WO2022030636A1 - 全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー - Google Patents

全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー Download PDF

Info

Publication number
WO2022030636A1
WO2022030636A1 PCT/JP2021/029408 JP2021029408W WO2022030636A1 WO 2022030636 A1 WO2022030636 A1 WO 2022030636A1 JP 2021029408 W JP2021029408 W JP 2021029408W WO 2022030636 A1 WO2022030636 A1 WO 2022030636A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonaceous material
mass
dispersion
solid
ion secondary
Prior art date
Application number
PCT/JP2021/029408
Other languages
English (en)
French (fr)
Inventor
健佑 深澤
勝 中條
友潔 竹山
Original Assignee
リファインホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020135224A external-priority patent/JP2022030898A/ja
Priority claimed from JP2021093200A external-priority patent/JP2022185480A/ja
Application filed by リファインホールディングス株式会社 filed Critical リファインホールディングス株式会社
Priority to US18/020,162 priority Critical patent/US20230307651A1/en
Priority to CN202180065799.0A priority patent/CN116420244A/zh
Publication of WO2022030636A1 publication Critical patent/WO2022030636A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a carbonaceous material dispersion for an all-solid-state lithium-ion secondary battery and an electrode slurry for an all-solid-state lithium-ion secondary battery. More specifically, the present invention can suppress deterioration of the solid electrolyte when used as a conductive auxiliary agent for an all-solid lithium-ion secondary battery, and the carbonaceous material is uniformly dispersed in a high concentration to provide an electrode active material.
  • the present invention relates to a carbonaceous material dispersion for an all-solid lithium-ion secondary battery capable of dispersing the solid content at a high concentration with low viscosity when mixed with the above, and an electrode slurry for an all-solid lithium-ion secondary battery using the same.
  • an electrolytic solution using a flammable organic solvent or the like as a diluting solvent has been conventionally used as a medium for moving ions, but in a battery using such an electrolytic solution, electrolytic solution is used. It may cause problems such as liquid leakage, ignition, and explosion.
  • the all-solid-state lithium-ion secondary battery has a very small charge transfer resistance between the solid electrolyte and lithium ion, so the internal resistance of the battery can be reduced, and since the electrolyte is solid, there is less concern about ignition and leakage. It does not liquid, and problems such as deterioration of battery performance due to corrosion are unlikely to occur.
  • the all-solid lithium-ion secondary battery is provided with a positive electrode layer and a negative electrode layer, and a solid electrolyte layer arranged between them, and the electrolyte is composed of a solid.
  • the electrode layer is formed by powder molding using only the electrode active material as the solid electrolyte layer, since the electrolyte is solid, the electrolyte does not easily penetrate into the inside of the electrode layer, and the interface between the electrode active material and the electrolyte is reduced. However, the battery performance will deteriorate. Further, since the electrode layer is composed of a solid, it has poor flexibility and workability, and is difficult to handle.
  • an electrode layer using a slurry prepared by dispersing an electrode active material, a solid electrolyte material and a binder in a solvent.
  • an active material, a conductive auxiliary agent, etc. are dispersed in a polymer solution in which polyvinylidene fluoride (PVDF) is dissolved as a binder in an N-methyl-2-pyrrolidone (NMP) solvent.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • An electrode slurry is used, in which an active material or a conductive auxiliary agent is dispersed in an aqueous solution obtained by emulsifying styrene butadiene rubber (SBR) as a binder in an aqueous solvent, and a thickener such as carboxymethyl cellulose (CMC) is added.
  • SBR emulsifying styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • a positive electrode compound composed of a positive electrode active material, a solid electrolyte material, a binder, a conductive agent, and a solvent and used to form a positive electrode mixture layer of an all-solid lithium ion secondary battery.
  • the binder is a styrene-containing binder resin such as styrene butadiene rubber (SBR) and styrene ethylene butylene styrene block copolymer (SEBS), carbon fiber is used as a conductive agent, and the solvent is used.
  • a composition using a normal alcohol such as heptane and a non-polar solvent such as toluene or xylene has been proposed.
  • a positive electrode current collector is obtained in which the positive electrode mixture layer is formed with high flexibility and strength while improving the electric conductivity.
  • a negative electrode mixture layer composed of a negative electrode active material, a solid electrolyte material, a binder, a conductive agent, and a solvent and used for forming a negative electrode mixture for an all-solid lithium ion secondary battery.
  • a negative electrode active material containing Si a solid electrolyte containing a sulfide solid electrolyte
  • a conductive material made of a fibrous carbonaceous material having a carbon six-membered ring and a polymer compound having an aromatic ring such as SBR and SEBS.
  • a composition consisting of at least one solvent selected from the group consisting of 1,3,5-trimethylbenzene, isopropylbenzene and methylphenyl ether has been proposed.
  • a binder a high molecular weight material having an aromatic ring such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), butylene rubber (BR), polyvinyl butyral (PVB), and acrylic resin in the range of 5% by mass or less.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • BR butylene rubber
  • PVB polyvinyl butyral
  • acrylic resin acrylic resin in the range of 5% by mass or less.
  • a binder made of a polymer compound having an aromatic ring such as SBR and SEBS, and 1 , 3,5-trimethylbenzene, isopropylbenzene, and a solvent having an aromatic ring such as methylphenyl ether are selected. It has also been reported that the increase in internal resistance cannot be suppressed even if a solvent having an aromatic ring is used.
  • Patent Document 3 for example, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethylmethacrylate, polyethylene and the like are used as the binder, and for example, toluene, xylene, decalin, tetrahydronaphthalene and the like are used as the solvent.
  • Patent Document 4 in preparing a slurry for an all-solid lithium ion secondary battery, butyl butyrate, heptan, or the like has been conventionally used as a low-polarity solvent, but the affinity with PVDF is not sufficient. , The molecular chain of PVDF could not be sufficiently spread in the solvent, the viscosity of the electrode slurry could not be sufficiently increased, the electrode slurry could not be applied uniformly, non-uniformity was generated in the electrode, and the battery was used.
  • an acrylic copolymer having a predetermined structure is used as a binder, and for example, butyl ether (butyl butyrate, butyl propionate, butyl valerate) and an alkane solvent (butyl butyrate, butyl propionate, butyl valerate) are used as solvents.
  • butyl ether butyl butyrate, butyl propionate, butyl valerate
  • an alkane solvent butyl butyrate, butyl propionate, butyl valerate
  • Hexane, cyclohexane, heptane, cycloheptane, octane, cyclooctane) are disclosed.
  • an electrode slurry for an all-solid lithium ion secondary battery or a carbonaceous material dispersion in which a carbonaceous material for preparing the electrode slurry is dispersed in a solvent a combination of the solvent and the binder in the above-mentioned prior art is used.
  • the problem of deterioration of the solid electrolyte arises, and it is difficult to uniformly disperse the carbonaceous material in the slurry or dispersion at a high concentration, and when mixed with the electrode active material, the solid content is reduced.
  • an object of the present invention to provide a carbonaceous material dispersion for an all-solid-state lithium-ion secondary battery and an electrode slurry for an all-solid-state lithium-ion secondary battery, which solves the above-mentioned problems.
  • the present invention can also suppress deterioration of the solid electrolyte when used as a conductive auxiliary agent for an all-solid lithium-ion secondary battery, and the carbonaceous material is uniformly dispersed at a high concentration to provide excellent conductivity.
  • An object of the present invention is to provide a carbonaceous material dispersion for an all-solid-state lithium-ion secondary battery that can be exhibited, and an electrode slurry for an all-solid-state lithium-ion secondary battery using the same.
  • the present inventors have made a carbonaceous material dispersion for an all-solid lithium ion secondary battery, as a dispersant for carbonic materials, particularly carbon black.
  • a dispersant containing at least polyvinyl butyral and an ester solvent as a solvent in a predetermined ratio, deterioration of the solid electrolyte can be suppressed, and the carbonaceous material is uniformly dispersed at a high concentration to exhibit excellent conductivity.
  • the present invention that solves the above problems is a carbonaceous material dispersion for an all-solid lithium ion secondary battery in which a carbonaceous material and a dispersant are dispersed in a dispersion medium, and the dispersion medium is at least an ester-based solvent. It is contained and contains at least polyvinyl butyral as a dispersant, the blending amount of the carbonaceous material in the dispersion is 10 to 25% by mass with respect to the total mass of the dispersion, and the blending amount of the dispersant is the carbonaceous material. It is a carbonaceous material dispersion characterized by having a viscosity of 5 to 40% by mass and a viscosity at 25 ° C. of 500 mPa ⁇ s or less with respect to the mass of the above.
  • the amount of the dispersant blended is 5% by mass or more and less than 20% by mass with respect to the mass of the carbonaceous material. Is shown.
  • the amount of the dispersant blended is 20% by mass to 40% by mass with respect to the mass of the carbonaceous material.
  • the body is shown.
  • the viscoelasticity of the carbonaceous material dispersion at 25 ° C. has a minimum value in the range of a shear rate of 10 to 1000 s -1 .
  • a quality material dispersion is shown.
  • the dispersion medium is a carbonaceous material dispersion containing an ester solvent in an amount of 10% by mass or more of the total amount of the dispersion medium.
  • the ester solvent is propyl acetate, butyl butyrate, butyl penate, butyl hexanoate, pentyl butyrate, pentyl penate, pentyl hexanoate, hexyl butyrate, and the like.
  • a carbonaceous material dispersion is shown which is at least one selected from the group consisting of hexyl pentanoate and hexyl hexanoate.
  • the carbonaceous material dispersion in which the ester solvent is butyl butyrate is shown.
  • a carbonaceous material dispersion in which the carbonaceous material is carbon black is shown.
  • a carbonaceous material dispersion in which carbon black is acetylene black is further shown.
  • a carbonaceous material dispersion further containing a pH adjuster is shown.
  • the present invention which solves the above problems, is also an electrode slurry for an all-solid-state lithium-ion secondary battery in which a carbonaceous material, a dispersant, a binder resin, and a positive electrode active material or a negative electrode active material are mixed in a dispersion medium.
  • the dispersion medium contains at least an ester solvent, the dispersant contains at least polyvinyl butyral, and the amount of the dispersant in the solid content of the slurry is 5 to 40% by mass based on the mass of the carbonaceous material.
  • This is an electrode slurry for an all-solid-state lithium-ion secondary battery.
  • One embodiment of the electrode slurry for an all-solid-state lithium-ion secondary battery according to the present invention is characterized in that the blending amount of the dispersant is 5% by mass or more and less than 20% by mass with respect to the mass of the carbonaceous material. A carbonaceous material dispersion is shown.
  • the viscosity of the slurry at 25 ° C. is 500 to 5000 mPa ⁇ s.
  • An electrode slurry for a solid lithium ion secondary battery is shown.
  • the amount of the dispersant blended is 20 to 40% by mass with respect to the mass of the carbonaceous material. Dispersions are shown.
  • the viscosity of the slurry at 25 ° C. is 1000 to 10000 mPa ⁇ s.
  • An electrode slurry for a solid lithium ion secondary battery is shown.
  • the carbonaceous material when used as a conductive auxiliary agent for an all-solid lithium-ion secondary battery, deterioration of the solid electrolyte can be suppressed, the carbonaceous material is uniformly dispersed at a high concentration, and excellent conductivity is obtained. Since it is possible to provide a carbonaceous material dispersion capable of exhibiting the above-mentioned properties and an electrode slurry for an all-solid-state lithium-ion secondary battery using the same, it is excellent in performance such as charge / discharge characteristics, cycle characteristics, and electrode conductivity. It becomes possible to manufacture a stable secondary battery.
  • the carbonaceous material dispersion for an all-solid lithium-ion secondary battery according to the first aspect of the present invention is a carbonaceous material dispersion for an all-solid lithium-ion secondary battery in which a carbonaceous material and a dispersant are dispersed in a dispersion medium.
  • the dispersion medium contains at least an ester-based solvent, and at least polyvinyl butyral is contained as a dispersant, and the blending amount of the carbonaceous material in the dispersion is 10 to 25% by mass with respect to the total mass of the dispersion. Further, the blending amount of the dispersant is 5 to 40% by mass with respect to the mass of the carbonaceous material, and the viscosity at 25 ° C. is 500 mPa ⁇ s or less.
  • the carbonaceous material used is not particularly limited as long as it has conductivity and can exhibit a powdery granular form, and is not particularly limited, but for example, carbon black (CB) and carbon nanotube (CNT). , Carbon nanofibers (CNF), graphene, fullerene, natural graphite, artificial graphite, non-graphitizable carbon, cokes, graphite, etc., and these can be used alone or in combination of two or more. ..
  • CB is particularly preferable.
  • examples of the CB include furnace black, ketjen black, channel black, acetylene black, thermal black and the like, and any of them can be used. Of these, for example, acetylene black is preferable because it has an inherently low metal component content in its production method.
  • the carbon black the usual oxidation-treated carbon black and graphitized carbon black can also be used.
  • Oxidation treatment of carbon black is carried out by treating carbon black at a high temperature in the air or by secondarily treating it with nitric acid, nitrogen dioxide, ozone, etc., for example, to form a phenol group, a quinone group, a carboxyl group, a carbonyl group, etc.
  • This is a treatment for directly introducing (covalently bonding) such an oxygen-containing polar functional group onto the surface of carbon black, and improves the dispersibility of carbon black.
  • the carbonaceous material is also subjected to a dry magnetic separation treatment, if necessary, to remove metal impurities contaminated prior to the production of the carbonaceous material dispersion, and / or the carbonic material is used as an ester solvent. After being dispersed to prepare a dispersion, it can be subjected to a magnetic separation treatment in a wet manner.
  • the form of "powder granules" of the carbonaceous material as a raw material to be dispersed in the dispersion medium is limited as long as it can be dispersed in an ester solvent as described later. is not it.
  • the shape is not particularly limited, and is not limited to a substantially spherical shape, and may include an elliptical shape, a flaky shape, a needle shape or a short fiber shape, an amorphous shape, and the like.
  • carbon black for example, as explained on the website of the Carbon Black Association (https://carbonblack.biz/index.html), the smallest unit in which carbon black cannot be decomposed is an aggregate. It is a (primary aggregate), and a part of it (domain) is commonly called a particle. This particle is considered to correspond to a particle defined as the smallest unit in a nanomaterial, but it is only a part of an aggregate. Aggregates form aggregates (secondary aggregates) by physical forces such as van der Waals forces. In addition, carbon black products are used to prevent scattering and improve handleability. In most cases, it is transported and sold in the form of particles that have been processed into beads by compression processing or granulation processing.
  • particles processed by compression treatment or granulation treatment to have an average particle diameter of about 500 to 5000 ⁇ m may be included.
  • the conductive carbon fine particles are preferably aggregates in which primary particles are connected to some extent to form a chain-like or tufted structure.
  • the sequence of primary particles in an aggregate is also referred to as a structure, and the degree of such development is either particle size distribution measurement (dynamic light scattering or laser diffraction / light scattering) or electron microscopy (scanning or transmission type). It can be used.) It can be grasped by observation. With such a structure, a conductive path can be efficiently formed between the electrode active material particles. Therefore, excellent conductivity can be imparted to the electrode active material layer with a smaller amount of use.
  • the dispersion medium constituting the carbonaceous material dispersion for an all-solid-state lithium ion secondary battery according to the first aspect of the present invention contains at least an ester solvent.
  • the reason why the ester solvent is used is that in the carbonaceous material dispersion for an all-solid-state lithium-ion secondary battery according to the first aspect of the present invention, polyvinyl butyral is mainly used as a dispersant as described later. This is because it exhibits good solubility in butyral, is hydrophobic, and has low reactivity with solid electrolytes.
  • the mixing ratio of the ester solvent in the dispersion medium is particularly limited.
  • the ester solvent is contained in an amount of 10% by mass or more, more preferably 20% by mass or more of the total amount of the dispersion medium in order to obtain a good dispersion.
  • the total amount (100% by mass) of the dispersion medium is composed of the ester solvent.
  • the ester solvent is not particularly limited as long as it exhibits good solubility in polyvinyl butyral and has low reactivity with a solid electrolyte.
  • a carboxylic acid ester represented by R 1 -COOR 2 (wherein R 1 is a hydrocarbon group of C1 to C8 and R 2 is an alkyl group of C2 to C8) can be used.
  • propyl acetate, butyl butyrate, butyl pentanate, butyl hexanoate, pentyl butyrate, pentyl pentanate, pentyl hexanoate, hexyl butyrate, hexyl butyrate, hexyl hexanoate and the like are preferable, and butyl butyrate is particularly preferable.
  • the other solvent that can be used together with the ester solvent as the dispersion medium according to the present invention is particularly limited as long as it does not significantly impair the solubility of the resin component and the dispersibility in the carbonaceous material by the ester solvent.
  • the non-polar solvent that can be used together with the above ester-based solvent as the dispersion medium according to the present invention is not particularly limited, but specifically, for example, non-aqueous linear and / or branched or branched.
  • Alcans having 4 to 30 cyclic carbon atoms such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, methylcyclohexane, etc.;
  • And / or branched and / or cyclic haloalkanes with 1 to 30 carbon atoms such as dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorocyclohexane, etc .;
  • Aromatic compounds such as chlorobenzene, fluorobenzene, dichlorobenzene or difluorobenzene, trichlorobenzene or trifluorobenzene, chloronaphthalene or fluoronaphthalene; linear and / or branched and / or cyclic ethers such as diethyl.
  • Ether dipropyl ether, tert-butylmethyl ether, tert-amylmethyl ether, tert-amylethyl ether, dimethoxyethane, diethoxyethane, methoxybenzene, methylthiobenzene, ethoxybenzene, petroleum ether, etc .; linear and / or Branched and / or cyclic ketones such as acetone, trichloroacetone, butanone, pentanone, hexanone, heptanone, octanone, nonanone, cyclopentanone, cyclohexanone, acetophenone, acetylacetone, etc .; linear and / or branched and / or / Or cyclic nitroalkanes such as nitromethane, nitroethane, nitrocyclohexane; nitroaromatic compounds having 6 to 22 carbon atoms such as nitrobenzene;
  • Silane diphenyldimethylsilane, chlorophenyltrimethylsilane, phenyltrimethylsilane, phenetyllis (trimethylsiloxy) silane, phenyltris (trimethylsiloxy) silane, polydimethylsiloxane, tetraphenyltetramethyltrisiloxane, poly (3,3,3-tri) Fluoropropylmethylsiloxane), 3,5,7-triphenylnonamethylpentasiloxane, 3,5-diphenyloctamethyltetrasiloxane, 1,1,5,5-tetraphenyl-1,3,3,5-tetramethyl -Silane oils such as trisiloxane and hexamethylcyclotrisiloxane; fluorine-containing solvents such as hydrofluoroether, chlorodifluoromethane, 1,1,1,2-tetrafluoroethane, pentafluoroethane, di
  • cyclohexane, n-hexane, benzene, toluene, xylene and the like are particularly desirable as the non-polar solvent.
  • the dispersion medium according to the present invention is composed of only the above-mentioned ester-based solvent, or is a mixed solvent of an ester-based solvent and a non-polar solvent, and the content of the ester-based solvent in the present mixed solvent is 10% by mass or more 100. It is desirable that the solvent is composed of less than% by mass and the content of the non-polar solvent is 0% by mass or more and less than 90% by mass (however, the total is 100% by mass).
  • the dispersant constituting the carbonaceous material dispersion for an all-solid-state lithium-ion secondary battery according to the first aspect of the present invention contains at least polyvinyl butyral.
  • polyvinyl butyral is a main component, particularly preferably 80% by mass or more, and it is also a particularly preferable aspect that the total amount of the dispersant, that is, 100% by mass is polyvinyl butyral.
  • polyvinyl butyral is used as a dispersant in this way, and by combining with an ester-based solvent as described above as a dispersion medium, carbon in the carbonaceous material dispersion is used. Good dispersibility of the quality material can be obtained, and the viscosity can be reduced.
  • the solid content in preparing an electrode slurry for an all-solid-state lithium-ion secondary battery, can be dispersed at a low viscosity and a high concentration when mixed with an electrode active material. Further, it has an action of appropriately increasing the viscosity of the slurry, lowering the settling speed of the materials constituting the electrode such as the electrode active material and the carbonaceous material, and uniformly coating the slurry on the current collector. It is possible to bond the materials constituting the electrode with appropriate strength, adhesiveness and conductivity, such as between the active materials, between the active material and the conductive auxiliary agent, and between the conductive auxiliary agents.
  • the polyvinyl butyral is not particularly limited, but has a relatively low hydroxyl group content, specifically, for example, the hydroxyl group content in the polymer is 5% by mass or more and 25% by mass or less, more preferably 10% by mass.
  • the above, 20% by mass or less, more preferably 12.5% by mass or more, and 17.5% by mass or less are used for good solubility in the ester-based solvent which is the above-mentioned dispersion medium. preferable.
  • the acetic acid group content of polyvinyl butyral is preferably about 1 to 7% by mass, and the viscosity is 10% by mass of polyvinyl measured at 20 ° C. in accordance with DIN53015. It is desirable that the solution viscosity of the butyral ethanol solution is about 10 to 100 mPa ⁇ s, particularly about 20 to 60 mPa ⁇ s.
  • dispersant other dispersants that can be blended with polyvinyl butyral and used may include, for example, resin-based dispersants other than polyvinyl butyral, surfactants as exemplified below, and the like.
  • the resin-based dispersant other than polyvinyl butyral polyvinyl acetal, polyvinyl acetate, polyester resin, epoxy resin, polyether resin, alkyd resin, urethane resin and the like can be used.
  • the composition thereof is 80% by mass or more and less than 100% by mass of polyvinyl butyral and less than 20% by mass and 0% by mass. % Percentage of other components as described above (however, the total is 100% by mass).
  • the viscosity of the carbonaceous material dispersion according to the present invention at 25 ° C. is maintained at the desired value, specifically, for example, 500 mPa ⁇ s or less.
  • the finally prepared slurry is applied onto the current collector, it is possible to improve the bondability between the active materials, between the active material and the conductive auxiliary agent, between the conductive auxiliary agents, and other materials that make up the electrode. Will be.
  • a pH adjuster can be added to the carbonaceous material dispersion for an all-solid-state lithium-ion secondary battery according to the first aspect of the present invention, if necessary.
  • the pH adjuster include tertiary amines, secondary amines, primary amines, cyclic amines, and alkanolamines or aminoalcohols which are compounds having an amino group and a hydroxy group in the alkane skeleton, or diglycolamine and tris.
  • (Hydroxymethyl) Amine compounds such as aminomethane (THAM), other amines such as morpholine can be exemplified.
  • 2-methylaminoethanol 2-amino-1-butanol, 4-ethylamino-1-butanol, triethylamine, 2-amino-2-ethyl-1,3-propane Diol (AEPD), 2-amino-2-methyl-1-propanol (AMP), THAM and the like are particularly preferable.
  • a surfactant can be blended as a dispersant in the carbonaceous material dispersion for an all-solid-state lithium-ion secondary battery according to the first aspect of the present invention, if necessary.
  • the surfactant is not particularly limited, but is, for example, an anionic surfactant such as sodium dodecylbenzene sulfonate and sodium lauryl sulfate, a cationic surfactant such as tetramethylammonium chloride, and poly. Examples thereof include nonionic surfactants such as oxyethylene alkyl ether compounds and polyoxyethylene fatty acid ester compounds.
  • the composition thereof is 80% by mass or more and less than 100% by mass of polyvinyl butyral and less than 20% by mass and 0% by mass.
  • the ratio of other components as described above (however, the total is 100% by mass).
  • the blending amount of the other components is less than 20% by mass, the viscosity of the carbonaceous material dispersion according to the present invention at 25 ° C. is maintained at the desired value, specifically, for example, 500 mPa ⁇ s or less.
  • the finally prepared slurry is applied onto the current collector, it is possible to improve the bondability between the active materials, between the active material and the conductive auxiliary agent, between the conductive auxiliary agents, and other materials that make up the electrode. Will be.
  • the carbonaceous material is contained in a dispersion medium containing at least an ester-based solvent with respect to the total mass of the dispersion. It is 10 to 25% by mass, more preferably 12 to 18% by mass, and the amount of the dispersant is 5 to 40 with respect to the mass of the carbonaceous material (that is, with respect to 100% by mass of the carbonaceous material). It is adjusted to be by mass, preferably 5% by mass or more and less than 20% by mass, and more preferably 6% by mass or more and less than 12% by mass.
  • the blending amounts of the carbonaceous material and the dispersant are within this range, it is possible to obtain a dispersion containing a high concentration of carbonaceous material while maintaining good dispersibility and low viscosity of the carbonaceous material. be. Further, when the concentration of the carbonaceous material is lower than the above, there is an increase in energy required for removing the solvent in product manufacturing, and an increase in the transportation cost of the dispersion and the cost of the solvent. On the other hand, if the concentration of the carbonaceous material is higher than the above, it becomes difficult to obtain sufficient fluidity, and the handleability deteriorates.
  • the blending amount of the dispersant is preferably 20 with respect to the mass of the carbonaceous material (that is, with respect to the mass of 100% by mass of the carbonaceous material). Aspects that are adjusted to be up to 40% by weight, more preferably 25 to 35% by weight can also be considered.
  • the amount of the pH adjuster added is 0.01 to 5%, more preferably 0.05 to 3% with respect to the total amount of the dispersion. ..
  • the amount of the pH adjuster added is 0.01 to 5%, more preferably 0.05 to 3% with respect to the total amount of the dispersion. ..
  • the carbonaceous material dispersion according to the present invention has a viscosity of 500 mPa ⁇ s at 25 ° C. by subjecting the composition having the above composition and blending amount to a dispersion treatment as illustrated below. Hereinafter, it can be preferably about 50 to 300 mPa ⁇ s.
  • the viscosity of the carbonaceous material dispersion means that the dispersion is sufficiently stirred with a spatula using a B-type viscometer at a measurement temperature of 25 ° C. and a rotor rotation speed of the B-type viscometer rotor of 60 rpm (for example). It is a value measured immediately after 1 minute).
  • the carbonaceous material dispersion according to the present invention has the above-mentioned predetermined composition and blending ratio and exhibits the above-mentioned predetermined viscosity, the carbonaceous material is uniformly dispersed in a high concentration.
  • the electrode active material is dispersed in a high concentration with moderately low viscosity suitable for construction. Can be done.
  • Such properties are, for example, in the carbonaceous material dispersion according to the present invention, in which the viscoelasticity at 25 ° C. has a shear rate in the range of 10 to 1000 s -1 , more preferably in the range of 10 to 500 s -1 , and even more preferably. It can be objectively evaluated by the aspect of having a minimum value in the range of 10 to 100s -1 .
  • the viscoelasticity of this carbonaceous material dispersion is defined by using a rheometer, the temperature condition of the dispersion is set to 25 ° C, and the shear rate is varied from 0.1s- 1 to 1000s -1 .
  • Is a value using the shear rate range indicating the minimum value of the viscosity when the shear viscosity is measured as an index.
  • the method for producing a carbonaceous material dispersion for an all-solid-state lithium-ion secondary battery according to the first aspect of the present invention is not particularly limited, but the ester-based solvent as a dispersion medium can be used as a carbonaceous material and a carbonaceous material.
  • the dispersant is added at the above-mentioned predetermined ratio, and the mixture is stirred and mixed to disperse.
  • the disperser is not particularly limited, and a disperser usually used for pigment dispersion or the like can be used.
  • mixers such as dispersers, homomixers, and planetary mixers, homogenizers ("Clearmix” manufactured by M-Technique, “Fillmix” manufactured by PRIMIX, “Abramix” manufactured by Silverson, etc.), paint conditioners (, etc.) Red Devil), colloid mills (PUC “PUC colloid mill”, IKA “colloid mill MK”), cone mills (IKA “corn mill MKO”, etc.), ball mills, sand mills (Symmal Enterprises) Media type disperser such as “Dyno Mill” manufactured by Dyno Mill, Attritor, Pearl Mill ("DCP Mill” manufactured by Eirich, etc.), Wet Jet Mill ("Genus PY” manufactured by Genus, “Star Burst” manufactured by Sugino Machine Limited” , Nanomizer, etc.), M-Technique's "Claire SS-5", Nara
  • the final media mill is prepared by dispersing the carbonaceous material. More preferably, it is prepared by performing a dispersion treatment using a shear type disperser as described in detail below prior to the dispersion treatment by such a media mill, and then performing a dispersion treatment by a media mill. It is more preferable to have.
  • the average particle size of the beads is preferably 0.05 mm or more, and particularly preferably 0.5 mm or more.
  • the average diameter of the beads is preferably 2 mm or less, and particularly preferably 1.5 mm or less.
  • the material of the beads as the dispersed medium used in the media mill is not particularly limited, and examples thereof include alumina, zirconia, steel, chrome steel, and glass, and among these, contamination to products. Further, considering the magnitude of kinetic energy due to the specific gravity, it is preferable to use zirconia beads.
  • the shape of the beads is not particularly limited, but generally a spherical shape is used.
  • the structure of the media mill is not particularly limited, and various known media mills can be applied. Specific examples thereof include various known attritors, sand mills, bead mills and the like.
  • the filling ratio of the beads to the vessel may be determined by the vessel, stirring mechanism, structure, etc., and is not particularly limited. However, if the ratio is too low, sufficient crushing or cutting action is applied to the carbonaceous material. There is a risk that it will not be able to be demonstrated. On the other hand, if the ratio is too high, a large driving force is required for rotation, and there is a possibility that the wear of the beads causes an increase in contamination of the material to be treated. Therefore, it is desirable that the filling ratio of the beads is, for example, about 70 to 85% by volume of the effective volume of the vessel.
  • operating conditions such as processing time, shaft rotation speed, vessel internal pressure, and motor load depend on the blending amount of carbonaceous material and the characteristics of the resin to be dispersed, especially the viscosity and compatibility with carbonaceous material. , It may be set appropriately according to the purpose.
  • a shear type stirrer such as a disper or a homo mixer.
  • a dispersion having a viscosity of the dispersion at 25 ° C. of 500 mPa ⁇ s or less, preferably about 50 to 300 mPa ⁇ s is prepared.
  • the carbonaceous material dispersion according to the first aspect of the present invention described in detail above can be prepared as a slurry for electrodes by containing the following electrode active materials.
  • the electrode slurry for an all-solid lithium ion secondary battery according to the second aspect of the present invention contains a carbonaceous material, a dispersant, a binder resin, and a positive electrode active material or a negative electrode active material in a dispersion medium.
  • Is an electrode slurry for an all-solid-state lithium-ion secondary battery characterized in that is 5 to 40% by mass with respect to the mass of the carbonaceous material.
  • the blending amount of the dispersant in the solid content of the slurry is preferable with respect to the mass of the carbonaceous material. Is 5% by mass or more and less than 20% by mass, more preferably 6% by mass or more and less than 12% by mass.
  • the blending amount of the dispersant is dispersed in the solid content of the slurry with respect to the mass of the carbonaceous material.
  • the blending amount of the agent is 20 to 40% by mass, more preferably 25 to 35% by mass, based on the mass of the carbonaceous material. ..
  • the manufacturing process of the electrode slurry for an all-solid-state lithium-ion secondary battery, the order of addition of each component, etc. according to the second aspect of the present invention are not limited, and for example, (a) all components are collectively applied.
  • a carbonaceous material (and a dispersant) is dispersed in a part of the dispersion medium.
  • a carbonaceous material dispersion and an electrode active material dispersion in which a positive electrode active material or a negative electrode active material (and a dispersant) are dispersed in a part of the dispersion medium are prepared, and the carbonaceous material dispersion and the electrode active material dispersion are prepared. It can be any aspect such as a mode for producing an electrode slurry for an all-solid-state lithium ion secondary battery by mixing with a body.
  • the dispersion medium, the carbonaceous material, and the dispersant are the carbonaceous material dispersion according to the first aspect of the present invention. Since it is similar to the one described for the body, the description here is omitted to avoid duplication.
  • the electrode slurry for the all-solid-state lithium-ion secondary battery according to the second aspect of the present invention has the same as the carbonaceous material dispersion according to the first aspect of the present invention, as described above, if necessary. It is also possible to add a suitable pH adjuster.
  • the positive electrode active material that can be blended in the electrode slurry for an all-solid-state lithium ion secondary battery according to the second aspect of the present invention is not particularly limited, but is a metal oxide capable of doping or intercalating lithium ions.
  • Metal compounds such as metal sulfides, conductive polymers and the like can be used.
  • transition metals such as Fe, Co, Ni and Mn
  • inorganic compounds such as transition metal sulfides.
  • transition metal oxide powders such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 , layered lithium nickelate, lithium cobaltate, lithium manganate, lithium manganate having a spinel structure, etc.
  • examples thereof include a composite oxide powder of lithium and a transition metal, a lithium iron phosphate-based material which is a phosphoric acid compound having an olivine structure, and a transition metal sulfide powder such as TiS 2 and FeS.
  • conductive polymers such as polyaniline, polyacetylene, polypyrrole, and polythiophene can also be used. Further, the above-mentioned inorganic compounds and organic compounds may be mixed and used.
  • the negative electrode active material that can be blended is not particularly limited as long as it can be doped with or intercalated with lithium ions.
  • metal Li alloys such as tin alloys, silicon alloys, lead alloys, Li X Fe 2 O 3 , Li X Fe 3 O 4 , Li X WO 2 , lithium titanate, lithium vanadium acid, silicon.
  • Metal oxide-based materials such as lithium acid, conductive polymer-based materials such as polyacetylene and poly-p-phenylene, amorphous carbonaceous materials such as soft carbon and hard carbon, artificial graphite such as highly graphitized carbonaceous materials, or artificial graphite.
  • amorphous carbonaceous materials such as soft carbon and hard carbon
  • artificial graphite such as highly graphitized carbonaceous materials
  • artificial graphite such as highly graphitized carbonaceous materials
  • artificial graphite such as highly graphitized carbonaceous materials
  • Examples thereof include carbonaceous powders such as natural graphite, carbon blacks, mesophase carbon blacks, resin-fired carbonaceous materials, vapor-grown carbon fibers, and carbonaceous materials such as carbon fibers.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • the average particle size of these electrode active materials is preferably in the range of 0.05 to 100 ⁇ m, more preferably in the range of 0.1 to 50 ⁇ m.
  • the average particle size of the electrode active material referred to in the present specification is an average value of the particle size measured by an electron microscope.
  • the binder resin to be blended in the dispersion medium is not particularly limited, but has solubility in water.
  • Polymers that do not can be used specifically, for example, polyvinylidene fluoride, polytetrafluoroethylene, polyimide, polyamide, polyamideimide, butadiene rubber, isobutylene rubber, styrene butadiene rubber, ethylene propylene rubber, nitrile butadiene rubber and the like are used. be able to. Of these, styrene-butadiene rubber can be particularly preferably used.
  • the same resin-based dispersant that can be blended in the carbonaceous material dispersion according to the first aspect of the present invention may function as a binder resin.
  • this electrode slurry As an apparatus for producing this electrode slurry, the same apparatus as that used for preparing the dispersion of the present invention described above can be used.
  • the solid content concentration of the slurry is 65 to 75% by mass by using the predetermined components as described above.
  • the viscosity of the slurry at 25 ° C. is 500 to 5000 mPa ⁇ s, more preferably 1000. It can be set to about 4000 mPa ⁇ s, and the workability can be improved.
  • the solid content concentration of the slurry is 77 to 87% by mass by using the predetermined components as described above.
  • the viscosity of the slurry at 25 ° C. is 1000 to 10000 mPa ⁇ s, more preferably 1000 to 5000 mPa ⁇ s. It can be s, and the workability can be improved.
  • Example 1 The total mass of the dispersion is 100% by mass, butyl butyrate 82.5% by mass (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a dispersion medium, and polyvinyl butyral (Eslek BL, manufactured by Sekisui Chemical Co., Ltd.) 1.5 as a dispersant.
  • Mass% (10% by mass with respect to acetylene black), acetylene black (Denka Black (trade name) granular product, manufactured by Denka Co., Ltd.) 15% by mass, and 2-amino-2-ethyl-1,3-propanediol 1 It was blended in a proportion of% by mass and subjected to dispersion treatment with a laboratory bead mill (manufactured by IMEX Co., Ltd.). For the dispersion treatment using a bead mill, zirconia beads having a diameter of 1 mm were used, the bead filling factor in the vessel was 30% by volume of the effective volume of the vessel, and the volume ratio between the dispersion and the beads was about 1: 1. Dispersion was carried out in the vessel at a rotation speed of about 2000 rpm until the viscosity reached about 100 mPa ⁇ s.
  • the carbonaceous material dispersion (acetylene black dispersion) thus prepared was allowed to stand for 24 hours or more after the dispersion treatment, and then the viscosity at 25 ° C. was measured and found to be 104 mPa ⁇ s.
  • a B-type viscometer (“TVB-15M” manufactured by Toki Sangyo Co., Ltd.) was used for the measurement, and the dispersion composition was sufficiently stirred with a spatula at a measurement temperature of 25 ° C. and a B-type viscometer rotor rotation speed of 60 rpm. I went immediately.
  • the rotor is No. 21 was used.
  • the shear viscosity was measured by varying the shear rate from 0.1s -1 to 1000s -1 with a rheometer ("Kinexus” manufactured by Malvern Panasonic), and the minimum value of the viscosity was 10s -1 to 1000s -1 . It was confirmed that it was in the range (250s -1 ).
  • Example 2 LiNi 1/3 Co 1/3 Mn 1/3 O2 powder (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., granules) as a positive electrode active material with respect to 10.0 g of the carbonaceous material dispersion prepared in Example 1 above.
  • a binder solution in which 30.0 g (diameter 1 to several ⁇ m) and styrene butadiene rubber are dissolved in 10% by mass of butyl butyrate and butyl butyrate are mixed so that the total solid content concentration becomes 65% by mass, and the revolution rotating stirring defoaming machine is used. When the mixture was revolved and rotated at 1200 rpm for 5 minutes, the mixture became a slurry showing fluidity.
  • the obtained slurry for forming a positive electrode mixture layer had an appropriate viscosity at the time of coating.
  • the measurement conditions with the rheometer were constant at 25 ° C., the shear rate was 10s -1 , and the average value measured at 5 points every 60 seconds was taken as the viscosity of the slurry.
  • the viscosity of the slurry was 3746 mPa ⁇ s.
  • Example 3 The total mass of the dispersion is 100% by mass, butyl butyrate is 83.2% by mass as a dispersion medium, and polyvinyl butyral (Eslek BL, manufactured by Sekisui Chemical Industry Co., Ltd.) 0.8% by mass (relative to acetylene black) as a dispersant. 5.3% by mass), acetylene black (Denka Black (brand name) granular product, manufactured by Denka Co., Ltd.) 15% by mass, and 2-amino-2-ethyl-1,3-propanediol in a proportion of 1% by mass.
  • the mixture was mixed and dispersed in a bead mill.
  • the conditions for the dispersion treatment using the bead mill were the same as those in Example 1 except that the dispersion was carried out until the viscosity became about 300 mPa ⁇ s.
  • the viscosity of the carbonaceous material dispersion (acetylene black dispersion) thus prepared was measured in the same manner as in Example 1. As a result, the viscosity of the dispersion was 345 mPa ⁇ s. After that, the shear viscosity was measured by varying the shear rate from 0.1s -1 to 1000s -1 with a rheometer in the same manner as in Example 1, and the minimum value of the viscosity was in the range of 10s -1 to 1000s -1 (630s -1 ). ) Was confirmed. After that, a dry coating film was prepared in the same manner as in Example 1, and the resistance value was measured to be 1079 ⁇ , showing good conductivity.
  • Example 4 The total mass of the dispersion is 100% by mass, butyl butyrate is 81.5% by mass as a dispersion medium, and polyvinyl butyral (Eslek BL, manufactured by Sekisui Chemical Industry Co., Ltd.) as a dispersant is 2.5% by mass (relative to acetylene black). 16.7% by mass), acetylene black (Denka Black (brand name) granular product, manufactured by Denka Co., Ltd.) 15% by mass, and 2-amino-2-ethyl-1,3-propanediol in a proportion of 1% by mass.
  • the mixture was mixed and dispersed in a bead mill.
  • the dispersion treatment conditions by the bead mill were the same as those in Example 1.
  • the viscosity of the carbonaceous material dispersion (acetylene black dispersion) thus prepared was measured in the same manner as in Example 1. As a result, the viscosity of the dispersion was 79 mPa ⁇ s. After that, the shear viscosity was measured by varying the shear rate from 0.1s -1 to 1000s -1 with a rheometer in the same manner as in Example 1, and the minimum value of the viscosity was in the range of 10s -1 to 1000s -1 (250s -1 ). ) Was confirmed. After that, a dry coating film was prepared in the same manner as in Example 1, and the resistance value was measured. As a result, it was 1371 ⁇ , which showed good conductivity.
  • Example 1 the dispersion treatment was carried out with a bead mill in the same manner as in Example 1 except that cellulose acetate or polyvinylpyrrolidone (both manufactured by Kanto Chemical Co., Inc.) was used instead of polyvinyl butyral as a dispersant. .. However, in either case, the resin component did not dissolve well in butyl butyrate as a dispersion medium, and a uniform dispersion of acetylene black could not be obtained.
  • cellulose acetate or polyvinylpyrrolidone both manufactured by Kanto Chemical Co., Inc.
  • Comparative Example 3 The total mass of the dispersion is 100% by mass, butyl butyrate is 83.4% by mass as a dispersion medium, and polyvinyl butyral (Eslek BL, manufactured by Sekisui Chemical Industry Co., Ltd.) as a dispersant is 0.6% by mass (relative to acetylene black). 4% by mass), acetylene black (Denka Black (brand name) granular product, manufactured by Denka Co., Ltd.) 15% by mass, and 2-amino-2-ethyl-1,3-propanediol in a proportion of 1% by mass. , The dispersion treatment was carried out with a bead mill, but the dispersion did not show sufficient fluidity.
  • Example 5 The total mass of the dispersion is 100% by mass, butyl butyrate is 81% by mass as a dispersion medium, and polyvinyl butyral (ESREC BL, manufactured by Sekisui Chemical Industry Co., Ltd.) as a dispersant is 3% by mass (20% by mass with respect to acetylene black). , Acetylene Black (Denka Black (brand name) Granular product, manufactured by Denka Co., Ltd.) 15% by mass, and 2-amino-2-ethyl-1,3-propanediol in a proportion of 1% by mass, and use a bead mill. Distributed processing was performed. The dispersion treatment conditions by the bead mill were the same as those in Example 1.
  • the viscosity of the carbonaceous material dispersion (acetylene black dispersion) thus prepared was measured in the same manner as in Example 1. As a result, the viscosity of the dispersion was 137 mPa ⁇ s. After that, when the shear viscosity was measured by varying the shear rate from 0.1s -1 to 1000s -1 with a rheometer in the same manner as in Example 1, the minimum value of the viscosity was in the range of 10s -1 to 1000s - 1 (250s-). It was in 1 ). After that, a dry coating film was prepared in the same manner as in Example 1, and the resistance value was measured. As a result, the resistance value was 1953 ⁇ , which was a little lower than that of Examples 1 and 3.
  • Example 6 The total mass of the dispersion is 100% by mass, butyl butyrate 79% by mass (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a dispersion medium, and polyvinyl butyral (Eslek BL, manufactured by Sekisui Chemical Co., Ltd.) 5% by mass (acetylene) as a dispersant. 33.3% by mass with respect to black), acetylene black (Denka Black (trade name) granular product, manufactured by Denka Co., Ltd.) 15% by mass, and 2-amino-2-ethyl-1,3-propanediol 1% by mass.
  • a B-type viscometer (“TVB-15M” manufactured by Toki Sangyo Co., Ltd.) was used for the measurement, and the dispersion composition was sufficiently stirred with a spatula at a measurement temperature of 25 ° C. and a B-type viscometer rotor rotation speed of 60 rpm. I went immediately. The rotor is No. 21 was used. After that, the shear viscosity was measured by varying the shear rate from 0.1s -1 to 1000s -1 with a rheometer ("Kinexus” manufactured by Malvern Panasonic), and the minimum value of the viscosity was 10s -1 to 1000s -1 . It was confirmed that it was in the range (90s -1 ).
  • Example 7 LiNi 1/3 Co 1/3 Mn 1/3 O2 powder (manufactured by Wako Pure Chemical Industries, Ltd., granules) as a positive electrode active material with respect to 10.0 g of the carbonaceous material dispersion prepared in Example 6 above.
  • the obtained slurry for forming a positive electrode mixture layer had an appropriate viscosity at the time of coating.
  • the measurement conditions with the rheometer were constant at 25 ° C., the shear rate was 10s -1 , and the average value measured at 5 points every 60 seconds was taken as the viscosity of the slurry. As a result, the viscosity of the slurry was 1228 mPa ⁇ s.
  • Example 8 The total mass of the dispersion is 100% by mass, 78% by mass of butyl butyrate as a dispersion medium, and 6% by mass of polyvinyl butyral (ESREC BL, manufactured by Sekisui Chemical Industry Co., Ltd.) as a resin composition (40.0 with respect to acetylene black). Mass%), acetylene black (Denka Black (brand name) granular product, manufactured by Denka Co., Ltd.) 15% by mass, and 2-amino-2-ethyl-1,3-propanediol were blended in a proportion of 1% by mass. Dispersion treatment was performed with a bead mill. The dispersion treatment conditions by the bead mill were the same as those in Example 6.
  • the viscosity of the carbonaceous material dispersion (acetylene black dispersion) thus prepared was measured in the same manner as in Example 5. As a result, the viscosity of the dispersion was 106 mPa ⁇ s. After that, the shear viscosity was measured by varying the shear rate from 0.1s -1 to 1000s -1 with a rheometer in the same manner as in Example 6, and the minimum value of the viscosity was in the range of 10s -1 to 1000s -1 (160s -1 ). ) Was confirmed.
  • Example 6 dispersion treatment was performed with a bead mill in the same manner as in Example 1 except that cellulose acetate or polyvinylpyrrolidone (both manufactured by Kanto Chemical Co., Inc.) was used instead of polyvinyl butyral as the resin composition. rice field. However, in either case, the resin component did not dissolve well in butyl butyrate as a dispersion medium, and a uniform dispersion of acetylene black could not be obtained.
  • cellulose acetate or polyvinylpyrrolidone both manufactured by Kanto Chemical Co., Inc.
  • Example 9 The total mass of the dispersion is 100% by mass, 82% by mass of butyl butyrate as a dispersion medium, and 2% by mass of polyvinyl butyral (ESREC BL, manufactured by Sekisui Chemical Industry Co., Ltd.) as a resin composition (13.3 with respect to acetylene black). Mass%), acetylene black (Denka Black (brand name) granular product, manufactured by Denka Co., Ltd.) 15% by mass, and 2-amino-2-ethyl-1,3-propanediol were blended in a proportion of 1% by mass. Dispersion treatment was performed with a bead mill. The dispersion treatment conditions by the bead mill were the same as those in Example 6.
  • the viscosity of the carbonaceous material dispersion (acetylene black dispersion) thus prepared was measured in the same manner as in Example 5. As a result, the viscosity of the dispersion was 72 mPa ⁇ s. After that, when the shear viscosity was measured by varying the shear rate from 0.1s -1 to 1000s -1 with a rheometer in the same manner as in Example 6, the minimum value of the viscosity was in the range of 10s -1 to 1000s - 1 (250s-). It was in 1 ).
  • Example 10 The carbonaceous material dispersion prepared in Example 9 was mixed with a positive electrode active material under the same conditions as in Example 7, treated with a revolving rotation stirring defoaming machine, and thereafter with Example 7.
  • the mixture did not show sufficient fluidity.
  • a fluid slurry was obtained although the solid content concentration of the slurry was 75% by mass. ..
  • Comparative Example 6 The total mass of the dispersion is 100% by mass, butyl butyrate is 76% by mass as a dispersion medium, and polyvinyl butyral (ESREC BL, manufactured by Sekisui Chemical Industry Co., Ltd.) 8% by mass (53.3 with respect to acetylene black) as a resin composition. Mass%), acetylene black (Denka Black (brand name) granular product, manufactured by Denka Co., Ltd.) 15% by mass, and 2-amino-2-ethyl-1,3-propanediol were blended in a proportion of 1% by mass. Dispersion treatment was performed with a bead mill. The dispersion treatment conditions by the bead mill were the same as those in Example 6.
  • the viscosity of the carbonaceous material dispersion (acetylene black dispersion) thus prepared was measured in the same manner as in Example 6. As a result, the viscosity of the dispersion was 93 mPa ⁇ s. After that, when the shear viscosity was measured by varying the shear rate from 0.1 s -1 to 1000 s -1 with a rheometer in the same manner as in Example 6, the minimum value of the viscosity did not exist within the measurement range.

Abstract

分散媒中に炭素質材料および分散剤を分散させた全固体リチウムイオン二次電池用炭素質材料分散体であって、分散媒が少なくともエステル系溶媒を含有し、分散剤が少なくともポリビニルブチラールを含有し、 分散体における炭素質材料の配合量が、分散体の総質量に対して10~25質量%であり、また分散剤の配合量が炭素質材料の質量に対して5質量~40質量%であり、 25℃における粘度が500mPa・s以下であることを特徴とする炭素質材料分散体である。 全固体リチウムイオン二次電池用の導電助剤として用いられた際に、固体電解質の劣化を抑制でき、炭素質材料が高濃度かつ均一に分散して、電極活物質と混合した際に固形分を低粘性で高濃度に分散させることができ、二次電池の良好な導電性を発揮することに寄与できる。

Description

全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー
 本発明は、全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリーに関する。詳しく述べると本発明は、全固体リチウムイオン二次電池用の導電助剤として用いられた際に、固体電解質の劣化を抑制でき、炭素質材料が高濃度かつ均一に分散して、電極活物質と混合した際に固形分を低粘性で高濃度に分散させることができる全固体リチウムイオン二次電池用炭素質材料分散体およびこれを用いた全固体リチウムイオン二次電池用電極スラリーに関する。
 近年、ポータブルパーソナルコンピューター、スマートフォン、携帯電話などの電子機器分野、あるいは、電気自動車およびハイブリッド自動車などの自動車分野などの多くの分野において、高容量で高出力のリチウムイオン二次電池が広く利用されている。
 リチウムイオン二次電池においては、イオンを移動させる媒体として、希釈溶媒に可燃性の有機溶媒等を用いた電解液が従来使用されているが、このような電解液を用いた電池においては、電解液の漏液や、発火、爆発等の問題を生ずる可能性がある。
 このような問題を解消するために、液体の電解質に代えて固体電解質を使用するとともに、その他の要素の全てを固体で構成した全固体リチウムイオン二次電池の開発が進められている。全固体リチウムイオン二次電池は、固体電解質とリチウムイオンの電荷移動抵抗が非常に小さいため電池の内部抵抗を小さくすることができ、また電解質が固体であることから、発火の心配が少なく、漏液せず、また、腐食による電池性能の劣化等の問題も生じ難い。
 全固体リチウムイオン二次電池には、正極層及び負極層と、これらの間に配置される固体電解質層とが備えられ、電解質は、固体によって構成される。
 固体電解質層として、電極活物質のみを用いて粉末成形により電極層を構成する場合、電解質が固体であるため、電解質が電極層の内部へ浸透しにくく、電極活物質と電解質との界面が低減し、電池性能が低下してしまう。また電極層は固体によって構成されるため、可撓性および加工性に乏しく、取り扱い性が悪い。
 このような問題に対して、電極活物質、固体電解質材料および結着剤を溶媒に分散させて調製したスラリーを用いて電極層を形成することが提案されている。
 なお、従来のリチウムイオン二次電池では、N-メチル-2-ピロリドン(NMP)溶媒中にバインダーとしてポリフッ化ビニリデン(PVDF)を溶解させた高分子溶液に活物質や導電助剤等を分散させた電極スラリーや、水溶媒中にバインダーとしてスチレンブタジエンゴム(SBR)をエマルション化した水溶液に活物質や導電助剤を分散させ、カルボキシメチルセルロース(CMC)等の増粘剤を添加した電極スラリーが用いられているが、全固体リチウムイオン二次電池に関しては、固体電解質が高極性溶媒に曝されるとイオン伝導性が低下し、十分な電池性能が得られなくなるため、電極作成用の電極スラリーの溶媒としてNMPや水を用いることができない。
 例えば、特許文献1においては、正極活物質、固体電解質材料、結着剤、導電化剤、および溶剤からなり、全固体リチウムイオン二次電池の正極合剤層を形成するために用いられる正極合剤層形成用スラリーとして、結着剤がスチレンブタジエンゴム(SBR)、スチレンエチレンブチレンスチレンブロック共重合体(SEBS)などのスチレン含有バインダー樹脂であり、導電化剤として炭素繊維を、また溶剤としては、ヘプタン等のノルマルアルカンやトルエンやキシレン等の無極性溶媒を用いた組成が提案されている。そして、これにより、電気伝導性を向上させるとともに、形成される正極合剤層が可撓性および強度の高い正極合剤層が形成される正極集電体が得られることが示されている。
 しかしながら、導電化剤として価格的に高価な炭素繊維に代えて、例えばカーボンブラックを用いた場合は、結着剤としてこのようにスチレン含有バインダー樹脂を用いると、例えば、シリコーン系ポリマーのみが添加された正極合剤層よりも電気抵抗が増大するということが併せて報告されている。
 また特許文献2においては、負極活物質、固体電解質材料、結着剤、導電化剤、および溶剤からなり、全固体リチウムイオン二次電池の負極合剤を形成するために用いられる負極合剤層形成用スラリーとして、Siを含む負極活物質、硫化物固体電解質を含む固体電解質、炭素六員環を有する繊維状炭素質材料からなる導電材、SBR、SEBS等の芳香環を有する高分子化合物からなる結着剤、並びに、1,3,5-トリメチルベンゼン、イソプロピルベンゼン及びメチルフェニルエーテルからなる群から選択される少なくとも1つの溶剤からなる組成が提案されている。なお、結着剤として5質量%以下の範囲で、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ブチレンゴム(BR)、ポリビニルブチラール(PVB)、アクリル樹脂等の、芳香環を有する高分子化合物以外の高分子化合物を含んでいてもよい旨の開示がある。そして、この組成により、Siを含む負極活物質を用いた場合に、負極合剤が充放電サイクルを繰り返したときに、充放電の繰り返しに伴う導電材と負極活物質との接触不良部分の発生を抑制し、内部抵抗の上昇を抑制することができることが示されている。
 しかしながら、この場合も、導電化剤として炭素六員環を有する炭素繊維を用いる場合における分散性を考慮して、SBR、SEBS等の芳香環を有する高分子化合物からなる結着剤、並びに、1,3,5-トリメチルベンゼン、イソプロピルベンゼン及びメチルフェニルエーテルといった芳香環を有する溶剤を選択しており、例えば導電化剤として鱗片状炭素質材料を用いた場合には、結着剤および溶剤として同様に芳香環を有するものを用いても内部抵抗の上昇を抑制できないことが併せて報告されている。
 また、特許文献3においては、結着材として、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン等を用い、例えば、溶剤としてトルエン、キシレン、デカリン、テトラヒドロナフタレン等の芳香族炭化水素、ヘキサン、ペンタン、エチルへキサン、ヘプタン、デカン、シクロヘキサン等の飽和炭化水素、ヘキセン、ヘプテン、シクロヘキセン等の不飽和炭化水素等を用いて湿式メカノケミカル的な処理により正極合剤層を形成することが提案されている。
 さらに、特許文献4においては、全固体リチウムイオン二次電池用スラリーを調製するにおいて、従来、低極性の溶媒として酪酸ブチルやヘプタン等が用いられているが、PVDFとの親和性が十分でないため、溶媒中でPVDFの分子鎖が十分に広がることができず電極スラリーの粘度を十分に増加させることができず、電極スラリーを均一に塗工できず、電極内に不均一性を生じ、電池性能を低下させるといった問題を解消する上で、結着材として、所定構造のアクリル系共重合体を用い、溶剤として、例えばブチルエーテル(酪酸ブチル、プロピオン酸ブチル、吉草酸ブチル)及びアルカン系溶媒(ヘキサン、シクロヘキサン、ヘプタン、シクロヘプタン、オクタン、シクロオクタン)を用いることが開示されている。
日本国 特開2010-262764号公報 日本国 特開2019-125481号公報 日本国 特開2013-222501号公報 日本国 特開2020-21581号公報
 しかしながら、全固体リチウムイオン二次電池用電極スラリーないしはこれを調製するための炭素質材料を溶媒に分散させた炭素質材料分散体として、上記したような従来技術における溶剤と結着剤との組み合わせを用いた場合には、固体電解質の劣化の問題が生じ、またスラリーないしは分散体において炭素質材料を高濃度かつ均一に分散させることが困難であり、電極活物質と混合した際に固形分を低粘性で高濃度に分散できず、得られる全固体リチウムイオン二次電池の充放電特性、サイクル特性、電極の導電性等の特性、特にその導電性を十分に向上させることができないものであった。
 従って本発明は、上記の課題を解決してなる全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリーを提供することを課題とする。本発明はまた、全固体リチウムイオン二次電池用の導電助剤として用いられた際に、固体電解質の劣化を抑制でき、炭素質材料が高濃度かつ均一に分散して、優れた導電性を発揮することができる全固体リチウムイオン二次電池用炭素質材料分散体およびこれを用いた全固体リチウムイオン二次電池用電極スラリーを提供することを課題とする。
 上記課題を解決するために本発明者らは、鋭意検討および研究を進めた結果、全固体リチウムイオン二次電池用炭素質材料分散体として、炭素質材料、特にカーボンブラックに対し、分散剤として少なくともポリビニルブチラールを含有する分散剤、溶媒としてエステル系溶媒を所定割合で配合することにより、固体電解質の劣化を抑制でき、炭素質材料が高濃度かつ均一に分散して、優れた導電性を発揮できることができることを見出し本発明に至ったものである。
 すなわち、上記課題を解決する本発明は、分散媒中に炭素質材料および分散剤を分散させた全固体リチウムイオン二次電池用炭素質材料分散体であって、分散媒が少なくともエステル系溶媒を含有し、分散剤として少なくともポリビニルブチラールを含有し、分散体における炭素質材料の配合量が、分散体の総質量に対して10~25質量%であり、また分散剤の配合量が炭素質材料の質量に対して5~40質量%であり、25℃における粘度が500mPa・s以下であることを特徴とする炭素質材料分散体である。
 本発明に係る炭素質材料分散体の一実施形態においては、分散剤の配合量が炭素質材料の質量に対して5質量%以上20質量%未満であることを特徴とする炭素質材料分散体が示される。
 本発明に係る炭素質材料分散体の別の一実施形態においては、分散剤の配合量が炭素質材料の質量に対して20質量%~40質量%であることを特徴とする炭素質材料分散体が示される。
 本発明に係る炭素質材料分散体の一実施形態においては、前記炭素質材料分散体の25℃における粘弾性が、せん断速度10~1000s-1の範囲で極小値を持つことを特徴とする炭素質材料分散体が示される。
 本発明に係る炭素質材料分散体の一実施形態においては、前記分散媒は、エステル系溶媒を分散媒総量の10質量%以上含有するものである炭素質材料分散体が示される。
 本発明に係る炭素質材料分散体の一実施形態においては、前記エステル系溶媒が、酢酸プロピル、酪酸ブチル、ペンタン酸ブチル、ヘキサン酸ブチル、酪酸ペンチル、ペンタン酸ペンチル、ヘキサン酸ペンチル、酪酸ヘキシル、ペンタン酸ヘキシル、およびヘキサン酸ヘキシルからなる群から選ばれた少なくとも1つのものである炭素質材料分散体が示される。
 本発明に係る炭素質材料分散体の一実施形態においては、前記エステル系溶媒が、酪酸ブチルである炭素質材料分散体が示される。
 本発明に係る炭素質材料分散体の一実施形態においては、炭素質材料がカーボンブラックである炭素質材料分散体が示される。
 本発明に係る炭素質材料分散体の一実施形態においては、さらに、カーボンブラックがアセチレンブラックである炭素質材料分散体が示される。
 本発明に係る炭素質材料分散体の一実施形態においては、pH調整剤をさらに含有するものである炭素質材料分散体が示される。
 上記課題を解決する本発明はまた、分散媒中に炭素質材料、分散剤、バインダー樹脂、および、正極活物質又は負極活物質とを配合してなる全固体リチウムイオン二次電池用電極スラリーであって、
 分散媒が少なくともエステル系溶媒を含有し、分散剤が少なくともポリビニルブチラールを含有し、またスラリーにおける固形分中で、分散剤の配合量が炭素質材料の質量に対して5~40質量%であることを特徴とする全固体リチウムイオン二次電池用電極スラリーである。
 本発明に係る全固体リチウムイオン二次電池用電極スラリーの一実施形態においては、分散剤の配合量が炭素質材料の質量に対して5質量%以上20質量%未満であることを特徴とする炭素質材料分散体が示される。
 本発明に係る全固体リチウムイオン二次電池用電極スラリーの一実施形態においては、スラリーの固形分濃度が65~75質量%のとき、スラリーの25℃における粘度が500~5000mPa・sである全固体リチウムイオン二次電池用電極スラリーが示される。
 本発明に係る全固体リチウムイオン二次電池用電極スラリーの一実施形態においては、分散剤の配合量が炭素質材料の質量に対して20~40質量%であることを特徴とする炭素質材料分散体が示される。
 本発明に係る全固体リチウムイオン二次電池用電極スラリーの一実施形態においては、スラリーの固形分濃度が77~87質量%のとき、スラリーの25℃における粘度が1000~10000mPa・sである全固体リチウムイオン二次電池用電極スラリーが示される。
 本発明によれば、全固体リチウムイオン二次電池用の導電助剤として用いられた際に、固体電解質の劣化を抑制でき、炭素質材料が高濃度かつ均一に分散して、優れた導電性を発揮することができる炭素質材料分散体、およびこれを用いた全固体リチウムイオン二次電池用電極スラリーが提供できるため、充放電特性、サイクル特性、電極の導電性等の性能に優れかつ特性の安定した二次電池を製造することが可能となる。
 以下、本発明を実施形態に基づき詳細に説明する。
<炭素質材料分散体>
 本発明の第1の観点に係る全固体リチウムイオン二次電池用炭素質材料分散体は、分散媒中に炭素質材料および分散剤を分散させた全固体リチウムイオン二次電池用炭素質材料分散体であって、分散媒が少なくともエステル系溶媒を含有し、分散剤として少なくともポリビニルブチラールを含有し、分散体における炭素質材料の配合量が、分散体の総質量に対して10~25質量%であり、また分散剤の配合量が炭素質材料の質量に対して5~40質量%であり、25℃における粘度が500mPa・s以下であることを特徴とする。
 まず第1の観点に係る全固体リチウムイオン二次電池用炭素質材料分散体を構成する各成分について説明する。
(炭素質材料)
 使用される炭素質材料としては、導電性を有するものであり、粉粒状の形態を呈し得るものであれば特に限定されるものではないが、例えば、カーボンブラック(CB)、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)、グラフェン、フラーレン、天然黒鉛、人造黒鉛、難黒鉛化性炭素、コークス類、グラファイト類等が挙げられ、これらを単独で、もしくは2種類以上併せて使用することができる。炭素質材料としては、特にCBが好ましい。さらにCBとしては、例えば、ファーネスブラック、ケッチェンブラック、チャンネルブラック、アセチレンブラック、サーマルブラック等が挙げられ、そのいずれを用いることが可能である。このうち例えば、アセチレンブラックは、その製法上で金属成分含有量が本来的に低いものとなるものであるため好ましい。
 なお、カーボンブラックとしては、通常行われている酸化処理されたカーボンブラックや、黒鉛化処理されたカーボンブラックなども使用できる。カーボンブラックの酸化処理は、カーボンブラックを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることによって、例えばフェノール基、キノン基、カルボキシル基、カルボニル基のような酸素含有極性官能基をカーボンブラック表面に直接導入(共有結合)する処理であり、カーボンブラックの分散性を向上させる。
 炭素質材料は、また、必要に応じて、炭素質材料分散体の製造に先立ち混入する金属不純物を除去するために乾式での磁選処理にかけられる、および/または、炭素質材料をエステル系溶媒に分散させて分散体を調製した後に、湿式にて磁選処理にかけられることが可能である。
 ここで本明細書において分散媒に分散される原料としての炭素質材料の「粉粒状」の形態とは、少なくとも、後述するようなエステル系溶媒中に分散し得るものであれば限定されるものではない。さらに、その形状としても、特に限定されるものではなく、概略球状のものに限られず、楕円状、薄片状、針状ないし短ファイバー状、不定形等が含まれ得る。
 なお、カーボンブラックに関しては、例えば、カーボンブラック協会(https://carbonblack.biz/index.html)のウェブサイトにおいても説明されるように、カーボンブラックの分解できない最小単位は、アグリゲート(aggregate)(一次凝集体)であり、その一部分(ドメイン(domain)を粒子と通称する。この粒子は、ナノマテリアルで最小単位として定義される粒子に該当して考えられるがあくまでもアグリゲートの一部である。アグリゲートは、ファン・デルワ―ルス力等の物理的な力によりアグロメレート(agglomerate)(二次凝集体)を構成する。さらに、カーボンブラックの製品は、飛散防止のため、ハンドリング性向上のために圧縮処理や造粒処理によりビードという加工された粒子の形で、輸送販売されることが殆どである。
 例えば、平均粒子径10~100nm程度の粒子径を呈している一次凝集体、このような一次凝集体が凝集して平均粒子径0.1~100μm程度の二次凝集体を呈しているもの、あるいはさらにハンドリング性を考慮して圧縮処理や造粒処理により平均粒子径500~5000μm程度の加工された粒子とされたものなどが含まれ得る。
 なお、カーボンブラック導電性の観点から、導電性炭素微粒子としては一次粒子がある程度連なり連鎖状または房状等の構造を形成したアグリゲートのものが好ましい。アグリゲートにおける該一次粒子の連なりは、ストラクチャーとも言われ、かかる発達の程度は、粒度分布測定(動的光散乱法またはレーザー回折/光散乱法)や電子顕微鏡(走査型または透過型のいずれも使用可能である。)観察により把握することができる。このような構造のものは、電極活物質粒子間に効率よく導電パスを形成することができる。このため、より少ない使用量で電極活物質層に優れた導電性を付与することができる。
(分散媒)
 本発明の第1の観点に係る全固体リチウムイオン二次電池用炭素質材料分散体を構成する分散媒は、少なくともエステル系溶媒を含有する。エステル系溶媒を用いるのは、本発明の第1の観点に係る全固体リチウムイオン二次電池用炭素質材料分散体においては、後述するように分散剤としてポリビニルブチラールを主として使用するため、このポリビニルブチラールに対して良好な溶解性を示し、かつ疎水性であり、固体電解質に対する反応性が低いものであるためである。
 なお、本発明に係る分散媒は、上記のような分散剤としてのポリビニルブチラールに対して良好な溶解性を示すものである限り、分散媒におけるエステル系溶媒の配合割合については特に限定されるものではないが、例えば、エステル系溶媒が分散媒総量の10質量%以上、より好ましくは20質量%以上含まれていることが、良好な分散体を得る上で好ましい。もちろん、分散媒の全量(100質量%)がエステル系溶媒で構成されることは、好ましい実施形態の1つである。
 また、エステル系溶媒としては、ポリビニルブチラールに対して良好な溶解性を示し、かつ固体電解質に対する反応性が低いものであれば、使用されるエステル系溶媒として特に限定されるものではない。例えば、R-COOR(但し式中RはC1~C8の炭化水素基、RはC2~C8のアルキル基である。)で表されるカルボン酸エステルを用いることができる。
 具体的には例えば、酢酸プロピル、酢酸ブチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、プロピオン酸アミル、プロピオン酸ヘキシル、プロピオン酸ヘプチル、プロピオン酸オクチル、酪酸エチル、酪酸プロピル、酪酸ブチル、酪酸アミル、酪酸ヘキシル、酪酸ヘプチル、酪酸オクチル、ペンタン酸エチル、ペンタン酸プロピル、ペンタン酸ブチル、ペンタン酸アミル、ペンタン酸ヘキシル、ペンタン酸ヘプチル、ペンタン酸オクチル、ヘキサン酸エチル、ヘキサン酸プロピル、ヘキサン酸ブチル、ヘキサン酸アミル、ヘキサン酸ヘキシル、ヘキサン酸ヘプチル、ヘキサン酸オクチル、ヘプタン酸エチル、ヘプタン酸プロピル、ヘプタン酸ブチル、ヘプタン酸アミル、ヘプタン酸ヘキシル、ヘプタン酸ヘプチル、ヘプタン酸オクチル、オクタン酸エチル、オクタン酸プロピル、オクタン酸ブチル、オクタン酸アミル、オクタン酸ヘキシル、オクタン酸ヘプチル、オクタン酸オクチル等を単独であるいは2種以上組み合わせて使用することが可能である。
 このうち、酢酸プロピル、酪酸ブチル、ペンタン酸ブチル、ヘキサン酸ブチル、酪酸ペンチル、ペンタン酸ペンチル、ヘキサン酸ペンチル、酪酸ヘキシル、ペンタン酸ヘキシル、およびヘキサン酸ヘキシルなどが好ましく、特に、酪酸ブチルが好ましい。
 また、本発明に係る分散媒として、上記エステル系溶媒と共に用いられ得るその他の溶媒としては、上記エステル系溶媒による樹脂成分の溶解性および炭素質材料に対する分散性を大きく損ねるものでない限り特に限定されるものではないが、非極性溶媒を用いることが望ましい。非極性溶媒であれば、水やNMPのような極性溶媒を使用した場合のような固体電解質のイオン伝導度の低下を防止することができる。
 本発明に係る分散媒として、上記エステル系溶媒と共に用いられ得る非極性溶媒としては、特に限定されるものではないが、具体的には例えば、非水性の直鎖状および/または分枝状または環状の炭素原子数4~30のアルカン、例えば、ペンタン、ヘキサン、へプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、シクロペンタン、シクロヘキサン、シクロへプタン、シクロオクタン、メチルシクロへキサン等;直鎖状および/または分枝状および/または環状の炭素原子数1~30のハロアルカン、例えば、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロシクロヘキサン等;炭素原子数6~22の芳香族化合物、例えば、ベンゼン、トルエン、キシレン、メシチレン等;水素添加された炭素原子数10~22の芳香族化合物、例えば、テトラリン、シス-デカリンおよびトランス-デカリン等;炭素原子数6~22のハロゲン化芳香族化合物、例えば、クロロベンゼン、フルオロベンゼン、ジクロロベンゼンまたはジフルオロベンゼン、トリクロロベンゼンまたはトリフルオロベンゼン、クロロナフタレンまたはフルオロナフタレン等;直鎖状および/または分枝状および/または環状のエーテル、例えば、ジエチルエーテル、ジプロピルエーテル、tert-ブチルメチルエーテル、tert-アミルメチルエーテル、tert-アミルエチルエーテル、ジメトキシエタン、ジエトキシエタン、メトキシベンゼン、メチルチオベンゼン、エトキシベンゼン、石油エーテル等;直鎖状および/または分枝状および/または環状のケトン、例えば、アセトン、トリクロロアセトン、ブタノン、ペンタノン、ヘキサノン、ヘプタノン、オクタノン、ノナノン、シクロペンタノン、シクロヘキサノン、アセトフェノン、アセチルアセトン等;直鎖状および/または分枝状および/または環状のニトロアルカン、例えば、ニトロメタン、ニトロエタン、ニトロシクロへキサン等;炭素原子数6~22のニトロ芳香族化合物、例えばニトロベンゼン等;直鎖状および/または分枝状および/または環状のアミン、好ましくは、tert-ブチルアミン、ジアミノエタン、ジエチルアミン、トリエチルアミン、トリブチルアミン、ピロリジン、ピペリジン、モルホリン、N-メチルアニリン、およびN,N-ジメチルアニリン等;ヘキサメチルジシラン、ジフェニルジメチルシラン、クロロフェニルトリメチルシラン、フェニルトリメチルシラン、フェネチルトリス(トリメチルシロキシ)シラン、フェニルトリス(トリメチルシロキシ)シラン、ポリジメチルシロキサン、テトラフェニルテトラメチルトリシロキサン、ポリ(3,3,3-トリフルオロプロピルメチルシロキサン)、3,5,7-トリフェニルノナメチルペンタシロキサン、3,5-ジフェニルオクタメチルテトラシロキサン、1,1,5,5-テトラフェニル-1,3,3,5-テトラメチル-トリシロキサン、およびヘキサメチルシクロトリシロキサン等のシリコーンオイル;含フッ素系溶媒、例えば、ハイドロフルオロエーテル、クロロジフルオロメタン、1,1,1,2-テトラフルオロエタン、ペンタフルオロエタン、ジフルオロメタン、トリフルオロメタン、1,1,1,2,3,3,3-ヘプタフルオロプロパン、1,1-ジフルオロエタン、1,1,1,3,3,3-ヘキサフルオロプロパン、オクタフルオロプロパン等;または上記したような非極性溶媒の任意の比率での混合物が包含され得る。
 非極性溶媒としては、このうち特に、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレンなどが望ましい。
 本発明に係る分散媒としては、上記エステル系溶媒のみから構成される、あるいはエステル系溶媒と非極性溶媒の混合溶媒であって本混合溶媒中のエステル系溶媒の含有量が10質量%以上100%質量未満、非極性溶媒の含有量が0質量%以上90質量%未満(但し、合計は100質量%である。)で構成されるものが望ましい。
(分散剤)
 本発明の第1の観点に係る全固体リチウムイオン二次電池用炭素質材料分散体を構成する分散剤としては、少なくともポリビニルブチラールを含有する。
 分散剤として、ポリビニルブチラールは主成分であること、特に80質量%以上であることが望ましく、分散剤の全量、すなわち100質量%がポリビニルブチラールであることも特に好ましい一態様である。全固体リチウムイオン二次電池用炭素質材料分散体において、このように分散剤としてポリビニルブチラールを使用し、分散媒としての上述したようなエステル系溶媒と組み合わせることにより、炭素質材料分散体における炭素質材料の良好な分散性が得られ、低粘度化が可能となる。また後述するように、全固体リチウムイオン二次電池用電極スラリーを調製するにおいて、電極活物質と混合した際に固形分を低粘性で高濃度に分散させることができる。さらに、適度にスラリーの粘度を増加させ、電極活物質、炭素質材料等の電極を構成する材料の沈降速度を低下させ、集電体上にスラリーを均一に塗工させる作用を有し、かつ、活物質間、活物質と導電助剤、導電助剤間等、電極を構成する材料間を適度な強度、接着性および導電性を持って結着させることが可能となる。
 ポリビニルブチラールとしては、特に限定されるものではないが、水酸基含量が比較的低い、具体的には、例えば、ポリマー中の水酸基含有量が5質量%以上25質量%以下、より好ましくは10質量%以上、20質量%以下、さらに好ましくは、12.5質量%以上、17.5質量%以下のものであることが前述した分散媒であるエステル系溶媒に対する溶解性が良好なものとなるために好ましい。また、特に限定されるものではないが、ポリビニルブチラールの酢酸基含有量としては1~7質量%程度が好ましく、また粘度としては、DIN53015に準拠し、20℃で測定した、10質量%のポリビニルブチラールのエタノール溶液の溶液粘度が10~100mPa・s、特に20~60mPa・s程度のものが望ましい。
 分散剤として、ポリビニルブチラールに配合して使用され得るその他の分散剤としては例えば、ポリビニルブチラール以外の樹脂系分散剤、下記に例示するような界面活性剤等が含まれ得る。
(その他の樹脂系分散剤)
 ポリビニルブチラール以外の樹脂系分散剤としては、ポリビニルアセタール、ポリ酢酸ビニル、ポリエステル樹脂、エポキシ樹脂、ポリエーテル樹脂、アルキド樹脂、ウレタン樹脂などを用いることができる。分散剤として、ポリビニルブチラールに加えて、このようなその他の樹脂系成分を配合する場合、その組成としては、80質量%以上でかつ100質量%未満のポリビニルブチラールと20質量%未満でかつ0質量%を超える前記したようなその他の成分の割合(但し、合計は100質量%である。)とする。その他の成分の配合量が20質量%未満であれば、本発明に係る炭素質材料分散体の25℃における粘度を所期の値、具体的には例えば、500mPa・s以下に保持しつつ、最終的に調製したスラリーを集電体上に塗工した場合において活物質間、活物質と導電助剤、導電助剤間等、電極を構成する材料間の結着性を向上させることが可能となる。
(pH調整剤)
 本発明の第1の観点に係る全固体リチウムイオン二次電池用炭素質材料分散体中には、必要に応じて、pH調整剤を配合することが可能である。
 pH調整剤としては、例えば、3級アミン、2級アミン、1級アミン、環状アミン、およびアルカン骨格にアミノ基とヒドロキシ基を有する化合物であるアルカノールアミンないしはアミノアルコール類、あるいはジグリコールアミン、トリス(ヒドロキシメチル)アミノメタン(THAM)、モルホリン等のその他のアミン類などのアミン化合物が例示され得る。特に限定されるわけではないが、このうち例えば2-メチルアミノエタノール、2-アミノ-1-ブタノール、4-エチルアミノ-1-ブタノール、トリエチルアミン、2-アミノ-2-エチル-1,3-プロパンジオール(AEPD)、2-アミノ-2-メチル-1-プロパノール(AMP)、THAM等が特に好ましい。
(界面活性剤)
 本発明の第1の観点に係る全固体リチウムイオン二次電池用炭素質材料分散体中には、必要に応じて、分散剤として界面活性剤を配合することが可能である。
 界面活性剤としては、特に限定されるものではないが、例えばドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウムのような陰イオン性界面活性剤、塩化テトラメチルアンモニウムのような陽イオン性界面活性剤、ポリオキシエチレンアルキルエーテル系化合物、ポリオキシエチレン脂肪酸エステル系化合物のような非イオン性界面活性剤などを例示することができる。
 分散剤として、ポリビニルブチラールに加えて、このようなその他の成分を配合する場合、その組成としては、80質量%以上でかつ100質量%未満のポリビニルブチラールと20質量%未満でかつ0質量%を超える前記したようなその他の成分の割合(但し、合計は100質量%である。)とする。その他の成分の配合量が20質量%未満であれば、本発明に係る炭素質材料分散体の25℃における粘度を所期の値、具体的には例えば、500mPa・s以下に保持しつつ、最終的に調製したスラリーを集電体上に塗工した場合において活物質間、活物質と導電助剤、導電助剤間等、電極を構成する材料間の結着性を向上させることが可能となる。
(分散体における配合割合)
 本発明の第1の観点に係る全固体リチウムイオン二次電池用炭素質材料分散体においては、少なくともエステル系溶媒を含有する分散媒中において、分散体の総質量に対して、炭素質材料が10~25質量%、より好ましくは12~18質量%であり、また分散剤の配合量が炭素質材料の質量に対して(すなわち、炭素質材料の質量100質量%に対して)5~40質量%、好ましくは5質量%以上20質量%未満、より好ましくは6質量%以上12質量%未満、であるように調整される。炭素質材料および分散剤の配合量がそれぞれこの範囲内にあれば、炭素質材料の良好な分散性および低粘度を保持しつつ高濃度の炭素質材料を含有する分散体とすることが可能である。また炭素質材料の濃度が上記より少ない場合、製品製造における溶媒除去に必要とするエネルギーの増大や、分散体の輸送コストや溶媒のコストの上昇がある。一方、炭素質材料の濃度が上記より多いと、十分な流動性を得ることが困難となり、ハンドリング性が悪くなる。また、分散剤の濃度が上記より少ない場合、流動性を得ることが困難となり、一方、分散剤の濃度が上記より多いと、分散体における絶縁性成分の割合が多くなるために最終的な製品における導電性が低下する虞れがある。なお、最終的な製品における結着性の向上を期待する上で、分散剤の配合量が炭素質材料の質量に対して(すなわち、炭素質材料の質量100質量%に対して)好ましくは20~40質量%、より好ましくは25~35質量%であるように調整される態様も考慮され得る。
 また、上記したようにpH調整剤を配合する場合には、pH調整剤の添加量としては、分散体総量に対し0.01~5%、より好ましくは0.05~3%程度とされる。この範囲内においてpH調整剤を配合することによって、炭素質材料のより良好な分散性を得ることが可能となる。
(分散体の粘度)
 そして上記のような組成および配合量の組成物に対して、例えば、以下に例示するような分散処理をおこなうことにより、本発明に係る炭素質材料分散体は、25℃における粘度が500mPa・s以下、好ましくは50~300mPa・s程度のものとすることができる。
 なお、本明細書において、炭素質材料分散体の粘度とは、B型粘度計を用い、測定温度25℃、B型粘度計ローター回転速度60rpmにて、分散体をヘラで充分に撹拌(例えば、1分間)した後、直ちに測定された値である。
 本発明に係る炭素質材料分散体は、上記したような所定の組成および配合割合を有し、前記の所定の粘度を呈するものであることから、炭素質材料が高濃度かつ均一に分散して、安定した流動性を示し、電極活物質と混合して全固体リチウムイオン二次電池用電極スラリーを調製した際に、施工に適した適度な低粘性で電極活物質を高濃度に分散させることができる。
 このような特性は、例えば、本発明に係る炭素質材料分散体が、25℃における粘弾性がせん断速度10~1000s-1の範囲、より望ましくは、10~500s-1の範囲、さらに望ましくは、10~100s-1の範囲で極小値を持つという側面によって客観的に評価され得る。
 なお、本明細書において、この炭素質材料分散体の粘弾性とは、レオメータを用いて、分散体の温度条件を25℃として、せん断速度を0.1s-1~1000s-1まで変動させて、せん断粘度を測定した場合における、粘度の極小値を示すせん断速度範囲を指標とする値である。
(炭素質材料分散体の製造)
 本発明の第1の観点に係る全固体リチウムイオン二次電池用炭素質材料分散体の製造方法としては、特に限定されるものではないが、分散媒であるエステル系溶媒に、炭素質材料および分散剤を上記した所定の割合で添加し攪拌混合して、分散させる。
 分散装置としては、特に限定されるものではなく、顔料分散等に通常用いられている分散機を使用することができる。例えば、ディスパー、ホモミキサー、プラネタリーミキサー等のミキサー類、ホモジナイザー(エム・テクニック社製「クレアミックス」、PRIMIX社「フィルミックス」等、シルバーソン社製「アブラミックス」等)類、ペイントコンディショナー(レッドデビル社製)、コロイドミル(PUC社製「PUCコロイドミル」、IKA社製「コロイドミルMK」)類、コーンミル(IKA社製「コーンミルMKO」等)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、コボールミル等のメディア型分散機、湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、奈良機械社製「MICROS」等のメディアレス分散機、その他ロールミル等が挙げられるが、これらに限定されるものではない。
 好ましくは、最終的にメディアミル、特に、平均粒子径0.05~2mmのビーズを用いたメディアミルで、炭素質材料を分散させて調製されたものであることが好ましい。さらに好ましくは、このようなメディアミルによる分散処理に先立ち、以下に詳述するようなせん断型分散装置を用いて分散処理を行い、続いてメディアミルによる分散処理を施すことにより調製されたものであることがより好ましい。
 なお、メディアミルに用いるビーズの粒子径としては、あまり小さすぎると、カーボンブラックの一次凝集体といった炭素質材料が微細に破断されてしまう虞れがあり、また、分散処理に過大なエネルギーが必要となる。また、取り扱いが困難となるため、ビーズの平均粒径が、0.05mm以上であることが好ましく、0.5mm以上であることが特に好ましい。一方、ビーズが大きすぎると、単位体積あたりのビーズ個数が少なくなるため分散効率が低下し、炭素質材料の粉砕が不十分となり、アスペクト比が大きい状態で炭素質材料の粒子が存在することとなって、塗料やコーティング剤としての液性が得られなくなる虞れがある。このため、ビーズの平均直径が、2mm以下であることが好ましく、1.5mm以下であることが特に好ましい。
 メディアミルに用いられる分散メディアとしてのビーズの材質は特に限定されるものではなく、例えば、アルミナ、ジルコニア、鋼、クロム鋼、ガラスなどを例示することができるが、このうち、製品へのコンタミネーション、また、比重に起因する運動エネルギーの大きさ等を考慮すると、ジルコニアビーズを用いることが好ましい。
 ビーズの形状も特に限定されるものではないが、一般的には球形状のものが使用される。
 メディアミルは構造としては、特に限定されるものではなく、各種公知のメディアミルが適用できる。具体的には、各種公知のアトライター、サンドミル、ビーズミルなどが挙げられる。
 なお、ビーズのベッセルへの充填割合はベッセルや撹拌機構や構造等によって決定すればよく、特に限定されるものではないが、その割合が低すぎると炭素質材料に対し十分な粉砕ないし切断作用を発揮できなくなる虞れがある。一方、その割合が高すぎると、回転に大きな駆動力を必要とし、またビーズの磨耗による被処理媒体の汚染の増大を引き起こす虞れがある。このため、ビーズの充填割合は、例えば、ベッセルの有効容積の70~85容積%程度とすることが望ましい。
 また、処理時間、軸回転数、ベッセル内圧、モーター負荷等の操作条件は、炭素質材料の配合量、および分散させるべき樹脂の特性、特に、粘度や炭素質材料との相溶性などにより左右され、その目的に応じて適宜設定すればよい。
 また、このようなメディアミルによる分散処理に先立ち、その他の攪拌装置、例えば、ディスパー、ホモミキサー等のせん断型撹拌機を用いて予備分散処理を行うことが可能である。
 このようにして分散処理を行うことによって、分散体の25℃における粘度が500mPa・s以下、好ましくは50~300mPa・s程度の分散体を調製する。
<全固体リチウムイオン二次電池用電極スラリー>
 以上詳述した本発明の第1の観点に係る炭素質材料分散体は、以下のような電極活物質を含有させ、電極用スラリーとして調製することができる。
 すなわち、本発明の第2の観点に係る全固体リチウムイオン二次電池用電極スラリーは、分散媒中に炭素質材料、分散剤、バインダー樹脂、および、正極活物質又は負極活物質とを配合してなる全固体リチウムイオン二次電池用電極スラリーであって、分散媒が少なくともエステル系溶媒を含有し、分散剤が少なくともポリビニルブチラールを含有し、またスラリーにおける固形分中で、分散剤の配合量が炭素質材料の質量に対して5~40質量%であることを特徴とする全固体リチウムイオン二次電池用電極スラリーである。
本発明の第2の観点に係る全固体リチウムイオン二次電池用電極スラリーの好ましい一実施形態においては、スラリーにおける固形分中で、分散剤の配合量が炭素質材料の質量に対して、好ましくは5質量%以上20質量%未満である、より好ましくは6質量%以上12質量%未満であることが望ましい。
 本発明の第2の観点に係る全固体リチウムイオン二次電池用電極スラリーの別の実施形態においては、スラリーにおける固形分中で、分散剤の配合量が炭素質材料の質量に対して、分散剤の配合量が炭素質材料の質量に対して20~40質量%である、より好ましくは25~35質量%であるものとされる。。
 なお、本発明の第2の観点に係る全固体リチウムイオン二次電池用電極スラリーの製造工程、各成分の添加順序等については限定されるものではなく、例えば、(a)全成分を一括に分散混合して全固体リチウムイオン二次電池用電極スラリーを製造する態様、(b)上記したような本発明の第1の観点に係る炭素質材料分散体を調製後に、この炭素質材料分散体に、正極活物質又は負極活物質とを配合して全固体リチウムイオン二次電池用電極スラリーを製造する態様、(c)一部の分散媒に炭素質材料(および分散剤)を分散させた炭素質材料分散体と、一部の分散媒に正極活物質又は負極活物質(および分散剤)を分散させた電極活物質分散体とを調製し、この炭素質材料分散体と電極活物質分散体とを混合して全固体リチウムイオン二次電池用電極スラリーを製造する態様等の任意のものとすることができる。
(分散媒、炭素質材料、分散剤およびpH調整剤)
 本発明の第2の観点に係る全固体リチウムイオン二次電池用電極スラリーの成分のうち、分散媒、炭素質材料、および分散剤に関しては、本発明の第1の観点に係る炭素質材料分散体に関して説明したものと同様のものであるから、重複を避けるためにここでの説明を省略する。なお、本発明の第2の観点に係る全固体リチウムイオン二次電池用電極スラリーには、本発明の第1の観点に係る炭素質材料分散体と同様に、必要に応じて、上述したようなpH調整剤を配合することも可能である。
(電極活物質)
 本発明の第2の観点に係る全固体リチウムイオン二次電池用電極スラリーにおいて、配合され得る正極活物質としては、特に限定はされないが、リチウムイオンをドーピングまたはインターカレーション可能な金属酸化物、金属硫化物等の金属化合物、および導電性高分子等を使用することができる。
 例えば、Fe、Co、Ni、Mn等の遷移金属の酸化物、リチウムとの複合酸化物、遷移金属硫化物等の無機化合物等が挙げられる。具体的には、MnO、V、V13、TiO等の遷移金属酸化物粉末、層状構造のニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、スピネル構造のマンガン酸リチウムなどのリチウムと遷移金属との複合酸化物粉末、オリビン構造のリン酸化合物であるリン酸鉄リチウム系材料、TiS、FeSなどの遷移金属硫化物粉末等が挙げられる。また、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性高分子を使用することもできる。また、上記の無機化合物や有機化合物を混合して用いてもよい。
 一方、本発明の第2の観点に係る全固体リチウムイオン二次電池用電極スラリーにおいて、配合され得る負極活物質としては、リチウムイオンをドーピングまたはインターカレーション可能なものであれば特に限定されない。例えば、金属Li、その合金であるスズ合金、シリコン合金、鉛合金等の合金系、LiFe、LiFe、LiWO、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物系、ポリアセチレン、ポリ-p-フェニレン等の導電性高分子系、ソフトカーボンやハードカーボンといった、アモルファス系炭素質材料や、高黒鉛化炭素質材料等の人造黒鉛、あるいは天然黒鉛等の炭素質粉末、カーボンブラック、メソフェーズカーボンブラック、樹脂焼成炭素質材料、気相成長炭素繊維、炭素繊維などの炭素質材料が挙げられる。これら負極活物質は、1種または複数を組み合わせて使用することもできる。
 これらの電極活物質は、平均粒子径が0.05~100μmの範囲内であることが好ましく、さらに好ましくは、0.1~50μmの範囲内である。本明細書でいう電極活物質の平均粒子径とは電子顕微鏡で測定した粒子径の平均値である。
(バインダー樹脂)
 本発明の第2の観点に係る全固体リチウムイオン二次電池用電極スラリーにおいて、分散媒中に配合されるバインダー樹脂としては、特に限定されるわけではないが、水に対して溶解性を有しない重合体が用いられ得、具体的には例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミド、ポリアミド、ポリアミドイミド、ブタジエンゴム、イソブチレンゴム、スチレンブタジエンゴム、エチレンプロピレンゴムおよびニトリルブタジエンゴムなどを用いることができる。このうち、特にスチレンブタジエンゴムを好ましく用いることができる。なお、前記本発明の第1の観点に係る炭素質材料分散体において配合され得る樹脂系分散剤と同じものがバインダー樹脂として機能し得る場合もある。
 この電極スラリーを製造するための装置としては、上述した本発明の分散体を調製する際に用いられるものと同様のものを使用することができる。
 本発明の第2の観点に係る全固体リチウムイオン二次電池用電極スラリーの一実施形態においては、上述したような所定の成分を用いることによって、スラリーの固形分濃度が65~75質量%のとき(例えば、分散剤の配合量が炭素質材料の質量に対して5質量%以上20質量%未満であるような場合)、スラリーの25℃における粘度が500~5000mPa・s、より好ましくは1000~4000mPa・sであるものとすることができ、施工性を良好なものとすることができる。
 本発明の第2の観点に係る全固体リチウムイオン二次電池用電極スラリーの一実施形態においては、上述したような所定の成分を用いることによって、スラリーの固形分濃度が77~87質量%のとき(例えば、分散剤の配合量が炭素質材料の質量に対して20~40質量%であるような場合)、スラリーの25℃における粘度を1000~10000mPa・s、より好ましくは1000~5000mPa・sであるものとすることができ、施工性を良好なものとすることができる。
 以下、実施例に基づき、本発明を詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。本実施例中、部は質量部を、%は質量%を、それぞれ表す。
実施例1
 分散体の総質量を100質量%として、分散媒として酪酸ブチル82.5質量%(東京化成工業株式会社製)、分散剤としてのポリビニルブチラール(エスレックBL、積水化学工業株式会社製)1.5質量%(アセチレンブラックに対して10質量%)、アセチレンブラック(デンカブラック(商標名) 粒状品、デンカ株式会社製)15質量%、および2-アミノ-2-エチル-1,3-プロパンジオール1質量%の割合で配合し、ラボ用ビーズミル(アイメックス株式会社製)にて分散処理を行った。
 なお、ビーズミルによる分散処理は、ビーズとして直径1mmのジルコニア製ビーズを用い、ベッセルにおけるビーズ充填率がベッセルの有効容積の30容積%とし、分散体とビーズとの体積比を約1:1として、ベッセル内で回転数約2000rpmにて粘度が100mPa・s程度になるまで分散を実施した。
 このようにして調製された炭素質材料分散体(アセチレンブラック分散体)を分散処理から24時間以上静置した後、25℃での粘度を測定したところ、104mPa・sであった。測定にはB型粘度計(東機産業社製「TVB-15M」)を用い、測定温度25℃、B型粘度計ローター回転速度60rpmにて、分散組成物をヘラで充分に撹拌した後、直ちに行った。ローターはNo.21を用いた。その後、レオメータ(マルバーン・パナリティカル社製「キネクサス」)でせん断速度を0.1s-1~1000s-1まで変動させてせん断粘度を測定し、粘度の極小値が10s-1~1000s-1の範囲(250s-1)にあることを確認した。
 調製された炭素質材料分散体4部に対して、スチレンブタジエンゴムを10質量%酪酸ブチルに溶解させたバインダー溶液18部を添加し、公転自転攪拌脱泡機を用いて均一に混合して塗工用ペーストを調製した。アプリケーター(ヨシミツ精機株式会社製)でガラス板上に塗工し、減圧下100℃で2時間乾燥して塗膜を得た(乾燥後膜厚30μm)。低抵抗率計(三菱ケミカルアナリテック社製「ロレスタ‐GX」)で抵抗値を測定したところ1211Ωであり、良好な導電性を示すものであった。
実施例2
 上記実施例1において調製した炭素質材料分散体10.0gに対して、正極活物質としてのLiNi1/3Co1/3Mn1/3粉末(富士フイルム和光純薬株式会社製、粒径1~数μm)30.0gとスチレンブタジエンゴムを10質量%酪酸ブチルに溶解させたバインダー溶液と酪酸ブチルを、全固形分濃度が65質量%になるよう配合し、公転自転攪拌脱泡機を用い公転自転、何れの回転速度も1200rpmとして、5分間処理したところ、混合物は流動性を示すスラリーとなった。
 ここで、得られた正極合材層形成用スラリーが塗工に際し適切な粘度となっているかを、先述のレオメータを用いて測定した。レオメータでの測定条件は25℃一定、せん断速度10s-1で、60秒ごとに5点測定した平均値をスラリーの粘度とした。
 その結果、スラリーの粘度は3746mPa・sであった。
実施例3
 分散体の総質量を100質量%として、分散媒として酪酸ブチル83.2質量%、分散剤としてのポリビニルブチラール(エスレックBL、積水化学工業株式会社製)0.8質量%(アセチレンブラックに対して5.3質量%)、アセチレンブラック(デンカブラック(商標名) 粒状品、デンカ株式会社製)15質量%、および2-アミノ-2-エチル-1,3-プロパンジオールを1質量%の割合で配合し、ビーズミルにて分散処理を行った。
 なお、ビーズミルによる分散処理条件は粘度が300mPa・s程度になるまで分散を実施した以外は実施例1におけるものと同様とした。
 このようにして調製された炭素質材料分散体(アセチレンブラック分散体)の粘度を実施例1と同様にして測定した。その結果、分散体の粘度は、345mPa・sであった。その後、実施例1と同様にレオメータでせん断速度を0.1s-1~1000s-1まで変動させてせん断粘度を測定し、粘度の極小値が10s-1~1000s-1の範囲(630s-1)にあることを確認した。
 その後、実施例1と同様に乾燥塗膜を作製し、抵抗値を測定したところ1079Ωであり、良好な導電性を示すものであった。
実施例4
 分散体の総質量を100質量%として、分散媒として酪酸ブチル81.5質量%、分散剤としてのポリビニルブチラール(エスレックBL、積水化学工業株式会社製)2.5質量%(アセチレンブラックに対して16.7質量%)、アセチレンブラック(デンカブラック(商標名) 粒状品、デンカ株式会社製)15質量%、および2-アミノ-2-エチル-1,3-プロパンジオールを1質量%の割合で配合し、ビーズミルにて分散処理を行った。
 なお、ビーズミルによる分散処理条件は実施例1におけるものと同様とした。
 このようにして調製された炭素質材料分散体(アセチレンブラック分散体)の粘度を実施例1と同様にして測定した。その結果、分散体の粘度は、79mPa・sであった。
その後、実施例1と同様にレオメータでせん断速度を0.1s-1~1000s-1まで変動させてせん断粘度を測定し、粘度の極小値が10s-1~1000s-1の範囲(250s-1)にあることを確認した。
 その後、実施例1と同様に乾燥塗膜を作製し、抵抗値を測定したところ、1371Ωであり、良好な導電性を示すものであった。
比較例1~2
 実施例1において、分散剤としてのポリビニルブチラールに代えて、酢酸セルロースまたはポリビニルピロリドン(いずれも関東化学株式会社製)を用いた以外は実施例1と同様にして、ビーズミルにて分散処理を行った。
 しかしながら、いずれの場合も分散媒としての酪酸ブチルに樹脂成分がうまく溶解せず、アセチレンブラックの均一分散体は得られなかった。
比較例3
 分散体の総質量を100質量%として、分散媒として酪酸ブチル83.4質量%、分散剤としてのポリビニルブチラール(エスレックBL、積水化学工業株式会社製)0.6質量%(アセチレンブラックに対して4質量%)、アセチレンブラック(デンカブラック(商標名) 粒状品、デンカ株式会社製)15質量%、および2-アミノ-2-エチル-1,3-プロパンジオールを1質量%の割合で配合し、ビーズミルにて分散処理を行ったが、分散体は十分な流動性を示すものとはならなかった。
実施例5
 分散体の総質量を100質量%として、分散媒として酪酸ブチル81質量%、分散剤としてのポリビニルブチラール(エスレックBL、積水化学工業株式会社製)3質量%(アセチレンブラックに対して20質量%)、アセチレンブラック(デンカブラック(商標名) 粒状品、デンカ株式会社製)15質量%、および2-アミノ-2-エチル-1,3-プロパンジオールを1質量%の割合で配合し、ビーズミルにて分散処理を行った。なお、ビーズミルによる分散処理条件は実施例1におけるものと同様とした。
 このようにして調製された炭素質材料分散体(アセチレンブラック分散体)の粘度を実施例1と同様にして測定した。その結果、分散体の粘度は、137mPa・sであった。その後、実施例1と同様にレオメータでせん断速度を0.1s-1~1000s-1まで変動させてせん断粘度を測定したところ、粘度の極小値は10s-1~1000s-1の範囲(250s-1)にあった。
 その後、実施例1と同様に乾燥塗膜を作製し、抵抗値を測定したところ、1953Ωであり、実施例1および3と較べると導電性が少し低い結果となった。
実施例6
 分散体の総質量を100質量%として、分散媒として酪酸ブチル79質量%(東京化成工業株式会社製)、分散剤としてのポリビニルブチラール(エスレックBL、積水化学工業株式会社製)5質量%(アセチレンブラックに対して33.3質量%)、アセチレンブラック(デンカブラック(商標名) 粒状品、デンカ株式会社製)15質量%、および2-アミノ-2-エチル-1,3-プロパンジオール1質量%の割合で配合し、ラボ用ビーズミル(アイメックス株式会社製)にて分散処理を行った。
 なお、ビーズミルによる分散処理は、ビーズとして直径1mmのジルコニア製ビーズを用い、ベッセルにおけるビーズ充填率がベッセルの有効容積の30容積%とし、分散体とビーズとの体積比を約1:1として、ベッセル内で回転数約2000rpmにて粘度が100mPa・s程度になるまで分散を実施した。
 このようにして調製された炭素質材料分散体(アセチレンブラック分散体)を分散処理から24時間以上静置した後、25℃での粘度を測定したところ、86mPa・sであった。測定にはB型粘度計(東機産業社製「TVB-15M」)を用い、測定温度25℃、B型粘度計ローター回転速度60rpmにて、分散組成物をヘラで充分に撹拌した後、直ちに行った。ローターはNo.21を用いた。その後、レオメータ(マルバーン・パナリティカル社製「キネクサス」)でせん断速度を0.1s-1~1000s-1まで変動させてせん断粘度を測定し、粘度の極小値が10s-1~1000s-1の範囲(90s-1)にあることを確認した。
実施例7
 上記実施例6において調製した炭素質材料分散体10.0gに対して、正極活物質としてのLiNi1/3Co1/3Mn1/3粉末(富士フイルム和光純薬株式会社製、粒径1~数μm)32.0gと酪酸ブチルを、全固形分濃度が80質量%になるよう配合し、公転自転攪拌脱泡機を用い公転自転、何れの回転速度も1200rpmとして、5分間処理したところ、混合物は流動性を示すスラリーとなった。
 ここで、得られた正極合材層形成用スラリーが塗工に際し適切な粘度となっているかを、先述のレオメータを用いて測定した。レオメータでの測定条件は25℃一定、せん断速度10s-1で、60秒ごとに5点測定した平均値をスラリーの粘度とした。
 その結果、スラリーの粘度は1228mPa・sであった。
実施例8
 分散体の総質量を100質量%として、分散媒として酪酸ブチル78質量%、樹脂組成物としてのポリビニルブチラール(エスレックBL、積水化学工業株式会社製)6質量%(アセチレンブラックに対して40.0質量%)、アセチレンブラック(デンカブラック(商標名) 粒状品、デンカ株式会社製)15質量%、および2-アミノ-2-エチル-1,3-プロパンジオールを1質量%の割合で配合し、ビーズミルにて分散処理を行った。
 なお、ビーズミルによる分散処理条件は実施例6におけるものと同様とした。
 このようにして調製された炭素質材料分散体(アセチレンブラック分散体)の粘度を実施例5と同様にして測定した。その結果、分散体の粘度は、106mPa・sであった。
その後、実施例6と同様にレオメータでせん断速度を0.1s-1~1000s-1まで変動させてせん断粘度を測定し、粘度の極小値が10s-1~1000s-1の範囲(160s-1)にあることを確認した。
比較例4~5
 実施例6において、樹脂組成物としてのポリビニルブチラールに代えて、酢酸セルロースまたはポリビニルピロリドン(いずれも関東化学株式会社製)を用いた以外は実施例1と同様にして、ビーズミルにて分散処理を行った。
 しかしながら、いずれの場合も分散媒としての酪酸ブチルに樹脂成分がうまく溶解せず、アセチレンブラックの均一分散体は得られなかった。
実施例9
 分散体の総質量を100質量%として、分散媒として酪酸ブチル82質量%、樹脂組成物としてのポリビニルブチラール(エスレックBL、積水化学工業株式会社製)2質量%(アセチレンブラックに対して13.3質量%)、アセチレンブラック(デンカブラック(商標名) 粒状品、デンカ株式会社製)15質量%、および2-アミノ-2-エチル-1,3-プロパンジオールを1質量%の割合で配合し、ビーズミルにて分散処理を行った。
 なお、ビーズミルによる分散処理条件は実施例6におけるものと同様とした。
 このようにして調製された炭素質材料分散体(アセチレンブラック分散体)の粘度を実施例5と同様にして測定した。その結果、分散体の粘度は、72mPa・sであった。
 その後、実施例6と同様にレオメータでせん断速度を0.1s-1~1000s-1まで変動させてせん断粘度を測定したところ、粘度の極小値は10s-1~1000s-1の範囲(250s-1)にあった。
実施例10
 上記実施例9において調製した炭素質材料分散体に対して、上記実施例7と同様な条件で、正極活物質を配合し、公転自転攪拌脱泡機で処理し、さらにその後も実施例7と同様な条件で酪酸ブチルを添加しつつ公転自転攪拌脱泡機で処理したところ、混合物は十分な流動性を示すものとはならなかった。しかし、混合物が十分な流動性を示すまで酪酸ブチルを添加しつつ公転自転攪拌脱泡機で処理したところ、スラリーの固形分濃度は75質量%となったものの流動性のあるスラリーが得られた。
比較例6
 分散体の総質量を100質量%として、分散媒として酪酸ブチル76質量%、樹脂組成物としてのポリビニルブチラール(エスレックBL、積水化学工業株式会社製)8質量%(アセチレンブラックに対して53.3質量%)、アセチレンブラック(デンカブラック(商標名) 粒状品、デンカ株式会社製)15質量%、および2-アミノ-2-エチル-1,3-プロパンジオールを1質量%の割合で配合し、ビーズミルにて分散処理を行った。なお、ビーズミルによる分散処理条件は実施例6におけるものと同様とした。
 このようにして調製された炭素質材料分散体(アセチレンブラック分散体)の粘度を実施例6と同様にして測定した。その結果、分散体の粘度は、93mPa・sであった。その後、実施例6と同様にレオメータでせん断速度を0.1s-1~1000s-1まで変動させてせん断粘度を測定したところ、粘度の極小値は測定範囲内には存在しなかった。

Claims (15)

  1.  分散媒中に炭素質材料および分散剤を分散させた全固体リチウムイオン二次電池用炭素質材料分散体であって、
     分散媒が少なくともエステル系溶媒を含有し、分散剤として少なくともポリビニルブチラールを含有し、
     分散体における炭素質材料の配合量が、分散体の総質量に対して10~25質量%であり、また分散剤の配合量が炭素質材料の質量に対して5~40質量%であり、
     25℃における粘度が500mPa・s以下であることを特徴とする炭素質材料分散体。
  2.  分散剤の配合量が炭素質材料の質量に対して5質量%以上20質量%未満である請求項1に記載の炭素質材料分散体。
  3.  分散剤の配合量が炭素質材料の質量に対して20~40質量%である請求項1に記載の炭素質材料分散体。
  4.  前記炭素質材料分散体の25℃における粘弾性が、せん断速度10~1000s-1の範囲で極小値を持つことを特徴とする請求項1~3のいずれか1つに記載の炭素質材料分散体。
  5.  前記分散媒は、エステル系溶媒を分散媒総量の10質量%以上含有するものである請求項1~4のいずれか1つに記載の炭素質材料分散体。
  6.  前記エステル系溶媒が、酢酸プロピル、酪酸ブチル、ペンタン酸ブチル、ヘキサン酸ブチル、酪酸ペンチル、ペンタン酸ペンチル、ヘキサン酸ペンチル、酪酸ヘキシル、ペンタン酸ヘキシル、およびヘキサン酸ヘキシルからなる群から選ばれた少なくとも1つのものである請求項1~5のいずれか1つに記載の炭素質材料分散体。
  7.  前記エステル系溶媒が、酪酸ブチルである請求項1~5のいずれか1つに記載の炭素質材料分散体。
  8.  炭素質材料がカーボンブラックである請求項1~7のいずれか1つに記載の炭素質材料分散体。
  9.  カーボンブラックがアセチレンブラックである請求項8に記載の炭素質材料分散体。
  10.  pH調整剤をさらに含有するものである請求項1~9のいずれか1つに記載の炭素質材料分散体。
  11.  分散媒中に炭素質材料、分散剤、バインダー樹脂、および、正極活物質又は負極活物質とを配合してなる全固体リチウムイオン二次電池用電極スラリーであって、
     分散媒が少なくともエステル系溶媒を含有し、分散剤が少なくともポリビニルブチラールを含有し、またスラリーにおける固形分中で、分散剤の配合量が炭素質材料の質量に対して5~40質量%であることを特徴とする全固体リチウムイオン二次電池用電極スラリー。
  12.  分散剤の配合量が炭素質材料の質量に対して5質量%以上20質量%未満である請求項11に記載の全固体リチウムイオン二次電池用電極スラリー。
  13.  分散剤の配合量が炭素質材料の質量に対して20~40質量%である請求項11に記載の全固体リチウムイオン二次電池用電極スラリー。
  14.  スラリーの固形分濃度が65~75質量%のとき、スラリーの25℃における粘度が500~5000mPa・sである請求項12に記載の全固体リチウムイオン二次電池用電極スラリー。
  15.  スラリーの固形分濃度が77~87質量%のとき、スラリーの25℃における粘度が1000~10000mPa・sである請求項13に記載の全固体リチウムイオン二次電池用電極スラリー。
PCT/JP2021/029408 2020-08-07 2021-08-06 全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー WO2022030636A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/020,162 US20230307651A1 (en) 2020-08-07 2021-08-06 Carbonaceous material dispersion for all-solid lithium ion rechargeable battery, and slurry for electrode of all-solid lithium ion rechargeable battery
CN202180065799.0A CN116420244A (zh) 2020-08-07 2021-08-06 全固体锂离子二次电池用碳质材料分散体以及全固体锂离子二次电池用电极浆料

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-135224 2020-08-07
JP2020135224A JP2022030898A (ja) 2020-08-07 2020-08-07 全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー
JP2021-093200 2021-06-02
JP2021093200A JP2022185480A (ja) 2021-06-02 2021-06-02 全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー

Publications (1)

Publication Number Publication Date
WO2022030636A1 true WO2022030636A1 (ja) 2022-02-10

Family

ID=80117499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029408 WO2022030636A1 (ja) 2020-08-07 2021-08-06 全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー

Country Status (3)

Country Link
US (1) US20230307651A1 (ja)
CN (1) CN116420244A (ja)
WO (1) WO2022030636A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042266A1 (ja) * 2012-09-14 2014-03-20 御国色素株式会社 アセチレンブラック分散スラリー及びリチウムイオン二次電池
JP2015030777A (ja) * 2013-08-01 2015-02-16 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
WO2015104933A1 (ja) * 2014-01-10 2015-07-16 日産自動車株式会社 非水電解質二次電池の製造方法
JP2017135062A (ja) * 2016-01-29 2017-08-03 東洋インキScホールディングス株式会社 リチウムイオン二次電池用カーボンブラック分散液の製造方法
JP2017206412A (ja) * 2016-05-18 2017-11-24 戸田工業株式会社 カーボンナノチューブ分散液
WO2018167976A1 (ja) * 2017-03-17 2018-09-20 株式会社仁科マテリアル 分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られる、ナノカーボンその有機溶媒分散液及びそれらの製造方法
WO2019074074A1 (ja) * 2017-10-12 2019-04-18 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042266A1 (ja) * 2012-09-14 2014-03-20 御国色素株式会社 アセチレンブラック分散スラリー及びリチウムイオン二次電池
JP2015030777A (ja) * 2013-08-01 2015-02-16 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
WO2015104933A1 (ja) * 2014-01-10 2015-07-16 日産自動車株式会社 非水電解質二次電池の製造方法
JP2017135062A (ja) * 2016-01-29 2017-08-03 東洋インキScホールディングス株式会社 リチウムイオン二次電池用カーボンブラック分散液の製造方法
JP2017206412A (ja) * 2016-05-18 2017-11-24 戸田工業株式会社 カーボンナノチューブ分散液
WO2018167976A1 (ja) * 2017-03-17 2018-09-20 株式会社仁科マテリアル 分子骨格にアミノ基を有するナノカーボンから、アンモニウムイオン性基を除去して得られる、ナノカーボンその有機溶媒分散液及びそれらの製造方法
WO2019074074A1 (ja) * 2017-10-12 2019-04-18 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法

Also Published As

Publication number Publication date
CN116420244A (zh) 2023-07-11
US20230307651A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
JP5533057B2 (ja) カーボンブラック分散液
JP6142418B2 (ja) カーボンブラック分散液およびその利用
JP6152925B1 (ja) グラフェン分散液およびその製造方法、グラフェン−活物質複合体粒子の製造方法ならびに電極用ペーストの製造方法
CN108028366B (zh) 石墨烯/有机溶剂分散液及其制造方法以及锂离子电池用电极的制造方法
Tsai et al. Dispersion, agglomeration, and gelation of LiFePO4 in water-based slurry
CN110854386B (zh) 功率型锂电池正极浆料的制备方法及正极片、锂电池
WO2014115852A1 (ja) 非水電解質二次電池用の超極細繊維状炭素、超極細繊維状炭素集合体、複合体、及び電極活物質層
WO2017047521A1 (ja) グラフェン分散液およびその製造方法、グラフェン-活物質複合体粒子の製造方法ならびに電極ペーストの製造方法
TW201800336A (zh) 石墨烯分散體、電極糊之製造方法以及電極之製造方法
JP6863099B2 (ja) グラフェン/有機溶媒分散液、グラフェン−活物質複合体粒子の製造方法および電極ペーストの製造方法
JP2022063234A (ja) カーボンナノチューブ分散液およびその利用
KR20230034966A (ko) 카본나노튜브, 카본나노튜브 분산액, 그것을 이용한 비수전해질 이차전지
Zhang et al. Effect of triton X-100 as dispersant on carbon black for LiFePO4 cathode
Rajagopalan et al. Redox synthesis of poly (p–phenylenediamine)–reduced graphene oxide for the improvement of electrochemical performance of lithium titanate in lithium–ion battery anode
Wang et al. Effect of particle dispersion on the properties of LiFePO4 slurry and the electrochemical properties of the battery
WO2022030636A1 (ja) 全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー
JP2022030898A (ja) 全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー
JP2022185480A (ja) 全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー
Arao et al. Mechanochemical reaction using weak acid salts enables dispersion and exfoliation of nanomaterials in polar solvents
JP7239638B2 (ja) 炭素質材料分散体の脱水方法および炭素質材料分散体の製造方法
WO2022075387A1 (ja) カーボンナノチューブ分散液およびその利用
JP2019220401A (ja) 電極用カーボンブラックスラリー及び電極形成用組成物
Yoo et al. Single-Walled Carbon Nanotube Dispersion as Conductive Additive for Silicon-Based Lithium-Ion Batteries
JP7416180B1 (ja) 炭素材料、炭素材料分散組成物、合材スラリー、電極膜、二次電池、および車両
JP7339422B2 (ja) 蓄電デバイス電極用分散剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853149

Country of ref document: EP

Kind code of ref document: A1