WO2017145894A1 - 二次電池用電極活物質、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法 - Google Patents

二次電池用電極活物質、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法 Download PDF

Info

Publication number
WO2017145894A1
WO2017145894A1 PCT/JP2017/005545 JP2017005545W WO2017145894A1 WO 2017145894 A1 WO2017145894 A1 WO 2017145894A1 JP 2017005545 W JP2017005545 W JP 2017005545W WO 2017145894 A1 WO2017145894 A1 WO 2017145894A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
solid
secondary battery
solid electrolyte
Prior art date
Application number
PCT/JP2017/005545
Other languages
English (en)
French (fr)
Inventor
洋史 加賀
宏顕 望月
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201780011149.1A priority Critical patent/CN108604676B/zh
Priority to JP2018501616A priority patent/JP6591655B2/ja
Publication of WO2017145894A1 publication Critical patent/WO2017145894A1/ja
Priority to US16/109,928 priority patent/US11050057B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode active material for a secondary battery, a solid electrolyte composition, an electrode sheet for an all solid secondary battery and an all solid secondary battery, an electrode active material for a secondary battery, and an electrode sheet for an all solid secondary battery. And a method for producing an all-solid-state secondary battery.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and can be charged and discharged by reciprocating lithium ions between the two electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • Patent Document 1 discloses a lithium secondary battery having a positive electrode containing a lithium-cobalt oxide as a positive electrode active material and a lithium-nickel composite oxide that has reacted with a fluorine-containing polymer to form a coating layer on the surface thereof.
  • a secondary battery is described.
  • All-solid-state secondary batteries are made of a solid anode, electrolyte, and cathode, which can greatly improve safety and reliability, which is a problem for batteries using organic electrolytes, and can also extend the life of batteries. It will be. Furthermore, the all-solid-state secondary battery can have a structure in which electrodes and an electrolyte are directly arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolyte, and application to an electric vehicle, a large storage battery, and the like is expected.
  • Patent Literature 2 discloses a non-sintered body including a first active material powder that expands during discharge and contracts during charging, a second active material powder that contracts during discharge and expands during charging, and a conductive additive powder.
  • An all-solid secondary battery having a positive electrode active material layer is described.
  • the present invention provides an electrode active material for a secondary battery used for an all-solid secondary battery, and an electrode active material for a secondary battery that can improve the cycle characteristics of the all-solid secondary battery. Let it be an issue. Moreover, this invention makes it a subject to provide the solid electrolyte composition, the electrode sheet for all-solid-state secondary batteries, and the all-solid-state secondary battery using the said electrode active material for secondary batteries. Furthermore, this invention makes it a subject to provide the manufacturing method of each of the said electrode active material for secondary batteries, the electrode sheet for all-solid-state secondary batteries, and all-solid-state secondary batteries.
  • the inventors of the present invention include an active material (first active material) that expands during charging and contracts during discharging, and an active material (second active material) that contracts during charging and expands during discharging. Then, a part of the particles constituting the first active material and a part of the particles constituting the second active material are in contact with each other, and the particles constituting the first active material and the particles constituting the second active material. It has been found that an all-solid secondary battery containing an electrode active material for a secondary battery in which the interface in contact with the solid solution forms a crystal part is excellent in cycle characteristics. The present invention has been further studied based on these findings and has been completed.
  • a secondary battery electrode active material comprising a first electrode active material and a second electrode active material,
  • the first electrode active material expands during charging, contracts during discharging,
  • the second electrode active material contracts during charging, expands during discharging, and Part of the particles constituting the first electrode active material and part of the particles constituting the second electrode active material are in contact with each other, and the particles constituting the first electrode active material and the second electrode active material are
  • ⁇ 5> The electrode active for a secondary battery according to any one of ⁇ 1> to ⁇ 3>, wherein the particles constituting the second electrode active material are covered with the particles constituting the first electrode active material. material.
  • a solid electrolyte composition comprising the secondary battery electrode active material according to any one of ⁇ 1> to ⁇ 5> and an inorganic solid electrolyte.
  • ⁇ 8> The solid electrolyte composition according to ⁇ 7>, wherein the binder has a particle shape.
  • ⁇ 9> The solid electrolyte composition according to ⁇ 7> or ⁇ 8>, wherein the binder is acrylic latex, urethane latex, or urea latex.
  • An electrode sheet for an all-solid-state secondary battery having a layer of the solid electrolyte composition according to any one of ⁇ 6> to ⁇ 10> on a current collector.
  • An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer, wherein at least one of the positive electrode active material layer and the negative electrode active material layer is ⁇ 6> to ⁇ 10> All-solid-state secondary battery which is a layer of the solid electrolyte composition as described in any one of these.
  • ⁇ 13> The method according to any one of ⁇ 1> to ⁇ 5>, including a step of solidifying a contact interface between the particles constituting the first electrode active material and the particles constituting the second electrode active material A method for producing an electrode active material for a secondary battery.
  • ⁇ 14> The manufacturing method of the electrode sheet for all-solid-state secondary batteries which manufactures the electrode sheet for all-solid-state secondary batteries via the manufacturing method of the electrode active material for secondary batteries as described in ⁇ 13>.
  • ⁇ 15> A method for producing an all-solid secondary battery, wherein an all-solid secondary battery is produced via the method for producing an electrode active material for a secondary battery according to ⁇ 13>.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • acryl or “(meth) acryl” is simply described, it means methacryl and / or acryl.
  • the electrode active material for a secondary battery, the solid electrolyte composition, and the electrode sheet for an all-solid secondary battery of the present invention are all solid-state secondary batteries having excellent cycle characteristics when used for the production of an all-solid secondary battery. Can be realized. Moreover, the all solid state secondary battery of the present invention exhibits excellent cycle characteristics. Moreover, according to each manufacturing method of the manufacturing method of the electrode active material for secondary batteries, the manufacturing method of the electrode sheet for all-solid secondary batteries, and the manufacturing method of the all-solid secondary battery of the present invention, The electrode active material for secondary batteries, the electrode sheet for all-solid secondary batteries, and the all-solid secondary battery can be obtained.
  • FIG. 1 is a longitudinal sectional view schematically showing an all solid state secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing an all-solid secondary battery (coin battery) produced in the example.
  • the electrode active material for a secondary battery of the present invention is suitably used as a constituent material of an electrode sheet of an all-solid secondary battery. That is, at least a secondary battery electrode active material of the present invention and an inorganic solid electrolyte are mixed to prepare a solid electrolyte composition of the present invention, and this solid electrolyte composition is used as a positive electrode active material layer or an all-solid secondary battery. It can be used to form a negative electrode active material layer.
  • preferred embodiments of the present invention will be described first with respect to an all-solid secondary battery using the solid electrolyte composition of the present invention.
  • the all solid state secondary battery of the present invention has a positive electrode, a negative electrode facing the positive electrode, and a solid electrolyte layer between the positive electrode and the negative electrode.
  • the positive electrode has a positive electrode active material layer on a positive electrode current collector.
  • the negative electrode has a negative electrode active material layer on a negative electrode current collector.
  • At least one of the positive electrode active material layer and the negative electrode active material layer is formed of the solid electrolyte composition of the present invention.
  • the active material layer formed of the solid electrolyte composition is preferably the same as that in the solid content of the solid electrolyte composition with respect to the component species to be contained and the content ratio thereof.
  • FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 according to this embodiment includes a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 stacked in this order as viewed from the negative electrode side.
  • the adjacent layers are in direct contact with each other.
  • the all solid state secondary battery having the layer configuration of FIG. 1 may be referred to as an all solid state secondary battery sheet.
  • the positive electrode active material layer and the negative electrode active material layer are formed of the solid electrolyte composition of the present invention.
  • the solid electrolyte layer 3 usually does not contain a positive electrode active material and / or a negative electrode active material.
  • the positive electrode active material layer 4 includes two types of positive electrode active materials, and / or the negative electrode active material layer 2 includes two types of negative electrode active materials.
  • the positive electrode active material layer 4 and the negative electrode active material layer 2 contain an inorganic solid electrolyte. When the active material layer contains an inorganic solid electrolyte, the ionic conductivity can be improved.
  • the inorganic solid electrolyte contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be the same or different.
  • either or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer or an electrode active material layer.
  • One or both of the positive electrode active material and the negative electrode active material may be simply referred to as an active material or an electrode active material.
  • the thicknesses of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 are not particularly limited. Considering general battery dimensions, the thickness of each of the above layers is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m. In the all solid state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 is 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors. In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel, titanium, etc., as well as the surface of aluminum or stainless steel treated with carbon, nickel, titanium, or silver (forming a thin film) Among them, aluminum and aluminum alloys are more preferable.
  • the material for forming the negative electrode current collector is treated with carbon, nickel, titanium, or silver on the surface of aluminum, copper, copper alloy, stainless steel. What was made to do is preferable, and aluminum, copper, a copper alloy, and stainless steel are more preferable.
  • the current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • a functional layer, a member, or the like is appropriately interposed or disposed between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be.
  • Each layer may be composed of a single layer or a plurality of layers.
  • the basic structure of the all-solid-state secondary battery can be manufactured by arranging each of the above layers. Depending on the application, it may be used as an all-solid secondary battery as it is, but in order to form a dry battery, it is further enclosed in a suitable housing.
  • the housing may be metallic or made of resin (plastic). In the case of using a metallic material, for example, an aluminum alloy or a stainless steel material can be used.
  • the metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively.
  • the casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
  • Solid electrolyte composition The solid electrolyte composition of the present invention is as described above, and will be specifically described below.
  • the solid electrolyte composition of the present invention contains the secondary battery electrode active material of the present invention.
  • the electrode active material for a secondary battery of the present invention contains a first electrode active material that expands during charging and contracts during discharging, and a second electrode active material that contracts during charging and expands during discharging. Furthermore, in the electrode active material for a secondary battery of the present invention, a part of the particles constituting the first electrode active material and the part of the particles constituting the second electrode active material are in contact with each other, The interface where the particles constituting the substance and the particles constituting the second electrode active material come into solid solution forms a crystal part.
  • the first electrode active material may be referred to as a first active material
  • the second electrode active material may be referred to as a second active material
  • the particles constituting the active material are also referred to as active material particles.
  • the first active material and the second active material contained in the secondary battery electrode active material of the present invention are both positive electrode active materials or both negative electrode active materials.
  • the all-solid-state secondary battery of the present invention can maintain the contact state between the solid particles and extend the battery life (excellent in cycle characteristics) without depending on pressure.
  • the aspect of the “crystal part” is not particularly limited, and the constituent element of the other active material particle may be partially substituted in the crystal lattice of the one active material particle.
  • the aspect in which the first active material particles and the second active material particles react to each other and a newly formed third active material layer exists between the active material particles may be employed.
  • solid solution means that a part of atoms occupying a lattice position is statistically replaced with a heteroatom without changing the crystal structure, or a heteroatom is statistically replaced at an interstitial position. Indicates distribution. For example, when the active material is a metal oxide, after mixing a plurality of types of metal oxides, firing at a high temperature and causing element diffusion at the contact interface can cause a plurality of types of metal oxide particles to be dissolved. Yes, it cannot be dissolved by simply pressurizing.
  • the formation of the crystal part can be confirmed by a transmission electron microscope (Transmission Electron Microscope: TEM). Specifically, the crystal part is confirmed by “judgment criteria” and “observation conditions” described in the Examples section. be able to.
  • TEM Transmission Electron Microscope
  • Both the first active material and the second active material are preferably active materials capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the periodic table.
  • the first electrode active material expands during charging (expands by charging) and contracts during discharging (shrinks by discharging).
  • the first electrode active material expands by charging because lithium ions (cations) contained in the active material are extracted from the crystal lattice by charging, and the negatively charged crystal structure skeleton is electrostatically repelled.
  • the former is dominant among the lattice volume contraction force caused by the decrease of the ion radius. It is because it becomes.
  • the first electrode active material contracts due to discharge because the lithium ions are inserted into the crystal lattice by the discharge and the electrostatic repulsion is alleviated, and the active volume includes the contraction force of the lattice volume. This is because metal ions other than lithium ions are reduced for charge compensation, and the former is dominant among the expansion forces of the lattice volume caused by the increase of the ion radius.
  • the second electrode active material contracts during charging and expands during discharging.
  • the second electrode active material contracts due to charging because lithium ions (cations) contained in the active material are extracted from the crystal lattice by charging, and the negatively charged crystal structure skeleton is electrostatically repelled.
  • the lattice volume expansion force and the contraction force of the lattice volume that occurs when metal ions other than lithium contained in the active material are oxidized for charge compensation and the ion radius decreases the latter is dominant. It is because it becomes.
  • the second electrode active material expands due to discharge because the lithium ions are inserted into the crystal lattice by the discharge and the electrostatic repulsion is mitigated, and the contraction force of the lattice volume is included in the active material. This is because metal ions other than lithium ions are reduced for charge compensation, and the latter is more dominant among the expansion forces of the lattice volume caused by the increase of the ion radius.
  • the first active material is preferably a lithium cobalt oxide and the second active material is preferably a lithium nickel oxide.
  • the lithium cobalt oxide is a compound containing at least lithium, cobalt, and an oxygen atom, and other atoms contained in the compound include transition metal elements such as manganese and iron, and Aluminum etc. are mentioned.
  • nickel can also be included as long as it is the same content as cobalt or less than cobalt.
  • the lithium nickel-based oxide is a compound containing at least lithium, nickel, and an oxygen atom, and other atoms contained in the compound include transition metal elements such as manganese and iron, and Aluminum etc. are mentioned.
  • cobalt can also be included if it is the same amount as nickel or less than nickel.
  • the first electrode active material particles and the second electrode active material particles have the same structure because they can be prepared separately, mixed and then heat-treated to form a solid solution and form a crystal part. It is preferable.
  • the first electrode active material particles and the second electrode active material particles particularly have a layered rock salt structure from the viewpoint of battery performance including ease of formation of crystal parts at the interface, capacity and cycle characteristics. It preferably includes a crystal phase having
  • first electrode active material examples include LiCoO 2 and element substitution products thereof.
  • second electrode active material examples include LiNiO 2 , LiMn 2 O 4, and element substitution products thereof.
  • the shape of the electrode active material is not particularly limited, but is preferably particulate.
  • the volume average particle diameter (sphere conversion average particle diameter) of the electrode active material is not particularly limited.
  • the volume average particle diameter of the first electrode active material particles and the second electrode active material particles can both be 0.01 to 10 ⁇ m.
  • the ratio between the volume average particle diameter of the first electrode active material particles and the volume average particle diameter of the second electrode active material particles is not particularly limited.
  • the volume average particle diameter of the first electrode active material particles and the volume of the second electrode active material particles is preferably 1: 0.001 to 10, and 1: It is more preferably 0.01 to 10, more preferably 1: 0.1 to 1, and particularly preferably 1: 0.1 to less than 1.
  • the volume average particle size of the second electrode active material particles and the volume average particle size of the first electrode active material particles Is preferably 1: 0.001 to 10, more preferably 1: 0.01 to 10, particularly preferably 1: 0.1 to 1, and 1: 0. It is particularly preferably 1 to less than 1.
  • the term “coating” is meant to include not only the form covering the entire surface of the particle but also the form covering a part of the particle surface.
  • an ordinary pulverizer or classifier may be used for the sintered body of active material particles obtained by a solid phase method or the like.
  • the electrode active material obtained by firing may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution or an organic solvent.
  • the volume average particle diameter (sphere-converted average particle diameter) of the electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
  • each of the first electrode active material and the second electrode active material may be used alone or in combination of two or more.
  • a part of the first electrode active material and a part of the second electrode active material may be aggregated with each other.
  • the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be determined appropriately according to the designed battery capacity.
  • the content of the electrode active material in the solid electrolyte composition is not particularly limited, and when the solid content is 100% by mass, the total amount of the first electrode active material and the second electrode active material is 10 to 95% by mass. It is preferably 20 to 90% by mass.
  • the ratio between the content of the first electrode active material and the content of the second electrode active material is not particularly limited, but is preferably 90:10 to 10:90, and is 80:20 to 20:80. It is more preferable that the ratio is 60:40 to 40:60.
  • a part of the particles constituting the first active material and the part of the particles constituting the second active material are in contact with each other. The interface where the particles constituting the active material 2 come into contact is solidified to form a crystal part.
  • the interface where the particles constituting the first active material and the particles constituting the second active material contact 20% or more of the interface is preferably solid solution, more preferably 50% or more, and 70 % Or more is particularly preferable.
  • the upper limit is not particularly limited, but 95% or less is practical.
  • the electrode active material for a secondary battery of the present invention is not limited to an all-solid secondary battery, and is used, for example, in an electrode active material layer of a lithium ion non-aqueous secondary battery using an organic electrolyte as an electrolyte. be able to.
  • the particles constituting the first active material are coated with the particles constituting the second active material, since the volume changes of the first and second active materials can be efficiently offset.
  • the particles constituting the second active material are coated with the particles constituting the first active material.
  • the electrode active material for a secondary battery of the present invention is preferably used as a positive electrode active material.
  • a general negative electrode active material described below can be used for the negative electrode.
  • the electrode active material for secondary battery of the present invention can also be used as a negative electrode active material.
  • a combination other than the above specific examples can also be used as long as it is a combination of active materials that satisfies the requirements of the present invention.
  • the negative electrode active material that can be used for the negative electrode active material layer of the all-solid-state secondary battery of the present invention will be described.
  • the negative electrode active material is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a metal oxide such as tin oxide, a silicon oxide, a metal composite oxide, a lithium simple substance and a lithium alloy such as a lithium aluminum alloy, and , Metals such as Sn, Si, and In that can form an alloy with lithium.
  • a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability.
  • the metal composite oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), PAN (polyacrylonitrile) -based resin, furfuryl alcohol resin, etc.
  • the carbonaceous material which baked resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. Examples thereof include mesophase microspheres, graphite whiskers, and flat graphite.
  • an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
  • an amorphous oxide of a metalloid element and a chalcogenide are more preferable.
  • Ga, Si, Sn, Ge, Pb, Sb and Bi are used alone or in combination of two or more thereof, and chalcogenides are particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during the insertion and release of lithium ions, and the deterioration of the electrodes is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • the shape of the negative electrode active material is not particularly limited, but is preferably particulate.
  • the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • a normal pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, and a sieve are preferably used.
  • pulverizing wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the average particle diameter of the negative electrode active material particles can be measured by the same method as the method for measuring the volume average particle diameter of the electrode active material described above.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centered on Sn, Si, and Ge include carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloys, and lithium. An alloyable metal is preferable.
  • a Si-based negative electrode it is preferable to apply a Si-based negative electrode.
  • a Si negative electrode can occlude more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the amount of Li ion occlusion per unit weight increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
  • the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
  • the content of the negative electrode active material layer in the solid electrolyte composition for producing the negative electrode active material layer is not particularly limited, and is preferably 10 to 80% by mass at a solid content of 100% by mass, and 20 to 80%. % By mass is more preferable, 30 to 80% by mass is more preferable, and 40 to 75% by mass is further preferable.
  • the solid electrolyte composition of the present invention may contain a binder.
  • a binder By being contained in the solid electrolyte composition, solid particles such as an inorganic solid electrolyte and an active material can be firmly bound, and the interface resistance between the solid particles can be reduced.
  • a resin may be used as a term having the same meaning as a polymer.
  • the binder used in the present invention is not particularly limited as long as it is an organic polymer.
  • the binder that can be used in the present invention is preferably a binder that is usually used as a binder for a positive electrode or a negative electrode of a battery material, and is not particularly limited.
  • the resin constituting the binder is, for example, a fluorine-based resin (for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP)), hydrocarbon-based resin.
  • a fluorine-based resin for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP)
  • hydrocarbon-based resin for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP)
  • hydrocarbon-based resin for example, polytetrafluoroethylene (PTFE), poly
  • Resin for example, polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, polyisoprene), acrylic resin (preferably acrylic latex), styrene resin, Amide resin, imide resin, urethane resin (preferably urethane latex), urea resin (preferably urea latex), polyester resin, polyether resin, phenol resin, epoxy Shi resins, polycarbonate resins, and silicone resins or combinations thereof.
  • SBR styrene butadiene rubber
  • HSBR hydrogenated styrene butadiene rubber
  • acrylic resin preferably acrylic latex
  • styrene resin Amide resin, imide resin, urethane resin (preferably urethane latex), urea resin (preferably urea latex)
  • polyester resin polyether resin, phenol resin, epoxy Shi resin
  • a binder may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the binder used in the present invention has a partial structure represented by the following formula (I).
  • R represents a hydrogen atom or a monovalent organic group.
  • Examples of the polymer having a partial structure represented by the formula (I) include a polymer having an amide bond, a polymer having a urea bond, a polymer having an imide bond, and a polymer having a urethane bond.
  • At least one binder contained in at least one of the positive electrode active material layer and the negative electrode active material layer has a partial structure represented by the formula (I). More preferably, all binders contained in the material layer have a partial structure represented by the formula (I).
  • Examples of the organic group in R include an alkyl group, an alkenyl group, an aryl group, and a heteroaryl group.
  • R is preferably a hydrogen atom.
  • polymer having an amide bond examples include polyamide and polyacrylamide.
  • Polyamide can be obtained by condensation polymerization of a diamine compound and a dicarboxylic acid compound or ring-opening polymerization of a lactam.
  • diamine compound examples include ethylenediamine, 1-methylethyldiamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine.
  • aliphatic diamine compounds such as dodecamethylenediamine, cyclohexanediamine, bis- (4,4′-aminohexyl) methane, and paraxylylenediamine.
  • a diamine having a polypropyleneoxy chain for example, a commercially available product “Jeffamine” series (trade name, manufactured by Huntsman, Mitsui Chemicals Fine) can be used.
  • Examples of “Jeffamine” series include Jeffermin D-230, Jeffermin D-400, Jeffermin D-2000, Jeffermin XTJ-510, Jeffermin XTJ-500, Jeffermin XTJ-501, Jeffermin XTJ-502 , Jeffamine HK-511, Jeffamine EDR-148, Jeffamine XTJ-512, Jeffamine XTJ-542, Jeffamine XTJ-533, Jeffamine XTJ-536, and the like.
  • dicarboxylic acid compound examples include, for example, aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, sebacic acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadioic acid, dodecadioic acid, and dimer acid, 1,4 -Cyclohexanedicarboxylic acid, paraxylylene dicarboxylic acid, metaxylylene dicarboxylic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid.
  • aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, sebacic acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadioic acid, dodecadioic acid, and dimer acid
  • polyacrylamide examples include polyethylene glycol monomethyl ether acrylamide, polypropylene glycol monomethyl ether acrylamide, polyethylene glycol monomethyl ether methacrylamide, polypropylene glycol monomethyl ether methacrylamide, polyester methacrylamide, polycarbonate methacrylamide and the like.
  • Polyurea may be mentioned as a polymer having a urea bond.
  • Polyurea can be synthesized by condensation polymerization of a diisocyanate compound and a diamine compound in the presence of an amine catalyst.
  • Specific examples of the diisocyanate compound are not particularly limited and may be appropriately selected depending on the intended purpose.
  • Examples thereof include 2,4-tolylene diisocyanate, dimer of 2,4-tolylene diisocyanate, 2,6- Tolylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate, 3,3'-dimethylbiphenyl-4,4'-diisocyanate Aromatic diisocyanate compounds such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, dimer acid diisocyanate; isophorone diisocyanate, 4,4′-methylenebis Cyclohexyl isocyanate), methylcyclohexane-2,4 (or 2,6) -diyl diisocyanate, 1,3- (isocyanatomethyl) cyclohexane, and the
  • diamine compound examples include the compound examples described above.
  • a polyimide which has an imide bond
  • a polyimide is obtained by ring-closing after forming a polyamic acid by addition-reacting a tetracarboxylic dianhydride and a diamine compound.
  • tetracarboxylic dianhydrides include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) and pyromellitic dianhydride (PMDA), 2,3,3.
  • a-BPDA 4', 4'-biphenyltetracarboxylic dianhydride
  • a-BPDA oxydiphthalic dianhydride
  • bis (3,4- Dicarboxyphenyl) sulfide dianhydride 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis ( 3,4-dicarboki Siphenyl) propane dianhydride, p-phenylenebis (trimellitic acid monoester acid anhydride), p-
  • the tetracarboxylic acid component preferably contains at least one of s-BPDA and PMDA.
  • s-BPDA is preferably 50 mol% or more, more preferably 70 mol% or more in 100 mol% of the tetracarboxylic acid component. Especially preferably, it contains 75 mol% or more.
  • the tetracarboxylic dianhydride preferably has a rigid benzene ring.
  • the diamine compound preferably has a structure having amino groups at both ends of a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, or a polyester chain.
  • Polyurethane which has a urethane bond
  • a polyurethane is mentioned.
  • Polyurethane is obtained by condensation polymerization of a diisocyanate compound and a diol compound in the presence of a titanium, tin, or bismuth catalyst.
  • the diisocyanate compound include the compound examples described above.
  • diol compound examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, and polyethylene glycol (for example, average molecular weight 200, 400, 600, 1000, 1500, 2000, 3000, 7500 Polyethylene glycol), polypropylene glycol (for example, polypropylene glycol with an average molecular weight of 400, 700, 1000, 2000, 3000, or 4000), neopentyl glycol, 1,3-butylene glycol, 1,4-butanediol, 1,3 -Butanediol, 1,6-hexanediol, 2-butene-1,4-diol, 2,2,4-trimethyl-1,3-pentanediol, 1,4-bis- -Hydroxyethoxycyclohexane, cyclohexanedimethanol, tricyclodecane dimethanol, hydrogenated bisphenol A, hydrogenated bis
  • the diol compound is also available as a commercial product, and examples thereof include polyether diol compounds, polyester diol compounds, polycarbonate diol compounds, polyalkylene diol compounds, and silicone diol compounds.
  • the diol compound preferably has at least one of a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, a polyester chain, a polybutadiene chain, a polyisoprene chain, a polyalkylene chain, and a silicone chain.
  • diol compounds have carbon-carbon unsaturated bonds and polar groups (alcoholic hydroxyl groups, phenolic hydroxyl groups, thiol groups, carboxyl groups, sulfonic acid groups, from the viewpoint of improving adsorptivity with sulfide-based solid electrolytes and active materials.
  • diol compound for example, 2,2-bis (hydroxymethyl) propionic acid can be used.
  • diol compound containing a carbon-carbon unsaturated bond commercially available products such as Blemmer GLM (manufactured by NOF Corporation) and JP-A No. 2007-187836 can be preferably used.
  • monoalcohol or monoamine can be used as a polymerization terminator.
  • the polymerization terminator is introduced into the terminal site of the polyurethane main chain.
  • Polyalkylene glycol monoalkyl ether polyethylene glycol monoalkyl ether and polypropylene monoalkyl ether are preferred
  • polycarbonate diol monoalkyl ether polycarbonate diol monoalkyl ether
  • polyester diol monoalkyl ether polyester monoalcohol, etc.
  • a monoalcohol or monoamine having a polar group or carbon-carbon unsaturated bond it is possible to introduce a polar group or carbon-carbon unsaturated bond at the end of the polyurethane main chain.
  • 2-cyano Examples include ethanol, 3-hydroxyglutaronitrile, 2-aminoethanol, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, N-methacrylenediamine, and the like.
  • the binder used in the present invention is a polymer particle that maintains the particle shape.
  • the “polymer particles” refer to particles that do not completely dissolve even when added to the dispersion medium described later, and are dispersed in the dispersion medium in the form of particles and exhibit an average particle diameter of more than 0.01 ⁇ m.
  • the average particle size of the polymer particles is preferably 0.01 ⁇ m to 100 ⁇ m, more preferably 0.05 ⁇ m to 50 ⁇ m, and even more preferably 0.05 ⁇ m to 20 ⁇ m. It is preferable from a viewpoint of an output density improvement that an average particle diameter exists in the said preferable range.
  • at least one of the binders contained in at least one of the positive electrode active material layer and the negative electrode active material layer is polymer particles having an average particle diameter of 0.05 ⁇ m to 20 ⁇ m. More preferably, all the binders contained in the active material layer are polymer particles having an average particle diameter of 0.05 ⁇ m to 20 ⁇ m.
  • the average particle size of the polymer particles used in the present invention shall be based on the measurement conditions and definitions described below.
  • the polymer particles are prepared by diluting a 1% by weight dispersion in a 20 ml sample bottle using any solvent (dispersion medium used to prepare the solid electrolyte composition, such as heptane).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • the measurement from the produced all-solid-state secondary battery is performed, for example, after disassembling the battery and peeling off the electrode, then measuring the electrode material according to the method for measuring the average particle diameter of the polymer particles, This can be done by eliminating the measured value of the average particle diameter of the particles other than the polymer particles that have been measured.
  • the structure of the polymer particle is not particularly limited as long as it is an organic polymer particle.
  • the resin constituting the organic polymer particles include the resins described as the resin constituting the binder, and preferred resins are also applied.
  • the shape of the polymer particles is not limited as long as they are solid.
  • the polymer particles may be monodispersed or polydispersed.
  • the polymer particles may be spherical or flat and may be amorphous.
  • the surface of the polymer particles may be smooth or may have an uneven shape.
  • the polymer particles may have a core-shell structure, and the core (inner core) and the shell (outer shell) may be made of the same material or different materials. Moreover, it may be hollow and the hollow ratio is not limited.
  • the polymer particles can be synthesized by a method of polymerizing in the presence of a surfactant, an emulsifier or a dispersant, or a method of depositing in a crystalline form as the molecular weight increases. Moreover, you may use the method of crushing the existing polymer mechanically, and the method of making a polymer liquid fine particle by reprecipitation.
  • polymer particles for example, commercially available products can be used, and specific examples include the following commercially available products (all are trade names, and the numerical values in parentheses indicate the average particle diameter).
  • the polymer particles that can be used in the present invention are not limited to these.
  • Fluorine resin particle microdispers series (manufactured by Techno Chemical Co., for example, microdispers-200 (PTFE particles, 200 nm), microdispers-3000 (PTFE particles 3 ⁇ m), microdispers-8000 (PTFE particles, 8 ⁇ m) )), Disperse Easy-300 (PTFE particles, 200 nm, manufactured by Techno Chemical Co., Ltd.), Fluon AD series (manufactured by Asahi Glass Co., Ltd., for example, Fluon AD911E, FluonAD915E, FluonAD916E, FluonAD939E), Algoflon series (manufactured by Solvay, for example, Algoflon F (PTFE particles, 15 to 35 ⁇ m), Algoflon S (PTFE particles, 15 to 35 ⁇ m)), Lubron series (Daikin, for example, Lubron L-2 (PTFE particles, 3.5 ⁇ m), Lubron L-5 (PTFE particles, 5 ⁇ m), Lubron L-5F (
  • Hydrocarbon resin particle soft beads Saixen (polyolefin emulsion), Sepoljon G (polyolefin emulsion), Sepolex IR100 (polyisoprene latex), Sepolex CSM (chlorosulfonated polyethylene latex), Flowsen (polyethylene powder), Flowsen UF (polyethylene) Powder), flowbrene (polypropylene powder), flow beads (polyethylene-acrylic copolymer powder) (all manufactured by Sumitomo Seika Co., Ltd.)
  • Acrylic resin particle art pearl series (manufactured by Negami Kogyo Co., Ltd., for example, art pearl GR, art pearl SE, art pearl G, art pearl GR, art pearl GS, art pearl J, art pearl MF, art pearl BE), Tuftic series (Toyobo, for example, Tufic AR-650, Tufic AR-750, Tuftic FH-S), Chemisnow series (manufactured by Soken Chemical, for example, Chemisnow MP-1451, Chemisnow MP-2200, Chemisnow MP-1000, Chemisnow MP-2701, Chemisnow MP-5000, Chemisnow MP-5500, Chemisnow MP-300, Chemisnow KMR-3TA , Chemisnow MX-80H3wT, Chemisnow MX-150, Chemisnow MX-180TA, Chemisnow MX-300, Chemisnow MX-500, Chemisnow MX-500H, Chemisnow MX-1000, Chemisnow MX-1500H, Chemisnow MX-2000, Ch
  • acrylic resin particles it is also preferable to use the acrylic resin particles described in International Publication No. 2015/046314.
  • Sephojon PA copolymerized nylon emulsion, manufactured by Sumitomo Seika Co., Ltd.
  • Trepearl PAI polyamideimide particles, manufactured by Toray Industries, Inc.
  • polyimide powder P84 (R) NT manufactured by Daicel Evonik
  • Polyimide powder PIP-3 manufactured by Daicel Evonik
  • Polyimide powder PIP-25 manufactured by Daicel Evonik
  • Polyimide powder PIP-60 all manufactured by Seishin Enterprise Co., Ltd.
  • Polyimide powder UIP-R Polyimide powder UIP-S (both manufactured by Ube Industries)
  • Art Pearl Series Negami Kogyo Co., Ltd., for example, Art Pearl C, Art Pearl P, Art Pearl JB, Art Pearl U, Art Pearl CE, Art Pearl AK, Art Pearl HI, Art Pearl MM, Art Pearl FF,
  • urea-based resin particles polymer particles having a urea bond described in International Publication No. 2015/046313 are preferably used.
  • Polyester resin particle Sepulsion ES (copolyester emulsion, manufactured by Sumitomo Seika Co., Ltd.)
  • Trepearl PPS polyphenylene sulfide particles, manufactured by Toray Industries, Inc.
  • Trepal PES Polyethersulfone particles, manufactured by Toray Industries, Inc.
  • Phenol resin particles LPS series (manufactured by Lignite), Marilyn FM series (manufactured by Gunei Chemical Industry), Marilyn HF series (manufactured by Gunei Chemical Industry)
  • Polycarbonate resin particle is compoundable by the method as described in international publication 2011/004730 pamphlet, for example. Specifically, it is possible to polymerize by reacting an epoxy compound with carbon dioxide.
  • Silicone resin particle Seahoster KE series (manufactured by Nippon Shokubai Co., Ltd., for example, Seahoster KE-E series, Seahoster KE-W series, Seahoster KE-P series, Seahoster KE-S series), Silicone composite powder series (for example, silicone composite powder KMP-600, silicone composite powder KMP-601, silicone composite powder KMP-602, silicone composite powder KMP-605, silicone composite powder X-52-7030), silicone resin powder series ( For example, silicone resin powder KMP-590, silicone resin powder KMP-701, silicone resin powder X-52-854, silicone resin powder X-52-1621), silicone rubber powder series (for example, silicone rubber powder KMP-597, silicone Rubber powder KMP-598, silicone rubber powder KMP-594, silicone rubber powder X-52-875 ), Charine R-170S (silicone acrylic copolymer, manufactured by Nissin Chemical Industry Co., Ltd.)
  • the upper limit of the glass transition temperature of the binder is preferably 50 ° C. or lower, more preferably 0 ° C. or lower, and most preferably ⁇ 20 ° C. or lower.
  • the lower limit is preferably ⁇ 100 ° C. or higher, more preferably ⁇ 70 ° C. or higher, and particularly preferably ⁇ 50 ° C. or higher.
  • the glass transition temperature (Tg) is measured under the following conditions using a dry sample and a differential scanning calorimeter “X-DSC7000” (trade name, manufactured by SII Nanotechnology). The measurement is performed twice on the same sample, and the second measurement result is adopted. Measurement chamber atmosphere: Nitrogen (50 mL / min) Temperature increase rate: 5 ° C / min Measurement start temperature: -100 ° C Measurement end temperature: 200 ° C Sample pan: Aluminum pan Mass of measurement sample: 5 mg Calculation of Tg: Tg is calculated by rounding off the decimal point of the intermediate temperature between the lowering start point and the lowering end point of the DSC chart.
  • the water concentration of the polymer (preferably polymer particles) constituting the binder used in the present invention is preferably 100 ppm (mass basis) or less, and Tg is preferably 100 ° C. or less.
  • the polymer which comprises the binder used for this invention may be crystallized and dried, and the polymer solution may be used as it is. It is preferable that the amount of metal catalyst (urethane-forming, polyester-forming catalyst, tin, titanium, bismuth catalyst) is small. It is preferable that the metal concentration in the copolymer be 100 ppm (mass basis) or less by reducing the amount during polymerization or removing the catalyst by crystallization.
  • the solvent used for the polymerization reaction of the polymer is not particularly limited. It is desirable to use a solvent that does not react with the inorganic solid electrolyte or the active material and that does not decompose them.
  • a solvent that does not react with the inorganic solid electrolyte or the active material and that does not decompose them.
  • hydrocarbon solvents toluene, heptane, xylene
  • ester solvents ethyl acetate, propylene glycol monomethyl ether acetate
  • ether solvents tetrahydrofuran, dioxane, 1,2-diethoxyethane
  • ketone solvents acetone
  • Methyl ethyl ketone Methyl ethyl ketone, cyclohexanone
  • nitrile solvents acetonitrile, propionitrile, butyronitrile, isobutyronitrile
  • halogen solvents dichloromethane
  • the polymer constituting the binder used in the present invention preferably has a mass average molecular weight of 10,000 or more, more preferably 20,000 or more, and even more preferably 50,000 or more. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, and 100,000 or less is more preferable.
  • the molecular weight of the polymer means a mass average molecular weight unless otherwise specified. The mass average molecular weight can be measured as a molecular weight in terms of polystyrene by GPC.
  • GPC apparatus HLC-8220 manufactured by Tosoh Corporation
  • the column is G3000HXL + G2000HXL
  • the flow rate is 1 mL / min at 23 ° C.
  • detection is performed by RI.
  • the eluent can be selected from THF (tetrahydrofuran), chloroform, NMP (N-methyl-2-pyrrolidone), m-cresol / chloroform (manufactured by Shonan Wako Pure Chemical Industries, Ltd.). Will be used.
  • the content of the binder in each layer of the positive electrode active material layer and the negative electrode active material layer is determined based on the total solid components of the contained layer in consideration of the good reduction in the interfacial resistance and the sustainability of the all solid state secondary battery. On the other hand, 0.01 mass% or more is preferable, 0.1 mass% or more is more preferable, and 1 mass% or more is further more preferable.
  • the upper limit is preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, and particularly preferably 2% by mass or less from the viewpoint of battery characteristics.
  • the solid electrolyte composition of the present invention may contain an inorganic solid electrolyte.
  • the “solid electrolyte” of the inorganic solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). Further, since the inorganic solid electrolyte is solid in a steady state, it is not dissociated or released into cations and anions.
  • inorganic electrolyte salts LiPF 6 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.
  • LiPF 6 lithium bis (fluorosulfonyl) imide
  • LiFSI lithium bis (fluorosulfonyl) imide
  • LiCl LiCl
  • the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metal elements belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
  • the inorganic solid electrolyte preferably has an ionic conductivity of lithium ions.
  • inorganic solid electrolyte a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used.
  • Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes.
  • Sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ionic conductivity of a metal element belonging to Group 1 or Group 2 of the periodic table, And what has electronic insulation is preferable.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li and S as elements and has lithium ion conductivity.
  • the sulfide-based inorganic solid electrolyte may contain other elements other than Li and S. Good.
  • a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (1) can be mentioned, which is preferable.
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, P, Ge, In, As, V, Nb, Ta, Ti, and Zr. Among these, B, Sn, Si, Al, P or Ge is preferable, and Sn, Al, P or Ge is more preferable.
  • A represents I, Br, Cl or F, preferably I or Br, and particularly preferably I.
  • L, M, and A can each be one or more of the above elements.
  • a1 to d1 indicate the composition ratio of each element, and a1: b1: c1: d1 satisfies 1 to 12: 0 to 2: 2 to 12: 0 to 5.
  • a1 is further preferably 1 to 9, and more preferably 1.5 to 4.
  • b1 is preferably 0 to 1.
  • c1 is preferably 3 to 7, and more preferably 3.25 to 4.5.
  • d1 is preferably 0 to 3, more preferably 0 to 1.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described later.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized.
  • glass glass
  • glass ceramic glass ceramic
  • Li—PS system glass containing Li, P, and S or Li—PS system glass ceramics containing Li, P, and S can be used.
  • the sulfide-based inorganic solid electrolyte includes [1] lithium sulfide (Li 2 S) and phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), [2] lithium sulfide and at least one of simple phosphorus and simple sulfur, Or [3] It can be produced by the reaction of lithium sulfide, phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), at least one of elemental phosphorus and elemental sulfur.
  • the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 65:35 to 85:15, more preferably 68:32 to 77:23.
  • the lithium ion conductivity can be further increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • the sulfide-based inorganic solid electrolyte include, for example, those using a raw material composition containing Li 2 S and a sulfide of an element belonging to Group 13 to Group 15. it can. More specifically, Li 2 S—P 2 S 5 , Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5- SiS 2 , Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—GeS 2 , Li 2 S—GeS 2 —ZnS, Li 2 S— Ga 2 S 3 , Li 2 S—GeS 2 —G
  • Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method.
  • Examples of the amorphization method include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because processing at room temperature is possible, and the manufacturing process can be simplified. Among these, Li 2 S—P 2 S 5 , LGPS (Li 10 GeP 2 S 12 ), Li 2 S—P 2 S 5 —SiS 2 and the like are preferable.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ionic conductivity of a metal element belonging to Group 1 or Group 2 of the periodic table, And what has electronic insulation is preferable.
  • the oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 5 ⁇ 10 ⁇ 6 S / cm or more, and 1 ⁇ 10 ⁇ 5 S. / Cm or more is particularly preferable.
  • the upper limit is not particularly limited, but it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li xa La ya TiO 3 [xa satisfies 0.3 ⁇ xa ⁇ 0.7, and ya satisfies 0.3 ⁇ ya ⁇ 0.7.
  • LLT Li xb La yb Zr zb M bb mb Onb
  • M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn
  • Xb satisfies 5 ⁇ xb ⁇ 10
  • yb satisfies 1 ⁇ yb ⁇ 4
  • zb satisfies 1 ⁇ zb ⁇ 4
  • mb satisfies 0 ⁇ mb ⁇ 2
  • nb satisfies 5 ⁇ nb ⁇ 20.
  • Li xc B yc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn.
  • Xc is 0 ⁇ xc ⁇ 5
  • Yc satisfies 0 ⁇ yc ⁇ 1,
  • zc satisfies 0 ⁇ zc ⁇ 1,
  • nc satisfies 0 ⁇ nc ⁇ 6
  • Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md Ond (xd satisfies 1 ⁇ xd ⁇ 3, yd Satisfies 0 ⁇ yd ⁇ 1, zd satisfies 0 ⁇ zd ⁇ 2, ad satisfies 0 ⁇ ad ⁇ 1, md satisfies 1 ⁇ md ⁇ 7, and nd satisfies 3 ⁇
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by substituting a part of oxygen of lithium phosphate with nitrogen
  • LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, And at least one element selected from Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au.
  • LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C, and Ga) can be preferably used.
  • LLT Li xb La yb Zr zb M bb mb O nb
  • LLZ Li 3 BO 3, Li 3 BO 3 -Li 2 SO 4, Li xd (Al , Ga) yd (Ti, Ge) zd Si ad P md O nd (xd, yd, zd, ad, md and nd are as defined above.) is preferred, LLZ, LLT LAGP (Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ) or LATP ([Li 1.4 Ti 2 Si 0.4 P 2.6 O 12 ] —AlPO 4 ) is more preferable.
  • the inorganic solid electrolyte is preferably a particle.
  • the volume average particle diameter of the particulate inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
  • the measurement of the volume average particle diameter of an inorganic solid electrolyte is performed in the following procedures.
  • the inorganic solid electrolyte particles are prepared by diluting a 1 mass% dispersion in a 20 mL sample bottle using water (heptane in the case of a substance unstable to water).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA)
  • data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., Obtain the volume average particle size.
  • JISZ8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level, and the average value is adopted.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition is preferably 5% by mass or more at a solid content of 100% by mass considering the balance between battery performance, reduction in interface resistance, and maintenance effect. % Or more is more preferable, and 20% by mass or more is particularly preferable. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
  • solid content refers to a component that does not volatilize or evaporate when subjected to a drying treatment at 170 ° C. for 6 hours in a nitrogen atmosphere. Typically, it refers to components other than the dispersion medium described below.
  • An inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the solid electrolyte composition of the present invention preferably contains a dispersion medium.
  • the dispersion medium only needs to disperse each of the above components, and examples thereof include various organic solvents. Specific examples of the dispersion medium include the following.
  • Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, Examples include 2-methyl-2,4-pentanediol, 1,3-butanediol, and 1,4-butanediol.
  • ether compound solvents examples include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene.
  • alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene.
  • Glycol monomethyl ether tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.
  • dialkyl ethers dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.
  • cyclic ethers tetrahydrofuran, geo Sun (1,2, including 1,3- and 1,4-isomers of), etc.
  • Examples of the amide compound solvent include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amino compound solvent include triethylamine, diisopropylethylamine, tributylamine and the like.
  • Examples of the ketone compound solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Examples of the aromatic compound solvent include benzene, toluene, xylene and the like.
  • Examples of the aliphatic compound solvent include hexane, heptane, octane, decane, and the like.
  • Examples of the nitrile compound solvent include acetonitrile, propyronitrile, isobutyronitrile, and the like.
  • Examples of the ester compound solvent include ethyl acetate, butyl acetate, propyl acetate, butyl butyrate, and butyl pentanoate.
  • Examples of the non-aqueous dispersion medium include the above aromatic compound solvents and aliphatic compound solvents.
  • the solid electrolyte composition of the present invention may appropriately contain a conductive aid used for improving the electronic conductivity of the active material, as necessary.
  • a conductive aid used for improving the electronic conductivity of the active material
  • a general conductive auxiliary agent can be used.
  • graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fiber and carbon nanotubes, which are electron conductive materials
  • Carbon fibers such as graphene, carbonaceous materials such as graphene and fullerene, metal powders such as copper and nickel, and metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives May be used.
  • 1 type of these may be used and 2 or more types may be used.
  • the content of the conductive auxiliary in the solid electrolyte composition of the present invention
  • the solid electrolyte composition of the present invention preferably contains a lithium salt.
  • a lithium salt the lithium salt normally used for this kind of product is preferable and there is no restriction
  • the content of the lithium salt is preferably 0 parts by mass or more, more preferably 5 parts by mass or more with respect to 100 parts by mass of the solid electrolyte.
  • As an upper limit 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
  • the solid electrolyte composition of the present invention may contain a dispersant.
  • a dispersant By adding a dispersant, even when the concentration of either the electrode active material or the inorganic solid electrolyte is high, the aggregation can be suppressed, and a uniform active material layer and solid electrolyte layer can be formed.
  • the dispersant those usually used for all-solid secondary batteries can be appropriately selected and used. For example, it consists of a low molecule or oligomer having a molecular weight of 200 or more and less than 3000, and contains the functional group represented by the functional group (I) and an alkyl group having 8 or more carbon atoms or an aryl group having 10 or more carbon atoms in the same molecule. Those are preferred.
  • the content of the dispersant in the layer is preferably 0.2 to 10% by mass.
  • the method for bringing the particles constituting the first active material into contact with the particles constituting the second active material is not particularly limited.
  • the particles constituting the first active material and the particles constituting the second active material are mixed at room temperature and baked at 400 ° C. to 1200 ° C. for 0.5 to 5 hours, whereby the first active material And particles constituting the second active material can be brought into contact with each other.
  • the solid electrolyte composition of the present invention comprises an electrode active material (composite electrode active material) formed by contacting particles constituting the first active material and particles constituting the second active material, and optionally binder particles and It can be prepared by mixing or adding other components such as a dispersion medium.
  • seat for all-solid-state secondary batteries is a sheet
  • a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte sheet for an all-solid secondary battery
  • a sheet preferably used for an electrode or a laminate of an electrode and a solid electrolyte layer an electrode sheet for an all-solid secondary battery
  • Etc a sheet preferably used for an all-solid secondary battery
  • these various sheets may be collectively referred to as an all-solid secondary battery sheet.
  • the all-solid-state secondary battery sheet used in the present invention is a sheet having a solid electrolyte layer or an active material layer (electrode layer) on a substrate.
  • the all-solid-state secondary battery sheet may have other layers as long as it has a substrate and a solid electrolyte layer or an active material layer. It classifies into a secondary battery electrode sheet. Examples of other layers include a protective layer, a current collector, and a coat layer (current collector, solid electrolyte layer, active material layer) and the like.
  • Examples of the solid electrolyte sheet for an all-solid secondary battery used in the present invention include a sheet having a solid electrolyte layer and a protective layer in this order on a substrate.
  • the substrate is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include the materials described in the above current collector, sheet materials (plate bodies) such as organic materials and inorganic materials.
  • sheet materials such as organic materials and inorganic materials.
  • organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
  • inorganic material include glass and ceramic.
  • the configuration and layer thickness of the solid electrolyte layer of the all-solid secondary battery sheet are the same as the configuration and layer thickness of the solid electrolyte layer described in the all-solid secondary battery of the present invention.
  • This sheet forms a solid electrolyte layer on a substrate by forming (applying and drying) a solid electrolyte composition for forming a solid electrolyte layer on the substrate (may be through another layer). Is obtained.
  • the solid electrolyte composition of the present invention can be prepared by the above-described method.
  • the electrode sheet for an all-solid-state secondary battery of the present invention is an electrode sheet having an active material layer on a current collector.
  • This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer, and a solid electrolyte layer in this order, and a current collector, an active material layer, and a solid electrolyte
  • the aspect which has a layer and an active material layer in this order is also included.
  • the configuration and the layer thickness of each layer constituting the electrode sheet are the same as the configuration and the layer thickness of each layer described in the all solid state secondary battery of the present invention.
  • the electrode sheet can be obtained by forming the active material layer on the metal foil by forming (coating and drying) the solid electrolyte composition containing the active material of the present invention on the current collector.
  • Manufacture of all-solid-state secondary battery and electrode sheet for all-solid-state secondary battery can be performed by a conventional method. Specifically, the all-solid-state secondary battery and the all-solid-state secondary battery electrode sheet can be manufactured by forming each of the above layers using the solid electrolyte composition of the present invention. This will be described in detail below.
  • the all-solid-state secondary battery of the present invention is produced by a method including (intervening) the step of applying the solid electrolyte composition of the present invention onto a metal foil to be a current collector and forming (forming) a coating film.
  • a solid electrolyte composition containing the electrode active material for a secondary battery of the present invention is applied as a positive electrode material (a composition for a positive electrode layer) onto a metal foil that is a positive electrode current collector, and the positive electrode active material layer To form a positive electrode sheet for an all-solid-state secondary battery.
  • a solid electrolyte composition (a composition for a solid electrolyte layer) for forming a solid electrolyte layer is applied onto the positive electrode active material layer to form a solid electrolyte layer. Furthermore, a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode material (negative electrode layer composition) on the solid electrolyte layer to form a negative electrode active material layer.
  • An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer is obtained by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer. Can do.
  • each layer is reversed, and a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery.
  • Another method includes the following method. That is, a positive electrode sheet for an all-solid secondary battery is produced as described above. Further, a negative electrode active material layer is formed by applying a solid electrolyte composition containing a negative electrode active material as a negative electrode material (a composition for a negative electrode layer) on a metal foil that is a negative electrode current collector. A negative electrode sheet for a secondary battery is prepared. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, the other of the positive electrode sheet for an all solid secondary battery and the negative electrode sheet for an all solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • Another method includes the following method. That is, as described above, a positive electrode sheet for an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery are produced. Separately from this, a solid electrolyte composition is applied on a substrate to produce a solid electrolyte sheet for an all-solid secondary battery comprising a solid electrolyte layer. Furthermore, it laminates
  • An all-solid-state secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet for an all-solid secondary battery are produced. Subsequently, after laminating the solid electrolyte layer peeled off from the base material on the negative electrode sheet for an all solid secondary battery, an all solid secondary battery can be manufactured by pasting the positive electrode sheet for the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for an all-solid secondary battery, and bonded to the negative electrode sheet for an all-solid secondary battery.
  • the method for applying the solid electrolyte composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating. At this time, the solid electrolyte composition may be dried after being applied, or may be dried after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • a dispersion medium By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state. Moreover, it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance is exhibited, and good binding properties and good ionic conductivity can be obtained even without pressure.
  • each layer or all-solid secondary battery After producing the applied solid electrolyte composition or all-solid-state secondary battery. Moreover, it is also preferable to pressurize in the state which laminated
  • An example of the pressurizing method is a hydraulic cylinder press.
  • the applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa. Moreover, you may heat the apply
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • pressing can be performed at a temperature higher than the glass transition temperature of the polymer forming the binder particles.
  • the temperature does not exceed the melting point of the polymer.
  • the pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
  • the atmosphere during pressurization is not particularly limited, and may be any of the following: air, dry air (dew point of ⁇ 20 ° C. or lower), inert gas (for example, argon gas, helium gas, nitrogen gas).
  • the pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more).
  • a restraining tool screw tightening pressure or the like
  • the pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
  • the pressing pressure can be changed according to the area and film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
  • the press surface may be smooth or roughened.
  • the all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
  • the all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military purposes and space. Moreover, it can also combine with a solar cell.
  • An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
  • this invention presupposes an inorganic all-solid-state secondary battery.
  • the all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery using a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state using the above-described Li—PS glass, LLT, LLZ, etc. It is divided into secondary batteries.
  • the application of the polymer compound to the inorganic all-solid secondary battery is not hindered, and the polymer compound can be applied as a binder particle for the positive electrode active material, the negative electrode active material, and the inorganic solid electrolyte particle.
  • the inorganic solid electrolyte is distinguished from the above-described electrolyte (polymer electrolyte) using a polymer compound such as polyethylene oxide as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the above-described Li—PS glass, LLT, and LLZ.
  • the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
  • a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations is sometimes called an electrolyte, but it is distinguished from the electrolyte as the ion transport material.
  • electrolyte salt or “supporting electrolyte”.
  • the electrolyte salt include LiTFSI (lithium bistrifluoromethanesulfonylimide).
  • composition means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
  • a solid electrolyte composition when it is referred to as a solid electrolyte composition, it basically refers to a composition (typically a paste) that is a material for forming a solid electrolyte layer or the like, and an electrolyte layer or the like formed by curing the composition. Shall not be included in this.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • Li 2 S and P 2 S 5 at a molar ratio of Li 2 S: P 2 S 5 75: was 25.
  • LiNi 0.8 Co 0.15 Al 0.05 O 2 having a layered rock salt structure having a layered rock salt structure.
  • the obtained LiCoO 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 were mixed at a mass ratio of 1: 1, and baked in the atmosphere at 900 ° C. for 30 minutes, whereby LiCoO 2 having a layered rock salt structure and LiNi A composite positive electrode active material of 0.8 Co 0.15 Al 0.05 O 2 was obtained.
  • SEM Sccanning Electron Microscope
  • EDX Electronic X-ray
  • LiNi 0.8 Co 0.15 Al 0.05 O 2 having a layered rock salt structure.
  • the obtained LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, 66 zirconia beads having a diameter of 5 mm, and acetone were put into a 45 mL container (manufactured by Fritsch) made of zirconia, and the container was sealed.
  • This container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mechanical milling was performed at a temperature of 25 ° C. and a rotation speed of 400 rpm for 1 hour.
  • LiCoO 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 obtained above are mixed at a mass ratio of 1: 1, and are baked in the atmosphere at 900 ° C. for 1 hour to thereby form a LiCoO 2 having a layered rock salt structure.
  • a composite positive electrode active material of LiNi 0.8 Co 0.15 Al 0.05 O 2 When the obtained active material was observed with SEM-EDX and subjected to elemental analysis, LiCoO 2 primary particles were converted to LiNi 0.8 Co 0.15 Al having a relatively smaller primary particle diameter than LiCoO 2. It was confirmed that 0.05 O 2 was coated to form secondary particles.
  • LiNi 0.5 Mn 1.5 O 4 having a spinel structure was prepared by firing the obtained powder in the atmosphere at 800 ° C. for 10 hours.
  • the obtained powder was baked in the atmosphere at 900 ° C.
  • a composite cathode active material of LiCoO 2 having a layered rock salt structure and LiNi 0.5 Mn 1.5 O 4 having a spinel structure During hydrothermal treatment, LiOH.H 2 O and CoOOH were added so that the mass ratio of LiCoO 2 and LiNi 0.5 Mn 1.5 O 4 was 1: 1.
  • the resulting active material was subjected to a observation and element analysis with SEM-EDX, the upper primary particles of LiNi 0.5 Mn 1.5 O 4, relative than LiNi 0.5 Mn 1.5 O 4 It was confirmed that LiCoO 2 having a small primary particle diameter was coated to form secondary particles.
  • LiNi 0.8 Co 0.15 Al 0.05 O 2 having a layered rock salt structure.
  • the obtained LiCoO 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 were put into an agate mortar and mixed for 10 minutes at room temperature using an agate pestle to obtain a positive electrode active material.
  • LiCoO 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 had the same primary particle size, and LiCoO It was confirmed that the primary particles of No. 2 and the primary particles of LiNi 0.8 Co 0.15 Al 0.05 O 2 aggregated to form secondary particles.
  • the obtained powder was baked in the atmosphere at 800 ° C. for 10 hours to prepare LiCoO 2 having a layered rock salt structure.
  • LiNi 0.5 Mn 1.5 O 4 having a spinel structure was prepared by firing the obtained powder in the atmosphere at 800 ° C. for 10 hours.
  • the obtained LiCoO 2 and LiNi 0.5 Mn 1.5 O 4 were mixed at a mass ratio of 1: 1 and fired in the atmosphere at 900 ° C. for 30 minutes to obtain a composite positive electrode active material.
  • LiCoO 2 and LiNi 0.5 Mn 1.5 O 4 had the same primary particle diameter, and the primary of LiCoO 2 It was confirmed that the particles and primary particles of LiNi 0.5 Mn 1.5 O 4 aggregated to form secondary particles.
  • LiNi 0.5 Mn 1.5 O 4 having a spinel structure was prepared by firing the obtained powder in the atmosphere at 800 ° C. for 10 hours.
  • Example 1 Preparation of composition for negative electrode layer A 180 mL zirconia bead with a diameter of 5 mm was put into a 45 mL container (manufactured by Fritsch), and 1.8 g of the Li—PS system glass synthesized above was used as a binder. 0.2 g of trade name Flow Beads LE-1080 (a binder having a particle shape) manufactured by the company and 12.3 g of isobutyronitrile as a dispersion medium were added. The container was set in a planetary ball mill P-7 manufactured by Fricht Co., and mixing was continued for 2 hours at a temperature of 25 ° C. and a rotational speed of 300 rpm. Similarly, a container was set in the planetary ball mill P-7, and mixing was continued at a temperature of 25 ° C. and a rotation speed of 100 rpm for 10 minutes to prepare a negative electrode layer composition.
  • composition for positive electrode layer A zirconia 45 mL container (manufactured by Fritsch) was charged with 180 pieces of zirconia beads having a diameter of 5 mm, 2.45 g of the Li—PS system glass synthesized above, and Sumitomo Seika as a binder. 0.2 g of trade name Flow Beads LE-1080 manufactured by the company and 12.3 g of isobutyronitrile as a dispersion medium were added. The container was set in a planetary ball mill P-7 manufactured by Frichtu, and mixing was continued for 2 hours at a temperature of 25 ° C. and a rotation speed of 300 rpm.
  • the negative electrode layer composition prepared above was applied onto a copper foil having a thickness of 20 ⁇ m with an applicator (trade name: SA-201 baker type applicator, manufactured by Tester Sangyo Co., Ltd.), heated at 80 ° C. for 1 hour, and further 110 Dry at 1 ° C. for 1 hour. Then, using a heat press machine, it pressurized (600 MPa, 1 minute), heating (120 degreeC), and produced the negative electrode sheet for all the solid secondary batteries which has a laminated structure of a negative electrode active material layer / copper foil.
  • an applicator trade name: SA-201 baker type applicator, manufactured by Tester Sangyo Co., Ltd.
  • the solid electrolyte layer composition prepared above was applied on the negative electrode active material layer prepared above with an applicator, heated at 80 ° C. for 1 hour, and further heated at 110 ° C. for 6 hours.
  • the sheet having the solid electrolyte layer formed on the negative electrode active material layer was pressed (600 MPa, 1 minute) while being heated (120 ° C.) using a heat press machine, and the solid electrolyte layer / negative electrode active material layer / copper foil A negative electrode sheet for an all-solid secondary battery having a laminated structure was produced.
  • the positive electrode layer composition prepared above was applied onto an aluminum foil having a thickness of 20 ⁇ m by an applicator, heated at 80 ° C. for 1 hour, and further dried at 110 ° C. for 1 hour. Then, using a heat press machine, it pressurized (600 MPa, 1 minute), heating (120 degreeC), and produced the positive electrode sheet for all-solid-state secondary batteries which has a laminated structure of a positive electrode active material layer / aluminum foil.
  • the all-solid-state secondary battery sheet in the 2032 type coin case has the configuration shown in FIG. 1, and the all-solid-state secondary battery negative electrode sheet (copper foil / negative-electrode active material layer) / solid electrolyte layer / all-solid-state secondary battery use. It has a laminated structure of positive electrode sheets (positive electrode active material layer / aluminum foil). The thicknesses of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer were 45 ⁇ m, 30 ⁇ m, and 40 ⁇ m, respectively.
  • Examples 2 to 6 and Comparative Examples 1 to 5 The all-solid secondary batteries of Examples 2 to 6 and Comparative Examples 1 to 5 were prepared in the same manner as the all-solid secondary battery of Example 1, except that the positive electrode active material and the binder were changed to the compositions shown in Table 1 below. Each was manufactured.
  • the active material content was set to 80% by mass, as in Example 1.
  • the Li—PS glass synthesized above was contained so as to have a content of 20% by mass.
  • the cycle characteristics of the all solid state secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 5 manufactured above were evaluated. The results are shown in Table 1 below.
  • the volume average particle size in Table 1 below was measured by the method described above.
  • the measuring method of the particle size 3 (average secondary particle size) of the following Table 1 is shown below.
  • the secondary particles of the active material are observed with a scanning electron microscope (SEM), and 10 secondary particles are arbitrarily selected from the secondary particles of the active material.
  • the embodiment includes an electrode layer including a first active material that expands during charging and contracts during discharging, and a second active material that contracts during charging and expands during discharging. It can be seen that all the solid state secondary batteries of Examples 1 to 6 are excellent in cycle characteristics.
  • the cycle characteristics were superior to those of the all-solid-state secondary battery of Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

第1の活物質と第2の活物質とを含有する二次電池用電極活物質であって、第1の活物質は、充電時に膨張し、放電時に収縮し、第2の活物質は、充電時に収縮し、放電時に膨張し、第1の活物質を構成する粒子の一部と第2の活物質を構成する粒子の一部が接触し、これらの粒子が互いに接触する界面が固溶化し、結晶部を形成している二次電池用電極活物質、これを用いた固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池並びに二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法。

Description

二次電池用電極活物質、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法
 本発明は、二次電池用電極活物質、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法に関する。
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充電、放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。このようなリチウムイオン二次電池について、これまでに様々な検討がなされてきた。例えば、特許文献1には、正極活物質として、リチウムコバルト系酸化物、及びフッ素含有ポリマーと反応してその表面にコーティング層を形成したリチウムニッケル系複合酸化物を含有させた正極を有するリチウム二次電池が記載されている。
 しかし、有機電解液は液漏れを生じやすく、また、過充電、過放電により電池内部で短絡が生じ発火するおそれもあり、信頼性と安全性のさらなる向上が求められている。
 かかる状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質、正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。さらに、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車や大型蓄電池等への応用が期待されている。
 このような全固体二次電池において、上記特許文献1と同様に、2種類の活物質を用いることが、提案されている。例えば、特許文献2には、放電時に膨張し充電時に収縮する第一活物質粉末と、放電時に収縮し充電時に膨張する第二活物質粉末と、導電助剤粉末とを含む非焼結体からなる正極活物質層を有する全固体二次電池が記載されている。
特表2015-525950号公報 特開2012-248454号公報
 近年、全固体二次電池の開発が急速に進行しており、全固体二次電池に求められる性能も高くなっている。特に、長期使用の観点から、サイクル特性の向上が望まれる。サイクル特性の向上を検討する上で、電極活物質層では、充放電に伴う活物質の膨張および収縮により、活物質、結着剤および導電助剤等の固体粒子間、全固体二次電池を構成する各層間および/または層-集電体間で剥離が起こり、サイクル特性が低下するという問題がある。
 この問題に対して、上記特許文献2に記載の技術は、全固体二次電池のサイクル特性の向上にある程度の効果が見込まれる。しかしながら、上記特許文献2に記載の全固体二次電池に用いられる活物質は、2種類の正極活物質の単なる混合物であり、上記剥離の抑制は十分とはいえない。
 そこで、本発明は、全固体二次電池に用いる二次電池用電極活物質であって、全固体二次電池のサイクル特性を向上させることができる二次電池用電極活物質を提供することを課題とする。また、本発明は、上記二次電池用電極活物質を用いた、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池を提供することを課題とする。さらに、本発明は、上記二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池それぞれの製造方法を提供することを課題とする。
 本発明者らは、鋭意検討の結果、充電時に膨張し放電時に収縮する活物質(第1の活物質)と、充電時に収縮し放電時に膨張する活物質(第2の活物質)とを含有し、第1の活物質を構成する粒子の一部と第2の活物質を構成する粒子の一部が接触し、第1の活物質を構成する粒子と第2の活物質を構成する粒子とが接触する界面が固溶化し、結晶部を形成している二次電池用電極活物質を含有する全固体二次電池は、サイクル特性に優れること、を見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>第1の電極活物質と第2の電極活物質とを含有する二次電池用電極活物質であって、
 第1の電極活物質は、充電時に膨張し、放電時に収縮し、
 第2の電極活物質は、充電時に収縮し、放電時に膨張し、かつ、
 第1の電極活物質を構成する粒子の一部と第2の電極活物質を構成する粒子の一部とが接触し、第1の電極活物質を構成する粒子と第2の電極活物質を構成する粒子とが接触する界面が固溶化し、結晶部を形成している二次電池用電極活物質。
<2>第1の電極活物質がリチウムコバルト系酸化物であり、第2の電極活物質がリチウムニッケル系酸化物である<1>に記載の二次電池用電極活物質。
<3>第1の電極活物質および第2の電極活物質が層状岩塩型構造を有する結晶相を含む<2>に記載の二次電池用電極活物質。
<4>第1の電極活物質を構成する粒子を第2の電極活物質を構成する粒子が被覆している<1>~<3>のいずれか1つに記載の二次電池用電極活物質。
<5>第2の電極活物質を構成する粒子を第1の電極活物質を構成する粒子が被覆している<1>~<3>のいずれか1つに記載の二次電池用電極活物質。
<6> <1>~<5>のいずれか1つに記載の二次電池用電極活物質と、無機固体電解質とを含む固体電解質組成物。
<7>バインダーを含有する<6>に記載の固体電解質組成物。
<8>バインダーが粒子形状である<7>に記載の固体電解質組成物。
<9>バインダーが、アクリルラテックス、ウレタンラテックスまたはウレアラテックスである<7>または<8>に記載の固体電解質組成物。
<10>バインダーが、下記式(I)で表される部分構造を有するポリマーである<7>~<9>のいずれか1つに記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000002
 式(I)中、Rは水素原子または1価の有機基を表す。
<11> <6>~<10>のいずれか1つに記載の固体電解質組成物の層を集電体上に有する全固体二次電池用電極シート。
<12>正極活物質層、負極活物質層および無機固体電解質層を具備する全固体二次電池であって、正極活物質層および負極活物質層の少なくとも一方が、<6>~<10>のいずれか1つに記載の固体電解質組成物の層である全固体二次電池。
<13>第1の電極活物質を構成する粒子と第2の電極活物質を構成する粒子の接触界面を固溶化する工程を含む、<1>~<5>のいずれか1つに記載の二次電池用電極活物質の製造方法。
<14> <13>に記載の二次電池用電極活物質の製造方法を介して、全固体二次電池用電極シートを製造する全固体二次電池用電極シートの製造方法。
<15> <13>に記載の二次電池用電極活物質の製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、単に「アクリル」又は「(メタ)アクリル」と記載するときは、メタアクリル及び/又はアクリルを意味する。
 本発明の二次電池用電極活物質、固体電解質組成物、および全固体二次電池用電極シートは、全固体二次電池の製造に用いることにより、優れたサイクル特性を有する全固体二次電池を実現することができる。また、本発明の全固体二次電池は、優れたサイクル特性を示す。
 また、本発明の二次電池用電極活物質の製造方法、全固体二次電池用電極シートの製造方法および全固体二次電池の製造方法の各製造方法によれば、それぞれ、上記の本発明の二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池を得ることができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 図2は、実施例で作製した全固体二次電池(コイン電池)を模式的に示す縦断面図である。
 本発明の二次電池用電極活物質は、全固体二次電池の電極シートの構成材料として好適に用いられる。すなわち、少なくとも本発明の二次電池用電極活物質と無機固体電解質とを混合して本発明の固体電解質組成物を調製し、この固体電解質組成物を全固体二次電池の正極活物質層または負極活物質層の形成に用いることができる。
 以下、本発明の好ましい実施形態について、まず、本発明の固体電解質組成物を用いた全固体二次電池について説明する。
[全固体二次電池]
 本発明の全固体二次電池は、正極と、この正極に対向する負極と、正極及び負極の間の固体電解質層とを有する。正極は、正極集電体上に正極活物質層を有する。負極は、負極集電体上に負極活物質層を有する。
 正極活物質層および負極活物質層の少なくとも一方は、本発明の固体電解質組成物で形成される。
 固体電解質組成物で形成された活物質層は、好ましくは、含有する成分種及びその含有量比について、固体電解質組成物の固形分におけるものと同じである。
 以下に、本発明の好ましい実施形態について説明するが、本発明はこれに限定されない。
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に積層してなる構造を有しており、隣接する層同士は直に接触している。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子を供給することができる。図示した全固体二次電池の例では、作動部位6に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。以下、図1の層構成を有する全固体二次電池を全固体二次電池シートと称することもある。
〔正極活物質層、固体電解質層、負極活物質層〕
 全固体二次電池10においては、正極活物質層および負極活物質層の少なくとも一方が本発明の固体電解質組成物で形成されている。
 固体電解質層3は、通常、正極活物質及び/又は負極活物質を含まない。
 本発明において、正極活物質層4が2種類の正極活物質を含み、及び/又は、負極活物質層2が2種類の負極活物質を含む。さらに、正極活物質層4及び負極活物質層2は、無機固体電解質を含む。活物質層が無機固体電解質を含有するとイオン伝導度を向上させることができる。
 正極活物質層4、固体電解質層3及び負極活物質層2が含有する無機固体電解質は、同種であっても異種であってもよい。
 本発明において、正極活物質層及び負極活物質層のいずれか、又は、両方を合わせて、単に、活物質層又は電極活物質層と称することがある。また、正極活物質及び負極活物質のいずれか、又は、両方を合わせて、単に、活物質又は電極活物質と称することがある。
 正極活物質層4、固体電解質層3、負極活物質層2の厚さは特に限定されない。一般的な電池の寸法を考慮すると、上記各層の厚さは10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層4、固体電解質層3及び負極活物質層2の少なくとも1層の厚さが、50μm以上500μm未満であることがさらに好ましい。
〔集電体(金属箔)〕
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタンなどの他に、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル、チタンなどの他に、アルミニウム、銅、銅合金、ステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金、ステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
〔筐体〕
 上記の各層を配置して全固体二次電池の基本構造を作製することができる。用途によってはこのまま全固体二次電池として使用してもよいが、乾電池の形態とするためにはさらに適当な筐体に封入して用いる。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金や、ステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[固体電解質組成物]
 本発明の固体電解質組成物は、上記の通りであり、以下に具体的に説明する。
(活物質)
 本発明の固体電解質組成物は、本発明の二次電池用電極活物質を含有する。本発明の二次電池用電極活物質は、充電時に膨張し、放電時に収縮する第1の電極活物質と、充電時に収縮し、放電時に膨張する第2の電極活物質とを含有する。さらに、本発明の二次電池用電極活物質において、第1の電極活物質を構成する粒子の一部と第2の電極活物質を構成する粒子の一部が接触し、第1の電極活物質を構成する粒子と第2の電極活物質を構成する粒子とが接触する界面が固溶化し、結晶部を形成している。以下、第1の電極活物質を第1の活物質と称することがあり、第2の電極活物質を第2の活物質と称することがある。また、活物質を構成する粒子を活物質粒子とも称する。
 本発明の二次電池用電極活物質に含まれる第1の活物質と第2の活物質は、共に正極活物質であるか、又は、共に負極活物質である。
 上述のように、第1の活物質と第2の活物質とを含有することで、活物質の体積変化が相殺され、活物質間の界面、および活物質と無機固体電解質との界面の剥離を抑制できる。また、第1の活物質粒子の一部と第2の活物質粒子の一部とが固溶化し、結晶部を形成していることにより、第1の活物質粒子と第2の活物質粒子とが互いに剥離しにくくなり活物質の体積変化が効率よく相殺されるだけでなく、活物質の利用効率の低減を抑え、かつ、電子伝導性およびイオン伝導性の良好な界面が形成される。そのため、本発明の全固体二次電池は、加圧によらずに、固体粒子間の接触状態を保持して、電池寿命を長期化することができる(サイクル特性に優れる)。
 ここで、「加圧によらずに」とは、加圧をせずに全固体二次電池を駆動する場合または1MPa以下の圧力をかけて全固体二次電池を駆動する場合を意味する。
 なお、「結晶部」の態様は特に限定されず、一方の活物質粒子の結晶格子中にもう一方の活物質粒子の構成元素が部分的に置換された状態でもよい。また、第1の活物質粒子と第2の活物質粒子とが反応して新たに形成された第3の活物質層が活物質粒子間に存在するような態様であってもよい。
 本明細書において、「固溶」とは、結晶構造が変化することなく格子位置を占める原子の一部が異種原子で統計的に置換されること、あるいは格子間位置に異種原子が統計的に分布することを示す。例えば、活物質が金属酸化物の場合、複数種の金属酸化物を混合後、高温で焼成し、接触界面で元素拡散を生じさせることで、複数種の金属酸化物粒子を固溶させることができ、単に加圧するだけでは固溶させることはできない。
 なお、結晶部を形成していることは、透過型電子顕微鏡(Transmission Electron Microscope:TEM)により確認でき、具体的には実施例の項に記載の「判断基準」および「観察条件」により確認することができる。
 第1の活物質と第2の活物質はいずれも、周期律表第1族又は第2族に属する金属元素のイオンの挿入放出が可能な活物質であることが好ましい。
 本発明の二次電池用電極活物質が含有する電極活物質のうち、第1の電極活物質は、充電時に膨張し(充電により膨張し)、放電時に収縮する(放電により収縮する)。第1の電極活物質が充電により膨張するのは、充電により活物質に含まれるリチウムイオン(陽イオン)が結晶格子から引き抜かれ、負に帯電した結晶構造の骨格が静電反発することなどで生じる格子体積の膨張力と、活物質に含まれるリチウム以外の金属イオンが電荷補償のため酸化され、そのイオン半径が減少することなどで生じる格子体積の収縮力のうち、前者の方が支配的となるためである。また、第1の電極活物質が放電により収縮するのは、放電によりリチウムイオンが結晶格子に挿入され、上記静電反発が緩和されることなどで生じる格子体積の収縮力と、活物質に含まれるリチウム以外の金属イオンが電荷補償のため還元され、そのイオン半径が増大することなどで生じる格子体積の膨張力のうち、前者の方が支配的となるためである。一方、本発明の二次電池用電極活物質が含有する電極活物質のうち、第2の電極活物質は、充電時に収縮し、放電時に膨張する。第2の電極活物質が充電により収縮するのは、充電により活物質に含まれるリチウムイオン(陽イオン)が結晶格子から引き抜かれ、負に帯電した結晶構造の骨格が静電反発することなどで生じる格子体積の膨張力と、活物質に含まれるリチウム以外の金属イオンが電荷補償のため酸化され、そのイオン半径が減少することなどで生じる格子体積の収縮力のうち、後者の方が支配的となるためである。また、第2の電極活物質が放電により膨張するのは、放電によりリチウムイオンが結晶格子に挿入され、上記静電反発が緩和されることなどで生じる格子体積の収縮力と、活物質に含まれるリチウム以外の金属イオンが電荷補償のため還元され、そのイオン半径が増大することなどで生じる格子体積の膨張力のうち、後者の方が支配的となるためである。
 本発明において、容量およびサイクル特性を含む電池性能の観点から、第1の活物質がリチウムコバルト系酸化物であり、かつ、第2の活物質がリチウムニッケル系酸化物であることが好ましい。なお、リチウムコバルト系酸化物とは、少なくとも、リチウムと、コバルトと、酸素原子とを含む化合物であり、他にこの化合物に含まれる原子としては、マンガン及び鉄をはじめとする遷移金属元素、並びにアルミニウムなどが挙げられる。また、コバルトと同量またはコバルトよりも少ない含有量であれば、ニッケルを含むこともできる。一方、リチウムニッケル系酸化物とは、少なくとも、リチウムと、ニッケルと、酸素原子とを含む化合物であり、他にこの化合物に含まれる原子としては、マンガン及び鉄をはじめとする遷移金属元素、並びにアルミニウムなどが挙げられる。また、ニッケルと同量またはニッケルよりも少ない含有量であれば、コバルトを含むこともできる。
 本発明において、別々に調製し、混合後熱処理することにより、固溶化させ、結晶部を形成させることができるため、第1の電極活物質粒子と第2の電極活物質粒子は同じ構造を有することが好ましい。本発明においては、界面での結晶部の形成の容易さ、容量およびサイクル特性を含む電池性能の観点から、特に、第1の電極活物質粒子および第2の電極活物質粒子が層状岩塩型構造を有する結晶相を含むことが好ましい。
 第1の電極活物質の具体例として、LiCoOおよびその元素置換体が挙げられる。また、第2の電極活物質の具体例として、LiNiO、LiMnおよびこれらの元素置換体が挙げられる。
 電極活物質の形状は特に制限されないが粒子状が好ましい。電極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、第1の電極活物質粒子および第2の電極活物質粒子の体積平均粒子径をいずれも0.01~10μmとすることができる。本発明においては、第1の電極活物質粒子の体積平均粒子径と第2の電極活物質粒子の体積平均粒子径との比は特に制限されない。
 後述のように、第1の電極活物質粒子が第2の電極活物質粒子により被覆される場合には、第1の電極活物質粒子の体積平均粒子径と第2の電極活物質粒子の体積平均粒子径との比(第1の電極活物質粒子の体積平均粒子径:第2の電極活物質粒子の体積平均粒子径)は、1:0.001~10であることが好ましく、1:0.01~10であることがより好ましく、1:0.1~1であることがさらに好ましく、1:0.1~1未満であることが特に好ましい。
 一方、第2の電極活物質粒子が第1の電極活物質粒子により被覆される場合には、第2の電極活物質粒子の体積平均粒子径と第1の電極活物質粒子の体積平均粒子径との比は、1:0.001~10であることが好ましく、1:0.01~10であることがより好ましく、1:0.1~1であることが特に好ましく、1:0.1~1未満であることが特に好ましい。
 本発明において「被覆」とは、粒子の表面全体を被覆している形態の他、粒子表面の一部を被覆している形態を含む意味である。
 電極活物質を所定の粒子径にするには、固相法などで得られた活物質粒子の焼結体に対し、通常の粉砕機や分級機を用いればよい。焼成によって得られた電極活物質は、水、酸性水溶液、アルカリ性水溶液または有機溶剤にて洗浄した後使用してもよい。また、電極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。
 第1の電極活物質および第2の電極活物質は、それぞれ1種を単独で用いても、2種以上を組み合わせて用いてもよい。また、本発明の固体電解質組成物において、第1の電極活物質の一部と第2の電極活物質の一部は互いに凝集していてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 電極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、第1の電極活物質および第2の電極活物質の合計で、10~95質量%が好ましく、20~90質量%がより好ましい。
 第1の電極活物質の含有量と第2の電極活物質の含有量との比は特に制限されないが、90:10~10:90であることが好ましく、80:20~20:80であることがより好ましく、60:40~40:60であることが特に好ましい。
 上述のように、本発明においては、第1の活物質を構成する粒子の一部と第2の活物質を構成する粒子の一部が接触し、第1の活物質を構成する粒子と第2の活物質を構成する粒子とが接触する界面が固溶化し、結晶部を形成する。第1の活物質を構成する粒子と第2の活物質を構成する粒子とが接触する界面のうち、界面の20%以上が固溶化していることが好ましく、50%以上がより好ましく、70%以上が特に好ましい。上限は特に制限されないが、95%以下が実際的である。
 本発明の二次電池用電極活物質は、全固体二次電池に限定して用いられるものではなく、例えば、電解質として有機電解液を用いるリチウムイオン非水二次電池の電極活物質層に用いることができる。
 本発明において、第1および第2の活物質の体積変化を効率よく相殺できるため、第1の活物質を構成する粒子を第2の活物質を構成する粒子が被覆していることが好ましい。同様に、第2の活物質を構成する粒子を第1の活物質を構成する粒子が被覆していることも好ましい。
 本発明の二次電池用電極活物質は、正極活物質として用いることが好ましい。本発明の二次電池用電極活物質を正極活物質として用いる場合、負極には以下に記載する一般的な負極活物質を用いることができる。また、本発明の二次電池用電極活物質よりも電位の高い活物質と組み合わせる場合、本発明の二次電池用電極活物質を負極活物質として用いることもできる。
 本発明の要件を満たす活物質の組み合わせであれば、上記の具体例以外の組み合わせも用いることができる。
 以下、本発明の全固体二次電池の負極活物質層に用いることができる負極活物質について説明する。
 負極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体およびリチウムアルミニウム合金等のリチウム合金、並びに、Sn、SiおよびIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵および放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維および活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカーならびに平板状の黒鉛等を挙げることもできる。
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、SbおよびBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、ならびにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、SbおよびSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミルおよび旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式および湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の電極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵および放出できる炭素材料、リチウム、リチウム合金ならびにリチウムと合金可能な金属が好適に挙げられる。
 本発明においては、Si系の負極を適用することが好ましい。一般的にSi負極は、炭素負極(黒鉛およびアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位重量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 負極活物質層を作製するための固体電解質組成物中における負極活物質層の含有量は、特に限定されず、固形分100質量%において、10~80質量%であることが好ましく、20~80質量%がより好ましく、30~80質量%であることがより好ましく、40~75質量%であることがさらに好ましい。
(バインダー)
 本発明の固体電解質組成物は、バインダーを含有してもよい。固体電解質組成物に含有されることで、無機固体電解質や活物質等の固体粒子を強固に結着させ、しかも、固体粒子間等の界面抵抗を低減させることができる。以下、樹脂をポリマーと同義の用語として使用している場合もある。
 本発明に用いられるバインダーは、有機ポリマーであれば特に限定されない。
 本発明に用いることができるバインダーは、通常、電池材料の正極または負極用結着剤として用いられるバインダーが好ましく、特に制限されない。バインダーを構成する樹脂は、例えば、フッ素系樹脂(例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVdF-HFP))、炭化水素系樹脂(例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレン)、アクリル系樹脂(好ましくはアクリルラテックス)、スチレン系樹脂、アミド系樹脂、イミド系樹脂、ウレタン系樹脂(好ましくはウレタンラテックス)、ウレア系樹脂(好ましくはウレアラテックス)、ポリエステル系樹脂、ポリエーテル系樹脂、フェノール樹脂、エポキシ樹脂、ポリカーボネート樹脂、シリコーン樹脂またはそれらの組み合わせなどが挙げられる。
 本発明において、バインダーは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 本発明においては、アクリルラテックス、ウレタンラテックスおよびウレアラテックスからなる群から選択される少なくとも1種を用いることが、全固体二次電池用電極シートの結着性向上(シートのハンドリング性向上)および電池性能の観点から好ましい。
 本発明に用いられるバインダーは、下記式(I)で表される部分構造を有することがさらに好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(I)中、Rは、水素原子または1価の有機基を表す。
 式(I)で表される部分構造を有するポリマーとしては、例えば、アミド結合を有するポリマー、ウレア結合を有するポリマー、イミド結合を有するポリマー、ウレタン結合を有するポリマー等が挙げられる。
 本発明では、正極活物質層および負極活物質層の少なくとも1層に含まれるバインダーの少なくとも1種が、式(I)で表される部分構造を有することが好ましく、正極活物質層および負極活物質層に含まれる全てのバインダーが、式(I)で表される部分構造を有することがより好ましい。
 Rにおける有機基は、アルキル基、アルケニル基、アリール基、ヘテロアリール基が挙げられる。Rはなかでも水素原子が好ましい。
・アミド結合を有するポリマー
 アミド結合を有するポリマーとして、ポリアミド、ポリアクリルアミドなどが挙げられる。
 ポリアミドは、ジアミン化合物とジカルボン酸化合物とを縮合重合するか、ラクタムを開環重合することによって得ることができる。
 ジアミン化合物としては、例えば、エチレンジアミン、1-メチルエチルジアミン、1,3-プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミンなどの脂肪族ジアミン化合物、シクロヘキサンジアミン、ビス-(4,4’-アミノヘキシル)メタン、パラキシリレンジアミンが挙げられる。また、ポリプロピレンオキシ鎖を有するジアミンとして、例えば、上市されている市販品として、「ジェファーミン」シリーズ(商品名、ハンツマン社製、三井化学ファイン社製)を用いることができる。「ジェファーミン」シリーズの例として、ジェファーミンD-230、ジェファーミンD-400、ジェファーミンD-2000、ジェファーミンXTJ-510、ジェファーミンXTJ-500、ジェファーミンXTJ-501、ジェファーミンXTJ-502、ジェファーミンHK-511、ジェファーミンEDR-148、ジェファーミンXTJ-512、ジェファーミンXTJ-542、ジェファーミンXTJ-533、ジェファーミンXTJ-536等が挙げられる。
 ジカルボン酸化合物としては、例えば、マロン酸、コハク酸、グルタル酸、セバシン酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカン酸、ウンデカジオン酸、ドデカジオン酸、ダイマー酸などの脂肪族ジカルボン酸類、1,4-シクロヘキサンジカルボン酸、パラキシリレンジカルボン酸、メタキシリレンジカルボン酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸が挙げられる。
 ポリアクリルアミドの具体例としては、ポリエチレングリコールモノメチルエーテルアクリルアミド、ポリプロピレングリコールモノメチルエーテルアクリルアミド、ポリエチレングリコールモノメチルエーテルメタクリルアミド、ポリプロピレングリコールモノメチルエーテルメタクリルアミド、ポリエステルメタクリルアミド、ポリカーボネートメタクリルアミドなどが好適に挙げられる。
・ウレア結合を有するポリマー
 ウレア結合を有するポリマーとしてはポリウレアが挙げられる。ジイソシアネート化合物とジアミン化合物とをアミン触媒存在下で縮合重合することによってポリウレアを合成することができる。
 ジイソシアネート化合物の具体例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2,4-トリレンジイソシアネート、2,4-トリレンジイソシアネートの二量体、2,6-トリレンジレンジイソシアネート、p-キシリレンジイソシアネート、m-キシリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフチレンジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネート等の芳香族ジイソシアネート化合物;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ダイマー酸ジイソシアネート等の脂肪族ジイソシアネート化合物;イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、メチルシクロヘキサン-2,4(又は2,6)-ジイルジイソシアネート、1,3-(イソシアネートメチル)シクロヘキサン等の脂環族ジイソシアネート化合物;1,3-ブチレングリコール1モルとトリレンジイソシアネート2モルとの付加体等のジオールとジイソシアネートとの反応物であるジイソシアネート化合物;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、4,4’-ジフェニルメタンジイソシアネート(MDI)、4,4’-メチレンビス(シクロヘキシルイソシアネート)が好ましい。
 ジアミン化合物の具体例としては、上述の化合物例等が挙げられる。
・イミド結合を有するポリマー
 イミド結合を有するポリマーとしては、ポリイミドが挙げられる。ポリイミドは、テトラカルボン酸二無水物とジアミン化合物とを付加反応させてポリアミック酸を形成した後、閉環することで得られる。
 テトラカルボン酸二無水物の具体例としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)およびピロメリット酸二無水物(PMDA)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)、オキシジフタル酸二無水物、ジフェニルスルホン-3,4,3’,4’-テトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、p-ビフェニレンビス(トリメリット酸モノエステル酸無水物)、m-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2-ビス〔(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、などを挙げることができる。これらは単独でも、2種以上を混合して用いることもできる。
 テトラカルボン酸成分としては、s-BPDAおよびPMDAの少なくとも一方を含むことが好ましく、例えばテトラカルボン酸成分100モル%中にs-BPDAを好ましくは50モル%以上、より好ましくは70モル%以上、特に好ましくは75モル%以上含む。テトラカルボン酸二無水物は、剛直なベンゼン環を有していることが好ましい。
 ジアミン化合物の具体例としては、上述の化合物例等が挙げられる。
 ジアミン化合物は、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖、ポリカーボネート鎖、又はポリエステル鎖の両末端にアミノ基を有する構造が好ましい。
・ウレタン結合を有するポリマー
 ウレタン結合を有するポリマーとしては、ポリウレタンが挙げられる。ポリウレタンは、ジイソシアネート化合物とジオール化合物とをチタン、スズ、ビスマス触媒存在下で縮合重合することで得られる。
 ジイソシアネート化合物としては、上述の化合物例が挙げられる。
 ジオール化合物の具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリエチレングリコール(例えば、平均分子量200、400、600、1000、1500、2000、3000、7500のポリエチレングリコール)、ポリプロピレングリコール(例えば、平均分子量400、700、1000、2000、3000、または4000のポリプロピレングリコール)、ネオペンチルグリコール、1,3-ブチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,6-ヘキサンジオール、2-ブテン-1,4-ジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,4-ビス-β-ヒドロキシエトキシシクロヘキサン、シクロヘキサンジメタノール、トリシクロデカンジメタノール、水添ビスフェノールA、水添ビスフェノールF、ビスフェノールAのエチレンオキサイド付加体、ビスフェノールAのプロピレンオキサイド付加体、ビスフェノールFのエチレンオキサイド付加体、ビスフェノールFのプロピレンオキサイド付加体などが挙げられる。
 ジオール化合物は市販品としても入手可能であり、例えば、ポリエーテルジオール化合物、ポリエステルジオール化合物、ポリカーボネートジオール化合物、ポリアルキレンジオール化合物、シリコーンジオール化合物が挙げられる。
 ジオール化合物としては、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖、ポリブタジエン鎖、ポリイソプレン鎖、ポリアルキレン鎖およびシリコーン鎖の少なくとも1種を有していることが好ましい。また、ジオール化合物は、硫化物系固体電解質や活物質との吸着性向上の観点から、炭素-炭素不飽和結合や極性基(アルコール性水酸基、フェノール性水酸基、チオール基、カルボキシル基、スルホン酸基、スルホンアミド基、リン酸基、ニトリル基、アミノ基、双性イオン含有基、金属ヒドロキシド、金属アルコキシド)を有していることが好ましい。ジオール化合物は、例えば、2,2-ビス(ヒドロキシメチル)プロピオン酸を用いることができる。炭素-炭素不飽和結合を含有するジオール化合物は、市販品としてブレンマーGLM(日油株式会社製)、特開2007-187836号公報に記載の化合物を好適に用いることができる。
 ポリウレタンの場合、重合停止剤として、モノアルコールやモノアミンを用いることができる。重合停止剤は、ポリウレタン主鎖の末端部位に導入される。ソフトセグメントをポリウレタン末端に導入する手法として、ポリアルキレングリコールモノアルキルエーテル(ポリエチレングリコールモノアルキルエーテル、ポリプロピレンモノアルキルエーテルが好ましい)や、ポリカーボネートジオールモノアルキルエーテル、ポリエステルジオールモノアルキルエーテル、ポリエステルモノアルコールなどを用いることができる。
 また、極性基や炭素-炭素不飽和結合を有するモノアルコールやモノアミンを用いることで、ポリウレタン主鎖の末端に極性基や炭素-炭素不飽和結合の導入が可能である。たとえば、ヒドロキシ酢酸、ヒドロキシプロピオン酸、4-ヒドロキシベンジルアルコール、3-メルカプト-1プロパノール、2,3-ジメルカプト-1-プロパノール、3-メルカプト-1-ヘキサノール、3-ヒドロキシプロパンスルホン酸、2-シアノエタノール、3-ヒドロキシグルタロニトリル、2-アミノエタノール、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、N-メタクリレンジアミンなどが挙げられる。
 本発明に用いられるバインダーは粒子形状を保持している、ポリマー粒子であることも好ましい。非粒子状のものに比べ、粒子形状を保持していることで、活物質や固体電解質に過剰な被膜を形成しにくく、イオン伝導を阻害せず、電池抵抗を低く抑えることが可能となる。
 ここで、「ポリマー粒子」とは、後述の分散媒体に添加しても完全に溶解せず、粒子状のまま分散媒体に分散し、0.01μm超の平均粒子径を示すものを指す。
 ポリマー粒子の平均粒子径は、0.01μm~100μmが好ましく、0.05μm~50μmがより好ましく、0.05μm~20μmがさらに好ましい。平均粒子径が上記好ましい範囲内にあることが出力密度向上の観点から好ましい。
 本発明では、正極活物質層および負極活物質層の少なくとも1層に含まれるバインダーの少なくとも1種が、平均粒子径0.05μm~20μmのポリマー粒子であることが好ましく、正極活物質層および負極活物質層に含まれる全てのバインダーが、平均粒子径0.05μm~20μmのポリマー粒子であることがより好ましい。
 本発明に用いられるポリマー粒子の平均粒子径は、特に断らない限り、以下に記載の測定条件および定義によるものとする。
 ポリマー粒子を任意の溶媒(固体電解質組成物の調製に用いる分散媒体、例えば、ヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とする。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を調製して測定し、その平均値を採用する。
 なお、作製された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について上記ポリマー粒子の平均粒子径の測定方法に準じてその測定を行い、あらかじめ測定していたポリマー粒子以外の粒子の平均粒子径の測定値を排除することにより行うことができる。
 ポリマー粒子は、有機ポリマー粒子であれば構造は特に限定されない。有機ポリマー粒子を構成する樹脂は、上記バインダーを構成する樹脂として記載した樹脂が挙げられ、好ましい樹脂も適用される。
 ポリマー粒子は固形を保持していれば、形状は限定されない。ポリマー粒子は単一分散であっても多分散であってもよい。ポリマー粒子は真球状であっても扁平形状であってもよく、さらに無定形であってもよい。ポリマー粒子の表面は平滑であっても凹凸形状を形成していてもよい。ポリマー粒子はコアシェル構造を取ってもよく、コア(内核)とシェル(外殻)が同様の材料で構成されていても、異なる材質で構成されていてもよい。また中空であっても良く、中空率についても限定されない。
 ポリマー粒子は、界面活性剤、乳化剤または分散剤の存在下で重合する方法、分子量が増大するにしたがって結晶状に析出させる方法、によって合成することができる。
 また既存のポリマーを機械的に破砕する方法や、ポリマー液を再沈殿によって微粒子状にする方法を用いてもよい。
 ポリマー粒子は、例えば、市販品を用いることができ、具体的には、以下に記載の市販品(いずれも商品名で、括弧書きの数値は平均粒子径を表す。)が挙げられる。本発明に用いることの出来るポリマー粒子はこれらに限定されるものではない。
・フッ素系樹脂粒子
マイクロディスパーズシリーズ(テクノケミカル社製、例えば、マイクロディスパーズ-200(PTFE粒子、200nm)、マイクロディスパーズ-3000(PTFE粒子3μm)、マイクロディスパーズ-8000(PTFE粒子、8μm))、ディスパーズイージー-300(PTFE粒子、200nm、テクノケミカル社製)、FluonADシリーズ(旭硝子社製、例えば、FluonAD911E、FluonAD915E、FluonAD916E、FluonAD939E)、
アルゴフロンシリーズ(ソルベイ社製、例えば、アルゴフロンF(PTFE粒子、15~35μm)、アルゴフロンS(PTFE粒子、15~35μm))、
ルブロンシリーズ(ダイキン社製、例えば、ルブロンL-2(PTFE粒子、3.5μm)、ルブロンL-5(PTFE粒子、5μm)、ルブロンL-5F(PTFE粒子、4.5μm))
・炭化水素系樹脂粒子
ソフトビーズ、ザイクセン(ポリオレフィンエマルジョン)、セポルジョンG(ポリオレフィンエマルジョン)、セポレックスIR100(ポリイソプレンラテックス)、セポレックスCSM(クロロスルホン化ポリエチレンラテックス)、フローセン(ポリエチレン粉末)、フローセンUF(ポリエチレン粉末)、フローブレン(ポリプロピレン粉末)、フロービーズ(ポリエチレン-アクリル共重合粉末)(いずれも住友精化社製)
・アクリル系樹脂粒子
アートパールシリーズ(根上工業社製、例えば、アートパールGR、アートパールSE、アートパールG、アートパールGR、アートパールGS、アートパールJ、アートパールMF、アートパールBE)、
タフチックシリーズ(東洋紡社製、例えば、タフチックAR-650、タフチックAR-750、タフチックFH-S)、
ケミスノーシリーズ(総研化学社製、例えば、ケミスノーMP-1451、ケミスノーMP-2200、ケミスノーMP-1000、ケミスノーMP-2701、ケミスノーMP-5000、ケミスノーMP-5500、ケミスノーMP-300、ケミスノーKMR-3TA、ケミスノーMX-80H3wT、ケミスノーMX-150、ケミスノーMX-180TA、ケミスノーMX-300、ケミスノーMX-500、ケミスノーMX-500H、ケミスノーMX-1000、ケミスノーMX-1500H、ケミスノーMX-2000、ケミスノーMX-3000)、
FSシリーズ(日本ペイント社製、例えば、FS-101、FS-102、FS-106、FS-107、FS-201、FS-301、FS-501、FS-701)、
MGシリーズ(日本ペイント社製、例えば、MG-155E、MG-451、MG-351)、
テクポリマーシリーズ(積水化成品工業社製、例えば、テクポリマーMBX、テクポリマーSBX、テクポリマーMSX、テクポリマーSSX、テクポリマーBMX、テクポリマーABX、テクポリマーARX、テクポリマーAFX、テクポリマーMB、テクポリマーMBP)、アドバンセルHB-2051(積水化学社製)、
ハヤビーズL-11、ハヤビーズM-11(いずれも早川ゴム社製)、
アロンTシリーズ、アロンAシリーズ、アロンSD-10、アロンACシリーズ、ジュリマーACシリーズ(いずれも東亜合成社製)、
エポスターMA、エポスターMX(いずれも日本触媒社製)
 アクリル系樹脂粒子は、国際公開第2015/046314号に記載のアクリル系樹脂粒子を用いることも好ましい。
・スチレン系樹脂粒子
ケミスノーKSR-3A(総研化学社製)、エポスターST(日本触媒社製)
・アミド系樹脂粒子
セポルジョンPA(共重合ナイロンエマルジョン、住友精化社製)、トレパールPAI(ポリアミドイミド粒子、東レ社製)
・イミド系樹脂粒子
ポリイミドパウダーP84(R)NT(ダイセルエヴォニック社製)、
ポリイミドパウダーPIP-3、ポリイミドパウダーPIP-25、ポリイミドパウダーPIP-60(いずれもセイシン企業社製)、
ポリイミドパウダーUIP-R、ポリイミドパウダーUIP-S(いずれも宇部興産社製)
・ウレタン系樹脂粒子
ダイミックビーズUCN-8070CM(7μm)、ダイミックビーズUCN-8150CM(15μm)(いずれも大日精化社製)、
アートパールシリーズ(根上工業社製、例えば、アートパールC、アートパールP、アートパールJB、アートパールU、アートパールCE、アートパールAK、アートパールHI、アートパールMM、アートパールFF、アートパールTK、アートパールC-TH、アートパールRW、アートパールRX、アートパールRY、アートパールRZ、アートパールRU、アートパールRV、アートパールBP)、
グロスデールSシリーズ、グロスデールMシリーズ、グロスデールVシリーズ、グロスデールTシリーズ(いずれも三井化学社製)、
インフィナジー(BASF社製)
・ウレア系樹脂粒子
 ウレア系樹脂粒子は、国際公開第2015/046313号に記載のウレア結合を有するポリマーの粒子が好ましく用いられる。
・ポリエステル系樹脂粒子
セポルジョンES(共重合ポリエステルエマルジョン、住友精化社製)
・ポリエーテル系樹脂粒子
トレパールPPS(ポリフェニレンスルフィド粒子、東レ社製)、トレパールPES(ポリエーテルスルホン粒子、東レ社製)
・フェノール樹脂粒子
LPSシリーズ(リグナイト社製)、マリリンFMシリーズ(群栄化学工業社製)、マリリンHFシリーズ(群栄化学工業社製)
・エポキシ樹脂粒子
トレパールEP(エポキシ樹脂粒子、東レ社製)
・ポリカーボネート樹脂粒子
 ポリカーボネート樹脂粒子は、例えば、国際公開2011/004730号パンフレットに記載の方法で合成できる。具体的にはエポキシ化合物に二酸化炭素を反応させることで重合することが可能である。
・シリコーン樹脂粒子
シーホスターKEシリーズ(日本触媒社製、例えば、シーホスターKE-Eシリーズ、シーホスターKE-Wシリーズ、シーホスターKE-Pシリーズ、シーホスターKE-Sシリーズ)、
シリコーン複合パウダーシリーズ(例えば、シリコーン複合パウダーKMP-600、シリコーン複合パウダーKMP-601、シリコーン複合パウダーKMP-602、シリコーン複合パウダーKMP-605、シリコーン複合パウダーX-52-7030)、シリコーンレジンパウダーシリーズ(例えば、シリコーンレジンパウダーKMP-590、シリコーンレジンパウダーKMP-701、シリコーンレジンパウダーX-52-854、シリコーンレジンパウダーX-52-1621)、シリコーンゴムパウダーシリーズ(例えば、シリコーンゴムパウダーKMP-597、シリコーンゴムパウダーKMP-598、シリコーンゴムパウダーKMP-594、シリコーンゴムパウダーX-52-875)(いずれも信越シリコーン社製)、
シャリーヌR-170S(シリコーンアクリル共重合、日信化学工業社製)
 バインダーのガラス転移温度は、上限は50℃以下が好ましく、0℃以下がさらに好ましく、-20℃以下が最も好ましい。下限は-100℃以上が好ましく、-70℃以上がさらに好ましく、-50℃以上が特に好ましい。
 ガラス転移温度(Tg)は、乾燥試料を用いて、示差走査熱量計「X-DSC7000」(商品名、SII・ナノテクノロジー社製)を用いて下記の条件で測定する。測定は同一の試料で2回実施し、2回目の測定結果を採用する。
    測定室内の雰囲気:窒素(50mL/min)
    昇温速度:5℃/min
    測定開始温度:-100℃
    測定終了温度:200℃
    試料パン:アルミニウム製パン
    測定試料の質量:5mg
    Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度の小数点以下を四捨五入することでTgを算定する。
 本発明に用いられるバインダーを構成するポリマー(好ましくはポリマー粒子)の水分濃度は、100ppm(質量基準)以下が好ましく、Tgは100℃以下が好ましい。
 また、本発明に用いられるバインダーを構成するポリマーは、晶析させて乾燥させてもよい、ポリマー溶液をそのまま用いてもよい。金属系触媒(ウレタン化、ポリエステル化触媒であるスズ、チタン、ビスマス触媒)は少ない方が好ましい。重合時に少なくするか、晶析で触媒を除くことで、共重合体中の金属濃度を、100ppm(質量基準)以下とすることが好ましい。
 ポリマーの重合反応に用いる溶媒は、特に限定されない。なお、無機固体電解質や活物質と反応しないこと、さらにそれらを分解しない溶媒を用いることが望ましい。例えば、炭化水素系溶媒(トルエン、ヘプタン、キシレン)やエステル系溶媒(酢酸エチル、プロピレングリコールモノメチルエーテルアセテート)、エーテル系溶媒(テトラヒドロフラン、ジオキサン、1,2-ジエトキシエタン)、ケトン系溶媒(アセトン、メチルエチルケトン、シクロヘキサノン)、ニトリル系溶媒(アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル)、ハロゲン系溶媒(ジクロロメタン、クロロホルム)などを用いることができる。
 本発明に用いられるバインダーを構成するポリマーの質量平均分子量は10,000以上が好ましく、20,000以上がより好ましく、50,000以上がさらに好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましく、100,000以下がさらに好ましい。
 本発明において、ポリマーの分子量は、特に断らない限り、質量平均分子量を意味する。質量平均分子量は、GPCによってポリスチレン換算の分子量として計測することができる。このとき、GPC装置HLC-8220(東ソー社製)を用い、カラムはG3000HXL+G2000HXLを用い、23℃で流量は1mL/minで、RIで検出することとする。溶離液としては、THF(テトラヒドロフラン)、クロロホルム、NMP(N-メチル-2-ピロリドン)、m-クレゾール/クロロホルム(湘南和光純薬社製)から選定することができ、溶解するものであればTHFを用いることとする。
 バインダーの正極活物質層および負極活物質層の各層中での含有量は、全固体二次電池における良好な界面抵抗の低減性とその維持性を考慮すると、含有される層の全固形成分に対して、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上がさらに好ましい。上限としては、電池特性の観点から、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましく、2質量%以下が特に好ましい。
(無機固体電解質)
 本発明の固体電解質組成物は、無機固体電解質を含有してもよい。
 無機固体電解質の「固体電解質」とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、カチオン及びアニオンに解離又は遊離していない。この点で、電解液やポリマー中でカチオン及びアニオンが解離又は遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族又は第2族に属する金属元素のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導度を有することが好ましい。
 上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族又は第2族に属する金属元素のイオン伝導度を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLiおよびSを含有し、リチウムイオン伝導度を有しているものが好ましいが、目的又は場合に応じて、LiおよびS以外の他の元素を含んでもよい。
 例えば下記式(1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられ、好ましい。
   La1b1c1d1 (1)
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。
 Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al、P、Ge、In、As、V、Nb、Ta、TiおよびZrから選択される元素を示す。中でも、B、Sn、Si、Al、P又はGeが好ましく、Sn、Al、P又はGeがより好ましい。
 Aは、I、Br、Cl又はFを示し、I又はBrが好ましく、Iが特に好ましい。
 L、M及びAは、それぞれ、上記元素の1種又は2種以上とすることができる。
 a1~d1は各元素の組成比を示し、a1:b1:c1:d1は1~12:0~2:2~12:0~5を満たす。a1はさらに、1~9が好ましく、1.5~4がより好ましい。b1は0~1が好ましい。c1はさらに、3~7が好ましく、3.25~4.5がより好ましい。d1はさらに、0~3が好ましく、0~1がより好ましい。
 各元素の組成比は、後述するように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、[1]硫化リチウム(LiS)と硫化リン(例えば五硫化二燐(P))、[2]硫化リチウムと単体燐及び単体硫黄の少なくとも一方、又は[3]硫化リチウムと硫化リン(例えば五硫化二燐(P))と単体燐及び単体硫黄の少なくとも一方、の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは65:35~85:15、より好ましくは68:32~77:23である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度をより高めることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 硫化物系無機固体電解質の具体的な化合物例としては、例えば、LiSと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなるものを挙げることができる。より具体的には、LiS-P、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。その中でも、LiS-P、LiS-GeS-Ga、LiS-SiS-P、LiS-SiS-LiSiO、LiS-SiS-LiPO4、LiS-LiI-LiO-P、LiS-LiO-P、LiS-LiPO-P、LiS-GeS-P、Li10GeP12からなる結晶質、非晶質若しくは結晶質と非晶質混合の原料組成物が、高いリチウムイオン伝導度を有するので好ましい。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法及び溶融急冷法を挙げることができ、中でもメカニカルミリング法が好ましい。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
 中でも、LiS-P、LGPS(Li10GeP12)、LiS-P-SiS等が好ましい。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族又は第2族に属する金属元素のイオン伝導度を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に限定されないが、1×10-1S/cm以下であることが実際的である。
 具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO-LiSO; LiO-B-P; LiO-SiO; LiBaLaTa12; LiPO(4-3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素の一部を窒素で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
 さらに、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
 その中でも、LLT、LixbLaybZrzbbb mbnb(Mbb、xb、yb、zb、mb及びnb上記の通りである。)、LLZ、LiBO、LiBO-LiSO、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xd、yd、zd、ad、md及びndは上記の通りである。)が好ましく、LLZ、LLT、LAGP(Li1.5Al0.5Ge1.5(PO)又はLATP([Li1.4TiSi0.42.612]-AlPO)がより好ましい。
 無機固体電解質は粒子であることが好ましい。粒子状の無機固体電解質の体積平均粒子径は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、無機固体電解質の体積平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 無機固体電解質の固体電解質組成物中における含有量は、電池性能と界面抵抗の低減と維持効果の両立を考慮したとき、固形分100質量%において、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 なお、本明細書において固形分とは、窒素雰囲気下170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒体以外の成分を指す。
 無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(分散媒体)
 本発明の固体電解質組成物は、分散媒体を含有することが好ましい。
 分散媒体は、上記の各成分を分散させるものであればよく、例えば、各種の有機溶媒が挙げられる。分散媒体の具体例としては下記のものが挙げられる。
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。
 エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)が挙げられる。
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。
 アミノ化合物溶媒としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが挙げられる。
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレンなどが挙げられる。
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、デカンなどが挙げられる。
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物溶媒としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸ブチル、ペンタン酸ブチルなどが挙げられる。
 非水系分散媒体としては、上記芳香族化合物溶媒、脂肪族化合物溶媒等が挙げられる。
(導電助剤)
 本発明の固体電解質組成物は、活物質の電子導電性を向上させる等のために用いられる導電助剤を適宜必要に応じて含有してもよい。導電助剤としては、一般的な導電助剤を用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維やカーボンナノチューブなどの炭素繊維類、グラフェンやフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でも良く、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体などの導電性高分子を用いてもよい。またこれらの内1種を用いてもよいし、2種以上を用いてもよい。
 本発明の固体電解質組成物中の導電助剤の含有量は、0~10質量%が好ましい。
(リチウム塩)
 本発明の固体電解質組成物は、リチウム塩を含有することも好ましい。
 リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はない。例えば、LiTFSIおよび特開2015-088486号公報の段落0082~0085記載のリチウム塩が挙げられる。
 リチウム塩の含有量は、固体電解質100質量部に対して0質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
(分散剤)
 本発明の固体電解質組成物は、分散剤を含有してもよい。分散剤を添加することで電極活物質及び無機固体電解質のいずれかの濃度が高い場合においてもその凝集を抑制し、均一な活物質層及び固体電解質層を形成することができる。
 分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。例えば、分子量200以上3000未満の低分子又はオリゴマーからなり、官能基群(I)で示される官能基と、炭素数8以上のアルキル基又は炭素数10以上のアリール基を同一分子内に含有するものが好ましい。
官能基群(I):酸性基、塩基性窒素原子を有する基、(メタ)アクリル基、(メタ)アクリルアミド基、アルコキシシリル基、エポキシ基、オキセタニル基、イソシアネート基、シアノ基、メルカプト基及びヒドロキシ基(酸性基、塩基性窒素原子を有する基、アルコキシシリル基、シアノ基、メルカプト基及びヒドロキシ基が好ましく、カルボキシ基、スルホン酸基、シアノ基、アミノ基、ヒドロキシ基がより好ましい。)
 本発明の全固体二次電池において、分散剤を含む層がある場合、層中の分散剤の含有量は、0.2~10質量%が好ましい。
(固体電解質組成物の調製)
 第1の活物質を構成する粒子と第2の活物質を構成する粒子とを接触させる方法は特に制限されない。例えば、第1の活物質を構成する粒子と第2の活物質を構成する粒子とを室温で混合し、400℃~1200℃で0.5~5時間焼成することにより、第1の活物質を構成する粒子と第2の活物質を構成する粒子とを接触させることができる。
 本発明の固体電解質組成物は、第1の活物質を構成する粒子と第2の活物質を構成する粒子が接触して構成される電極活物質(複合電極活物質)、必要によりバインダー粒子及び分散媒体等の他の成分とを、混合又は添加することにより、調製できる。
[全固体二次電池用シート]
 本発明において、全固体二次電池用シートとは、全固体二次電池に用いられるシートであり、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートともいう)、電極又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートということがある。
 本発明に用いられる全固体二次電池用シートは、基材上に固体電解質層又は活物質層(電極層)を有するシートである。この全固体二次電池用シートは、基材と固体電解質層又は活物質層を有していれば、他の層を有してもよいが、活物質層を有するものは後述する全固体二次電池用電極シートに分類する。他の層としては、例えば、保護層、集電体、コート層(集電体、固体電解質層、活物質層)等が挙げられる。
 本発明に用いられる全固体二次電池用固体電解質シートとして、例えば、固体電解質層と保護層とを基材上に、この順で有するシートが挙げられる。
 基材としては、固体電解質層を支持できるものであれば特に限定されず、上記集電体で説明した材料、有機材料、無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、セルロース等が挙げられる。無機材料としては、例えば、ガラス、セラミック等が挙げられる。
 全固体二次電池用シートの固体電解質層の構成、層厚は、本発明の全固体二次電池において説明した固体電解質層の構成、層厚と同じである。
 このシートは、固体電解質層を形成するための固体電解質組成物を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。
 ここで、本発明の固体電解質組成物は、上記の方法によって、調製できる。
 本発明の全固体二次電池用電極シート(単に「本発明の電極シート」ともいう。)は、集電体上に活物質層を有する電極シートである。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。
 電極シートを構成する各層の構成、層厚は、本発明の全固体二次電池において説明した各層の構成、層厚と同じである。
 電極シートは、本発明の、活物質を含有する固体電解質組成物を集電体上に製膜(塗布乾燥)して、金属箔上に活物質層を形成することにより、得られる。
[全固体二次電池及び全固体二次電池用電極シートの製造]
 全固体二次電池及び全固体二次電池用電極シートの製造は、常法によって行うことができる。具体的には、全固体二次電池及び全固体二次電池用電極シートは、本発明の固体電解質組成物等を用いて、上記の各層を形成することにより、製造できる。以下詳述する。
 本発明の全固体二次電池は、本発明の固体電解質組成物を、集電体となる金属箔上に塗布し、塗膜を形成(製膜)する工程を含む(介する)方法により、製造できる。
 例えば、正極集電体である金属箔上に、正極用材料(正極層用組成物)として、本発明の二次電池用電極活物質を含有する固体電解質組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物(固体電解質層用組成物)を塗布して、固体電解質層を形成する。さらに、固体電解質層の上に、負極用材料(負極層用組成物)として、負極活物質を含有する固体電解質組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極層用組成物)として、負極活物質を含有する固体電解質組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。さらに、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。さらに、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 上記の形成法の組み合わせによっても全固体二次電池を製造することができる。例えば、上記のようにして、全固体二次電池用正極シート、全固体二次電池用負極シート及び全固体二次電池用固体電解質シートをそれぞれ作製する。次いで、全固体二次電池用負極シート上に、基材から剥がした固体電解質層を積層した後に、上記全固体二次電池用正極シートと張り合わせることで全固体二次電池を製造することができる。この方法において、固体電解質層を全固体二次電池用正極シートに積層し、全固体二次電池用負極シートと張り合わせることもできる。
(各層の形成(成膜))
 固体電解質組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布、バーコート塗布が挙げられる。
 このとき、固体電解質組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。このような温度範囲で加熱することで、分散媒体を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性と、非加圧でも良好なイオン伝導度を得ることができる。
 塗布した固体電解質組成物、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。一方、無機固体電解質とバインダー粒子が共存する場合、バインダー粒子を形成する上記ポリマーのガラス転移温度よりも高い温度でプレスすることもできる。ただし、一般的には上記ポリマーの融点を越えない温度である。
 加圧は塗布溶媒又は分散媒体をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒体が残存している状態で行ってもよい。
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)、不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
(初期化)
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
〔全固体二次電池の用途〕
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。さらに、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 中でも、高容量かつ高レート放電特性が要求されるアプリケーションに適用されることが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い安全性が必須となりさらに電池性能の両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定され、過充電時に対して一層の安全性が求められる。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。
 全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池をいう。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。このなかで、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi-P-S系ガラス、LLTおよびLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に高分子化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質粒子のバインダー粒子として高分子化合物を適用することができる。
 無機固体電解質は、上述した、ポリエチレンオキサイド等の高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-S系ガラス、LLTおよびLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがあるが、上記のイオン輸送材料としての電解質と区別するときにはこれを「電解質塩」又は「支持電解質」と呼ぶ。電解質塩としては例えばLiTFSI(リチウムビストリフルオロメタンスルホニルイミド)が挙げられる。
 本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。また、特に固体電解質組成物というときには、基本的に固体電解質層等を形成するための材料となる組成物(典型的にはペースト状)を指し、上記組成物を硬化して形成した電解質層等はこれに含まれないものとする。
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において「部」および「%」というときには、特に断らない限り質量基準である。また、表中において使用する「-」は、その列の組成を有しないこと等を意味する。また、室温とは25℃を意味する。
<合成例>
硫化物系無機固体電解質(Li-P-S系ガラス)の合成
 硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235およびA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42gおよび五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温で5分間混合した。なお、LiSおよびPはモル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、次いで上記の硫化リチウムと五硫化二リンの混合物の全量を投入し、アルゴン雰囲気下で容器を密閉した。この容器をフリッチュ社製遊星ボールミルP-7(商品名)にセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス)6.20gを得た。
<活物質の調製>
(調製例1)
 LiCOとCoとをモル比がLi:Co=1.05:1となるようメノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温で20分間混合した。得られた粉末を、大気中、800℃10時間焼成することで層状岩塩構造を有するLiCoOを得た。同様に、LiCOとNiOとCoとAlとをモル比がLi:Ni:Co:Al=1.05:0.8:0.15:0.05となるようメノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温で10分間混合した。得られた粉末を大気中、900℃10時間焼成することで層状岩塩構造を有するLiNi0.8Co0.15Al0.05を得た。得られたLiCoOおよびLiNi0.8Co0.15Al0.05を質量比1:1で混合し、大気中、900℃30分間焼成することで層状岩塩構造を有するLiCoOとLiNi0.8Co0.15Al0.05の複合正極活物質を得た。得られた活物質をSEM(Scanning Electron Microscope)―EDX(Energy Dispersive X-ray)で観察及び元素分析を実施したところ、LiCoO及びLiNi0.8Co0.15Al0.05は同程度の1次粒子径であること、及びLiCoOの一次粒子とLiNi0.8Co0.15Al0.05の1次粒子とが凝集し二次粒子を形成していることがそれぞれ確認された。
(調製例2)
 LiCOとCoとをモル比がLi:Co=1.05:1となるようメノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温で20分間混合した。得られた粉末を、大気中、800℃10時間焼成することで層状岩塩構造を有するLiCoOを得た。同様に、LiCOとNiOとCoとAlとをモル比がLi:Ni:Co:Al=1.05:0.8:0.15:0.05となるようメノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温10分間混合した。得られた粉末を大気中、900℃10時間焼成することで層状岩塩構造を有するLiNi0.8Co0.15Al0.05を得た。得られたLiNi0.8Co0.15Al0.05の粉末、直径5mmのジルコニアビーズ66個、アセトンをジルコニア製45mL容器(フリッチュ社製)に投入し、容器を密閉した。この容器をフリッチュ社製遊星ボールミルP-7(商品名)にセットし、温度25℃、回転数400rpmで1時間メカニカルミリングを行った。上記で得られたLiCoOおよびLiNi0.8Co0.15Al0.05を質量比1:1で混合し、大気中、900℃1時間焼成することで層状岩塩構造を有するLiCoOとLiNi0.8Co0.15Al0.05の複合正極活物質を得た。得られた活物質をSEM―EDXで観察及び元素分析を実施したところ、LiCoOの1次粒子を、LiCoOよりも相対的に小さな1次粒子径を有するLiNi0.8Co0.15Al0.05が被覆し、2次粒子を形成していることが確認された。
(調製例3)
 LiCOとNiO、Mnとをモル比がLi:Ni:Mn=1.05:0.5:1.5となるようメノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温で20分間混合した。得られた粉末を、大気中、800℃10時間焼成することでスピネル構造を有するLiNi0.5Mn1.5を調製した。得られたLiNi0.5Mn1.5を純水に分散させ、LiOH・HOとCoOOHとをLi:Co=1:1となるよう添加し、オートクレーブを用いて150℃20時間水熱処理した。得られた粉末を大気中、900℃で30分間焼成することで層状岩塩構造を有するLiCoOとスピネル構造を有するLiNi0.5Mn1.5との複合正極活物質を得た。水熱処理する際、LiCoOおよびLiNi0.5Mn1.5の質量比が1:1となるようLiOH・HO、CoOOHを添加した。得られた活物質をSEM―EDXで観察及び元素分析を実施したところ、LiNi0.5Mn1.5の1次粒子上を、LiNi0.5Mn1.5よりも相対的に小さな1次粒子径を有するLiCoOが被覆し、2次粒子を形成していることが確認された。
(調製例4)
 LiCOとCoとをモル比がLi:Co=1.05:1となるようメノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温で20分間混合した。得られた粉末を、大気中、800℃10時間焼成することで層状岩塩構造を有するLiCoOを調製した。同様に、LiCOとNiOとCoとAlとをモル比がLi:Ni:Co:Al=1.05:0.8:0.15:0.05となるようメノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温で10分間混合した。得られた粉末を、大気中、900℃10時間焼成することで層状岩塩構造を有するLiNi0.8Co0.15Al0.05を調製した。得られたLiCoOおよびLiNi0.8Co0.15Al0.05をメノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温で10分間混合し、正極活物質を得た。得られた活物質をSEM―EDXで観察及び元素分析を実施したところ、LiCoO及びLiNi0.8Co0.15Al0.05は同程度の1次粒子径であること、及びLiCoOの1次粒子とLiNi0.8Co0.15Al0.05の1次粒子とが凝集し2次粒子を形成していることがそれぞれ確認された。
(調製例5)
 LiCOとCoとをモル比がLi:Co=1.05:1となるようメノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温で20分間混合した。得られた粉末を、大気中、800℃10時間焼成することで層状岩塩構造を有するLiCoOを調製した。また、LiCOとNiOとMnとをモル比がLi:Ni:Mn=1.05:0.5:1.5となるようメノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温で10分間混合した。得られた粉末を、大気中、800℃10時間焼成することでスピネル構造を有するLiNi0.5Mn1.5を調製した。得られたLiCoOおよびLiNi0.5Mn1.5を質量比1:1で混合し、大気中、900℃30分焼成することで複合正極活物質を得た。得られた活物質をSEM―EDXで観察及び元素分析を実施したところ、LiCoO及びLiNi0.5Mn1.5は同程度の1次粒子径であること、及びLiCoOの1次粒子とLiNi0.5Mn1.5の1次粒子とが凝集し2次粒子を形成していることがそれぞれ確認された。
(調製例6)
 LiCOとCoとをモル比がLi:Co=1.05:1となるようメノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温で20分間混合した。得られた粉末を、大気中、800℃10時間焼成することで層状岩塩構造を有するLiCoOを得た。
(調製例7)
 LiCOとNiOとCoとAlとをモル比がLi:Ni:Co:Al=1.05:0.8:0.15:0.05となるようメノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温で10分間混合した。得られた粉末を大気中、900℃10時間焼成することで層状岩塩構造を有するLiNi0.8Co0.15Al0.05を得た。
(調製例8)
 LiCOとNiOとMnとをモル比がLi:Ni:Mn=1.05:0.5:1.5となるようメノウ製乳鉢に投入し、メノウ製乳棒を用いて、室温で10分間混合した。得られた粉末を、大気中、800℃10時間焼成することでスピネル構造を有するLiNi0.5Mn1.5を調製した。
(実施例1)
負極層用組成物の調製
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス1.8g、バインダーとして、住友精化社製の商品名フロービーズLE-1080(粒子形状を有するバインダー)を0.2g、分散媒体としてイソブチロニトリル12.3gを投入した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間混合を続けた後、活物質として黒鉛(平均粒子径20μm、日本黒鉛社製)8.0gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数100rpmで10分間混合を続け負極層用組成物を調製した。
固体電解質層用組成物の調製
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス9.8g、バインダーとして、住友精化社製の商品名フロービーズLE-1080を0.2g、分散媒体としてイソブチロニトリル15.0gを投入した。その後、遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間攪拌を続け、固体電解質層用組成物を調製した。
正極層用組成物の調製
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス2.45g、バインダーとして、住友精化社製の商品名フロービーズLE-1080を0.2g、分散媒体としてイソブチロニトリル12.3gを投入した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間混合を続けた後、活物質として上記調製例1で得た複合正極活物質9.8gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで15分間混合を続け正極層用組成物を調製した。
-全固体二次電池用負極シートの作製-
 上記で調製した負極層用組成物を厚み20μmの銅箔上に、アプリケーター(商品名:SA-201ベーカー式アプリケータ、テスター産業社製)により塗布し、80℃で1時間加熱後、さらに110℃で1時間乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧し(600MPa、1分間)、負極活物質層/銅箔の積層構造を有する全固体二次電池用負極シートを作製した。
 上記で作製した負極活物質層上に、上記で調製した固体電解質層用組成物を、アプリケーターにより塗布し、80℃で1時間加熱後、さらに110℃で6時間加熱した。負極活物質層上に固体電解質層を形成したシートをヒートプレス機を用いて、加熱(120℃)しながら加圧(600MPa、1分間)し、固体電解質層/負極活物質層/銅箔の積層構造を有する全固体二次電池用負極シートを作製した。
-全固体二次電池用正極シートの作製-
 上記で調製した正極層用組成物を厚み20μmのアルミ箔上に、アプリケーターにより塗布し、80℃で1時間加熱後、さらに110℃で1時間乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧(600MPa、1分間)し、正極活物質層/アルミ箔の積層構造を有する全固体二次電池用正極シートを作製した。
-コイン電池の製造-
 上記で製造した全固体二次電池用負極シートを直径14.5mmの円板状に切り出し、直径13.0mmの円板状に切り出した全固体二次電池用正極シートの正極活物質層と固体電解質層とが向かい合うように、スペーサーとワッシャー(図示せず)を組み込んだステンレス製の2032型コインケース11に入れた。このようにして、下記表1に記載の実施例1の図2の構成を有するコイン電池13を製造した。
 2032型コインケース中の全固体二次電池シートは、図1の構成を有し、全固体二次電池用負極シート(銅箔/負極活物質層)/固体電解質層/全固体二次電池用正極シート(正極活物質層/アルミ箔)の積層構造を有する。正極活物質層、負極活物質層および固体電解質層の層厚は、それぞれ順に45μm、30μm、40μmであった。
(実施例2~6および比較例1~5)
 正極活物質およびバインダーを下記表1に記載の組成にした以外は、実施例1の全固体二次電池と同様にして、実施例2~6および比較例1~5の全固体二次電池をそれぞれ製造した。なお、実施例2~6および比較例1~5の全固体二次電池の作製に用いた正極層用組成物には、実施例1と同様に、活物質の含有量を80質量%とした場合、20質量%の含有量になるように上記で合成したLi-P-S系ガラスを含有させた。
 上記で製造した実施例1~6および比較例1~5の全固体二次電池のサイクル特性を評価した。結果を後述の表1に示す。
<サイクル特性(放電容量維持率)の評価>
 上記で製造した全固体二次電池を、東洋システム社製の充放電評価装置「TOSCAT-3000」(商品名)により測定した。
 充電は電池電圧が4.2Vになるまで、電流値0.2mAで行ない、放電は電池電圧が3.0Vになるまで、電流値0.2mAで行ない、これを1サイクルとした。放電容量維持率(%)は、下記式から求めた。
100サイクル目の放電容量[mAh]÷1サイクル目の放電容量[mAh]×100
<観察方法および測定方法>
 下記表1において、「結晶部を含む」とは、「第1の活物質を構成する粒子と第2の活物質を構成する粒子とが接触する界面が固溶化し、結晶部を形成している」ことを示す。結晶部を含むか否かは、透過型電子顕微鏡(Transmission Electron Microscope:TEM)を用いた観察により判断した。
 判断基準および観察条件を下記に示す。
-判断基準-
結晶部を含む:第1の活物質を構成する粒子と第2の活物質を構成する粒子の接触箇所に格子縞が観察された。
結晶部を含まない:第1の活物質を構成する粒子と第2の活物質を構成する粒子の接触箇所に格子縞が観察されなかった。
-観察条件-
 加速電圧を300kVとし、200万倍の倍率で第1の活物質と第2の活物質の接触界面を観察した。
 下記表1の体積平均粒子径は、上述の方法で測定した。
 また、下記表1の粒径3(平均2次粒径)の測定方法を以下に示す。
 走査型電子顕微鏡(SEM)で活物質の2次粒子を観察し、活物質の2次粒子から任意に10個の2次粒子を選択し、上記各2次粒子の水平フェレ径および垂直フェレ径を測定し、それらのうちの大きい方の測定値の合計を10で割り平均値を算出した。
Figure JPOXMLDOC01-appb-T000004
<表の注>
粒径1および2:体積平均粒子径
粒径3:平均2次粒子径
備考:各実施例および比較例で使用した正極活物質を調製した調製例Nos.が記載してある。
アクリル系:特開2015-88486号公報[0127]に記載のB-1
ウレタン系:特開2015-88480号公報[0188]に記載の例示化合物(1)
 表1から明らかなように、充電時に膨張し放電時に収縮する第1の活物質と、これとは逆に充電時に収縮し放電時に膨張する第2の活物質とを含む電極層を備えた実施例1~6の全固体二次電池は、いずれもサイクル特性に優れることが分かる。なお、実施例2の全固体二次電池では、第1の活物質であるLiCoOの1次粒子を、LiCoOよりも相対的に小さな1次粒子径を有する第2の活物質であるLiNi0.8Co0.15Al0.05が被覆して2次粒子を形成していることで、第1及び第2の活物質の接触面積が大きく、活物質の体積変化がより効率的に相殺されており、実施例1の全固体二次電池よりもサイクル特性が優れた。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2016年2月24日に日本国で特許出願された特願2016-032812に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 2032型コインケース
12 全固体二次電池シート
13 サイクル特性測定用セル(コイン電池)

Claims (15)

  1.  第1の電極活物質と第2の電極活物質とを含有する二次電池用電極活物質であって、
     前記第1の電極活物質は、充電時に膨張し、放電時に収縮し、
     前記第2の電極活物質は、充電時に収縮し、放電時に膨張し、かつ、
     前記第1の電極活物質を構成する粒子の一部と前記第2の電極活物質を構成する粒子の一部とが接触し、前記第1の電極活物質を構成する粒子と前記第2の電極活物質を構成する粒子とが接触する界面が固溶化し、結晶部を形成している二次電池用電極活物質。
  2.  前記第1の電極活物質がリチウムコバルト系酸化物であり、前記第2の電極活物質がリチウムニッケル系酸化物である請求項1に記載の二次電池用電極活物質。
  3.  前記第1の電極活物質および前記第2の電極活物質が層状岩塩型構造を有する結晶相を含む請求項2に記載の二次電池用電極活物質。
  4.  前記第1の電極活物質を構成する粒子を前記第2の電極活物質を構成する粒子が被覆している請求項1~3のいずれか1項に記載の二次電池用電極活物質。
  5.  前記第2の電極活物質を構成する粒子を前記第1の電極活物質を構成する粒子が被覆している請求項1~3のいずれか1項に記載の二次電池用電極活物質。
  6.  請求項1~5のいずれか1項に記載の二次電池用電極活物質と、無機固体電解質とを含む固体電解質組成物。
  7.  バインダーを含有する請求項6に記載の固体電解質組成物。
  8.  前記バインダーが粒子形状である請求項7に記載の固体電解質組成物。
  9.  前記バインダーが、アクリルラテックス、ウレタンラテックスまたはウレアラテックスである請求項7または8に記載の固体電解質組成物。
  10.  前記バインダーが、下記式(I)で表される部分構造を有するポリマーである請求項7~9のいずれか1項に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000001
     式(I)中、Rは水素原子または1価の有機基を表す。
  11.  請求項6~10のいずれか1項に記載の固体電解質組成物の層を集電体上に有する全固体二次電池用電極シート。
  12.  正極活物質層、負極活物質層および無機固体電解質層を具備する全固体二次電池であって、該正極活物質層および該負極活物質層の少なくとも一方が、請求項6~10のいずれか1項に記載の固体電解質組成物の層である全固体二次電池。
  13.  第1の電極活物質を構成する粒子と第2の電極活物質を構成する粒子の接触界面を固溶化する工程を含み、
     前記第1の電極活物質は、充電時に膨張し、放電時に収縮し、
     前記第2の電極活物質は、充電時に収縮し、放電時に膨張し、かつ、
     前記第1の電極活物質を構成する粒子の一部と前記第2の電極活物質を構成する粒子の一部とが接触し、前記第1の電極活物質を構成する粒子と前記第2の電極活物質を構成する粒子とが接触する界面が固溶化し、結晶部を形成している二次電池用電極活物質の製造方法。
  14.  請求項13に記載の二次電池用電極活物質の製造方法を介して、全固体二次電池用電極シートを製造する全固体二次電池用電極シートの製造方法。
  15.  請求項13に記載の二次電池用電極活物質の製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
PCT/JP2017/005545 2016-02-24 2017-02-15 二次電池用電極活物質、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法 WO2017145894A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780011149.1A CN108604676B (zh) 2016-02-24 2017-02-15 二次电池电极活性物质、全固态二次电池及其电极片、三者的制造方法和固体电解质组合物
JP2018501616A JP6591655B2 (ja) 2016-02-24 2017-02-15 二次電池用電極活物質、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法
US16/109,928 US11050057B2 (en) 2016-02-24 2018-08-23 Electrode active material for secondary battery, solid electrolyte composition, electrode sheet for all-solid state secondary battery, all-solid state secondary battery and methods for manufacturing electrode active material for secondary battery, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016032812 2016-02-24
JP2016-032812 2016-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/109,928 Continuation US11050057B2 (en) 2016-02-24 2018-08-23 Electrode active material for secondary battery, solid electrolyte composition, electrode sheet for all-solid state secondary battery, all-solid state secondary battery and methods for manufacturing electrode active material for secondary battery, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery

Publications (1)

Publication Number Publication Date
WO2017145894A1 true WO2017145894A1 (ja) 2017-08-31

Family

ID=59685169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005545 WO2017145894A1 (ja) 2016-02-24 2017-02-15 二次電池用電極活物質、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法

Country Status (4)

Country Link
US (1) US11050057B2 (ja)
JP (1) JP6591655B2 (ja)
CN (1) CN108604676B (ja)
WO (1) WO2017145894A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706393A (zh) * 2017-10-19 2018-02-16 厦门高容新能源科技有限公司 一种高容量固态锂离子电池及其制备方法
JP2019106286A (ja) * 2017-12-12 2019-06-27 トヨタ自動車株式会社 正極合材、正極活物質層、全固体電池および正極活物質層の製造方法
WO2020222067A1 (ja) * 2019-04-30 2020-11-05 株式会社半導体エネルギー研究所 固体二次電池
JPWO2021039946A1 (ja) * 2019-08-30 2021-03-04

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145894A1 (ja) 2016-02-24 2017-08-31 富士フイルム株式会社 二次電池用電極活物質、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2021145312A1 (ja) * 2020-01-16 2021-07-22 株式会社村田製作所 固体電池
KR20220145002A (ko) * 2021-04-21 2022-10-28 에스케이온 주식회사 이차 전지용 바인더 조성물 및 이를 포함하는 리튬 이차 전지
CN114672272A (zh) * 2022-03-11 2022-06-28 江苏环峰电工材料有限公司 一种基于聚酰亚胺的导电粘合剂的制备工艺及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582131A (ja) * 1991-09-25 1993-04-02 Sanyo Electric Co Ltd 非水系電解液二次電池
JPH0850895A (ja) * 1994-08-05 1996-02-20 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006012426A (ja) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2012248454A (ja) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd 正極、および全固体型非水電解質電池
JP2014116296A (ja) * 2012-11-13 2014-06-26 Jgc Catalysts & Chemicals Ltd リチウム複合酸化物およびその製造方法、そのリチウム複合酸化物を含む二次電池用正極活物質、それを含む二次電池用正極、ならびにそれを正極として用いるリチウムイオン二次電池
JP5646088B1 (ja) * 2010-06-29 2014-12-24 ユミコア ソシエテ アノニムUmicore S.A. 二次電池のための高密度および高電圧安定性のカソード材料
JP2015167126A (ja) * 2014-02-17 2015-09-24 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法
WO2015151606A1 (ja) * 2014-03-31 2015-10-08 日立金属株式会社 リチウムイオン二次電池用正極活物質、その製造方法およびリチウムイオン二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3744462B2 (ja) * 2002-05-08 2006-02-08 ソニー株式会社 非水電解質電池
JP5516300B2 (ja) * 2004-01-20 2014-06-11 ソニー株式会社 二次電池およびその充放電方法、並びにその充放電制御素子
JP2008041437A (ja) * 2006-08-07 2008-02-21 Sanyo Electric Co Ltd 非水電解質二次電池
US9177689B2 (en) 2007-01-29 2015-11-03 Umicore High density and high voltage stable cathode materials for secondary batteries
JP2010015942A (ja) * 2008-07-07 2010-01-21 Sumitomo Electric Ind Ltd 正極部材、およびリチウム電池
WO2013081152A1 (ja) * 2011-12-02 2013-06-06 三菱レイヨン株式会社 非水二次電池電極用バインダ樹脂、非水二次電池電極用バインダ樹脂組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極、非水二次電池
JP2015092433A (ja) * 2012-02-24 2015-05-14 住友電気工業株式会社 全固体リチウム二次電池
KR20140137371A (ko) 2012-03-22 2014-12-02 스미토모덴키고교가부시키가이샤 전고체 리튬 2차 전지
WO2014021665A1 (ko) * 2012-08-01 2014-02-06 주식회사 엘지화학 이차전지용 전극조립체 및 이를 포함하는 리튬 이차전지
EP3216072B1 (en) * 2014-11-07 2020-05-13 Silver H-Plus Technology Co., Ltd. Artificial sei cathode material and lithium secondary battery comprising the same
WO2017145894A1 (ja) 2016-02-24 2017-08-31 富士フイルム株式会社 二次電池用電極活物質、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582131A (ja) * 1991-09-25 1993-04-02 Sanyo Electric Co Ltd 非水系電解液二次電池
JPH0850895A (ja) * 1994-08-05 1996-02-20 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006012426A (ja) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP5646088B1 (ja) * 2010-06-29 2014-12-24 ユミコア ソシエテ アノニムUmicore S.A. 二次電池のための高密度および高電圧安定性のカソード材料
JP2012248454A (ja) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd 正極、および全固体型非水電解質電池
JP2014116296A (ja) * 2012-11-13 2014-06-26 Jgc Catalysts & Chemicals Ltd リチウム複合酸化物およびその製造方法、そのリチウム複合酸化物を含む二次電池用正極活物質、それを含む二次電池用正極、ならびにそれを正極として用いるリチウムイオン二次電池
JP2015167126A (ja) * 2014-02-17 2015-09-24 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法
WO2015151606A1 (ja) * 2014-03-31 2015-10-08 日立金属株式会社 リチウムイオン二次電池用正極活物質、その製造方法およびリチウムイオン二次電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706393A (zh) * 2017-10-19 2018-02-16 厦门高容新能源科技有限公司 一种高容量固态锂离子电池及其制备方法
CN107706393B (zh) * 2017-10-19 2020-02-07 厦门高容新能源科技有限公司 一种高容量固态锂离子电池及其制备方法
JP2019106286A (ja) * 2017-12-12 2019-06-27 トヨタ自動車株式会社 正極合材、正極活物質層、全固体電池および正極活物質層の製造方法
WO2020222067A1 (ja) * 2019-04-30 2020-11-05 株式会社半導体エネルギー研究所 固体二次電池
JPWO2021039946A1 (ja) * 2019-08-30 2021-03-04
WO2021039946A1 (ja) * 2019-08-30 2021-03-04 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、全固体二次電池用シート及び全固体二次電池の製造方法、並びに、複合ポリマー粒子
JP7263524B2 (ja) 2019-08-30 2023-04-24 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、全固体二次電池用シート及び全固体二次電池の製造方法、並びに、複合ポリマー粒子

Also Published As

Publication number Publication date
CN108604676B (zh) 2021-04-27
JP6591655B2 (ja) 2019-10-23
US11050057B2 (en) 2021-06-29
CN108604676A (zh) 2018-09-28
JPWO2017145894A1 (ja) 2018-11-22
US20180366728A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
CN109526241B (zh) 固体电解质组合物、片材及电池及相关制造方法和聚合物
JP6591655B2 (ja) 二次電池用電極活物質、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP6607694B2 (ja) 全固体二次電池、電極活物質層用組成物および全固体二次電池用電極シートならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
CN108432024B (zh) 固体电解质组合物、全固态二次电池及其制造法、该电池用片、该电池用电极片及其制造法
US10654963B2 (en) Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
WO2017141735A1 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2017099248A1 (ja) 固体電解質組成物、バインダー粒子、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、これらの製造方法
JP6318100B2 (ja) 全固体二次電池、これに用いる固体電解質組成物および電池用電極シートならびに電池用電極シートおよび全固体二次電池の製造方法
JP6442607B2 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP6429412B2 (ja) 全固体二次電池、これに用いる固体電解質組成物および電池用電極シートならびに電池用電極シートおよび全固体二次電池の製造方法
JP6621443B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP7008080B2 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池並びに固体電解質含有シート及び全固体二次電池の製造方法
WO2020022205A1 (ja) 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池、固体電解質含有シート及び全固体二次電池の製造方法、並びに、粒子状バインダーの製造方法
JP7061728B2 (ja) 複合電極活物質、電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、複合電極活物質、全固体二次電池用電極シート及び全固体二次電池の製造方法
WO2020067108A1 (ja) 全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法
JPWO2020203367A1 (ja) 全固体二次電池用シート及び全固体二次電池の製造方法、並びに、全固体二次電池用シート及び全固体二次電池
JP7245847B2 (ja) 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
WO2020138216A1 (ja) 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501616

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756334

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756334

Country of ref document: EP

Kind code of ref document: A1