles is improved, and the contact state and the bonding state of the solid particles can be well balanced.
  • the particle size ratio satisfied by the binder resin particles, the inorganic solid electrolyte, the active material and the conductive additive is preferably the following (particle size ratio 1) from the viewpoint of achieving both resistance and binding at a higher level, The diameter ratio 2) is more preferable, and the following (particle diameter ratio 3) is more preferable.
  • (Particle size ratio 1) D B : D SE : D AM : D CA 1: 3 to 50: 5 to 100: 0.05 to 20 (Particle size ratio 2)
  • D B : D SE : D AM : D CA 1: 5 to 30: 10 to 80: 0.1 to 10 (Particle size ratio 3)
  • D B : D SE : D AM : D CA 1:11 to 30: 21 to 60: 0.5 to 5
  • particle diameter ratio D B, D SE, but defines a combination of D AM and D CA, in the present invention, (particle diameter ratio) (particle size ratio 1) to (particle size ratio 3)
  • the particle sizes of the respective components in the above can be appropriately combined and defined.
  • D B: D SE : D AM: D CA 1: It can also be defined as 1-100: 2-200: 0.5-5.
  • the water content (also referred to as the water content) of the solid electrolyte composition of the present invention is preferably 50 ppm or less, more preferably 20 ppm or less, still more preferably 10 ppm or less, and 5 ppm or less Being particularly preferred.
  • the water content indicates the amount of water (mass ratio relative to the solid electrolyte composition) contained in the solid electrolyte composition, specifically, filtering with a 0.02 ⁇ m membrane filter and using Karl Fischer titration , You can ask.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte capable of transferring ions inside thereof.
  • An organic solid electrolyte (a polymer electrolyte represented by polyethylene oxide (PEO) or the like, an organic electrolyte represented by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) or the like because it does not contain an organic substance as a main ion conductive material It is clearly distinguished from electrolyte salt).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • electrolyte salt since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions.
  • the electrolyte solution or the inorganic electrolyte salt (LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.) in which the cation and the anion are dissociated or released in the polymer.
  • the inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to Periodic Table Group 1 or Group 2, and one having no electron conductivity is common.
  • the inorganic solid electrolyte has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
  • An inorganic solid electrolyte can be used by appropriately selecting a solid electrolyte material to be applied to this type of product.
  • As the inorganic solid electrolyte (i) a sulfide-based inorganic solid electrolyte and (ii) an oxide-based inorganic solid electrolyte are mentioned as representative examples, and in view of high ion conductivity and ease of interparticle interface bonding, Inorganic solid electrolytes are preferred.
  • the inorganic solid electrolyte preferably has an ion conductivity of lithium ion.
  • a sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ion conductivity of a metal belonging to Periodic Table 1 Group or Group 2 and And compounds having electron insulating properties are preferred.
  • the sulfide-based inorganic solid electrolyte contains at least Li, S and P as elements and preferably has lithium ion conductivity, but depending on the purpose or case, other than Li, S and P. It may contain an element.
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 represent composition ratios of respective elements, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10. 1 to 9 is preferable, and 1.5 to 7.5 is more preferable. 0 to 3 is preferable, and 0 to 1 is more preferable as b1. 2.5 to 10 are preferable and 3.0 to 8.5 of d1 are more preferable. 0 to 5 is preferable, and 0 to 3 is more preferable as e1.
  • composition ratio of each element can be controlled by adjusting the compounding ratio of the raw material compound at the time of producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be non-crystalline (glass) or crystallized (glass-ceramicized), or only part of it may be crystallized.
  • a Li—P—S-based glass containing Li, P and S, or a Li—P—S-based glass ceramic containing Li, P and S can be used.
  • the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), single phosphorus, single sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, It can be produced by the reaction of at least two or more of LiI, LiBr, LiCl) and sulfides of elements represented by the above M (eg, SiS 2 , SnS, GeS 2 ).
  • Li 2 S lithium sulfide
  • phosphorus sulfide for example, diphosphorus pentasulfide (P 2 S 5 )
  • single phosphorus single sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • Li halide for example, It can be produced by the reaction of at least two or more of LiI, LiBr,
  • the ratio of Li 2 S to P 2 S 5 in the Li-P-S-based glass and Li-P-S-based glass ceramic is preferably a molar ratio of Li 2 S: P 2 S 5 of 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be made high.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. There is no particular upper limit, but it is practical to be 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4 -P 2 S 5 , Li 2 S-P 2 S 5- P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3, Li 2 S-GeS 2, Li 2
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method for example, a mechanical milling method, a solution method and a melt quenching method can be mentioned. It is because processing at normal temperature becomes possible, and simplification of the manufacturing process can be achieved.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ion conductivity of a metal belonging to Periodic Table List 1 or 2 and And compounds having electron insulating properties are preferred.
  • the oxide-based inorganic solid electrolyte preferably has an ion conductivity of 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 5 ⁇ 10 ⁇ 6 S / cm or more, and 1 ⁇ 10 ⁇ 5 S It is particularly preferable to be at least / cm.
  • the upper limit is not particularly limited, but it is practical to be 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li, P and O phosphorus compounds containing Li, P and O.
  • Li 3 PO 4 lithium phosphate
  • LiPON in which part of oxygen of lithium phosphate is replaced with nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON LiA 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • the inorganic solid electrolyte is preferably in the form of particles.
  • the average particle size (volume average particle size) D SE of the inorganic solid electrolyte is not particularly limited as long as the above particle size ratio is satisfied.
  • the average particle diameter D SE is preferably set in a range obtained by appropriately combining the following upper limit and the following lower limit in terms of ion conductivity, further processability and interface formation.
  • the lower limit of the average particle diameter D SE is preferably 0.01 ⁇ m or more, more preferably 0.2 ⁇ m or more, and still more preferably 0.3 ⁇ m or more.
  • the upper limit of the average particle diameter D SE is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 20 ⁇ m or less, particularly preferably 4 ⁇ m or less, and 2 ⁇ m or less Is most preferred.
  • the measurement of the average particle diameter D SE of the inorganic solid electrolyte particles is carried out according to the following procedure.
  • the inorganic solid electrolyte particles are diluted with water (heptane for water labile substances) in a 20 mL sample bottle to dilute the 1 wt% dispersion.
  • the diluted dispersed sample is irradiated with 1 kHz ultrasound for 10 minutes, and used immediately thereafter for the test.
  • the inorganic solid electrolyte may be used singly or in combination of two or more.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition is not particularly limited, but as the total content with the active material, reduction in interface resistance and reduction in interface resistance when used in an all solid secondary battery In consideration of maintenance, it is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 20% by mass or more in 100% by mass of the solid component. From the same viewpoint, the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
  • the solid content refers to a component which does not evaporate or evaporate when the solid electrolyte composition is dried at 120 ° C. under a nitrogen atmosphere for 6 hours under a pressure of 1 mmHg. Typically, it refers to components other than the dispersion medium described later.
  • the solid electrolyte composition of the present invention contains binder resin particles.
  • the binder resin particle should just be a resin particle which consists of various polymers, and the resin particle which consists of a polymer containing a macromonomer component is preferable.
  • the binder resin particle should just be a particle which consists of binder resin generally used to the solid electrolyte composition for all-solid-state secondary batteries, and the resin particle which consists of organic resin is mentioned.
  • a binder resin particle the binder resin particle which consists of an organic resin described below, for example is preferable.
  • fluorine-containing resin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, and polyisoprene.
  • the (meth) acrylic resin various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of two or more of these monomers (preferably, copolymers of acrylic acid and methyl acrylate) It can be mentioned.
  • copolymers (copolymers) with other vinyl monomers are also suitably used.
  • a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile and styrene can be mentioned.
  • the copolymer may be either a statistical copolymer or a periodic copolymer, and a block copolymer is preferred.
  • Examples of other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, and cellulose derivative resin.
  • polymer macromolecule or (meth) acrylic resin containing the said macromonomer component, what consists of a polymer of Unexamined-Japanese-Patent No. 2015-088486 etc. is mentioned, for example.
  • a polyurethane resin a polyurethane resin, a polyurea resin, a polyamide resin, and a polyimide resin
  • the polymer which has a urethane bond, the polymer which has a urea bond, the polymer which has an amide bond, the imide bond is described in Unexamined-Japanese-Patent No. 2015-088480, for example. And the like.
  • fluorine-containing resins hydrocarbon-based thermoplastic resins, (meth) acrylic resins, polyurethane resins, polycarbonate resins and cellulose derivative resins are preferable, and they have good affinity with inorganic solid electrolytes, and resins themselves
  • An acrylic resin or a polyurethane resin is particularly preferable in that it has good flexibility and can exhibit stronger binding to solid particles.
  • a commercial item can be used for the polymer which forms binder resin particles or binder resin particles. Moreover, it can also prepare by a conventional method.
  • the water concentration of the binder resin particles is preferably 100 ppm (mass basis) or less.
  • the binder resin particles may be used in the solid state or in the form of a dispersion or solution.
  • the weight average molecular weight of the polymer forming the binder resin particles is 5,000 or more.
  • the weight average molecular weight of the polymer is preferably 10,000 or more, and more preferably 30,000 or more.
  • the upper limit is substantially 1,000,000 or less, preferably 200,000 or less, and more preferably 100,000 or less. It is also preferable that the binder resin particles be formed of a crosslinked polymer having a weight average molecular weight in the above range.
  • the weight average molecular weight of the polymer forming the binder resin particles is the weight average molecular weight in terms of standard polystyrene by gel permeation chromatography (GPC) unless otherwise specified.
  • GPC gel permeation chromatography
  • the measurement method it shall be a value measured under the following conditions as a basis. However, depending on the type of polymer, an appropriate eluent can be selected and used. (conditions) Columns: TOSOH TSKgel Super HZM-H (trade name), TOSOH TSKgel Super HZ 4000 (trade name), and TOSOH TSKgel Super HZ 2000 (trade name) are used together.
  • Carrier Tetrahydrofuran Measurement temperature: 40 ° C
  • Carrier flow rate 1.0 mL / min
  • Sample concentration 0.1% by mass
  • Detector RI (refractive index) detector
  • the shape of the binder resin particles is not particularly limited as long as it is in the form of particles, and may be particles or irregular shapes in the solid electrolyte composition, the solid electrolyte-containing sheet, or the all solid secondary battery.
  • the average particle size D B of the binder resin particles as long as satisfying the above particle diameter ratio is not particularly limited.
  • the average particle diameter D B is preferably set in a range in which the following upper limit and the following lower limit are appropriately combined in terms of ion conductivity and binding property between solid particles.
  • the lower limit of the average particle diameter D B is preferably at least 0.005 .mu.m, and more preferably 0.1 ⁇ m or more.
  • the upper limit of the average particle diameter D B preferably at 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • Measurement of average particle size D B of the binder resin particles is carried out in the same manner as the average particle diameter D SE of the inorganic solid electrolyte.
  • the binder resin particles are appropriately dried to obtain a particle diameter measured by transmission electron microscope (TEM) observation.
  • TEM transmission electron microscope
  • a binder resin particle may use a commercially available thing and the binder resin particle of Unexamined-Japanese-Patent No. 2016-139511 can be used conveniently.
  • the binder resin particles are particles which are insoluble in the dispersion medium, the dispersion stability of the solid electrolyte composition, and the all-solid secondary battery having high ion conductivity. It is preferable from Here, “binder resin particles are particles of insoluble in the dispersion medium” is added to the dispersion medium 30 ° C., even when allowed to stand 24 hours, the average particle diameter D B is the diameter 10% or more It means that the diameter does not decrease by 5% or more, and it is more preferable that the diameter does not decrease by 1% or more.
  • the content of the binder resin particles in the solid electrolyte composition is 0. 0% in 100% by mass of the solid component in consideration of reduction of interface resistance and maintenance of the reduced interface resistance when used in an all solid secondary battery. 01 mass% or more is preferable, 0.1 mass% or more is more preferable, 1 mass% or more is still more preferable.
  • the upper limit is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less from the viewpoint of battery performance.
  • the mass ratio of the total mass (total amount) of the inorganic solid electrolyte and the active material to the mass of the binder resin particles [(mass of inorganic solid electrolyte + mass of active material) / mass of binder resin particles
  • the range of 1,000 to 1 is preferable.
  • the ratio is more preferably 500 to 2, and further preferably 100 to 10.
  • the binder resin particles may be used alone or in combination of two or more.
  • the solid electrolyte composition of the present invention contains an active material capable of insertion and release of ions of a metal element belonging to Group 1 or Group 2 of the periodic table.
  • the active material includes a positive electrode active material and a negative electrode active material.
  • the shape of the active material is not particularly limited, but is preferably in the form of particles.
  • the volume average particle diameter (sphere-converted average particle diameter) D AM of the active material is not particularly limited as long as the above particle diameter ratio is satisfied.
  • the average particle diameter D AM is preferably set to a range in which the following upper limit and the following lower limit are appropriately combined in terms of improvement in dispersibility, improvement in contact area between solid particles, and reduction in interfacial reactivity.
  • the lower limit of the average particle diameter D AM is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and particularly preferably 2 ⁇ m or more.
  • the upper limit of the average particle diameter D AM is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, particularly preferably 5 ⁇ m or less.
  • the measurement of the average particle size D AM of the active material is performed in the same manner as the average particle size D SE of the inorganic solid electrolyte. When the average particle size D AM is equal to or less than the measurement limit of the above-described apparatus, the active material is appropriately dried to obtain a particle size measured by transmission electron microscope (TEM) observation.
  • TEM transmission electron microscope
  • the specific surface area S AM of the active material is not particularly limited, it is preferably 0.001 m 2 / g or more, more preferably 0.01 m 2 / g or more, is 0.1 m 2 / g or more Is particularly preferred.
  • the upper limit is preferably not more than 100 m 2 / g, more preferably 1 m 2 / g or less, even more preferably at most 0.4 m 2 / g.
  • the specific surface area of the active material can be measured using a specific surface area measuring device BELSORP-mini (trade name, manufactured by Microtrac Bell).
  • the specific surface area SAM can be set to a range in which the upper limit and the lower limit are appropriately combined. When the active material has a specific surface area S AM in the above range, it is possible to achieve both contact area and binding property between the solid particles.
  • the active material preferably has a product of the average particle diameter D AM ( ⁇ m) and the specific surface area S AM (m 2 / g): D AM ⁇ S AM is less than 2 cm 3 / g.
  • Product: D AM ⁇ S AM is preferably less than 0.01 cm 3 / g or more 2 cm 3 / g, more preferably 0.1 ⁇ 1cm 3 / g, 0.2 ⁇ 0.5cm 3 More preferably, it is / g.
  • the active material includes a positive electrode active material and a negative electrode active material, and is a metal oxide (preferably a transition metal oxide) which is a positive electrode active material, or a metal oxide which is a negative electrode active material or Sn, Si, Al and Metals capable of alloying with lithium such as In are preferred.
  • a solid electrolyte composition containing an active material positive electrode active material or negative electrode active material
  • composition for electrode composition for positive electrode or composition for negative electrode
  • the positive electrode active material is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above-described characteristics, and may be a transition metal oxide, an organic substance, an element capable of being complexed with Li such as sulfur, a complex of sulfur and a metal, or the like. Among them, it is preferable to use a transition metal oxide as the positive electrode active material, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu and V) Are more preferred.
  • an element M b (an element of Group 1 (Ia) other than lithium, an element of Group 1 (Ia) of the metal periodic table, an element of Group 2 (IIa), Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P or B may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the amount (100 mol%) of the transition metal element M a . It is more preferable to be synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2.
  • transition metal oxide examples include a transition metal oxide having a (MA) layered rock salt type structure, a transition metal oxide having a (MB) spinel type structure, a (MC) lithium-containing transition metal phosphate compound, (MD And the like) lithium-containing transition metal halogenated phosphoric acid compounds and (ME) lithium-containing transition metal silicate compounds.
  • MA transition metal oxide having a
  • MB transition metal oxide having a (MB) spinel type structure
  • MC lithium-containing transition metal phosphate compound
  • MD And the like lithium-containing transition metal halogenated phosphoric acid compounds
  • ME lithium-containing transition metal silicate compounds.
  • transition metal oxides having a layered rock salt type structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (lithium nickel cobalt aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobaltate [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( And lithium manganese nickelate).
  • LiCoO 2 lithium cobaltate [LCO]
  • LiNi 2 O 2 lithium nickelate
  • LiNi 0.85 Co 0.10 Al 0. 05 O 2 lithium nickel cobalt aluminate [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 lithium nickel manganese cobaltate [NMC]
  • LiNi 0.5 Mn 0.5 O 2 And lithium manganese nickelate
  • transition metal oxide having a (MB) spinel structure examples include LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 and the like.
  • (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4 etc. Cobalt phosphates and monoclinic Nasacon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And cobalt fluoride phosphates.
  • Li 2 FePO 4 F such fluorinated phosphorus iron salt
  • Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And cobalt fluoride phosphates.
  • the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 and Li 2 CoSiO 4 .
  • transition metal oxides having a (MA) layered rock salt type structure are preferred, and LCO or NMC is more preferred.
  • a usual pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution and an organic solvent.
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (area weight) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be determined appropriately depending on the designed battery capacity.
  • the content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and still more preferably 50 to 85% by mass at a solid content of 100% by mass. Preferably, 55 to 80% by mass is particularly preferred.
  • the negative electrode active material is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above-mentioned characteristics, and carbonaceous materials, metal oxides such as tin oxide, silicon oxides, metal complex oxides, lithium alone such as lithium alloy and lithium aluminum alloy, and And metals such as Sn, Si, Al and In which can be alloyed with lithium.
  • carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability.
  • a metal complex oxide it is preferable that lithium can be occluded and released.
  • the material is not particularly limited, but it is preferable in view of high current density charge and discharge characteristics that titanium and / or lithium is contained as a component.
  • the carbonaceous material used as the negative electrode active material is a material substantially consisting of carbon.
  • various kinds of synthesis such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor grown graphite etc.), and PAN (polyacrylonitrile) resin or furfuryl alcohol resin
  • AB acetylene black
  • graphite natural graphite, artificial graphite such as vapor grown graphite etc.
  • PAN polyacrylonitrile
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber and activated carbon fiber And mesophase microspheres, graphite whiskers, and flat graphite.
  • an amorphous oxide is particularly preferable, and chalcogenide which is a reaction product of a metal element and an element of Periodic Group 16 is also preferably used.
  • amorphous is an X-ray diffraction method using CuK ⁇ radiation, and means one having a broad scattering band having an apex in a region of 20 ° to 40 ° in 2 ⁇ value, and a crystalline diffraction line May be included.
  • amorphous oxides of semimetal elements and chalcogenides are more preferable, and elements of periodic table group 13 (IIIB) to 15 (VB), Al Particularly preferred are oxides consisting of Ga, Si, Sn, Ge, Pb, Sb and Bi singly or in combination of two or more thereof, and chalcogenides.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , and the like.
  • Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeSiO, GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferably mentioned. They may also be complex oxides with lithium oxide, such as Li 2 SnO 2 .
  • the negative electrode active material also preferably contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics because the volume fluctuation at the time of lithium ion absorption and release is small, and the deterioration of the electrode is suppressed, and lithium ion secondary It is preferable at the point which the lifetime improvement of a battery is attained.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • a Si-based negative electrode it is also preferable to apply a Si-based negative electrode.
  • a Si negative electrode can store more Li ions than carbon negative electrodes (graphite, acetylene black, etc.). That is, the storage amount of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery operating time can be extended.
  • a usual pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling flow jet mill, a sieve and the like are suitably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can also be appropriately performed.
  • classification method There is no particular limitation on the classification method, and a sieve, an air classifier or the like can be used as appropriate. Classification can be used both dry and wet.
  • the chemical formula of the compound obtained by the above-mentioned firing method can be calculated from the mass difference of the powder before and after firing as a measurement method using inductively coupled plasma (ICP) emission spectroscopy and as a simple method.
  • ICP inductively coupled plasma
  • the negative electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (area weight) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be determined appropriately depending on the designed battery capacity.
  • the content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass, with respect to 100% by mass of the solid content.
  • the surfaces of the positive electrode active material and the negative electrode active material may be surface coated with another metal oxide.
  • the surface coating agent may, for example, be a metal oxide containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include titanate spinel, tantalum-based oxides, niobium-based oxides, lithium niobate-based compounds, etc.
  • the electrode surface containing a positive electrode active material or a negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with an actinic ray or active gas (such as plasma) before and after the surface coating.
  • the solid electrolyte composition of the present invention contains a conductive aid.
  • a conductive support agent What is known as a general conductive support agent can be used.
  • electron conductive materials graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor grown carbon fibers or carbon nanotubes Or carbon fibers such as graphene or fullerene, metal powder such as copper or nickel, metal fibers, or conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, polyphenylene derivatives, etc. You may use.
  • the active material and the conductive aid when used in combination, among the above-mentioned conductive aids, those which do not cause insertion and release of Li when the battery is charged and discharged and do not function as the active material are the conductive aids. I assume. Therefore, among the conductive aids, those which can function as an active material in the active material layer when the battery is charged and discharged are classified into the active materials rather than the conductive aids. Whether or not the battery functions as an active material when charged and discharged is not unique, and is determined by the combination with the active material.
  • the conductive aid may be used alone or in combination of two or more. Among them, carbon blacks such as acetylene black, ketjen black and furnace black, and carbon fibers such as vapor grown carbon fiber or carbon nanotube are preferable.
  • the average particle diameter of the conductive aid (volume average particle diameter) D CA as long as satisfying the above particle diameter ratio is not particularly limited.
  • the average particle diameter DCA is preferably set to a range obtained by appropriately combining the following upper limit and the following lower limit in terms of formation of conductive paths and dispersibility of the solid electrolyte composition. That the lower limit of the average particle diameter D CA, is preferably at least 0.001 [mu] m, more preferably 0.01 ⁇ m or more, further preferably 0.05 ⁇ m or more and 0.1 ⁇ m or more Particularly preferred.
  • the upper limit is preferably 20 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less, particularly preferably 2 ⁇ m or less, and most preferably 0.5 ⁇ m or less.
  • Measurement of the average particle diameter D CA conductive auxiliary agent is performed at an average particle size D B a manner similar to the binder resin particles.
  • the conductive auxiliary agent is appropriately dried and then the particle size is determined by TEM observation.
  • the content of the conductive additive in the solid electrolyte composition is preferably 0.1 to 5% by mass, and more preferably 0.5 to 3% by mass with respect to 100 parts by mass of the solid content.
  • the solid electrolyte composition of the present invention contains a dispersion medium.
  • the dispersion medium may be any one as long as it disperses the components contained in the solid electrolyte composition of the present invention, and examples thereof include various organic solvents. The following may be mentioned as specific examples of the dispersion medium.
  • the organic solvent include alcohol compound solvents, ether compound solvents, amide compound solvents, amine compound solvents, ketone compound solvents, aromatic compound solvents, aliphatic compound solvents, nitrile compound solvents, ester compound solvents and the like.
  • alcohol compound solvent for example, methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, 1,6-hexanediol, cyclohexanediol, 1,3-butanediol And 1,4-butanediol.
  • alkylene glycol triethylene glycol etc.
  • alkylene glycol monoalkyl ether ethylene glycol monomethyl ether etc.
  • alkylene glycol dialkyl ether ethylene glycol dimethyl ether etc.
  • dialkyl ether diisopropyl ether, dibutyl ether etc.
  • cyclic ethers such as tetrahydrofuran and dioxane (including 1,2-, 1,3- and 1,4-isomers) and the like.
  • amide compound solvent examples include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amine compound solvent include triethylamine, diisopropylethylamine, tributylamine and the like.
  • a ketone compound solvent for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, cycloheptanone, dipropyl ketone, dibutyl ketone, dibutyl ketone, diisopropyl ketone, diisobutyl ketone, isobutyl propyl ketone, sec-butyl propyl ketone, pentyl Propyl ketone, butyl propyl ketone and the like can be mentioned.
  • Examples of the aromatic compound solvent include benzene, toluene, xylene and the like.
  • aliphatic compound solvents include hexane, heptane, octane, decane, cyclohexane, cyclooctane, decalin, paraffin, gasoline, naphtha, kerosene, light oil and the like.
  • Examples of nitrile compound solvents include acetonitrile, propronitrile, isobutyronitrile and the like.
  • ester compound solvents for example, ethyl acetate, butyl acetate, propyl acetate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, butyl pentanoate, ethyl isobutyrate, propyl isobutyrate, isopropyl isobutyrate, isobutyl isobutyrate, pival And propyl acid, isopropyl pivalate, butyl pivalate, isobutyl pivalate and the like.
  • the non-aqueous dispersion medium include the above-mentioned aromatic compound solvents and aliphatic compound solvents.
  • ether compound solvents, ketone compound solvents, aliphatic compound solvents, amine compound solvents, ester compound solvents or non-aqueous dispersion media are preferable, and in terms of the dispersibility of solid particles, ketone compound solvents, amine compounds
  • the solvent, the ester compound solvent or the aliphatic compound solvent is more preferable.
  • the dispersion medium contained in the solid electrolyte composition may be one type, or two or more types, and preferably two or more types.
  • an embodiment containing any one of an ester compound solvent, a ketone compound solvent, and an amine compound solvent is preferable.
  • a combined embodiment of two or more dispersion media selected from the group consisting of a ketone compound solvent, an amine compound solvent, an ester compound solvent and an aliphatic compound solvent is also preferable.
  • the carbon number of the dispersion medium is not particularly limited, but is preferably 2 to 30, more preferably 4 to 20, still more preferably 6 to 15, and particularly preferably 7 to 12.
  • the sulfide-based inorganic solid electrolyte can be handled stably, which is preferable.
  • a combination of a sulfide-based inorganic solid electrolyte and an aliphatic compound solvent is preferred.
  • the dispersion medium used in the present invention preferably has a CLogP value of 1 or more, more preferably 2 or more, and particularly preferably 3 or more.
  • the upper limit is not particularly limited, but is practically 10 or less.
  • the CLogP value is a value obtained by calculating the common logarithm LogP of the distribution coefficient P between 1-octanol and water.
  • any known method or software can be used for calculation of the CLogP value, unless otherwise stated, the structure is drawn using ChemDraw of PerkinElmer, and the calculated value is used.
  • the content of the dispersion medium in the solid electrolyte composition is not particularly limited, and is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
  • the solid electrolyte composition of the present invention preferably contains a dispersant. Even when the content of any of the conductive additive, the electrode active material and the inorganic solid electrolyte is large by adding the dispersant and / or the particle diameter of the electrode active material and the inorganic solid electrolyte increases finely, The aggregation can be further suppressed, and a more uniform active material layer can be formed.
  • a dispersing agent what is normally used for an all-solid-state secondary battery can be selected suitably, and can be used. In general, compounds intended for particle adsorption and steric repulsion and / or electrostatic repulsion are preferably used.
  • the solid electrolyte composition of the present invention may contain, as other components other than the above components, lithium salts, ionic liquids, thickeners, crosslinking agents (radical polymerization, condensation polymerization or ring-opening polymerization, etc.) if desired. And polymerization initiators (such as those which generate acid or radical by heat or light), antifoaming agents, leveling agents, dehydrating agents, antioxidants, and the like.
  • a binder resin particle, an inorganic solid electrolyte, an active material, a conductive auxiliary agent, a dispersant, the above-mentioned additive, etc. are mixed in the presence of a dispersion medium (dispersed in a dispersion medium Can be prepared by
  • the solid electrolyte composition of the present invention is preferably prepared as a slurry.
  • the binder resin particles, the inorganic solid electrolyte, the active material, and the conductive additive are dispersed in the dispersion medium in a combination satisfying the above particle size ratio, so these are uniformly used as the dispersion medium. It can be dispersed.
  • the slurry of the solid electrolyte composition can be prepared by mixing the above components using various mixers (dispersors).
  • the mixer is not particularly limited, and examples thereof include a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, a thin film swirl high speed mixer, a high speed rotary stirrer and a disc mill.
  • the mixing (dispersion) conditions are not particularly limited, but for example, in the case of using a ball mill, it is preferable to mix at 150 to 700 rpm (rotation per minute) for 1 to 24 hours.
  • the disperser may use two dispersers over two or more steps.
  • the order of mixing the above components is not particularly limited, and may be mixed at one time or may be mixed sequentially.
  • the binder resin particles or the dispersant may be mixed alone, or may be mixed with the inorganic solid electrolyte in the dispersion medium.
  • the active material may be mixed alone, or may be mixed with the binder resin particles and the inorganic solid electrolyte in the dispersion medium.
  • the conductive aid may be mixed in the form of particles, but is preferably mixed as a dispersion liquid previously dispersed in a dispersion medium. Thereby, secondary aggregation of the conductive additive can be prevented, and the particle size can be controlled.
  • a conductive support agent can be uniformly disperse
  • the preparation method of the dispersion liquid of a conductive support agent is not specifically limited, For example, the dispersion method using the said dispersing machine is mentioned.
  • the solid content concentration of the dispersion of the conductive additive is not particularly limited, and can be set appropriately.
  • the solid electrolyte composition of the present invention is preferably used as a solid electrolyte-containing sheet preferably used for an all solid secondary battery and a material for forming an active material layer of the all solid secondary battery.
  • the solid electrolyte-containing sheet of the present invention is a sheet-like compact, and contains binder particles, an inorganic solid electrolyte, an active material, and a conductive aid.
  • the binder particles, the inorganic solid electrolyte, the active material, and the conductive additive maintain the particle shape and satisfy the above-described particle size ratio, and the particle shape described later is impaired.
  • the solid electrolyte-containing sheet of the present invention is preferably formed using the solid electrolyte composition of the present invention, and examples thereof include a sheet having an active material layer formed of the solid electrolyte composition.
  • the interfacial resistance between solid particles is small, and the solid particles are strongly bound. Therefore, the solid electrolyte-containing sheet of the present invention is used as a material of the active material layer of the all-solid secondary battery, whereby the all-solid secondary battery has characteristics of small electric resistance and maintaining excellent battery performance. It can be granted.
  • the above-described particle size ratio in the solid electrolyte-containing sheet (active material layer) can be determined as follows. After the active material layer or battery of the solid electrolyte-containing sheet is disassembled and the electrode is peeled off, the above particle diameter ratio can be determined by measuring the electrode material. The measurement may be performed by scanning electron microscope / energy dispersive X-ray spectroscopy (SEM / EDX) measurement to analyze the image and measure the average particle size of each material.
  • the binder resin particles, the inorganic solid electrolyte, the active material, and the conductive additive are present in a state of binding or adhering to each other.
  • the above-mentioned state of binding or close contact can be achieved by the method for producing a solid electrolyte-containing sheet of the present invention described later.
  • the solid electrolyte-containing sheet of the present invention is preferably pressure-molded.
  • the solid particles for example, the inorganic solid electrolyte may be maintained or damaged in the form of particles under pressure.
  • the solid electrolyte composition of the present invention is highly dispersible in solid particles, so by forming a film of the solid electrolyte composition, low interfacial resistance between solid particles and strong binding property Can be realized, the contact state and the bonding state of the solid particles.
  • the solid electrolyte containing sheet may optionally contain a dispersant and the above additive.
  • the content of each component in the solid electrolyte-containing sheet (active material layer) of the present invention is not particularly limited, but is preferably the same as the content of each component in the solid content in the solid electrolyte composition of the present invention.
  • the solid electrolyte-containing sheet of the present invention may have other members such as a substrate and a release sheet.
  • This solid electrolyte-containing sheet can be suitably used for an all solid secondary battery, and includes various embodiments according to the application.
  • a sheet an electrode sheet for all solid secondary batteries
  • a laminate of the active material layer and the solid electrolyte layer can be mentioned.
  • the electrode sheet for all solid secondary batteries forms the active material layer of the all solid secondary battery of the present invention or a laminate of the solid electrolyte layer and the active material layer. It is a sheet suitably used for the above, and is an electrode sheet which has at least an active material layer on a metal foil as a current collector which will be described later appropriately.
  • This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, a current collector, an active material layer, a solid electrolyte The aspect which has a layer and an active material layer in this order is also included.
  • the electrode sheet may be provided with other layers, such as a substrate (except for the current collector), a protective layer (release sheet), a current collector, and a coated layer, for example.
  • the substrate is not particularly limited as long as it can support the active material layer, and examples thereof include sheets (plates) of organic materials, inorganic materials, and the like.
  • the organic material include various polymers and the like, and specific examples include polyethylene terephthalate, polypropylene, polyethylene and cellulose.
  • an inorganic material, glass, a ceramic, etc. are mentioned, for example.
  • the layer thickness of each layer constituting the electrode sheet is the same as the layer thickness of each layer described in the all solid secondary battery of the present invention described later.
  • the method for producing the solid electrolyte-containing sheet of the present invention is not particularly limited.
  • the solid electrolyte composition of the present invention may be formed on a substrate or a current collector (may be via other layers).
  • a method of forming an active material layer (application dry layer) on a substrate or a current collector by coating and drying) can be mentioned.
  • the solid electrolyte content sheet which has a substrate or a current collection object, and an application dry layer can be produced.
  • the coated dry layer is a layer formed by applying the solid electrolyte composition of the present invention and drying the dispersion medium (ie, using the solid electrolyte composition of the present invention, the solid layer of the present invention
  • the layer which consists of a composition which removed the dispersion medium from electrolyte composition is said.
  • the coated dry layer may contain a dispersion medium after drying as long as the effects of the present invention are not impaired, and for example, the coated dry layer is contained (remained) at a content of 1% by mass or less based on the total mass of the coated dry layer It is also good.
  • each step of coating, drying and the like will be described in the following method for producing an all-solid secondary battery.
  • the coated and dried layer obtained as described above can also be pressurized.
  • the pressurization conditions and the like will be described in the manufacturing method of the all solid secondary battery described later.
  • the base material, the protective layer (in particular, a release sheet) and the like can be peeled off.
  • the all solid secondary battery of the present invention comprises a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer.
  • At least one of the positive electrode active material layer and the negative electrode active material layer is a layer composed of the solid electrolyte composition of the present invention (a layer formed using this composition), for example, a binder satisfying the above particle diameter ratio It contains resin particles, an inorganic solid electrolyte, an active material, and a conductive additive.
  • the all solid secondary battery of the present invention provided with this active material layer has a small electric resistance and can maintain excellent battery performance.
  • the above particle size ratio in the active material layer can be determined as follows. After the all solid secondary battery is disassembled and the active material layer is peeled off and taken out, the active material layer can be measured in the same manner as the above-mentioned solid electrolyte-containing sheet.
  • the positive electrode active material layer is the solid electrolyte composition of the present invention or the solid electrolyte of the present invention It is formed of a containing sheet. Both the positive electrode active material layer and the negative electrode active material layer can be formed of the solid electrolyte composition or the solid electrolyte containing sheet of the present invention.
  • Each of the positive electrode active material layer and the negative electrode active material layer formed of the solid electrolyte composition and the like of the present invention preferably contains each component, its content, and its particle size ratio, unless otherwise noted.
  • the solid electrolyte layer may generally be formed of a solid electrolyte composition or a sheet containing a solid electrolyte, which does not contain an active material and further a conductive aid.
  • a solid electrolyte composition composition for solid electrolyte layer formation
  • the thing which does not contain an active material and a conductive support agent among the solid electrolyte composition of this invention binder resin particle
  • the particle size ratio of the inorganic solid electrolyte to the inorganic solid electrolyte is not particularly limited), known solid electrolyte compositions, and the like.
  • the solid electrolyte layer is preferably the same as in the solid content of the solid electrolyte composition or the solid electrolyte-containing sheet, unless otherwise specified.
  • the thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited.
  • the thickness of each layer is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m, in consideration of the size of a general all-solid secondary battery.
  • the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is more preferably 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode active material layer and the negative electrode active material layer may each include a current collector on the side opposite to the solid electrolyte layer.
  • the all solid secondary battery of the present invention may be used as the all solid secondary battery as it is in the above-mentioned structure depending on the application, but in order to form a dry battery, it may be further enclosed in a suitable housing Is preferred.
  • the housing may be metallic or made of resin (plastic). When using a metallic thing, the thing made of aluminum alloy and stainless steel can be mentioned, for example.
  • the metallic casing is preferably divided into a casing on the positive electrode side and a casing on the negative electrode side, and is preferably electrically connected to the positive electrode current collector and the negative electrode current collector. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side be joined and integrated through a short circuit preventing gasket.
  • FIG. 1 is a cross-sectional view schematically showing an all solid secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all solid secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order as viewed from the negative electrode side. .
  • Each layer is in contact with each other and has a stacked structure. By adopting such a structure, at the time of charge, electrons (e ⁇ ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated there.
  • the solid electrolyte composition of the present invention can be preferably used as a molding material of an active material layer, particularly as a molding material of a positive electrode active material layer.
  • the solid electrolyte-containing sheet of the present invention is suitable as a negative electrode active material layer and a positive electrode active material layer.
  • the positive electrode active material layer and the negative electrode active material layer may be collectively referred to as an active material layer.
  • this all solid secondary battery When an all solid secondary battery having the layer configuration shown in FIG. 1 is placed in a 2032 coin case, this all solid secondary battery is referred to as an electrode sheet for all solid secondary batteries, and this electrode sheet for all solid secondary batteries is A battery manufactured by putting it in a 2032 type coin case may be called as an all solid secondary battery and called separately.
  • the all solid secondary battery 10 at least one of the positive electrode active material layer 4 and the negative electrode active material layer 2 is formed using the solid electrolyte composition of the present invention or the solid electrolyte containing sheet of the present invention.
  • the solid electrolyte layer 3 can be formed of the composition for forming a solid electrolyte layer.
  • the components contained in the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 may be the same as or different from each other.
  • the negative electrode active material layer can be a lithium metal layer.
  • a lithium metal layer the layer formed by depositing or shape
  • the thickness of the lithium metal layer can be, for example, 1 to 500 ⁇ m regardless of the thickness of the negative electrode active material layer.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
  • one or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • a current collector In addition to aluminum, aluminum alloy, stainless steel, nickel and titanium as materials for forming a positive electrode current collector, aluminum or stainless steel surface treated with carbon, nickel, titanium or silver (a thin film is formed are preferred, among which aluminum and aluminum alloys are more preferred.
  • materials for forming the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium etc., carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel Are preferred, with aluminum, copper, copper alloys and stainless steel being more preferred.
  • the shape of the current collector is usually in the form of a film sheet, but a net, a punch, a lath body, a porous body, a foam, a molded body of a fiber group and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. Further, it is also preferable to make the current collector surface uneven by surface treatment.
  • each layer of the negative electrode current collector is appropriately interposed or disposed between or outside each layer of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer and the positive electrode current collector.
  • Each layer may be composed of a single layer or multiple layers.
  • An all solid secondary battery can be manufactured by a conventional method. Specifically, an all solid secondary battery can be manufactured by forming each of the layers described above using the solid electrolyte composition and the like of the present invention. As a result, it is possible to manufacture an all-solid secondary battery having a low electrical resistance and capable of maintaining excellent battery performance. The details will be described below.
  • the all solid secondary battery of the present invention includes the step of applying the solid electrolyte composition of the present invention onto a substrate (for example, a metal foil serving as a current collector) to form a coating (film formation) It can manufacture via the method (manufacturing method of the solid electrolyte containing sheet
  • a solid electrolyte composition containing a positive electrode active material is applied as a positive electrode composition on a metal foil that is a positive electrode current collector to form a positive electrode active material layer, and a positive electrode sheet for an all solid secondary battery Make.
  • a composition for forming a solid electrolyte layer for forming a solid electrolyte layer is applied on the positive electrode active material layer to form a solid electrolyte layer.
  • the solid electrolyte composition containing a negative electrode active material is apply
  • each layer is reversed, a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to produce an all solid secondary battery.
  • Another method is as follows. That is, as described above, a positive electrode sheet for an all solid secondary battery is produced. Further, a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode composition on a metal foil that is a negative electrode current collector to form a negative electrode active material layer, and a negative electrode sheet for all solid secondary battery Make. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, on the solid electrolyte layer, the other of the all solid secondary battery positive electrode sheet and the all solid secondary battery negative electrode sheet is laminated such that the solid electrolyte layer and the active material layer are in contact with each other. In this way, an all solid secondary battery can be manufactured.
  • the following method may be mentioned. That is, as described above, a positive electrode sheet for an all solid secondary battery and a negative electrode sheet for an all solid secondary battery are produced. Moreover, separately from this, the composition for solid electrolyte layer formation is apply
  • An all solid secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for all solid secondary batteries, a negative electrode sheet for all solid secondary batteries, and a solid electrolyte-containing sheet for all solid secondary batteries are prepared. Subsequently, the solid electrolyte layer peeled off from the base material is laminated on the negative electrode sheet for the all solid secondary battery, and then the solid electrolyte layer is bonded to the above positive electrode sheet for the all solid secondary battery to manufacture the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for the all solid secondary battery, and can be bonded to the negative electrode sheet for the all solid secondary battery.
  • the coating method of the solid electrolyte composition, the composition for forming a solid electrolyte layer, and the like is not particularly limited, and can be appropriately selected.
  • application preferably wet application
  • spray application spin coating application
  • dip coating dip coating
  • slit application stripe application and bar coating application
  • the solid electrolyte composition or the like may be dried after being applied, or may be dried after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C. or more, more preferably 60 ° C. or more, and still more preferably 80 ° C. or more.
  • 300 degrees C or less is preferable, 250 degrees C or less is more preferable, and 200 degrees C or less is still more preferable.
  • the dispersion medium can be removed, and a solid state (coated dry layer) can be obtained.
  • the temperature is not excessively high and the members of the all solid secondary battery are not damaged. Thereby, in the all solid secondary battery, excellent overall performance can be exhibited, and good binding can be obtained.
  • the interface resistance between solid particles is small, and a coated dry layer in which solid particles are firmly bound can be formed.
  • the applied pressure is not particularly limited, and may be a pressure at which the above component, for example, the inorganic solid electrolyte impairs the particle shape.
  • the contact state and the binding state of the solid particles can be realized by forming a film of the solid electrolyte composition of the present invention, and even if pressure is subsequently applied, the state is not greatly impaired.
  • the pressure is preferably in the range of 50 to 1,500 MPa.
  • the applied solid electrolyte composition may be heated simultaneously with pressurization.
  • the heating temperature is not particularly limited, and generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be performed in a state in which the coating solvent or dispersion medium is dried in advance, or may be performed in a state in which the coating solvent or dispersion medium remains.
  • each composition may be simultaneously apply
  • the atmosphere during pressurization is not particularly limited, and may be under air, under dry air (dew point ⁇ 20 ° C. or less), under inert gas (eg, argon gas, helium gas, nitrogen gas).
  • the pressing time may be high pressure for a short time (for example, within several hours), or may be medium pressure for a long time (one day or more).
  • a restraint (screw tightening pressure or the like) of the all-solid secondary battery can also be used to keep applying medium pressure.
  • the pressing pressure may be uniform or different with respect to a pressure receiving portion such as a sheet surface.
  • the press pressure can be changed according to the area and film thickness of the pressure-receiving portion. It is also possible to change the same site in stages with different pressures.
  • the press surface may be smooth or roughened.
  • the all-solid secondary battery produced as described above is preferably subjected to initialization after production or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charge and discharge in a state where the press pressure is increased, and then releasing the pressure to the general working pressure of the all solid secondary battery.
  • the all solid secondary battery of the present invention can be applied to various applications.
  • the application mode is not particularly limited, for example, when installed in an electronic device, a laptop computer, a pen input computer, a mobile computer, an e-book player, a mobile phone, a cordless handset, a pager, a handy terminal, a mobile fax, a mobile phone Examples include copying, portable printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini-discs, electric shavers, transceivers, electronic organizers, calculators, portable tape recorders, radios, backup power supplies, memory cards and the like.
  • Other consumer products include automobiles (electric cars, etc.), electric vehicles, motors, lighting equipment, toys, game machines, road conditioners, watches, strobes, cameras, medical devices (pace makers, hearing aids, shoulder machines, etc.), etc. . Furthermore, it can be used for various military and space applications. It can also be combined with a solar cell.
  • Example 1 In this example, a sulfide-based inorganic solid electrolyte was used as the inorganic solid electrolyte, and a composition for a positive electrode, a positive electrode sheet for an all solid secondary battery, and an all solid secondary battery were respectively prepared or manufactured, and their characteristics were evaluated. . 1.
  • Binder Resin Particle Dispersion ⁇ Synthesis of Binder Resin Particle B-1 (Preparation of Binder Resin Particle B-1 Dispersion)> After adding 200 g of heptane to a 1 L three-necked flask equipped with a reflux condenser and a gas inlet cock and introducing nitrogen gas for 10 minutes at a flow rate of 200 mL / min, the temperature was raised to 80.degree.
  • the obtained solution was diluted with heptane to obtain a dispersion liquid of binder resin particles B-1 which is particles made of an acrylic resin.
  • the macromonomer AB-6 is a polybutyl acrylate (number average molecular weight: 6000) in which the terminal functional group is a methacryloyl group.
  • Binder Resin Particles B-2 (Preparation of Binder Resin Particles B-2 Dispersion)>
  • terminal diol polymethacrylate dodecyl methacrylate was synthesized. Specifically, 20 mL of methyl ethyl ketone was charged into a 500 mL three-necked flask and heated to 75 ° C. under a nitrogen stream. On the other hand, 70 g of dodecyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) and 110 g of methyl ethyl ketone were charged in a 500 mL graduated cylinder and stirred for 10 minutes.
  • the obtained polymer solution was concentrated under reduced pressure and methyl ethyl ketone was distilled off, and then the solid was dissolved in heptane to obtain 292 g of a 25% by mass solution of terminal diol modified polydodecyl dodecyl methacrylate in heptane.
  • the weight average molecular weight of the obtained polymer was 3200.
  • polyurea colloidal particles MM-1 were synthesized. Specifically, 260 g of a heptane solution of 25% by mass of terminal diol modified polydodecyl polydodecyl methacrylate was added to a 1 L three-necked flask and diluted with 110 g of heptane. To this, 11.1 g of isophorone diisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.1 g of Neostan U-600 (trade name, manufactured by Nitto Kasei Co., Ltd.) were added, and heated and stirred at 75 ° C. for 5 hours.
  • isophorone diisocyanate manufactured by Wako Pure Chemical Industries, Ltd.
  • Neostan U-600 trade name, manufactured by Nitto Kasei Co., Ltd.
  • a polyurethane resin was synthesized using polyurea colloid particles MM-3. Specifically, 3.2 g of m-phenylene diisocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.) and 8.0 g of polyethylene glycol (weight average molecular weight 400, manufactured by Aldrich) were added to a 50 mL sample bottle. To this, 60.0 g of a 15% by mass heptane solution of polyurea colloidal particles MM-1 was added, and the mixture was dispersed by a homogenizer for 30 minutes while warming at 50.degree. During this time, the mixture liquid was micronized to form a light orange slurry.
  • m-phenylene diisocyanate manufactured by Tokyo Chemical Industry Co., Ltd.
  • polyethylene glycol weight average molecular weight 400, manufactured by Aldrich
  • the obtained slurry is charged into a 200 mL three-necked flask preheated to a temperature of 80 ° C., 0.1 g of Neostan U-600 (trade name, manufactured by Nitto Kasei Co., Ltd.) is added, and the temperature is 80 ° C. Heated and stirred for time.
  • the slurry became a white emulsion. From this, it was estimated that the binder resin particle which consists of polyurethane resin was formed.
  • the white emulsion-like slurry was cooled to obtain a heptane dispersion of binder resin particles B-2 comprising a polyurethane resin.
  • Binder Resin Particles B-3 Dispersion> Particles of a fluorine-containing resin (polytetrafluoroethylene) (Microdispers-200 (trade name), manufactured by Polyscience Corporation) were dispersed in heptane as a dispersion medium to prepare a dispersion of binder resin particles B-3.
  • a fluorine-containing resin polytetrafluoroethylene
  • Microdispers-200 trade name
  • nonyl phenoxy polyethylene glycol acrylate (Funkyl FA-314A (trade name), functional acrylate, manufactured by Hitachi Chemical Co., Ltd.)
  • 100 parts by mass of styrene 800 parts by mass of ion exchange water, 10 parts by mass of azobisbutyronitrile as a polymerization initiator was added, mixed thoroughly, and polymerized at 80 ° C. for 4 hours.
  • the reaction solution was cooled to stop the polymerization reaction.
  • 15000 parts by mass of decalin was added to the obtained dispersion and dried under reduced pressure to remove water, thereby obtaining a latex of binder resin particles BC-1.
  • the average particle diameter D B of the binder resin particles and the weight average molecular weight of the polymer forming the binder resin particles were measured for each of the obtained binder resin particle dispersions by the above-mentioned method. The results are shown in Table 1.
  • lithium sulfide Li 2 S, manufactured by Aldrich, purity> 99.98%) 2.42 g, phosphorus pentasulfide (P 2 S) in a glove box under an argon atmosphere (dew point ⁇ 70 ° C.) (5 , manufactured by Aldrich, purity> 99%) 3.90 g of each was weighed, put into a mortar made of agate, and mixed for 5 minutes using a pestle made of agate.
  • Li-P-S type glass with an average particle size DSE of 35 ⁇ m- Lithium sulfide (Li 2 S, manufactured by Aldrich, purity> 99.98%) 2.42 g, phosphorus pentasulfide (P 2 S 5 , manufactured by Aldrich) in a glove box under an argon atmosphere (dew point -70 ° C.) (Purity> 99%) 3.90 g of each was weighed, put into a mortar made of agate, and mixed for 5 minutes using a pestle made of agate. The mixing ratio of Li 2 S and P 2 S 5 was Li 2 S: P 2 S 5 75: 25 in molar ratio.
  • the average particle size of the synthesized sulfide-based inorganic solid electrolyte was adjusted as follows. -Average particle size D SE 2 ⁇ m LPS- The zirconia 45mL container (manufactured by Fritsch), was charged 180 zirconia beads having a diameter of 5 mm, performed synthesized D SE at above 20 ⁇ m of LPS5g, and dispersed for 3 hours to butyl butyrate 16.0g charged and at 500 rpm, By drying under nitrogen at 150 ° C. for 4 hours, LPS having an average particle diameter D SE of 2 ⁇ m was obtained.
  • composition S-1 for forming solid electrolyte layer Preparation of composition S-1 for forming solid electrolyte layer>
  • the zirconia 45mL container manufactured by Fritsch
  • dispersion of the binder resin particles B-1 (as solid mass 0.15 g) and 16.0 g of heptane were charged. Thereafter, this container was set in a Fritsch planetary ball mill P-7 (trade name), and mixing was continued for 10 minutes at a temperature of 25 ° C. and a rotation number of 150 rpm to obtain a composition S-1 for forming a solid electrolyte layer .
  • composition for positive electrode ⁇ Preparation of composition U-1 for positive electrode> -Preparation of vapor grown carbon fiber (VGCF) dispersion- 180 pieces of zirconia beads with a diameter of 5 mm are put into a 45 mL container made of zirconia (manufactured by Fritsch), 27 g of butyl butyrate and 3 g of VGCF (VGCF-H (trade name), manufactured by Showa Denko) are added to make a planet made by Fritsch set the container to the ball mill P-7 (trade name), 25 ° C., and mixing continued for 120 minutes at a rotation speed of 500 rpm, the average particle diameter D CA by the measuring method to obtain a dispersion of 0.6 ⁇ m of VGCF.
  • VGCF-H trade name
  • Fritsch vapor grown carbon fiber
  • composition U-1 for positive electrode- The zirconia 45mL container (manufactured by Fritsch), 0.2 g was charged 180 zirconia beads having a diameter of 5 mm, D SE is a 2 ⁇ m of LPS 2.8 g, dispersion of the binder resin particles B-1 (as solid mass Amount), and 22 g of heptane were added.
  • This container was set in a Fritsch planetary ball mill P-7 (trade name) and stirred at 25 ° C. for 10 minutes at a rotational speed of 150 rpm.
  • the dispersion of the VGCF (amount of solid weight is 0.1 g) was added, the average particle diameter D CA by LiNi 1/3 Co 1/3 Mn 1/3 O 2 (the measurement method as an active material: 4 ⁇ m, specific surface area S AM : 0.1 m 2 / g) 6.9 g is charged, and similarly, the container is set in a planetary ball mill P-7, and mixing is continued for 5 minutes at 25 ° C. and 100 rpm rotation speed.
  • Composition U-1 was prepared.
  • composition U-2 for positive electrode- The zirconia 45mL container (manufactured by Fritsch), was charged 180 zirconia beads having a diameter of 5 mm, D SE is the LPS of 2 [mu] m 2.8 g, dispersion of the binder resin particles B-1 (solid content mass 0.2g Amount), and 22 g of heptane were added.
  • This container was set in a Fritsch planetary ball mill P-7 (trade name) and stirred at 25 ° C. for 10 minutes at a rotational speed of 150 rpm.
  • composition U-3 for Positive Electrode The preparation of composition U-2 for the positive electrode is the same as the preparation of composition U-2 for the positive electrode, except that the dispersion of binder resin particles B-2 is used instead of the dispersion of binder resin particles B-1. Then, a composition for positive electrode U-3 was prepared.
  • composition U-4 for Positive Electrode In the preparation of the positive electrode composition U-2, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (average particle by the above measurement method diameter D CA: 4 [mu] m, a specific surface area S AM: 0.1m 2 / g) LiNi 1/3 Co 1/3 Mn 1/3 O 2 in place of (the measuring method average particle diameter D CA by: 12 [mu] m, a specific surface area S AM: 0.05m 2 / g) except for using the positive electrode In the same manner as in the preparation of the composition U-2, a composition for positive electrode U-4 was prepared.
  • composition U-5 for Positive Electrode 180 pieces of zirconia beads with a diameter of 5 mm are put into a 45 mL container made of zirconia (manufactured by Fritsch), 2.8 g of LPS with 18 ⁇ m D SE and a dispersion liquid of binder resin particles B-1 (0.2 g as solid content) ), Dispersion liquid of acetylene black (0.1 g as solid content), 22 g of heptane, and LiNi 1/3 Co 1/3 Mn 1/3 O 2 as an active material (average particle diameter D by the above measuring method) CA : 4 ⁇ m, specific surface area S AM : 0.1 m 2 / g) 6.9 g is charged, and similarly, the container is set in a Fritsch planetary ball mill P-7 (trade name), and the rotation speed is 25 ° C. The mixing was continued for 5 minutes at 100 rpm to prepare a composition for positive electrode U-5.
  • the acetylene black used is obtained by subjecting acetylene black (Denka Black (trade name), manufactured by Denka Co., Ltd.) to the following treatment to adjust the average particle diameter DCA to 10 ⁇ m.
  • composition U-7 for positive electrode A composition for positive electrode U-7 was prepared in the same manner as the preparation of the composition for positive electrode U-2, except that butyl butyrate was used instead of heptane in the preparation of the composition for positive electrode U-2.
  • composition U-8 for Positive Electrode In preparation of composition U-2 for positive electrodes, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (average particle diameter DCA : 4 ⁇ m, specific surface area S AM : 0.1 m 2 / g) is substituted for LiNi. 1/3 Co 1/3 Mn 1/3 O 2 (average particle size according to the measuring method D CA: 5 [mu] m, a specific surface area S AM: 0.5m 2 / g) except for using the positive electrode composition U Composition for positive electrode U-8 was prepared in the same manner as in the preparation of -2.
  • composition U-9 for positive electrode Preparation of composition U-2 for a positive electrode, except that the dispersion liquid of binder resin particles B-3 described above was used instead of the dispersion liquid of binder resin particles B-1 in the preparation of composition U-2 for a positive electrode In the same manner as in the above, a composition for positive electrode U-9 was prepared.
  • composition U-10 for positive electrode The zirconia 45mL container (manufactured by Fritsch), 0.2 g was charged 180 zirconia beads having a diameter of 5 mm, D SE is a 2 ⁇ m of LPS 2.8 g, dispersion of the binder resin particles B-1 (as solid mass Amount), and 22 g of heptane were added.
  • This container was set in a Fritsch planetary ball mill P-7 (trade name), and stirred at 25 ° C. for 15 minutes at a rotation speed of 150 rpm.
  • the acetylene black used is obtained by subjecting acetylene black (Denka Black (trade name), manufactured by Denka Co., Ltd.) to the following treatment to adjust the average particle diameter DCA to 3 ⁇ m.
  • composition V-1 for a positive electrode for comparison The zirconia 45mL container (manufactured by Fritsch), was charged 180 zirconia beads having a diameter of 5 mm, D SE is the LPS of 5 [mu] m 2.8 g, the binder resin particles BC-1 latex (solid content mass 0.2g Amount) and 22 g of decalin were added.
  • This container was set in a Fritsch planetary ball mill P-7 (trade name), and the mixture was stirred at 25 ° C. and a rotation speed of 300 rpm for 1 hour.
  • acetylene black (Denka Black (trade name), Denka Co., Ltd.) was added 0.1 g, average particle diameter D CA by LiNi 1/3 Co 1/3 Mn 1/3 O 2 (the measurement method as an active material: 11.5 ⁇ m, specific surface area S AM : 0.5 m 2 / g) 6.9 g is charged, and similarly, the container is set in a planetary ball mill P-7, and mixing is continued for 5 minutes at 25 ° C., rotation speed 100 rpm The composition for positive electrode V-1 was prepared.
  • composition V-2 for a positive electrode for comparison The zirconia 45mL container (manufactured by Fritsch), the average particle diameter is turned by 180 zirconia beads having a diameter of 5 mm, D SE is the LPS of 5 [mu] m 2.8 g, by particles (the measurement method of the polytetrafluoroethylene (PTFT) : 40 ⁇ m) 0.2 g was added.
  • This container was set in a Fritsch planetary ball mill P-7 (trade name), and the mixture was stirred at 25 ° C. and a rotation speed of 200 rpm for 1 hour.
  • acetylene black (Denka Black (trade name), Denka Co., Ltd.) was added 0.1 g, average particle diameter D CA by LiNi 1/3 Co 1/3 Mn 1/3 O 2 (the measurement method as an active material: 6.9 g of 10.0 ⁇ m, specific surface area S AM : 0.45 m 2 / g) is charged, and similarly, the container is set in a planetary ball mill P-7, and mixing is continued for 5 minutes at 25 ° C., rotation speed 100 rpm
  • the composition for positive electrode V-2 was prepared.
  • compositions V-3 and V-4 for positive electrode for comparison Except that in the preparation of composition U-2 for the positive electrode, the composition shown in Table 1 was changed, the compositions V-3 and V-4 for the positive electrode were respectively prepared in the same manner as the preparation of the composition U-2 for the positive electrode. Prepared.
  • composition V-5 for positive electrode for comparison In preparation of composition U-2 for positive electrode, D SE was replaced with LPS of 2 ⁇ m, and LPS of 35 ⁇ m D SE synthesized as described above was used except that LPS of 35 ⁇ m was used. In the same manner as in the preparation, a composition for positive electrode V-5 was prepared.
  • the particle size ratio of the binder resin particles, the inorganic solid electrolyte, the active material and the conductive additive is equal to the particle size ratio in the solid electrolyte composition U-1. Met.
  • the sheet S-1 for a solid electrolyte layer prepared as described above is stacked on the obtained positive electrode active material layer so that the solid electrolyte layer is in contact with the positive electrode active material layer, and a pressing machine is used at 25.degree.
  • a pressing machine is used at 25.degree.
  • the positive electrode sheets PS-2 to PS-10 and PV-1 to PV-5 for all solid secondary batteries before forming the solid electrolyte layer are respectively binder resin particles, inorganic solid electrolyte, active material, and conductive aid
  • the particle size ratio of the solid electrolyte compositions U-2 to U-10 and V-1 to V-5 was equal to that of the solid electrolyte composition.
  • the prepared positive electrode sheet PS-1 for all solid secondary batteries (the aluminum foil of the sheet S-1 for the solid electrolyte layer has been peeled off) is cut into a disc having a diameter of 14.5 mm, and as shown in FIG.
  • a lithium foil (negative electrode active material layer) cut out in a disk shape of 14 mm in diameter was stacked on the solid electrolyte layer.
  • the all-solid-state secondary battery 201 manufactured in this manner has the layer configuration shown in FIG.
  • the all-solid-state secondary battery 201 was manufactured in the same manner as the all-solid-state secondary battery 201 except that the all-solid-state secondary battery positive electrode sheet shown in Table 2 was used instead of the all-solid secondary battery All solid secondary batteries 202 to 210 and c21 to c25 were manufactured in the same manner as the manufacturing.
  • the particle ratio of the binder resin particles, the inorganic solid electrolyte, the active material, and the conductive additive is respectively the solid electrolyte composition U-
  • the particle size ratio was 1 to U-10 and V-1 to V-5.
  • ⁇ Evaluation 1 Dispersibility> The dispersibility (dispersion stability) of the solid particles was evaluated for the positive electrode compositions U-1 to U-10, V-1 and P-3 to V-5. Since the composition for positive electrode V-2 is a powder mixture, the dispersibility is not evaluated.
  • Each positive electrode composition was added to a glass test tube having a diameter of 10 mm and a height of 15 cm to a height of 10 cm and allowed to stand at 25 ° C. for 2 hours, and then the height of the separated supernatant was visually confirmed and measured. Ratio of height of supernatant to total amount (height 10 cm) of composition for positive electrode: Height of supernatant / height of total amount was determined.
  • the dispersibility of the composition for positive electrodes was evaluated by whether this ratio is included in any of the following evaluation ranks.
  • the total amount refers to the total amount of the positive electrode composition (slurry) added to the glass test tube, and the supernatant is formed by the solid components of the positive electrode composition settling out (solid-liquid separated) Supernatant fluid.
  • the smaller the above ratio the better the dispersibility, and the evaluation rank “5” or more is a pass.
  • ⁇ Evaluation 3 Resistance> The resistances of all solid secondary batteries 201 to 210 and c21 to c25 were measured to evaluate the level of the resistance. The resistance of each all solid secondary battery was evaluated by a charge / discharge evaluation device: TOSCAT-3000 (trade name, manufactured by Toyo System Co., Ltd.). Charging was performed at a current density of 0.1 mA / cm 2 until the battery voltage reached 4.2 V. Discharge was performed at a current density of 0.2 mA / cm 2 until the battery voltage reached 2.5 V.
  • the one charge and the one discharge were repeated as one charge / discharge cycle to perform three cycles of charge / discharge, and the battery voltage after 5 mAh / g (amount of electricity per 1 g of active material mass) discharge was read in the third cycle.
  • the resistance of the all solid secondary battery was evaluated based on which of the following evaluation ranks the battery voltage is included in. The higher the battery voltage, the lower the resistance. In this test, evaluation rank "5" or more is a pass.
  • ⁇ Evaluation 4 Discharge capacity retention rate (cycle characteristics)> The discharge capacity retention ratio was measured for all solid secondary batteries 201 to 210 and c21 to c25 to evaluate cycle characteristics.
  • the discharge capacity retention rate of each all solid secondary battery was measured by a charge / discharge evaluation device: TOSCAT-3000 (trade name, manufactured by Toyo System Co., Ltd.). Charging was performed at a current density of 0.1 mA / cm 2 until the battery voltage reached 3.6 V. Discharge was performed at a current density of 0.1 mA / cm 2 until the battery voltage reached 2.5 V. Three cycles of charge and discharge were repeated with one charge and one discharge as one charge and discharge cycle to initialize the all solid secondary battery.
  • the discharge capacity (initial discharge capacity) of the first cycle of charge and discharge after initialization is 100%
  • the number of charge and discharge cycles when the discharge capacity retention rate (discharge capacity with respect to the initial discharge capacity) reaches 80% The cycle characteristics were evaluated according to which of the following evaluation ranks. In the present test, the discharge capacity retention rate passes the evaluation rank “5” or more.
  • the initial discharge capacities of all the solid secondary batteries 201 to 210 were all sufficient to function as the all solid secondary battery.
  • -Evaluation rank of discharge capacity maintenance rate- 8 500 cycles or more 7: 300 cycles or more, less than 500 cycles 6: 200 cycles or more, less than 300 cycles 5: 150 cycles or more, less than 200 cycles 4: 80 cycles or more, less than 150 cycles 3: 40 cycles or more, less than 80 cycles 2: More than 20 cycles, less than 40 cycles 1: Less than 20 cycles
  • the composition for positive electrode V-1 which is not suitable, does not have sufficient dispersibility of solid particles in the composition for positive electrode, and the binding property of solid particles in the solid electrolyte-containing sheet is not strong either.
  • the composition for positive electrode V-2 is a powder mixture.
  • the composition for a positive electrode V-3 not containing a conductive auxiliary has insufficient dispersibility of solid particles in the composition for a positive electrode, and the binding property of solid particles in the solid electrolyte-containing sheet is not strong either. .
  • positive electrode compositions V-4 and V-5 in which the particle size ratio of the inorganic solid electrolyte or the active material does not satisfy the conditions specified in the present invention have sufficient dispersibility of solid particles in the positive electrode composition. is not. Therefore, all solid secondary batteries c21 to c25 provided with the positive electrode active material layer formed of these positive electrode compositions all have high battery resistance (high interfacial resistance between solid particles), and a discharge capacity retention ratio However, repeated charge and discharge degrades the battery performance.
  • positive electrode compositions U-1 to U in which a specific binder resin particle, an inorganic solid electrolyte, an active material, and a conductive support agent are dispersed in a dispersant satisfying the particle size ratio specified in the present invention.
  • the dispersibility of the solid particles is high, and the solid particles in the positive electrode sheet for all solid secondary batteries are firmly bound. Therefore, all the solid secondary batteries 201 to 210 provided with the positive electrode active material layer formed of these positive electrode compositions have low battery resistance (an increase in interfacial resistance between solid particles can be suppressed), and The discharge capacity retention rate is also high, and excellent battery performance is maintained even if charge and discharge are repeated.
  • Example 2 In this example, using an oxide-based inorganic solid electrolyte as the inorganic solid electrolyte, the composition for the positive electrode, the positive electrode sheet for the all solid secondary battery, and the all solid secondary battery were each prepared or manufactured, and the characteristics were evaluated. .
  • Example 1 except that instead of the sulfide-based inorganic solid electrolyte Li—P—S glass synthesized in Example 1, an oxide-based inorganic solid electrolyte Li 0.33 La 0.55 TiO 3 (LLT) was used.
  • LLT oxide-based inorganic solid electrolyte Li 0.33 La 0.55 TiO 3
  • Example 1 The dispersibility of the obtained composition for a positive electrode, the binding property of the positive electrode sheet for an all solid secondary battery, and the resistance and the discharge capacity retention ratio of the all solid secondary battery were evaluated in the same manner as Example 1.
  • an oxide-based inorganic solid electrolyte is used as the inorganic solid electrolyte, it is assumed that the specific binder resin particles, the inorganic solid electrolyte, the active material, and the conductive additive satisfy the particle size ratio specified in the present invention.
  • Example 1 using a sulfide-based inorganic solid electrolyte it was found to exhibit excellent characteristics.
  • Example 3 In this example, using the negative electrode active material as the active material, the composition for the negative electrode, the negative electrode sheet for the all solid secondary battery and the all solid secondary battery were respectively prepared or manufactured, and the characteristics were evaluated.
  • a composition for a negative electrode is prepared in the same manner as in Example 1 except that Li 4 Ti 5 O 12 (LTO) is used in place of NMC in Example 1, and a negative electrode sheet for all solid secondary battery is prepared. It produced and also manufactured the all-solid-state secondary battery.
  • the dispersibility of the obtained composition for a negative electrode, the binding property of a negative electrode sheet for an all solid secondary battery, and the resistance and the discharge capacity retention ratio of the all solid secondary battery were evaluated in the same manner as Example 1.
  • the positive electrode active material As in Example 1 using the above, it was found that excellent properties were exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

特定の分子量を持つバインダー樹脂粒子と無機固体電解質と活物質と導電助剤と分散媒とを含有し、バインダー樹脂粒子の平均粒径DB、無機固体電解質の平均粒径DSE、活物質の平均粒径DAM及び導電助剤の平均粒径DCAが粒径比DB:DSE:DAM:DCA=1:1~100:2~200:0.01~100を満足する固体電解質組成物、この固体電解質組成物を用いた固体電解質含有シート及び全固体二次電池、並びに、これらの製造方法。

Description

固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
 本発明は、固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法に関する。
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電又は過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性の更なる向上が求められている。
 このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質及び正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。更に、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車又は大型蓄電池等への応用が期待されている。
 このような全固体二次電池において、負極活物質層、固体電解質層又は正極活物質層を形成する材料として、無機固体電解質、活物質及びバインダー(結着剤)等を含有する材料が、提案されている。
 このような材料としては、各成分を分散媒に分散させた分散物(特許文献1~3)、又は、分散媒を用いずに各成分を固体状で混合した粉末混合物(特許文献4及び5)が挙げられる。具体的には、特許文献1には、無機固体電解質、特定の平均粒径を有するコアシェル型の粒子状ポリマーからなる結着剤、正極活物質及び導電助剤を含有する正極活物質スラリーが記載されている。特許文献2及び3には、無機固体電解質、粒子状ポリマー、活物質、導電助剤及び分散媒を含有する固体電解質組成物が記載されている。
国際公開第2012/173089号 特開2016-149238号公報 特開2016-181472号公報 特開2012-227107号公報 特開2012-99315号公報
 全固体二次電池の活物質層は、通常、無機固体電解質、活物質、バインダー樹脂粒子等の固体粒子で形成されるため、固体粒子同士、例えば活物質と無機固体電解質との界面接触が十分ではなく、界面抵抗が高くなる。一方、固体粒子同士の結着性が弱いと、活物質層が集電体から剥がれやすく、また、リチウムイオンの放出吸収に伴う活物質層の収縮膨張による固体粒子同士、特に活物質と無機固体電解質との接触不良が起こり、電池性能を維持できなくなる。
 本発明は、全固体二次電池の活物質層を構成する材料として用いることにより、得られる全固体二次電池において、固体粒子間の界面抵抗の上昇を抑えることができ、しかも強固な結着性をも実現できる固体電解質組成物を提供することを課題とする。また、本発明は、この固体電解質組成物を用いた、固体電解質含有シート及び全固体二次電池、並びに、これらの製造方法を提供することを課題とする。
 本発明者は、種々検討を重ねた結果、特定の高分子量のバインダー(樹脂)粒子と無機固体電解質と活物質と導電助剤とを特定の粒径比を満たす組み合わせで分散媒に分散させることにより、得られる固体電解質組成物が高い分散性を示すこと、を見出した。更に、この固体電解質組成物を全固体二次電池の活物質層の構成材料として用いることにより、固体粒子間の界面抵抗を抑制しつつ、固体粒子を強固に結着させた活物質層を形成でき、全固体二次電池に優れた電池性能を付与できること、を見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>重量平均分子量5000以上の高分子からなるバインダー樹脂粒子と、周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有する無機固体電解質と、周期律表第一族若しくは第二族に属する金属のイオンの挿入放出が可能な活物質と、導電助剤と、分散媒とを含有し、
 バインダー樹脂粒子、無機固体電解質、活物質及び導電助剤が下記粒径比を満足する、固体電解質組成物。
 バインダー樹脂粒子の平均粒径D:無機固体電解質の平均粒径DSE:活物質の平均粒径DAM:導電助剤の平均粒径DCA=1:1~100:2~200:0.01~100
<2>バインダー樹脂粒子の平均粒径Dが0.005μm以上1μm以下である<1>に記載の固体電解質組成物。
<3>無機固体電解質の平均粒径DSEが0.2μm以上4μm以下である<1>又は<2>に記載の固体電解質組成物。
<4>活物質の平均粒径DAMが1μm以上5μm以下である<1>~<3>のいずれか1つに記載の固体電解質組成物。
<5>導電助剤の平均粒径DCAが0.01μm以上0.5μm以下である<1>~<4>のいずれか1つに記載の固体電解質組成物。
<6>分散媒が、エステル化合物溶媒、ケトン化合物溶媒、アミン化合物溶媒のいずれか1つを含有する<1>~<5>のいずれか1つに記載の固体電解質組成物。
<7>バインダー樹脂粒子がアクリル樹脂又はポリウレタン樹脂の粒子である<1>~<6>のいずれか1つに記載の固体電解質組成物。
<8>活物質の平均粒径DAMと活物質の比表面積SAMとの積が2cm/g未満である<1>~<7>いずれか1つに記載の固体電解質組成物。
<9><1>~<8>のいずれか1つに記載の固体電解質組成物で構成した層を有する固体電解質含有シート。
<10>重量平均分子量5000以上の高分子からなるバインダー樹脂粒子と、周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有する無機固体電解質と、周期律表第一族若しくは第二族に属する金属のイオンの挿入放出が可能な活物質と、導電助剤とを含有し、
 バインダー樹脂粒子、無機固体電解質、活物質及び導電助剤が下記粒径比を満足する固体電解質含有シート。
 バインダー樹脂粒子の平均粒径D:無機固体電解質の平均粒径DSE:活物質の平均粒径DAM:導電助剤の平均粒径DCA=1:1~100:2~200:0.01~100
<11>正極活物質層と、負極活物質層と、正極活物質層及び負極活物質層の間の無機固体電解質層とを含む全固体二次電池であって、
 正極活物質層及び負極活物質層の少なくとも一方が、<1>~<8>のいずれか1つに記載の固体電解質組成物で構成した層である全固体二次電池。
<12>上記<1>~<8>のいずれか1つに記載の固体電解質組成物を製膜する工程を含む固体電解質含有シートの製造方法。
<13>上記<12>に記載の製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
 本発明の固体電解質組成物及び固体電解質含有シートは、それぞれ、全固体二次電池の活物質層の材料として用いられることにより、固体粒子間の界面抵抗の上昇を抑え、しかも固体粒子同士が強固に結着した活物質層を形成できる。また、本発明の全固体二次電池は、上記優れた特性を示す活物質層を備え、低抵抗であり、充放電を繰り返しても優れた電池性能を維持できる。更に、本発明の固体電解質含有シート及び全固体二次電池の製造方法は、上述の優れた特性を示す固体電解質含有シート及び全固体二次電池を製造することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 図2は実施例で作製した全固体二次電池(コイン電池)を模式的に示す縦断面図である。
 本発明の説明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[固体電解質組成物]
 本発明の固体電解質組成物は、重量平均分子量5000以上の高分子からなるバインダー樹脂粒子と、周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有する無機固体電解質と、周期律表第一族若しくは第二族に属する金属のイオンの挿入放出が可能な活物質と、導電助剤と、分散媒とを含有する。この固体電解質組成物において、バインダー樹脂粒子、無機固体電解質、活物質及び導電助剤は下記粒径比を満足している。
 バインダー樹脂粒子の平均粒径D:無機固体電解質の平均粒径DSE:活物質の平均粒径DAM:導電助剤の平均粒径DCA=1:1~100:2~200:0.01~100
 本発明の固体電解質組成物は、固体粒子としての、バインダー樹脂粒子、無機固体電解質、活物質及び導電助剤を、上記粒径比を満たす特定の組み合わせで含有する限り、分散剤との混合状態は特に制限されない。この固体電解質組成物は、少なくとも使用前若しくは使用時に、分散媒に分散されていることが好ましく、スラリーを形成していることがより好ましい。
 この固体電解質組成物は、活物質及び導電助剤を含有する点で、全固体二次電池の活物質層の形成に適したものであり、電極用組成物と称することもある。
 本発明の固体電解質組成物は、上記構成を有することにより、固体粒子間の結着性が高く、電気抵抗の上昇を抑えた活物質層を形成できる。
 全固体二次電池の活物質層は、固体粒子で形成されるため、固体粒子間の結着性を高め、界面抵抗を低減することが、電池性能の点で、重要である。電池性能の更なる向上には、活物質等を含有する活物質層に導電助剤を更に含有させて導電助剤からなる導電パスを構築する方法が効果的である。導電パスを構築するには、活物質層を形成する材料、又は活物質層の形成時に、分散媒又は層中に、活物質等だけでなく導電助剤を高度(均一)に分散させることが望ましい。しかし、固体粒子、とりわけ導電助剤は、粒径を小さくすると、高粘度化、再凝集による分散性の低下が起きる。
 このような状況の下、本発明は、単に導電助剤の粒径を小さくするのではなく、併用される他の固体粒子との関係において各固体粒子の粒径比を設定し、特定の分子量のバインダー樹脂粒子と無機固体電解質と活物質と導電助剤との固体粒子を特定の粒径比を満たす組み合わせで用いる。これにより、本発明の固体電解質組成物は、各固体粒子の沈降速度をコントロールでき、各固体粒子が分散媒に高度に分散したものとなる。
 そのため、この固体電解質組成物で形成した活物質層は、固体粒子同士の接触状態、導電パスの構築、及び固体粒子同士の結着状態がバランスよく改善され、その結果、導電パスを構築しつつも、固体粒子同士が強固な結着性で結着し、しかも固体粒子間の界面抵抗が小さくなると考えられる。このような優れた特性を示す活物質層を備えた全固体二次電池は、電気抵抗が小さく、充放電を繰り返しても優れた電池性能を維持できる。
 本発明の固体電解質組成物における固体粒子が満たすべき粒径比について説明する。
 本発明に用いるバインダー樹脂粒子、無機固体電解質、活物質及び導電助剤は、下記(粒径比)を満足する。
 
(粒径比)
:DSE:DAM:DCA
 =1:1~100:2~200:0.01~100
 
 上記粒径比において、Dはバインダー樹脂粒子の平均粒径を示し、DSEは無機固体電解質の平均粒径を示し、DAMは活物質の平均粒径を示し、DCAは導電助剤の平均粒径を示す。
 本発明の固体電解質組成物が含有する上記各粒子が上記粒径比を満足すると、上述のように、活物質層に、固体粒子間の高い結着性と界面抵抗の抑制とを付与でき、優れた電池性能を、充放電を繰り返しても維持できる全固体二次電池を製造できる。
 Dに対するDSEを上記範囲に設定することにより、各固体粒子の沈降速度をコントロールでき、各固体粒子を分散媒に高度に分散させることができる。また、無機固体電解質同士のイオン伝導度と、活物質に対する接触面積量(抵抗)とをバランスよく両立できる。例えば、Dに対するDSEが小さすぎると、無機固体電解質同士の界面量が多くなってイオン伝導度が低くなることがある。一方、このDSEが大きすぎると、沈降スピードが速くなり分散状態が悪化する。また活物質との接触面積が小さくなって抵抗が高くなることがある。
 Dに対するDAMを上記範囲に設定することにより、バインダーが活物質を必要以上に被覆しないため界面抵抗の上昇を抑制できるとともに、接触面積が一定以上確保できるため高い結着性を示す。例えば、Dに対するDAMが小さすぎると、活物質の表面積が大きくなりバインダー粒子数が相対的に少なくなり結着性が低下することがある。一方、Dに対するDAMが大きすぎると、バインダーが活物質を必要以上に被覆してしまい、抵抗が高くなることがある。
 Dに対するDCAを上記範囲に設定することにより、導電助剤等を分散媒に高度に分散させることができる。また、導電パスが十分形成でき、更に導電助剤がバインダーに必要以上に被覆されないため界面抵抗を低減できるとともに、接触面積が一定以上確保できるため高い結着性を示す。例えば、Dに対するDCAが小さすぎると、再凝集が起きてしまい、分散安定性が悪化するとともに、導電パスの形成が不十分となって抵抗が高くなることがある。一方、Dに対するDCAが大きすぎると、固体電解質組成物の流動性が低くなるとともに、均一性も低下して、電池使用時に劣化が早くなることがある。
 バインダー樹脂粒子の粒径に着目すると、活物質、無機固体電解質及び導電助剤に対するバインダー樹脂粒子の粒径を上記範囲に設定することにより、抵抗と結着性とを両立することができる。バインダー樹脂粒子の粒径が小さすぎると活物質又は無機固体電解質の表面を必要以上に被覆して抵抗が高くなることがある。一方、バインダー樹脂粒子の粒径が大きすぎると、活物質又は無機固体電解質の粒子間の結着性を向上させる粒子数が少なくなって結着性が悪くなることがある。
 本発明において、バインダー樹脂粒子、無機固体電解質、活物質及び導電助剤それぞれが上記粒径比を満足すると、各固体粒子についての粒径比の規定により奏される上記作用が協働して、固体粒子の分散性が改善され、固体粒子同士の接触状態と結着状態とをバランスよく両立させることができる。
 バインダー樹脂粒子、無機固体電解質、活物質及び導電助剤が満足する粒径比は、抵抗と結着性をより高い水準で両立できる点で、下記(粒径比1)が好ましく、下記(粒径比2)がより好ましく、下記(粒径比3)が更に好ましい。
 
(粒径比1)
 D:DSE:DAM:DCA
=1:3~50:5~100:0.05~20
(粒径比2)
 D:DSE:DAM:DCA
=1:5~30:10~80:0.1~10
(粒径比3)
 D:DSE:DAM:DCA
=1:11~30:21~60:0.5~5
 
 上記粒径比は、D、DSE、DAM及びDCAを組み合わせて規定しているが、本発明においては、(粒径比)、(粒径比1)~(粒径比3)における各成分の粒径を適宜に組み合わせて規定することができる。例えば、上記(粒径比)において、Dに対するDCAの粒径比として(粒径比3)の0.5~5を組み合わせて、D:DSE:DAM:DCA=1:1~100:2~200:0.5~5と規定することもできる。
 本発明の固体電解質組成物は、含水率(水分含有量ともいう。)が、50ppm以下であることが好ましく、20ppm以下であることがより好ましく、10ppm以下であることが更に好ましく、5ppm以下であることが特に好ましい。固体電解質組成物の含水率が少ないと、無機固体電解質の劣化を抑制することができる。含水量は、固体電解質組成物中に含有している水の量(固体電解質組成物に対する質量割合)を示し、具体的には、0.02μmのメンブレンフィルターでろ過し、カールフィッシャー滴定を用いて、求めることができる。
 以下、本発明の固体電解質組成物が含有する成分及び含有しうる成分について説明する。
<無機固体電解質>
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンが解離若しくは遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有するものであれば特に制限されず電子伝導性を有さないものが一般的である。
 本発明において、無機固体電解質は、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有する。無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は、(i)硫化物系無機固体電解質と、(ii)酸化物系無機固体電解質が代表例として挙げられ、高いイオン伝導度と粒子間界面接合の容易さの点で、硫化物系無機固体電解質が好ましい。
 本発明の全固体二次電池が全固体リチウムイオン二次電池である場合、無機固体電解質はリチウムイオンのイオン伝導度を有することが好ましい。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 硫化物系無機固体電解質としては、例えば、下記式(1)で示される組成を満たすリチウムイオン伝導性硫化物系無機固体電解質が挙げられる。
 
   La1b1c1d1e1 式(I)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合比を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に制限されないが、1×10-1S/cm以下であることが実際的である。
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LTO)、LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In、Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In、Snの少なくとも1種以上の元素でありxcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の平均粒径(体積平均粒子径)DSEは、上記粒径比を満足する限り、特に制限されない。平均粒径DSEは、イオン伝導度、更には加工性及び界面形成性の点で、下記上限及び下記下限を適宜に組み合わせた範囲に設定することが好ましい。平均粒径DSEの下限としては、0.01μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.3μm以上であることが更に好ましい。平均粒径DSEの上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましく、20μm以下であることが更に好ましく、4μm以下であることが特に好ましく、2μm以下であることが最も好ましい。
 無機固体電解質粒子の平均粒径DSEの測定は、以下の手順で行う。
 無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 無機固体電解質の、固体電解質組成物中の含有量は、特に制限されないが、活物質との合計含有量として、全固体二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮すると、固形成分100質量%において、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 本発明において、固形分(固形成分)とは、固体電解質組成物を、1mmHgの気圧下、窒素雰囲気下120℃で6時間乾燥処理したときに、揮発又は蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
<バインダー樹脂粒子>
 本発明の固体電解質組成物は、バインダー樹脂粒子を含有する。バインダー樹脂粒子は、各種の高分子からなる樹脂粒子であればよく、マクロモノマー成分を含有する高分子からなる樹脂粒子が好ましい。
 バインダー樹脂粒子は、全固体二次電池用の固体電解質組成物に通常用いられるバインダー樹脂からなる粒子であればよく、有機樹脂からなる樹脂粒子が挙げられる。
 バインダー樹脂粒子としては、例えば、以下に述べる有機樹脂からなるバインダー樹脂粒子が好ましい。
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
 (メタ)アクリル樹脂としては、各種の(メタ)アクリルモノマー、(メタ)アクリルアミドモノマー、及びこれらモノマーの2種以上の共重合体(好ましくは、アクリル酸とアクリル酸メチルとの共重合体)が挙げられる。
 また、その他のビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられる。本願明細書において、コポリマーは、統計コポリマー及び周期コポリマーのいずれでもよく、ブロックコポリマーが好ましい。
 その他の樹脂としては、例えば、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
 上記マクロモノマー成分を含有する高分子又は(メタ)アクリル樹脂として、例えば、特開2015-088486号公報に記載のポリマーからなるもの等を挙げられる。また、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂としては、例えば、特開2015-088480号公報に記載の、ウレタン結合を有するポリマー、ウレア結合を有するポリマー、アミド結合を有するポリマー、イミド結合を有するポリマーからなるもの等が挙げられる。
 上記の中でも、含フッ素樹脂、炭化水素系熱可塑性樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリカーボネート樹脂及びセルロース誘導体樹脂が好ましく、無機固体電解質との親和性が良好であり、また、樹脂自体の柔軟性が良好で、固体粒子とのより強固な結着性を示し得る点で、アクリル樹脂又はポリウレタン樹脂が特に好ましい。
 バインダー樹脂粒子、又はバインダー樹脂粒子を形成する高分子は、市販品を用いることができる。また、常法により調製することもできる。
 バインダー樹脂粒子の水分濃度は、100ppm(質量基準)以下が好ましい。
 バインダー樹脂粒子は、固体の状態で使用してもよいし、分散液若しくは溶液の状態で使用してもよい。
 バインダー樹脂粒子を形成する高分子の重量平均分子量は5,000以上である。重量平均分子量が5000以上の高分子(樹脂)からなるバインダー樹脂粒子を含有すると、バインダーの力学強度が改善し、固体電解質含有シートが高結着になる。
 高分子の重量平均分子量は、10,000以上が好ましく、30,000以上がより好ましい。上限としては、1,000,000以下が実質的であるが、200,000以下がより好ましく、100,000以下が更に好ましい。バインダー樹脂粒子は、上記範囲の重量平均分子量を有する高分子の架橋物からなる態様も好ましい。
 本発明において、バインダー樹脂粒子を形成する高分子の重量平均分子量については、特に断らない限り、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の重量平均分子量をいう。その測定法としては、基本として下記条件により測定した値とする。ただし、高分子の種類によっては適宜適切な溶離液選定して用いることができる。
(条件)
  カラム:TOSOH TSKgel Super HZM-H(商品名)、TOSOH TSKgel Super HZ4000(商品名)、TOSOH TSKgel Super HZ2000(商品名)をつないだカラムを用いる。
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0mL/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
 バインダー樹脂粒子は、粒子状であれば、その形状は特に制限されず、固体電解質組成物、固体電解質含有シート又は全固体二次電池中において、粒子であっても不定形状であってもよい。
 本発明において、バインダー樹脂粒子の平均粒径Dは、上記粒径比を満足する限り、特に制限されない。平均粒径Dは、固体粒子間のイオン伝導性と結着性との点で、下記上限及び下記下限を適宜に組み合わせた範囲に設定することが好ましい。平均粒径Dの下限としては、0.005μm以上であることが好ましく、0.1μm以上であることがより好ましい。平均粒径Dの上限としては、1μm以下であることが好ましく、0.5μm以下であることがより好ましい。バインダー樹脂粒子の平均粒径Dの測定は無機固体電解質の平均粒径DSEと同様の方法で行う。平均粒径Dが上記装置の測定限界以下の場合は、適宜バインダー樹脂粒子を乾固した後に、透過型電子顕微鏡(TEM)観察により測定した粒径とする。
 バインダー樹脂粒子は市販のものを使用してもよく、特開2016-139511公報に記載のバインダー樹脂粒子を好適に使用できる。
 本発明において、バインダー樹脂粒子は、分散媒に対して不溶の粒子であることが、固体電解質組成物の分散安定性の観点、及び、高いイオン伝導性を有する全固体二次電池を得られる観点から好ましい。ここで、「バインダー樹脂粒子が分散媒に対して不溶の粒子である」とは、30℃の分散媒に添加し、24時間静置しても、平均粒径Dが10%以上小径にならないことを意味し、5%以上小径にならないことが好ましく、1%以上小径にならないことがより好ましい。
 バインダー樹脂粒子の、固体電解質組成物中の含有量は、全固体二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮すると、固形成分100質量%中、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上が更に好ましい。上限としては、電池性能の観点から、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましい。
 本発明の固体電解質組成物において、バインダー樹脂粒子の質量に対する、無機固体電解質と活物質の合計質量(総量)の質量比[(無機固体電解質の質量+活物質の質量)/バインダー樹脂粒子の質量]は、1,000~1の範囲が好ましい。この比率は500~2がより好ましく、100~10が更に好ましい。
 バインダー樹脂粒子は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
<活物質>
 本発明の固体電解質組成物は、周期律表第一族若しくは第二族に属する金属元素のイオンの挿入放出が可能な活物質を含有する。活物質としては、正極活物質及び負極活物質が挙げられる。
 活物質の形状は、特に制限されないが、粒子状が好ましい。また、活物質の体積平均粒子径(球換算平均粒子径)DAMは、上記粒径比を満足する限り、特に制限されない。平均粒径DAMは、分散性向上、固体粒子間の接触面積向上、界面反応性低減の点で、下記上限及び下記下限を適宜に組み合わせた範囲に設定することが好ましい。平均粒径DAMの下限としては、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることが特に好ましい。平均粒径DAMの上限としては、20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることが特に好ましい。活物質の平均粒径DAMの測定は無機固体電解質の平均粒径DSEと同様の方法で行う。平均粒径DAMが上記装置の測定限界以下の場合は、適宜活物質を乾固した後に、透過型電子顕微鏡(TEM)観察により測定した粒径とする。
 活物質の比表面積SAMは、特に制限されないが、0.001m/g以上であることが好ましく、0.01m/g以上であることがより好ましく、0.1m/g以上であることが特に好ましい。上限としては、100m/g以下であることが好ましく、1m/g以下であることがより好ましく、0.4m/g以下であることが特に好ましい。活物質の比表面積は、比表面積測定装置BELSORP-mini(商品名、マイクロトラック・ベル社製)を用いて測定することができる。本発明において、比表面積SAMは、上記上限及び下限を適宜に組み合わせた範囲に設定することができる。活物質が上記範囲の比表面積SAMを有すると、固体粒子間の接触面積と結着性とを両立させることができる。
 活物質は、上記平均粒径DAM(μm)と上記比表面積SAM(m/g)との積:DAM×SAMが、2cm/g未満であることが好ましい。この積:DAM×SAMが、2cm/g未満であると、活物質の表面が平坦になって、無機固体電解質との反応を効果的に抑制することができる。積:DAM×SAMは、0.01cm/g以上2cm/g未満であることが好ましく、0.1~1cm/gであることがより好ましく、0.2~0.5cm/gであることが更に好ましい。
 活物質としては、正極活物質及び負極活物質が挙げられ、正極活物質である金属酸化物(好ましくは遷移金属酸化物)、又は、負極活物質である金属酸化物若しくはSn、Si、Al及びIn等のリチウムと合金形成可能な金属が好ましい。
 本発明において、活物質(正極活物質又は負極活物質)を含有する固体電解質組成物を、電極用組成物(正極用組成物又は負極用組成物)ということがある。
(正極活物質)
 正極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、又は、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P又はBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO及びLiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
 正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 正極活物質の、固体電解質組成物中における含有量は、特に制限されず、固形分100質量%において、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量が更に好ましく、55~80質量%が特に好ましい。
(負極活物質)
 負極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体及びリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、Al及びIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵及び放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb及びBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、並びにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb及びSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 負極活物質を所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル及び旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も適宜行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを適宜用いることができる。分級は乾式及び湿式ともに用いることができる。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 負極活物質の、固体電解質組成物中における含有量は、特に制限されず、固形分100質量%において、10~80質量%であることが好ましく、20~80質量%がより好ましい。
 - 活物質の表面被覆 -
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
<導電助剤>
 本発明の固体電解質組成物は、導電助剤を含有する。導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いてもよい。
 本発明において、活物質と導電助剤とを併用する場合、上記の導電助剤のうち、電池を充放電した際にLiの挿入と放出が起きず、活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に活物質層中において活物質として機能しうるものは、導電助剤ではなく活物質に分類する。電池を充放電した際に活物質として機能するか否かは、一義的ではなく、活物質との組み合わせにより決定される。
 導電助剤は、1種を用いてもよいし、2種以上を用いてもよい。
 中でも、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類が好ましい。
 導電助剤の平均粒径(体積平均粒子径)DCAは、上記粒径比を満足する限り、特に制限されない。平均粒径DCAは、導電パスの形成、固体電解質組成物の分散性の点で、下記上限及び下記下限を適宜に組み合わせた範囲に設定することが好ましい。平均粒径DCAの下限としては、0.001μm以上であることが好ましく、0.01μm以上であることがより好ましく、0.05μm以上であることが更に好ましく、0.1μm以上であることが特に好ましい。上限としては、20μm以下であることが好ましく、5μm以下であることがより好ましく、3μm以下であることが更に好ましく、2μm以下であることが特に好ましく、0.5μm以下であることが最も好ましい。
 導電助剤の平均粒径DCAの測定はバインダー樹脂粒子の平均粒径Dと同様の方法で行う。平均粒径DCAが上記装置の測定限界以下の場合は、適宜導電助剤を乾固した後にTEM観察により測定した粒径とする。
 導電助剤の固体電解質組成物中の含有量は、固形分100質量部に対して、0.1~5質量%が好ましく、0.5~3質量%がより好ましい。
<分散媒>
 本発明の固体電解質組成物は、分散媒を含有する。
 分散媒は、本発明の固体電解質組成物に含まれる各成分を分散させるものであればよく、例えば、各種の有機溶媒が挙げられる。分散媒の具体例としては下記のものが挙げられる。有機溶媒としては、アルコール化合物溶媒、エーテル化合物溶媒、アミド化合物溶媒、アミン化合物溶媒、ケトン化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒、ニトリル化合物溶媒、エステル化合物溶媒等が挙げられる。
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、1,6-ヘキサンジオール、シクロヘキサンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。
 エーテル化合物溶媒としては、アルキレングリコール(トリエチレングリコール等)、アルキレングリコールモノアルキルエーテル(エチレングリコールモノメチルエーテル等)、アルキレングリコールジアルキルエーテル(エチレングリコールジメチルエーテル等)、ジアルキルエーテル(ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)が挙げられる。
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。
 アミン化合物溶媒としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、ジプロピルケトン、ジブチルケトン、ジイソプロピルケトン、ジイソブチルケトン、イソブチルプロピルケトン、sec-ブチルプロピルケトン、ペンチルプロピルケトン、ブチルプロピルケトンなどが挙げられる。
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレンなどが挙げられる。
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン、シクロオクタン、デカリン、パラフィン、ガソリン、ナフサ、灯油、軽油などが挙げられる。
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物溶媒としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、ペンタン酸ブチル、イソ酪酸エチル、イソ酪酸プロピル、イソ酪酸イソプロピル、イソ酪酸イソブチル、ピバル酸プロピル、ピバル酸イソプロピル、ピバル酸ブチル、ピバル酸イソブチルなどが挙げられる。
 非水系分散媒としては、上記芳香族化合物溶媒、脂肪族化合物溶媒等が挙げられる。
 本発明においては、中でも、エーテル化合物溶媒、ケトン化合物溶媒、脂肪族化合物溶媒、アミン化合物溶媒、エステル化合物溶媒又は非水系分散媒が好ましく、固体粒子の分散性の点で、ケトン化合物溶媒、アミン化合物溶媒、エステル化合物溶媒又は脂肪族化合物溶媒がより好ましい。
 固体電解質組成物に含有される分散媒は、1種であっても、2種以上であってもよく、2種以上であることが好ましい。
 本発明の固体電解質組成物が2種以上の分散媒を含有する場合、エステル化合物溶媒、ケトン化合物溶媒、アミン化合物溶媒のいずれか1つを含有する態様が好ましい。また、固体粒子の分散性の点で、ケトン化合物溶媒、アミン化合物溶媒、エステル化合物溶媒及び脂肪族化合物溶媒からなる群から選択される2種以上の分散媒の組み合わせた態様も好ましい。
 分散媒の炭素数は、特に制限されないが、2~30が好ましく、4~20がより好ましく、6~15が更に好ましく、7~12が特に好ましい。本発明においては、硫化物系無機固体電解質を用いて、更に上記の特定の有機溶媒を選定することが好ましい。この組み合わせを選定することにより、硫化物系無機固体電解質を安定に取り扱え、好ましい。特に、硫化物系無機固体電解質と脂肪族化合物溶媒との組み合わせが好ましい。
 本発明に用いる分散媒は、CLogP値が1以上であることが好ましく、2以上であることがより好ましく、3以上であることが特に好ましい。上限は特に制限されないが、10以下であることが実際的である。
 本発明において、CLogP値とは、1-オクタノールと水への分配係数Pの常用対数LogPを計算によって求めた値である。CLogP値の計算に用いる方法やソフトウェアについては公知のものを用いることができるが、特に断らない限り、PerkinElmer社のChemDrawを用いて構造を描画し、算出した値とする。
 このような分散媒として上記したものの中から挙げると、トルエン(CLogP=2.5)、ヘキサン(CLogP=3.9)、ヘプタン(CLogP=4.4)、オクタン(CLogP=4.9)、シクロヘキサン(CLogP=3.4)、シクロオクタン(CLogP=4.5)、デカリン(CLogP=4.8)、ジブチルケトン(CLogP=3.0)、ジブチルエーテル(CLogP=3.0)、酪酸ブチル(CLogP=2.8)、トリブチルアミン(CLogP=4.8)などがある。
 分散媒の固体電解質組成物中の含有量は、特に制限されず、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。
<分散剤>
 本発明の固体電解質組成物は分散剤を含有することが好ましい。分散剤を添加することで導電助剤、電極活物質及び無機固体電解質のいずれかの含有量が多い場合及び/又は電極活物質及び無機固体電解質の粒子径が細かく表面積が増大する場合においても、その凝集を更に抑制し、より均一な活物質層を形成することができる。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発及び/又は静電反発を意図した化合物が好適に使用される。
<他の添加剤>
 本発明の固体電解質組成物は、上記各成分以外の他の成分として、所望により、リチウム塩、イオン液体、増粘剤、架橋剤(ラジカル重合、縮合重合又は開環重合により架橋反応するもの等)、重合開始剤(酸又はラジカルを熱又は光によって発生させるものなど)、消泡剤、レベリング剤、脱水剤、酸化防止剤等を含有することができる。
[固体電解質組成物の製造方法]
 本発明の固体電解質組成物は、バインダー樹脂粒子、無機固体電解質、活物質、導電助剤、適宜に分散剤、上述の添加剤等を、分散媒の存在下で混合する(分散媒に分散させる)ことにより、調製することができる。本発明の固体電解質組成物は、好ましくは、スラリーとして、調製される。本発明の固体電解質組成物を調製するに際して、バインダー樹脂粒子、無機固体電解質、活物質、導電助剤を、上記粒径比を満たす組み合わせで分散媒に分散させるため、これらを分散媒に均一に分散させることができる。
 固体電解質組成物のスラリーは、各種の混合機(分散機)を用いて上記各成分を混合することにより、調製することができる。混合機としては、特に制限されないが、例えば、ボールミル、ビーズミル、プラネタリミキサー、ブレードミキサー、ロールミル、ニーダー、薄膜旋回型高速ミキサー、高速回転型撹拌機及びディスクミルが挙げられる。混合(分散)条件は特に制限されないが、例えば、ボールミルを用いた場合、150~700rpm(rotation per minute)で1~24時間混合することが好ましい。分散機は2つの分散機を2回以上の工程にわたって用いてもよい。
 本発明において、上記各成分の混合順は、特に制限されず、一度に混合してもよく、順次混合してもよい。例えば、バインダー樹脂粒子又は分散剤は、それぞれ、単独で混合してもよく、無機固体電解質とともに分散媒に混合してもよい。活物質は、単独で混合してもよく、バインダー樹脂粒子及び無機固体電解質とともに分散媒に混合してもよい。
 導電助剤は、粒子状のまま混合されてもよいが、分散媒に予め分散させた分散液として混合されることが好ましい。これにより、導電助剤の二次凝集を防ぎ、粒径をコントロールすることができる。また、バインダー樹脂粒子、無機固体電解質及び活物質の存在下で導電助剤を均一に分散させることができる。導電助剤の分散液の調製方法は、特に制限されないが、例えば上記分散機を用いた分散方法が挙げられる。また、導電助剤の分散液の固形分濃度も、特に制限されず、適宜に設定できる。
 本発明の固体電解質組成物は、全固体二次電池に好ましく用いられる固体電解質含有シート、及び、全固体二次電池の活物質層を形成する材料として好ましく用いられる。
[固体電解質含有シート]
 本発明の固体電解質含有シートは、シート状成形体であって、バインダー粒子と、無機固体電解質と、活物質と、導電助剤とを含有する。この固体電解質含有シートは、バインダー粒子と無機固体電解質と活物質と導電助剤とが粒子形状を維持して上記粒径比を満足している態様と、後述する粒子形状が損なわれた態様とを包含する。本発明の固体電解質含有シートは、本発明の固体電解質組成物を用いて形成されることが好ましく、例えば、この固体電解質組成物で形成された活物質層を有するシートが挙げられる。
 上記本発明の固体電解質含有シートは、固体粒子間の界面抵抗が小さく、固体粒子が強固に結着されている。そのため、本発明の固体電解質含有シートは、全固体二次電池の活物質層の材料として用いられることにより、全固体二次電池に、電気抵抗が小さく、優れた電池性能を維持する特性とを付与することができる。
 固体電解質含有シート(活物質層)における上記粒径比は、次のようにして、求めることができる。固体電解質含有シートの活物質層又は電池を分解して電極を剥がした後、その電極材料について測定を行うことで、上記粒径比を求めることができる。測定は、走査型電子顕微鏡/エネルギー分散型X線分光(SEM/EDX)測定を行って画像解析し、各材料の平均粒径を測定する方法が挙げられる。
 本発明の固体電解質含有シートにおいて、バインダー樹脂粒子と無機固体電解質と活物質と導電助剤とは、それぞれ、互いに結着又は密着した状態で存在している。例えば、その一形態として、バインダー樹脂粒子が無機固体電解質と活物質とを強固に結着させ、この結着物の間に導電助剤同士が密着して導電パスを形成する態様が挙げられる。上記結着又は密着した状態は、後述する、本発明の固体電解質含有シートの製造方法により、達成できる。
 本発明の固体電解質含有シートは、好ましくは加圧成形される。この場合、固体電解質含有シートにおいて、固体粒子、例えば無機固体電解質は、加圧により粒子状を維持していても損なうものであってもよい。上述のように、本発明の固体電解質組成物は、固体粒子が高度に分散性しているので、固体電解質組成物を成膜することにより、固体粒子間の低界面抵抗と強固な結着性を示す、固体粒子同士の接触状態及び結着状態を実現できる。
 固体電解質含有シートは、適宜に分散剤、上記添加剤を含有していてもよい。本発明の固体電解質含有シート(活物質層)中の各成分の含有量は、特に制限されないが、好ましくは本発明の固体電解質組成物における固形分中における各成分の含有量と同義である。
 本発明の固体電解質含有シートは、基材、剥離シート等の他の部材を有していてもよい。
 この固体電解質含有シートは、全固体二次電池に好適に用いることができ、その用途に応じて種々の態様を含む。例えば、活物質層又は活物質層と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。
 全固体二次電池用電極シート(単に「電極シート」ともいう。)は、本発明の全固体二次電池の、活物質層、又は、固体電解質層と活物質層との積層体を形成するのに好適に用いられるシートであって、少なくとも活物質層を、適宜に後述する集電体としての金属箔上に、有する電極シートである。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。
 電極シートは、例えば、基材(集電体を除く。)、保護層(剥離シート)、集電体、コート層等の他の層を備えていてもよい。基材としては、活物質層を支持できるものであれば特に制限されず、有機材料及び無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン及びセルロース等が挙げられる。無機材料としては、例えば、ガラス及びセラミック等が挙げられる。
 電極シートを構成する各層の層厚は、後述の、本発明の全固体二次電池において説明する各層の層厚と同じである。
[固体電解質含有シートの製造]
 本発明の固体電解質含有シートの製造方法は、特に制限されず、例えば、本発明の固体電解質組成物を基材若しくは集電体上(他の層を介していてもよい。)に製膜(塗布乾燥)して、基材若しくは集電体上に活物質層(塗布乾燥層)を形成する方法が挙げられる。これにより、基材若しくは集電体と塗布乾燥層とを有する固体電解質含有シートを作製することができる。ここで、塗布乾燥層とは、本発明の固体電解質組成物を塗布し、分散媒を乾燥させることにより形成される層(すなわち、本発明の固体電解質組成物を用いてなり、本発明の固体電解質組成物から分散媒を除去した組成からなる層)をいう。塗布乾燥層は、本発明の効果を損なわない限り、乾燥後も分散媒を含有してよく、例えば塗布乾燥層の全質量に対して1質量%以下の含有量で含有(残存)していてもよい。
 本発明の固体電解質含有シートの製造方法において、塗布、乾燥等の各工程については、下記全固体二次電池の製造方法において説明する。
 本発明の固体電解質含有シートの製造方法においては、上記のようにして得られた塗布乾燥層を加圧することもできる。加圧条件等については、後述する、全固体二次電池の製造方法において説明する。
 また、本発明の固体電解質含有シートの製造方法においては、基材、保護層(特に剥離シート)等を剥離することもできる。
[全固体二次電池]
 本発明の全固体二次電池は、正極活物質層と、この正極活物質層に対向する負極活物質層と、正極活物質層及び負極活物質層の間に配置された固体電解質層とを有する。正極活物質層及び負極活物質層の少なくとも一方は、本発明の固体電解質組成物で構成した層(この組成物を用いて形成された層)であり、例えば、上記粒径比を満たす、バインダー樹脂粒子と無機固体電解質と活物質と導電助剤とを含有している。この活物質層を備えた本発明の全固体二次電池は、電気抵抗が小さく、優れた電池性能を維持できる。
 活物質層における上記粒径比は、次のようにして、求めることができる。
 全固体二次電池を分解して活物質層を剥がして取り出した後、その活物質層について、上記固体電解質含有シートと同様にして、測定することができる。
(正極活物質層、固体電解質層、負極活物質層)
 本発明の全固体二次電池においては、上述のように、正極活物質層及び負極活物質層の少なくとも一方、好ましくは正極活物質層が、本発明の固体電解質組成物又は本発明の固体電解質含有シートで形成される。正極活物質層及び負極活物質層の両方を本発明の固体電解質組成物若しくは固体電解質含有シートで形成することもできる。本発明の固体電解質組成物等で形成された正極活物質層及び負極活物質層は、それぞれ、好ましくは、含有する各成分、その含有量及びその粒径比について、特段の断りがない限り、固体電解質組成物又は固体電解質含有シートの固形分におけるものと同じである。
 固体電解質層は、通常、活物質、更には導電助剤を含まない、固体電解質組成物若しくは固体電解質含有シートで形成されてもよい。活物質及び導電助剤を含まない固体電解質組成物(固体電解質層形成用組成物)としては、例えば、本発明の固体電解質組成物のうち活物質及び導電助剤を含有しないもの(バインダー樹脂粒子と無機固体電解質との粒径比は特に制限されない)、公知の固体電解質組成物等が挙げられる。固体電解質層は、好ましくは、含有する各成分及びその含有量について、特段の断りがない限り、固体電解質組成物又は固体電解質含有シートの固形分におけるものと同じである。
 負極活物質層、固体電解質層及び正極活物質層の厚さは、それぞれ、特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
 正極活物質層及び負極活物質層は、それぞれ、固体電解質層とは反対側に集電体を備えていてもよい。
(筐体)
 本発明の全固体二次電池は、用途によっては、上記構造のまま全固体二次電池として使用してもよいが、乾電池の形態とするためには更に適当な筐体に封入して用いることが好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金及びステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
 以下に、図1を参照して、本発明の好ましい実施形態に係る全固体二次電池について説明するが、本発明はこれに限定されない。
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。
 本発明の固体電解質組成物は、活物質層の成形材料、特に正極活物質層の成形材料として、好ましく用いることができる。また、本発明の固体電解質含有シートは、負極活物質層及び正極活物質層として好適である。
 本明細書において、正極活物質層と負極活物質層をあわせて活物質層と称することがある。
 図1に示す層構成を有する全固体二次電池を2032型コインケースに入れる場合、この全固体二次電池を全固体二次電池用電極シートと称し、この全固体二次電池用電極シートを2032型コインケースに入れて作製した電池を全固体二次電池と称して呼び分けることもある。
(正極活物質層、固体電解質層、負極活物質層)
 全固体二次電池10においては、正極活物質層4及び負極活物質層2の少なくとも一方が本発明の固体電解質組成物又は本発明の固体電解質含有シートを用いて形成されている。これにより、全固体二次電池は電気抵抗が小さく、優れた電池性能を維持できる。固体電解質層3は上記固体電解質層形成用組成物で形成することができる。
 正極活物質層4、固体電解質層3及び負極活物質層2が含有する各成分は、それぞれ、互いに同種であっても異種であってもよい。
 全固体二次電池10においては、負極活物質層をリチウム金属層とすることができる。リチウム金属層としては、リチウム金属の粉末を堆積又は成形してなる層、リチウム箔及びリチウム蒸着膜等が挙げられる。リチウム金属層の厚さは、上記負極活物質層の上記厚さにかかわらず、例えば、1~500μmとすることができる。
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に制限されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
[全固体二次電池の製造方法]
 全固体二次電池は、常法によって、製造できる。具体的には、全固体二次電池は、本発明の固体電解質組成物等を用いて、上記の各層を形成することにより、製造できる。これにより、電気抵抗が小さく、優れた電池性能を維持可能な全固体二次電池を製造できる。以下、詳述する。
 本発明の全固体二次電池は、本発明の固体電解質組成物を、基材(例えば、集電体となる金属箔)上に塗布し、塗膜を形成する(製膜する)工程を含む(介する)方法(本発明の固体電解質含有シートの製造方法)を介して、製造できる。
 例えば、正極集電体である金属箔上に、正極用組成物として、正極活物質を含有する固体電解質組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質層形成用組成物を塗布して、固体電解質層を形成する。更に、固体電解質層の上に、負極用組成物として、負極活物質を含有する固体電解質組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。これを筐体に封入して所望の全固体二次電池とすることもできる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用組成物として、負極活物質を含有する固体電解質組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。更に、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質層形成用組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質含有シートを作製する。更に、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 上記の形成法の組み合わせによっても全固体二次電池を製造することができる。例えば、上記のようにして、全固体二次電池用正極シート、全固体二次電池用負極シート及び全固体二次電池用固体電解質含有シートをそれぞれ作製する。次いで、全固体二次電池用負極シート上に、基材から剥がした固体電解質層を積層した後に、上記全固体二次電池用正極シートと貼り合わせることで全固体二次電池を製造することができる。この方法において、固体電解質層を全固体二次電池用正極シートに積層し、全固体二次電池用負極シートと貼り合わせることもできる。
<各層の形成(成膜)>
 固体電解質組成物及び固体電解質層形成用組成物等の塗布方法は、特に制限されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布及びバーコート塗布が挙げられる。
 このとき、固体電解質組成物等は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に制限されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、分散媒を除去し、固体状態(塗布乾燥層)にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
 上記のようにして、本発明の固体電解質組成物を塗布乾燥すると、固体粒子間の界面抵抗が小さく、固体粒子が強固に結着した塗布乾燥層を形成することができる。
 塗布した固体電解質組成物等、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に制限されず、上記成分、例えば無機固体電解質が粒子形状を損なう圧力であってもよい。上述のように、固体粒子の上記接触状態及び結着状態は、本発明の固体電解質組成物を成膜することにより実現でき、その後に圧力が作用しても大きく損なわれることはない。例えば、加圧力として、50~1500MPaの範囲であることが好ましい。
 また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に制限されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は分散媒を予め乾燥させた状態で行ってもよいし、塗布溶媒又は分散媒が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布してもよいし、塗布乾燥プレスを同時及び/又は逐次行ってもよい。別々の基材に塗布した後に、転写により積層してもよい。
 加圧中の雰囲気としては、特に制限されず、大気下、乾燥空気下(露点-20℃以下)及び不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。固体電解質含有シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に制限されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 以下に、実施例に基づき本発明について更に詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。また、表中において使用する「-」は、その列の成分を含有しないこと、又は数値がゼロ若しくは算出不能であること等を意味する。
実施例1
 本例は、無機固体電解質として硫化物系無機固体電解質を用いて、正極用組成物、全固体二次電池用正極シート及び全固体二次電池をそれぞれ調製又は製造して、その特性を評価した。
1.バインダー樹脂粒子分散液の調製
<バインダー樹脂粒子B-1の合成(バインダー樹脂粒子B-1分散液の調製)>
 還流冷却管、ガス導入コックを付した1L三口フラスコにヘプタンを200g加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。これに、別容器にて調製した液(アクリル酸エチル(和光純薬工業社製)140g、アクリル酸(和光純薬工業社製)20g、マクロモノマーAB-6(東亜合成社製)を40g(固形分量)、重合開始剤V-601(商品名、和光純薬工業社製)を2.0g混合した液)を2時間かけて滴下し、その後80℃で2時間攪拌した。得られた混合物にV-601を更に1.0g添加し、90℃で2時間攪拌した。得られた溶液をヘプタンで希釈することで、アクリル樹脂からなる粒子であるバインダー樹脂粒子B-1の分散液を得た。
 マクロモノマーAB-6は、末端官能基がメタクリロイル基であるポリブチルアクリレート(数平均分子量6000)である。
<バインダー樹脂粒子B-2の合成(バインダー樹脂粒子B-2分散液の調製)>
 ポリウレタン樹脂を合成するため、まず末端ジオールポリメタクリル酸ドデシルを合成した。
 具体的には、500mL3つ口フラスコ中にメチルエチルケトン20mLを仕込み、窒素気流下、75℃に加熱した。一方、500mLメスシリンダーにドデシルメタクリレート(和光純薬工業社製)70gとメチルエチルケトン110gとを仕込み、10分撹拌した。これに連鎖移動剤としてチオグリセロール(和光純薬工業社製)2.9gとラジカル重合開始剤V-601(商品名、和光純薬工業社製)3.2gとを加え、更に10分撹拌した。得られたモノマー溶液を2時間かけて、上記500mL3つ口フラスコに滴下し、ラジカル重合を開始させた。更に、滴下終了後、75℃で6時間加熱撹拌を続けた。得られた重合液を減圧濃縮し、メチルエチルケトンを留去した後、固形物をヘプタンに溶解して、末端ジオール変性ポリメタクリル酸ドデシルの25質量%ヘプタン溶液292gを得た。得られたポリマーの重量平均分子量は3200であった。
 続いてポリウレアコロイド粒子MM-1を合成した。
 具体的には、末端ジオール変性ポリメタクリル酸ドデシル25質量%のヘプタン溶液260gを、1Lの3つ口フラスコに加え、ヘプタン110gで希釈した。これにイソホロンジイソシアネート(和光純薬工業社製)11.1gとネオスタンU-600(商品名、日東化成社製)0.1gとを加え、75℃で5時間加熱撹拌した。その後、イソホロンジアミン(アミン化合物)0.4gのヘプタン125g希釈液を1時間かけて滴下した。ポリマー溶液は、滴下開始後10分で透明から薄い黄色の蛍光色を有する溶液へと変化した。この変化により、ウレアコロイドが形成したことを確認した。反応液を室温に冷却し、ポリウレアコロイド粒子MM-1の15質量%ヘプタン溶液506gを得た。
 ポリウレアコロイド粒子MM-3のポリウレアの重量平均分子量は、9,600であった。
 次に、ポリウレアコロイド粒子MM-3を用いてポリウレタン樹脂を合成した。
 具体的には、50mLサンプル瓶にm-フェニレンジイソシアネート(東京化成社製)3.2g、ポリエチレングリコール(重量平均分子量400、Aldrich社製)8.0gを加えた。これにポリウレアコロイド粒子MM-1の15質量%ヘプタン溶液60.0gを加え、50℃で加温しながらホモジナイザーで30分間分散した。この間、混合液は微粒子化し、薄橙色のスラリーとなった。得られたスラリーを、予め温度80℃に加熱した200mL3つ口フラスコに投入し、ネオスタンU-600(商品名、日東化成社製)0.1gを加えて、温度80℃、回転数400rpmで3時間加熱撹拌した。スラリーは、白色乳濁状となった。これより、ポリウレタン樹脂からなるバインダー樹脂粒子が形成されたことが推定された。白色乳濁状のスラリーを冷却し、ポリウレタン樹脂からなるバインダー樹脂粒子B-2のヘプタン分散液を得た。
<バインダー樹脂粒子B-3分散液の調製>
 含フッ素樹脂(ポリテトラフロロエチレン)の粒子(Microdispers-200(商品名)、ポリサイエンス社製)を分散媒としてヘプタンに分散させて、バインダー樹脂粒子B-3分散液を調製した。
<比較のためのバインダー樹脂粒子BC-1の合成(バインダー樹脂粒子BC-1のラテックスの調製)>
 オートクレーブに、メタクリル酸メチル200質量部、スチレン50質量部、ジビニルベンゼン5質量部、ドデシルベンゼンスルホン酸ナトリウム4質量部、イオン交換水400質量部、及び、重合開始剤として2,2’-アゾビスイソブチロニトリル10質量部を仕込み、10分攪拌した。その後、80℃に加温して1時間重合を行った。
 得られた重合物に、ノニルフェノキシポリエチレングリコールアクリレート(ファンクリル FA-314A(商品名)、機能性アクリレート、日立化成工業社製)400部、スチレン100質量部、イオン交換水800質量部、及び、重合開始剤としてのアゾビスブチロニトリル10質量部を添加し、十分に混合して、80℃にて4時間重合した。そして、反応液を冷却して重合反応を停止した。得られた分散液にデカリン15000質量部を加えて減圧乾燥して水分を除去することで、バインダー樹脂粒子BC-1のラテックスを得た。
 得られた各バインダー樹脂粒子分散液について、バインダー樹脂粒子の平均粒径D、及び、バインダー樹脂粒子を形成する高分子の重量平均分子量を、上述の方法により、測定した。その結果を表1に示す。
2.硫化物系無機固体電解質の合成及び平均粒径の調整
<硫化物系無機固体電解質:Li-P-S系ガラスの合成>
 - 平均粒子径DSEが20μmのLi-P-S系ガラスの合成 -
 硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.HamGa,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。なお、LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、25℃で、回転数510rpmで20時間メカニカルミリングを行うことで黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、LPS)6.20gを得た。LPSの上記測定方法による体積平均粒子径DSEは20μmであった。
 - 平均粒子径DSEが35μmのLi-P-S系ガラスの合成 -
 アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。なお、LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、25℃で、回転数450rpmで15時間メカニカルミリングを行うことで黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、LPS)6.20gを得た。LPSの上記測定方法による体積平均粒子径DSEは35μmであった。
<平均粒径の調整>
 合成した硫化物系無機固体電解質の平均粒子径を下記のようにして調整した。
 - 平均粒子径DSE2μmのLPS -
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したDSEが20μmのLPS5g、及び酪酸ブチルを16.0g投入し500rpmで3時間分散を行い、窒素下、150℃で4時間乾燥することで、平均粒子径DSEを2μmのLPSを得た。
 - 平均粒子径DSE5μmのLPS -
 回転数を300rpm、分散時間を1時間に変更したこと以外は、平均粒子径DSE2μmのLPSと同様にして、平均粒子径DSE5μmのLPSを得た。
 - 平均粒子径DSE18μmのLPS -
 回転数を200rpm、分散時間を10分に変更したこと以外は、平均粒子径DSE2μmのLPSと同様にして、平均粒子径DSE18μmのLPSを得た。
3.固体電解質層形成用組成物の調製
<固体電解質層形成用組成物S-1の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成した、DSEが20μmのLPS4.85g、バインダー樹脂粒子B-1の分散液(固形分質量として0.15g)、及びヘプタンを16.0g投入した。その後に、この容器をフリッチュ社製遊星ボールミルP-7(商品名)にセットし、温度25℃、回転数150rpmで10分間混合を続けて、固体電解質層形成用組成物S-1を得た。
4.正極用組成物の調製
<正極用組成物U-1の調製>
 - 気相成長炭素繊維(VGCF)分散物の調製 -
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、酪酸ブチル27g、VGCF(VGCF-H(商品名)、昭和電工社製)3gを添加してフリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、25℃、回転数500rpmで120分間混合を続け、上記測定方法による平均粒径DCAが0.6μmのVGCFの分散液を得た。
 - 正極用組成物U-1の調製 -
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、DSEが2μmのLPSを2.8g、バインダー樹脂粒子B-1の分散液(固形分質量として0.2gになる量)、及びヘプタンを22g投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数150rpmで10分間攪拌した。その後、上記VGCFの分散液(固形分質量が0.1gになる量)を加え、活物質としてLiNi1/3Co1/3Mn1/3(上記測定方法による平均粒径DCA:4μm、比表面積SAM:0.1m/g)6.9gを投入し、同様にして、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで5分間混合を続け、正極用組成物U-1を調製した。
<正極用組成物U-2の調製>
 - アセチレンブラック(AB)分散物の調製 -
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、酪酸ブチル27g、アセチレンブラック(デンカブラック(商品名)、デンカ社製)3gを添加してフリッチュ社製遊星ボールミルP-7(商品名)にセットし、25℃、回転数500rpmで120分間混合した。こうして、上記測定方法による平均粒径0.3μmのアセチレンブラックの分散液を得た。
 - 正極用組成物U-2の調製 -
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、DSEが2μmのLPSを2.8g、バインダー樹脂粒子B-1の分散液(固形分質量が0.2gになる量)、及びヘプタンを22g投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数150rpmで10分間攪拌した。その後、上記アセチレンブラックの分散液(固形分質量が0.1gになる量)を加え、活物質としてLiNi1/3Co1/3Mn1/3(上記測定方法による平均粒径DCA:4μm、比表面積SAM:0.1m/g)6.9gを投入し、同様にして、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで5分間混合を続け、正極用組成物U-2を調製した。
<正極用組成物U-3の調製>
 正極用組成物U-2の調製において、バインダー樹脂粒子B-1の分散液に代えてバインダー樹脂粒子B-2の分散液を用いたこと以外は、正極用組成物U-2の調製と同様にして、正極用組成物U-3を調製した。
<正極用組成物U-4の調製>
 正極用組成物U-2の調製において、LiNi1/3Co1/3Mn1/3(上記測定方法による平均粒径DCA:4μm、比表面積SAM:0.1m/g)に代えてLiNi1/3Co1/3Mn1/3(上記測定方法による平均粒径DCA:12μm、比表面積SAM:0.05m/g)を用いたこと以外は、正極用組成物U-2の調製と同様にして、正極用組成物U-4を調製した。
<正極用組成物U-5の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、DSEが18μmのLPSを2.8g、バインダー樹脂粒子B-1の分散液(固形分質量として0.2g)、上記アセチレンブラックの分散液(固形分質量として0.1g)、ヘプタンを22g、及び、活物質としてLiNi1/3Co1/3Mn1/3(上記測定方法による平均粒径DCA:4μm、比表面積SAM:0.1m/g)6.9gを投入し、同様にして、フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、25℃、回転数100rpmで5分間混合を続け、正極用組成物U-5を調製した。
<正極用組成物U-6の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、DSEが2μmのLPSを2.8g、バインダー樹脂粒子B-1の分散液(固形分質量として0.2gになる量)、及びヘプタンを22g投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数150rpmで10分間攪拌した。その後、下記のようにして平均粒径DCAを10μmに調整したアセチレンブラックを0.1g加え、活物質としてLiNi1/3Co1/3Mn1/3(上記測定方法による平均粒径DCA:4μm、比表面積SAM:0.1m/g)6.9gを投入し、同様にして、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで5分間混合を続け、正極用組成物U-6を調製した。
 用いたアセチレンブラックは、アセチレンブラック(デンカブラック(商品名)、デンカ社製)に下記処理を行って、平均粒径DCAを10μmに調整したものである。
- アセチレンブラック(AB)分散物の調製 -
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、ヘプタン27g、アセチレンブラック(デンカブラック(商品名)、デンカ社製)3gを添加してフリッチュ社製遊星ボールミルP-7(商品名)にセットし、25℃、回転数150rpmで20分間混合した。こうして、上記測定方法による平均粒径10μmのアセチレンブラックの分散液を得た。
<正極用組成物U-7の調製>
 正極用組成物U-2の調製において、ヘプタンに代えて酪酸ブチルを用いたこと以外は、正極用組成物U-2の調製と同様にして、正極用組成物U-7を調製した。
<正極用組成物U-8の調製>
 正極用組成物U-2の調製において、LiNi1/3Co1/3Mn1/3(平均粒径DCA:4μm、比表面積SAM:0.1m/g)に代えてLiNi1/3Co1/3Mn1/3(上記測定方法による平均粒径DCA:5μm、比表面積SAM:0.5m/g)を用いたこと以外は、正極用組成物U-2の調製と同様にして、正極用組成物U-8を調製した。
<正極用組成物U-9の調製>
 正極用組成物U-2の調製において、バインダー樹脂粒子B-1の分散液に代えて、上述のバインダー樹脂粒子B-3分散液を用いたこと以外は、正極用組成物U-2の調製と同様にして、正極用組成物U-9を調製した。
<正極用組成物U-10の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、DSEが2μmのLPSを2.8g、バインダー樹脂粒子B-1の分散液(固形分質量として0.2gになる量)、及びヘプタンを22g投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数150rpmで15分間撹拌した。その後、下記のようにして平均粒径DCAを3μmに調整したアセチレンブラックを0.1g加え、活物質としてLiNi1/3Co1/3Mn1/3(上記測定方法による平均粒径DCA:4μm、比表面積SAM:0.1m/g)6.9gを投入し、同様にして、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで5分間混合を続け、正極用組成物U-6を調製した。
 用いたアセチレンブラックは、アセチレンブラック(デンカブラック(商品名)、デンカ社製)に下記処理を行って、平均粒径DCAを3μmに調整したものである。
- アセチレンブラック(AB)分散物の調製 -
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、酪酸ブチル27g、アセチレンブラック(デンカブラック(商品名)、デンカ社製)3gを添加してフリッチュ社製遊星ボールミルP-7(商品名)にセットし、25℃、回転数150rpmで20分間混合した。こうして、上記測定方法による平均粒径3μmのアセチレンブラックの分散液を得た。
<比較のための正極用組成物V-1の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、DSEが5μmのLPSを2.8g、上記バインダー樹脂粒子BC-1のラテックス(固形分質量が0.2gとなる量)、及びデカリンを22g投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数300rpmで1時間攪拌した。その後、アセチレンブラック(デンカブラック(商品名)、デンカ社製)を0.1g加え、活物質としてLiNi1/3Co1/3Mn1/3(上記測定方法による平均粒径DCA:11.5μm、比表面積SAM:0.5m/g)6.9gを投入し、同様にして、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで5分間混合を続け、正極用組成物V-1を調製した。
<比較のための正極用組成物V-2の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、DSEが5μmのLPSを2.8g、ポリテトラフルオロエチレン(PTFT)の粒子(上記測定方法による平均粒径:40μm)0.2gを投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数200rpmで1時間攪拌した。その後、アセチレンブラック(デンカブラック(商品名)、デンカ社製)を0.1g加え、活物質としてLiNi1/3Co1/3Mn1/3(上記測定方法による平均粒径DCA:10.0μm、比表面積SAM:0.45m/g)6.9gを投入し、同様にして、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで5分間混合を続け、正極用組成物V-2を調製した。
<比較のための正極用組成物V-3及びV-4の調製>
 正極用組成物U-2の調製において、表1に示す組成に変更したこと以外は、正極用組成物U-2の調製と同様にして、正極用組成物V-3及びV-4をそれぞれ調製した。
<比較のための正極用組成物V-5の調製>
 正極用組成物U-2の調製において、DSEが2μmのLPSに代えて、上記のようにして合成した、DSEが35μmのLPSを用いたこと以外は、正極用組成物U-2の調製と同様にして、正極用組成物V-5を調製した。
 上記正極用組成物の調製に用いた各正極活物質について、平均粒径DCA(μm)と比表面積SAM(m/g)との積DAM×SAM(cm/g)を算出して、表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1の「分散媒」欄には、正極用組成物の調製に用いた分散媒を示す。
 <表の略号>
 NMC:LiNi1/3Co1/3Mn1/3
 LPS:上記合成した硫化物系無機固体電解質
 PTFE:ポリテトラフルオロエチレンの粒子(上記測定方法による平均粒径40μm)
 VGCF:気相成長炭素繊維
 AB:アセチレンブラック
5.固体電解質層用シートの作製
 上記で得られた固体電解質組成物S-1を、厚み20μmのアルミニウム箔上に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)により塗布し、80℃で2時間加熱し、固体電解質組成物を乾燥させた。その後、ヒートプレス機を用いて、120℃の温度及び10MPaの圧力で10秒間、乾燥させた固体電解質組成物を加熱及び加圧し、膜厚100μmの固体電解質層用シートS-1を作製した。
6.全固体二次電池用正極シートの作製
<全固体二次電池用正極シートPS-1の作製>
 上記で得られた正極用組成物U-1を厚み20μmのアルミニウム箔(正極集電体)上に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)により塗布し、80℃で2時間加熱し、正極用組成物を乾燥(分散媒を除去)した。その後、ヒートプレス機を用いて、乾燥させた正極用組成物U-1を25℃で加圧(10MPa、1分)し、膜厚80μmの正極活物質層を有する全固体二次電池用正極シートPS-1を作製した。
 こうして得た全固体二次電池用正極シートPS-1は、バインダー樹脂粒子と無機固体電解質と活物質と導電助剤との粒径比が、固体電解質組成物U-1における粒径比と同等であった。
 次いで、得られた正極活物質層上に、上記のようにして作製した固体電解質層用シートS-1を固体電解質層が正極活物質層に接するように重ね、プレス機を用いて25℃で50MPa加圧して転写(積層)した後に、25℃で600MPaの圧力で加圧することで、膜厚50μmの固体電解質層を備えた全固体二次電池用正極シートPS-1を作製した。
<全固体二次電池用正極シートPS-2~PS-10及びPV-1~PV-5の作製>
 全固体二次電池用正極シートPS-1の作製において、正極用組成物U-1に代えて表2に示す正極用組成物を用いたこと以外は、全固体二次電池用正極シートPS-1の作製と同様にして、全固体二次電池用正極シートPS-2~PS-10及びPV-1~PV-5を、それぞれ、作製した。
 固体電解質層を形成する前の全固体二次電池用正極シートPS-2~PS-10及びPV-1~PV-5は、それぞれ、バインダー樹脂粒子と無機固体電解質と活物質と導電助剤との粒径比が、固体電解質組成物U-2~U-10及びV-1~V-5における粒径比と同等であった。
7.全固体二次電池の製造
<全固体二次電池201の製造>
 作製した全固体二次電池用正極シートPS-1(固体電解質層用シートS-1のアルミ箔は剥離済み)を直径14.5mmの円板状に切り出し、図2に示すように、スペーサーとワッシャー(図2において図示せず)を組み込んだステンレス製の2032型コインケース11に入れて、固体電解質層上に直径14mmの円板状に切り出したリチウム箔(負極活物質層)を重ねた。その上に更に直径14.5mmの円板状に切り出したステンレス鋼箔(負極集電体)を重ねた後、2032型コインケース11をかしめることで、図2に示す全固体二次電池201を製造した。
 このようにして製造した全固体二次電池201は、図1に示す層構成を有する。
<全固体二次電池202~210及びc21~c25の製造>
 全固体二次電池201の製造において、全固体二次電池用正極シートPS-1に代えて表2に示す全固体二次電池用正極シートを用いたこと以外は、全固体二次電池201の製造と同様にして、全固体二次電池202~210及びc21~c25を、それぞれ、製造した。
 得られた全固体二次電池201~210及びc21~c25の活物質層は、それぞれ、バインダー樹脂粒子と無機固体電解質と活物質と導電助剤との粒径比が、固体電解質組成物U-1~U-10及びV-1~V-5における粒径比と同等であった。
8.固体電解質組成物、全固体二次電池用正極シート及び全固体二次電池の評価
 上述のようにして調製、作製又は製造した、正極用組成物、全固体二次電池用正極シート及び全固体二次電池について、下記特性を評価した。その結果を表2に示す。
<評価1:分散性>
 正極用組成物U-1~U-10、V-1及びP-3~V-5について、固体粒子の分散性(分散安定性)を評価した。正極用組成物V-2は粉末混合物であるため分散性を評価していない。
 各正極用組成物を、直径10mm、高さ15cmのガラス試験管に高さ10cmまで加え、25℃で2時間静置した後に、分離した上澄みの高さを目視で確認して測定した。正極用組成物の全量(高さ10cm)に対する上澄みの高さの比:上澄みの高さ/全量の高さを求めた。この比が下記評価ランクのいずれに含まれるかにより、正極用組成物の分散性を評価した。上記比を算出するに際し、全量とはガラス試験管に投入した正極用組成物(スラリー)の全量をいい、上澄みとは正極用組成物の固形成分が沈降して生じた(固液分離した)上澄み液をいう。
 本発明において、上記比が小さいほど、分散性に優れることを示し、評価ランク「5」以上が合格である。
 -分散性の評価ランク-
 8:     上澄みの高さ/全量の高さ<0.1
 7: 0.1≦上澄みの高さ/全量の高さ<0.2
 6: 0.2≦上澄みの高さ/全量の高さ<0.3
 5: 0.3≦上澄みの高さ/全量の高さ<0.4
 4: 0.4≦上澄みの高さ/全量の高さ<0.5
 3: 0.5≦上澄みの高さ/全量の高さ<0.7
 2: 0.7≦上澄みの高さ/全量の高さ<0.9
 1: 0.9≦上澄みの高さ/全量の高さ
<評価2:結着性>
 全固体二次電池用正極シートPS-1~PS-10、PV-1~PV-5について、固体粒子の結着性を評価した。
 各全固体二次電池用正極シートを、直径の異なる棒に巻きつけ、正極活物質層の、欠け割れ、ヒビの有無、及び、正極活物質層のアルミニウム箔(正極集電体)からの剥がれの有無を確認した。これらの欠陥等の異常が発生することなく巻きつけられた棒の最小径が下記評価ランクのいずれに含まれるかにより、結着性を評価した。
 本発明において、棒の最小径が小さいほど、結着性が強固であることを示し、評価ランク「5」以上が合格である。
 -結着性の評価ランク-
 8:      最少径<2mm
 7:  2mm≦最少径<4mm
 6:  4mm≦最少径<6mm
 5:  6mm≦最少径<10mm
 4: 10mm≦最少径<14mm
 3: 14mm≦最少径<20mm
 2: 20mm≦最少径<32mm
 1: 32mm≦
<評価3:抵抗>
 全固体二次電池201~210及びc21~c25について、その抵抗を測定して、抵抗の高低を評価した。
 各全固体二次電池の抵抗を、充放電評価装置:TOSCAT-3000(商品名、東洋システム社製)により評価した。充電は、電流密度0.1mA/cmで電池電圧が4.2Vに達するまで行った。放電は、電流密度0.2mA/cmで電池電圧が2.5Vに達するまで行った。この充電1回と放電1回とを充放電1サイクルとして繰り返して3サイクル充放電して、3サイクル目の5mAh/g(活物質質量1g当たりの電気量)放電後の電池電圧を読み取った。この電池電圧が下記評価ランクのいずれに含まれるかにより、全固体二次電池の抵抗を評価した。電池電圧が高いほど低抵抗であることを示す。本試験において、評価ランク「5」以上が合格である。
 -抵抗の評価ランク-
 8: 4.1V以上
 7: 4.0V以上、4.1V未満
 6: 3.9V以上、4.0V未満
 5: 3.7V以上、3.9V未満
 4: 3.5V以上、3.7V未満
 3: 3.2V以上、3.5V未満
 2: 2.5V以上、3.2V未満
 1: 充放電できず
<評価4:放電容量維持率(サイクル特性)>
 全固体二次電池201~210及びc21~c25について、その放電容量維持率を測定して、サイクル特性を評価した。
 各全固体二次電池の放電容量維持率を、充放電評価装置:TOSCAT-3000(商品名、東洋システム社製)により測定した。充電は、電流密度0.1mA/cmで電池電圧が3.6Vに達するまで行った。放電は、電流密度0.1mA/cmで電池電圧が2.5Vに達するまで行った。この充電1回と放電1回とを充放電1サイクルとして3サイクル充放電を繰り返して、全固体二次電池を初期化した。初期化後の充放電1サイクル目の放電容量(初期放電容量)を100%としたときに、放電容量維持率(初期放電容量に対する放電容量)が80%に達した際の充放電サイクル数が、下記評価ランクのいずれに含まれるかにより、サイクル特性を評価した。
 本試験において、放電容量維持率は、評価ランク「5」以上が合格である。
 なお、全固体二次電池201~210の初期放電容量は、いずれも、全固体二次電池として機能するのに十分な値を示した。
 -放電容量維持率の評価ランク-
 8: 500サイクル以上
 7: 300サイクル以上、500サイクル未満
 6: 200サイクル以上、300サイクル未満
 5: 150サイクル以上、200サイクル未満
 4:  80サイクル以上、150サイクル未満
 3:  40サイクル以上、80サイクル未満
 2:  20サイクル以上、40サイクル未満
 1:  20サイクル未満
Figure JPOXMLDOC01-appb-T000002
 上記表1及び表2から明らかなように、特定のバインダー樹脂粒子と無機固体電解質と活物質と導電助剤とを含有していても、これらの粒径比が本発明で規定する条件を満たしていない正極用組成物V-1は、正極用組成物中での固体粒子の分散性が十分ではなく、固体電解質含有シート中の固体粒子の結着性も強固なものではない。正極用組成物V-2は粉末混合物である。導電助剤を含有しない正極用組成物V-3は、正極用組成物中での固体粒子の分散性が十分ではなく、固体電解質含有シート中の固体粒子の結着性も強固なものではない。更に、無機固体電解質又は活物質の粒径比が本発明で規定する条件を満たしていない正極用組成物V-4及びV-5は、正極用組成物中での固体粒子の分散性が十分ではない。そのため、これらの正極用組成物で形成した正極活物質層を備えた全固体二次電池c21~c25は、いずれも、電池抵抗が大きく(固体粒子間の界面抵抗が高く)、放電容量維持率にも劣り、充放電を繰り返すと電池性能が低下する。
 これに対して、特定のバインダー樹脂粒子と無機固体電解質と活物質と導電助剤とが本発明で規定する粒径比を満足して分散剤に分散された正極用組成物U-1~U-10は、いずれも、固体粒子の分散性が高く、しかも全固体二次電池用正極シート中の固体粒子が強固に結着している。そのため、これらの正極用組成物で形成した正極活物質層を備えた全固体二次電池201~210は、いずれも、電池抵抗が小さく(固体粒子間の界面抵抗上昇が抑えられ)、また、放電容量維持率も高く、充放電を繰り返しても優れた電池性能を維持している。
実施例2
 本例は、無機固体電解質として酸化物系無機固体電解質を用いて、正極用組成物、全固体二次電池用正極シート及び全固体二次電池をそれぞれ調製又は製造して、その特性を評価した。
 実施例1において、合成した硫化物系無機固体電解質Li-P-S系ガラスに代えて酸化物系無機固体電解質Li0.33La0.55TiO(LLT)を用いたこと以外は、実施例1と同様にして、正極用組成物を調製し、全固体二次電池用正極シートを作製し、更に全固体二次電池を製造した。
 得られた正極用組成物の分散性、全固体二次電池用正極シートの結着性、並びに、全固体二次電池の抵抗及び放電容量維持率を、実施例1と同様にして評価した。その結果、無機固体電解質として酸化物系無機固体電解質を用いても、特定のバインダー樹脂粒子と無機固体電解質と活物質と導電助剤とが本発明で規定する粒径比を満足していると、硫化物系無機固体電解質を用いた実施例1と同様に、優れた特性を示すことが分かった。
実施例3
 本例は、活物質として負極活物質を用いて、負極用組成物、全固体二次電池用負極シート及び全固体二次電池をそれぞれ調製又は製造して、その特性を評価した。
 実施例1において、NMCに代えてLiTi12(LTO)を用いたこと以外は、実施例1と同様にして、負極用組成物を調製し、全固体二次電池用負極シートを作製し、更に全固体二次電池を製造した。
 得られた負極用組成物の分散性、全固体二次電池用負極シートの結着性、並びに、全固体二次電池の抵抗及び放電容量維持率を、実施例1と同様にして評価した。その結果、活物質として負極活物質を用いても、特定のバインダー樹脂粒子と無機固体電解質と活物質と導電助剤とが本発明で規定する粒径比を満足していると、正極活物質を用いた実施例1と同様に、優れた特性を示すことが分かった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2017年10月12日に日本国で特許出願された特願2017-198575に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 2032型コインケース
12 全固体二次電池用電極シート
13 全固体二次電池

Claims (13)

  1.  重量平均分子量5000以上の高分子からなるバインダー樹脂粒子と、周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有する無機固体電解質と、周期律表第一族若しくは第二族に属する金属のイオンの挿入放出が可能な活物質と、導電助剤と、分散媒とを含有し、
     前記バインダー樹脂粒子、前記無機固体電解質、前記活物質及び前記導電助剤が下記粒径比を満足する、固体電解質組成物。
     バインダー樹脂粒子の平均粒径D:無機固体電解質の平均粒径DSE:活物質の平均粒径DAM:導電助剤の平均粒径DCA=1:1~100:2~200:0.01~100
  2.  前記バインダー樹脂粒子の平均粒径Dが0.005μm以上1μm以下である請求項1に記載の固体電解質組成物。
  3.  前記無機固体電解質の平均粒径DSEが0.2μm以上4μm以下である請求項1又は2に記載の固体電解質組成物。
  4.  前記活物質の平均粒径DAMが1μm以上5μm以下である請求項1~3のいずれか1項に記載の固体電解質組成物。
  5.  前記導電助剤の平均粒径DCAが0.01μm以上0.5μm以下である請求項1~4のいずれか1項に記載の固体電解質組成物。
  6.  前記分散媒が、エステル化合物溶媒、ケトン化合物溶媒、アミン化合物溶媒のいずれか1つを含有する請求項1~5のいずれか1項に記載の固体電解質組成物。
  7.  前記バインダー樹脂粒子がアクリル樹脂又はポリウレタン樹脂の粒子である請求項1~6のいずれか1項に記載の固体電解質組成物。
  8.  前記活物質の平均粒径DAMと前記活物質の比表面積SAMとの積が2cm/g未満である請求項1~7いずれか1項に記載の固体電解質組成物。
  9.  請求項1~8のいずれか1項に記載の固体電解質組成物で構成した層を有する固体電解質含有シート。
  10.  重量平均分子量5000以上の高分子からなるバインダー樹脂粒子と、周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有する無機固体電解質と、周期律表第一族若しくは第二族に属する金属のイオンの挿入放出が可能な活物質と、導電助剤とを含有し、
     前記バインダー樹脂粒子、前記無機固体電解質、前記活物質及び前記導電助剤が下記粒径比を満足する固体電解質含有シート。
     バインダー樹脂粒子の平均粒径D:無機固体電解質の平均粒径DSE:活物質の平均粒径DAM:導電助剤の平均粒径DCA=1:1~100:2~200:0.01~100
  11.  正極活物質層と、負極活物質層と、該正極活物質層及び該負極活物質層の間の無機固体電解質層とを含む全固体二次電池であって、
     前記正極活物質層及び前記負極活物質層の少なくとも一方が、請求項1~8のいずれか1項に記載の固体電解質組成物で構成した層である全固体二次電池。
  12.  請求項1~8のいずれか1項に記載の固体電解質組成物を製膜する工程を含む固体電解質含有シートの製造方法。
  13.  請求項12に記載の製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
PCT/JP2018/037994 2017-10-12 2018-10-11 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 WO2019074074A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880065264.1A CN111194492B (zh) 2017-10-12 2018-10-11 固体电解质组合物以及含固体电解质片材、全固态二次电池和两者的制造方法
JP2019548243A JP6942810B2 (ja) 2017-10-12 2018-10-11 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
EP18865753.0A EP3696886A4 (en) 2017-10-12 2018-10-11 SOLID ELECTROLYTE COMPOSITION, SHEET CONTAINING SOLID ELECTROLYTE, FULLY SOLID SECONDARY BATTERY, AND PROCESSES FOR THE PRODUCTION OF SHEET CONTAINING SOLID ELECTROLYTE AND FULLY SOLID SECONDARY BATTERY
US16/833,669 US20200227751A1 (en) 2017-10-12 2020-03-30 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-198575 2017-10-12
JP2017198575 2017-10-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/833,669 Continuation US20200227751A1 (en) 2017-10-12 2020-03-30 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery

Publications (1)

Publication Number Publication Date
WO2019074074A1 true WO2019074074A1 (ja) 2019-04-18

Family

ID=66100684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037994 WO2019074074A1 (ja) 2017-10-12 2018-10-11 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法

Country Status (5)

Country Link
US (1) US20200227751A1 (ja)
EP (1) EP3696886A4 (ja)
JP (1) JP6942810B2 (ja)
CN (1) CN111194492B (ja)
WO (1) WO2019074074A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021043493A1 (en) * 2019-09-03 2021-03-11 Solvay Sa Sulfide-based solid composite electrolyte film
JPWO2021193826A1 (ja) * 2020-03-27 2021-09-30
WO2022030636A1 (ja) * 2020-08-07 2022-02-10 リファインホールディングス株式会社 全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー
WO2022255474A1 (ja) * 2021-06-04 2022-12-08 リファインホールディングス株式会社 炭素質材料分散体の脱水方法および炭素質材料分散体の製造方法
WO2023282333A1 (ja) * 2021-07-07 2023-01-12 富士フイルム株式会社 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7256150B2 (ja) * 2020-07-30 2023-04-11 トヨタ自動車株式会社 全固体電池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099315A (ja) 2010-11-01 2012-05-24 Sumitomo Electric Ind Ltd 全固体リチウム電池用正極とその製造方法および全固体リチウム電池
JP2012227107A (ja) 2011-04-05 2012-11-15 Sumitomo Electric Ind Ltd 非水電解質電池用電極体及び非水電解質電池
WO2012173089A1 (ja) 2011-06-17 2012-12-20 日本ゼオン株式会社 全固体二次電池
JP2013196968A (ja) * 2012-03-21 2013-09-30 Toyota Motor Corp 正極活物質層含有体の製造方法
WO2014132333A1 (ja) * 2013-02-26 2014-09-04 株式会社 日立製作所 全固体リチウムイオン二次電池
JP2015088480A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2016139511A (ja) 2015-01-27 2016-08-04 富士フイルム株式会社 固体電解質組成物およびこれを用いた電池用電極シートならびに電池用電極シートおよび全固体二次電池の製造方法
JP2016149238A (ja) 2015-02-12 2016-08-18 富士フイルム株式会社 固体電解質組成物、電池用電極シートおよび全固体二次電池ならびに電池用電極シートおよび全固体二次電池の製造方法
JP2016181472A (ja) 2015-03-25 2016-10-13 日本ゼオン株式会社 全固体二次電池
JP2017198575A (ja) 2016-04-28 2017-11-02 ウシオ電機株式会社 光学素子特性測定装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4077432B2 (ja) * 2003-07-07 2008-04-16 Tdk株式会社 電気化学素子
US7972535B2 (en) * 2006-03-30 2011-07-05 Zeon Corporation Composite particles for electrochemical device electrode, method of production of composite particles for electrochemical device electrode, and electrochemical device electrode
US8828481B2 (en) * 2007-04-23 2014-09-09 Applied Sciences, Inc. Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
JP5652344B2 (ja) * 2011-06-27 2015-01-14 日本ゼオン株式会社 全固体二次電池
HUE051861T2 (hu) * 2015-03-25 2021-03-29 Zeon Corp Szilárdtest-akkumulátor
EP3389129B8 (en) * 2015-12-11 2023-10-11 FUJIFILM Corporation Solid electrolyte composition, binder particles, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing same
JP6567091B2 (ja) * 2016-01-27 2019-08-28 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用シート、全固体二次電池用電極シートおよび全固体二次電池の製造方法
KR102369486B1 (ko) * 2016-07-12 2022-03-02 니폰 제온 가부시키가이샤 고체 전해질 전지용 바인더 조성물

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099315A (ja) 2010-11-01 2012-05-24 Sumitomo Electric Ind Ltd 全固体リチウム電池用正極とその製造方法および全固体リチウム電池
JP2012227107A (ja) 2011-04-05 2012-11-15 Sumitomo Electric Ind Ltd 非水電解質電池用電極体及び非水電解質電池
WO2012173089A1 (ja) 2011-06-17 2012-12-20 日本ゼオン株式会社 全固体二次電池
JP2013196968A (ja) * 2012-03-21 2013-09-30 Toyota Motor Corp 正極活物質層含有体の製造方法
WO2014132333A1 (ja) * 2013-02-26 2014-09-04 株式会社 日立製作所 全固体リチウムイオン二次電池
JP2015088480A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2016139511A (ja) 2015-01-27 2016-08-04 富士フイルム株式会社 固体電解質組成物およびこれを用いた電池用電極シートならびに電池用電極シートおよび全固体二次電池の製造方法
JP2016149238A (ja) 2015-02-12 2016-08-18 富士フイルム株式会社 固体電解質組成物、電池用電極シートおよび全固体二次電池ならびに電池用電極シートおよび全固体二次電池の製造方法
JP2016181472A (ja) 2015-03-25 2016-10-13 日本ゼオン株式会社 全固体二次電池
JP2017198575A (ja) 2016-04-28 2017-11-02 ウシオ電機株式会社 光学素子特性測定装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. HAYASHIS. HAMAH. MORIMOTOM. TATSUMISAGOT. MINAMI, CHEM. LETT., 2001
HISASHI, HIDEYUKI: "Current State of Electroconductive Carbonblack", JOURNAL OF PRINTING SCIENCE AND TECHNOLOGY, vol. 44, no. 3, 2007, pages 133 - 143, XP055685078 *
T. OHTOMOA. HAYASHIM. TATSUMISAGOY. TSUCHIDAS. HAMAK. KAWAMOTO, JOURNAL OF POWER SOURCES, vol. 233, 2013, pages 231 - 235

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021043493A1 (en) * 2019-09-03 2021-03-11 Solvay Sa Sulfide-based solid composite electrolyte film
JPWO2021193826A1 (ja) * 2020-03-27 2021-09-30
WO2021193826A1 (ja) * 2020-03-27 2021-09-30 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7292498B2 (ja) 2020-03-27 2023-06-16 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2022030636A1 (ja) * 2020-08-07 2022-02-10 リファインホールディングス株式会社 全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー
WO2022255474A1 (ja) * 2021-06-04 2022-12-08 リファインホールディングス株式会社 炭素質材料分散体の脱水方法および炭素質材料分散体の製造方法
JP2022186527A (ja) * 2021-06-04 2022-12-15 リファインホールディングス株式会社 炭素質材料分散体の脱水方法および炭素質材料分散体の製造方法
JP7239638B2 (ja) 2021-06-04 2023-03-14 リファインホールディングス株式会社 炭素質材料分散体の脱水方法および炭素質材料分散体の製造方法
WO2023282333A1 (ja) * 2021-07-07 2023-01-12 富士フイルム株式会社 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法

Also Published As

Publication number Publication date
EP3696886A4 (en) 2020-12-23
EP3696886A1 (en) 2020-08-19
JPWO2019074074A1 (ja) 2020-10-22
CN111194492B (zh) 2023-11-14
US20200227751A1 (en) 2020-07-16
CN111194492A (zh) 2020-05-22
JP6942810B2 (ja) 2021-09-29

Similar Documents

Publication Publication Date Title
KR102126144B1 (ko) 고체 전해질 조성물, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지의 제조 방법
JP7003152B2 (ja) 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2016199805A1 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP6942810B2 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
US11552332B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery
WO2018047946A1 (ja) 電極層材、全固体二次電池電極用シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
US11552331B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary
JP6572063B2 (ja) 全固体二次電池、全固体二次電池用電極シート及びこれらの製造方法
WO2019074076A1 (ja) 全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
WO2018163976A1 (ja) 固体電解質含有シート、固体電解質組成物および全固体二次電池、ならびに、固体電解質含有シートおよび全固体二次電池の製造方法
WO2019054455A1 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2019151373A1 (ja) 固体電解質組成物及びその製造方法、固体電解質含有シート、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
WO2020059550A1 (ja) 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
WO2019087750A1 (ja) 活物質層形成用組成物及びその製造方法、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
WO2019203334A1 (ja) 固体電解質組成物、全固体二次電池用シート、及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法
WO2019098008A1 (ja) 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP2018037229A (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
WO2022085733A1 (ja) 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018865753

Country of ref document: EP

Effective date: 20200512