WO2022075387A1 - カーボンナノチューブ分散液およびその利用 - Google Patents

カーボンナノチューブ分散液およびその利用 Download PDF

Info

Publication number
WO2022075387A1
WO2022075387A1 PCT/JP2021/037078 JP2021037078W WO2022075387A1 WO 2022075387 A1 WO2022075387 A1 WO 2022075387A1 JP 2021037078 W JP2021037078 W JP 2021037078W WO 2022075387 A1 WO2022075387 A1 WO 2022075387A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
dispersion liquid
mass
carbon nanotubes
less
Prior art date
Application number
PCT/JP2021/037078
Other languages
English (en)
French (fr)
Inventor
雄 森田
直人 岡
哲朗 泉谷
友明 枡岡
Original Assignee
東洋インキScホールディングス株式会社
トーヨーカラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021160281A external-priority patent/JP2022063234A/ja
Application filed by 東洋インキScホールディングス株式会社, トーヨーカラー株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to KR1020237015460A priority Critical patent/KR20230084248A/ko
Priority to CN202180058872.1A priority patent/CN116171307A/zh
Priority to EP21877686.2A priority patent/EP4227368A1/en
Priority to US18/021,386 priority patent/US20230307653A1/en
Publication of WO2022075387A1 publication Critical patent/WO2022075387A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a dispersion liquid of carbon nanotubes. More specifically, a carbon nanotube dispersion liquid, a resin composition containing a carbon nanotube dispersion liquid and a binder, a mixed material slurry containing a carbon nanotube dispersion liquid, a binder and an active material, and an electrode film formed by forming the mixture into a film shape. And related to non-aqueous electrolyte secondary batteries including electrode membranes and electrolytes.
  • non-aqueous electrolyte secondary batteries that use non-aqueous electrolytes, especially lithium-ion secondary batteries, have come to be used in many devices due to their characteristics of high energy density and high voltage.
  • the negative electrode material used for these lithium ion secondary batteries a carbon material typified by graphite having a low potential close to that of lithium (Li) and a large charge / discharge capacity per unit mass is used.
  • these electrode materials are used up to the point where the charge / discharge capacity per mass is close to the theoretical value, and the energy density per mass as a battery is approaching the limit. Therefore, in order to increase the utilization rate as an electrode, attempts are being made to reduce the amount of conductive auxiliary agents and binders that do not contribute to the discharge capacity.
  • carbon black, Ketjen black, fullerene, graphene, fine carbon material, etc. are used as the conductive auxiliary agent.
  • carbon nanotubes which are a type of fine carbon fiber, are often used.
  • adding carbon nanotubes to graphite or silicon negative electrodes improves electrode strength such as conductivity, adhesion and expansion / contraction of electrodes, rate characteristics and cycle characteristics of lithium ion secondary batteries.
  • Patent Document 1 For example, see Patent Document 1.
  • studies have been made to reduce the electrode resistance by adding carbon nanotubes to the positive electrode (see, for example, Patent Document 2 and Patent Document 3).
  • multi-walled carbon nanotubes having an outer diameter of 10 nm to several tens of nm are relatively inexpensive and are expected to be put into practical use.
  • Patent Document 5 the oxidized double-walled carbon nanotubes are dispersed in an aqueous solution of carboxymethyl cellulose using an ultrasonic homogenizer, but it is difficult to disperse the carbon nanotubes in a solvent at a high concentration.
  • Patent Document 6 the single-walled carbon nanotubes are dispersed in a polyvinylpyrrolidone-containing NMP solvent by using ultrasonic waves, but it is difficult to disperse the carbon nanotubes in the solvent at a high concentration.
  • Patent Document 7 proposes that the output characteristics of an electrode are improved by producing a multilayer carbon nanotube dispersion liquid having a specific complex elastic modulus.
  • the problem to be solved by the present invention is to provide a carbon nanotube dispersion liquid, a carbon nanotube resin composition and a mixed material slurry having high dispersibility and elastic modulus in order to obtain an electrode film having excellent electrode strength and conductivity. That is. More specifically, it is to provide a non-aqueous electrolyte secondary battery having excellent rate characteristics and cycle characteristics.
  • the present invention relates to a carbon nanotube dispersion liquid containing carbon nanotubes, a dispersant, and a solvent, which satisfies the following (1) to (4).
  • the maximum peak intensity in the range of 1560 to 1600 cm -1 is G and the maximum peak intensity in the range of 1310 to 1350 cm -1 is D in the Raman spectrum of carbon nanotubes, G / of carbon nanotubes.
  • the D ratio is 5 to 100.
  • the dispersant is contained in an amount of 30 parts by mass or more and less than 250 parts by mass with respect to 100 parts by mass of the carbon nanotubes.
  • the complex elastic modulus is 5 Pa or more and less than 650 Pa, and the phase angle is 5 ° or more and less than 50 °.
  • the BET specific surface area of the carbon nanotube is 550 to 1200 m 2 / g.
  • the carbon nanotube when the maximum peak intensity in the range of 1560 to 1600 cm -1 is G and the maximum peak intensity in the range of 1310 to 1350 cm -1 is D in the Raman spectrum of carbon nanotubes, the carbon nanotube is used.
  • the carbon nanotube dispersion liquid has a G / D ratio of 10 to 50.
  • the carbon nanotube dispersion liquid at 25 ° C. is 5 Pa ⁇ s or more and less than 40 Pa ⁇ s when measured at a shear rate of 1 (s -1 ) using a reometer. Regarding.
  • the present invention also relates to the carbon nanotube dispersion having a cumulative particle size D10 measured by a dynamic light scattering method of 200 nm or more and less than 500 nm.
  • the present invention also relates to the carbon nanotube dispersion liquid having a volume resistivity of carbon nanotubes of 1.0 ⁇ 10 -3 ⁇ ⁇ cm to 1.0 ⁇ 10 -2- ⁇ ⁇ cm.
  • the present invention also relates to the carbon nanotube dispersion having a cumulative particle size D50 measured by a dynamic light scattering method of 500 nm or more and less than 3000 nm.
  • the present invention also relates to the carbon nanotube dispersion liquid in which the weight average molecular weight of the dispersant is 10,000 to 100,000.
  • the present invention also relates to the carbon nanotube dispersion liquid containing water as a solvent.
  • the present invention also relates to a carbon nanotube resin composition containing the carbon nanotube dispersion liquid and a binder.
  • the present invention also relates to a mixture slurry containing the carbon nanotube resin composition and an active material.
  • the present invention relates to an electrode film which is a coating film of the mixture slurry.
  • the present invention also relates to a non-aqueous electrolyte secondary battery containing a positive electrode, a negative electrode, and an electrolyte, wherein at least one of the positive electrode and the negative electrode contains the electrode film.
  • the carbon nanotube dispersion liquid of the present invention By using the carbon nanotube dispersion liquid of the present invention, a resin composition, a mixed material slurry, and an electrode film having excellent electrode strength and adhesion can be obtained. Further, a non-aqueous electrolyte secondary battery having excellent rate characteristics and cycle characteristics can be obtained. Therefore, the carbon nanotube dispersion liquid of the present invention can be used in various application fields where high conductivity and durability are required.
  • FIG. 1 is a graph showing Raman spectra of carbon nanotubes used in Examples and Comparative Examples of the present invention.
  • Carbon Nanotube The carbon nanotube of the present embodiment is preferably a single-walled carbon nanotube.
  • Single-walled carbon nanotubes and multi-walled carbon nanotubes may be mixed.
  • Single-walled carbon nanotubes have a structure in which one layer of graphite is wound, and multi-walled carbon nanotubes have a structure in which two or three or more layers of graphite are wound.
  • the average outer diameter of the carbon nanotubes of the present embodiment is 0.5 nm to 5 nm, preferably 1 nm to 3 nm, and more preferably 1 nm to 2 nm.
  • the average outer diameter of carbon nanotubes can be calculated by observing the morphology of carbon nanotubes with a transmission electron microscope (manufactured by JEOL Ltd.), measuring the lengths of 100 short axes, and calculating the average value of the numbers. can.
  • the BET specific surface area of the carbon nanotubes of the present embodiment is 550 m 2 / g to 1200 m 2 / g, preferably 600 to 1200 m 2 / g, and more preferably 800 m 2 / g to 1200 m 2 / g. , 800 m 2 / g to 1000 m 2 / g is more preferable.
  • the carbon nanotube of the present embodiment is G / D when the maximum peak intensity in the range of 1560 to 1600 cm -1 is G and the maximum peak intensity in the range of 1310 to 1350 cm -1 is D in the Raman spectrum.
  • the ratio is 5 to 100, more preferably 10 to 50, and even more preferably 20 to 50.
  • the Raman spectrum can be measured using laser light having a wavelength of 532 nm according to Raman spectroscopy.
  • the volume resistivity of the carbon nanotubes of the present embodiment is preferably 1.0 ⁇ 10 -3 ⁇ ⁇ cm to 3.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm, preferably 1.0 ⁇ 10 -3 ⁇ ⁇ cm to 1. It is more preferably 0.0 ⁇ 10 -2 ⁇ ⁇ cm.
  • the volume resistivity of carbon nanotubes can be measured using a powder resistivity measuring device (manufactured by Mitsubishi Chemical Analytech Co., Ltd .: Lorester GP powder resistivity measuring system MCP-PD-51).
  • the carbon purity of the carbon nanotubes of this embodiment is represented by the content rate (%) of carbon atoms in the carbon nanotubes.
  • the carbon purity is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, based on 100% by mass of carbon nanotubes.
  • the amount of metal contained in the carbon nanotubes of the present embodiment is preferably less than 20% by mass, more preferably less than 10% by mass, still more preferably less than 5% by mass, based on 100% by mass of the carbon nanotubes.
  • the metal contained in the carbon nanotube include a metal used as a catalyst in synthesizing the carbon nanotube, a metal oxide, and the like. Specific examples thereof include metals such as cobalt, nickel, aluminum, magnesium, silica, manganese and molybdenum, alloys of these metals, metal oxides of these metals, and composite oxides of these metals.
  • the carbon nanotubes of the present embodiment may be carbon nanotubes that have been surface-treated. Further, the carbon nanotube may be a carbon nanotube derivative to which a functional group typified by a carboxyl group is imparted. Further, carbon nanotubes containing a substance typified by an organic compound, a metal atom, or fullerene can also be used.
  • the carbon nanotube of this embodiment may be a pulverized carbon nanotube.
  • the pulverization process uses a pulverizer having a built-in pulverizing medium such as beads or steel balls to pulverize carbon nanotubes without substantially interposing a liquid substance, and is also called dry pulverization.
  • the crushing is performed by utilizing the crushing force and the destructive force due to the collision between the crushing media. Crushing mainly has the effect of reducing the size of the secondary particles of the carbon nanotubes, and can improve the dispersibility of the carbon nanotubes.
  • As the dry crushing device a known method such as a dry attritor, a ball mill, a vibration mill, or a bead mill can be used, and the crushing time can be arbitrarily set by the device.
  • the carbon nanotube of this embodiment may be a carbon nanotube manufactured by any method.
  • Carbon nanotubes can generally be produced by a laser ablation method, an arc discharge method, a thermal CVD method, a plasma CVD method and a combustion method, but are not limited thereto.
  • Dispersant of the present embodiment is not particularly limited as long as the carbon nanotubes can be dispersed and stabilized, and a surfactant or a resin-type dispersant can be used.
  • Surfactants are mainly classified into anionic, cationic, nonionic and amphoteric. Appropriately suitable types of dispersants can be used in suitable blending amounts according to the characteristics required for dispersion of carbon nanotubes.
  • an anionic surfactant the type is not particularly limited. Specifically, fatty acid salt, polysulfonate, polycarboxylate, alkyl sulfate ester salt, alkylaryl sulfonate, alkylnaphthalene sulfonate, dialkyl sulfonate, dialkyl sulfosuccinate, alkyl phosphate, polyoxy.
  • Examples thereof include ethylene alkyl ether sulfate, polyoxyethylene alkylaryl ether sulfate, naphthalene sulfonic acid formalin condensate, polyoxyethylene alkyl phosphate sulfonate, glycerol volate fatty acid ester and polyoxyethylene glycerol fatty acid ester.
  • specific examples thereof include sodium dodecylbenzene sulfonate, sodium lauryl sulfate, sodium polyoxyethylene lauryl ether sulfate, polyoxyethylene nonylphenyl ether sulfate ester salt, and sodium salt of ⁇ -naphthalene sulfonate formalin condensate. , Not limited to these.
  • alkylamine salts and quaternary ammonium salts there are alkylamine salts and quaternary ammonium salts. Specifically, stearylamine acetate, trimethyl palmammonium chloride, trimethyl beef ammonium chloride, dimethyldiolyl ammonium chloride, methyloleyl diethanol chloride, tetramethylammonium chloride, laurylpyridinium chloride, laurylpyridinium bromide, laurylpyridinium disulfate, cetylpyridinium bromide.
  • amphoteric surfactant examples include, but are not limited to, aminocarboxylates.
  • nonionic surfactant examples include, but are not limited to, polyoxyethylene alkyl ether, polyoxyalkylene derivative, polyoxyethylene phenyl ether, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester and alkyl allyl ether. Specific examples thereof include, but are not limited to, polyoxyethylene lauryl ether, sorbitan fatty acid ester and polyoxyethylene octylphenyl ether.
  • the selected surfactant is not limited to a single surfactant. Therefore, it is also possible to use two or more kinds of surfactants in combination. For example, a combination of anionic surfactant and nonionic surfactant, or a combination of cationic surfactant and nonionic surfactant can be used.
  • the blending amount at that time is preferably a blending amount suitable for each surfactant component.
  • a combination of an anionic surfactant and a nonionic surfactant is preferable.
  • the anionic surfactant is preferably a polycarboxylate.
  • the nonionic surfactant is preferably polyoxyethylene phenyl ether.
  • cellulose derivatives cellulose acetate, cellulose acetate butyrate, cellulose butyrate, cyanoethyl cellulose, ethyl hydroxyethyl cellulose, nitrocellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose) , Carboxymethyl cellulose, etc.
  • polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polyacrylonitrile-based polymers and the like polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, and polyacrylonitrile-based polymers are preferable.
  • Carboxymethyl cellulose as a resin-type dispersant can be used in the form of a salt such as a sodium salt of carboxymethyl cellulose in which the hydroxy group of carboxymethyl cellulose is replaced with a sodium carboxymethyl group.
  • Carboxymethyl cellulose as a resin-type dispersant preferably has a degree of etherification of 0.5 to 1.5, more preferably 0.6 to 1.0. The degree of etherification of carboxymethyl cellulose can be measured according to a conventional method, and more specifically, it can be measured according to the method described in Examples.
  • the dispersant of the present embodiment has a pullulan-equivalent weight average molecular weight of 5,000 or more and 300,000 or less, more preferably 10,000 or more and 100,000 or less, and further preferably 10,000 or more and 50,000 or less. ..
  • a dispersant having an appropriate weight average molecular weight is used, the adsorptivity to carbon nanotubes is improved, and the stability of the carbon nanotube dispersion liquid is further improved.
  • a dispersant exceeding the above range is used, the viscosity of the carbon nanotube dispersion liquid becomes high, and when a disperser such as a nozzle-type high-pressure homogenizer in which the dispersant liquid passes through a narrow flow path is used, the dispersion efficiency becomes high. May decrease.
  • the resin-type dispersant may have a binding ability in addition to the dispersive ability, and the above-mentioned resin-type dispersant can also be used as a binder, and the same type of binder as the resin-type dispersant can be used.
  • a resin may be used.
  • the same type of resin as the resin type dispersant is used as the binder, it is preferable to use a resin having a weight average molecular weight larger than the weight average molecular weight of the resin type dispersant.
  • the weight average molecular weight (Mw) of the dispersant can be measured by gel permeation chromatography (GPC) equipped with a differential refractive index (RI) detector, and is a pullulan-equivalent value.
  • an inorganic base and / or an inorganic metal salt may be contained.
  • the inorganic base and the inorganic metal salt are preferably compounds having at least one of an alkali metal and an alkaline earth metal, and more particularly, chlorides, hydroxides and carbonates of the alkali metal and the alkaline earth metal. Examples thereof include salts, nitrates, sulfates, phosphates, tungstates, vanadium salts, molybdenates, niobates, borates and the like. Among these, alkali metals, chlorides, hydroxides and carbonates of alkaline earth metals are preferable in terms of easily supplying cations.
  • Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide and the like.
  • Examples of the hydroxide of the alkaline earth metal include calcium hydroxide and magnesium hydroxide.
  • Examples of the carbonate of the alkali metal include lithium carbonate, lithium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate and the like.
  • Examples of the carbonate of the alkaline earth metal include calcium carbonate and magnesium carbonate. Among these, lithium hydroxide, sodium hydroxide, lithium carbonate and sodium carbonate are more preferable.
  • an acid may be contained.
  • an acid By adding an acid, the charge state in the dispersion system and the balance between the hydrophilic part and the hydrophobic part may change, and the dispersibility may be improved.
  • the type of acid is not particularly limited, and one type or a plurality of types may be used in combination. For example, oxalic acid, lactic acid, citric acid, polyacrylic acid, polystyrene sulfonic acid, acetic acid, malonic acid, hydrochloric acid, nitric acid, sulfuric acid, boric acid, phosphoric acid and the like can be mentioned.
  • an antifoaming agent may be contained.
  • the defoaming agent can be arbitrarily used as long as it has a defoaming effect, such as a commercially available defoaming agent, a wetting agent, a hydrophilic organic solvent, and a water-soluble organic solvent. You may.
  • alcohol-based ethanol, propanol, isopropanol, butanol, octyl alcohol, hexadecyl alcohol, acetylene alcohol, ethylene glycol monobutyl ether, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, acetylene glycol, polyoxyalkylene glycol, propylene glycol, etc. Glycols, etc.
  • Fatty acid ester type diethylene glycol laurate, glycerin monolithinolate, alkenyl succinic acid derivative, sorbitol monolaurate, sorbitol trioleate, polyoxyethylene monolaurate, polyoxyethylene sorbitol monolaurate, natural wax, etc.
  • Amide type polyoxyalkylene amide, acrylate polyamine, etc.
  • Phosphoric acid ester type tributyl phosphate, sodium octyl phosphate, etc.
  • Metal soap type aluminum stearate, calcium oleate, etc. Oils and fats; animal and vegetable oils, sesame oil, castor oil, etc.
  • Mineral oil system kerosene, paraffin, etc.
  • Silicone type dimethyl silicone oil, silicone paste, silicone emulsion, organically modified polysiloxane, fluorosilicone oil and the like can be mentioned.
  • the solvent of the present embodiment is not particularly limited as long as the carbon nanotubes can be dispersed, but is selected from any one selected from the group consisting of water and a water-soluble organic solvent, or selected from these groups. It is preferable that it is a mixed solvent containing two or more kinds of the above-mentioned substances, and it is more preferable that it contains water. When water is contained, it is preferably 95% by mass or more, more preferably 98% by mass or more, and may be a single solvent of water with respect to 100% by mass of the solvent.
  • Water-soluble organic solvents include alcohol-based (methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, benzyl alcohol, etc.) and polyhydric alcohol-based (ethylene glycol, diethylene glycol, triethylene glycol, polyethylene).
  • the carbon nanotube dispersion liquid of the present embodiment contains carbon nanotubes, a dispersant, and a solvent.
  • the complex elastic modulus of the carbon nanotube dispersion liquid of the present embodiment at 25 ° C. and a frequency of 1 Hz is preferably 5 Pa or more and less than 650 Pa, preferably 5 Pa or more and less than 400 Pa, and further preferably 10 Pa or more and less than 400 Pa.
  • the complex elastic modulus of the carbon nanotube dispersion shows the hardness of the carbon nanotube dispersion, the dispersibility of the carbon nanotubes is good, and the viscosity of the carbon nanotube dispersion tends to be smaller.
  • the complex elastic modulus may be a high value because of the structural viscosity of the carbon nanotube itself.
  • the phase angle of the carbon nanotube dispersion liquid of the present embodiment at 25 ° C. and a frequency of 1 Hz is 5 ° or more and less than 50 °, and more preferably 10 ° or more and less than 50 °.
  • the phase angle means the phase shift of the stress wave when the strain applied to the carbon nanotube dispersion is a sine wave. In the case of a pure elastic body, the phase angle is 0 ° because the sine wave has the same phase as the applied strain. On the other hand, if it is a purely viscous material, it will be a stress wave advanced by 90 °.
  • a carbon nanotube dispersion having a complex elastic modulus and a phase angle in the above range has a good dispersed particle size and dispersed state of carbon nanotubes, and is suitable as a carbon nanotube dispersion liquid for improving electrode strength and conductivity.
  • the complex elastic modulus and phase angle of the carbon nanotube dispersion are dynamically viscoelastic in the range of 0.01% to 5% strain rate at 25 ° C and 1 Hz frequency using a leometer with a cone having a diameter of 35 mm and 2 °. It can be requested to carry out an elastic measurement. If the measured value contains a decimal point, it is rounded to an integer according to Rule B of JISZ8401: 1999.
  • the complex elastic modulus of the carbon nanotube dispersion liquid at 25 ° C. and a frequency of 1 Hz is preferably 4.5 Pa or more and less than 650.4 Pa, and the carbon nanotube dispersion liquid has a frequency of 25 ° C.
  • the phase angle at 1 Hz is preferably 4.5 ° or more and less than 50.4 °.
  • a developed conductive network is formed by uniformly and satisfactorily dispersing the carbon nanotubes while maintaining a certain length so that the fiber length does not become short due to breakage. Therefore, it is not only necessary that the viscosity of the conductive material dispersion is low and the dispersibility (apparently) is good, but the complex elastic modulus and / or the phase angle is combined with a conventional index such as viscosity to obtain a dispersed state. Judgment is especially useful. By setting the complex elastic modulus and / or the phase angle in the above range, a conductive material dispersion having good conductivity and electrode strength can be obtained.
  • the viscosity of the carbon nanotube dispersion liquid of the present embodiment is preferably 5 Pa ⁇ s or more and less than 60 Pa ⁇ s when measured at a shear rate of 1 (s -1 ) at 25 ° C. using a leometer. It is more preferably s or more and less than 40 Pa ⁇ s, and further preferably 20 Pa ⁇ s or more and less than 40 Pa ⁇ s. Further, when measured at a shear rate of 10 (s -1 ) using a leometer at 25 ° C., it is preferably 1 Pa ⁇ s or more and less than 10 Pa ⁇ s.
  • the dispersibility of the carbon nanotube dispersion can be determined, and the carbon nanotube dispersion in the above range has good dispersion particle size and dispersion state of the carbon nanotubes. It is suitable as a carbon nanotube dispersion liquid for improving electrode strength and conductivity.
  • the viscosity of the carbon nanotube dispersion is determined by allowing the carbon nanotube dispersion to stand in a constant temperature bath at 25 ° C for 1 hour or more, stirring the carbon nanotube dispersion sufficiently, and then using a cone with a diameter of 35 mm and 2 ° to measure the viscosity. Can be obtained by measuring the shear viscosities at 25 ° C. and shear rates 1s -1 and 10s -1 . If the measured value contains a decimal point, it is rounded to an integer according to Rule B of JISZ8401: 1999.
  • the cumulative particle size D10 measured by the dynamic light scattering method of the carbon nanotube dispersion liquid of the present embodiment is preferably 200 nm or more and less than 500 nm, more preferably 200 nm or more and less than 400 nm, and more preferably 300 nm or more and less than 400 nm. Is even more preferable.
  • the cumulative particle size D50 measured by the dynamic light scattering method of the carbon nanotube dispersion is preferably 500 nm or more and less than 3000 nm, more preferably 500 nm or more and less than 2000 nm, and more preferably 500 nm or more and less than 1500 nm. More preferred.
  • the cumulative particle size D10 and D50 of the carbon nanotube dispersion can be measured using a particle size distribution meter (Nanotrac UPA, model UPA-EX manufactured by Microtrac Bell Co., Ltd.).
  • the particle size measured by the dynamic light scattering method correlates with the fiber length of the carbon nanotubes, and the carbon nanotube dispersion having the cumulative particle size D10 in the above range has a good dispersion state of the carbon nanotubes in the dispersion.
  • the carbon nanotube dispersion liquid of the present embodiment it is preferable to carry out a treatment of dispersing the carbon nanotubes in a solvent.
  • the dispersive device used to perform such processing is not particularly limited.
  • a disperser usually used for pigment dispersion or the like can be used.
  • mixers such as disposables, homomixers, planetary mixers, homogenizers (BRANSON Advanced Digital Sonifer (registered trademark), MODEL 450DA, M-Technique "Clearmix”, PRIMIX “Fillmix”, etc., silver.
  • the amount of carbon nanotubes in the carbon nanotube dispersion liquid of the present embodiment is preferably 0.2 parts by mass to 1.5 parts by mass, and 0.4 parts by mass to 1.2 parts by mass with respect to 100 parts by mass of the carbon nanotube dispersion liquid. Parts are preferable, and 0.4 parts by mass to 1.0 part by mass are more preferable.
  • the amount of the dispersant in the carbon nanotube dispersion liquid of the present embodiment is preferably 30 parts by mass to 250 parts by mass, and more preferably 50 parts by mass to 150 parts by mass with respect to 100 parts by mass of carbon nanotubes. It is preferable to use 50 parts by mass to 100 parts by mass, and it is more preferable to use it.
  • the pH of the carbon nanotube dispersion liquid of the present embodiment is preferably 6 to 11, more preferably 7 to 11, further preferably 8 to 11, and particularly preferably 9 to 11.
  • the pH of the carbon nanotube dispersion can be measured using a pH meter (pH METER F-52, manufactured by HORIBA, Ltd.).
  • Binder A binder is a resin for binding substances such as carbon nanotubes.
  • binder of the present embodiment examples include ethylene, propylene, vinyl chloride, vinyl acetate, vinyl alcohol, maleic acid, acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, acrylonitrile, styrene, vinyl butyral, vinyl acetal, and the like.
  • Carboxymethyl cellulose as a binder resin preferably has a high viscosity, for example, the viscosity when a 1% aqueous solution is prepared is preferably 500 to 6000 mPa ⁇ s, and more preferably 1000 to 3000 mPa ⁇ s. ..
  • the viscosity of the 1% aqueous solution of carboxymethyl cellulose can be measured under the condition of 25 ° C. at a rotor rotation speed of a B-type viscometer rotor of 60 rpm.
  • Carboxymethyl cellulose as a binder resin preferably has a high degree of etherification.
  • the degree of etherification is preferably 0.6 to 1.5, more preferably 0.6 to 1.2, and even more preferably 0.8 to 1.2.
  • the amount of the binder in the mixture slurry of the present embodiment is preferably 0.5 to 30% by mass, more preferably 1 to 25% by mass, when the mass of the active material is 100% by mass. It is particularly preferably 2 to 20% by mass.
  • the type and amount ratio of the binder are appropriately selected according to the properties of coexisting substances such as carbon nanotubes and active substances.
  • the ratio of carboxymethyl cellulose is preferably 0.5 to 3.0% by mass, preferably 1.0, when the mass of the active material is 100% by mass. -2.0% by mass is more preferable.
  • the styrene-butadiene rubber if it is an oil droplet emulsion in water, one generally used as a binder for electrodes can be used.
  • the proportion of styrene-butadiene rubber is preferably 0.5 to 3.0% by mass, preferably 1.0. -2.0% by mass is more preferable.
  • the proportion of polyacrylic acid is preferably 1 to 25% by mass, and further 5 to 20% by mass. preferable.
  • the proportion of polyacrylic acid is preferably 1 to 10% by mass, and further 1 to 5% by mass. preferable.
  • the carbon nanotube resin composition of the present embodiment contains carbon nanotubes, a dispersant, a solvent, and a binder.
  • the carbon nanotube resin composition of the present embodiment it is preferable to mix and homogenize the carbon nanotube dispersion liquid and the binder.
  • the mixing method various conventionally known methods can be used.
  • the carbon nanotube resin composition can be produced by using the dispersant described in the above carbon nanotube dispersion liquid.
  • the mixture slurry of the present embodiment contains carbon nanotubes, a dispersant, a solvent, a binder, and an active material.
  • the active material of the present embodiment is a material that is the basis of a battery reaction.
  • the active material is divided into a positive electrode active material and a negative electrode active material according to the electromotive force.
  • the positive electrode active material is not particularly limited, but a metal oxide capable of doping or intercalating lithium ions, a metal compound such as a metal sulfide, a conductive polymer, or the like can be used.
  • a metal oxide capable of doping or intercalating lithium ions a metal compound such as a metal sulfide, a conductive polymer, or the like can be used.
  • examples thereof include oxides of transition metals such as Fe, Co, Ni and Mn, composite oxides with lithium, and inorganic compounds such as transition metal sulfides.
  • transition metal oxide powders such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 , layered lithium nickelate, lithium cobaltate, lithium manganate, lithium manganate having a spinel structure, etc.
  • Examples thereof include a composite oxide powder of lithium and a transition metal, a lithium iron phosphate-based material which is a phosphoric acid compound having an olivine structure, and a transition metal sulfide powder such as TiS 2 and FeS.
  • conductive polymers such as polyaniline, polyacetylene, polypyrrole, and polythiophene can also be used. Further, the above-mentioned inorganic compounds and organic compounds may be mixed and used.
  • the negative electrode active material is not particularly limited as long as it can be doped with or intercalated with lithium ions.
  • metal Li alloys such as tin alloys, silicon alloys, and lead alloys thereof, Li x Fe 2 O 3 , Li x Fe 3 O 4 , Li x WO 2 (x is a number of 0 ⁇ x ⁇ 1).
  • Metal oxides such as lithium titanate, lithium vanadium, lithium siliconate, conductive polymers such as polyacetylene and poly-p-phenylene, and amorphous carbonaceous materials such as soft carbon and hard carbon.
  • Examples thereof include artificial graphite such as a highly graphitized carbon material, carbonaceous powder such as natural graphite, carbon black, mesophase carbon black, resin-fired carbon material, air layer growth carbon fiber, and carbon-based material such as carbon fiber.
  • artificial graphite such as a highly graphitized carbon material
  • carbonaceous powder such as natural graphite, carbon black, mesophase carbon black, resin-fired carbon material, air layer growth carbon fiber, and carbon-based material such as carbon fiber.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • a silicon-based negative electrode active material is preferable, and specifically, a negative electrode active material containing silicon such as a silicon alloy and lithium siliconate is preferable.
  • Examples of the silicon-based negative electrode active material include so-called metallurgical grade silicon produced by reducing silicon dioxide with carbon, industrial grade silicon obtained by reducing impurities by acid treatment or unidirectional solidification of metallurgical grade silicon, and silicon.
  • High-purity silicon produced from silane obtained by reaction and having different crystal states such as single crystal, polycrystal, and amorphous, and industrial grade silicon are highly purified by sputter method or EB vapor deposition (electron beam vapor deposition). At the same time, silicon whose crystal state and precipitation state are adjusted can be mentioned.
  • silicon oxide which is a compound of silicon and oxygen, silicon and various alloys, and a silicon compound whose crystal state is adjusted by a quenching method or the like can be mentioned.
  • silicon-based negative electrode active material having a structure in which silicon nanoparticles are dispersed in silicon oxide, the outside of which is coated with a carbon film, is preferable.
  • the negative electrode active material of the present embodiment includes amorphous carbonaceous materials such as soft carbon and hard carbon, artificial graphite such as graphitized carbon material, and carbonaceous powder such as natural graphite. It is preferable to use. Among them, it is preferable to use carbonaceous powder such as artificial graphite or natural graphite.
  • the amount of the silicon-based negative electrode active material is preferably 3 to 50% by mass, more preferably 5 to 25% by mass, when the carbonaceous powder such as artificial graphite or natural graphite is 100% by mass.
  • the BET specific surface area of the active material of the present embodiment is preferably 0.1 to 10 m 2 / g, more preferably 0.2 to 5 m 2 / g, and further preferably 0.3 to 3 m 2 / g. preferable.
  • the average particle size of the active material of the present embodiment is preferably in the range of 0.5 to 50 ⁇ m, and more preferably 2 to 20 ⁇ m.
  • the average particle size of the active material as used herein is an average value of the particle size of the active material measured with an electron microscope.
  • the mixed material slurry of the present embodiment can be produced by various conventionally known methods. For example, a method of adding an active material to a carbon nanotube resin composition to prepare the carbon nanotube resin composition, and a method of adding the active material to the carbon nanotube dispersion liquid and then adding a binder to prepare the carbon nanotube resin composition can be mentioned.
  • the mixed material slurry of the present embodiment it is preferable to add an active material to the carbon nanotube resin composition and then disperse it.
  • the dispersive device used to perform such processing is not particularly limited.
  • the mixed material slurry the mixed material slurry can be obtained by using the dispersion device described in the above-mentioned carbon nanotube dispersion liquid.
  • the amount of the active material in the mixture slurry of the present embodiment is preferably 20 to 85 parts by mass, more preferably 30 to 75 parts by mass, and 40 to 70 parts by mass with respect to 100 parts by mass of the mixture slurry. It is more preferably by mass.
  • the amount of carbon nanotubes in the mixed material slurry of the present embodiment is preferably 0.01 to 10 parts by mass, preferably 0.02 to 5 parts by mass with respect to 100 parts by mass of the active material. It is preferably 03 to 1 part by mass.
  • the solid content of the mixed material slurry of the present embodiment is preferably 30 to 90% by mass, more preferably 30 to 80% by mass, and 40 to 75% by mass with respect to 100% by mass of the mixed material slurry. It is preferably mass%.
  • Electrode film of the present embodiment is formed by forming a mixture slurry.
  • it is a coating film in which an electrode mixture layer is formed by applying and drying a mixture slurry on a current collector.
  • the material and shape of the current collector used for the electrode film of the present embodiment are not particularly limited, and those suitable for various secondary batteries can be appropriately selected.
  • examples of the material of the current collector include metals such as aluminum, copper, nickel, titanium, and stainless steel, and alloys of these metals.
  • a foil on a flat plate is generally used, but a roughened surface, a perforated foil, or a mesh-shaped current collector can also be used.
  • the method of applying the mixture slurry on the current collector is not particularly limited, and a known method can be used. Specific examples include a die coating method, a dip coating method, a roll coating method, a doctor coating method, a knife coating method, a spray coating method, a gravure coating method, a screen printing method, an electrostatic coating method, and the like, and drying. As the method, a stand-alone dryer, a blower dryer, a warm air dryer, an infrared heater, a far-infrared heater, and the like can be used, but the method is not particularly limited thereto.
  • the thickness of the electrode mixture layer is generally 1 ⁇ m or more and 500 ⁇ m or less, preferably 10 ⁇ m or more and 300 ⁇ m or less.
  • Non-aqueous electrolyte secondary battery of the present embodiment includes a positive electrode, a negative electrode, and an electrolyte. It is preferable that at least one of the positive electrode and the negative electrode contains the electrode film of the present embodiment.
  • a current collector obtained by applying and drying a mixture slurry containing a positive electrode active material to prepare an electrode film can be used.
  • a current collector obtained by applying and drying a mixture slurry containing a negative electrode active material to prepare an electrode film can be used.
  • electrolyte various conventionally known electrolytes in which ions can move can be used.
  • the electrolyte is preferably dissolved in a non-aqueous solvent and used as an electrolytic solution.
  • the non-aqueous solvent is not particularly limited, and is, for example, carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, and diethyl carbonate; ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ .
  • -Lactones such as octanoic lactones; tetrahydrofuran, 2-methyltetrachloride, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, and 1, Glymes such as 2-dibutoxyetane; esters such as methylformate, methylacetate, and methylpropionate; sulfoxides such as dimethyl sulfoxide and sulfolane; and nitriles such as acetonitrile.
  • solvents may be used alone, or two or more kinds may be mixed and used.
  • the non-aqueous electrolyte secondary battery of the present embodiment preferably contains a separator.
  • the separator include polyethylene non-woven fabric, polypropylene non-woven fabric, polyamide non-woven fabric, and those obtained by subjecting them to a hydrophilic treatment, but the separator is not particularly limited thereto.
  • the structure of the non-aqueous electrolyte secondary battery of the present embodiment is not particularly limited, but is usually composed of a positive electrode and a negative electrode, and a separator provided as needed, and includes a paper type, a cylindrical type, a button type, a laminated type, and the like. It can have various shapes according to the purpose of use.
  • CNT carbon nanotubes
  • a CNT was installed in a Raman microscope (XploRA, manufactured by HORIBA, Ltd.), and measurement was performed using a laser wavelength of 532 nm.
  • the measurement conditions were an capture time of 60 seconds, an integration frequency of 2 times, a dimming filter of 10%, an objective lens magnification of 20 times, a confocus hole of 500, a slit width of 100 ⁇ m, and a measurement wavelength of 100 to 3000 cm -1 .
  • the CNTs for measurement were separated on a slide glass and flattened using a spatula.
  • the maximum peak intensity is G in the range of 1560 to 1600 cm -1 in the spectrum
  • the maximum peak intensity is D in the range of 1310 to 1350 cm -1
  • the G / D ratio is G / of CNT. It was set to D ratio.
  • ⁇ BET specific surface area of CNT> After weighing 0.03 g of CNTs using an electronic balance (MSA225S100DI manufactured by Sartorius), the CNTs were dried at 110 ° C. for 15 minutes while degassing. Then, the BET specific surface area of CNT was measured using a fully automatic specific surface area measuring device (HM-model 1208 manufactured by MOUNTECH).
  • ⁇ Average outer diameter of CNT> Weigh 0.2 g of CNT into a 450 mL SM sample bottle (manufactured by Sansho Co., Ltd.) using an electronic balance (MSA225S100DI manufactured by Sartorius), add 200 mL of toluene, and add an ultrasonic homogenizer (Advanced Digital Sonifer) (registered).
  • a CNT dispersion liquid was prepared by performing a dispersion treatment under ice-cooling for 5 minutes at an amplitude of 50% using (trademark), MODEL 450DA, manufactured by BRANSON.
  • the CNT dispersion was appropriately diluted, dropped in the form of a collodion film in the form of several ⁇ L, dried at room temperature, and then observed using a direct transmission electron microscope (H-7650, manufactured by Hitachi, Ltd.). Observation is performed at a magnification of 50,000 times, multiple photographs containing 10 or more CNTs in the field of view are taken, the outer diameters of 300 arbitrarily extracted CNTs are measured, and the average value is the average outer diameter of the CNTs (the average outer diameter of the CNTs. nm).
  • ⁇ Particle size distribution of CNT dispersion liquid> After allowing the CNT dispersion to stand in a constant temperature bath at 25 ° C. for 1 hour or more, the CNT dispersion is sufficiently stirred and diluted, and then a particle size distribution meter (Nanotrac UPA, model UPA-EX manufactured by Microtrac Bell Co., Ltd.) ) was used to measure the cumulative particle sizes D10 and D50 of the CNT dispersion.
  • the permeability was absorbed, the density of CNT was 1.8, and the shape was non-spherical.
  • the refractive index of the solvent was 1.333.
  • the concentration of the CNT dispersion was diluted so that the value of the loading index was in the range of 0.8 to 1.2.
  • the complex elastic modulus and phase angle of the CNT dispersion liquid are a strain rate of 0 at 25 ° C. and a frequency of 1 Hz using a leometer (RheoStress 1 rotary leometer manufactured by Thermo Fisher Scientific Co., Ltd.) with a cone having a diameter of 35 mm and a diameter of 2 °. It was evaluated by performing dynamic viscoelasticity measurements in the range of 0.01% to 5%.
  • ⁇ Peeling strength of electrode film for negative electrode> The negative electrode mixture slurry was applied onto a copper foil using an applicator so that the basis weight per unit of the electrode was 8 mg / cm 2 , and then in an electric oven at 120 ° C. ⁇ 5 ° C. for 25 minutes. The coating film was dried. Then, two pieces were cut into a rectangle of 90 mm ⁇ 20 mm with the coating direction as the major axis.
  • a desktop tensile tester (Strograph E3, manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used to measure the peel strength, and the peel strength was evaluated by a 180-degree peel test method. Specifically, a 100 mm ⁇ 30 mm size double-sided tape (No.
  • ⁇ Peeling strength of electrode film for positive electrode> The positive electrode mixture slurry is applied onto an aluminum foil using an applicator so that the basis weight per unit of the electrode is 20 mg / cm 2 , and then in an electric oven at 120 ° C. ⁇ 5 ° C. for 25 minutes. The coating film was dried. Then, two pieces were cut into a rectangle of 90 mm ⁇ 20 mm with the coating direction as the major axis. A desktop tensile tester (Strograph E3, manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used to measure the peel strength, and the peel strength was evaluated by a 180-degree peel test method. Specifically, a 100 mm ⁇ 30 mm size double-sided tape (No.
  • the mixture slurry for the positive electrode is applied on an aluminum foil having a thickness of 20 ⁇ m as a current collector using an applicator, and then dried in an electric oven at 120 ° C. ⁇ 5 ° C. for 25 minutes per unit area of the electrode.
  • the basis weight was adjusted to 20 mg / cm 2 .
  • a rolling process was performed by a roll press (3t hydraulic roll press manufactured by Thunk Metal Co., Ltd.) to prepare a standard positive electrode having a density of the mixture layer of 3.1 g / cm 3 .
  • a laminated lithium-ion secondary battery was installed in a constant temperature room at 25 ° C., and charge / discharge measurement was performed using a charge / discharge device (SM-8 manufactured by Hokuto Denko Co., Ltd.). After performing constant current constant voltage charging (cutoff current 1.1mA (0.02C)) at a charging end voltage of 4.2V at a charging current of 11mA (0.2C), a discharge current of 11mA (0.2C). A constant current discharge was performed at a discharge end voltage of 2.5 V.
  • a laminated lithium-ion secondary battery was installed in a constant temperature room at 25 ° C., and charge / discharge measurement was performed using a charge / discharge device (SM-8 manufactured by Hokuto Denko Co., Ltd.). After performing constant current constant voltage charging (cutoff current 1.38mA (0.025C)) at a charging end voltage of 4.2V at a charging current of 55mA (1C), the discharge end voltage is applied at a discharge current of 55mA (1C). Constant current discharge was performed at 2.5 V. This operation was repeated 200 times. 1C is a current value that discharges the theoretical capacity of the positive electrode in 1 hour.
  • the weight average molecular weight (Mw) of the dispersant (A) was 38,000.
  • the weight average molecular weight (Mw) of the produced dispersant (A) was measured by gel permeation chromatography (GPC) equipped with an RI detector under the following conditions. The molecular weight is a pullulan equivalent.
  • Measurement sample 0.1% by mass aqueous solution
  • Device HLC-8320GPC (manufactured by Tosoh)
  • Eluent 0.1M NaCl aqueous solution
  • Temperature 25 ° C
  • Injection volume 100 ⁇ l
  • Table 1 shows the CNTs used in Examples and Comparative Examples, the outer diameters of CNTs, the specific surface area of CNTs, the G / D ratio, and the volume resistivity.
  • Table 2 shows the dispersants used in Examples, Comparative Examples and Reference Examples.
  • Example 1 98.25 parts of ion-exchanged water was added to the stainless steel container, and 0.75 parts of the dispersant (A) was added while stirring with a disper, and the mixture was stirred with a disper until uniform. After that, one part of CNT (A) was weighed, added while stirring with a dispersion, and a square hole high shear screen was attached to a high shear mixer (L5MA, manufactured by SILVERSON), and the whole was added at a speed of 8,600 rpm. Batch dispersion was performed until uniform.
  • the dispersion liquid was supplied from a stainless steel container to a high-pressure homogenizer (Starburst Lab HJP-17007, manufactured by Sugino Machine Limited) via a pipe, and a pass-type dispersion treatment was performed 5 times to obtain a CNT dispersion liquid (WA1). rice field.
  • the dispersion treatment was performed using a single nozzle chamber with a nozzle diameter of 0.25 mm and a pressure of 100 MPa.
  • Examples 2 to 15 (Examples 19 to 20), (Comparative Examples 1 to 2)
  • the CNT dispersion liquid (WA2 to WF4) was prepared by the same method as in Example 1 except that the CNT type, CNT addition amount, dispersant type, dispersant addition amount, ion-exchanged water addition amount, and number of passes shown in Table 3 were changed. ) was obtained.
  • Example 16 In a plastic container having a capacity of 150 cm3 , 4 parts by mass of the CNT dispersion liquid (WA1) prepared in Example 1 and 6 parts by mass of ion-exchanged water were weighed. Then, using a rotation / revolution mixer (Awatori Rentaro manufactured by Shinky Co., Ltd., ARE-310), the mixture was stirred at 2000 rpm for 30 seconds to obtain a CNT dispersion liquid (WA13).
  • Example 17 A CNT dispersion liquid (WA14) was obtained by the same method as in Example 16 except that the CNT dispersion liquid (WA3) prepared in Example 3 was used.
  • Example 18 A CNT dispersion liquid (WA15) was obtained by the same method as in Example 16 except that the CNT dispersion liquid (WA11) prepared in Example 11 was used.
  • Example 21 In a polypropylene bottle container, 20 parts of CNT (C) and 480 parts of zirconia beads having a diameter of 8 mm were charged as crushing media, and crushed for 40 minutes with a paint conditioner manufactured by Red Devil. Then, the zirconia beads were separated and CNT (C) was recovered. Next, 98.38 parts of ion-exchanged water was added to the stainless steel container, and 1.13 parts of the dispersant (C) was added while stirring with a disper, and the mixture was stirred with a disper until uniform.
  • Example 22 Add 98.40 parts of ion-exchanged water to a stainless steel container, and while stirring with a disper, add 0.50 parts of dispersant (C) and 0.10 parts of polyacrylic acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., molecular weight 25000). In addition, the mixture was stirred with a disper until uniform. After that, 1.0 part of CNT (A) was weighed, added while stirring with a dispersion, and a square hole high shear screen was attached to a high shear mixer (L5MA, manufactured by SILVERSON) at a speed of 8,600 rpm. Batch dispersion was performed until the whole was uniform.
  • C dispersant
  • polyacrylic acid manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., molecular weight 25000
  • the dispersion liquid was supplied from a stainless steel container to a high-pressure homogenizer (Starburst Lab HJP-17007, manufactured by Sugino Machine Limited) via a pipe, and a pass-type dispersion treatment was performed 20 times to obtain a CNT dispersion liquid (WA28). rice field.
  • the dispersion treatment was performed using a single nozzle chamber with a nozzle diameter of 0.25 mm and a pressure of 100 MPa.
  • Example 23 99.3 parts of NMP was added to the stainless steel container, 0.3 part of the dispersant (E) was added while stirring with a disperser, and the mixture was stirred with the disperser until the dispersant (E) was dissolved. After that, 0.4 part of CNT (A) was weighed, added while stirring with a dispersion, and a square hole high shear screen was attached to a high shear mixer (L5MA, manufactured by SILVERSON) at a speed of 8,600 rpm. Batch dispersion was performed until the whole was uniform.
  • L5MA high shear mixer
  • the dispersion liquid was supplied from a stainless steel container to a high-pressure homogenizer (Starburst Lab HJP-17007, manufactured by Sugino Machine Limited) via a pipe, and a pass-type dispersion treatment was performed 20 times to obtain a CNT dispersion liquid (A20). rice field.
  • the dispersion treatment was performed using a single nozzle chamber with a nozzle diameter of 0.25 mm and a pressure of 100 MPa.
  • Example 24 to 26 CNT dispersions (A21 to A23) were obtained by the same method as in Example 23 except that the number of passes shown in Table 4 was changed.
  • Table 5 shows the evaluation results of the CNT dispersions prepared in Examples 1 to 26 and Comparative Examples 1 to 7.
  • 10 or more and less than 50 was evaluated as ⁇ (good)
  • 5 or more and less than 10 was evaluated as ⁇ (possible)
  • less than 5 or 50 or more was evaluated as ⁇ (impossible).
  • the evaluation of the complex elastic modulus of the CNT dispersion liquid at 25 ° C. and a frequency of 1 Hz was evaluated as ⁇ (good) for 5 or more and less than 400, ⁇ (possible) for 400 or more and less than 650, and ⁇ (impossible) for less than 5.
  • the shear viscosity at a shear rate of 1 is 20 or more and less than 40 ⁇ (excellent), 10 or more and less than 20, or 40 or more and less than 60 is ⁇ (good), and 5 or more and less than 10 is ⁇ . (Yes) Less than 5 was set as x (No).
  • the particle size evaluation of the CNT dispersion liquid when the particle size distribution was D10, the particle size distribution was 200 or more and less than 300 as ⁇ (excellent), 300 or more and less than 500 as ⁇ (good), and less than 200 as ⁇ (impossible).
  • Example 28 12.5 parts by mass of an aqueous solution prepared by dissolving 0.63 parts by mass of CNT dispersion liquid (WA1) and 2% by mass of CMC (manufactured by Daicel FineChem Co., Ltd., # 1190) in a plastic container having a capacity of 150 cm 3 , and 13.8 parts by mass of ion-exchanged water. Weighed by mass. Then, using a rotation / revolution mixer (Awatori Rentaro manufactured by Shinky Co., Ltd., ARE-310), the mixture was stirred at 2000 rpm for 30 seconds to obtain a CNT resin composition (WA1).
  • a rotation / revolution mixer Alwatori Rentaro manufactured by Shinky Co., Ltd., ARE-310
  • Example 28 except that the CNT dispersion liquid shown in Table 6 was changed and the addition amount of the CNT dispersion liquid and the ion-exchanged water was adjusted so that the CNT in 100 parts by mass of the mixed material slurry was 0.025 parts by mass.
  • CNT resin compositions (WA2-WA19) and negative electrode mixture slurries (WA2-WA19) were obtained.
  • the non-volatile content of the mixture slurry for the negative electrode was 48% by mass.
  • Example 50 7.0 parts by mass of NMP in which 8% by mass of PVDF (Solvey's Solef # 5130) was dissolved in a plastic container having a capacity of 150 cm 3 was weighed. Then, 0.19 parts by mass of the CNT dispersion liquid (A20) was added, and the mixture was stirred at 2000 rpm for 30 seconds using a rotation / revolution mixer (Awatori Rentaro, ARE-310) to obtain the CNT resin composition (A20).
  • a rotation / revolution mixer Awatori Rentaro, ARE-310
  • Example 51 to 53 (Comparative Example 13)
  • the CNT resin composition (A21 to A24) and the positive electrode mixture slurry (A21 to A24) were obtained by the same method as in Example 50 except that the CNT dispersion liquid was changed to the CNT dispersion liquid shown in Table 6.
  • Example 54 The negative electrode mixture slurry (WA1) is applied onto a copper foil using an applicator so that the basis weight per unit of the electrode is 8 mg / cm 2 , and then in an electric oven at 120 ° C. ⁇ 5 ° C. The coating film was dried for 25 minutes to obtain an electrode film (WA1).
  • Electrode films (WA2) to (WA19) were obtained by the same method as in Example 54 except that the slurry was changed to the negative electrode mixture slurry shown in Table 7.
  • Example 76 The positive electrode mixture slurry (A20) is applied onto a copper foil using an applicator so that the basis weight per unit of the electrode is 20 mg / cm 2 , and then in an electric oven at 120 ° C. ⁇ 5 ° C. The coating film was dried for 25 minutes to obtain an electrode film (A20).
  • Electrode films (A21) to (A24) were obtained by the same method as in Example 76 except that the slurry was changed to the positive electrode mixture slurry shown in Table 7.
  • Table 7 shows the evaluation results of the electrode films prepared in Examples 54 to 79 and Comparative Examples 14 to 19.
  • peel strength ( ⁇ ⁇ cm) of 0.5 or more is ⁇ (excellent), 0.3 or more and less than 0.5 is ⁇ (good), and 0.1 or more and less than 0.3 is ⁇ (possible).
  • Less than 0.1 was defined as x (impossible).
  • Example 80 to 101 (Comparative Examples 20 to 24)
  • the electrode films (WA1 to WA19) were rolled by a roll press (3t hydraulic roll press manufactured by Thunk Metal Co., Ltd.) to prepare a negative electrode having a mixture layer density of 1.7 g / cm 3 .
  • Example 102 to 105 (Examples 102 to 105), (Comparative Example 25)
  • the electrode films (A20 to A24) were rolled by a roll press (3t hydraulic roll press manufactured by Thunk Metal Co., Ltd.) to prepare a positive electrode having a mixture layer density of 3.2 g / cm 3 .
  • Table 8 shows the negative electrodes and positive electrodes manufactured in Examples 80 to 105 and Comparative Examples 20 to 25.
  • Example 106 The negative electrode (WA1) and the standard positive electrode are punched into 50 mm ⁇ 45 mm and 45 mm ⁇ 40 mm, respectively, and the separator (porous polyproprene film) inserted between them is inserted into an aluminum laminated bag at 60 ° C. in an electric oven. It was dried for 1 hour. Then, in a glove box filled with argon gas, an electrolytic solution (a mixed solvent in which ethylene carbonate, ethylmethyl carbonate and dimethyl carbonate were mixed at a ratio of 3: 5: 2 (volume ratio) was prepared, and further used as an additive.
  • an electrolytic solution a mixed solvent in which ethylene carbonate, ethylmethyl carbonate and dimethyl carbonate were mixed at a ratio of 3: 5: 2 (volume ratio
  • VC vinyl carbonate
  • FEC fluoroethylene carbonate
  • Laminated lithium ion secondary batteries (WA2-WA19) were produced by the same method except that the negative electrode was changed to the negative electrode shown in Table 9.
  • Example 1278 The standard negative electrode and the positive electrode (A20) are punched into 50 mm ⁇ 45 mm and 45 mm ⁇ 40 mm, respectively, and the separator (porous polyproprene film) inserted between them is inserted into an aluminum laminated bag at 60 ° C. in an electric oven. It was dried for 1 hour. Then, in a glove box filled with argon gas, an electrolytic solution (a mixed solvent in which ethylene carbonate, ethylmethyl carbonate and dimethyl carbonate were mixed at a ratio of 3: 5: 2 (volume ratio) was prepared, and further used as an additive.
  • an electrolytic solution a mixed solvent in which ethylene carbonate, ethylmethyl carbonate and dimethyl carbonate were mixed at a ratio of 3: 5: 2 (volume ratio
  • VC vinyl carbonate
  • FEC fluoroethylene carbonate
  • Table 10 shows the evaluation results of the laminated lithium ion secondary batteries produced in Examples 106 to 131 and Comparative Examples 26 to 31.
  • rate characteristics those with a rate characteristic of 80% or more are ⁇ (excellent), those with a rate characteristic of 70% or more and less than 80% are ⁇ (good), those with a rate characteristic of 60% or more and less than 70% are ⁇ (possible), and less than 60%.
  • the thing was set as x (impossible).
  • the cycle characteristics are as follows: ⁇ (excellent) for cycle characteristics of 90% or more, ⁇ (good) for 85% or more and less than 90%, ⁇ (possible) for 80% or more and less than 85%, and-(impossible) for less than 80%. ..
  • it is a carbon nanotube dispersion liquid containing a carbon nanotube, a dispersant, and a solvent, and the G / D ratio of the carbon nanotube is 5 to 100, and the dispersant is based on 100 parts by mass of the carbon nanotube.
  • a carbon nanotube dispersion liquid containing 30 parts by mass or more and less than 250 parts by mass the complex elastic modulus of the carbon nanotube dispersion liquid at 25 ° C. and a frequency of 1 Hz is 5 Pa or more and less than 650 Pa, and the phase angle is 5 ° or more and less than 50 °.
  • a certain carbon nanotube dispersion liquid was used.
  • the adhesion of the electrodes tended to be improved as compared with the comparative examples.
  • a lithium ion secondary battery with excellent rate characteristics and cycle characteristics was obtained. Therefore, it has been clarified that the present invention can provide a lithium ion secondary battery having high capacity, high output and high durability, which cannot be realized by a conventional carbon nanotube dispersion liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本開示は、カーボンナノチューブと、分散剤と、溶媒とを含むカーボンナノチューブ分散液であって、下記(1)~(4)を満たすカーボンナノチューブ分散液に関する。 (1)カーボンナノチューブのラマンスペクトルにおいて1560~1600cm-1の範囲内での最大ピーク強度をG、1310~1350cm-1の範囲内での最大ピーク強度をDとした際に、カーボンナノチューブのG/D比が、5~100であること (2)カーボンナノチューブ100質量部に対して、分散剤を30質量部以上250質量部未満含有すること (3)カーボンナノチューブ分散液の25℃、周波数1Hzにおける複素弾性率が5Pa以上650Pa未満であり、位相角が5°以上50°未満であること (4)カーボンナノチューブのBET比表面積が、550~1200m2/gであること

Description

カーボンナノチューブ分散液およびその利用
 本発明は、カーボンナノチューブの分散液に関する。さらに詳しくは、カーボンナノチューブ分散液、カーボンナノチューブ分散液とバインダーとを含む樹脂組成物、カーボンナノチューブ分散液とバインダーと活物質とを含む合材スラリー、それを膜状に形成してなる電極膜、および電極膜と電解質とを含む非水電解質二次電池に関する。
 電気自動車の普及や携帯機器の小型軽量化及び高性能化に伴い、高いエネルギー密度を有する二次電池、さらに、その二次電池の高容量化が求められている。このような背景の下で高エネルギー密度、高電圧という特徴から非水系電解液を用いる非水電解質二次電池、特に、リチウムイオン二次電池が多くの機器に使われるようになっている。
 これらリチウムイオン二次電池に用いられる負極材料としては、リチウム(Li)に近い卑な電位で単位質量あたりの充放電容量の大きい黒鉛に代表される炭素材料が用いられている。しかしながら、これらの電極材料は質量当たりの充放電容量が理論値に近いところまで使われており、電池としての質量当たりのエネルギー密度は限界に近づいている。従って、電極としての利用率を上げるため、放電容量には寄与しない導電助剤やバインダーを減らす試みが行われている。
 導電助剤としては、カーボンブラック、ケッチェンブラック、フラーレン、グラフェン、微細炭素材料等が使用されている。特に微細炭素繊維の一種であるカーボンナノチューブが多く使用されている。例えば、黒鉛やシリコン負極にカーボンナノチューブを添加することにより、電極の導電性、密着性や膨張収縮性等の電極強度、リチウムイオン二次電池のレート特性およびサイクル特性が向上することが知られている(例えば、特許文献1参照)。また、正極にカーボンナノチューブを添加することにより、電極抵抗を低減する検討も行われている(例えば、特許文献2および特許文献3参照)。中でも、外径10nm~数10nmの多層カーボンナノチューブは比較的安価であり、実用化が期待されている。
 平均外径が小さいカーボンナノチューブを用いると、少量で効率的に導電ネットワークを形成することができ、リチウムイオン二次電池用の正極および負極中に含まれる導電助材量を低減することができる。また、繊維長が大きいカーボンナノチューブを用いた場合も同様の効果があることが知られている(例えば、特許文献4参照)。
 また、様々な分散剤を用いてカーボンナノチューブを分散安定化する方法が提案されている。例えば、水溶性高分子等のポリマー系分散剤を用いた水及びNMP(N-メチル-2-ピロリドン)への分散が提案されている(特許文献1、特許文献5および特許文献6参照)。また、ニトリル系ゴムを分散剤として用いて、多層カーボンナノチューブを分散安定化する方法が提案されている(特許文献7参照)。
特開2020-105316号公報 特開2011-70908号公報 特開2014-19619号公報 特開2012-221672号公報 特開2010-254546号公報 特開2005-162877号公報 特表2018-533175号公報
 しかしながら、平均外径が小さく繊維長が大きい特徴を有するカーボンナノチューブは凝集力が強く分散が困難であるため、十分な分散性を有するカーボンナノチューブ分散液を得ることができなかった。特許文献1では、単層カーボンナノチューブをポリビニルピロリドン含有NMP溶媒中にジルコニアビーズを用いて、分散を行っているが、分散時間が長く、カーボンナノチューブの分散粒径が小さくなってしまう問題があり、電極の導電性は向上するものの、電極強度をより十分に向上できなかった。特許文献5では、酸化処理された二層カーボンナノチューブをカルボキシメチルセルロース水溶液中に超音波ホモジナイザーを用いて、分散を行っているが、溶媒中にカーボンナノチューブを高濃度分散することが困難であった。また、特許文献6では、単層カーボンナノチューブをポリビニルピロリドン含有NMP溶媒中に超音波を用いて、分散を行っているが、溶媒中にカーボンナノチューブを高濃度分散することが困難であった。特許文献7では、特定の複素弾性率を有する多層カーボンナノチューブ分散液を作製することで、電極の出力特性が向上することが提案されている。しかしながら、外径10nm以上の多層カーボンナノチューブでは、電極強度の向上が不十分であり、リチウムイオン二次電池のサイクル特性を改善することが困難であった。したがって、微細炭素繊維であるカーボンナノチューブ、特に単層カーボンナノチューブを分散媒に高濃度かつ均一に分散したカーボンナノチューブ分散液を得ることは、用途拡大に向けた重要な課題である。
 本発明が解決しようとする課題は、電極強度および導電性に優れた電極膜を得るために、高い分散性および弾性率を有するカーボンナノチューブ分散液、カーボンナノチューブ樹脂組成物および合材スラリーを提供することである。さらに詳しくは、優れたレート特性およびサイクル特性を有する非水電解質二次電池を提供することである。
 すなわち、本発明は、カーボンナノチューブと、分散剤と、溶媒とを含むカーボンナノチューブ分散液であって、下記(1)~(4)を満たすカーボンナノチューブ分散液に関する。
 (1)カーボンナノチューブのラマンスペクトルにおいて1560~1600cm-1の範囲内での最大ピーク強度をG、1310~1350cm-1の範囲内での最大ピーク強度をDとした際に、カーボンナノチューブのG/D比が、5~100であること
 (2)カーボンナノチューブ100質量部に対して、分散剤を30質量部以上250質量部未満含有すること
 (3)カーボンナノチューブ分散液の25℃、周波数1Hzにおける複素弾性率が5Pa以上650Pa未満であり、位相角が5°以上50°未満であること
 (4)カーボンナノチューブのBET比表面積が、550~1200m/gであること
 また、本発明は、カーボンナノチューブのラマンスペクトルにおいて1560~1600cm-1の範囲内での最大ピーク強度をG、1310~1350cm-1の範囲内での最大ピーク強度をDとした際に、カーボンナノチューブのG/D比が、10~50である、前記カーボンナノチューブ分散液に関する。
 また、本発明は、25℃のカーボンナノチューブ分散液を、レオメーターを用いて、せん断速度1(s-1)で測定した際、5Pa・s以上40Pa・s未満である、前記カーボンナノチューブ分散液に関する。
 また、本発明は、動的光散乱法によって測定した累積粒径D10が、200nm以上500nm未満である、前記カーボンナノチューブ分散液に関する。
 また、本発明は、カーボンナノチューブの体積抵抗率が、1.0×10-3Ω・cm~1.0×10-2Ω・cmである、前記カーボンナノチューブ分散液に関する。
 また、本発明は、動的光散乱法によって測定した累積粒径D50が、500nm以上3000nm未満である、前記カーボンナノチューブ分散液に関する。
 また、本発明は、分散剤の重量平均分子量が、1万~10万である、前記カーボンナノチューブ分散液に関する。
 また、本発明は、溶媒が、水を含む、前記カーボンナノチューブ分散液に関する。
 また、本発明は、前記カーボンナノチューブ分散液と、バインダーとを含む、カーボンナノチューブ樹脂組成物に関する。
 また、本発明は、前記カーボンナノチューブ樹脂組成物と活物質とを含む、合材スラリーに関する。
 また、本発明は、前記合材スラリーの塗工膜である電極膜に関する。
 また、本発明は、正極と、負極と、電解質とを含む非水電解質二次電池であって、正極および負極の少なくとも一方が、前記電極膜を含む、非水電解質二次電池に関する。
 本発明のカーボンナノチューブ分散液を使用することにより、電極強度および密着性に優れた樹脂組成物、合材スラリー、電極膜が得られる。また、レート特性およびサイクル特性に優れた非水電解質二次電池が得られる。よって高い導電性、耐久性が求められる様々な用途分野において、本発明のカーボンナノチューブ分散液を使用することが可能である。
図1は本発明の実施例および比較例で使用したカーボンナノチューブのラマンスペクトルを示すグラフである。
 以下、本発明のカーボンナノチューブ分散液、樹脂組成物、合材スラリー、それの塗工膜である電極膜、および非水電解質二次電池について詳しく説明する。
 (1)カーボンナノチューブ
 本実施形態のカーボンナノチューブは、単層カーボンナノチューブであることが好ましい。単層カーボンナノチューブと多層カーボンナノチューブが混在するものであってもよい。単層カーボンナノチューブは、一層のグラファイトが巻かれた構造を有し、多層カーボンナノチューブは、二又は三以上の層のグラファイトが巻かれた構造を有するものである。
 本実施形態のカーボンナノチューブの平均外径は0.5nm~5nmであり、1nm~3nmであることが好ましく、1nm~2nmであることがより好ましい。カーボンナノチューブの平均外径は、透過型電子顕微鏡(日本電子社製)によって、カーボンナノチューブの形態観察を行い、100本の短軸の長さを計測し、その数平均値により、算出することができる。
 本実施形態のカーボンナノチューブのBET比表面積は550m/g~1200m/gであり、600~1200m/gであることが好ましく、800m/g~1200m/gであるものがより好ましく、800m/g~1000m/gであるものがさらに好ましい。
 本実施形態のカーボンナノチューブは、ラマンスペクトルにおいて1560~1600cm-1の範囲内での最大ピーク強度をG、1310~1350cm-1の範囲内での最大ピーク強度をDとした際に、G/D比が、5~100であり、10~50であることがより好ましく、20~50であることがさらに好ましい。ラマンスペクトルはラマン分光法にしたがって波長532nmのレーザー光を用いて測定することができる。
 本実施形態のカーボンナノチューブの体積抵抗率は1.0×10-3Ω・cm~3.0×10-2Ω・cmであることが好ましく、1.0×10-3Ω・cm~1.0×10-2Ω・cmであることがより好ましい。カーボンナノチューブの体積抵抗率は粉体抵抗率測定装置((株)三菱化学アナリテック社製:ロレスターGP粉体抵抗率測定システムMCP-PD-51)を用いて測定することができる。
 本実施形態のカーボンナノチューブの炭素純度はカーボンナノチューブ中の炭素原子の含有率(%)で表される。炭素純度はカーボンナノチューブ100質量%に対して、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましい。
 本実施形態のカーボンナノチューブ中に含まれる金属量はカーボンナノチューブ100質量%に対して、20質量%未満が好ましく、10質量%未満がより好ましく、5質量%未満がさらに好ましい。カーボンナノチューブに含まれる金属としては、カーボンナノチューブを合成する際に触媒として使用される金属、金属酸化物等が挙げられる。具体的には、コバルト、ニッケル、アルミニウム、マグネシウム、シリカ、マンガン、モリブデン等の金属、これらの金属の合金、これらの金属の金属酸化物、これらの金属の複合酸化物等が挙げられる。
 本実施形態のカーボンナノチューブは、表面処理を行ったカーボンナノチューブでもよい。またカーボンナノチューブは、カルボキシル基に代表される官能基を付与させたカーボンナノチューブ誘導体であってもよい。また、有機化合物、金属原子、又はフラーレンに代表される物質を内包させたカーボンナノチューブも用いることができる。
 本実施形態のカーボンナノチューブは、粉砕処理されたカーボンナノチューブでもよい。粉砕処理とは、ビーズ、スチールボール等の粉砕メディアを内蔵した粉砕機を使用して、実質的に液状物質を介在させないでカーボンナノチューブを粉砕するものであり、乾式粉砕ともいわれる。粉砕は、粉砕メディア同士の衝突による粉砕力や破壊力を利用して行なわれる。粉砕は主にカーボンナノチューブの二次粒子を小さくする効果があり、カーボンナノチューブの分散性を向上させることができる。乾式粉砕装置としては、乾式のアトライター、ボールミル、振動ミル、ビーズミルなどの公知の方法を用いることができ、粉砕時間はその装置によって任意に設定できる。
 本実施形態のカーボンナノチューブはどのような方法で製造したカーボンナノチューブでも構わない。カーボンナノチューブは一般にレーザーアブレーション法、アーク放電法、熱CVD法、プラズマCVD法及び燃焼法で製造できるが、これらに限定されない。
 (2)分散剤
 本実施形態の分散剤は、カーボンナノチューブを分散安定化できる範囲で特に限定されず、界面活性剤、樹脂型分散剤を使用することができる。界面活性剤は主にアニオン性、カチオン性、ノニオン性及び両性に分類される。カーボンナノチューブの分散に要求される特性に応じて適宜好適な種類の分散剤を、好適な配合量で使用することができる。
 アニオン性界面活性剤を選択する場合、その種類は特に限定されない。具体的には脂肪酸塩、ポリスルホン酸塩、ポリカルボン酸塩、アルキル硫酸エステル塩、アルキルアリールスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルアリールエーテル硫酸塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルリン酸スルホン酸塩、グリセロールボレイト脂肪酸エステル及びポリオキシエチレングリセロール脂肪酸エステルが挙げられるが、これらに限定されない。さらに、具体的にはドデシルベンゼンスルホン酸ナトリウム、ラウリル酸硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステル塩及びβ-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩が挙げられるが、これらに限定されない。
 またカチオン性界面活性剤としては、アルキルアミン塩類及び第四級アンモニウム塩類がある。具体的にはステアリルアミンアセテート、トリメチルヤシアンモニウムクロリド、トリメチル牛脂アンモニウムクロリド、ジメチルジオレイルアンモニウムクロリド、メチルオレイルジエタノールクロリド、テトラメチルアンモニウムクロリド、ラウリルピリジニウムクロリド、ラウリルピリジニウムブロマイド、ラウリルピリジニウムジサルフェート、セチルピリジニウムブロマイド、4-アルキルメルカプトピリジン、ポリ(ビニルピリジン)-ドデシルブロマイド及びドデシルベンジルトリエチルアンモニウムクロリドが挙げられるが、これらに限定されない。また両性界面活性剤としては、アミノカルボン酸塩が挙げられるが、これらに限定されない。
 またノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレン誘導体、ポリオキシエチレンフェニルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル及びアルキルアリルエーテルが挙げられるが、これらに限定されない。具体的にはポリオキシエチレンラウリルエーテル、ソルビタン脂肪酸エステル及びポリオキシエチレンオクチルフェニルエーテルが挙げられるが、これらに限定されない。
 選択される界面活性剤は単独の界面活性剤に限定されない。このため二種以上の界面活性剤を組み合わせて使用することも可能である。例えばアニオン性界面活性剤及びノニオン性界面活性剤の組み合わせ、又はカチオン性界面活性剤及びノニオン性界面活性剤の組み合わせが利用できる。その際の配合量は、それぞれの界面活性剤成分に対して好適な配合量とすることが好ましい。組み合わせとしてはアニオン性界面活性剤及びノニオン性界面活性剤の組み合わせが好ましい。アニオン性界面活性剤はポリカルボン酸塩であることが好ましい。ノニオン性界面活性剤はポリオキシエチレンフェニルエーテルであることが好ましい。
 また樹脂型分散剤として具体的には、セルロース誘導体(セルロースアセテート、セルロースアセテートブチレート、セルロースブチレート、シアノエチルセルロース、エチルヒドロキシエチルセルロース、ニトロセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースなど)、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリアクリロニトリル系重合体等が挙げられる。特にメチルセルロース、エチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリアクリロニトリル系重合体が好ましい。
 樹脂型分散剤としてのカルボキシメチルセルロースは、カルボキシメチルセルロースのヒドロキシ基をカルボキシメチルナトリウム基で置換したカルボキシメチルセルロースのナトリウム塩等の塩の形態で使用することができる。樹脂型分散剤としてのカルボキシメチルセルロースは、エーテル化度が0.5~1.5であることが好ましく、0.6~1.0であることがより好ましい。カルボキシメチルセルロースのエーテル化度は常法に従って測定することができ、詳しくは実施例に記載の方法にしたがって測定することができる。
 本実施形態の分散剤は、プルラン換算の重量平均分子量で、5,000以上300,000以下が好ましく、10,000以上100,000以下がより好ましく、10,000以上50,000以下がさらに好ましい。適度な重量平均分子量を有する分散剤を使用するとカーボンナノチューブへの吸着性が向上し、カーボンナノチューブ分散液の安定性がより向上する。また、上記範囲を超える分散剤を使用する場合、カーボンナノチューブ分散液の粘度が高くなり、ノズル式の高圧ホモジナイザーなどの狭い流路を被分散液が通過する分散機を用いた場合、分散効率が低下する場合がある。なお、樹脂型分散剤は、分散能に加えて結着能を有する場合があり、上記のような樹脂型分散剤をバインダーとして用いることもでき、バインダーとして、樹脂型分散剤と同一の種類の樹脂を用いてもよい。樹脂型分散剤と同一の種類の樹脂をバインダーとして用いる場合には、樹脂型分散剤の重量平均分子量よりも大きい重量平均分子量の樹脂を用いることが好ましい。
 ここで、分散剤の重量平均分子量(Mw)は、示差屈折率(RI)検出器を装備したゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができ、プルラン換算値である。
 また、本実施形態の分散剤に加えて、無機塩基および/または無機金属塩を含んでもよい。無機塩基および無機金属塩としては、アルカリ金属、およびアルカリ土類金属の少なくとも一方を有する化合物であることが好ましく、詳しくは、アルカリ金属、およびアルカリ土類金属の、塩化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、リン酸塩、タングステン酸塩、バナジウム酸塩、モリブデン酸塩、ニオブ酸塩、ならびにホウ酸塩等が挙げられる。また、これらの中でも容易にカチオンを供給できる面でアルカリ金属、およびアルカリ土類金属の塩化物、水酸化物、炭酸塩が好ましい。アルカリ金属の水酸化物は、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。アルカリ土類金属の水酸化物は、例えば、水酸化カルシウム、水酸化マグネシウム等が挙げられる。アルカリ金属の炭酸塩は、例えば、炭酸リチウム、炭酸水素リチウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム等が挙げられる。アルカリ土類金属の炭酸塩は、例えば、炭酸カルシウム、炭酸マグネシウム等が挙げられる。これらの中でも水酸化リチウム、水酸化ナトリウム、炭酸リチウム、炭酸ナトリウムがより好ましい。
 また、本実施形態の分散剤に加えて、酸を含んでもよい。酸を添加することで、分散系中の電荷状態や親水部・疎水部のバランスが変化し、分散性が向上する場合がある。酸の種類は特に限定されず、1種類でも、複数を組み合わせて用いてもよい。例えば、シュウ酸、乳酸、クエン酸、ポリアクリル酸、ポリスチレンスルホン酸、酢酸、マロン酸、塩酸、硝酸、硫酸、ホウ酸、リン酸等が挙げられる。
 また、本実施形態の分散剤に加えて、消泡剤を含んでもよい。消泡剤は、市販の消泡剤、湿潤剤、親水性有機溶剤、水溶性有機溶剤等、消泡効果を有するものであれば任意に用いることができ、1種類でも、複数を組み合わせて用いてもよい。
 例えば、アルコール系;エタノール、プロパノール、イソプロパノール、ブタノール、オクチルアルコール、ヘキサデシルアルコール、アセチレンアルコール、エチレングリコールモノブチルエーテル、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、アセチレングリコール、ポリオキシアルキレングリコール、プロピレングリコール、その他グリコール類等、
 脂肪酸エステル系;ジエチレングリコールラウレート、グリセリンモノリシノレート、アルケニルコハク酸誘導体、ソルビトールモノラウレート、ソルビトールトリオレエート、ポリオキシエチレンモノラウレート、ポリオキシエチレンソルビトールモノラウレート、天然ワックス等、
 アミド系;ポリオキシアルキレンアミド、アクリレートポリアミン等、
 リン酸エステル系;リン酸トリブチル、ナトリウムオクチルホスフェート等、
 金属セッケン系;アルミニウムステアレート、カルシウムオレエート等、
 油脂系;動植物油、胡麻油、ひまし油等、
 鉱油系:灯油、パラフィン等、
 シリコーン系;ジメチルシリコーン油、シリコーンペースト、シリコーンエマルジョン、有機変性ポリシロキサン、フルオロシリコーン油等が挙げられる。
 (3)溶媒
 本実施形態の溶媒は、カーボンナノチューブが分散可能な範囲であれば特に限定されないが、水、及び水溶性有機溶媒からなる群から選択されるいずれか一種、またはこれらの群から選択される二種以上を含む混合溶媒であることが好ましく、水を含むことがより好ましい。水を含む場合は、溶媒100質量%に対して95質量%以上であることが好ましく、98質量%以上であることがさらに好ましく、水の単一溶媒であってもよい。
 水溶性有機溶媒としては、アルコール系(メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ベンジルアルコールなど)、多価アルコール系(エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコールなど)、多価アルコールエーテル系(エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテルなど)、アミン系(エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、モルホリン、N-エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミンなど)、アミド系(N-メチル-2-ピロリドン(NMP)、N-エチル-2-ピロリドン(NEP)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチルカプロラクタムなど)、複素環系(シクロヘキシルピロリドン、2-オキサゾリドン、1,3-ジメチル-2-イミダゾリジノン、γ-ブチロラクトンなど)、スルホキシド系(ジメチルスルホキシドなど)、スルホン系(ヘキサメチルホスホロトリアミド、スルホランなど)、低級ケトン系(アセトン、メチルエチルケトンなど)、その他、テトラヒドロフラン、尿素、アセトニトリルなどを使用することができる。なかでもアミド系水溶性有機溶媒が好ましく、N-メチル-2-ピロリドン(NMP)がより好ましい。
 (4)カーボンナノチューブ分散液
 本実施形態のカーボンナノチューブ分散液は、カーボンナノチューブと分散剤と溶媒を含むものである。
 本実施形態のカーボンナノチューブ分散液の25℃、周波数1Hzにおける複素弾性率は、5Pa以上650Pa未満であり、5Pa以上400Pa未満であることが好ましく、10Pa以上400Pa未満であることがさらに好ましい。カーボンナノチューブ分散液の複素弾性率は、カーボンナノチューブ分散液の硬さを示し、カーボンナノチューブの分散性が良好で、カーボンナノチューブ分散液が低粘度であるほど小さくなる傾向にある。一方で、カーボンナノチューブの繊維長が大きい場合、分散が良好であっても、カーボンナノチューブ自体の構造粘性があるため、複素弾性率が高い数値となる場合がある。
 本実施形態のカーボンナノチューブ分散液の25℃、周波数1Hzにおける位相角は、5°以上50°未満であり、10°以上50°未満であることがより好ましい。位相角は、カーボンナノチューブ分散液に与えるひずみを正弦波とした場合の応力波の位相ズレを意味している。純弾性体であれば、与えたひずみと同位相の正弦波となるため、位相角0°となる。一方で、純粘性体であれば90°進んだ応力波となる。複素弾性率と位相角の値が上記の範囲にあるカーボンナノチューブ分散体は、カーボンナノチューブの分散粒径および分散状態が良好であり、電極強度および導電性を向上させるためのカーボンナノチューブ分散液として適している。
 カーボンナノチューブ分散液の複素弾性率及び位相角は、直径35mm、2°のコーンにてレオメーターを用い、25℃、周波数1Hzにて、ひずみ率0.01%から5%の範囲で動的粘弾性測定を実施すること求めることができる。測定値が小数点以下を含む場合はJISZ8401:1999の規則Bに従って整数位に丸める。なお、測定値が小数点以下一位となる場合は、カーボンナノチューブ分散液の25℃、周波数1Hzにおける複素弾性率は、4.5Pa以上650.4Pa未満が好ましく、カーボンナノチューブ分散液の25℃、周波数1Hzにおける位相角は、4.5°以上50.4°未満であることが好ましい。
 カーボンナノチューブの繊維長が破断により短くならないように、一定以上の長さを保ったまま均一かつ良好に分散させることで、発達した導電ネットワークが形成される。したがって、単に導電材分散体の粘度が低く(見かけ上の)分散性が良好であればよいのではなく、複素弾性率および/または位相角を、粘度等の従来の指標と組み合わせて分散状態を判断することが特に有効である。複素弾性率および/または位相角を上記範囲とすることで、導電性および電極強度の良好な導電材分散体を得ることができる。
 本実施形態のカーボンナノチューブ分散液の粘度は、25℃でレオメーターを用いて、せん断速度1(s-1)で測定した際、5Pa・s以上60Pa・s未満であることが好ましく、10Pa・s以上40Pa・s未満であることがより好ましく、20Pa・s以上40Pa・s未満であることがさらに好ましい。また、25℃でレオメーターを用いて、せん断速度10(s-1)で測定した際、1Pa・s以上10Pa・s未満であることが好ましい。せん断速度1(s-1)における、せん断粘度を測定することで、カーボンナノチューブ分散液の分散性が判断でき、上記範囲のカーボンナノチューブ分散液は、カーボンナノチューブの分散粒径および分散状態が良好であり、電極強度および導電性を向上させるためのカーボンナノチューブ分散液として適している。
 カーボンナノチューブ分散液の粘度は、カーボンナノチューブ分散液を25℃の恒温槽に1時間以上静置した後、カーボンナノチューブ分散液を十分に撹拌してから、直径35mm、2°のコーンにてレオメーターを用い、25℃、せん断速度1s-1および10s-1におけるせん断粘度を測定して求めることができる。測定値が小数点以下を含む場合はJISZ8401:1999の規則Bに従って整数位に丸める。
 本実施形態のカーボンナノチューブ分散液の動的光散乱法によって測定した累積粒径D10は、200nm以上500nm未満であることが好ましく、200nm以上400nm未満であることがより好ましく、300nm以上400nm未満であることがさらに好ましい。また、カーボンナノチューブ分散液の動的光散乱法によって測定した累積粒径D50は、500nm以上3000nm未満であることが好ましく、500nm以上2000nm未満であることがより好ましく、500nm以上1500nm未満であることがさらに好ましい。カーボンナノチューブ分散液の累積粒径D10およびD50は粒度分布計(マイクロトラック・ベル株式会社製、Nanotrac UPA、model UPA-EX)を用いて測定することができる。動的光散乱法によって測定した粒径はカーボンナノチューブの繊維長と相関があり、累積粒径D10が上記範囲にあるカーボンナノチューブ分散液は、分散液中のカーボンナノチューブの分散状態が良好である。
 本実施形態のカーボンナノチューブ分散液を得るには、カーボンナノチューブを溶媒中に分散させる処理を行うことが好ましい。かかる処理を行うために使用される分散装置は特に限定されない。
 分散装置としては、顔料分散等に通常用いられている分散機を使用することができる。例えば、ディスパー、ホモミキサー、プラネタリーミキサー等のミキサー類、ホモジナイザー(BRANSON社製Advanced Digital Sonifer(登録商標)、MODEL 450DA、エム・テクニック社製「クレアミックス」、PRIMIX社「フィルミックス」等、シルバーソン社製「アブラミックス」等)類、ペイントコンディショナー(レッドデビル社製)、コロイドミル(PUC社製「PUCコロイドミル」、IKA社製「コロイドミルMK」)類、コーンミル(IKA社製「コーンミルMKO」等)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、コボールミル等のメディア型分散機、湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、奈良機械社製「MICROS」等のメディアレス分散機、その他ロールミル等が挙げられるが、これらに限定されるものではない。
 本実施形態のカーボンナノチューブ分散液のカーボンナノチューブの量は、カーボンナノチューブ分散液100質量部に対して、0.2質量部~1.5質量部が好ましく、0.4質量部~1.2質量部が好ましく、0.4質量部~1.0質量部がより好ましい。
 本実施形態のカーボンナノチューブ分散液中の分散剤の量は、カーボンナノチューブ100質量部に対して、30質量部~250質量部使用することが好ましく、50質量部~150質量部使用することがより好ましく、50質量部~100質量部使用することがさらに好ましい。
 本実施形態のカーボンナノチューブ分散液のpHは6~11であることが好ましく、7~11であることがより好ましく、8~11であることがさらに好ましく、9~11であることが特に好ましい。カーボンナノチューブ分散液のpHはpH計(株式会社堀場製作所製、pH METER F-52)を用いて測定することができる。
 (5)バインダー
 バインダーとは、カーボンナノチューブなどの物質間を結着するための樹脂である。
 本実施形態のバインダーとしては、例えば、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、アクリロニトリル、スチレン、ビニルブチラール、ビニルアセタール、ビニルピロリドン等を構成単位として含む重合体または共重合体;ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、アクリル樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂;カルボキシメチルセルロースのようなセルロース樹脂;スチレンブタジエンゴム、フッ素ゴムのようなゴム類;ポリアニリン、ポリアセチレンのような導電性樹脂等が挙げられる。また、これらの樹脂の変性体や混合物、および共重合体でもよい。この中でも、ポリフッ化ビニリデン、ポリフッ化ビニル、テトラフルオロエチレン、カルボキシメチルセルロース、スチレンブタジエンゴム、ポリアクリル酸が好ましい。
 バインダー樹脂としてのカルボキシメチルセルロースは、高粘度であることが好ましく、例えば、1%水溶液を作製した際の粘度が500~6000mPa・sであることが好ましく、1000~3000mPa・sであることがさらに好ましい。カルボキシメチルセルロース1%水溶液の粘度は25℃の条件下で、B型粘度計ローター回転速度60rpmで測定することができる。
 バインダー樹脂としてのカルボキシメチルセルロースは、エーテル化度が高いことが好ましい。例えば、エーテル化度が0.6~1.5であることが好ましく、0.6~1.2であることがより好ましく、0.8~1.2であることがさらに好ましい。
 本実施形態の合材スラリー中のバインダーの量は活物質の質量を100質量%とした場合、0.5~30質量%であることが好ましく、1~25質量%であることがさらに好ましく、2~20質量%であることが特に好ましい。また、バインダーの種類や量比は、カーボンナノチューブ、活物質など共存する物質の性状に合わせて、適宜選択される。例えば、合材スラリーにおいて、バインダーとしてカルボキシメチルセルロースを使用する量については、活物質の質量を100質量%とした場合、カルボキシメチルセルロースの割合が0.5~3.0質量%が好ましく、1.0~2.0質量%がさらに好ましい。
 スチレンブタジエンゴムは、水中油滴エマルションであれば、一般に電極の結着材として用いられているものを使用することができる。合材スラリーにおいて、バインダーとしてスチレンブタジエンゴムを使用する量については、活物質の質量を100質量%とした場合、スチレンブタジエンゴムの割合が0.5~3.0質量%が好ましく、1.0~2.0質量%がさらに好ましい。
 合材スラリーにおいて、バインダーとしてポリアクリル酸を使用する量については、活物質の質量を100質量%とした場合、ポリアクリル酸の割合が1~25質量%が好ましく、5~20質量%がさらに好ましい。
 合材スラリーにおいて、バインダーとしてポリフッ化ビニリデンを使用する量については、活物質の質量を100質量%とした場合、ポリアクリル酸の割合が1~10質量%が好ましく、1~5質量%がさらに好ましい。
 (6)カーボンナノチューブ樹脂組成物
 本実施形態のカーボンナノチューブ樹脂組成物は、カーボンナノチューブと分散剤と溶媒とバインダーとを含むものである。
 本実施形態のカーボンナノチューブ樹脂組成物を得るには、カーボンナノチューブ分散液とバインダーとを混合し、均一化することが好ましい。混合方法としては、従来公知の様々な方法を行うことができる。カーボンナノチューブ樹脂組成物は上記カーボンナノチューブ分散液で説明した分散装置を用いて作製することができる。
 (7)合材スラリー
 本実施形態の合材スラリーとは、カーボンナノチューブと分散剤と溶媒とバインダーと活物質とを含むものである。
 <活物質>
 本実施形態の活物質とは、電池反応の基となる材料のことである。活物質は起電力から正極活物質と負極活物質に分けられる。
 正極活物質としては、特に限定はされないが、リチウムイオンをドーピングまたはインターカレーション可能な金属酸化物、金属硫化物等の金属化合物、および導電性高分子等を使用することができる。例えば、Fe、Co、Ni、Mn等の遷移金属の酸化物、リチウムとの複合酸化物、遷移金属硫化物等の無機化合物等が挙げられる。具体的には、MnO、V25、V613、TiO2等の遷移金属酸化物粉末、層状構造のニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、スピネル構造のマンガン酸リチウムなどのリチウムと遷移金属との複合酸化物粉末、オリビン構造のリン酸化合物であるリン酸鉄リチウム系材料、TiS2、FeSなどの遷移金属硫化物粉末等が挙げられる。また、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性高分子を使用することもできる。また、上記の無機化合物や有機化合物を混合して用いてもよい。
 負極活物質としては、リチウムイオンをドーピングまたはインターカレーション可能なものであれば特に限定されない。例えば、金属Li、その合金であるスズ合金、シリコン合金、鉛合金等の合金系、LiFe、LiFe、LiWO(xは0<x<1の数である。)、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物系、ポリアセチレン、ポリ-p-フェニレン等の導電性高分子系、ソフトカーボンやハードカーボンといった、アモルファス系炭素質材料や、高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛等の炭素質粉末、カーボンブラック、メソフェーズカーボンブラック、樹脂焼成炭素材料、気層成長炭素繊維、炭素繊維などの炭素系材料が挙げられる。これら負極活物質は、1種または複数を組み合わせて使用することもできる。
 本実施形態の負極活物質としては、シリコン系負極活物質が好ましく、具体的にはシリコン合金、ケイ素酸リチウム等のシリコンを含む負極活物質が好ましい。
 シリコン系負極活物質としては、例えば、二酸化珪素を炭素で還元して作製される所謂冶金グレードシリコンや、冶金グレードシリコンを酸処理や一方向凝固などで不純物を低減した工業グレードシリコン、そしてシリコンを反応させて得られたシランから作製される高純度の単結晶、多結晶、アモルファスなど結晶状態の異なる高純度シリコンや、工業グレードシリコンをスパッタ法やEB蒸着(電子ビーム蒸着)法などで高純度にすると同時に、結晶状態や析出状態を調整したシリコンなどが挙げられる。
 また、シリコンと酸素の化合物である酸化珪素や、シリコンと各種合金及びそれらの結晶状態を急冷法などで調整したシリコン化合物も挙げられる。中でも、外側がカーボン皮膜で被覆された、珪素ナノ粒子が酸化珪素中に分散した構造を有するシリコン系負極活物質が好ましい。
 本実施形態の負極活物質は、シリコン系負極活物質に加えて、ソフトカーボンやハードカーボンといった、アモルファス系炭素質材料や、高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛等の炭素質粉末を使用することが好ましい。その中でも、人造黒鉛や天然黒鉛等の炭素質粉末を使用することが好ましい。
 シリコン系負極活物質の量は、人造黒鉛、あるいは天然黒鉛等の炭素質粉末100質量%とした場合、3~50質量%であることが好ましく、5~25質量%であることがより好ましい。
 本実施形態の活物質のBET比表面積は0.1~10m2/gのものが好ましく、0.2~5m2/gのものがより好ましく、0.3~3m2/gのものがさらに好ましい。
 本実施形態の活物質の平均粒子径は0.5~50μmの範囲内であることが好ましく、2~20μmであることがより好ましい。本明細書でいう活物質の平均粒子径とは、活物質を電子顕微鏡で測定した粒子径の平均値である。
 (8)合材スラリーの製造方法
 本実施形態の合材スラリーは従来公知の様々な方法で作製することができる。例えば、カーボンナノチューブ樹脂組成物に活物質を添加して作製する方法や、カーボンナノチューブ分散液に活物質を添加した後、バインダーを添加して作製する方法が挙げられる。
 本実施形態の合材スラリーを得るには、カーボンナノチューブ樹脂組成物に活物質を加えた後、分散させる処理を行うことが好ましい。かかる処理を行うために使用される分散装置は特に限定されない。合材スラリーは上記カーボンナノチューブ分散液で説明した分散装置を用いて、合材スラリーを得ることができる。
 本実施形態の合材スラリー中の活物質の量は合材スラリー100質量部に対して、20~85質量部であることが好ましく、30~75質量部であることがより好ましく、40~70質量部であることがさらに好ましい。
 本実施形態の合材スラリー中のカーボンナノチューブの量は活物質100質量部に対して、0.01~10質量部であることが好ましく、0.02~5質量部であることが好ましく0.03~1質量部であることが好ましい。
 本実施形態の合材スラリーの固形分の量は、合材スラリー100質量%に対して、30~90質量%であることが好ましく、30~80質量%であることがより好ましく、40~75質量%であることが好ましい。
 (9)電極膜
 本実施形態の電極膜とは、合材スラリーを形成してなるものである。例えば、集電体上に合材スラリーを塗工乾燥することで、電極合材層を形成した塗工膜である。
 本実施形態の電極膜に使用する集電体の材質や形状は特に限定されず、各種二次電池にあったものを適宜選択することができる。例えば、集電体の材質としては、アルミニウム、銅、ニッケル、チタン、又はステンレス等の金属、これらの金属の合金等が挙げられる。また、形状としては、一般的には平板上の箔が用いられるが、表面を粗面化したものや、穴あき箔状のもの、及びメッシュ状の集電体も使用できる。
 集電体上に合材スラリーを塗工する方法としては、特に制限はなく公知の方法を用いることができる。具体的には、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、ナイフコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン印刷法または静電塗装法等が挙げる事ができ、乾燥方法としては放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが使用できるが、特にこれらに限定されるものではない。
 また、塗布後に平版プレスやカレンダーロール等による圧延処理を行ってもよい。電極合材層の厚みは、一般的には1μm以上、500μm以下であり、好ましくは10μm以上、300μm以下である。
 (10)非水電解質二次電池
 本実施形態の非水電解質二次電池とは正極と、負極と、電解質とを含むものである。正極及び負極の少なくとも一方が本実施形態の電極膜を含むことが好ましい。
 正極としては、集電体上に正極活物質を含む合材スラリーを塗工乾燥して電極膜を作製したものを使用することができる。
 負極としては、集電体上に負極活物質を含む合材スラリーを塗工乾燥して電極膜を作製したものを使用することができる。
 電解質としては、イオンが移動可能な従来公知の様々なものを使用することができる。例えば、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiCFSO、Li(CFSON、LiCSO、Li(CFSOC、LiI、LiBr、LiCl、LiAlCl、LiHF、LiSCN、又はLiBPh(ただし、Phはフェニル基である)等リチウム塩を含むものが挙げられるが、これらに限定されず、ナトリウム塩やカルシウム塩を含むものも使用できる。電解質は非水系の溶媒に溶解して、電解液として使用することが好ましい。
 非水系の溶媒としては、特に限定はされないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、及びジエチルカーボネート等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン、及びγ-オクタノイックラクトン等のラクトン類;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,2-メトキシエタン、1,2-エトキシエタン、及び1,2-ジブトキシエタン等のグライム類;メチルフォルメート、メチルアセテート、及びメチルプロピオネート等のエステル類;ジメチルスルホキシド、及びスルホラン等のスルホキシド類;並びに、アセトニトリル等のニトリル類等が挙げられる。これらの溶媒は、それぞれ単独で使用してもよいが、2種以上を混合して使用してもよい。
 本実施形態の非水電解質二次電池には、セパレーターを含むことが好ましい。セパレーターとしては、例えば、ポリエチレン不織布、ポリプロピレン不織布、ポリアミド不織布及びこれらに親水性処理を施したものが挙げられるが、特にこれらに限定されるものではない。
 本実施形態の非水電解質二次電池の構造は特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレーターとから構成され、ペーパー型、円筒型、ボタン型、積層型等、使用する目的に応じた種々の形状とすることができる。
 以下に実施例を挙げて、本発明をさらに具体的に説明する。本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。実施例中、「カーボンナノチューブ」を「CNT」と略記することがある。なお、特に断らない限り、「部」は「質量部」、「%」は「質量%」を表す。
 <物性の測定方法>
 後述の各実施例及び比較例において使用されたCNTの物性は以下の方法により測定した。
 <CNTのG/D比>
 ラマン顕微鏡(XploRA、株式会社堀場製作所製)にCNTを設置し、532nmのレーザー波長を用いて測定を行った。測定条件は取り込み時間60秒、積算回数2回、減光フィルタ10%、対物レンズの倍率20倍、コンフォーカスホール500、スリット幅100μm、測定波長は100~3000cm-1とした。測定用のCNTはスライドガラス上に分取し、スパチュラを用いて平坦化した。得られたピークの内、スペクトルで1560~1600cm-1の範囲内で最大ピーク強度をG、1310~1350cm-1の範囲内で最大ピーク強度をDとし、G/Dの比をCNTのG/D比とした。
 <CNTのBET比表面積>
 CNTを電子天秤(sartorius社製、MSA225S100DI)を用いて、0.03g計量した後、110℃で15分間、脱気しながら乾燥させた。その後、全自動比表面積測定装置(MOUNTECH社製、HM-model1208)を用いて、CNTのBET比表面積を測定した。
 <CNTの平均外径>
 CNTを電子天秤(sartorius社製、MSA225S100DI)を用いて、450mLのSMサンプル瓶(株式会社三商製)に0.2gを計量し、トルエン200mLを加えて、超音波ホモジナイザー(Advanced Digital Sonifer(登録商標)、MODEL 450DA、BRANSON社製)を使用し、振幅50%で5分間氷冷下分散処理を行い、CNT分散液を調製した。その後、CNT分散液を適宜希釈し、コロジオン膜状に数μL滴下し、室温で乾燥させた後、直接透過型電子顕微鏡(H-7650、株式会社日立製作所製)を用いて、観察した。観察は5万倍の倍率で、視野内に10本以上のCNTが含まれる写真を複数撮り、任意に抽出した300本のCNTの外径を測定し、その平均値をCNTの平均外径(nm)とした。
 <CNTの体積抵抗率>
 粉体抵抗率測定装置((株)三菱化学アナリテック社製:ロレスターGP粉体抵抗率測定システムMCP-PD-51)を用い、試料質量1.2gとし、粉体用プローブユニット(四探針・リング電極、電極間隔5.0mm、電極半径1.0mm、試料半径12.5mm)により、印加電圧リミッタを90Vとして、種々加圧下の導電性粉体の体積抵抗率[Ω・cm]を測定した。1g/cmの密度におけるCNTの体積抵抗率の値について評価した。
 <CNT分散液の粒度分布>
 CNT分散液を25℃の恒温槽に1時間以上静置した後、CNT分散液を十分に撹拌および希釈してから、粒度分布計(マイクロトラック・ベル株式会社製、Nanotrac UPA、model UPA-EX)を用いて、CNT分散液の累積粒径D10およびD50を測定した。透過性は吸収、CNTの密度は1.8、形状は非球形とした。溶媒の屈折率は1.333とした。測定の際は、ローディングインデックスの数値が0.8~1.2の範囲になるようにCNT分散液の濃度を希釈して行った。
 <CNT分散液の複素弾性率及び位相角>
 CNT分散液の複素弾性率及び位相角は、直径35mm、2°のコーンにてレオメーター(Thermo Fisher Scientific株式会社製RheoStress1回転式レオメーター)を用い、25℃、周波数1Hzにて、ひずみ率0.01%から5%の範囲で動的粘弾性測定を実施することで評価した。
 <CNT分散液の粘度>
 CNT分散液を25℃の恒温槽に1時間以上静置した後、CNT分散液を十分に撹拌してから、直径35mm、2°のコーンにてレオメーター(Thermo Fisher Scientific株式会社製RheoStress1回転式レオメーター)を用い、25℃、せん断速度1s-1および10s-1におけるせん断粘度を測定することで評価した。
 <負極用の電極膜の剥離強度>
 負極用合材スラリーを、アプリケーターを用いて、電極の単位当たりの目付量が8mg/cmとなるように銅箔上に塗工した後、電気オーブン中で120℃±5℃で25分間、塗膜を乾燥させた。その後、塗工方向を長軸として90mm×20mmの長方形に2本カットした。剥離強度の測定には卓上型引張試験機(東洋精機製作所社製、ストログラフE3)を用い、180度剥離試験法により評価した。具体的には、100mm×30mmサイズの両面テープ(No.5000NS、ニトムズ(株)製)をステンレス板上に貼り付け、作製した電池電極合材層を両面テープのもう一方の面に密着させ、一定速度(50mm/分)で下方から上方に引っ張りながら剥がし、このときの応力の平均値を剥離強度とした。
 <正極用の電極膜の剥離強度>
 正極用合材スラリーを、アプリケーターを用いて、電極の単位当たりの目付量が20mg/cmとなるようにアルミ箔上に塗工した後、電気オーブン中で120℃±5℃で25分間、塗膜を乾燥させた。その後、塗工方向を長軸として90mm×20mmの長方形に2本カットした。剥離強度の測定には卓上型引張試験機(東洋精機製作所社製、ストログラフE3)を用い、180度剥離試験法により評価した。具体的には、100mm×30mmサイズの両面テープ(No.5000NS、ニトムズ(株)製)をステンレス板上に貼り付け、作製した電池電極合材層を両面テープのもう一方の面に密着させ、一定速度(50mm/分)で下方から上方に引っ張りながら剥がし、このときの応力の平均値を剥離強度とした。
 <標準正極の作製>
 まず、正極活物質(BASF戸田バッテリーマテリアルズ合同会社製、HED(登録商標)NCM-111 1100)93質量部、アセチレンブラック(デンカ株式会社製、デンカブラック(登録商標)HS100)4質量部、PVDF(株式会社クレハ・バッテリー・マテイラルズ・ジャパン製、クレハKFポリマー W#1300)3質量部を容量150cmのプラスチック容器に加えた後、ヘラを用いて粉末が均一になるまで混合した。その後、NMPを20.5質量部添加し、自転・公転ミキサー(シンキー社製あわとり練太郎、ARE-310)を用いて、2000rpmで30秒間撹拌した。その後、プラスチック容器内の混合物をヘラを用いて、均一になるまで混合し、上記自転・公転ミキサーを用いて、2000rpmで30秒間撹拌した。さらにその後、NMPを14.6質量部添加し、上記自転・公転ミキサーを用いて、2000rpmで30秒間撹拌した。最後に、高速撹拌機を用いて、3000rpmで10分間撹拌し、正極用合材スラリーを得た。その後、正極用合材スラリーを集電体となる厚さ20μmのアルミ箔上にアプリケーターを用いて塗工した後、電気オーブン中で120℃±5℃で25分間乾燥して電極の単位面積当たりの目付量が20mg/cmとなるように調整した。さらにロールプレス(株式会社サンクメタル製、3t油圧式ロールプレス)による圧延処理を行い、合材層の密度が3.1g/cmとなる標準正極を作製した。
 <標準負極の作製>
 容量150mlのプラスチック容器にアセチレンブラック(デンカブラック(登録商標)HS‐100、デンカ製)0.5質量部と、MAC500LC(カルボキシメチルセルロースナトリウム塩 サンローズ特殊タイプ MAC500L、日本製紙社製、不揮発分100%)1質量部と、水98.4質量部とを加えた後、自転・公転ミキサー(シンキー社製 あわとり練太郎、ARE-310)を用いて、2000rpmで30秒間撹拌した。さらに活物質として人造黒鉛(CGB-20、日本黒鉛工業製)87質量部、シリコン10質量部添加し、高速撹拌機を用いて、3000rpmで10分間撹拌した。続いてSBR(TRD2001、JSR社製)を3.1質量部加えて、上記自転・公転ミキサーを用いて、2000rpmで30秒間撹拌して、負極用合材スラリーを得た。その後、負極用合材スラリーを、アプリケーターを用いて、電極の単位当たりの目付量が8mg/cmとなるように銅箔上に塗工した後、電気オーブン中で120℃±5℃で25分間、塗膜を乾燥させた。さらに、ロールプレス(株式会社サンクメタル製、3t油圧式ロールプレス)による圧延処理を行い、合材層の密度が1.7g/cmとなる標準負極を作製した。
 <リチウムイオン二次電池のレート特性評価>
 ラミネート型リチウムイオン二次電池を25℃の恒温室内に設置し、充放電装置(北斗電工社製、SM-8)を用いて充放電測定を行った。充電電流11mA(0.2C)にて充電終止電圧4.2Vで定電流定電圧充電(カットオフ電流1.1mA(0.02C))を行った後、放電電流11mA(0.2C)にて、放電終止電圧2.5Vで定電流放電を行った。この操作を3回繰り返した後、充電電流11mA(0.2C)にて充電終止電圧4.2Vで定電流定電圧充電(カットオフ電流(1.1mA0.02C))を行い、放電電流0.2Cおよび3Cで放電終止電圧2.5Vに達するまで定電流放電を行って、それぞれ放電容量を求めた。レート特性は0.2C放電容量と3C放電容量の比、以下の式1で表すことができる。
 (式1) レート特性 = 3C放電容量/3回目の0.2C放電容量 ×100 (%)
 <リチウムイオン二次電池のサイクル特性評価>
 ラミネート型リチウムイオン二次電池を25℃の恒温室内に設置し、充放電装置(北斗電工社製、SM-8)を用いて充放電測定を行った。充電電流55mA(1C)にて充電終止電圧4.2Vで定電流定電圧充電(カットオフ電流1.38mA(0.025C))を行った後、放電電流55mA(1C)にて、放電終止電圧2.5Vで定電流放電を行った。この操作を200回繰り返した。1Cは正極の理論容量を1時間で放電する電流値とした。サイクル特性は25℃における3回目の1C放電容量と200回目の1C放電容量の比、以下の式2で表すことができる。
 (式2)サイクル特性 = 3回目の1C放電容量/200回目の1C放電容量×100(%)
 <分散剤(A)の合成>
 ガス導入管、温度計、コンデンサー、撹拌機を備えた反応容器に、アセトニトリル100部を仕込み、窒素ガスで置換した。反応容器内を70℃に加熱して、アクリロニトリル85.0部、アクリル酸15.0部、および2,2’-アゾビス(2,4-ジメチルバレロニトリル)を(日油社製;V-65)5.0部の混合物を2時間かけて滴下し、重合反応を行った。滴下終了後、さらに70℃で1時間反応させた後、パーブチルOを0.5部添加し、さらに70℃で1時間反応を続けた。その後、不揮発分測定にて転化率が98%超えたことを確認し、減圧濃縮して分散媒を完全に除去し、分散剤(A)を得た。分散剤(A)の重量平均分子量(Mw)は38,000であった。
 (重量平均分子量(Mw)の測定方法)
 製造した分散剤(A)の重量平均分子量(Mw)は、以下の条件にて、RI検出器を装備したゲルパーミエーションクロマトグラフィー(GPC)で測定した。分子量はプルラン換算値である。
 測定サンプル:0.1質量%水溶液
 装置:HLC-8320GPC(東ソー製)
 溶離液:0.1M NaCl水溶液
 カラム:TSKgel SuperMultiporePW-M(東ソー製)
 流速:1.0mL/min
 温度:25℃
 注入量:100μl
 (エーテル化度の測定方法)
 300mL共栓三角フラスコに、カルボキシメチルセルロースナトリウム塩2.0g、硝酸メタノール100mLを加え、2時間振とうして、カルボキシメチルセルロースナトリウムをカルボキシメチルセルロースに置換した。その後、カルボキシメチルセルロースをガラスフィルターにて吸引ろ過し、80%メタノール200mLで洗浄した。その後、無水メタノール50mLで置換し、吸引ろ過した後、105℃で2時間乾燥させた。乾燥したカルボキシメチルセルロース1.0~1.5gを秤量し、300mL共栓三角フラスコに入れ、80%メタノール15mLを加え湿潤させ、1/10N水酸化ナトリウム50mLを加え、2時間振とうした。その後、指示薬としてフェノールフタレインを用いて、1/10N硫酸で、過剰の水酸化ナトリウムを逆滴定し、(式3)、(式4)に従ってエーテル化度を算出した。
 (式3)A=(50×F1―X×F2)/(Y×10)
  X:硫酸の滴下量、Y:乾燥カルボキシメチルセルロースの重量
  F1:硫酸のファクター、F2:水酸化ナトリウムのファクター
 (式4)エーテル化度=0.162A/(1-0.058A)
 表1に実施例および比較例で使用したCNT、CNTの外径、CNTの比表面積、G/D比、体積抵抗率を示す。
Figure JPOXMLDOC01-appb-T000001
 表2に実施例、比較例および参考例で使用した分散剤を示す。
Figure JPOXMLDOC01-appb-T000002
 (実施例1)
 ステンレス容器にイオン交換水98.25部を加えて、ディスパーで撹拌しながら、分散剤(A)0.75部を加えて、ディスパーで均一になるまで撹拌した。その後、CNT(A)1部を計量し、ディスパーで撹拌しながら添加して、ハイシアミキサー(L5M-A、SILVERSON製)に角穴ハイシアスクリーンを装着し、8,600rpmの速度で全体が均一になるまでバッチ式分散を行った。続いて、ステンレス容器から、配管を介して高圧ホモジナイザー(スターバーストラボHJP-17007、スギノマシン製)に被分散液を供給し、パス式分散処理を5回行い、CNT分散液(WA1)を得た。分散処理はシングルノズルチャンバーを使用し、ノズル径0.25mm、圧力100MPaにて行った。
 (実施例2~15)、(実施例19~20)、(比較例1~2)
 表3に掲載したCNT種、CNT添加量、分散剤種、分散剤添加量、イオン交換水添加量、パス回数に変更した以外は実施例1と同様の方法により、CNT分散液(WA2~WF4)を得た。
 (実施例16)
 容量150cmのプラスチック容器に、実施例1で作製したCNT分散液(WA1)4質量部、イオン交換水6質量部を計量した。その後、自転・公転ミキサー(シンキー社製あわとり練太郎、ARE-310)を用いて、2000rpmで30秒間撹拌し、CNT分散液(WA13)を得た。
 (実施例17)
 実施例3で作製したCNT分散液(WA3)を用いた以外は実施例16と同様の方法により、CNT分散液(WA14)を得た。
 (実施例18)
 実施例11で作製したCNT分散液(WA11)を用いた以外は実施例16と同様の方法により、CNT分散液(WA15)を得た。
 (実施例21)
 ポリプロピレン製のボトル容器に、CNT(C)を20部、直径8mmのジルコニアビーズ480部を粉砕メディアとして仕込み、レッドデビル社製ペイントコンディショナーにて、40分間粉砕処理を行った。その後、ジルコニアビーズを分離して、CNT(C)を回収した。次いで、ステンレス容器にイオン交換水98.38部を加えて、ディスパーで撹拌しながら、分散剤(C)1.13部を加えて、ディスパーで均一になるまで撹拌した。その後、回収したCNT(C)1.5部を計量し、ディスパーで撹拌しながら添加して、ハイシアミキサー(L5M-A、SILVERSON製)に角穴ハイシアスクリーンを装着し、8,600rpmの速度で全体が均一になるまでバッチ式分散を行った。続いて、ステンレス容器から、配管を介して高圧ホモジナイザー(スターバーストラボHJP-17007、スギノマシン製)に被分散液を供給し、パス式分散処理を20回行い、CNT分散液(WC27)を得た。分散処理はシングルノズルチャンバーを使用し、ノズル径0.25mm、圧力100MPaにて行った。
 (実施例22)
 ステンレス容器にイオン交換水98.40部を加えて、ディスパーで撹拌しながら、分散剤(C)0.50部、ポリアクリル酸(富士フィルム和光純薬社製、分子量25000)0.10部を加えて、ディスパーで均一になるまで撹拌した。その後、CNT(A)1.0部を計量し、ディスパーで撹拌しながら添加して、ハイシアミキサー(L5M-A、SILVERSON製)に角穴ハイシアスクリーンを装着し、8,600rpmの速度で全体が均一になるまでバッチ式分散を行った。続いて、ステンレス容器から、配管を介して高圧ホモジナイザー(スターバーストラボHJP-17007、スギノマシン製)に被分散液を供給し、パス式分散処理を20回行い、CNT分散液(WA28)を得た。分散処理はシングルノズルチャンバーを使用し、ノズル径0.25mm、圧力100MPaにて行った。
 (比較例3)
 ガラス瓶(M-140、柏洋硝子株式会社製)に、CNT(A)1部、分散剤(A)0.75部、イオン交換水98.25部およびジルコニアビーズ(ビーズ径1.25mmφ)120部を仕込み、レッドデビル社製ペイントコンディショナーを用いて8時間分散処理を行った後、ジルコニアビーズの分離を試みたが、粘度が高く、CNT分散液が得られなかった。
 (比較例4~6)
 表3に掲載したCNT添加量、分散時間、ビーズ径に変更した以外は、比較例3と同様の方法により、分散処理を行った後、ジルコニアビーズを分離して、CNT分散液(WA17~WA19)を得た。
Figure JPOXMLDOC01-appb-T000003
 (実施例23)
 ステンレス容器にNMP99.3部を加えて、ディスパーで撹拌しながら、分散剤(E)0.3部を加えて、ディスパーで分散剤(E)が溶解するまで撹拌した。その後、CNT(A)0.4部を計量し、ディスパーで撹拌しながら添加して、ハイシアミキサー(L5M-A、SILVERSON製)に角穴ハイシアスクリーンを装着し、8,600rpmの速度で全体が均一になるまでバッチ式分散を行った。続いて、ステンレス容器から、配管を介して高圧ホモジナイザー(スターバーストラボHJP-17007、スギノマシン製)に被分散液を供給し、パス式分散処理を20回行い、CNT分散液(A20)を得た。分散処理はシングルノズルチャンバーを使用し、ノズル径0.25mm、圧力100MPaにて行った。
 (実施例24~26)
 表4に掲載したパス回数に変更した以外は実施例23と同様の方法により、CNT分散液(A21~A23)を得た。
 (比較例7)
 ガラス瓶(M-140、柏洋硝子株式会社製)に、CNT(A)0.4部、分散剤(E)0.3部、NMP99.3部およびジルコニアビーズ(ビーズ径1.25mmφ)120部を仕込み、レッドデビル社製ペイントコンディショナーを用いて8時間分散処理を行った後、ジルコニアビーズの分離を行い、CNT分散液(A24)を得た。
Figure JPOXMLDOC01-appb-T000004
 表5に実施例1~26、比較例1~7で作製したCNT分散液の評価結果を示す。CNT分散液の25℃、周波数1Hzにおける位相角の評価は、10以上50未満を〇(良)、5以上10未満を△(可)、5未満または50以上を×(不可)とした。CNT分散液の25℃、周波数1Hzにおける複素弾性率の評価は、5以上400未満を〇(良)、400以上650未満を△(可)、5未満を×(不可)とした。CNT分散液の粘度評価は、せん断速度1の時のせん断粘度が、20以上40未満を◎(優良)、10以上20未満、または40以上60未満を〇(良)、5以上10未満を△(可)、5未満を×(不可)とした。CNT分散液の粒度評価は、粒度分布D10の時の粒度分布が、200以上300未満を◎(優良)、300以上500未満を〇(良)、200未満を×(不可)とした。
Figure JPOXMLDOC01-appb-T000005
 (実施例28)
 容量150cmのプラスチック容器にCNT分散液(WA1)0.63質量部、CMC(ダイセルファインケム株式会社製、#1190)を2質量%溶解した水溶液を12.5質量部、イオン交換水13.8質量部計量した。その後、自転・公転ミキサー(シンキー社製あわとり練太郎、ARE-310)を用いて、2000rpmで30秒間撹拌し、CNT樹脂組成物(WA1)を得た。その後、一酸化珪素(株式会社大阪チタニウムテクノロジー製、SILICON MONOOXIDE、SiO 1.3C 5μm)を2.92質量部添加し、上記自転・公転ミキサーを用いて、2000rpmで30秒間撹拌した。さらに、人造黒鉛(日本黒鉛工業株式会社製、CGB-20)を21.44質量部添加し、上記自転・公転ミキサーを用いて、2000rpmで30秒間撹拌した。さらにその後、スチレンブタジエンエマルション(JSR株式会社製、TRD2001)0.78質量部を加えて、上記自転・公転ミキサーを用いて、2000rpmで30秒間撹拌し、負極用合材スラリー(WA1)を得た。
 (実施例29~49)、(比較例8~12)
 表6に掲載したCNT分散液に変更し、合材スラリー100質量部中のCNTが0.025質量部となるようにCNT分散液とイオン交換水の添加量を調節した以外は実施例28と同様の方法により、CNT樹脂組成物(WA2~WA19)、負極用合材スラリー(WA2~WA19)を得た。負極用合材スラリーの不揮発分は48質量%とした。
 (実施例50)
 容量150cmのプラスチック容器にPVDF(Solvey社製、Solef#5130)を8質量%溶解したNMPを7.0質量部計量した。その後、CNT分散液(A20)0.19質量部を添加し、自転・公転ミキサー(あわとり練太郎、ARE-310)を用いて、2000rpmで30秒間撹拌して、CNT樹脂組成物(A20)を得た。さらにその後、正極活物質(BASF戸田バッテリーマテリアルズ合同会社製、HED(登録商標)NCM-111 1100)36.9部を加えて、上記自転・公転ミキサーを用いて2000rpmで2.5分間撹拌し、正極用合材スラリー(A20)を得た。
 (実施例51~53)、(比較例13)
 表6に掲載したCNT分散液に変更した以外は、実施例50と同様の方法により、CNT樹脂組成物(A21~A24)、正極用合材スラリー(A21~A24)を得た。
Figure JPOXMLDOC01-appb-T000006
 (実施例54)
 負極用合材スラリー(WA1)を、アプリケーターを用いて、電極の単位当たりの目付量が8mg/cmとなるように銅箔上に塗工した後、電気オーブン中で120℃±5℃で25分間、塗膜を乾燥させ電極膜(WA1)を得た。
 (実施例55~75)、(比較例14~18)
 表7に掲載した負極用合材スラリーに変更した以外は実施例54と同様の方法により、電極膜(WA2)~(WA19)を得た。
 (実施例76)
 正極用合材スラリー(A20)を、アプリケーターを用いて、電極の単位当たりの目付量が20mg/cmとなるように銅箔上に塗工した後、電気オーブン中で120℃±5℃で25分間、塗膜を乾燥させ電極膜(A20)を得た。
 (実施例77~79)、(比較例19)
 表7に掲載した正極用合材スラリーに変更した以外は実施例76と同様の方法により、電極膜(A21)~(A24)を得た。
 表7に実施例54~79、比較例14~19で作製した電極膜の評価結果を示す。密着性評価は、剥離強度(Ω・cm)が0.5以上を◎(優良)、0.3以上0.5未満を〇(良)、0.1以上0.3未満を△(可)、0.1未満を×(不可)とした。
Figure JPOXMLDOC01-appb-T000007
 (実施例80~101)、(比較例20~24)
 電極膜(WA1~WA19)をロールプレス(株式会社サンクメタル製、3t油圧式ロールプレス)による圧延処理を行い、合材層の密度が1.7g/cmとなる負極を作製した。
 (実施例102~105)、(比較例25)
 電極膜(A20~A24)をロールプレス(株式会社サンクメタル製、3t油圧式ロールプレス)による圧延処理を行い、合材層の密度が3.2g/cmとなる正極を作製した。
 表8に実施例80~105、比較例20~25で作製した負極および正極を示す。
Figure JPOXMLDOC01-appb-T000008
 (実施例106)
 負極(WA1)と標準正極を各々50mm×45mm、45mm×40mm、に打ち抜き、その間に挿入されるセパレーター(多孔質ポリプロプレンフィルム)とをアルミ製ラミネート袋に挿入し、電気オーブン中、60℃で1時間乾燥した。その後、アルゴンガスで満たされたグローブボックス内で、電解液(エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートを3:5:2(体積比)の割合で混合した混合溶媒を作製し、さらに添加剤として、VC(ビニレンカーボネート)とFEC(フルオロエチレンカーボネート)を混合溶媒100質量部に対してそれぞれ1質量部加えた後、LiPFを1Mの濃度で溶解させた非水電解液)を2mL注入した後、アルミ製ラミネートを封口してラミネート型リチウムイオン二次電池(WA1)を作製した。
 (実施例107~127)、(比較例26~30)
 表9に掲載された負極に変更した以外は同様の方法により、ラミネート型リチウムイオン二次電池(WA2~WA19)を作製した。
 (実施例128)
 標準負極と正極(A20)を各々50mm×45mm、45mm×40mm、に打ち抜き、その間に挿入されるセパレーター(多孔質ポリプロプレンフィルム)とをアルミ製ラミネート袋に挿入し、電気オーブン中、60℃で1時間乾燥した。その後、アルゴンガスで満たされたグローブボックス内で、電解液(エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートを3:5:2(体積比)の割合で混合した混合溶媒を作製し、さらに添加剤として、VC(ビニレンカーボネート)とFEC(フルオロエチレンカーボネート)を混合溶媒100質量部に対してそれぞれ1質量部加えた後、LiPFを1Mの濃度で溶解させた非水電解液)を2mL注入した後、アルミ製ラミネートを封口してラミネート型リチウムイオン二次電池(A20)を作製した。
 (実施例129~131)、(比較例31)
 表9に掲載された正極に変更した以外は同様の方法により、ラミネート型リチウムイオン二次電池(A21~A24)を作製した。
Figure JPOXMLDOC01-appb-T000009
 表10に実施例106~131、比較例26~31で作製したラミネート型リチウムイオン二次電池の評価結果を示す。レート特性は、レート特性が80%以上のものを◎(優良)、70%以上80%未満のものを〇(良)、60%以上70%未満のものを△(可)、60%未満のものを×(不可)とした。サイクル特性は、サイクル特性が90%以上を◎(優良)、85%以上90%未満を〇(良)、80%以上85%未満を△(可)、80%未満を-(不可)とした。
Figure JPOXMLDOC01-appb-T000010
 上記実施例では、カーボンナノチューブと、分散剤と、溶媒とを含むカーボンナノチューブ分散液であって、カーボンナノチューブのG/D比が5~100であり、カーボンナノチューブ100質量部に対して、分散剤が30質量部以上250質量部未満含有するカーボンナノチューブ分散液であり、カーボンナノチューブ分散液の25℃、周波数1Hzにおける複素弾性率が5Pa以上650Pa未満であり、位相角が5°以上50°未満であるカーボンナノチューブ分散液を用いた。実施例では、比較例に比べて、電極の密着性が向上する傾向にあった。加えて、導電性および電極強度が向上したことにより、レート特性およびサイクル特性に優れたリチウムイオン二次電池が得られた。よって、本発明は従来のカーボンナノチューブ分散液では実現しがたい高容量、高出力かつ高耐久性を有するリチウムイオン二次電池を提供できることが明らかとなった。
 以上、実施の形態を参照して本発明を説明したが、本発明は上記によって限定されるものではない。本発明の構成や詳細には、発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 本願の開示は、2020年10月9日に出願された特願2020-171017号及び2021年9月30日に出願された特願2021-160281号に記載の主題と関連しており、そのすべての開示内容は飲用によりここに援用される。

Claims (12)

  1.  カーボンナノチューブと、分散剤と、溶媒とを含むカーボンナノチューブ分散液であって、下記(1)~(4)を満たすカーボンナノチューブ分散液。
     (1)カーボンナノチューブのラマンスペクトルにおいて1560~1600cm-1の範囲内での最大ピーク強度をG、1310~1350cm-1の範囲内での最大ピーク強度をDとした際に、カーボンナノチューブのG/D比が、5~100であること
     (2)カーボンナノチューブ100質量部に対して、分散剤を30質量部以上250質量部未満含有すること
     (3)カーボンナノチューブ分散液の25℃、周波数1Hzにおける複素弾性率が5Pa以上650Pa未満であり、位相角が5°以上50°未満であること
     (4)カーボンナノチューブのBET比表面積が、550~1200m/gであること
  2.  カーボンナノチューブのラマンスペクトルにおいて1560~1600cm-1の範囲内での最大ピーク強度をG、1310~1350cm-1の範囲内での最大ピーク強度をDとした際に、カーボンナノチューブのG/D比が、10~50である、請求項1記載のカーボンナノチューブ分散液。
  3.  25℃のカーボンナノチューブ分散液を、レオメーターを用いて、せん断速度1(s-1)で測定した際、5Pa・s以上40Pa・s未満である、請求項1または2記載のカーボンナノチューブ分散液。
  4.  動的光散乱法によって測定した累積粒径D10が、200nm以上500nm未満である、請求項1~3いずれか記載のカーボンナノチューブ分散液。
  5.  カーボンナノチューブの体積抵抗率が、1.0×10-3Ω・cm~1.0×10-2Ω・cmである、請求項1~4いずれか記載のカーボンナノチューブ分散液。
  6.  動的光散乱法によって測定した累積粒径D50が、500nm以上3000nm未満である、請求項1~5いずれか記載のカーボンナノチューブ分散液。
  7.  分散剤の重量平均分子量が、1万~10万である、請求項1~6いずれか記載のカーボンナノチューブ分散液。
  8.  溶媒が、水を含む、請求項1~7いずれか記載のカーボンナノチューブ分散液。
  9.  請求項1~8いずれか記載のカーボンナノチューブ分散液と、バインダーとを含む、カーボンナノチューブ樹脂組成物。
  10.  請求項9記載のカーボンナノチューブ樹脂組成物と活物質とを含む、合材スラリー。
  11.  請求項10記載の合材スラリーの塗工膜である電極膜。
  12.  正極と、負極と、電解質とを含む非水電解質二次電池であって、正極および負極の少なくとも一方が、請求項11記載の電極膜を含む、非水電解質二次電池。
PCT/JP2021/037078 2020-10-09 2021-10-07 カーボンナノチューブ分散液およびその利用 WO2022075387A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237015460A KR20230084248A (ko) 2020-10-09 2021-10-07 카본나노튜브 분산액 및 그의 이용
CN202180058872.1A CN116171307A (zh) 2020-10-09 2021-10-07 碳纳米管分散液及其利用
EP21877686.2A EP4227368A1 (en) 2020-10-09 2021-10-07 Carbon nanotube dispersion and use thereof
US18/021,386 US20230307653A1 (en) 2020-10-09 2021-10-07 Carbon nanotube dispersion and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020171017 2020-10-09
JP2020-171017 2020-10-09
JP2021160281A JP2022063234A (ja) 2020-10-09 2021-09-30 カーボンナノチューブ分散液およびその利用
JP2021-160281 2021-09-30

Publications (1)

Publication Number Publication Date
WO2022075387A1 true WO2022075387A1 (ja) 2022-04-14

Family

ID=81126978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037078 WO2022075387A1 (ja) 2020-10-09 2021-10-07 カーボンナノチューブ分散液およびその利用

Country Status (5)

Country Link
US (1) US20230307653A1 (ja)
EP (1) EP4227368A1 (ja)
KR (1) KR20230084248A (ja)
CN (1) CN116171307A (ja)
WO (1) WO2022075387A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162877A (ja) 2003-12-02 2005-06-23 National Institute Of Advanced Industrial & Technology カーボンナノチューブ分散極性有機溶媒及びその製造方法
JP2010254546A (ja) 2009-03-31 2010-11-11 Toray Ind Inc カーボンナノチューブ水性分散液、導電性複合体およびその製造方法
JP2011070908A (ja) 2009-09-25 2011-04-07 Mikuni Color Ltd 導電材分散液、電極ペーストおよび導電材被覆活物質
JP2012221672A (ja) 2011-04-07 2012-11-12 Hitachi Chem Co Ltd リチウムイオン二次電池正極用導電剤及びこれを用いたリチウムイオン二次電池
JP2014019619A (ja) 2012-07-20 2014-02-03 Ube Ind Ltd 微細炭素分散液とその製造方法、及びそれを用いた電極ペースト並びにリチウムイオン電池用電極
JP2018533175A (ja) * 2016-03-24 2018-11-08 エルジー・ケム・リミテッド 導電材分散液およびこれを用いて製造した二次電池
JP2018534731A (ja) * 2015-12-10 2018-11-22 エルジー・ケム・リミテッド 導電材分散液およびこれを用いて製造したリチウム二次電池
WO2019230820A1 (ja) * 2018-06-01 2019-12-05 東洋インキScホールディングス株式会社 カーボンナノチューブ、カーボンナノチューブ分散液及びその利用
JP2020011872A (ja) * 2018-07-20 2020-01-23 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
JP2020011873A (ja) * 2018-07-20 2020-01-23 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
JP2020105316A (ja) 2018-12-27 2020-07-09 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
JP2020171017A (ja) 2017-07-07 2020-10-15 東芝映像ソリューション株式会社 受信方法
JP2021160281A (ja) 2020-03-31 2021-10-11 コスモ石油株式会社 樹脂の溶解方法及び樹脂溶解液の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162877A (ja) 2003-12-02 2005-06-23 National Institute Of Advanced Industrial & Technology カーボンナノチューブ分散極性有機溶媒及びその製造方法
JP2010254546A (ja) 2009-03-31 2010-11-11 Toray Ind Inc カーボンナノチューブ水性分散液、導電性複合体およびその製造方法
JP2011070908A (ja) 2009-09-25 2011-04-07 Mikuni Color Ltd 導電材分散液、電極ペーストおよび導電材被覆活物質
JP2012221672A (ja) 2011-04-07 2012-11-12 Hitachi Chem Co Ltd リチウムイオン二次電池正極用導電剤及びこれを用いたリチウムイオン二次電池
JP2014019619A (ja) 2012-07-20 2014-02-03 Ube Ind Ltd 微細炭素分散液とその製造方法、及びそれを用いた電極ペースト並びにリチウムイオン電池用電極
JP2018534731A (ja) * 2015-12-10 2018-11-22 エルジー・ケム・リミテッド 導電材分散液およびこれを用いて製造したリチウム二次電池
JP2018533175A (ja) * 2016-03-24 2018-11-08 エルジー・ケム・リミテッド 導電材分散液およびこれを用いて製造した二次電池
JP2020171017A (ja) 2017-07-07 2020-10-15 東芝映像ソリューション株式会社 受信方法
WO2019230820A1 (ja) * 2018-06-01 2019-12-05 東洋インキScホールディングス株式会社 カーボンナノチューブ、カーボンナノチューブ分散液及びその利用
JP2020011872A (ja) * 2018-07-20 2020-01-23 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
JP2020011873A (ja) * 2018-07-20 2020-01-23 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
JP2020105316A (ja) 2018-12-27 2020-07-09 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
JP2021160281A (ja) 2020-03-31 2021-10-11 コスモ石油株式会社 樹脂の溶解方法及び樹脂溶解液の製造方法

Also Published As

Publication number Publication date
US20230307653A1 (en) 2023-09-28
EP4227368A1 (en) 2023-08-16
KR20230084248A (ko) 2023-06-12
CN116171307A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
JP6801806B1 (ja) 非水電解質二次電池用カーボンナノチューブ分散液およびそれを用いた樹脂組成物、合材スラリー、電極膜、非水電解質二次電池。
WO2022009915A1 (ja) カーボンナノチューブ、カーボンナノチューブ分散液、それを用いた非水電解質二次電池
JP2022063234A (ja) カーボンナノチューブ分散液およびその利用
JP7196597B2 (ja) カーボンナノチューブ分散液およびその利用
JP7030270B2 (ja) カーボンナノチューブ分散液およびその利用
WO2020017656A1 (ja) 化合物、分散剤、電池用分散組成物、電極、電池
WO2013162025A1 (ja) リチウム二次電池の電極形成用組成物、電極及びリチウム二次電池
WO2019230820A1 (ja) カーボンナノチューブ、カーボンナノチューブ分散液及びその利用
JP6984781B1 (ja) カーボンナノチューブ分散液およびその利用
JP7103011B2 (ja) カーボンナノチューブ分散液およびその利用
JP7358967B2 (ja) カーボンナノチューブ、カーボンナノチューブ分散液およびその利用
WO2022075387A1 (ja) カーボンナノチューブ分散液およびその利用
JP7088150B2 (ja) カーボンナノチューブ分散液およびその利用
JP2022089358A (ja) カーボンナノチューブ分散液、およびそれを用いた樹脂組成物、導電膜、合材スラリー、電極、非水電解質二次電池
JP2023069017A (ja) カーボンナノチューブ分散組成物、およびそれを用いた樹脂組成物、電極膜、二次電池、車両
JP2023153456A (ja) 非水電解質二次電池用電極、及び非水電解質二次電池
JP2023153455A (ja) 非水電解質二次電池用電極、及び非水電解質二次電池
JP2023153453A (ja) 非水電解質二次電池用電極、及び非水電解質二次電池
JP2023153454A (ja) 非水電解質二次電池用電極、及び非水電解質二次電池
JP2023092639A (ja) 非水電解質二次電池用カーボン材料樹脂複合物、それを用いた非水電解質二次電池用分散液、非水電解質二次電池用電極、及び非水電解質二次電池
JP2023089806A (ja) カーボンナノチューブ、およびその利用
JP2024090343A (ja) 非水電解質二次電池用電極、及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237015460

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021877686

Country of ref document: EP

Effective date: 20230509