WO2018016525A1 - リチウム金属複合酸化物粉末 - Google Patents

リチウム金属複合酸化物粉末 Download PDF

Info

Publication number
WO2018016525A1
WO2018016525A1 PCT/JP2017/026104 JP2017026104W WO2018016525A1 WO 2018016525 A1 WO2018016525 A1 WO 2018016525A1 JP 2017026104 W JP2017026104 W JP 2017026104W WO 2018016525 A1 WO2018016525 A1 WO 2018016525A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
composite oxide
powder
positive electrode
active material
Prior art date
Application number
PCT/JP2017/026104
Other languages
English (en)
French (fr)
Inventor
オッターシュテト ラルフ
Original Assignee
ユミコア
Csエナジーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユミコア, Csエナジーマテリアルズ株式会社 filed Critical ユミコア
Priority to US16/318,398 priority Critical patent/US20190288284A1/en
Priority to JP2018528830A priority patent/JP7041620B2/ja
Priority to KR1020197004849A priority patent/KR102236601B1/ko
Priority to CN201780044582.5A priority patent/CN109643795B/zh
Priority to EP17831041.3A priority patent/EP3490041A4/en
Publication of WO2018016525A1 publication Critical patent/WO2018016525A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium metal composite oxide powder and a lithium ion battery using this as a positive electrode.
  • Lithium ion batteries have a long history and their commercial production began in the 1990s. However, it can be said that the development of lithium-ion batteries has been developed in earnest with the spread of mobile terminals, smartphones, electric vehicles and the like since 2000.
  • Lithium ion batteries like other batteries, have a positive electrode, a negative electrode, an electrolyte, and an outer package as the main components. Among them, the positive electrode active material used for the positive electrode is an important material that affects the battery performance of the lithium ion battery. is there.
  • Known positive electrode active materials used in lithium ion batteries include lithium cobaltate, ternary complex oxides, nickel complex oxides, spinel complex oxides, olivine compounds, etc., among which lithium cobaltate, Ternary composite oxides and nickel composite oxides are known as composite oxides having a large discharge capacity and a layered crystal structure.
  • a positive electrode active material made of a layered composite metal oxide is manufactured by mixing powder of a composite metal hydroxide as a precursor and a lithium compound, and firing in an oxidizing atmosphere. At this time, in order to increase the crystallinity of the positive electrode active material to be produced, the ratio of lithium contained in the precursor metal to the lithium compound (lithium / metal) is generally more than 1.
  • the positive electrode active material having a general layered structure an excessive amount of lithium compound remains on the surface of the active material after firing. If this lithium compound remains in a large amount, a cross-linking reaction of the binder used in manufacturing the positive electrode is caused, and the positive electrode slurry is gelled, which causes a problem that electrode coating cannot be performed. It is preferable that the content of residual lithium is small.
  • the positive electrode active material having the above layered structure is characterized by a higher capacity than other active materials.
  • the demand for higher capacity lithium-ion batteries is increasing with the diversification of applications, and the success of electric vehicles is directly linked to the possibility of higher capacity.
  • increasing the capacity of the active material is how much active material can be filled in the electrode, that is, increasing the packing density of the active material to the electrode also increases the capacity of the lithium ion battery.
  • the positive electrode active material powder when the positive electrode active material powder is compressed under high pressure under high pressure to obtain a positive electrode active material powder filled with high density, the positive electrode active material powder is increased as the load on the positive electrode active material powder increases. The constituent secondary particles are broken, voids and fine powder are generated inside the powder, and the compressive stress is reduced. By repeating the destruction of the secondary particles and the reduction of the compressive stress, a positive electrode active material that finally contains voids and fine powder and has a non-uniform particle shape is obtained by compression filling. The packing density of the powder often does not reach the target value.
  • the average particle diameter D50 is 7 to 20 ⁇ m
  • the volume-based cumulative diameter D10 is 50% or more of the average particle diameter D50
  • the volume-based cumulative diameter D90 is 150% or less of the average particle diameter D50.
  • a positive electrode active material for a lithium secondary battery characterized by comprising a mixture of 1 is disclosed.
  • the present inventor made an effort to obtain a positive electrode active material having a high packing density regardless of the bimodal mixing method.
  • the positive electrode active material powder having an average particle size and a BET specific surface area in a specific range, which is obtained by washing the lithium-nickel-cobalt-manganese composite oxide immediately after firing with specific conditions, under a high load compression It has been found that it exhibits high stress, that is, such a positive electrode active material powder can be filled at a higher density than the conventional product. Moreover, it has been discovered that such a positive electrode active material powder exhibits desirable quality even in the point that the amount of remaining lithium is small.
  • invention 4 The lithium metal composite oxide powder for a lithium ion battery positive electrode active material according to Inventions 1 to 3, which has a packing density of 3.0 g / cm 3 or more when pressed at 127 MPa.
  • invention 5 A positive electrode active material comprising the lithium metal composite oxide powder according to any one of Inventions 1 to 4.
  • Invention 6) A lithium ion battery using the positive electrode active material of Invention 5.
  • (Invention 7) A method for producing a lithium metal composite oxide powder according to any one of Inventions 1 to 4, comprising the following steps: (Mixing step) A nickel-cobalt-manganese composite hydroxide powder having an average particle size of 10.0 ⁇ m to less than 20.0 ⁇ m is prepared as a precursor powder, and a lithium compound powder is added to the precursor powder to prepare a mixture.
  • (Baking step) A step of baking the mixture obtained in the above mixing step in an air stream containing oxygen at a temperature range of 450 ° C. to 900 ° C. for 2 hours to 20 hours;
  • (Washing step) A step of washing the fired product (lithium / nickel / cobalt / manganese composite oxide) with 100 ml or more of pure water per 100 g to obtain a lithium metal composite oxide powder.
  • the lithium metal composite oxide powder of the present invention is washed with 100 ml or more of pure water per 100 g.
  • the performance of lithium metal composite oxide powder is improved by such water washing, that is, the amount of residual lithium that is inconvenient for the positive electrode agent is reduced, the lithium metal composite oxidation that such water washing provides It is difficult to express the chemical characteristics of an object with a uniform chemical formula.
  • the particles constituting the lithium metal composite oxide that has undergone such water washing are not completely uniform, and are not specified by a uniform size and shape. Therefore, as one of the features of the lithium metal composite oxide powder of the present invention, a kind of manufacturing method of “washed with 100 ml or more of pure water per 100 g” must be adopted.
  • a lithium metal-based positive electrode active material having a small amount of remaining lithium and a high electrode density when used as a positive electrode for a lithium ion battery, and a lithium ion battery using the same.
  • a nickel / cobalt / manganese composite hydroxide powder having an average particle diameter of 10.0 ⁇ m to less than 20.0 ⁇ m is prepared as a precursor powder.
  • Lithium compound powder is added to the precursor powder.
  • lithium compound lithium hydroxide or lithium carbonate is generally used.
  • the mixing means for the precursor powder and the lithium compound powder is not limited as long as the mixing means applies a shearing force, and various mixers are generally used.
  • the firing temperature is in the range of 450 ° C to 900 ° C, preferably in the range of 600 ° C to 850 ° C.
  • the firing time is 2 hours to 20 hours, preferably 3 hours to 15 hours.
  • the firing may be performed once or multiple times. When firing multiple times, the above temperature range is maintained for 2 to 30 hours in each firing.
  • the first stage is fired at a temperature range of 450 ° C. to 700 ° C. for 3 hours to 6 hours
  • the second stage is fired at a temperature range of 700 ° C. to 900 ° C. for 4 hours to 10 hours.
  • the equipment used for firing is not limited as long as such firing conditions can be achieved.
  • a tubular furnace, a muffle furnace, a rotary kiln (RK), or a roller hearth kiln (RHK) is used.
  • RHK or RK is used.
  • the fired product (lithium / nickel / cobalt / manganese composite oxide) is washed with 100 ml or more of pure water per 100 g to obtain the lithium metal composite oxide powder of the present invention. Cleaning is not a problem as long as the amount of cleaning water used is sufficient to satisfy the above range. Typically, pure water at 25 ° C. in an amount of 100 ml or more is added to 100 g of the fired product to bring the fired product into sufficient contact with water, and then the lithium metal composite oxide powder is separated.
  • the means for contacting the fired product with water is not limited as long as the fired product is uniformly dispersed in water without destroying the particles of the fired product.
  • a dispersion composed of a fired product and water is stirred in a container provided with a stirring blade.
  • the lithium metal composite oxide powder is separated by filtering an aqueous dispersion slurry of the lithium metal composite oxide powder. Any filtration means may be used, and any of suction filtration, pressure filtration and the like can be used.
  • the fired product separated after washing with water is dried. Drying is performed in an air stream containing oxygen, preferably in a temperature range of 200 ° C. to 800 ° C., more preferably 300 ° C. to 700 ° C., and still more preferably 400 ° C. to 600 ° C.
  • the lithium metal composite oxide powder for a lithium ion battery positive electrode active material of the present invention has a high packing density, for example, a density of 3.0 g / cm 3 or more when pressed at 127 MPa.
  • a preferable lithium metal composite oxide powder for a lithium ion battery positive electrode active material of the present invention is 3.2 g / cm 3 or more when pressed at 127 MPa, 3.3 g / cm 3 or more when pressed at 191 MPa, and 255 MPa. When pressed at a pressure of 3.4 g / cm 3 or more, it has a density of 3.5 g / cm 3 or more when pressed at 318 MPa.
  • the lithium metal composite oxide powder for a lithium ion battery positive electrode active material of the present invention contains 10 mol% or less of one or more dopants selected from Ca, Ti, Al, Mg, W, Zr, Cr, and V. Further, it can be included. By supplying the metal compound containing these dopant atoms as an additional raw material to the mixing step and / or the firing step, such a dopant can be introduced into the lithium metal composite oxide.
  • the lithium metal composite oxide powder of the present invention can be expected as a positive electrode active material that provides a lithium ion battery excellent in volume capacity.
  • the lithium metal composite oxide powder of the present invention can be used alone as a positive electrode active material for a lithium ion battery.
  • a mixture of the lithium metal composite oxide powder of the present invention and one or more other positive electrode active materials for lithium ion batteries having different particle sizes and compositions may be used as the positive electrode active material.
  • Example 1 (Mixed) Precursor nickel / cobalt / manganese composite hydroxide (composition: Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 , average particle size 12.0 ⁇ m) 653g was added and it mixed, applying a shear force, and obtained 3153g of mixtures. (Firing) The above mixture was placed in a ceramic firing mortar, heated to 180 ° C. over 30 minutes in an oxygen stream, and then heated to 480 ° C. over 4 hours. After maintaining at that temperature for 12 hours, it was cooled to room temperature. Next, the temperature was raised to 180 ° C. over 3 hours, and further raised to 800 ° C. over 2.5 hours, and then held at that temperature for 6 hours.
  • a lithium metal composite oxide powder for a lithium ion battery positive electrode active material of the present invention having the composition: Li 1.02 Ni 0.8 Co 0.1 Mn 0.1 O 2 was obtained.
  • the properties of the lithium metal composite oxide powder of the present invention were evaluated by the following methods. The results are shown in Table 1.
  • the average particle size (D 50 ) of the lithium metal composite oxide particles was measured using a laser scattering type particle size distribution analyzer (Mastersizer LS-230).
  • Lithium metal composite oxide powder was placed in a specific surface area measuring device (Microstarix Tristar), degassed at 250 ° C, and then BET method by nitrogen adsorption at liquid nitrogen temperature. The specific surface area was measured.
  • pellet density 0.6 g of lithium metal composite oxide powder was placed in a pellet density measuring device (sample diameter 10 mm P / O / Weber PW10), and after applying a predetermined pressure, the thickness of the pellet was measured. .
  • Example 2 (Mixed) precursor nickel / cobalt / manganese composite hydroxide (composition: Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 , average particle size 17.0 ⁇ m) 1650 g of powder and lithium hydroxide powder 432 g was added and mixed while applying a shearing force to obtain 3153 g of a mixture. (Firing) The above mixture was placed in a ceramic firing mortar, heated to 180 ° C. over 30 minutes in an oxygen stream, and then heated to 480 ° C. over 4 hours. After maintaining at that temperature for 12 hours, it was cooled to room temperature. Next, the temperature was raised to 180 ° C. over 30 minutes, and further heated to 800 ° C.
  • the lithium metal composite oxide powder of the present invention has a specific average particle size and specific surface area, can be filled with high density, and has a reduced amount of residual lithium.
  • a lithium metal composite oxide powder of the present invention is used as a positive electrode active material of a lithium ion lithium ion battery, gelation during the application of the positive electrode agent is suppressed, and high output of the battery is expected.
  • the lithium metal composite oxide powder of the present invention can contribute to the production of a high-quality positive electrode agent and a lithium ion battery having a large volume capacity using the positive electrode agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

課題 リチウム残渣が少なく、体積容量に優れたリチウムイオン電池正極活物質の提供。 解決手段 組成LiNiCoMn(0.8≦a≦1.2、0.7≦b≦0.95、0.05≦c≦0.33、0.05≦d≦0.33、b+c+d=1)を有するリチウム・ニッケル・コバルト・マンガン複合酸化物の粒子からなる、該粉末の平均粒径(体積基準平均径)が、10.0μmを超え16.0μm未満であり、該粉末の窒素吸着によるBET法での比表面積が0.5m/gを超え2.0m/g未満であり、水洗処理が施された、粉末。

Description

リチウム金属複合酸化物粉末
 本発明はリチウム金属複合酸化物粉末と、これを正極に用いたリチウムイオン電池に関する。
 リチウムイオン電池の歴史は古く、その商業生産は1990年代に始まっている。しかしながら、リチウムイオン電池の開発は、2000年以降の携帯端末、スマートフォン、電気自動車などの普及によって本格的に発展したと言ってよい。リチウムイオン電池は、他の電池と同様に正極、負極、電解質、外装体を主な構成部材とするが、中でも正極に用いられる正極活物質はリチウムイオン電池の電池性能を左右する重要な材料である。リチウムイオン電池に用いられる正極活物質としては、コバルト酸リチウム、三元系複合酸化物、ニッケル系複合酸化物、スピネル型複合酸化物、オリビン型化合物等が知られており、中でもコバルト酸リチウム、三元系複合酸化物、ニッケル系複合酸化物は大きな放電容量を持つ、層状の結晶構造を持つ複合酸化物として知られている。一般的に、層状複合金属酸化物からなる正極活物質の製造は前駆体である複合金属水酸化物とリチウム化合物を粉体混合し、酸化雰囲気下で焼成することにより製造される。この際、製造される正極活物質の結晶化度を上げるため、前駆体金属とリチウム化合物に含まれるリチウムの比(リチウム/金属)は、1を超えて調製されるのが一般的である。このため、一般的な層状構造を持つ正極活物質は、焼成後の活物質表面には過剰分のリチウム化合物が残存している。このリチウム化合物が大量に残存していると、正極を製造する際に使用されるバインダーの架橋反応を引き起こし、正極スラリーがゲル化するため電極塗工が出来なくなるという問題が発生するため、活物質中の残存リチウム含有量は少ない方が好ましい。
 一方、上記層状構造を有する正極活物質は他の活物質と比較して高容量であるという特徴を持つ。リチウムイオン電池の高容量化要望は、そのアプリケーションの多様化に伴い益々大きくなり、特に電気自動車成功の可否は高容量化の可否と直結している。活物質の高容量化は、活物質そのものの高容量化に加えて電極にどれだけ多くの活物質を充填できるか、即ち、活物質の電極への充填密度増大もリチウムイオン電池高容量化のキーテクノロジーのひとつである。
 ところが高い圧力下で正極活物質粉末を高圧下で圧縮して高密度で充填された正極活物質粉末を得ようとすると、正極活物質粉体にかかる荷重が上昇するに従って正極活物質粉体を構成する二次粒子が壊れ、粉体内部に空隙や微粉が発生し、圧縮応力が低下する。このような二次粒子の破壊と圧縮応力の低下が繰り返されることによって、圧縮充填によって最終的には空隙や微粉を含み粒子形状が不均一な正極活物質が得られることになり、正極活物質粉末の充填密度は目標の値に達しないことが多い。
 そこで高充填密度を達成するための他の手法として小粒径活物質と大粒径活物質とを混合し高充填密度を図るいわゆるバイモーダル混合法が採用されている。例えば、特許文献1には、一般式 LiCo(但し、MはCo以外の遷移金属元素またはアルカリ土類金属元素である。0.9≦p≦1.1、0.980≦x≦1.000、0≦y≦0.02、1.9≦z≦2.1、x+y=1、0≦a≦0.02)で表されるリチウムコバルト複合酸化物であって、平均粒径D50が7~20μmを有し、かつ体積基準累積径D10が平均粒径D50の50%以上であり、かつ体積基準累積径D90が平均粒径D50の150%以下である略球状のリチウムコバルト複合酸化物の大粒径粒子と、該リチウムコバルト複合酸化物の大粒径粒子のD50の10~30%の平均粒径D50を有するリチウムコバルト複合酸化物の小粒径粒子とを含み、かつ前者/後者の質量比が1/2~9/1の混合物からなることを特徴とするリチウム二次電池用の正極活物質が開示されている。しかしこのような正極活物質を製造するためには小粒径の活物質と大粒径の活物質を各々別に用意する必要があり、生産効率が低い。
特許第4268392号公報
 そこで本発明者はバイモーダル混合法によらず充填密度の高い正極活物質を得ることを目標として努力した。その結果、焼成直後のリチウム・ニッケル・コバルト・マンガン複合酸化物を特定の条件で水洗処理したものである平均粒径とBET比表面積が特定の範囲にある正極活物質粉末が高荷重圧縮下でも高い応力を示すこと、すなわちこのような正極活物質粉末が従来物よりも高密度で充填され得ることを見出した。しかも、このような正極活物質粉末はそのリチウム残存量が小さい点でも望ましい品質を示すことを発見した。
 本発明は、平均粒径とBET比表面積が特定の範囲にある正極活物質粉末であって、特定の条件で水洗処理されたものである。すなわち本発明は以下のものである。
(発明1)組成:LiaNiCoMn(0.8≦a≦1.2、0.7≦b≦0.95、0.05≦c≦0.33、0.05≦d≦0.33、b+c+d=1)を有するリチウム・ニッケル・コバルト・マンガン複合酸化物の粒子からなり、
上記粒子の平均粒径(体積基準平均径)が10.0μmを超え16.0μm未満であり、
上記粒子の窒素吸着によるBET法での比表面積が0.5m/gを超え2.0m/g未満であり、
その100gあたり100ml以上の量の純水によって洗浄されたものであり、残存水酸化リチウム量が0.3重量%以下に低減されている、
リチウムイオン電池正極活物質用リチウム金属複合酸化物粉末。
(発明2)上記粒子の窒素吸着によるBET法での比表面積が1.0m/gを超え2.0m/g未満である、発明1のリチウムイオン電池正極活物質用リチウム金属複合酸化物粉末。
(発明3)10モル%以下の、Ca,Ti,Al,Mg,W,Zr,Cr,Vから選ばれる1種以上のドーパントを更に含む、発明1または2のリチウムイオン電池正極活物質用リチウム金属複合酸化物粉末。
(発明4)127MPaで加圧した際に3.0g/cm以上の充填密度を有する、発明1~3のリチウムイオン電池正極活物質用リチウム金属複合酸化物粉末。
(発明5)発明1~4のいずれかのリチウム金属複合酸化物粉末を含む正極活物質。
(発明6)発明5の正極活物質を用いたリチウムイオン電池。
(発明7)以下の工程を有する、発明1~4のいずれかのリチウム金属複合酸化物粉末の製造方法;
(混合工程)平均粒径が10.0μm~20.0μm未満のニッケル・コバルト・マンガン複合水酸化物の粉末を前駆体粉末として用意し、この前駆体粉末にリチウム化合物の粉末を加えて混合物を得る工程であって、ここで上記前駆体粉末と上記リチウム化合物粉末との量比は、元素Li、Ni、Co、Mnが組成:LiaNiCoMn(0.8≦a≦1.2、0.7≦b≦0.95、0.05≦c≦0.33、0.05≦d≦0.33、b+c+d=1)を満たす割合で含まれる混合物が得られるような範囲にある;
(焼成工程)上記混合工程で得られた混合物を、酸素を含む気流中で、450℃~900℃の温度範囲で、2時間~20時間、焼成する工程;
(水洗工程)焼成物(リチウム・ニッケル・コバルト・マンガン複合酸化物)を、その100gあたり100ml以上量の純水によって洗浄して、リチウム金属複合酸化物粉末を得る工程。
 本発明のリチウム金属複合酸化物粉末は、その100gあたり100ml以上の量の純水によって洗浄されたものである。このような水洗によってリチウム金属複合酸化物粉末の性能が向上すること、すなわち正極剤にとって不都合な残存リチウム量が低減されていることは解明されているが、このような水洗がもたらすリチウム金属複合酸化物の化学的特徴を一律の化学式で表現することは困難である。しかも、このような水洗を経たリチウム金属複合酸化物を構成する粒子は完全に均一ではなく、一律の寸法と形状によって特定されない。従って、本発明のリチウム金属複合酸化物粉末の特徴の一つとして、「その100gあたり100ml以上の量の純水によって洗浄されたもの」という一種の製法を採用せざるを得ない。
 本発明により、リチウム残存量が少なく、リチウムイオン電池用正極としたときの電極密度が高いリチウム金属系正極活物質とこれを用いたリチウムイオン電池が提供される。
 [リチウム金属複合酸化物粉末の製造方法]
本発明のリチウム金属複合酸化物粉末の製造方法を以下に述べる。
 (混合)まず、平均粒径が10.0μm~20.0μm未満のニッケル・コバルト・マンガン複合水酸化物の粉末を前駆体粉末として用意する。この前駆体粉末にリチウム化合物の粉末を加える。リチウム化合物としては水酸化リチウムもしくは炭酸リチウムを用いるのが一般的である。この混合工程において、前駆体粉末とリチウム化合物粉末との量比を、元素Li、Ni、Co、Mnが組成LiNiCoMn(0.8≦a≦1.2、0.7≦b≦0.95、0.05≦c≦0.33、0.05≦d≦0.33、b+c+d=1)を満たす割合で含まれる混合物が得られるような範囲とする。前駆体粉末とリチウム化合物粉末との混合手段はせん断力をかけた混合手段であれば制限がなく、一般的には各種ミキサーが用いられる。
 (焼成)次に、上記混合工程で得られた混合物を、酸素を含む気流中で焼成する。焼成温度は450℃~900℃の範囲、好ましくは600℃~850℃の範囲である。焼成時間は2時間~20時間、好ましくは3時間~15時間である。焼成回数は1回でも複数回でもよい。複数回の焼成を行う場合には、各回の焼成で2時間~30時間にわたって上記温度範囲を維持する。例えば、1段目で450℃~700℃の温度範囲で3時間~6時間かけて焼成し、2段目で700℃~900℃の温度範囲で4時間~10時間かけて焼成する。焼成に用いる設備はこのような焼成条件を達成できるものであれば制限はない。一般的には管状炉、マッフル炉、ロータリーキルン(RK)、ローラーハースキルン(RHK)が用いられる。好ましくはRHKまたはRKが用いられる。このような焼成によって、リチウム・ニッケル・コバルト・マンガン複合酸化物が得られる。
 (水洗)焼成物(リチウム・ニッケル・コバルト・マンガン複合酸化物)を、その100gあたり100ml以上量の純水によって洗浄して、本発明のリチウム金属複合酸化物粉末が得られる。洗浄は洗浄水の使用量が上記範囲を満たすような十分な量であれば問題はない。典型的には、焼成物100gに対して100ml以上の量の25℃の純水を加えて焼成物と水を十分に接触させ、その後にリチウム金属複合酸化物粉末を分離する。焼成物と水との接触手段は、焼成物の粒子が破壊されない状態で焼成物が均一に水分散する手段であれば制限されない。一般的には焼成物と水とからなる分散液を攪拌翼が設置された容器内で攪拌する。リチウム金属複合酸化物粉末の分離は、一般的には、リチウム金属複合酸化物粉末の水分散スラリーを濾過して行う。濾過手段は任意でよく、吸引濾過、加圧濾過等のいずれもが使用できる。水洗後に分離された焼成物を乾燥する。乾燥は酸素を含む気流中で、好ましくは200℃~800℃、より好ましくは300℃~700℃、更に好ましくは400℃~600℃の温度域で行う。
 [リチウム金属複合酸化物粉末]
本発明のリチウムイオン電池正極活物質用リチウム金属複合酸化物粉末は、10.0μmを超え16.0μm未満、好ましくは10μmを超え15.0μm未満の平均粒径(体積基準平均径)を有し、0.5m/gを超え2.0m/g未満、好ましくは1.0m/gを超え2.0m/g未満、更に好ましくは、1.0m/gを超え1.5m/g未満の窒素吸着によるBET法での比表面積を有する。その残存LiOHは0.3重量%以下に低減されている。さらに本発明のリチウムイオン電池正極活物質用リチウム金属複合酸化物粉末は高い充填密度、例えば、127MPaで加圧した際に3.0g/cm以上の密度を有する。好ましい本発明のリチウムイオン電池正極活物質用リチウム金属複合酸化物粉末は、127MPaで加圧した際に3.2g/cm以上、191MPaで加圧した際に3.3g/cm以上、255MPaで加圧した際に3.4g/cm以上、318MPaで加圧した際に3.5g/cm以上の密度を有する。
 更に、本発明のリチウムイオン電池正極活物質用リチウム金属複合酸化物粉末は、10モル%以下の、Ca,Ti,Al,Mg,W,Zr,Cr,Vから選ばれる1種以上のドーパントを更に含むことができる。これらドーパント原子を含む金属化合物を上記混合工程及び/又は上記焼成工程に追加原料として供給することにより、このようなドーパントを上記リチウム金属複合酸化物に導入することができる。
 [リチウムイオン電池正極活物質]
本発明のリチウム金属複合酸化物粉末は体積容量に優れたリチウムイオン電池をもたらす正極活物質として期待できる。本発明のリチウム金属複合酸化物粉末を単独でリチウムイオン電池の正極活物質として用いることができる。本発明のリチウム金属複合酸化物粉末と、粒径や組成の異なる1種以上の他のリチウムイオン電池用正極活物質との混合物を正極活物質として用いてもよい。
[実施例1]
(混合)前駆体であるニッケル・コバルト・マンガン複合水酸化物(組成:Ni0.8Co0.1Mn0.1(OH)、平均粒径12.0μm)粉末2500gに水酸化リチウム粉末653gを加え、せん断力を掛けながら混合し、混合物3153gを得た。(焼成) 上記混合物をセラミックス製焼成匣鉢にとり、酸素気流中で180℃まで30分かけて昇温し、その後480℃まで4時間掛けて昇温した。そのままの温度で12時間保持した後、室温まで冷却した。次に180℃まで3時間かけて昇温し、更にその後800℃まで2.5時間かけて昇温した後、そのままの温度で6時間保持した。室温まで冷却後、解砕を行って焼成物を得た。(水洗) 上記焼成物100gを取り100mlの水と混合し、25℃で5分間攪拌し、吸引濾過してリチウム金属複合酸化物を分離した。このリチウム金属複合酸化物を100℃で20時間減圧乾燥して水分を除き、さらに酸素気流中500℃で20時間焼成した。
 こうして組成:Li1.02Ni0.8Co0.1Mn0.1を有する本発明のリチウムイオン電池正極活物質用リチウム金属複合酸化物粉末を得た。本発明のリチウム金属複合酸化物粉末の性状を以下の方法で評価した。結果を表1に示す。
 (平均粒径) リチウム金属複合酸化物粒子の平均粒径(D50)をレーザー散乱型粒度分布測定装置(マスターサイザー LS-230)を用いて測定した。
 (比表面積) リチウム金属複合酸化物粉末を比表面積測定装置(マイクロメリティックス社トライスター)に設置し、250℃で脱気を行った後、液体窒素温度での窒素吸着によるBET法にて比表面積を測定した。
 (水酸化リチウム及び炭酸リチウムの残存量) リチウム金属複合酸化物粉末20gを25℃100mlの水に分散し、3分間マグネチックスターラー上で攪拌させた後、吸引濾過した。濾液の一部を取り、Warder法により水酸化リチウム及び炭酸リチウムの溶出量を測定した。溶出量を水分散させたリチウム金属複合酸化物粉末に対する重量パーセントで表す。
 (ペレット密度) リチウム金属複合酸化物粉末0.6gをペレット密度測定装置(サンプル径10mm P/O/Weber社製PW10)に設置し、所定の圧力を掛けた後、ペレットの厚さを測定した。式:ペレット密度(g/cm)=サンプル重量(g)÷加圧後のサンプル体積(cm)によりペレット密度を算出した。
 [実施例2]
(混合)前駆体であるニッケル・コバルト・マンガン複合水酸化物(組成:Ni0.8Co0.1Mn0.1(OH)、平均粒径17.0μm)粉末1650gに水酸化リチウム粉末432gを加え、せん断力を掛けながら混合し、混合物3153gを得た。(焼成) 上記混合物をセラミックス製焼成匣鉢にとり、酸素気流中で180℃まで30分かけて昇温し、その後480℃まで4時間かけて昇温した。そのままの温度で12時間保持した後、室温まで冷却した。次に180℃まで30分かけて昇温し、更にその後800℃まで2.5時間かけて昇温した後、そのままの温度で6時間保持した。室温までを行ってリチウム金属複合酸化物焼成体を得た。(水洗)実施例1と同様に行った。こうして組成:Li1.02Ni0.8Co0.1Mn0.1を有する本発明のリチウムイオン電池正極活物質用リチウム金属複合酸化物粉末を得た。その性状を表1に示す。
 [比較例1]前駆体としてニッケル・コバルト・マンガン複合水酸化物(組成:Ni0.8Co0.1Mn0.1(OH)、平均粒径8.5μm)粉末を用いた点以外はすべて実施例1と同じ条件で組成:Li1.02Ni0.8Co0.1Mn0.1を有するリチウム金属複合酸化物粉末を製造した。その性状を表1に示す。
 [比較例2]前駆体としてニッケル・コバルト・マンガン複合水酸化物(組成:Ni0.8Co0.1Mn0.1(OH)、平均粒径3.0μm)粉末を用いた点以外はすべて実施例1と同じ条件で組成:Li1.02Ni0.8Co0.1Mn0.1を有するリチウム金属複合酸化物粉末を製造した。その性状を表1に示す。 
 [比較例3]実施例1と同じ条件で原料を混合、焼成、冷却、解砕してリチウム金属複合酸化物焼成体を得た。これを水洗することなく比較用のリチウム金属複合酸化物粉末に用いた。これは組成:Li1.02Ni0.8Co0.1Mn0.1を有する。その評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、本発明のリチウム金属複合酸化物粉末は特定の平均粒径と比表面積を有しており、高密度充填が可能で残存リチウム量が低減されたものである。このような本発明のリチウム金属複合酸化物粉末をリチウムイオンリチウムイオン電池の正極活物質として用い場合には、正極剤の塗工の際のゲル化が抑制され、電池の高出力化が期待される。
本発明のリチウム金属複合酸化物粉末は、良質な正極剤と、その正極剤を用いた体積容量が大きいリチウムイオン電池の製造に貢献することができる。

Claims (7)

  1. 組成:LiaNiCoMn(0.8≦a≦1.2、0.7≦b≦0.95、0.05≦c≦0.33、0.05≦d≦0.33、b+c+d=1)を有するリチウム・ニッケル・コバルト・マンガン複合酸化物の粒子からなり、
    上記粒子の平均粒径(体積基準平均径)が10.0μmを超え16.0μm未満であり、
    上記粒子の窒素吸着によるBET法での比表面積が0.5m/gを超え2.0m/g未満であり、
    その100gあたり100ml以上の量の純水によって洗浄されたものであり、残存水酸化リチウム量が0.3重量%以下に低減されている、
    リチウムイオン電池正極活物質用リチウム金属複合酸化物粉末。
  2. 上記粒子の窒素吸着によるBET法での比表面積が1.0m/gを超え2.0m/g未満である、請求項1に記載のリチウムイオン電池正極活物質用リチウム金属複合酸化物粉末。
  3. 10モル%以下の、Ca,Ti,Al,Mg,W,Zr,Cr,Vから選ばれる1種以上のドーパントを更に含む、請求項1または2に記載のリチウムイオン電池正極活物質用リチウム金属複合酸化物粉末。
  4. 127MPaで加圧した際に3.0g/cm以上の充填密度を有する、請求項1~3のいずれかに記載のリチウムイオン電池正極活物質用リチウム金属複合酸化物粉末。
  5. 請求項1~4のいずれかに記載のリチウム金属複合酸化物粉末を含む正極活物質。
  6. 請求項5に記載の正極活物質を用いたリチウムイオン電池。
  7. 以下の工程を有する、請求項1~4のいずれかに記載のリチウム金属複合酸化物粉末の製造方法;
    (混合工程)平均粒径が10.0μm~20.0μm未満のニッケル・コバルト・マンガン複合水酸化物の粉末を前駆体粉末として用意し、この前駆体粉末にリチウム化合物の粉末を加えて混合物を得る工程であって、ここで上記前駆体粉末と上記リチウム化合物粉末との量比は、元素Li、Ni、Co、Mnが組成:LiaNiCoMn(0.8≦a≦1.2、0.7≦b≦0.95、0.05≦c≦0.33、0.05≦d≦0.33、b+c+d=1)を満たす割合で含まれる混合物が得られるような範囲にある;
    (焼成工程)上記混合工程で得られた混合物を、酸素を含む気流中で、450℃~900℃の温度範囲で、2時間~20時間、焼成する工程;
    (水洗工程)焼成物(リチウム・ニッケル・コバルト・マンガン複合酸化物)を、その100gあたり100ml以上量の純水によって洗浄して、リチウム金属複合酸化物粉末を得る工程。
PCT/JP2017/026104 2016-07-22 2017-07-19 リチウム金属複合酸化物粉末 WO2018016525A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/318,398 US20190288284A1 (en) 2016-07-22 2017-07-19 Lithium metal composite oxide powder
JP2018528830A JP7041620B2 (ja) 2016-07-22 2017-07-19 リチウム金属複合酸化物粉末
KR1020197004849A KR102236601B1 (ko) 2016-07-22 2017-07-19 리튬 금속 복합 산화물 분말
CN201780044582.5A CN109643795B (zh) 2016-07-22 2017-07-19 锂金属复合氧化物粉末
EP17831041.3A EP3490041A4 (en) 2016-07-22 2017-07-19 LITHIUM mixed oxide powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-144384 2016-07-22
JP2016144384 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018016525A1 true WO2018016525A1 (ja) 2018-01-25

Family

ID=60992524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026104 WO2018016525A1 (ja) 2016-07-22 2017-07-19 リチウム金属複合酸化物粉末

Country Status (7)

Country Link
US (1) US20190288284A1 (ja)
EP (1) EP3490041A4 (ja)
JP (1) JP7041620B2 (ja)
KR (1) KR102236601B1 (ja)
CN (1) CN109643795B (ja)
TW (1) TWI654140B (ja)
WO (1) WO2018016525A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713228A (zh) * 2019-01-04 2019-05-03 南通瑞翔新材料有限公司 一种锂离子电池三元材料可循环的水洗降碱方法
WO2019245308A1 (ko) * 2018-06-20 2019-12-26 주식회사 엘지화학 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
WO2020002024A1 (en) * 2018-06-28 2020-01-02 Basf Se Method for processing ni-rich electrode active materials
JP2020529715A (ja) * 2018-03-09 2020-10-08 エルジー・ケム・リミテッド 正極活物質、その製造方法、これを含む正極および二次電池
WO2021157278A1 (ja) * 2020-02-07 2021-08-12 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
KR20220045813A (ko) * 2020-10-06 2022-04-13 주식회사 엘지화학 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 입자 혼합물의 제조방법
JP2022543762A (ja) * 2019-08-08 2022-10-14 エルジー エナジー ソリューション リミテッド 二次電池用正極活物質の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436134B (zh) * 2019-04-28 2022-03-08 宁德时代新能源科技股份有限公司 正极活性材料及其制备方法、正极极片、锂离子二次电池和电动汽车
KR20220032592A (ko) * 2019-09-06 2022-03-15 히타치 긴조쿠 가부시키가이샤 리튬 이온 2차 전지용 양극 활물질 및 그 제조 방법과 리튬 이온 2차 전지
CN111422924B (zh) * 2020-03-31 2023-03-21 蜂巢能源科技有限公司 钙掺杂富锂碳酸盐前驱体及其制备方法和应用
KR102649190B1 (ko) * 2020-12-21 2024-03-18 포스코홀딩스 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243952A (ja) * 2000-02-29 2001-09-07 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2007053116A (ja) * 2006-10-30 2007-03-01 Gs Yuasa Corporation:Kk 非水電解質電池
JP2007091573A (ja) * 2005-06-10 2007-04-12 Tosoh Corp リチウム−ニッケル−マンガン−コバルト複合酸化物及びその製造方法並びにその用途
JP2010015959A (ja) * 2007-07-30 2010-01-21 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、並びにこれを用いた非水系電解質二次電池
JP2010192424A (ja) * 2008-09-10 2010-09-02 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、ならびにこれを用いた非水系電解質二次電池
JP2014225430A (ja) * 2013-05-14 2014-12-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池
WO2015008582A1 (ja) * 2013-07-17 2015-01-22 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、かかる非水系電解質二次電池用正極活物質の製造方法およびかかる非水系電解質二次電池用正極活物質を用いた非水系電解質二次電池
WO2015189740A1 (en) * 2014-06-10 2015-12-17 Umicore Positive electrode materials having a superior hardness strength

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4268392B2 (ja) 2002-09-26 2009-05-27 Agcセイミケミカル株式会社 リチウム二次電池用の正極活物質及びその製造方法
JP4707299B2 (ja) * 2002-11-20 2011-06-22 住友金属鉱山株式会社 リチウム二次電池正極活物質およびリチウム二次電池
JP4112995B2 (ja) * 2003-01-24 2008-07-02 積水樹脂株式会社 アクリル透明板及びアクリル透明板の製造方法
JP2007179917A (ja) * 2005-12-28 2007-07-12 Hitachi Ltd リチウム二次電池用正極活物質及びこれを用いたリチウム二次電池
WO2008155989A1 (ja) * 2007-06-21 2008-12-24 Agc Seimi Chemical Co., Ltd. リチウム含有複合酸化物粉末及びその製造方法
JP5341325B2 (ja) * 2007-07-25 2013-11-13 日本化学工業株式会社 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
WO2011089958A1 (ja) * 2010-01-21 2011-07-28 住友金属鉱山株式会社 非水電解質二次電池用正極活物質、その製造方法及びそれを用いた非水電解質二次電池
EP2698351B1 (en) * 2011-04-14 2017-12-27 Toda Kogyo Corp. Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND PROCESS FOR PRODUCING SAME, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP5741932B2 (ja) * 2011-06-01 2015-07-01 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物とその製造方法、及び非水系電解質二次電池用正極活物質の製造方法
JP5922665B2 (ja) * 2011-09-29 2016-05-24 日立マクセル株式会社 リチウム二次電池
CN103748711B (zh) * 2011-11-09 2016-07-06 株式会社杰士汤浅国际 非水电解质二次电池用活性物质、该活性物质的制造方法、非水电解质二次电池用电极以及非水电解质二次电池
EP2911224B1 (en) * 2012-10-17 2019-07-03 Toda Kogyo Corp. Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
KR101567039B1 (ko) * 2012-12-13 2015-11-10 주식회사 에코프로 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질
JP2014123529A (ja) * 2012-12-21 2014-07-03 Jfe Mineral Co Ltd リチウム二次電池用正極材料
JP6244713B2 (ja) * 2013-07-24 2017-12-13 住友金属鉱山株式会社 非水電解質二次電池用正極活物質の製造方法
JP6358077B2 (ja) * 2014-01-31 2018-07-18 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および、非水電解質二次電池
US20160276664A1 (en) * 2014-03-31 2016-09-22 Hitachi Metals, Ltd. Positive electrode active material for lithium ion secondary batteries, method for producing same and lithium ion secondary battery
CN105336915B (zh) * 2014-08-13 2019-01-01 微宏动力系统(湖州)有限公司 锂离子二次电池用正极材料、其制备方法及锂离子二次电池
JP6603058B2 (ja) * 2014-08-20 2019-11-06 住友化学株式会社 リチウム含有複合酸化物の製造方法およびリチウム含有複合酸化物
JP6658534B2 (ja) * 2014-10-30 2020-03-04 住友金属鉱山株式会社 ニッケル含有複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
EP3238290B1 (en) * 2014-12-23 2024-05-01 QuantumScape Battery, Inc. Lithium rich nickel manganese cobalt oxide (lr-nmc)

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243952A (ja) * 2000-02-29 2001-09-07 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2007091573A (ja) * 2005-06-10 2007-04-12 Tosoh Corp リチウム−ニッケル−マンガン−コバルト複合酸化物及びその製造方法並びにその用途
JP2007053116A (ja) * 2006-10-30 2007-03-01 Gs Yuasa Corporation:Kk 非水電解質電池
JP2010015959A (ja) * 2007-07-30 2010-01-21 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、並びにこれを用いた非水系電解質二次電池
JP2010192424A (ja) * 2008-09-10 2010-09-02 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、ならびにこれを用いた非水系電解質二次電池
JP2014225430A (ja) * 2013-05-14 2014-12-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池
WO2015008582A1 (ja) * 2013-07-17 2015-01-22 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、かかる非水系電解質二次電池用正極活物質の製造方法およびかかる非水系電解質二次電池用正極活物質を用いた非水系電解質二次電池
WO2015189740A1 (en) * 2014-06-10 2015-12-17 Umicore Positive electrode materials having a superior hardness strength

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3490041A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11482702B2 (en) 2018-03-09 2022-10-25 Lg Chem, Ltd. Positive electrode active material, preparation method thereof, positive electrode including same and secondary battery
JP2020529715A (ja) * 2018-03-09 2020-10-08 エルジー・ケム・リミテッド 正極活物質、その製造方法、これを含む正極および二次電池
JP7031938B2 (ja) 2018-03-09 2022-03-08 エルジー・ケム・リミテッド 正極活物質、その製造方法、これを含む正極および二次電池
WO2019245308A1 (ko) * 2018-06-20 2019-12-26 주식회사 엘지화학 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
WO2020002024A1 (en) * 2018-06-28 2020-01-02 Basf Se Method for processing ni-rich electrode active materials
CN112424125A (zh) * 2018-06-28 2021-02-26 巴斯夫欧洲公司 用于加工富镍电极活性材料的方法
CN112424125B (zh) * 2018-06-28 2024-03-15 巴斯夫欧洲公司 用于加工富镍电极活性材料的方法
US11862795B2 (en) 2018-06-28 2024-01-02 Basf Se Method for processing Ni-rich electrode active materials
JP7391056B2 (ja) 2018-06-28 2023-12-04 ビーエーエスエフ ソシエタス・ヨーロピア Niの多い電極活物質の製造方法
JP2021530085A (ja) * 2018-06-28 2021-11-04 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Niの多い電極活物質の製造方法
US20210376318A1 (en) * 2018-06-28 2021-12-02 Basf Se Method for processing ni-rich electrode active materials
CN109713228B (zh) * 2019-01-04 2021-07-23 南通瑞翔新材料有限公司 一种锂离子电池三元材料可循环的水洗降碱方法
CN109713228A (zh) * 2019-01-04 2019-05-03 南通瑞翔新材料有限公司 一种锂离子电池三元材料可循环的水洗降碱方法
JP2022543762A (ja) * 2019-08-08 2022-10-14 エルジー エナジー ソリューション リミテッド 二次電池用正極活物質の製造方法
JP7357994B2 (ja) 2019-08-08 2023-10-10 エルジー エナジー ソリューション リミテッド 二次電池用正極活物質の製造方法
JPWO2021157278A1 (ja) * 2020-02-07 2021-08-12
WO2021157278A1 (ja) * 2020-02-07 2021-08-12 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7455871B2 (ja) 2020-02-07 2024-03-26 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2022075755A1 (ko) * 2020-10-06 2022-04-14 주식회사 엘지화학 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 입자 혼합물의 제조방법
KR20220045813A (ko) * 2020-10-06 2022-04-13 주식회사 엘지화학 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 입자 혼합물의 제조방법
KR102587970B1 (ko) 2020-10-06 2023-10-10 주식회사 엘지화학 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 입자 혼합물의 제조방법

Also Published As

Publication number Publication date
TW201806867A (zh) 2018-03-01
JPWO2018016525A1 (ja) 2019-06-13
US20190288284A1 (en) 2019-09-19
CN109643795A (zh) 2019-04-16
EP3490041A4 (en) 2020-01-08
KR102236601B1 (ko) 2021-04-07
EP3490041A1 (en) 2019-05-29
KR20190032452A (ko) 2019-03-27
TWI654140B (zh) 2019-03-21
JP7041620B2 (ja) 2022-03-24
CN109643795B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
TWI654140B (zh) Lithium metal composite oxide powder
JP2021103689A (ja) 非水系電解質二次電池用正極活物質とその製造方法
JP6766322B2 (ja) アルミニウム被覆ニッケルコバルト複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP5708277B2 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池
JP5458886B2 (ja) 化合物粉体、その製造方法およびリチウム二次電池へのその使用
CN107078294B (zh) 非水系电解质二次电池用正极活性物质、其制造方法和使用其的非水系电解质二次电池
JP6533734B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
WO2012131881A1 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2011108389A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2011108355A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2017090378A1 (ja) 非水系電解質二次電池用正極材料とその製造方法、および正極合材ペースト、非水系電解質二次電池。
JP6479634B2 (ja) ニッケルリチウム金属複合酸化物の製造方法
JP2023041746A (ja) リチウム二次電池用正極活物質組成物及びこれを含むリチウム二次電池
JP2020198195A (ja) リチウムイオン二次電池用正極活物質の製造方法
JPWO2019087558A1 (ja) 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法、リチウム金属複合酸化物粉末の評価方法
JP2021147314A (ja) 遷移金属複合水酸化物粒子、遷移金属複合水酸化物粒子の製造方法、リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池
JP7403289B2 (ja) リチウムイオン二次電池用正極活物質複合体及びその製造方法
JP2017010842A (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP6357978B2 (ja) 遷移金属複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP7119302B2 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP7313112B2 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP3378222B2 (ja) 非水系二次電池用正極活物質および正極並びに二次電池
JP6511761B2 (ja) 非水系電解質二次電池用正極活物質用の被覆複合酸化物粒子の製造方法及び当該製造方法によって製造される被覆複合酸化物粒子を用いた非水系電解質二次電池
JP7031296B2 (ja) ニッケル複合酸化物、正極活物質の製造方法
JP2004186149A (ja) Liイオン二次電池用正極材料

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528830

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197004849

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017831041

Country of ref document: EP

Effective date: 20190222