WO2022118562A1 - 導電性ペーストの製造方法 - Google Patents

導電性ペーストの製造方法 Download PDF

Info

Publication number
WO2022118562A1
WO2022118562A1 PCT/JP2021/039095 JP2021039095W WO2022118562A1 WO 2022118562 A1 WO2022118562 A1 WO 2022118562A1 JP 2021039095 W JP2021039095 W JP 2021039095W WO 2022118562 A1 WO2022118562 A1 WO 2022118562A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
cnt
solvent
concentration
cnt1
Prior art date
Application number
PCT/JP2021/039095
Other languages
English (en)
French (fr)
Inventor
由 植村
Original Assignee
山陽色素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽色素株式会社 filed Critical 山陽色素株式会社
Priority to EP21900318.3A priority Critical patent/EP4243124A4/en
Priority to KR1020237022304A priority patent/KR20230117395A/ko
Priority to CN202180080697.6A priority patent/CN116601800A/zh
Priority to US18/039,940 priority patent/US20230420155A1/en
Priority to JP2022566783A priority patent/JPWO2022118562A1/ja
Publication of WO2022118562A1 publication Critical patent/WO2022118562A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes

Definitions

  • the present invention relates to a method for producing a conductive paste.
  • CNT carbon nanotubes
  • the positive electrode of a lithium ion secondary battery uses three main materials, an active material, a binder, and a conductive auxiliary agent.
  • the active material that accounts for 90% or more of the positive electrode mixture has poor conductivity. Therefore, carbon black (acetylene black) has been used as a conductive auxiliary agent to solve this problem, but in recent years, CNTs having higher conductivity than carbon black have been attracting attention.
  • Patent Document 1 discloses a CNT dispersion liquid having a CNT concentration of 2 to 30%, which uses 30 to 200 parts by weight of a nonionic dispersant with respect to 100 parts by weight of CNT.
  • CNTs can be dispersed in the active material by using a dispersant
  • a side reaction may occur during battery operation and adversely affect the battery characteristics and safety, and only the content of the dispersant may be present.
  • the content of the active ingredient is lowered.
  • Patent Documents 2 and 3 a method using ultrasonic treatment
  • Patent Document 4 a method using a rolling mill
  • Patent Document 5 a method using a colloidal mill
  • Patent Document 6 a method using a homogenizer or a wet jet mill
  • Patent Document 4 discloses a high-concentration CNT dispersion
  • the viscosity of the obtained CNT dispersion was almost the same as the viscosity of the undispersed CNT.
  • the viscosity of the CNT dispersion is very high as described above, it is difficult to secure the processability, homogeneity, and coatability of the mixture due to the poor fluidity of the dispersion, and a uniform mixture electrode can be obtained. It becomes difficult to obtain. It is also conceivable that CNTs may aggregate in the positive electrode mixture.
  • a kneaded product containing CNT and a solvent at a high concentration was prepared using a planetary stirrer, and then the obtained kneaded product was mixed with a solvent to obtain a dilution.
  • Wetting which is indicated by the ratio of the CNT concentration based on the maximum permeation weight of the solvent per 1 g of the CNT and the CNT concentration based on the weight of the mixture containing the CNT and the solvent during the dispersion treatment of the material and the preparation of the kneaded product.
  • the subject of the present invention is a method for producing a conductive paste that can be used as a positive electrode mixture for a lithium ion secondary battery, and the CNT is contained in a high concentration even if the amount of the dispersant is small, and the viscosity is low and the handling is possible. It is an object of the present invention to provide a method capable of producing an easy conductive paste.
  • a mixture containing a CNT and a solvent obtained by contacting a CNT and a solvent so that the wettability represented by the following formula (1) is 25 to 125% and impregnating the CNT with the solvent is a planetary type.
  • the present invention relates to a method for producing a conductive paste, which comprises kneading with a stirrer to obtain a paste-like kneaded product, and then mixing the obtained kneaded product with a solvent to disperse and disperse the obtained diluted product.
  • Wetness rate (%) A / B x 100
  • the content of the dispersant in the mixture, the kneaded product and the diluted product may be less than 30 parts by weight with respect to 100 parts by weight of CNT.
  • the dispersion treatment mechanically displaces the media in a stirrer and / or a container filled with natural or synthetic media that spins the stirrer blades at high speed to impart shearing force to the diluted product. It may be carried out by a stirrer in which the diluted product is refluxed or passed to disperse while stirring the mixture.
  • the CNT concentration may be adjusted by further mixing a solvent with the dispersion-treated diluted product.
  • the conductive paste obtained in the present invention has a small content of the dispersant, there is no concern about side reactions caused by the dispersant during battery operation, and the positive electrode combination is due to the small content of the dispersant.
  • the content of the active ingredient (active material, binder, and conductive auxiliary agent other than CNT) in the agent can be increased.
  • the conductive paste obtained in the present invention has a viscosity that is easy to handle while having a high concentration of CNT, so that it can be easily blended in a positive electrode mixture, and the concentration of CNT can be easily adjusted, so that it has desired electron conductivity. It is possible to efficiently manufacture an excellent electrode member.
  • the conductive paste obtained in the present invention has very excellent dispersibility of CNTs in the active material, the discharge capacity can be remarkably improved by adding and mixing with the positive electrode mixture. Further, since the conductive paste obtained in the present invention does not contain a dispersant as an essential component, the content of other components such as an active material, a binder, and a conductive auxiliary agent can be increased, and an electrode corresponding to various characteristics can be increased. The development of members can be promoted.
  • the method for producing a conductive paste according to an embodiment of the present invention is A mixture containing CNT and a solvent obtained by contacting carbon nanotubes (CNTs) and a solvent so that the wettability represented by the following formula (1) is 25 to 125% and impregnating the CNTs with the solvent is a planetary type. It has a step of kneading with a stirrer to obtain a paste-like kneaded product, and then mixing the obtained kneaded product with a solvent to disperse the obtained diluted product.
  • Wetness rate (%) A / B x 100
  • the conductive paste can be used as a conductive auxiliary agent for a positive electrode mixture of a lithium ion secondary battery, and contains CNT and a solvent as main components.
  • the CNT used in the present invention is not particularly limited, and either a multi-walled CNT (MWCNT) or a single-walled CNT (SWCNT) can be used.
  • the number of the layers is not particularly limited, and any of two layers, three layers, four layers, five layers or more can be used.
  • examples of the MWCNT having five or more layers include those having a diameter of 5 nm or more.
  • examples of the MWCNT include, but are not limited to, MWCNTs manufactured by Showa Denko KK, Nano, Nanocyl, LG Chem, JEIO, Kumho Petrochemical, SUSN Sinotech New Materials, ARCEMA and the like.
  • SWCNT examples include SWCNTs manufactured by companies such as OCSiAl, Osaka Soda Co., Ltd., and NanoIntegras, but the SWCNTs are not particularly limited. In the present invention, one type of CNT may be used alone, or a plurality of CNTs may be mixed and used.
  • solvent used in the present invention examples include aprotonic polar solvents such as N-methyl-2-pyrrolidone (NMP), dimethylsulfoxide and dimethylformamide, and aliphatic carbonization such as pentane, normal hexane, octane, cyclopentane and cyclohexane.
  • NMP N-methyl-2-pyrrolidone
  • aliphatic carbonization such as pentane, normal hexane, octane, cyclopentane and cyclohexane.
  • Hydrogen solvent aromatic hydrocarbon solvent such as benzene, toluene, xylene, simen, aldehyde solvent such as furfural, ketone solvent such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, butyl acetate, ethyl acetate, methyl acetate , Butyl propionate, butyl butyrate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, ethylene glycol diacetate and other ester solvents, tetrahydrofuran, dioxane, anisole, ethylene glycol dimethyl ether and the like ethers.
  • aromatic hydrocarbon solvent such as benzene, toluene, xylene, simen
  • aldehyde solvent such as furfural
  • ketone solvent such as acetone, methyl e
  • Alcohol-based solvents methanol, ethanol, normal propyl alcohol, isopropyl alcohol, butyl alcohol, octyl alcohol, cyclohexanol, allyl alcohol, benzyl alcohol, cresol, flufuryl alcohol and other alcohol solvents, glycerol, ethylene glycol, diethylene glycol and other polyol-based solvents.
  • examples thereof include an alcohol ether solvent such as a solvent, an ethylene glycol monomethyl ether, an ethylene glycol monoethyl ether, an ethylene glycol monobutyl ether, a propylene glycol monomethyl ether, and a diethylene glycol monobutyl ether, and water, but the present invention is not particularly limited. Further, two or more kinds of these solvents can be used in combination.
  • the planetary stirrer used in the present invention is a machine that mixes by material retention and shear stress due to centrifugal force generated by rotating and revolving (planetary motion), and is also called a rotating and revolving mixer.
  • planetary motion rotating and revolving
  • As the planetary agitator a commercially available manufacturing apparatus may be used, and the present invention is not particularly limited.
  • the CNT and the solvent are brought into contact with each other so that the wetting rate represented by the above formula (1) is 25 to 125%, and the CNT is impregnated with the solvent to contain the CNT and the solvent.
  • the mixture is kneaded with a planetary stirrer to obtain a paste-like kneaded product.
  • the wetting rate represented by the formula (1) is the ratio of the CNT concentration (A) when the solvent has penetrated to the maximum to the CNT concentration (B) in the mixture, and the lower the wetting rate, the more obtained.
  • the viscosity of the mixture is low, and the higher the wetting rate, the higher the viscosity of the mixture.
  • the wetting rate of 100% refers to the state when the solvent has penetrated into the CNT to the maximum. Then, in the present invention, by adjusting the wetting rate to be 25 to 125%, it is possible to efficiently obtain a paste-like mixture while infiltrating the solvent into the CNTs.
  • a low-viscosity kneaded product is obtained, and CNTs can be dispersed at a high concentration in the subsequent dispersion treatment. If the wetting rate is less than 25% or more than 125%, it is difficult to obtain the effect of lowering the viscosity of the kneaded product.
  • the wetting rate represented by the above formula (1) is excellent in that the optimum dispersion formulation of the conductive paste having the desired effect can be predicted in advance according to the type of the CNT used and the solvent. It can be said to be an index.
  • the range of the value of the CNT concentration (B) in the mixture is 0 ⁇ B ⁇ 100 according to the above definition, and when the value of B becomes large, the wetting rate converges to A. This means that even if the CNT concentration approaches 100%, the wetting rate does not approach 0%.
  • the maximum permeation weight of the solvent per 1 g of the CNT can be measured by the following procedure. 1. Prepare a powder measurement permeation rate measuring device "Peneto Analyzer", a jig for Peneto Analyzer (Teflon (registered trademark) cylinder, stainless mesh, filter paper, etc.), and a tapping device (all manufactured by Hosokawa Micron). 2. Spread stainless steel mesh and filter paper on the bottom of the Teflon (registered trademark) cylinder, and fill it with well-dissolved CNTs. Weigh the CNT weight precisely (ensure an effective value of 3 digits or more). 3. Mechanically tap the CNTs using a tapping device.
  • the tapping conditions are based on the pigment tap density measuring method (JIS K 5101-22-2). Specifically, 2.
  • the Teflon (registered trademark) cylinder containing the CNTs produced in 1 is fixed to the tapping device support base, and tapping is performed for 5 minutes at a nominal speed of 250 times / minute from a height of 3 mm ⁇ 0.2 mm. 4.
  • 3. Set the CNT prepared in step 1 on the scale of the penet analyzer and the beaker containing the solvent used for dispersion on the pedestal. 5.
  • Start measurement As the CNTs come into contact with the solvent and begin to absorb the solvent, the permeation weight of the solvent is plotted against time. The measurement is continued until the permeation weight of the solvent is saturated.
  • the permeation weight (maximum permeation weight) in the saturated region and 2.
  • the maximum permeation weight of the solvent per 1 g of CNT is obtained by dividing by the weight of CNT precisely weighed in.
  • a region where the solvent permeation rate (slope of the plot) per 1 g of CNT is 0.010 g / s or less is regarded as a saturated region.
  • the lower limit of the wetting rate is preferably 25% or more, more preferably 30% or more, and the upper limit of the wetting rate is preferably 125% or less. More preferably 100% or less.
  • the amount of CNT to be mixed with the solvent in the present invention cannot be unconditionally specified depending on the type of CNT and the solvent, but for example, even if the amount of CNT is adjusted to 8.5% by weight or more, the dispersion to be performed next is performed.
  • the treatment step it is possible to efficiently produce a conductive paste without breaking the viscosity (a state in which the entire paste is lifted and the stirring member of the solvent is idle).
  • the concentration of the CNT is a high viscosity (optimal viscosity) within a range in which the viscosity does not collapse.
  • the threshold of viscosity at which viscosity failure occurs is investigated in advance, and then An example is a method in which a kneaded product is actually prepared using CNT, the viscosity is measured while changing the concentration, and the CNT concentration condition within the range of the optimum viscosity is adopted as the main dispersion condition.
  • the viscosity is not particularly limited, but can be measured using an E-type viscometer, a leometer, or the like.
  • a method of bringing the CNT into contact with the solvent a method of mixing the CNT with a predetermined amount of the solvent once or in a plurality of times, a method of mixing the solvent with a predetermined amount of the CNT in a single or a plurality of times, and the like.
  • a method of mixing the solvent with a predetermined amount of the CNT in a single or a plurality of times there is no particular limitation.
  • the temperature may be adjusted to be equal to or lower than the boiling point of the solvent used.
  • the kneading process time cannot be unconditionally specified because it depends on the specifications of the planetary stirrer, but the time at which the torque converges may be set as the end point of the kneading.
  • the conditions are not particularly limited, but are preferably 0 to 80 ° C. and 1 to 24 hours.
  • the speed at the time of kneading may be about 30 rpm (30 min -1 ) and is not particularly limited.
  • the filling rate of the planetary stirrer may be appropriately adjusted according to the capacity of the tank and the amount of the CNT and the solvent to be charged so that the mixture can be efficiently kneaded.
  • the specific filling rate is not particularly limited, but may be adjusted to be 20 to 70%.
  • the torque increases when kneading is started, but the increase becomes gradual as the dispersion progresses, and the torque converges to a constant value when the kneaded material is sufficiently dispersed. do. Further, the torque may be confirmed by the monitor function mounted on the planetary stirrer.
  • the kneaded product has a high viscosity unless the CNT concentration is 4% by weight or less even if a dispersant is used. Or, the viscosity is broken, so it cannot be made into a paste well, and even if the obtained kneaded product is mixed with the positive electrode mixture, CNTs aggregate or CNTs are desired in the positive electrode mixture. Dispersion did not progress to the state of.
  • a kneaded product can be obtained even when the CNT concentration is adjusted to be high without using a dispersant. Further, when a dispersant is used, a kneaded product having a higher CNT concentration can be obtained.
  • the CNT concentration is not limited because the concentration that can be adjusted differs depending on the CNT, but a kneaded product of 6% by weight or more can be obtained without using a dispersant, and 10 when a dispersant is used. A kneaded product having a weight of% or more can be obtained.
  • a diluted product obtained by mixing a solvent with the kneaded product is dispersed.
  • the CNT concentration can be adjusted to produce a conductive paste capable of satisfactorily dispersing CNTs in the active material when mixed with the active material.
  • a high-speed shearing device having a high shearing force is used.
  • the diluted material is refluxed or passed through while mechanically stirring the media in a container filled with a disperser for applying a collision / frictional force and natural or synthetic media (for example, natural sand, glass beads, zirconia beads, etc.).
  • a disperser for applying a collision / frictional force and natural or synthetic media (for example, natural sand, glass beads, zirconia beads, etc.).
  • natural or synthetic media for example, natural sand, glass beads, zirconia beads, etc.
  • examples thereof include a stirrer (for example, a bead mill manufactured by Ashizawa Finetech) that allows and disperses the mixture.
  • a stirrer in which the stirring blade is rotated at high speed to apply a shearing force to the diluted product is preferable.
  • these high-speed shearing devices may be used in combination of two or more types.
  • the temperature may be adjusted to be equal to or lower than the flash point of the solvent to be used.
  • the processing time cannot be unconditionally specified because it depends on the specifications of the disperser, but the time at which the particle size distribution converges may be set as the end point of the dispersion.
  • the conditions include, for example, a range of 0 to 80 ° C. and 1 to 10 hours.
  • the speed of the dispersion processing is not particularly limited as long as the fluidity of the contents can be maintained.
  • the amount of the solvent to be mixed in the kneaded product is preferably adjusted so that the viscosity in the dispersion treatment does not cause the viscosity failure.
  • the amount of the solvent is adjusted so as to be 15,000 mPa ⁇ s or less, more preferably around 10,000 mPa ⁇ s.
  • the CNT concentration at this time depends on the CNT concentration of the kneaded product, but for example, it may be adjusted to be less than or equal to the CNT concentration of the kneaded product in the range of 4 to 10% by weight.
  • the solvent used in this dispersion treatment step may be used, but other solvents may be used.
  • the type of solvent may be any solvent that can be used in the kneaded product, and is not particularly limited.
  • the dispersant is not an essential component, but from the viewpoint of adjusting the CNT concentration in the kneaded material to be high and efficiently dispersing the conductive paste in the active material, the conductive paste A dispersant may be mixed therein.
  • the dispersant include polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene, polypropylene, methyl methacrylate, polyvinyl chloride, vinylidene chloride, vinyl acetate, polyacrylic acid, polyvinyl butyral, and polyacrylamide.
  • the content of the dispersant in the mixture, the kneaded product and the diluted product is preferably adjusted to be low, for example, by weight of CNT 100, from the viewpoint of making it difficult for side reactions to occur during battery operation. It is possible to adjust the portion to be less than 30 parts by weight at most.
  • the conductive paste obtained as described above can be mixed with an active material and a binder as a conductive auxiliary agent to prepare a positive electrode mixture for a lithium ion secondary battery.
  • Example 1 Since the maximum permeation weight of NMP per 1 g of CNT1 (MWCNT, manufactured by LG Chem, LUCAN BT 1003M or less) was 12.6 g, 100% CNT1 was wet when the CNT1 concentration was 7.4% by weight (the same). Wetting rate was 100%).
  • CNT1 74% CNT1 concentration 10.0% by weight
  • a planetary stirrer manufactured by Inoue Seisakusho, product name "Trimix", the same applies hereinafter
  • Example 2 After obtaining a paste-like kneaded product in the same manner as in Example 1, the CNT1 concentration was adjusted to 5.5% by weight, and the dispersion treatment was performed with a stirring blade in a high-speed shearing tank for 2 hours. No CNT1 conductive paste was obtained. After that, a conductive paste having a CNT1 concentration of 4.0% by weight was obtained in the same manner as in Example 1.
  • Example 3 After obtaining a paste-like kneaded product in the same manner as in Example 1, the CNT1 concentration was adjusted to 4.5% by weight, and the dispersion treatment was performed with a stirring blade in a high-speed shearing tank for 2 hours. No CNT1 conductive paste was obtained. After that, a conductive paste having a CNT1 concentration of 4.0% by weight was obtained in the same manner as in Example 1.
  • Example 4 Kneading was carried out in the same manner as in Example 1 except that NMP681 by weight was charged with respect to 100 parts by weight of CNT1 so that the wetting rate of CNT1 was 58% (CNT1 concentration 12.8% by weight).
  • NMP681 by weight was charged with respect to 100 parts by weight of CNT1 so that the wetting rate of CNT1 was 58% (CNT1 concentration 12.8% by weight).
  • the blade was rotated at a high speed of 2000 rpm (2000 min -1 ) for 2 hours to perform a dispersion treatment, a CNT1 conductive paste was obtained without breaking the viscosity.
  • NMP was added to the dispersion-treated diluted product to obtain a conductive paste having a CNT
  • Example 5 Kneading was carried out in the same manner as in Example 1 except that 400 parts by weight of NMP was charged with respect to 100 parts by weight of CNT1 so that the wetting rate of CNT1 was 37% (CNT1 concentration 20.0% by weight). To the obtained paste-like kneaded product (CNT1 concentration 20.0% by weight), add 677 parts by weight of NMP to 100 parts by weight of CNT1 so that the CNT1 concentration becomes 8.5% by weight, and stir in a high-speed shearing tank.
  • Example 6 Polyvinylpyrrolidone (manufactured by Nippon Shokubai, PVP K-) previously dissolved in NMP at an NV value of 20% with respect to 100 parts by weight of CNT1 so that the wetting rate of CNT1 is 74% (CNT1 concentration 10.0% by weight).
  • Kneading was carried out in the same manner as in Example 1 except that 124 parts by weight and 775 parts by weight of NMP were charged.
  • NMP1222 parts by weight to 100 parts by weight of CNT1 so that the CNT1 concentration becomes 4.5% by weight, and stir in a high-speed shearing tank.
  • Example 7 Polyvinylpyrrolidone (manufactured by Nippon Shokubai, PVP K-) previously dissolved in NMP at an NV value of 20% with respect to 100 parts by weight of CNT1 so that the wetting rate of CNT1 is 37% (CNT1 concentration 20.0% by weight). 30) Kneading was carried out in the same manner as in Example 1 except that 124 parts by weight and 275 parts by weight of NMP were charged. To the obtained paste-like kneaded product (CNT1 concentration 20.0% by weight), add 452 parts by weight of NMP to 100 parts by weight of CNT1 so that the CNT1 concentration becomes 10.5% by weight, and stir in a high-speed shearing tank.
  • NMP paste-like kneaded product
  • Example 8 Since the maximum permeation weight of NMP per 1 g of CNT2 (MWCNT, manufactured by LG Chem, LUCAN BT 1001M, the same applies hereinafter) was 15.5 g, 100% CNT2 was wet when the CNT2 concentration was 6.1% by weight. (Wetness rate 100%). Kneading was carried out in the same manner as in Example 1 except that NMP502 parts by weight was charged with respect to 100 parts by weight of CNT2 so that the wetting rate of CNT2 was 37% (CNT2 concentration 16.6% by weight).
  • Example 9 Polyvinylpyrrolidone (manufactured by Nippon Shokubai, PVP K-) previously dissolved in NMP at an NV value of 20% with respect to 100 parts by weight of CNT2 so that the wetting rate of CNT2 is 31% (CNT2 concentration 20.0% by weight). 30) Kneading was carried out in the same manner as in Example 1 except that 124 parts by weight and 275 parts by weight of NMP were charged. To the obtained paste-like kneaded product (CNT2 concentration 20.0% by weight), add 676 parts by weight of NMP to 100 parts by weight of CNT2 so that the CNT2 concentration becomes 8.5% by weight, and stir in a high-speed shearing tank.
  • NMP paste-like kneaded product
  • Comparative Example 2 The amount of NMP was adjusted so that the wetting rate of CNT1 was 124% (CNT1 concentration 5.9% by weight), and kneading (2 passes) was carried out using three rolls instead of the planetary stirrer. The viscosity was measured by changing the concentration of the kneaded product, but the viscosity was equivalent to that of Comparative Example 1 and the viscosity was very high, which was not at a level that could be dispersed by the stirring blade.
  • Comparative Example 5 Comparative Example 5
  • CNT2 was used instead of CNT1 and an attempt was made to disperse CNT2 and NMP at different concentrations with a stirring blade, but even if the CNT2 concentration was 4.0% by weight, the viscosity became high and the fluidity of the paste became high. There was no (viscosity failure).
  • the obtained positive electrode mixture was formed into an aluminum collector foil (Niraco, AL-013225) using a desktop mini coater (Hosen, MC-20), and dried with a hot plate and a vacuum dryer. ..
  • a desktop mini coater Hosen, MC-20
  • the aggregate of CNT1 is found in the positive electrode mixture electrode prepared from the CNT1 conductive paste of Examples 2, 4, 5, 6, 7, 8 and 9.
  • a large number of CNT1 aggregates were confirmed in the positive electrode mixture electrode prepared from the CNT1 conductive paste of Comparative Example 1.
  • the positive electrode mixture electrode prepared from the CNT1 conductive paste of Comparative Example 1 was not suitable for use in the battery evaluation of Test Example 2.
  • the conductive paste obtained by the production method of the present invention retains a dispersed state in the positive electrode mixture and in the coated electrode thereof. Therefore, it can be seen that the production method of the present invention can produce a conductive paste that contains CNTs at a high concentration even if the amount of the dispersant is small, has a low viscosity, and is easy to handle. Further, it can be seen that the conductive paste obtained in the present invention can be mixed with the positive electrode active material of the lithium secondary battery to prepare a positive electrode mixture.
  • Test Example 2 A test battery (half cell) was prepared using the positive electrode mixture electrode prepared in Test Example 1, and battery evaluation (rate test and cycle test) was carried out.
  • the test battery (implemented product) was prepared as follows. The porosity of the electrode was adjusted to around 30% by pressing the positive electrode mixture electrode prepared in Test Example 1 with a uniaxial press at about 32 kgN.
  • an electrochemical measurement cell TJ-AC manufactured by Nippon Tomcell
  • the positive electrode of the positive electrode prepared in Test Example 1 was used for the positive electrode
  • the metallic lithium foil manufactured by Honjo Chemical
  • the negative electrode was used for the negative electrode
  • glass fiber filter paper manufactured by Whatman, GF
  • the battery characteristics were measured as follows.
  • the manufactured test battery was connected to a charge / discharge measuring device (HJ-1001SD8 manufactured by Hokuto Denko), and a rate test and a cycle test were performed.
  • rate test charging was performed with a fixed rate of 0.1 C and constant current control with a final voltage of 4.2 V.
  • the discharge was carried out by controlling the rate to 0.1C, 0.2C, 0.5C, 1C, 2C, 3C, 5C, 7C, 10C and constant current control with a final voltage of 3.0V.
  • the cycle test basically, at a rate of 1C, charging and discharging were repeated for about 200 cycles while controlling a constant current at an end voltage of 4.3V to 3.0V. However, the initial 5 cycles and the 51st, 101st, 151st, and 201st cycles were charged and discharged at a rate of 0.1C.
  • Table 1 The obtained rate test results are shown in Table 1, and the cycle test results are shown in Table 2.
  • the discharge capacity at 3C is about 3C by adding only 0.3% by weight of CNT as compared with the control product (AB alone). It improved to 104-142%.
  • CNTs of only 0.3% by weight are added to the product (AB + Examples 2 to 9) as compared with the control product (AB alone).
  • the discharge capacity at the 100th cycle was about 107 to 182%. From the above results, it can be seen that by using the conductive paste obtained in the present invention, the discharge capacity of the positive electrode mixture can be efficiently improved, and the desired electrode member having excellent electron conductivity can be efficiently manufactured.
  • Example 10 Since the maximum permeation weight of NMP per 1 g of CNT3 (SWCNT, OCSiAl, TUBALL, the same applies hereinafter) was 8.1 g, 100% CNT3 was wet when the CNT3 concentration was 11.0% by weight (wetting rate). 100%). 218 parts by weight of NMP was charged to 100 parts by weight of CNT3 so that the wetting rate of CNT3 was 35% (CNT3 concentration 31.4% by weight), and the planet type was charged at about 30 ° C. and 35 rpm (35 min -1 ) for 4 hours. A stirrer was operated to knead the mixture to obtain a kneaded product having a CNT3 concentration of 31.4% by weight.
  • Example 11 Since the maximum permeation weight of NMP per 1 g of CNT4 (MWCNT, manufactured by JEIO, JENOTUBE 6A, the same applies hereinafter) was 16.4 g, 100% CNT4 was wet (wet) when the CNT4 concentration was 5.7% by weight. The rate was 100%). NMP443 parts by weight was charged to 100 parts by weight of CNT4 so that the wetting rate of CNT4 was 31% (CNT4 concentration 18.4% by weight), and the planet type was charged at about 30 ° C. and 35 rpm (35 min -1 ) for 21 hours. A stirrer was operated to knead the mixture to obtain a kneaded product having a CNT4 concentration of 18.4% by weight.
  • MWCNT manufactured by JEIO, JENOTUBE 6A
  • Example 12 Polyvinylpyrrolidone (manufactured by Nippon Catalyst Co., Ltd., PVP K-) previously dissolved in NMP at an NV value of 20% with respect to 100 parts by weight of CNT4 so that the wetting rate of CNT4 is 31% (CNT4 concentration 18.4% by weight).
  • PVP K- Polyvinylpyrrolidone
  • a conductive paste containing CNT at a high concentration even if the amount of the dispersant is small, and having a low viscosity and being easy to handle is produced. It turns out that it can be manufactured. Further, it can be seen that regardless of whether MWCNT or SWCNT is used as the CNT, the conductive paste obtained in the present invention can be mixed with the positive electrode active material of the lithium ion secondary battery to prepare a positive electrode mixture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

カーボンナノチューブ(CNT)と溶媒とを濡れ率が25~125%となるように接触させ、CNTに溶媒を含浸させて得られるCNT及び溶媒を含む混合物を、遊星型撹拌機で混練してペースト状の混練物を得た後、得られた前記混練物に溶媒を混合して得られる希釈物を分散処理する、導電性ペーストの製造方法。分散剤が少なくても高濃度でCNTを含有し、粘度が低くて取り扱いが容易である導電性ペーストを作製できる。この導電性ペーストは、リチウムイオン二次電池の正極活物質と混合して、正極合剤を作製できる。

Description

導電性ペーストの製造方法
 本発明は、導電性ペーストの製造方法に関するものである。
 従来、導電性、熱伝導性及び機械的特性等の諸特性に優れる物質として、カーボンナノチューブ(以下、「CNT」と称することがある。)等が知られている。そして、近年では、CNTを使用することによりフィルムや繊維等の各種製品の諸特性を向上させる技術が提案されている。具体的には、CNTと有機溶媒とを含むCNT分散液を材料として使用し、CNTを含有する製品を製造することにより、製品の諸特性を向上させる技術が提案されている。
 中でも、リチウムイオン二次電池の正極は、活物質、バインダー、導電助剤の3つが主材料として使用されており、このうち、正極合剤の90%以上を占める活物質は導電性に乏しいことから、この問題を解消する導電助剤として、カーボンブラック(アセチレンブラック)が用いられてきたが、近年ではカーボンブラックよりも導電性に優れるCNTが着目されている。
 導電助剤としてCNTが効果的に作用するには、活物質中においてCNTが十分に分散されている必要があるが、CNTは凝集し易く、分散させ難い性質を有していることから、その分散性を向上させるために、予めCNTと分散剤とを含有したCNT分散液を作製し、これを活物質等と混合する試みがされている。例えば、特許文献1には、CNT100重量部に対して30~200重量部の非イオン性分散剤を用いた、CNT濃度2~30%のCNT分散液が開示されている。しかしながら、分散剤を用いると、CNTを活物質中に分散できるものの、電池動作時に、副反応が生じて電池特性や安全性に悪影響を与える懸念があり、また、分散剤の含有分だけ他の有効成分の含有率が下がるという好ましくない問題がある。
 そこで、分散剤をできるだけ使用しないCNT分散液の作製も検討されている。
 例えば、超音波処理を用いる方法(特許文献2、3)、圧延機を用いる方法(特許文献4)、コロイドミルを用いる方法(特許文献5)、ホモジナイザーや湿式ジェットミルを用いる方法(特許文献6、7)等が知られている。
特許第5628503号 特許第6258215号 特許第6445585号 特許第6454267号 特開2019-172485号公報 国際公開第2016/203746号 国際公開第2019/188023号
 しかしながら、できる限り分散剤等の余計な成分を加えずに、高濃度でCNTを分散させるには、溶媒の量を抑えてCNTを分散する必要があるものの、サンドミル、ジェットミル、ディスパー等の分散機を用いた場合、分散体が高粘度になり、分散機の動作に悪影響が出て、時間がかかりすぎる等の問題があった。
 また、前記特許文献2、3、5、6、7に記載の方法では、ある程度の流動性を与えるために溶媒が必要なため、濃度を高くするには限界があると考えられる。特に、超音波処理、ホモジナイザー、湿式ジェットミル等は、液媒体が不可欠であり、ペースト状態での分散は困難である。
 一方、前記特許文献4では高濃度のCNT分散体が開示されているものの、本件発明者が追試したところ、得られたCNT分散体の粘度は未分散のCNTの粘度とほぼ同等であった。このようにCNT分散体の粘度が非常に高い場合、分散体の流動性が悪いために、合剤の加工性や均質性、塗工性を確保することが困難となり、均一な合剤電極を得ることが困難になる。また、正極合剤中でCNTが凝集する可能性も考えられる。
 そこで、更に検討を進めたところ、CNTと溶媒とを遊星型撹拌機を使用してCNTを高濃度に含有する混練物を作製し、次いで得られた混練物に溶媒を混合して得られる希釈物を分散処理すること、さらには、混練物の作製時においてCNT1gあたりの溶媒の最大浸透重量に基づいたCNT濃度と、CNT及び溶媒を含む混合物重量に基づいたCNT濃度との比率で示される濡れ率を特定の範囲に調整することで、より高濃度でCNTを含有する導電性ペーストが作製可能となり、しかも、この導電性ペーストを混合した正極合剤中ではCNTの凝集物を生じ難いという特性を有することを見出した。
 したがって、本発明の課題は、リチウムイオン二次電池の正極合剤に使用できる導電性ペーストの作製方法であって、分散剤が少なくても高濃度でCNTを含有し、粘度が低くて取り扱いが容易である導電性ペーストを作製できる方法を提供することにある。
 本発明は、CNTと溶媒とを下記式(1)で示される濡れ率が25~125%となるように接触させ、CNTに溶媒を含浸させて得られるCNT及び溶媒を含む混合物を、遊星型撹拌機で混練してペースト状の混練物を得た後、得られた前記混練物に溶媒を混合して得られる希釈物を分散処理する、導電性ペーストの製造方法に関する。
 濡れ率(%)=A/B×100   (1)
 A:下記式で算出される、溶媒が最大まで浸透した場合のCNT濃度
 A(%)=CNT1g/(CNT1g+CNT1gあたりの溶媒の最大浸透重量[g])×100
 B:下記式で算出される、前記混合物中のCNT濃度
 B(%)=CNT重量[g]/混合物重量[g]×100
 本発明の実施形態では、前記混合物、前記混練物及び前記希釈物中における分散剤の含有量がCNT100重量部に対して30重量部未満であってもよい。
 本発明の実施形態では、前記分散処理が、撹拌羽根を高速回転させて前記希釈物に剪断力を付与する撹拌機及び/又は天然あるいは合成のメディアを充填した容器中で、そのメディアを機械的に撹拌しながら、前記希釈物を還流乃至通過させて分散する撹拌機により行われてもよい。
 本発明の実施形態では、前記分散処理された希釈物に、さらに溶媒を混合してCNT濃度を調整してもよい。
 本発明で得られる導電性ペーストでは、分散剤の含有量が少ないことから、電池動作時に、分散剤に起因する副反応の懸念がなく、また、分散剤の含有量が少ない分だけ、正極合剤中の有効成分(活物質、バインダー、及びCNT以外の導電助剤)の含有率を上げることができる。また、本発明で得られる導電性ペーストは、CNTが高濃度でありながら、取扱い易い粘度であるため、正極合剤に配合し易く、また、CNTの濃度調整もし易いため、所望の電子伝導性に優れた電極部材を効率よく製造することができる。
 例えば、本発明で得られる導電性ペーストは、活物質中におけるCNTの分散性が非常に優れているため、正極合剤に添加・混合することで、放電容量を顕著に向上させることができる。また、本発明で得られる導電性ペーストは、分散剤を必須成分としていないため、活物質、バインダー、導電助剤等の他の成分の含有量を増やすことができ、様々な特性に応じた電極部材の開発を促進することができる。
 以下、本発明に係る導電性ペーストの製造方法の実施形態について説明する。
 本発明の実施形態に係る導電性ペーストの製造方法(以下、本発明の製造方法ともいう)は、
カーボンナノチューブ(CNT)と溶媒とを下記式(1)で示される濡れ率が25~125%となるように接触させ、CNTに溶媒を含浸させて得られるCNT及び溶媒を含む混合物を、遊星型撹拌機で混練してペースト状の混練物を得た後、得られた前記混練物に溶媒を混合して得られる希釈物を分散処理する工程を有する。
 濡れ率(%)=A/B×100   (1)
 A:下記式で算出される、溶媒が最大まで浸透した場合のCNT濃度
 A(%)=CNT1g/(CNT1g+CNT1gあたりの溶媒の最大浸透重量[g])×100
 B:下記式で算出される、前記混合物中のCNT濃度
 B(%)=CNT重量[g]/混合物重量[g]×100
 本発明において、導電性ペーストとは、リチウムイオン二次電池の正極合剤の導電助剤として使用することができるものであり、CNT及び溶媒を主成分として含有するものである。
 本発明で用いるCNTとしては、特に限定はなく、多層のCNT(MWCNT)、単層のCNT(SWCNT)のいずれも使用できる。前記多層の数としては、特に限定はなく、2層、3層、4層、5層以上のものがいずれも使用できる。また、前記5層以上のMWCNTとしては、その直径が5nm以上のものが挙げられる。
 例えば、MWCNTとしては、昭和電工株式会社、Cnano,Nanocyl,LG Chem、JEIO、Kumho Petrochemical、SUSN Sinotech New Materials 、ARKEMA等の各社が製造しているMWCNTが挙げられるが、特に限定はない。
 SWCNTとしては、例えば、ОCSiAl、株式会社大阪ソーダ、NanoIntegris等の各社が製造しているSWCNTが挙げられるが、特に限定はない。
 なお、本発明では、1種類のCNTを単独で使用してもよいし、複数のCNTを混合して使用してもよい。
 本発明で用いる溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒、ペンタン、ノルマルヘキサン、オクタン、シクロペンタン、シクロヘキサン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン、シメン等の芳香族炭化水素系溶媒、フルフラル等のアルデヒド系溶媒、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶媒、酢酸ブチル、酢酸エチル、酢酸メチル、ブチルプロピオネート、酪酸ブチル、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3 -メトキシブチルアセテート、エチレングリコールジアセテート等のエステル系溶媒、テトラヒドロフラン、ジオキサン、アニソール、エチレングリコールジメチルエーテル等のエーテル系溶媒、メタノール、エタノール、ノルマルプロピルアルコール、イソプロピルアルコール、ブチルアルコール、オクチルアルコール、シクロヘキサノール、アリルアルコール、ベンジルアルコール、クレゾール、フルフリルアルコール等のアルコール系溶媒、グリセロール、エチレングリコール、ジエチレングリコール等のポリオール系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のアルコールエーテル系溶媒、及び水等が挙げられるが、特に限定はない。また、それらの溶媒を2種類以上併用することもできる。
 本発明で用いる遊星型撹拌機とは、自転と公転(遊星運動)をさせることで発生した遠心力による材料滞留と剪断応力で混合する機械であり、自転公転式ミキサーともいわれる。
 前記遊星型撹拌機は、市販されている製造装置を用いればよく、特に限定はない。
 本発明の製造方法では、まず、CNTと溶媒とを前記式(1)で示される濡れ率が25~125%となるように接触させ、CNTに溶媒を含浸させて得られるCNT及び溶媒を含む混合物を、遊星型撹拌機で混練してペースト状の混練物を得る。
 前記式(1)で示される濡れ率とは、溶媒が最大まで浸透した場合のCNT濃度(A)の、前記混合物中のCNT濃度(B)に対する比率であり、この濡れ率が低いほど得られる混合物の粘度が低くなり、また、濡れ率が高いほど混合物の粘度が高くなる。濡れ率が100%とは、CNTに溶媒が最大まで浸透した時の状態を指す。
 そして、本発明においては、前記濡れ率を25~125%となるように調整していることで、CNT中に溶媒を浸透させつつ、効率よくペースト状の混合物を得ることができ、これにより、低粘度の混練物が得られ、続く分散処理でCNTを高濃度で分散可能となる。なお、前記濡れ率が25%未満であったり125%を超えたりすると、前記混練物において低粘度化の効果は得られにくい。
 このように前記式(1)で示される濡れ率は、使用するCNTと溶媒との種類に応じて、目的の効果を奏する導電性ペーストの最適な分散処方を事前に予測できる点で、優れた指標といえる。
 なお、前記式(1)において、前記混合物中のCNT濃度(B)の値の範囲は上記の定義上、0<B<100であり、Bの値が大きくなると前記濡れ率はAに収束していく関係にあり、これは「CNT濃度が100%に近づいても濡れ率が0%に近づかない」ことを意味する。
 前記CNT1gあたりの溶媒の最大浸透重量は、以下の手順で測定することができる。
1. 粉体測定浸透速度測定装置「ペネトアナライザ」、ペネトアナライザ専用治具(テフロン(登録商標)筒、ステンレスメッシュ、濾紙等)、及びタッピング装置(いずれもホソカワミクロン製)を準備する。
2. テフロン(登録商標)筒の底部にステンレスメッシュ、濾紙を敷き、その上に良く解したCNTを詰める。CNT重量も精秤しておく(有効数値は3桁以上確保する)。
3. タッピング装置を用い、CNTを機械的にタッピングする。タッピング条件は顔料タップ密度測定法(JIS K 5101-12-2)に準ずる。具体的には、2.で作製したCNTを入れたテフロン(登録商標)筒をタッピング装置支持台に固定、3mm±0.2mmの高さから、250回/分の公称速度で5分間タッピングを行う。
4. 3.で作製したCNTをペネトアナライザの秤部に、分散に使用する溶媒を入れたビーカーを台座にセットする。
5. 測定を開始。CNTが溶媒に接し、溶媒を吸収し始めると、時間に対して溶媒の浸透重量がプロットされる。
 溶媒の浸透重量が飽和するまで測定を継続する。飽和領域における浸透重量(最大浸透重量)を読み取り、予め2.で精秤したCNT重量で除することによりCNT1gあたりの溶媒の最大浸透重量を得る。なお、CNT1gあたりの溶媒浸透速度(プロットの傾き)が、0.010g/s以下となる領域を飽和領域とみなす。
 本発明では、混練を効率よく行うことができる観点から、前記濡れ率の下限としては、25%以上が好ましく、30%以上がより好ましく、前記濡れ率の上限としては、125%以下が好ましく、100%以下がより好ましい。
 また、本発明で溶媒と混合するCNTの量としては、CNT及び溶媒の種類により、一概に特定できないが、例えば、CNTの量を8.5重量%以上に調整しても、次に行う分散処理工程において、粘度破綻(ペースト全体が持ち上がったようになり、ディスパーの撹拌部材が空回りする状態)なく、効率よく導電性ペーストを作製することができる。
 また、前記CNTの濃度は、粘度破綻が起こらない範囲で高い粘度(最適粘度)に調整することが好ましい。
 具体的には、使用する分散機の仕様(撹拌羽根の形状、邪魔板の有無、メディアであるビーズの径及び量等)を用いて、粘度破綻が起こる粘度の閾値を予め調べ、次に、実際にCNTを用いて混練物を作製し、その濃度を変えながら粘度を測定し、最適粘度の範囲に入ったCNT濃度条件を本分散条件として採用する方法が挙げられる。
 また、粘度の測定については、特に限定はないが、E型粘度計、レオメーター等を用いて測定することができる。
 本発明では、CNTと溶媒とを接触させる方法として、CNTに所定量の溶媒を一度又は複数回に分けて混合する方法、溶媒に所定量のCNTを一度又は複数回に分けて混合する方法等が挙げられるが、特に限定はない。
 前記遊星型撹拌機で混練する際の条件として、使用する溶媒の沸点以下の温度に調整すればよい。また、混練処理時間としては、遊星型撹拌機の仕様にもよるため一概に特定できないが、トルクが収束する時間を混練の終点とすればよい。前記条件としては、特に限定はないが、0~80℃で、1~24時間が好ましい。
 前記混練する際の速度については、30rpm(30min-1)程度であればよく、特に限定はない。
 また、前記遊星型撹拌機の充填率としては、タンクの容量と、供するCNTと溶媒との仕込み量によって、効率よく混練できるように適宜調整すればよい。具体的な充填率としては特に限定はないが、20~70%になるように調整すればよい。
 なお、前記トルクが収束した状態について、混練を開始するとトルクは上昇していくが、分散の進行に伴って上昇は緩やかになり、混練物が十分に分散した状態になるとトルクは一定値に収束する。また、トルクは、前記遊星型撹拌機に搭載されているモニター機能で確認すればよい。
 なお、本件発明者が確認したところ、一般的なディスパーで、CNTと溶媒とを混練させる場合、分散剤を使用したとしてもCNT濃度が4重量%以下でなければ、混練物が高粘度になったり、粘度が破綻した状態になったりするため、うまくペースト化できず、また、得られた混練物を正極合剤に混合しても、CNTが凝集したり、正極合剤中でCNTが所望の状態まで分散が進行しなかった。
 一方、本発明の製造方法では、本工程のように、まず、遊星型撹拌機で混練しておくことで、分散剤を使用しなくても、CNT濃度を高く調整した場合でも混練物を得ることができ、さらに分散剤を使用した場合にはより高いCNT濃度の混練物を得ることもできる。
 なお、前記CNT濃度は、CNTによって調整可能な濃度が異なるため限定はないが、分散剤を使用しなくても6重量%以上の混練物を得ることができ、分散剤を使用した場合は10重量%以上の混練物を得ることができる。
 本発明の製造方法では、前記混練物に溶媒を混合して得られる希釈物を分散処理する。この分散処理により、CNT濃度を調整して、活物質と混合した際に活物質中にCNTを良好に分散できる導電性ペーストを作製することができる。
 本分散処理工程では、高剪断力を有する高速剪断装置を用いる。高速剪断装置としては、撹拌羽根(タービン翼、パドル翼、プロペラ翼、アンカー翼等)を高速回転させて希釈物に剪断力を付与する撹拌機、高速回転ディスクと固定ディスクとの狭いギャップに希釈物を通過させ強力な剪断流れと前後の強度な速度変動を付与する分散機、希釈物を高圧噴射し固定板もしくは希釈物同士に衝突させる分散機、回転容器内等にボール等の媒体を入れ衝突・摩擦力を付与する分散機、天然あるいは合成のメディア(例えば、天然砂、ガラスビーズ、ジルコニアビーズ等)を充填した容器中でそのメディアを機械的に撹拌しながら前記希釈物を還流乃至通過させて分散する撹拌機(例えば、アシザワファインテック製のビーズミル等)等が挙げられる。中でも、効率よく分散処理を行うことができ、金属コンタミも少ない観点から、撹拌羽根を高速回転させて希釈物に剪断力を付与する撹拌機が好ましい。
 また、これらの高速剪断装置は、2種以上を組み合わせて用いてもよい。
 前記高速剪断装置で分散処理する際の条件として、使用する溶媒の引火点以下の温度に調整すればよい。また、処理時間としては、分散機の仕様にもよるため一概に特定できないが、粒度分布が収束する時間を分散の終点とすればよい。前記条件としては、例えば、0~80℃で、1~10時間の範囲が挙げられる。
 前記分散処理する際の速度については、内容物の流動性が保持できていればよく、特に限定はない。
 前記混練物に混合する溶媒の量は、分散処理での粘度が、粘度破綻が起こらない範囲になるように調整することが好ましい。
 例えば、撹拌羽根を高速回転させて希釈物に剪断力を付与する撹拌機を用いて分散処理を行う場合、剪断速度10s-1のときの剪断粘度が15,000mPa・sを超えると粘度破綻が起こるため、15,000mPa・s以下となるように、より好ましくは10,000mPa・s前後となるように溶媒の量を調節する。また、このときのCNT濃度は、混練物のCNT濃度にもよるが、例えば、4~10重量%の範囲のうち混練物のCNT濃度以下に調整することが挙げられる。
 本分散処理工程において使用する溶媒は、前記混練物で使用した溶媒を用いればよいが、他の溶媒を用いてもよい。溶媒の種類については、前記混練物で使用できる溶媒であればよく、特に限定はない。
 また、本発明の製造方法において、分散剤は必須成分ではないが、混練物中におけるCNT濃度を高く調整したり、導電性ペーストを活物質中に効率よく分散させたりする観点から、導電性ペースト中に分散剤を混合してもよい。
 前記分散剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリアクリル酸、ポリビニルブチラール、ポリアクリルアミド、ポリウレタン、ポリジメチルシロキサン、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、メラミン樹脂、フェノール樹脂、各種ゴム、リグニン、ペクチン、ゼラチン、キサンタンガム、ウェランガム、サクシノグリカン、ポリビニルアルコール、ポリビニルアセタール、セルロース系樹脂、ポリアルキレンオキサイド、ポリビニルエーテル、ポリビニルピロリドン、キチン類、キトサン類、デンプン、ポリイミド等が挙げられる。また、これらの分散剤を単独で又は2種類以上を併用することもできる。
 前記分散剤は、前記混練物又は前記希釈物を作製する際に混合すればよく、混合のタイミングについて特に限定はない。
 前記分散剤を使用する場合、電池動作時に副反応を起こし難くする観点から、前記混合物、前記混練物及び前記希釈物中における分散剤の含有量は、低く調整することが好ましく、例えば、CNT100重量部に対して多くとも30重量部未満となるように調整することが挙げられる。
 前記分散処理された希釈物に、さらに溶媒を混合してCNT濃度を調整することで、様々な組成の正極合剤に対応することができる。
 前記CNT濃度の調整方法としては、前記希釈工程と同じように行えばよい。
 以上のようにして得られる導電性ペーストは、導電助剤として、活物質及びバインダーと混合することにより、リチウムイオン二次電池の正極合剤を作製することができる。
(実施例1)
 CNT1(MWCNT、LG Chem製、LUCAN BT 1003M 以下同じ)1gあたりのNMPの最大浸透重量は12.6gであったことから、CNT1濃度7.4重量%の時に100%CNT1が濡れている状態(濡れ率100%)となった。
 CNT1の濡れ率が74%(CNT1濃度10.0重量%)となるように、遊星型撹拌機(井上製作所製、製品名「トリミックス」、以下同じ)に、CNT1 100重量部に対してNMP900重量部供給し、約30℃、35rpm(35min-1)で6時間、遊星型撹拌機を作動させて混練を行い、CNT1濃度が10.0重量%の混練物を得た。
 得られたペースト状の混練物を、高速剪断槽(槽内径80mm。以下、同じ)にCNT1濃度が6.0重量%になるようにCNT1 100重量部に対してNMP667重量部を添加して、撹拌羽根としてエッジドタービン翼(直径60mmの回転板の半径方向外周縁に、駆動軸の軸心方向に対して6mmの高さで立ち上がったタービンブレードを前記軸心方向の上下に6枚ずつ有する。以下、同じ)、及び三相誘導電動機(富士電機製、MLH8065M)を用いて、2000rpm(2000min-1)で2時間高速回転させて分散処理を行ったところ、粘度破綻なく(破綻気味ではあったが一貫してペーストの流動性を確認)CNT1導電性ペーストが得られた。
 次いで、前記分散処理された希釈物に対してNMPを添加して、CNT1濃度が4.0重量%の導電性ペーストを得た。
(実施例2)
 実施例1と同様にしてペースト状の混練物を得た後、CNT1濃度が5.5重量%になるように調整し、高速剪断槽において撹拌羽根で2時間分散処理を行ったところ、粘度破綻なくCNT1導電性ペーストが得られた。以降、実施例1と同様にしてCNT1濃度が4.0重量%の導電性ペーストを得た。
(実施例3)
 実施例1と同様にしてペースト状の混練物を得た後、CNT1濃度が4.5重量%になるように調整し、高速剪断槽において撹拌羽根で2時間分散処理を行ったところ、粘度破綻なくCNT1導電性ペーストが得られた。以降、実施例1と同様にしてCNT1濃度が4.0重量%の導電性ペーストを得た。
(実施例4)
 CNT1の濡れ率が58%(CNT1濃度12.8重量%)となるように、CNT1 100重量部に対してNMP681重量部を仕込んだ以外は、実施例1と同様の要領で混練を行った。
 得られたペースト状の混練物(CNT1濃度12.8重量%)を、CNT1濃度が6.5重量%になるようにCNT1 100重量部に対してNMP757重量部を添加し、高速剪断槽において撹拌羽根を2000rpm(2000min-1)で2時間高速回転させて分散処理を行ったところ、粘度破綻なくCNT1導電性ペーストが得られた。
 次いで、前記分散処理された希釈物に対してNMPを添加して、CNT1濃度が6.0重量%の導電性ペーストを得た。
(実施例5)
 CNT1の濡れ率が37%(CNT1濃度20.0重量%)となるように、CNT1 100重量部に対してNMP400重量部を仕込んだ以外は、実施例1と同様の要領で混練を行った。
 得られたペースト状の混練物(CNT1濃度20.0重量%)を、CNT1濃度が8.5重量%になるようにCNT1 100重量部に対してNMP677重量部を添加し、高速剪断槽において撹拌羽根を2000rpm(2000min-1)で2時間高速回転させて分散処理を行ったところ、粘度破綻なく(破綻気味ではあったが一貫してペーストの流動性を確認)CNT1導電性ペーストが得られた。
 次いで、前記分散処理された希釈物に対してNMPを添加して、CNT1濃度が8.0重量%の導電性ペーストを得た。
(実施例6)
 CNT1の濡れ率が74%(CNT1濃度10.0重量%)となるように、CNT1 100重量部に対して、予めNV値20%でNMPに溶解させたポリビニルピロリドン(日本触媒製、PVP K-30)124重量部、NMP775重量部を仕込んだ以外は、実施例1と同様の要領で混練を行った。
 得られたペースト状の混練物(CNT1濃度10.0重量%)を、CNT1濃度が4.5重量%になるようにCNT1 100重量部に対してNMP1222重量部を添加し、高速剪断槽において撹拌羽根を2000rpm(2000min-1)で2時間高速回転させて分散処理を行ったところ、粘度破綻なくCNT1導電性ペーストが得られた。
 次いで、前記分散処理された希釈物に対してNMPを添加して、CNT1濃度が4.0重量%の導電性ペーストを得た。
(実施例7)
 CNT1の濡れ率が37%(CNT1濃度20.0重量%)となるように、CNT1 100重量部に対して、予めNV値20%でNMPに溶解させたポリビニルピロリドン(日本触媒製、PVP K-30)124重量部、NMP275重量部を仕込んだ以外は、実施例1と同様の要領で混練を行った。
 得られたペースト状の混練物(CNT1濃度20.0重量%)を、CNT1濃度が10.5重量%になるようにCNT1 100重量部に対してNMP452重量部を添加し、高速剪断槽において撹拌羽根を2000rpm(2000min-1)で2時間高速回転させて分散処理を行ったところ、粘度破綻なくCNT1導電性ペーストが得られた。
 次いで、前記分散処理された希釈物に対してNMPを添加して、CNT1濃度が9.8重量%の導電性ペーストを得た。
(実施例8)
 CNT2(MWCNT、LG Chem製、LUCAN BT 1001M、以下同じ)1gあたりのNMPの最大浸透重量は15.5gであったことから、CNT2濃度6.1重量%の時に100%CNT2が濡れている状態(濡れ率100%)となった。
 CNT2の濡れ率が37%(CNT2濃度16.6重量%)となるように、CNT2 100重量部に対してNMP502重量部を仕込んだ以外は、実施例1と同様の要領で混練を行った。
 得られたペースト状の混練物(CNT2濃度16.6重量%)を、CNT2濃度が6.5重量%になるようにCNT2 100重量部に対してNMP936重量部を添加し、高速剪断槽において撹拌羽根を2000rpm(2000min-1)で2時間高速回転させて分散処理を行ったところ、粘度破綻なくCNT2導電性ペーストが得られた。
 次いで、前記分散処理された希釈物に対してNMPを添加して、CNT2濃度が6.0重量%の導電性ペーストを得た。
(実施例9)
 CNT2の濡れ率が31%(CNT2濃度20.0重量%)となるように、CNT2 100重量部に対して、予めNV値20%でNMPに溶解させたポリビニルピロリドン(日本触媒製、PVP K-30)124重量部、NMP275重量部を仕込んだ以外は、実施例1と同様の要領で混練を行った。
 得られたペースト状の混練物(CNT2濃度20.0重量%)を、CNT2濃度が8.5重量%になるようにCNT2 100重量部に対してNMP676重量部を添加し、高速剪断槽において撹拌羽根を2000rpm(2000min-1)で2時間高速回転させて分散処理を行ったところ、粘度破綻なくCNT2導電性ペーストが得られた。
 次いで、前記分散処理された希釈物に対してNMPを添加して、CNT2濃度が8.0重量%の導電性ペーストを得た。
(比較例1)
 遊星型撹拌機を用いずに、CNT1とNMPとを濃度を変えて撹拌羽根で分散処理しようとしたが、CNT1濃度が4.0重量%ですら高粘度となり、ペーストの流動性がなかった(粘度破綻)。CNT1濃度を2.0重量%まで下げると流動性が確保できた。
(比較例2)
 CNT1の濡れ率124%(CNT1濃度5.9重量%)となるようにNMPの量を調整し、遊星型撹拌機の代わりに3本ロールを用いて混練(2パス)を実施した。混練物の濃度を変えて粘度を測定したが、比較例1の粘度同等で非常に高粘度であり、到底撹拌羽根で分散処理できる水準ではなかった。
(比較例3)
 CNT1の濡れ率74%(CNT1濃度10.0重量%)となるようにNMPの量を調整し、遊星型撹拌機の代わりに3本ロールを用いて混練(2パス)を実施した。混練物の濃度を変えて粘度を測定したが、比較例1の粘度同等で非常に高粘度であり、到底撹拌羽根で分散処理できる水準ではなかった。
(比較例4)
 CNT1の濡れ率37%(CNT1濃度20.0重量%)となるようにNMPの量を調整し、遊星型撹拌機の代わりに3本ロールを用いて混練(1パス、2パス、5パス)を実施した。混練物の濃度を変えて粘度を測定したが、比較例1の粘度同等で非常に高粘度であり、またパス数を重ねても粘度が下がる効果は見られなかった。到底撹拌羽根で分散処理できる水準ではなかった。
(比較例5)
 比較例1において、CNT1の代わりにCNT2を用い、CNT2とNMPとを濃度を変えて撹拌羽根で分散処理しようとしたが、CNT2濃度が4.0重量%ですら高粘度となり、ペーストの流動性がなかった(粘度破綻)。
(試験例1)
 電極用バインダーPVDF(クレハ製、KF Polymer L#1120、NV値12%)、導電助剤アセチレンブラック(以下、AB)(デンカ製、「デンカブラック」)を常法に基づいて混合した後、実施例2、4、5、6、7、8、9及び比較例1で得られたCNT1導電性ペーストをそれぞれ混合した。次いで、正極活物質LCO(日本化学工業製、コバルト酸リチウム)を常法に基づいて混合する事で、正極合剤(LCO:PVDF:AB:CNT1(質量比)=94:3:3:0.3)を得た。
 得られた正極合剤を、卓上ミニコーター(宝泉製、MC-20)を用いてアルミ集電箔(ニラコ製、AL-013225)に成膜し、ホットプレート及び真空乾燥機で乾燥させた。
 得られた正極合剤電極の表面を目視で観察してみると、実施例2、4、5、6、7、8、9のCNT1導電ペーストから作製した正極合剤電極ではCNT1の凝集物は認められなかったが、比較例1のCNT1導電ペーストから作製した正極合剤電極ではCNT1の凝集物が多数確認された。比較例1のCNT1導電ペーストから作製した正極合剤電極は、試験例2の電池評価での使用に適さなかった。
 以上のことから、本発明の製造方法で得られた導電性ペーストは、正極合剤中において、またその塗工電極において、分散状態を保持していることがわかる。
 したがって、本発明の製造方法では、分散剤が少なくても高濃度でCNTを含有し、粘度が低くて取り扱いが容易である導電性ペーストを作製できることがわかる。また、本発明で得られる導電性ペーストは、リチウム二次電池の正極活物質と混合して、正極合剤を作製できることがわかる。
(試験例2)
 試験例1で作製した正極合剤電極を用いて試験用電池(ハーフセル)を作製し、電池評価(レート試験及びサイクル試験)を実施した。試験用電池(実施品)は、以下のようにして作製した。
 試験例1で作製した正極合剤電極を1軸プレスにて32kgN程度でプレスする事により、電極の空隙率を30%前後に調整した。電気化学測定セル(日本トムセル製、TJ-AC)を用い、正極に試験例1で作製した正極合剤電極、負極に金属リチウム箔(本荘ケミカル製)、セパレーターにガラス繊維濾紙(Whatman製、GF/B)、電解液に1M LiPF6 EC:DEC(1:1v/v%)(キシダ化学製)を用いて作製した。対照品として、CNT1導電性ペーストを混合しない(アセチレンブラック(AB)単独導電助剤)試験用電池も作製した。
 なお、電解液及びリチウム箔を用いる組み立て工程以降は、アルゴンガス雰囲気下のグローブボックス(UNICO製、UN-650L)中にて行った。
 また、前記電極の空隙率は、目付量と膜厚と材料の真密度から算出した。
 また、電池特性は、以下のようにして測定した。
 作製した試験用電池を、充放電測定装置(北斗電工製、HJ-1001SD8)と接続し、レート試験及びサイクル試験を行った。
 レート試験においては、充電はレート0.1C固定、終止電圧4.2Vの定電流制御で行った。放電はレートを0.1C、0.2C、0.5C、1C、2C、3C、5C、7C、10Cと変動、終止電圧3.0Vの定電流制御で行った。
 サイクル試験においては、基本的にはレート1Cで、4.3Vから3.0Vの終止電圧で定電流制御しながら、200サイクル程度の充電・放電を繰り返した。ただし、初期の5サイクル、及び51、101、151、201サイクル目はレート0.1Cで充放電を行った。
 得られたレート試験結果を表1、サイクル試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果より、実施品(AB+実施例2~9)では、対照品(AB単独)と比べると、僅か0.3重量%弱のCNTを添加するだけで、3Cにおける放電容量が約104~142%に向上した。
 また、表2に示す結果より、充放電を繰り返した場合、実施品(AB+実施例2~9)では、対照品(AB単独)と比べると、僅か0.3重量%弱のCNTを添加するだけで、100サイクル目における放電容量が約107~182%となった。
 以上の結果から、本発明で得られる導電性ペーストを用いることで、正極合剤の放電容量を効率よく向上でき、そして、所望の電子伝導性に優れた電極部材を効率よく製造できることがわかる。
(実施例10)
 CNT3(SWCNT、ОCSiAl製、TUBALL、以下同じ)1gあたりのNMPの最大浸透重量は8.1gであったことから、CNT3濃度11.0重量%の時に100%CNT3が濡れている状態(濡れ率100%)となった。
 CNT3の濡れ率が35%(CNT3濃度31.4重量%)となるように、CNT3 100重量部に対してNMP218重量部を仕込み、約30℃、35rpm(35min-1)で4時間、遊星型撹拌機を作動させて混練を行い、CNT3濃度が31.4重量%の混練物を得た。ここへ、予めNV値40%でNMPに溶解させたポリビニルピロリドン(日本触媒製、PVP K-30)62.5重量部を加え、約30℃、35rpm(35min-1)で4時間、遊星型撹拌機を作動させて混練を行い、CNT3濃度が26.2重量%の混練物を得た。
 得られたペースト状の混練物(CNT3濃度26.2重量%)を、CNT3濃度が3.5重量%になるようにCNT3 100重量部に対してNMP2476重量部を添加し、高速剪断槽において撹拌羽根を2000rpm(2000min-1)で2時間高速回転させて分散処理を行ったところ、粘度破綻なくCNT3導電性ペーストが得られた。
 次いで、前記分散処理された希釈物に対してNMPを添加して、CNT3濃度が3.0重量%の導電性ペーストを得た。
(実施例11)
 CNT4(MWCNT、JEIO製、JENOTUBE 6A、以下同じ)1gあたりのNMPの最大浸透重量は16.4gであったことから、CNT4濃度5.7重量%の時に100%CNT4が濡れている状態(濡れ率100%)となった。
 CNT4の濡れ率が31%(CNT4濃度18.4重量%)となるように、CNT4 100重量部に対してNMP443重量部を仕込み、約30℃、35rpm(35min-1)で21時間、遊星型撹拌機を作動させて混練を行い、CNT4濃度が18.4重量%の混練物を得た。
 得られたペースト状の混練物(CNT4濃度18.4重量%)を、CNT4濃度が7.5重量%になるようにCNT4 100重量部に対してNMP789重量部を添加し、高速剪断槽において撹拌羽根を2000rpm(2000min-1)で2時間高速回転させて分散処理を行ったところ、粘度破綻なくCNT4導電性ペーストが得られた。
 次いで、前記分散処理された希釈物に対してNMPを添加して、CNT4濃度が7.0重量%の導電性ペーストを得た。
(実施例12)
 CNT4の濡れ率が31%(CNT4濃度18.4重量%)となるように、CNT4 100重量部に対して、予めNV値20%でNMPに溶解させたポリビニルピロリドン(日本触媒製、PVP K-30)125重量部、NMP318重量部を仕込み、約30℃、35rpm(35min-1)で18時間、遊星型撹拌機を作動させて混練を行い、CNT4濃度が18.4重量%の混練物を得た。
 得られたペースト状の混練物(CNT4濃度18.4重量%)を、CNT4濃度が6.5重量%になるようにCNT4 100重量部に対してNMP995重量部を添加し、高速剪断槽において撹拌羽根を2000rpm(2000min-1)で2時間高速回転させて分散処理を行ったところ、粘度破綻なくCNT4導電性ペーストが得られた。
 次いで、前記分散処理された希釈物に対してNMPを添加して、CNT4濃度が6.0重量%の導電性ペーストを得た。
 実施例10、11、12で得られた導電性ペーストを用いて、試験例1に記載の方法に基づいて正極合剤電極を作製したところ、正極合剤中には凝集物が見られず、CNTの分散状態は保持されていた。
 したがって、本発明の製造方法では、CNTとして、MWCNT及びSWCNTのいずれを用いた場合でも、分散剤が少なくても高濃度でCNTを含有し、粘度が低くて取り扱いが容易である導電性ペーストを作製できることがわかる。また、CNTとして、MWCNT及びSWCNTのいずれを用いた場合でも、本発明で得られる導電性ペーストは、リチウムイオン二次電池の正極活物質と混合して、正極合剤を作製できることがわかる。
 

Claims (4)

  1.  カーボンナノチューブ(以下、「CNT」と標記する。)と溶媒とを下記式(1)で示される濡れ率が25~125%となるように接触させ、CNTに溶媒を含浸させて得られるCNT及び溶媒を含む混合物を、遊星型撹拌機で混練してペースト状の混練物を得た後、得られた前記混練物に溶媒を混合して得られる希釈物を分散処理する、導電性ペーストの製造方法。
     濡れ率(%)=A/B×100   (1)
     A:下記式で算出される、溶媒が最大まで浸透した場合のCNT濃度
     A(%)=CNT1g/(CNT1g+CNT1gあたりの溶媒の最大浸透重量[g])×100
     B:下記式で算出される、前記混合物中のCNT濃度
     B(%)=CNT重量[g]/混合物重量[g]×100
  2.  前記混合物、前記混練物及び前記希釈物中における分散剤の含有量がCNT100重量部に対して30重量部未満である、請求項1記載の導電性ペーストの製造方法。
  3.  前記分散処理が、撹拌羽根を高速回転させて前記希釈物に剪断力を付与する撹拌機及び/又は天然あるいは合成のメディアを充填した容器中で、そのメディアを機械的に撹拌しながら、前記希釈物を還流乃至通過させて分散する撹拌機により行われる、請求項1又は2に記載の導電性ペーストの製造方法。
  4.  前記分散処理された希釈物に、さらに溶媒を混合してCNT濃度を調整する、請求項1~3の何れか一項に記載の導電性ペーストの製造方法。
     
PCT/JP2021/039095 2020-12-04 2021-10-22 導電性ペーストの製造方法 WO2022118562A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21900318.3A EP4243124A4 (en) 2020-12-04 2021-10-22 METHOD FOR MANUFACTURING CONDUCTIVE PASTE
KR1020237022304A KR20230117395A (ko) 2020-12-04 2021-10-22 도전성 페이스트의 제조 방법
CN202180080697.6A CN116601800A (zh) 2020-12-04 2021-10-22 导电性糊剂的制造方法
US18/039,940 US20230420155A1 (en) 2020-12-04 2021-10-22 Method for manufacturing electrically-conductive paste
JP2022566783A JPWO2022118562A1 (ja) 2020-12-04 2021-10-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020202304 2020-12-04
JP2020-202304 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118562A1 true WO2022118562A1 (ja) 2022-06-09

Family

ID=81853632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039095 WO2022118562A1 (ja) 2020-12-04 2021-10-22 導電性ペーストの製造方法

Country Status (6)

Country Link
US (1) US20230420155A1 (ja)
EP (1) EP4243124A4 (ja)
JP (1) JPWO2022118562A1 (ja)
KR (1) KR20230117395A (ja)
CN (1) CN116601800A (ja)
WO (1) WO2022118562A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026898A1 (ja) * 2021-08-27 2023-03-02 デンカ株式会社 正極組成物の製造方法及び正極の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0145585B2 (ja) 1980-12-29 1989-10-04 Fujitsu Ltd
JPH0154267B2 (ja) 1980-09-03 1989-11-17 Bee Rainerusu Fuerubarutsungusu Gmbh
JP5628503B2 (ja) 2009-09-25 2014-11-19 御国色素株式会社 導電材分散液、電極ペーストおよび導電材被覆活物質
JP2015072899A (ja) * 2013-09-06 2015-04-16 宇部興産株式会社 導電性ポリイミド多孔質膜及びその製造方法
WO2016203746A1 (ja) 2015-06-19 2016-12-22 日本ゼオン株式会社 導電性不織布およびその製造方法
JP6258215B2 (ja) 2011-12-19 2018-01-10 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. 電極形成組成物
JP2019140105A (ja) * 2018-02-13 2019-08-22 ニッタ株式会社 機能性膜及び電子エミッタ
WO2019188023A1 (ja) 2018-03-27 2019-10-03 日本ゼオン株式会社 導電性シートおよびその製造方法、並びに、導電性組成物
JP2019172485A (ja) 2018-03-27 2019-10-10 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628503U (ja) 1980-07-17 1981-03-17
JPS6258215U (ja) 1985-09-30 1987-04-10
US7645497B2 (en) * 2005-06-02 2010-01-12 Eastman Kodak Company Multi-layer conductor with carbon nanotubes
SG11201406925YA (en) 2012-04-26 2014-11-27 Brewer Science Inc Multifunctional alcohol dispersions of carbon nanotubes
WO2015139660A1 (zh) 2014-03-21 2015-09-24 中国科学院苏州纳米技术与纳米仿生研究所 多孔碳纳米管微球及其制备方法与应用、金属锂-骨架碳复合材料及其制备方法、负极和电池
KR101993783B1 (ko) * 2016-01-20 2019-06-28 주식회사 엘지화학 카본나노튜브 펠렛 제조장치
JP6816893B2 (ja) * 2018-11-12 2021-01-20 株式会社DR.goo カーボンナノチューブ粒状物の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0154267B2 (ja) 1980-09-03 1989-11-17 Bee Rainerusu Fuerubarutsungusu Gmbh
JPH0145585B2 (ja) 1980-12-29 1989-10-04 Fujitsu Ltd
JP5628503B2 (ja) 2009-09-25 2014-11-19 御国色素株式会社 導電材分散液、電極ペーストおよび導電材被覆活物質
JP6258215B2 (ja) 2011-12-19 2018-01-10 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. 電極形成組成物
JP2015072899A (ja) * 2013-09-06 2015-04-16 宇部興産株式会社 導電性ポリイミド多孔質膜及びその製造方法
WO2016203746A1 (ja) 2015-06-19 2016-12-22 日本ゼオン株式会社 導電性不織布およびその製造方法
JP2019140105A (ja) * 2018-02-13 2019-08-22 ニッタ株式会社 機能性膜及び電子エミッタ
WO2019188023A1 (ja) 2018-03-27 2019-10-03 日本ゼオン株式会社 導電性シートおよびその製造方法、並びに、導電性組成物
JP2019172485A (ja) 2018-03-27 2019-10-10 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4243124A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026898A1 (ja) * 2021-08-27 2023-03-02 デンカ株式会社 正極組成物の製造方法及び正極の製造方法

Also Published As

Publication number Publication date
EP4243124A1 (en) 2023-09-13
KR20230117395A (ko) 2023-08-08
JPWO2022118562A1 (ja) 2022-06-09
US20230420155A1 (en) 2023-12-28
CN116601800A (zh) 2023-08-15
EP4243124A4 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
CN110473653B (zh) 高碳含量的碳纳米管导电浆料及其制备方法
KR20190077399A (ko) 전지용 애노드 슬러리의 제조 방법
CN112803025B (zh) 单壁碳纳米管导电浆料的制备方法、锂离子电池负极材料及其制备方法
JPWO2013179909A1 (ja) リチウムイオン二次電池の電極及びその電極用ペーストの調製方法並びにその電極の作製方法
CN102064326B (zh) 锂离子电池正负极材料分散剂
US20150318550A1 (en) Carbon nanotube dispersion and method for manufacturing dispersion
WO2022118562A1 (ja) 導電性ペーストの製造方法
Takeno et al. Relation between mixing processes and properties of lithium-ion battery electrode-slurry
CN112201766B (zh) 负极浆料及其制备方法和应用
JP4326973B2 (ja) 燃料電池用触媒ペーストとその製造方法
TW202125883A (zh) 石墨烯分散液及正極糊
RU2777040C1 (ru) Водная дисперсия углеродных нанотрубок, способ приготовления дисперсии, катодная паста, анодная паста, способ изготовления катода, способ изготовления анода, катод и анод
JP7553674B1 (ja) カーボンナノチューブ分散液の製造方法
EP4386882A1 (en) Carbon nanotube dispersion, cathode paste and cathode
CN116130641B (zh) 锂离子电池多晶相复合材料及其制浆方法
WO2023128801A1 (ru) Водная дисперсия углеродных нанотрубок, паста, катод и анод
JP7239638B2 (ja) 炭素質材料分散体の脱水方法および炭素質材料分散体の製造方法
JP2011171120A (ja) 電極触媒の製造方法
WO2024185255A1 (ja) 電極用カーボンナノチューブ含有粉末、電極合剤ペースト、蓄電デバイス用電極及び蓄電デバイス
WO2022030636A1 (ja) 全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー
EP4199155A1 (en) Conductive material dispersion
JP2022185480A (ja) 全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー
CN116805689A (zh) 一种可应用于锂离子电池的碳材料导电分散液
JP2022030898A (ja) 全固体リチウムイオン二次電池用炭素質材料分散体および全固体リチウムイオン二次電池用電極スラリー
TW202135365A (zh) 石墨烯分散液、正極糊及鋰離子電池正極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566783

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180080697.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18039940

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021900318

Country of ref document: EP

Effective date: 20230610

ENP Entry into the national phase

Ref document number: 20237022304

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE