WO2015122290A1 - 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法 - Google Patents

固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法 Download PDF

Info

Publication number
WO2015122290A1
WO2015122290A1 PCT/JP2015/052561 JP2015052561W WO2015122290A1 WO 2015122290 A1 WO2015122290 A1 WO 2015122290A1 JP 2015052561 W JP2015052561 W JP 2015052561W WO 2015122290 A1 WO2015122290 A1 WO 2015122290A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solid electrolyte
electrolyte composition
polymer
composition according
Prior art date
Application number
PCT/JP2015/052561
Other languages
English (en)
French (fr)
Inventor
雅臣 牧野
宏顕 望月
目黒 克彦
智則 三村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020167024632A priority Critical patent/KR101897883B1/ko
Priority to CN201580008823.1A priority patent/CN106030721B/zh
Publication of WO2015122290A1 publication Critical patent/WO2015122290A1/ja
Priority to US15/237,845 priority patent/US10535896B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/08N-Vinyl-pyrrolidine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6607Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte composition, a battery electrode sheet and an all-solid secondary battery using the same, and methods for producing them.
  • a battery having a structure in which an electrode and an electrolyte are directly arranged in series can be obtained.
  • the metal package for sealing the battery cell, the copper wire and the bus bar for connecting the battery cell can be omitted, the energy density of the battery is greatly increased.
  • good compatibility with the positive electrode material capable of increasing the potential is also mentioned as an advantage.
  • Non-patent Document 1 Developed as a next-generation lithium ion secondary battery due to the above-described advantages, it has been vigorously developed (Non-patent Document 1).
  • an inorganic all-solid secondary battery has a disadvantage because the electrolyte is a hard solid.
  • the interface resistance between solid particles (solid electrolyte) is increased.
  • Patent Documents 1 and 2 utilize a styrene-acrylic copolymer.
  • Patent Document 3 discloses the use of a hydrogenated butadiene copolymer
  • Patent Document 4 discloses the use of a polyolefin-based polymer.
  • JP 2013-008611 A International Publication No. 2011/105574 Pamphlet Japanese Patent Laid-Open No. 11-086899 JP 2012-99315 A
  • the present invention provides a solid electrolyte composition capable of suppressing a decrease in ionic conductivity and capable of realizing good binding properties in an all-solid-state secondary battery, regardless of pressurization, and a battery using the same
  • An object is to provide an electrode sheet, an all-solid-state secondary battery, and a method for producing them.
  • a solid electrolyte composition containing non-spherical polymer particles, a dispersion medium, and an inorganic solid electrolyte The non-spherical polymer particle is composed of a polymer having at least one of a functional group selected from the following functional group group a, an acidic group having an acid dissociation constant pKa of 14 or less, or a basic group having a pKa of a conjugate acid of 14 or less.
  • the functional group a represents the following substituent or linking group.
  • Substituent carboxyl group, sulfonic acid group, phosphoric acid group, hydroxy group, CONN N 2 , cyano group, NR N 2 , or thiol group.
  • Linking group carbonyloxy group, carbonyl group, NR N , S, O, CONR N , OCOO, NR N COO, or urea group.
  • RN represents a hydrogen atom, an alkyl group, or an aryl group.
  • L 1 represents an alkylene group having 1 to 20 carbon atoms or an arylene group having 6 to 22 carbon atoms.
  • L 2 represents an alkylene group which may intervene a linking group having a hetero atom or an arylene group which may intervene a linking group having a hetero atom.
  • X represents any of O, CO, S, NR N , and combinations thereof.
  • RN represents a hydrogen atom, an alkyl group, or an aryl group.
  • Non-spherical polymer particle a polymer having at least one of a functional group selected from the following functional group group a, an acidic group having an acid dissociation constant pKa of 14 or less, or a basic group having a pKa of a conjugate acid of 14 or less.
  • the functional group a represents the following substituent or linking group.
  • Substituent carboxyl group, sulfonic acid group, phosphoric acid group, hydroxy group, CONN N 2 , cyano group, NR N 2 , or thiol group.
  • Linking group carbonyloxy group, carbonyl group, NR N , S, O, CONR N , OCOO, NR N COO, or urea group.
  • RN represents a hydrogen atom, an alkyl group, or an aryl group.
  • a battery electrode sheet comprising the solid electrolyte composition according to any one of [1] to [12].
  • An all-solid secondary battery comprising the battery electrode sheet according to [15].
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • each substitution The groups and the like may be the same as or different from each other. Further, when a plurality of substituents and the like are close to each other, they may be bonded to each other or condensed to form a ring.
  • the solid electrolyte composition of the present invention when used as a material for an inorganic solid electrolyte layer or an active material layer of an all-solid-state secondary battery, can suppress a decrease in ionic conductivity regardless of pressure, and is even better Excellent binding performance can be achieved.
  • the battery electrode sheet and the all-solid secondary battery of the present invention comprise the above solid electrolyte composition and exhibit the above-mentioned good performance. Moreover, according to the manufacturing method of this invention, said solid electrolyte composition can be manufactured suitably.
  • FIG. 1 is a cross-sectional view schematically showing an all solid lithium ion secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a cross section of a non-spherical particle in order to explain the flatness.
  • FIG. 3 is a cross-sectional view schematically showing a test apparatus used in the examples.
  • FIG. 4 is a graph showing the results of DSC measurement of the polymer particles prepared in the examples.
  • the solid electrolyte composition of the present invention includes an inorganic solid electrolyte and non-spherical polymer particles.
  • an inorganic solid electrolyte and non-spherical polymer particles are present in the solid electrolyte.
  • FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of the present embodiment includes a negative electrode current collector 1, a negative electrode active material layer 2, an inorganic solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in that order as viewed from the negative electrode side. Have in.
  • Each layer is in contact with each other and has a laminated structure.
  • the solid electrolyte composition of the present invention is preferably used as a constituent material of the negative electrode active material layer, the positive electrode active material layer, and the inorganic solid electrolyte layer, and among them, the inorganic solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer It is preferable to use as all constituent materials.
  • the thickness of the positive electrode active material layer 4, the inorganic solid electrolyte layer 3, and the negative electrode active material layer 2 is not particularly limited, the positive electrode active material layer and the negative electrode active material layer can be arbitrarily determined according to the target battery capacity. it can. On the other hand, it is desirable that the inorganic solid electrolyte layer is as thin as possible while preventing a short circuit between the positive and negative electrodes. Specifically, the thickness is preferably 1 to 1000 ⁇ m, more preferably 3 to 400 ⁇ m.
  • the solid electrolyte composition of the present invention refers to a composition containing an inorganic solid electrolyte, and is used as a material for forming an inorganic solid electrolyte layer, a positive electrode active material layer, and a negative electrode active material layer of an all-solid secondary battery.
  • the solid electrolyte composition is not limited to a solid, and may be liquid or pasty.
  • the inorganic solid electrolyte in the present invention refers to a solid electrolyte made of an inorganic compound. In the present specification, the solid electrolyte means a solid electrolyte capable of moving ions inside.
  • the inorganic solid electrolyte may be referred to as an ion conductive inorganic solid electrolyte.
  • the ionic conductivity of the inorganic solid electrolyte is not particularly limited. In the lithium ion, 1 ⁇ 10 ⁇ 6 S / cm or more is preferable, 1 ⁇ 10 ⁇ 5 S / cm or more is more preferable, 1 ⁇ 10 ⁇ 4 S / cm or more is more preferable, and 1 ⁇ 10 ⁇ 3 S. / Cm or more is particularly preferable.
  • the upper limit is not particularly limited. In addition, 1 S / cm or less is realistic.
  • the measurement method of ionic conductivity shall be based on the non-pressurization conditions measured in the Example mentioned later unless otherwise indicated.
  • inorganic solid electrolytes do not contain organic compounds such as polymer compounds and complex salts
  • organic solid electrolytes, polymer electrolytes typified by PEO (polyethylene oxide), and LiTFSI (lithium bistrifluoromethanesulfonimide) are representative. It is clearly distinguished from organic electrolyte salts.
  • the inorganic solid electrolyte is a non-dissociable solid in a steady state, it does not dissociate or release into cations and anions even in the liquid.
  • an electrolyte or an inorganic electrolyte salt [LiPF 6 , LiBF 4 , LiFSI [lithium bis (fluorosulfonyl) imide], LiCl, etc.] in which cations and anions are dissociated or liberated in the polymer.
  • the inorganic solid electrolyte generally contains a metal belonging to Group 1 or Group 2 of the periodic table and has conductivity of the metal ion (preferably lithium ion), but does not have electronic conductivity. .
  • an inorganic solid electrolyte is contained in at least one of the positive electrode active material layer, the inorganic solid electrolyte layer, and the negative electrode active material layer.
  • a solid electrolyte material applied to an all-solid secondary battery can be appropriately selected and used.
  • Typical examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte and (ii) an oxide-based inorganic solid electrolyte.
  • Sulfide-based inorganic solid electrolyte contains a sulfur atom (S), and is a group 1 or group 2 of the periodic table. It is preferable to include a metal belonging to the above, to have ionic conductivity, and to have electronic insulation.
  • a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (A) can be given.
  • M represents an element selected from B, Zn, Si, Cu, Ga and Ge.
  • a to d represent the composition ratio of each element, and a: b: c: d satisfies 1 to 12: 0 to 1: 1: 2 to 9, respectively.
  • the composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound in producing the sulfide-based solid electrolyte.
  • the sulfide-based solid electrolyte may be amorphous (glass) or crystallized (glass ceramics), or only part of it may be crystallized.
  • the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and the Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 65:35 to 85:15, more preferably 68:32 to 75:25.
  • the lithium ion conductivity is preferably 1 ⁇ 10 ⁇ 4 S / cm or more, and more preferably 1 ⁇ 10 ⁇ 3 S / cm or more.
  • a compound using a raw material composition containing Li 2 S and a sulfide of an element belonging to Group 13 to Group 15 can be given.
  • Examples include Li 2 S—S—S—P 2 S 5 , Li 2
  • Li 2 S—P 2 S 5 , Li 2 S—GeS 2 —Ga 2 S 3 , Li 2 S—GeS 2 —P 2 S 5 , Li 2 S—SiS 2 —P 2 S 5 , Li 2 A crystalline and / or amorphous raw material composition made of S—SiS 2 —Li 4 SiO 4 or Li 2 S—SiS 2 —Li 3 PO 4 is preferable because it has high lithium ion conductivity.
  • Examples of a method for synthesizing a sulfide-based solid electrolyte material using such a raw material composition include an amorphization method.
  • the amorphization method include a mechanical milling method and a melt quenching method. Among these, the mechanical milling method is preferable because processing at normal temperature is possible and the manufacturing process can be simplified.
  • oxide-based inorganic solid electrolyte contains an oxygen atom (O), and is group 1 or group 2 of the periodic table. It is preferable to include a metal belonging to the above, to have ionic conductivity, and to have electronic insulation.
  • LIICON Lithium super ionic conductor
  • LiTi 2 P 3 O 12 having a NASICON (Natium super ionic conductor) type crystal structure
  • a phosphorus compound containing Li, P and O is also preferable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by substituting some of the acid atoms of lithium phosphate with nitrogen atoms
  • LiPOD LiPOD
  • D is Ti, V, Cr, Mn, Fe, Co, Ni, Cu , Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, Au, etc.
  • LiAON A shows at least 1 sort (s) chosen from Si, B, Ge, Al, C, Ga, etc.
  • Li 1 + xb + yb (Al, Ga) xb (Ti, Ge) 2-xb Si yb P 3-yb O 12 (where 0 ⁇ xb ⁇ 1, 0 ⁇ yb ⁇ 1) has high lithium ion conductivity. It is preferable because it has good properties, is chemically stable, and is easy to handle. These may be used alone or in combination of two or more.
  • the lithium ion conductivity of the oxide-based solid electrolyte is preferably 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 1 ⁇ 10 ⁇ 5 S / cm or more, and further preferably 5 ⁇ 10 ⁇ 5 S / cm or more.
  • the oxide-based inorganic solid electrolyte has an oxygen atom in its structure, it is preferable to use a polymer having a high bondability with the oxygen atom.
  • the polymer forming the non-spherical particles preferably contains a group of the following functional group (a), an acidic group or a basic group.
  • a functional group
  • the said inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the average particle size of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
  • the concentration of the inorganic solid electrolyte in the solid electrolyte composition is preferably 50% by mass or more and 100% by mass in 100% by mass of the solid component when considering both the battery performance and the reduction / maintenance effect of the interface resistance. % Or more is more preferable, and 90% by mass or more is particularly preferable. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99.0 mass% or less. However, when used together with a positive electrode active material or a negative electrode active material to be described later, the sum is preferably in the above concentration range.
  • Non-spherical polymer particles The form of the non-spherical polymer particle of the present invention is not particularly limited. When an example of the non-spherical particle is schematically illustrated, a cross-sectional view or a projection view thereof is as shown in FIG. 2 (left).
  • the shape of the non-spherical particle is not particularly limited as long as it is not spherical, but typically, it is a long and flat particle as illustrated in the projection view.
  • the particle size should be defined by the following (a) to (d) with reference to the Japan Rubber Association Journal Vol. 56 No. 8 (1983) p525 “Dispersion Measurement Technology and Measuring Instrument”. (See FIG. 2).
  • Ferret diameter F length FH sandwiched between parallel lines in a certain direction Maximum length of ferret diameter F is MaxL The minimum length is MinL
  • Martin diameter M the length MH of the boundary line that bisects the area
  • C Haywood diameter HD: When considering a circle with an area equal to the area of the particle, the diameter HD of the circle
  • Maximum length MaxL Maximum length when connecting two neighboring points regardless of direction
  • Non-spherical particles can be defined as other structures.
  • the flatness (MaxL / MinL) [f1] is preferably greater than 1.
  • the flatness [f1] of the non-spherical polymer particles is preferably 1.1 or more, more preferably 1.2 or more, further preferably 1.3 or more, and 1.5 or more. More preferred is 1.7 or more.
  • the upper limit is practically 100 or less, and 50 or less is more practical (see FIG. 2).
  • the flatness (MaxL / HD) [f2] based on the ferret diameter and Haywood diameter of the non-spherical polymer particles is preferably more than 1, more preferably 1.1 or more. Is more preferably 2 or more, and particularly preferably 1.3 or more. The upper limit is practically 100 or less and more practically 50 or less.
  • the flatness ratio of the polymer particles or the ratio of the ferret diameter to the Haywood diameter is based on the conditions measured by the measurement in the paragraphs of Examples below unless otherwise specified.
  • the polymer forming the non-spherical polymer particle (hereinafter referred to as the specific polymer) is a functional group of the following functional group (a), an acidic group having an acid dissociation constant pKa of 14 or less, or a basic group having a pKa of a conjugate acid of 14 or less. Having at least one of Since these function as polar groups, it is understood that they form hydrogen bonds, ionic bonds, and covalent bonds with the surface of the active material or the inorganic solid electrolyte, thereby enhancing the interaction and consequently increasing the binding property.
  • the specific polymer contains an acidic group and / or a basic group in order to improve the binding property.
  • the acidic group and the basic group are more preferably an acidic group having an acid dissociation constant pKa of 14 or less or a basic group having a pKa of a conjugate acid of 14 or less from the viewpoint of improving the binding property.
  • the pKa is more preferably 12 or less, further preferably 10 or less, and particularly preferably 8 or less.
  • pKa is one of the indexes for quantitatively expressing the acid strength and is synonymous with the acidity constant.
  • Ka is expressed by its negative common logarithm pKa.
  • a smaller pKa indicates a stronger acid.
  • pKa a value calculated using ACD / Labs (manufactured by Advanced Chemistry Development) or the like can be used. Below, the calculation example of a typical substituent is shown.
  • Examples of such functional groups include carboxyl groups, sulfonic acid groups, phosphoric acid groups, and acetylacetonate groups as acidic groups.
  • Examples of basic groups include nitrile groups, amino groups (NR N 2 ), amide groups (CONR N 2 ), urethane groups (NR N COO), urea groups (NR N —CO—NR N ), and the like.
  • an ether group a carbonyl group, a carbonylamino group (CONR N ), a carbonyloxy group (COO), and a carbonate group that can contribute to dissolution of lithium ions in improving ionic conductivity. (OCOO) is preferred.
  • a carbonylamino group (CONR N ) is particularly preferable.
  • a polymer having a carbonylamino group in the polymer main chain is preferable.
  • a polymer having a urea group or a urethane group is included in a polymer having a carbonyl group or a carbonylamino group.
  • the specific polymer can be obtained by radical polymerization, cationic polymerization, or polycondensation reaction.
  • a polymer obtained by radical polymerization a polymer having a group derived from a (meth) acrylic monomer which may have various substituents as a partial structure, a polymer having a group derived from acrylonitrile as a partial structure, derived from maleimide And a polymer having a partial structure as a partial structure.
  • examples of the polymer obtained by cationic polymerization include a polymer having a partial structure derived from an epoxy monomer or an oxetane monomer.
  • the polymer obtained by the polycondensation reaction include polyester, polyimide, polyamide, and polyurethane. In the present invention, among these, acrylic polymer or polyurethane is most preferable.
  • the specific polymer preferably has flexibility and rubber elasticity, and more preferably has a three-dimensional crosslinked structure. Three-dimensional crosslinking may be provided at the stage of the synthesized polymer, or may have latent crosslinking groups that can be crosslinked by heat or light.
  • the crosslinkable group include a radical polymerizable group and a cationic polymerizable group.
  • the radical polymerizable group include a carbon-carbon unsaturated group, and specific examples include an acryl group, a methacryl group, a vinyl group, an allyl group, a maleimide group, a terminal ethynyl group, an internal ethynyl group, and a propargyl group.
  • Examples of the cationic polymerizable group include a heterocyclic ring, and specific examples include an epoxy group, an oxetanyl group, and an aziridine group.
  • Examples of the polymer provided with three-dimensional crosslinking at the stage of the synthesized polymer include acrylic rubber, nitrile rubber, urethane rubber, and silicon rubber.
  • acryl refers to a structure group having an acryloyl group, and includes, for example, a structure having a substituent at the ⁇ -position. However, those having a methyl group at the ⁇ -position are referred to as methacryl and may be referred to as (meth) acryl or the like in a sense including this.
  • the specific polymer constituting the polymer particles preferably has any of the following polymer chains or a combination thereof from the viewpoint of improving ion conductivity.
  • Polyalkylene oxide chain — (L A —O) n— Formula (C1)
  • Polycarbonate chain -(L B -OCOO) n- Formula (C2)
  • Polyester chain — (L C —COO) n— Formula (C3) -(OOC-L C1 -COO-L c2 ) n- Formula (C4)
  • Polysiloxane chain — (SiL D 2 —O) n— Formula (C5)
  • L A represents an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and particularly preferably 2 to 4 carbon atoms).
  • L B is an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, particularly preferably 3 to 6 carbon atoms), an arylene group (having 6 to 22 carbon atoms are preferred, and 6 to 14 carbon atoms More preferably 6 to 10 carbon atoms are particularly preferred), or a combination thereof.
  • L C , L C1 and L C2 are alkylene groups (preferably having 1 to 12 carbon atoms, more preferably having 2 to 10 carbon atoms and particularly preferably having 2 to 8 carbon atoms), arylene groups (preferably having 6 to 22 carbon atoms, 6 to 14 carbon atoms are more preferable, and 6 to 10 carbon atoms are particularly preferable), or a combination thereof. Note that L C1 and L C2 are not the same.
  • L D represents a hydrogen atom, a hydroxyl group, an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), an aryl group (preferably having 6 to 22 carbon atoms, 6 to 14 carbon atoms are more preferable, and 6 to 10 carbon atoms are particularly preferable.
  • n represents an integer of 3 or more, preferably 6 or more, and more preferably 10 or more. The upper limit is 2500 or less, preferably 200 or less, and more preferably 50 or less.
  • a plurality of L A , L B , L C L C1 L C2 and L D may be the same as or different from each other.
  • the alkyl group, aryl group, alkylene group and arylene group may further have an arbitrary substituent (for example, substituent T). This does not stop every step, but the same applies to any compound or substituent throughout this specification.
  • the polymer chain preferably has a weight average molecular weight of 200 or more, more preferably 600 or more, and particularly preferably 800 or more.
  • the upper limit is preferably a weight average molecular weight of 200,000 or less, more preferably 10,000 or less, and particularly preferably 5,000 or less.
  • the molecular weight of a polymer chain can be calculated
  • the specific polymer preferably includes a repeating unit represented by the following formula (1) or (2), and more preferably includes both of them.
  • L 1 is an alkylene group having 1 to 20 carbon atoms (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms), and an arylene group having 6 to 22 carbon atoms (preferably having 6 to 14 carbon atoms). Preferably, it has 6 to 10 carbon atoms, or a combination thereof.
  • L 2 is an alkylene group (preferably having 1 to 12 carbon atoms, more preferably having 1 to 6 carbon atoms, and particularly preferably having 1 to 4 carbon atoms) which may intervene a linking group having a hetero atom,
  • An arylene group preferably having 6 to 22 carbon atoms, more preferably having 6 to 14 carbon atoms, and particularly preferably having 6 to 10 carbon atoms, or a combination thereof may be present, which may have an intervening linking group.
  • Examples of the linking group having a hetero atom include the following linking group X or carbonyl group.
  • RN represents a hydrogen atom, an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), or an aryl group (preferably having 6 to 22 carbon atoms, 6 to 14 are more preferable, and 6 to 10 carbon atoms are particularly preferable.
  • X represents any of O, S, NR N , and combinations thereof.
  • the specific polymer preferably contains a hard segment and a soft segment in a predetermined ratio.
  • Hard segments are rigid groups such as aromatic groups, heteroaromatic groups, and aliphatic alicyclic groups in the main skeleton, or bonds that enable intermolecular packing through intermolecular hydrogen bonding or ⁇ - ⁇ interactions. It can be described as a segment having a portion, generally having rigidity and strong cohesion and having a fiber form.
  • the compound consisting of the site has a high glass transition temperature, and typically indicates 100 ° C. or higher.
  • the soft segment can be described as a segment that has a long-chain linear group or a long-chain branching group in the main chain and is soft and stretchable. That whose glass transition temperature is low and which shows 50 degrees C or less is said.
  • a hard segment has a frame
  • the hard segment preferably contains at least one of an amide bond, a urea bond, a urethane bond, and an imide bond.
  • the hard segment is more preferably selected from the following group I.
  • R 11 and R 12 are each independently an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms) or an arylene group (preferably having 6 to 22 carbon atoms, preferably 6 to 14 carbon atoms). More preferably, 6 to 10 is particularly preferable) or a combination thereof.
  • a group represented by the following formula (M2) can be mentioned.
  • the formula (I-1) and the formula (I-2) are connected to an oxygen atom or an imino group (NR N ) at the bonding site * to form a urethane group or a urea group.
  • the hydrogen atom of the NH group in each formula may be substituted with an arbitrary substituent T. Examples of the substituent for N include the examples of the above RN. This is the same throughout this specification.
  • R 13 is an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms) or an alkenyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms). Is particularly preferred), an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, particularly preferably 6 to 10 carbon atoms), an aralkyl group (preferably having 7 to 23 carbon atoms, more preferably 7 to 15 carbon atoms, To 11 are particularly preferred.
  • the main chain ethylene group may be optionally substituted with a substituent (methyl group, ethyl group, propyl group, halogen atom, hydroxy group, etc.).
  • R 13 may form a ring.
  • R 13 may be bonded to N to form a pyrrolidone ring substituted at the N position.
  • the ethylene group in the main chain may have a substituent T.
  • the substituent include a methyl group, an ethyl group, a halogen atom, and a cyano group.
  • an arbitrary linking group may be interposed between the ethylene group of the main chain and the CO group or NH group of the substituent.
  • R 14 represents an aromatic or aliphatic tetravalent linking group.
  • R 14 is preferably a linking group represented by any one of the following formulas (i) to (iii).
  • X 1 represents a single bond or a divalent linking group.
  • divalent linking group an alkylene group having 1 to 6 carbon atoms (methylene group, ethylene group, propylene group), —SO 2 —, —S—, —CO—, or —O— is preferable. Among these, the above alkylene group is more preferable.
  • L represents an alkenylene group (for example, —CH ⁇ CH—) or an alkylene group (for example, —CH 2 —, —CH 2 CH 2 —).
  • R X and R Y represent a hydrogen atom or a substituent (for example, substituent T). * Represents a binding site with a carbonyl group.
  • the soft segment preferably contains at least one of a polyalkylene oxide chain (a polyethylene oxide chain and a polypropylene oxide chain are preferred), a polycarbonate chain, and a polyester chain.
  • the soft segment is more preferably selected from the following group II. * Represents a binding site.
  • R 21 represents a hydrogen atom or an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms).
  • R 22 represents a substituent having a weight average molecular weight of 200 or more and 200,000 or less containing a polyalkylene oxide chain (polyethylene oxide chain or polypropylene oxide chain is preferable), a polycarbonate chain, a polyester chain, or a polysiloxane (silicone) chain.
  • R 22 preferably has an alkyl group at the end (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms). This alkyl group may have an ether group (O), a thioether group (S), a carbonyl group (CO), or an imino group (NR N ) therein.
  • R 22 may have a heteroatom-containing group or a carbon-carbon unsaturated group defined in the third component described later.
  • the molecular weight is preferably 500 or more, more preferably 700 or more, and particularly preferably 1,000 or more. As an upper limit, it is preferable that it is 100,000 or less, and it is more preferable that it is 10,000 or less.
  • R 23 is preferably a linking group according to any one of the above formulas (C1) to (C4) or a combination thereof.
  • the molecular weight is preferably 500 or more, more preferably 700 or more, and particularly preferably 1,000 or more. As an upper limit, it is preferable that it is 100,000 or less, and it is more preferable that it is 10,000 or less.
  • the molecular weight of R 22 and R 23 can be determined as a polystyrene-reduced weight average molecular weight in GPC for monomers prior to incorporation into the polymer.
  • the ratio of the hard segment component to the soft segment component of the specific polymer is preferably 50 mol% or more, more preferably 60 mol% or more, and 70 mol% or more of the hard segment component in the total polymer. Is particularly preferred. As an upper limit, it is preferable that it is 99 mol% or less, It is more preferable that it is 90 mol% or less, It is especially preferable that it is 80 mol% or less.
  • the soft segment component is preferably 1 mol% or more, more preferably 2 mol% or more, and particularly preferably 5 mol% or more in the total polymer.
  • the soft segment component is preferably 1 part or more, more preferably 10 parts by weight or more, and particularly preferably 100 parts by weight or more with respect to 100 parts by weight of the hard segment component.
  • the upper limit is preferably 10,000 parts by mass or less, more preferably 5,000 parts by mass or less, and particularly preferably 1,000 parts by mass or less.
  • the specific polymer preferably further has a repeating unit having a heteroatom-containing group.
  • heteroatom-containing groups include alcoholic hydroxyl group-containing groups (for example, hydroxyalkyl groups: preferably having 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), phenolic hydroxyl group-containing groups (for example, hydroxyphenyl groups), It preferably has at least one of a thiol group, a carboxyl group, a sulfonic acid group, a sulfonamide group, a phosphoric acid group, a nitrile group, an amino group, a zwitterion-containing group, a metal hydroxide group, and a metal alkoxide group.
  • the amino group is preferably represented by NR N 2 .
  • the zwitterion-containing group specifically has a betaine structure (preferably having 1 to 12 carbon atoms, more preferably 1 to 6), and examples of the cation moiety include quaternary ammonium, sulfonium, and phosphonium. Examples include carboxylate and sulfonate.
  • the metal hydroxide is specifically a hydroxyl silyl group or a hydroxyl titanyl group.
  • the metal alkoxide is preferably an alkoxysilyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6) or an alkoxy titanyl group (preferably having 1 to 12 carbon atoms, and more preferably 1 to 6 carbon atoms).
  • the repeating unit having a hetero atom-containing group is preferably 0 mol% to 30 mol% in the entire polymer.
  • the specific polymer may have a latent crosslinkable group that can be crosslinked by heat or light.
  • the crosslinkable group include a radical polymerizable group and a cationic polymerizable group.
  • examples of the radical polymerizable group include a carbon-carbon unsaturated group, and specific examples include an acrylic group, a methacryl group, a vinyl group, an allyl group, a maleimide group, a terminal ethynyl group, an internal ethynyl group, and a propargyl group.
  • the cationic polymerizable group include a heterocyclic ring, and specific examples include an epoxy group, an oxetanyl group, and an aziridine group.
  • the crosslinkable group is more preferably represented by the following formula (11), (12), or (13). * Represents a binding site.
  • R 1 and R 5 each independently represent an oxygen atom or an imino group (NR N ).
  • RN is as defined above.
  • R 2 to R 4 and R 6 to R 10 each independently represents a hydrogen atom or an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms).
  • R 11 to R 13 each independently represent a hydrogen atom or an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms).
  • X 13 represents an oxygen atom, a sulfur atom, or an imino group (NR N ).
  • RN is as defined above.
  • the repeating unit having a crosslinkable group is preferably 0 mol% to 30 mol% in the entire polymer. Incorporation of the above repeating unit having a crosslinkable group into a specific polymer is preferable because a chemical bond with an inorganic solid electrolyte is generated and improvement in adhesion can be expected.
  • the third component may be present in either the hard segment part or the soft segment part in the chain of the specific polymer. Further, it may be present in the polymer side chain or may be present at the end of the polymer main chain.
  • polymer having an amide bond examples include polyamide and polyacrylamide.
  • Polyamide can be obtained by condensation polymerization of diamine and dicarboxylic acid or by ring-opening polymerization of lactam.
  • polyacrylamide is obtained by radical polymerization of an acrylamide monomer.
  • Polyacrylamide can be copolymerized with any radical monomer as long as it is copolymerizable with an acrylamide monomer. Examples of the copolymerization method include random polymerization, graft polymerization, block polymerization, and the like. In order to construct polyacrylamide as a hard segment, block polymerization is more preferable.
  • the soft segment of the amide polymer can be introduced, for example, by condensation polymerization of a terminal diamine having a long chain alkyl group that may be interrupted by a hetero atom, for example, an ethylene oxide chain or a propylene oxide chain, and a dicarboxylic acid.
  • a “Jeffamine” series manufactured by Huntsman Co., Ltd., Mitsui Chemicals Fine Co., Ltd.
  • a commercial product for example, a “Jeffamine” series (manufactured by Huntsman Co., Ltd., Mitsui Chemicals Fine Co., Ltd.) can be used as a commercial product.
  • Polyurea may be mentioned as a polymer having a urea bond.
  • Polyurea can be synthesized by condensation polymerization of a diisocyanate compound and a diamine compound in the presence of an amine catalyst.
  • diisocyanate There is no restriction
  • R M1 represents a divalent aliphatic or aromatic hydrocarbon which may have a substituent (for example, any of an alkyl group, an aralkyl group, an aryl group, an alkoxy group, and a halogeno group is preferable). If necessary, the above R M1 may have any other functional group that does not react with an isocyanate group, such as an ester group, a urethane group, an amide group, or a ureido group.
  • the diisocyanate compound represented by the above formula (M1) is not particularly limited and may be appropriately selected depending on the intended purpose, but preferably includes a group represented by the following formula (M2).
  • X represents a single bond, —CH 2 —, —C (CH 3 ) 2 —, —SO 2 —, —S—, —CO—, or —O—. From the viewpoint of binding properties, —CH 2 — and —O— are preferable, and —CH 2 — is more preferable.
  • the alkylene group exemplified here may be substituted with a halogen atom (preferably a fluorine atom).
  • R M2 to R M5 may be the same as or different from each other, and are each a hydrogen atom, a monovalent organic group, a halogen atom, —OR M6 , —N (R M6 ) 2 , or — Represents SR M6 .
  • R M6 each independently represents a hydrogen atom or a monovalent organic group. Examples of the monovalent organic group include an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, —OR M7 (where R M7 is a monovalent organic group (preferably an alkyl group having 1 to 20 carbon atoms).
  • R M2 to R M5 are preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or —OR M7 , more preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and particularly preferably a hydrogen atom.
  • the halogen atom include fluorine, chlorine, bromine and the like.
  • R M2 to R M5 are preferably hydrogen atoms.
  • composition ratio of the aromatic groups represented by the above formulas (M1) and (M2) is preferably 10 mol% or more, more preferably 10 mol% to 50 mol%, still more preferably 30 mol% to 50 mol% in the polymer.
  • a soft segment of a polymer having a urea bond can be performed by condensation polymerization of a long-chain alkyl group which may be interrupted by a hetero atom, for example, a terminal diamine having an ethylene oxide chain or a propylene oxide chain, and an isocyanate.
  • a soft segment-containing diamine for example, a “Jeffamine” series (manufactured by Huntsman Co., Ltd., Mitsui Chemicals Fine Co., Ltd.) can be used as a commercial product.
  • Polyimide is mentioned as a polymer which has an imide bond.
  • a polyimide is obtained by adding a tetracarboxylic dianhydride and a diamine to form a polyamic acid and then ring-closing. Since diamine is preferably used as a soft segment, a structure having amino groups at both ends of a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, and a polyester chain is preferable.
  • a “Jeffamine” series manufactured by Huntsman Co., Ltd., Mitsui Chemicals Fine Co., Ltd.
  • Polyurethane which has a urethane bond
  • Polyurethane is mentioned as a polymer which has a urethane bond. It can be obtained by condensation polymerization of an isocyanate compound and a diol compound in the presence of a titanium, tin, or bismuth catalyst.
  • the isocyanate compound the compounds listed above can be used.
  • the diol preferably has a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, or a polyester chain.
  • Diols are carbon-carbon unsaturated groups or polar groups (alcoholic hydroxyl groups, phenolic hydroxyl groups, thiol groups, carboxyl groups, sulfonic acid groups, sulfonamido groups, phosphoric acid groups, nitrile groups, amino groups, zwitterion-containing groups. , Metal hydroxide, metal alkoxide).
  • 2,2-bis (hydroxymethyl) propionic acid can be used.
  • the diol compound containing a carbon-carbon unsaturated group commercially available products such as Bremer GLM (manufactured by NOF Corporation) and compounds described in JP-A No. 2007-187836 can be suitably used.
  • monoalcohol or monoamine can be used as a polymerization terminator.
  • a polymerization terminator is introduced into the terminal site of the polyurethane main chain.
  • Polyalkylene glycol monoalkyl ether polyethylene glycol monoalkyl ether and polypropylene monoalkyl ether are preferred
  • polycarbonate diol monoalkyl ether polycarbonate diol monoalkyl ether
  • polyester diol monoalkyl ether polyester monoalcohol, etc.
  • a monoalcohol or monoamine having a polar group or a carbon-carbon unsaturated group it is possible to introduce a polar group or a carbon-carbon unsaturated group at the end of the polyurethane main chain.
  • Examples include ethanol, 3-hydroxyglutaronitrile, 2-aminoethanol, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, N-methacrylenediamine, and the like.
  • the isocyanate compound portion functions as a hard segment and the diol compound portion functions as a soft segment.
  • the above exemplary compounds may optionally have a substituent.
  • the optional substituent include the following substituent T.
  • substituent T examples include the following.
  • An alkyl group preferably an alkyl group having 1 to 30 carbon atoms such as methyl, ethyl, isopropyl, t-butyl, pentyl, hexyl, 2-ethylhexyl, heptyl, 1-ethylpentyl, decyl, dodecyl, hexadecane, octadecane, benzyl; , 2-ethoxyethyl, 1-carboxymethyl, etc.), an alkenyl group (preferably an alkenyl group having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.), an alkynyl group (preferably having 2 to 20 carbon atoms)
  • An alkynyl group such as ethynyl, butadiynyl, phenylethynyl, etc.), a cycloalkyl group (preferably
  • a compound or a substituent when a compound or a substituent includes an alkyl group, an alkenyl group, etc., these may be linear or branched, and may be substituted or unsubstituted. When an aryl group, a heterocyclic group, or the like is included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
  • the technical matters such as temperature and thickness, as well as the choices of substituents and linking groups of the compounds, can be combined with each other even if the list is described independently.
  • the weight average molecular weight of the specific polymer forming the non-spherical polymer particles is preferably 5,000 or more, more preferably 10,000 or more, and particularly preferably 30,000 or more. As an upper limit, it is preferable that it is 1,000,000 or less, and it is more preferable that it is 200,000 or less.
  • the molecular weight of the polymer means the weight average molecular weight unless otherwise specified, and the weight average molecular weight in terms of standard polystyrene is measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a value measured by the method of Condition 1 or Condition 2 (priority) below is basically used.
  • an appropriate eluent may be selected and used depending on the polymer type.
  • the glass transition temperature (Tg) of the specific polymer is preferably 100 ° C. or less for improving the binding property, more preferably 50 ° C. or less, and particularly preferably 30 ° C. or less.
  • the lower limit is preferably ⁇ 70 ° C. or higher, more preferably ⁇ 50 ° C. or higher, from the viewpoint of manufacturing suitability and performance stability. If Tg is too low, particles may aggregate and stick during ball mill dispersion. Conversely, if Tg is too high, it is difficult to obtain a good fixing effect of the inorganic solid electrolyte particles.
  • the specific polymer may be crystalline or amorphous. In the case of crystallinity, the melting point is preferably 250 ° C. or lower, more preferably 200 ° C.
  • the Tg and melting point of the specific polymer are determined by the measurement method (DSC measurement) employed in the examples described below unless otherwise specified.
  • the measurement from the prepared all-solid-state secondary battery is, for example, disassembling the battery, placing the electrode in water and dispersing the material, filtering, collecting the remaining solid, and measuring Tg described later This can be done by measuring the glass transition temperature by the method.
  • Non-spherical polymer particles can be obtained by mechanically dispersing or grinding polymer solids in a dispersion medium (poor solvent). That is, it is preferable to apply a breakdown method for pulverizing a solid, and it is difficult to obtain good non-spherical particles by a build-up method for forming particles from a solution.
  • the breakdown method include a mechanical dispersion method.
  • a bead mill, a planetary mixer, a blade mixer, a roll mill, or a kneader is preferably used. Among these, it is preferable to mechanically disperse with a ball mill.
  • a ball mill is a kind of pulverizer, and refers to a device for grinding a material to make a fine powder by rotating a hard ball such as ceramic and a powder of the material in a cylindrical container and rotating it.
  • a pulverization method it is preferable to use a planetary ball mill manufactured by Fritsch, Germany.
  • the planetary crushing method is a method in which a stronger centrifugal force is applied to the rotation / revolution motion and the ball is crushed using the wall of the container.
  • the material for the container and ball include meno, sintered alumina, tungsten carbide, chrome steel, stainless steel, zirconia, plastic polyamide, and silicon nitride.
  • Containers with a size of 12 to 500 mL can be obtained from those manufactured by Fritzier, Germany. Balls with a diameter of 2 to 40 mm can be obtained. The size of the container and the size of the ball, and the suitable insertion amount in each case will be described.
  • the dispersion time is not particularly limited, but is 10 minutes to 10 hours, preferably 30 minutes to 8 hours, and more preferably 1 hour to 4 hours.
  • the dispersion temperature is not particularly limited, but it is preferable to obtain a fine particle by dispersing at a Tg or less of the polymer to be pulverized. Preferably it is 50 degrees C or less, More preferably, it is 20 degrees C or less, More preferably, it is 0 degrees C or less.
  • the weight ratio of the ball to the polymer to be crushed is 0.05 g or less, preferably 0.02 g or less, more preferably 0.01 g or less, based on 1 g of the ball.
  • the average particle size of the polymer to be pulverized varies depending on the material, the container used, the ball diameter, and the dispersion time.
  • non-spherical polymer particles of about 1 ⁇ m can be obtained by pulverizing at 380 rpm for 4 hours using 180 zirconia 45 mL containers and 180 balls having a diameter of 5 mm at 25 ° C.
  • the average particle diameter of the non-spherical polymer particles is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and particularly preferably 0.1 ⁇ m or more.
  • Particle variation is counted from the finest, and the particle diameter equivalent to 10% of the total number is defined as d10, the particle diameter corresponding to 50% of the total number (median diameter) is defined as d50, and the particle diameter corresponding to 90% of the total number is defined as d90.
  • D (d90 ⁇ d10) / d50 is set as an index of dispersion. The larger the D, the greater the variation of the particles.
  • the D is preferably 1.5 or more, more preferably 2 or more, and even more preferably 3 or more. Although there is no particular upper limit, it is generally 10,000 or less, and 10 or less is practical.
  • the particle size or variation (D) of the polymer particles depends on the conditions measured in the examples described below unless otherwise specified.
  • the polymer particles When the inorganic solid electrolyte is in the form of particles, the polymer particles preferably have a particle size smaller than the average particle size of the inorganic solid electrolyte.
  • the size of the polymer particles By setting the size of the polymer particles in the above range, it is possible to achieve good adhesion and suppression of interface resistance.
  • the measurement from the prepared all-solid-state secondary battery for example, after disassembling the battery and peeling off the electrode, the electrode material is measured according to the method for measuring the particle size of the polymer described later, and measured in advance. This can be done by eliminating the measured value of the particle size of the particles other than the polymer.
  • the blending amount of the specific polymer is preferably 0.1 parts by mass or more, and 0.3 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte (including this when an active material is used). Is more preferable, and it is particularly preferably 1 part by mass or more. As an upper limit, it is preferable that it is 50 mass parts or less, It is more preferable that it is 20 mass parts or less, It is especially preferable that it is 10 mass parts or less.
  • the polymer particles in the solid content is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and more preferably 1% by mass or more. Particularly preferred.
  • the specific polymer may be used alone or in combination of a plurality of types. Further, it may be used in combination with other particles.
  • the non-spherical polymer particles may be composed of only a specific polymer constituting the non-spherical polymer particles, or may be composed of a different kind of material (polymer, low molecular compound, inorganic compound, etc.). Preferably, it is a particle consisting of only the specific polymer constituting it.
  • the solid electrolyte composition may contain a lithium salt.
  • the lithium salt a lithium salt usually used in this type of product is preferable, and there is no particular limitation, but for example, the following are preferable.
  • Inorganic lithium salts inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
  • (L-3) Oxalatoborate salt lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
  • Rf 1 and Rf 2 each represent a perfluoroalkyl group.
  • the content of the lithium salt is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte.
  • As an upper limit it is preferable that it is 10 mass parts or less, and it is more preferable that it is 5 mass parts or less.
  • the electrolyte used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
  • a dispersion medium in which the above components are dispersed may be used.
  • the dispersion medium include a water-soluble organic solvent. Specific examples include the following. Aliphatic compounds Hexane, heptane, cyclohexane, methylcyclohexane, octane, pentane, cyclopentane, etc.Halogenated hydrocarbon compounds Methylene chloride, chloroform, dichloromethane, ethane dichloride, carbon tetrachloride, trichloroethylene, tetrachloroethylene, epichlorohydrin, Monochlorobenzene, orthodichlorobenzene, allyl chloride, HCFC, methyl monochloroacetate, ethyl monochloroacetate, monochloroacetic acid trichloroacetic acid, methyl bromide, methyl uride, tri (te
  • Ketone compounds Acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, etc.
  • Nitrile compounds Acetonitrile, etc.
  • Amide compounds N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N-methylformamide, acetamide , N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide, etc.
  • Family compounds benzene, toluene, xylene, etc.
  • the dispersion medium preferably has a boiling point of 80 ° C. or higher, more preferably 100 ° C. or higher, at normal pressure (1 atm).
  • the upper limit is preferably 220 ° C. or lower, and more preferably 160 ° C. or lower.
  • the solubility of the specific polymer in the dispersion medium is preferably less than 20% by mass at 20 ° C., more preferably less than 10% by mass, and particularly preferably less than 3% by mass.
  • the lower limit is practically 0.01% by mass or more.
  • the solubility of the dispersion medium in water is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less at 20 ° C.
  • the lower limit is practically 0.001% by mass or more.
  • the said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the solid electrolyte composition of the present invention may contain a positive electrode active material. Thereby, it can be set as the composition for positive electrode materials. It is preferable to use a transition metal oxide for the positive electrode active material, and it is preferable to have a transition element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, and V). Further, mixed element M b (elements of the first (Ia) group of the metal periodic table other than lithium, elements of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si , P, B, etc.) may be mixed.
  • transition metal oxide examples include specific transition metal oxides including those represented by any of the following formulas (MA) to (MC), or other transition metal oxides such as V 2 O 5 and MnO 2. Is mentioned.
  • the positive electrode active material a particulate positive electrode active material may be used. Specifically, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but the specific transition metal oxide is preferably used.
  • the transition metal oxides, oxides containing the above transition element M a is preferably exemplified.
  • a mixed element M b (preferably Al) or the like may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the amount of the transition metal. That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • M 1 is as defined above Ma.
  • a represents 0 to 1.2 (preferably 0.2 to 1.2), and preferably 0.6 to 1.1.
  • b represents 1 to 3 and is preferably 2.
  • a part of M 1 may be substituted with the mixed element M b .
  • the transition metal oxide represented by the above formula (MA) typically has a layered rock salt structure.
  • the transition metal oxide is more preferably one represented by the following formulas.
  • g has the same meaning as a.
  • j represents 0.1 to 0.9.
  • i represents 0 to 1; However, 1-ji is 0 or more.
  • k has the same meaning as b above.
  • Specific examples of the transition metal compound include LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.01 Al 0.05 O 2 (nickel cobalt aluminum acid Lithium [NCA]), LiNi 0.33 Co 0.33 Mn 0.33 O 2 (lithium nickel manganese cobaltate [NMC]), LiNi 0.5 Mn 0.5 O 2 (lithium manganese nickelate).
  • the transition metal oxide represented by the formula (MA) partially overlaps, but when represented by changing the notation, those represented by the following are also preferable examples.
  • (I) Li g Ni x Mn y Co z O 2 (x> 0.2, y> 0.2, z ⁇ 0, x + y + z 1) Representative: Li g Ni 1/3 Mn 1/3 Co 1/3 O 2 Li g Ni 1/2 Mn 1/2 O 2
  • (Ii) Li g Ni x Co y Al z O 2 (x> 0.7, y>0.1,0.1> z ⁇ 0.05, x + y + z 1) Representative: Li g Ni 0.8 Co 0.15 Al 0.05 O 2
  • M 2 is as defined above Ma.
  • c represents 0 to 2 (preferably 0.2 to 2), and preferably 0.6 to 1.5.
  • d represents 3 to 5 and is preferably 4.
  • the transition metal oxide represented by the formula (MB) is more preferably one represented by the following formulas.
  • (MB-1) Li m Mn 2 O n
  • (MB-2) Li m Mn p Al 2-p O n
  • (MB-3) Li m Mn p Ni 2-p O n
  • m is synonymous with c.
  • n is synonymous with d.
  • p represents 0-2.
  • Specific examples of the transition metal compound are LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
  • Preferred examples of the transition metal oxide represented by the formula (MB) include those represented by the following.
  • an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
  • Transition metal oxide represented by formula (MC) As the lithium-containing transition metal oxide, it is also preferable to use a lithium-containing transition metal phosphor oxide, and among them, one represented by the following formula (MC) is also preferable. Li e M 3 (PO 4 ) f ... (MC)
  • e represents 0 to 2 (preferably 0.2 to 2), and is preferably 0.5 to 1.5.
  • f represents 1 to 5, and preferably 0.5 to 2.
  • the M 3 represents one or more elements selected from V, Ti, Cr, Mn, Fe, Co, Ni, and Cu.
  • the M 3 are, in addition to the mixing element M b above, Ti, Cr, Zn, Zr, may be substituted by other metals such as Nb.
  • Specific examples include, for example, olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and Li 3.
  • Monoclinic Nasicon type vanadium phosphate salts such as V 2 (PO 4 ) 3 (lithium vanadium phosphate) can be mentioned.
  • the a, c, g, m, and e values representing the composition of Li are values that change due to charge and discharge, and are typically evaluated as values in a stable state when Li is contained.
  • the composition of Li is shown as a specific value, but this also varies depending on the operation of the battery.
  • the average particle size of the positive electrode active material is not particularly limited, but is preferably 0.1 ⁇ m to 50 ⁇ m.
  • an ordinary pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the concentration of the positive electrode active material is not particularly limited, but is preferably 20 to 90% by mass, and more preferably 40 to 80% by mass in 100% by mass of the solid component in the solid electrolyte composition.
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the solid electrolyte composition of the present invention may contain a negative electrode active material. Thereby, it can be set as the composition for negative electrode materials.
  • the negative electrode active material those capable of reversibly inserting and releasing lithium ions are preferable.
  • the material is not particularly limited, and is a carbonaceous material, a metal oxide such as tin oxide or silicon oxide, a lithium alloy such as lithium alone or a lithium aluminum alloy, and a metal capable of forming an alloy with lithium such as Sn or Si. Is mentioned. Of these, carbonaceous materials or lithium oxides are preferably used from the viewpoint of reliability.
  • the metal oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • Examples thereof include carbonaceous materials obtained by baking various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN-based resins and furfuryl alcohol resins.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro
  • Examples thereof include spheres, graphite whiskers, and flat graphite.
  • carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization.
  • the carbonaceous material preferably has a face spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
  • an amorphous oxide is particularly preferable, and chalcogenite which is a reaction product of a metal element and a group 16 element of the periodic table is also preferably used.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have. The strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
  • amorphous metal oxides and chalcogenides are more preferable, and elements in groups 13 (IIIB) to 15 (VB) of the periodic table are preferable.
  • oxides and chalcogenides composed of one kind of Al, Ga, Si, Sn, Ge, Pb, Sb, Bi or a combination of two or more kinds thereof.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , such as SnSiS 3 may preferably be mentioned. Moreover, these may be an oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the average particle size of the negative electrode active material is preferably 0.1 ⁇ m to 60 ⁇ m.
  • a well-known pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloys, lithium A metal that can be alloyed with is preferable.
  • the negative electrode active material preferably contains a titanium atom. More specifically, since Li 4 Ti 5 O 12 has a small volume fluctuation at the time of occlusion and release of lithium ions, it has excellent rapid charge / discharge characteristics, suppresses electrode deterioration, and improves the life of lithium ion secondary batteries. This is preferable. By combining a specific negative electrode and a specific electrolyte, the stability of the secondary battery is improved even under various usage conditions.
  • a negative electrode active material containing Si element In the all solid state secondary battery of the present invention, it is also preferable to apply a negative electrode active material containing Si element.
  • a Si negative electrode can occlude more Li ions than current carbon negative electrodes (graphite, acetylene black, etc.). That is, since the amount of Li ion storage per weight increases, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended, and use in a battery for vehicles is expected in the future.
  • the volume change associated with insertion and extraction of Li ions is large. In one example, the volume expansion of the carbon negative electrode is about 1.2 to 1.5 times, and the volume of Si negative electrode is about three times. There is also an example.
  • the durability of the electrode layer is insufficient, and for example, contact shortage is likely to occur, and cycle life (battery life) is shortened.
  • the solid electrolyte composition according to the present invention even in an electrode layer in which such expansion / contraction increases, the high durability (strength) can be exhibited, and the excellent advantages can be exhibited more effectively. is there.
  • the concentration of the negative electrode active material is not particularly limited, but is preferably 10 to 80% by mass, more preferably 20 to 70% by mass in 100% by mass of the solid component in the solid electrolyte composition.
  • the present invention contains a positive electrode active material or a negative electrode active material
  • the present invention is not construed as being limited thereto.
  • An inorganic solid electrolyte layer may be formed using the solid electrolyte composition according to a preferred embodiment of the present invention in combination with such a commonly used positive electrode material or negative electrode material.
  • the active material layer of a positive electrode and a negative electrode may contain a conductive support agent suitably as needed.
  • a conductive support agent As general electron conductive materials, carbon fibers such as graphite, carbon black, acetylene black, ketjen black, carbon nanotubes, metal powders, metal fibers, polyphenylene derivatives, and the like can be included.
  • the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the positive / negative current collector an electron conductor that does not cause a chemical change is preferably used.
  • the current collector of the positive electrode in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
  • the negative electrode current collector aluminum, copper, stainless steel, nickel, and titanium are preferable, and aluminum, copper, and a copper alloy are more preferable.
  • a film sheet is usually used, but a net, a punched one, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 ⁇ m to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • the solid electrolyte composition may be produced by a conventional method, for example, a first step in which non-spherical polymer particles and a dispersion medium are mixed and mechanically dispersed to form a slurry solution of non-spherical polymer particles; It is preferable to prepare the slurry solution of the polymer particles obtained as described above through a second step of mechanically dispersing again at least in the presence of the inorganic solid electrolyte.
  • the mechanical dispersion in the first step and / or the second step may be performed by any dispersion method, but the ball mill dispersion method is particularly preferable.
  • the all-solid-state secondary battery may be manufactured by a conventional method. Specifically, a method of forming an electrode sheet for a battery in which the solid electrolyte composition is applied onto a metal foil serving as a current collector to form a film is exemplified. For example, a composition to be a positive electrode material is applied on a metal foil to form a film. Next, an inorganic solid electrolyte composition is applied to the upper surface of the positive electrode active material layer of the battery electrode sheet to form a film. Further, a desired all-solid secondary battery structure can be obtained by similarly forming a negative electrode active material film and applying a negative electrode current collector (metal foil). In addition, the application
  • the heating temperature is preferably equal to or higher than the glass transition temperature of the non-spherical polymer particles. Specifically, it is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and most preferably 100 ° C. or higher.
  • the upper limit is preferably 300 ° C. or lower, and more preferably 250 ° C. or lower.
  • the all solid state secondary battery according to the present invention can be applied to various uses.
  • the application mode is not particularly limited, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a cellular phone, a cordless phone, a pager, a handy terminal, a portable fax machine, a portable copy.
  • Examples include portable printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, electric shavers, transceivers, electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, and memory cards.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • a solid electrolyte composition (positive electrode or negative electrode composition) containing an active material capable of inserting and releasing metal ions belonging to Group 1 or Group 2 of the Periodic Table.
  • the battery electrode sheet which formed the said solid electrolyte composition on metal foil.
  • An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the inorganic solid electrolyte layer is All-solid-state secondary battery made into the layer comprised with the solid electrolyte composition.
  • the manufacturing method of the battery electrode sheet which arrange
  • the manufacturing method of the all-solid-state secondary battery which manufactures an all-solid-state secondary battery via the manufacturing method of the said battery electrode sheet.
  • An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
  • this invention presupposes an inorganic all-solid-state secondary battery.
  • the all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery using a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state secondary battery using the above-described Li—PS, LLT, LLZ, or the like. It is divided into batteries.
  • the application of the polymer compound to the inorganic all-solid secondary battery is not hindered, and the polymer compound can be applied as a binder for the positive electrode active material, the negative electrode active material, and the inorganic solid electrolyte particles.
  • the inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include Li—PS, LLT, and LLZ.
  • the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
  • a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations is sometimes called an electrolyte, but it is distinguished from the electrolyte as the ion transport material.
  • electrolyte salt or “supporting electrolyte”.
  • the electrolyte salt include LiTFSI (lithium bistrifluoromethanesulfonimide).
  • composition means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
  • the obtained polymer solution was crystallized from 1 L of hexane / ethyl acetate (80/20), and the polymer was vacuum-dried at 80 ° C. for 6 hours.
  • the obtained polymer had a weight average molecular weight of 52,300 and a glass transition temperature of 23 ° C.
  • FIG. 4 shows the DSC measurement result of Polymer A-5.
  • the mixture was further heated and stirred at 80 ° C. for 2 hours.
  • the obtained polymer solution was crystallized from 1 L of hexane / ethyl acetate (90/10), and the polymer was vacuum-dried at 80 ° C. for 6 hours.
  • the weight average molecular weight of the obtained polymer was 67400, and the glass transition temperature was ⁇ 12 ° C.
  • the obtained polymer solution was crystallized with 1 L of hexane, and the polymer was vacuum-dried at 80 ° C. for 6 hours.
  • the weight average molecular weight of the obtained polymer was 64300, and the glass transition temperature was ⁇ 5 ° C.
  • the mixture was further heated and stirred at 80 ° C. for 2 hours.
  • the obtained polymer solution was crystallized with 1 L of hexane, and the polymer was vacuum-dried at 80 ° C. for 6 hours.
  • the weight average molecular weight of the obtained polymer was 49800, and the glass transition temperature was 7 ° C.
  • the obtained polymer solution was crystallized with 1 L of hexane, and the polymer was vacuum-dried at 80 ° C. for 6 hours.
  • the weight average molecular weight of the obtained polymer was 76200, and the glass transition temperature was 15 ° C.
  • Neostan U-600 manufactured by Nitto Kasei
  • 10 mg of Neostan U-600 was added over 10 minutes, and the mixture was heated and stirred at 60 ° C. for 5 hours.
  • 10 mL of methanol was added to the obtained polymer solution and stirred at 60 ° C. for 1 hour to stop the polymerization.
  • This polymer solution was crystallized in 1 L of methanol, and the polymer solid was vacuum-dried at 80 ° C. for 6 hours.
  • the weight average molecular weight of the obtained polymer was 126900, and the glass transition temperature was ⁇ 15 ° C.
  • Li—PS glass Lithium sulfide (Li 2 S, manufactured by Aldrich, purity> 99.98%) in a glove box under an argon atmosphere (dew point of ⁇ 70 ° C.) 2.42 g and diphosphorus pentasulfide (P 2 S 5 , Aldrich, purity> 99%) 3.90 g were weighed, put into an agate mortar, and mixed for 5 minutes using an agate pestle.
  • Li 2 S and P 2 S 5 at a molar ratio of Li 2 S: P 2 S 5 75: was 25.
  • 66 zirconia beads having a diameter of 5 mm were introduced into a 45 mL container (manufactured by Fritsch) made of zirconia, the whole amount of lithium sulfide and diphosphorus pentasulfide was introduced, and the container was completely sealed under an argon atmosphere.
  • a container is set on a planetary ball mill P-7 manufactured by Fricht Co., and a mechanical solid milling is performed for 20 hours at a temperature of 25 ° C. and a rotation speed of 510 rpm, thereby producing a yellow powder sulfide solid electrolyte material (Li—PS glass) 6 .20 g was obtained.
  • the flatness is shown in the table.
  • 9.0 g of inorganic solid electrolyte LLT (manufactured by Toyoshima Seisakusho) and 0.2 g of LiTFSI (manufactured by Aldrich) were added to the non-spherical polymer dispersion. Thereafter, the container was set in a planetary ball mill P-7 manufactured by Fritsch, and mixing was continued at 25 ° C. at a rotation speed of 300 rpm for 2 hours to obtain a solid electrolyte composition S-1.
  • Example of production of solid electrolyte sheet The solid electrolyte composition prepared above was applied onto an aluminum foil having a thickness of 20 ⁇ m using an applicator with adjustable clearance, heated at 80 ° C. for 1 hour, and further heated at 110 ° C. for 1 hour to dry the coating solvent. . Then, 20-micrometer-thick copper foil was match
  • composition for positive electrode of secondary battery In a planetary mixer (TK Hibismix, manufactured by PRIMIX), 100 parts by mass of lithium cobaltate, 5 parts by mass of acetylene black, 75 parts by mass of the solid electrolyte composition S-1 obtained above And 270 parts by mass of N-methylpyrrolidone were added and stirred at 40 rpm for 1 hour.
  • TK Hibismix manufactured by PRIMIX
  • the secondary battery positive electrode composition obtained above was applied onto an aluminum foil having a thickness of 20 ⁇ m with an applicator having an arbitrary clearance, and heated at 80 ° C. for 1 hour and further at 110 ° C. for 1 hour. Then, the coating solvent was dried. Then, it heated and pressurized so that it might become arbitrary density using the heat press machine, and the positive electrode sheet for secondary batteries was obtained.
  • the solid electrolyte composition obtained above was applied with an applicator having an arbitrary clearance, and 80 ° C. for 1 hour and further 110 Heated at 1 ° C. for 1 hour and dried. Then, the composition for secondary battery negative electrodes obtained above was further applied, heated at 80 ° C. for 1 hour and further at 110 ° C. for 1 hour, and dried. A copper foil having a thickness of 20 ⁇ m was combined on the negative electrode layer, and heated and pressurized to a desired density using a heat press machine, to obtain an electrode sheet for a secondary battery. At this time, each composition may be applied simultaneously, or a coating / drying press may be performed simultaneously, or sequentially. You may laminate
  • the solid electrolyte sheet or secondary battery electrode sheet obtained above was cut into a disk shape having a diameter of 14.5 mm and placed in a stainless steel 2032 type coin case incorporating a spacer and a washer to produce a coin battery. From the outside of the coin battery, it was sandwiched between jigs capable of applying pressure between the electrodes, and used for various electrochemical measurements. The pressure between the electrodes was 500 kgf / cm 2 .
  • the ionic conductivity was determined by an AC impedance method in a thermostatic chamber at 30 ° C. At this time, the specimen shown in FIG. 2 was used for pressurization of the coin battery.
  • the pressurized state is a case where measurement is performed with the coin battery sandwiched between the jigs, and the non-pressurized state indicates that measurement is performed without pressing the coin battery.
  • LMO LiMn 2 O 4 lithium manganate
  • LTO Li 4 Ti 5 O 12 lithium titanate
  • LCO LiCoO 2 lithium cobaltate
  • NMC Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 nickel, manganese, Lithium cobalt oxide
  • the secondary battery electrode sheet using the solid electrolyte composition of the present invention and the laminated battery have excellent binding properties and excellent ion conductivity in a non-pressurized state. . Therefore, in the preferred embodiment, since the solid electrolyte and the electrode active material are not peeled off during the handling of the electrode sheet in production, and the electrochemical contact at the solid interface can be maintained, a mechanism for pressurizing the electrodes is provided. It turns out that it becomes unnecessary, and cycle property can be improved.
  • a polymer having a polar functional group tends to ion-interact with the surface hydrophilic group of the inorganic solid electrolyte, and has better binding properties than a polymer having no polar functional group.
  • the polymers used in Comparative Examples T-1 and T-2 are inferior in binding properties because they do not have polar functional groups. Since the polymer particles used in Comparative Examples T-3 and T-4 were not non-spherical, the results were similarly poor. It can also be seen that any of T-1 to T-4 has a significant decrease in ionic conductivity under no pressure.
  • non-spherical polymers have better binding properties compared to spherical polymers is that the adhesion area with inorganic solid electrolytes is small in the case of spherical particles, whereas the non-spherical polymers have a flat surface structure, uneven structure, etc.
  • the bonding area is considered to be improved due to the large adhesion area and the anchoring effect.
  • the average particle diameter of the polymer particles was measured according to the following procedure. A 1% by mass dispersion of the polymer particles prepared above was prepared using an arbitrary solvent (basically, a dispersion medium used for preparing the solid electrolyte composition). Using this dispersion liquid sample, the volume average particle diameter of the resin particles was measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by HORIBA). The cumulative distribution curve of particles was measured in the same manner, and the particle diameters of d10, d50, and d90 were read, and the variation was calculated.
  • ⁇ Particle flatness> The flatness of the polymer particles was calculated by image processing from an electron microscope image. An average value of 50 was adopted.
  • a scanning electron microscope (SEM) image of any three fields of view taken at 1000 to 3000 times using a scanning electron microscope (SEM) (XL30 manufactured by PHILIPS) is converted into a BMP file and manufactured by Asahi Engineering Co., Ltd.
  • the IP-1000PC integrated application “A Image-kun” was used, particle analysis was performed with 50 samples, and the maximum and minimum length values were read. Specifically, the following procedure was used. First, “A image-kun” captures 50 particles from the SEM image.
  • the average value of 40 points excluding the upper and lower 5 points is defined as the maximum length MaxL of the ferret diameter.
  • the minimum length of 50 particles the average value of 40 points excluding the upper and lower 5 points is defined as the minimum length MinL of the ferret diameter.
  • Tg is the intermediate temperature between the descent start point and descent end point of the DSC chart

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 非球状ポリマー粒子と分散媒体と無機固体電解質とを含有する固体電解質組成物であって、上記の非球状ポリマー粒子が、特定の官能基、酸解離定数pKa14以下の酸性基、または共役酸のpKaが14以下の塩基性基の少なくとも1つを有するポリマーで構成されている固体電解質組成物。

Description

固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法
 本発明は、固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法に関する。
 現在、汎用されているリチウムイオン電池には、電解液が用いられているものが多い。この電解液を固体電解質に置き換え、構成材料を全て固体にする試みが進められている。なかでも、無機の固体電解質を利用する技術の利点として信頼性が挙げられる。リチウムイオン二次電池に用いられる電解液には、その媒体として、カーボネート系溶媒など、可燃性の材料が適用されている。様々な対策が採られているものの、過充電時などに備えたさらなる対応が望まれる。その解決手段として、電解質を不燃性のものとしうる無機化合物からなる全固体二次電池が位置づけられる。
 全固体二次電池のさらなる利点としては、電極のスタックによる高エネルギー密度化に適していることが挙げられる。具体的には、電極と電解質を直接並べて直列化した構造を持つ電池にすることができる。このとき、電池セルを封止する金属パッケージ、電池セルをつなぐ銅線やバスバーを省略することができるので、電池のエネルギー密度が大幅に高められる。また、高電位化が可能な正極材料との相性の良さなども利点として挙げられる。
 上記のような各利点から、次世代のリチウムイオン二次電池として、その開発は精力的に進められている(非特許文献1)。一方で、無機系の全固体二次電池においては、その電解質が硬質の固体であるために不利な点もある。例えば、固体粒子(固体電解質)間の界面抵抗が大きくなることが挙げられる。これを改善するために、種々の高分子化合物をバインダーとして用いた例がある。具体的に特許文献1および2は、スチレン-アクリル系の共重合体を利用する。特許文献3は水素化ブタジエン共重合体、特許文献4はポリオレフィン系のポリマーの利用を開示する。
特開2013-008611号公報 国際公開第2011/105574号パンフレット 特開平11-086899号公報 特開2012-99315号公報
NEDO技術開発機構,燃料電池・水素技術開発部,蓄電技術開発室「NEDO次世代自動車用蓄電池技術開発 ロードマップ2008」(平成21年6月)
 上記特許文献1~4により、全固体二次電池における界面抵抗の増大はそれなりに改善され得ると考えられる。しかしながら、上記特許文献1~3に開示された高分子化合物からなるバインダーでは昨今の高い要求レベルを満足することができず、さらなる改善が求められる。
 そこで本発明は、全固体二次電池において、加圧によらずに、イオン伝導度の低下を抑えることができ、かつ良好な結着性を実現できる固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法の提供を目的とする。
 上記の課題は、以下の手段により解決された。
〔1〕非球状ポリマー粒子と分散媒体と無機固体電解質とを含有する固体電解質組成物であって、
 上記の非球状ポリマー粒子が、下記の官能基群aから選ばれる官能基、酸解離定数pKa14以下の酸性基、または共役酸のpKaが14以下の塩基性基の少なくとも1つを有するポリマーで構成されている固体電解質組成物。
 官能基群aは下記置換基または連結基を示す。
  置換基:カルボキシル基、スルホン酸基、リン酸基、ヒドロキシ基、CONR 、シアノ基、NR 、またはチオール基。
  連結基:カルボニルオキシ基、カルボニル基、NR、S、O、CONR、OCOO、NRCOO,またはウレア基。
   Rは水素原子、アルキル基、またはアリール基。
〔2〕上記非球状ポリマー粒子のガラス転移温度が-50℃以上50℃以下である〔1〕に記載の固体電解質組成物。
〔3〕上記非球状ポリマー粒子をなすポリマーが重量平均分子量200以上のポリアルキレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖、またはポリシロキサン鎖を有する〔1〕または〔2〕に記載の固体電解質組成物。
〔4〕上記非球状ポリマー粒子をなすポリマーが架橋性基を有する〔1〕~〔3〕のいずれか1つに記載の固体電解質組成物。
〔5〕上記非球状ポリマー粒子をなすポリマーが下記式(1)または式(2)の繰り返し単位を含む〔1〕~〔4〕のいずれか1つに記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000002
 Lは炭素数1以上20以下のアルキレン基または炭素数6以上22以下のアリーレン基を示す。Lはへテロ原子を有する連結基を介在することがあるアルキレン基またはへテロ原子を有する連結基を介在することがあるアリーレン基を示す。XはO、CO、S、NR、およびこれらの組合せのいずれかを示す。Rは水素原子、アルキル基、またはアリール基を表す。
〔6〕分散媒体の常圧での沸点が80℃以上220℃以下である〔1〕~〔5〕のいずれか1つに記載の固体電解質組成物。
〔7〕分散媒体の水への溶解性が20℃において5質量%以下である〔1〕~〔6〕のいずれか1つに記載の固体電解質組成物。
〔8〕上記非球状ポリマー粒子の扁平率が1.1以上である〔1〕~〔7〕のいずれか1つに記載の固体電解質組成物。
〔9〕上記非球状ポリマー粒子の粒子ばらつきDが2以上である〔1〕~〔8〕のいずれか1つに記載の固体電解質組成物。
〔10〕上記非球状ポリマー粒子の含有量が、無機固体電解質100質量部に対して0.1~10質量部である〔1〕~〔9〕のいずれか1つに記載の固体電解質組成物。
〔11〕さらに周期律表第一族または第二族に属する金属のイオンの挿入放出が可能な活物質を含む〔1〕~〔10〕のいずれか1つに記載の固体電解質組成物。
〔12〕無機固体電解質が硫化物系無機固体電解質である〔1〕~〔11〕のいずれか1つに記載の固体電解質組成物。
〔13〕下記非球状のポリマー粒子と分散媒体とを混合して機械分散して非球状ポリマー粒子のスラリー液を形成する第一の工程と、上記によって得られたポリマー粒子のスラリー液を、無機固体電解質の存在下で再度機械分散する第二の工程とを経て行う固体電解質組成物の製造方法。
 非球状ポリマー粒子:下記の官能基群aから選ばれる官能基、酸解離定数pKa14以下の酸性基、または共役酸のpKaが14以下の塩基性基の少なくとも1つを有するポリマーで構成される。
 官能基群aは下記置換基または連結基を示す。
  置換基:カルボキシル基、スルホン酸基、リン酸基、ヒドロキシ基、CONR 、シアノ基、NR 、またはチオール基。
  連結基:カルボニルオキシ基、カルボニル基、NR、S、O、CONR、OCOO、NRCOO,またはウレア基。
   Rは水素原子、アルキル基、またはアリール基。
〔14〕上記第一の工程および/または第二の工程における機械分散がボールミル分散法による〔13〕に記載の固体電解質組成物の製造方法。
〔15〕 〔1〕~〔12〕のいずれか1つに記載の固体電解質組成物を含んでなる電池用電極シート。
〔16〕 〔1〕~〔12〕のいずれか1つに記載の固体電解質組成物を集電体上に塗布し、非球状ポリマー粒子のガラス転移温度以上の温度で加熱する第三の工程を含む電池用電極シートの製造方法。
〔17〕 〔15〕に記載の電池用電極シートを具備してなる全固体二次電池。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、特定の符号で表示された置換基や連結基が複数あるとき、あるいは複数の置換基等(置換基数の規定も同様)を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよい。また、複数の置換基等が近接するときにはそれらが互いに結合したり縮合したりして環を形成していてもよい。
 本発明の固体電解質組成物は、全固体二次電池の無機固体電解質層や活物質層の材料として用いたときに、加圧によらずにイオン伝導度の低下を抑えることができ、さらに良好な結着性とを実現できるという優れた効果を奏する。
 本発明の電池用電極シートおよび全固体二次電池は上記の固体電解質組成物を具備し、上記の良好な性能を発揮する。また、本発明の製造方法によれば、上記の固体電解質組成物を好適に製造することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明の好ましい実施形態に係る全固体リチウムイオン二次電池を模式化して示す断面図である。 図2は、扁平率を説明するために非球状粒子の断面を模式化して示す断面図である。 図3は、実施例で利用した試験装置を模式的に示す断面図である。 図4は、実施例で調製したポリマー粒子のDSC測定の結果を示すグラフである。
 本発明の固体電解質組成物は、無機固体電解質と、非球状ポリマー粒子とを含む。以下、その好ましい実施形態について説明するが、まずその好ましい応用形態である全固体二次電池の例について説明する。
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、無機固体電解質層3、正極活物質層4、正極集電体5を、その順で有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。本発明の固体電解質組成物は、上記負極活物質層、正極活物質層、無機固体電解質層の構成材料として用いることが好ましく、中でも、無機固体電解質層および正極活物質層、負極活物質層のすべての構成材料として、用いることが好ましい。
 正極活物質層4、無機固体電解質層3、負極活物質層2の厚さは特に限定されないが、正極活物質層および負極活物質層は目的とする電池容量に応じて、任意に定めることができる。一方、無機固体電解質層は正負極の短絡を防止しつつ、できる限り薄いことが望ましい。具体的には、1~1000μmであることが好ましく、3~400μmであることがより好ましい。
<固体電解質組成物>
 本発明の固体電解質組成物とは、無機固体電解質を含む組成物のことを言い、全固体二次電池の無機固体電解質層、正極活物質層、負極活物質層を形成する材料として用いられる。固体電解質組成物は固体に限らず、液状やペースト状であってもよい。
(無機固体電解質)
 本発明における無機固体電解質とは、無機化合物からなる固体電解質を言う。本明細書において、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質を意味する。この観点から、後述する電解質塩(支持電解質)と区別するため、無機固体電解質をイオン伝導性無機固体電解質と呼ぶことがある。
 無機固体電解質のイオン伝導度は特に限定されない。なお、リチウムイオンにおいて、1×10-6S/cm以上が好ましく、1×10-5S/cm以上がより好ましく、1×10-4S/cm以上がさらに好ましく、1×10-3S/cm以上が特に好ましい。上限は特に制限されるものではない。なお、1S/cm以下が現実的である。
 イオン伝導度の測定方法は、特に断らない限り、後述する実施例で測定した非加圧条件によるものとする。
 無機固体電解質は、高分子化合物や錯塩などの有機化合物は含まないことから、有機固体電解質、PEO(ポリエチレンオキサイド)などに代表される高分子電解質、LiTFSI(リチウムビストリフルオロメタンスルホンイミド)などに代表される有機電解質塩とは明確に区別される。また、無機固体電解質は定常状態で非解離性の固体であるため、液中でも、カチオンおよびアニオンに解離または遊離しない。この点で、電解液や、ポリマー中でカチオンおよびアニオンが解離または遊離する無機電解質塩〔LiPF、LiBF、LiFSI〔リチウムビス(フルオロスルホニル)イミド〕、LiClなど〕とも明確に区別される。無機固体電解質は周期律表第1族もしくは第2族に属する金属を含み、この金属イオン(好ましくはリチウムイオン)の伝導性を有する一方で、電子伝導性を有さないものが一般的である。
 本発明では、正極活物質層、無機固体電解質層および負極活物質層の少なくとも1層に、無機固体電解質を含有する。含有させる無機固体電解質は、全固体二次電池に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は、(i)硫化物系無機固体電解質および(ii)酸化物系無機固体電解質を代表例として挙げられる。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質(以下、単に硫化物系固体電解質とも称す)は、硫黄原子(S)を含有し、かつ、周期律表第1族もしくは第2族に属する金属を含み、イオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。例えば、下記式(A)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
     Li    式(A)
 式(A)中、Mは、B、Zn、Si、Cu、GaおよびGeから選択される元素を表す。a~dは各元素の組成比を表し、a:b:c:dは、それぞれ1~12:0~1:1:2~9を満たす。
 式(A)中、Li、M、PおよびSの組成比は、好ましくはbが0である。より好ましくはbが0で、かつa、cおよびdの組成比が、a:c:d=1~9:1:3~7である。さらに好ましくはbが0で、かつa:c:d=1.5~4:1:3.25~4.5である。各元素の組成比は、後述するように、硫化物系固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。
 Li-P-S系ガラスおよびLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは65:35~85:15、より好ましくは68:32~75:25である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高くすることができる。リチウムイオン伝導度は、1×10-4S/cm以上が好ましく、1×10-3S/cm以上がより好ましい。
 このような化合物としては、例えばLiSと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなるものを挙げることができる。
 具体的には、例えば、LiS-P、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。なかでも、LiS-P、LiS-GeS-Ga、LiS-GeS-P、LiS-SiS-P、LiS-SiS-LiSiO、LiS-SiS-LiPOからなる結晶質および/または非晶質の原料組成物が、高いリチウムイオン伝導性を有するため好ましい。
 このような原料組成物を用いて硫化物系固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法は、例えば、メカニカルミリング法および溶融急冷法を挙げることができる。なかでも、常温での処理が可能になり、製造工程の簡略化できるため、メカニカルミリング法が好ましい。
 硫化物固体電解質は、例えば、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235およびA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献等を参考にして合成することができる。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質(以下、単に酸化物系固体電解質とも称す)は、酸素原子(O)を含有し、かつ、周期律表第1族もしくは第2族に属する金属を含み、イオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 具体的には、例えば、LixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LiLaZr12(LLZ)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiyb3-yb12(ただし、0≦xb≦1、0≦yb≦1)、ガーネット型結晶構造を有するLiLaZr12が挙げられる。
 またLi、PおよびOを含むリン化合物も好ましい。例えば、リン酸リチウム(LiPO)、リン酸リチウムの酸原子素の一部を窒素原子で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれる少なくとも1種を示す)が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれる少なくとも1種を示す)等も好ましく用いることができる。
 その中でも、Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiyb3-yb12(ただし、0≦xb≦1、0≦yb≦1である)は、高いリチウムイオン伝導性を有し、化学的に安定で取り扱いが容易なため、好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 酸化物系固体電解質のリチウムイオン伝導度は、1×10-6S/cm以上が好ましく、1×10-5S/cm以上がより好ましく、5×10-5S/cm以上がさらに好ましい。
 酸化物系の無機固体電解質はその構造中に酸素原子を有するため、これと結合性の高いポリマーを用いることが好ましい。この観点から、非球状粒子をなすポリマーにおいては、下記官能基群(a)の基、酸性基または塩基性基を含むことが好ましい。これにより、より強固にポリマーが無機固体電解質粒子に固着し、界面抵抗の低下等において一層良好な性能が得られる。
 上記無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 無機固体電解質の平均粒子サイズは特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。
 無機固体電解質の固体電解質組成物中での濃度は、電池性能と界面抵抗の低減・維持効果の両立を考慮したとき、固形成分100質量%において、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99.0質量%以下であることが特に好ましい。ただし、後記正極活物質または負極活物質とともに用いるときには、その総和が上記の濃度範囲であることが好ましい。
(非球状ポリマー粒子)
 本発明の非球状ポリマー粒子の形態は特に限定されないが、非球状粒子の一例を模式化して図示するとその断面ないし投影図は図2(左)のようになる。非球状粒子は球状でなければ特にその形状が限定されるものではないが、典型的には、投影図において図示したように長尺扁平形状の粒子が挙げられる。
 ここで、粒子の寸法は、日本ゴム協会誌 第56巻第8号(1983)p525「分散度測定の技術と測定器」を参照して、下記の(a)~(d)で定義することができる(図2参照)。
(a)フェレ径F:一定方向の平行線で挟んだ長さFH
         フェレ径Fの最大となる長さがMaxL 
               最小となる長さをMinL  
(b)マーチン径M:面積を二等分する境界線の長さMH
(c)ヘイウッド径HD:
     粒子の面積と等しい面積をもつ円を考えたとき、その円の直径HD
(d)最大長MaxL:方向に関係なく、周辺の2点間を結んだときの最大のもの
 真球粒子ではFH(最も長いものMaxL)=MH=HDを満たす。非球状粒子はそれ以外の構造と定義できる。
 本発明においては、この長軸をMaxL、短軸をMinLを定義したときにその扁平率(MaxL/MinL)[f1]が1超であることが好ましい。非球状のポリマー粒子の扁平率[f1]は、1.1以上であることが好ましく、1.2以上であることがより好ましく、1.3以上であることがさらに好ましく、1.5以上がさらに好ましく、1.7以上が特に好ましい。上限は100以下であることが実際的であり、50以下がより実際的である(図2参照)。
 本発明においては、さらに、非球状ポリマー粒子のフェレ径とヘイウッド径に基づく扁平率(MaxL/HD)[f2]が1超であることが好ましく、1.1以上であることがより好ましく、1.2以上であることがより好ましく、1.3以上であることが特に好ましい。上限は、100以下であることが実際的であり、50以下であることがより実際的である。
 本発明においてポリマー粒子の扁平率あるいは上記フェレ径とヘイウッド径との比率は、特に断らない限り、後記実施例の項の測定で測定した条件によるものとする。
・特定ポリマー
 非球状ポリマー粒子をなすポリマー(以下、特定ポリマーという)は下記官能基群(a)の官能基、酸解離定数pKa14以下の酸性基、または共役酸のpKaが14以下の塩基性基の少なくとも1つ有する。これらは極性基として機能するため、活物質や無機固体電解質の表面と水素結合、イオン結合、共有結合を形成し、相互作用を高め、結果として結着性を高めるものと解される。
<官能基群(a)>
 置換基:カルボキシル基、スルホン酸基、リン酸基、ヒドロキシ基、
     CONR 、シアノ基、NR 、チオール基
 連結基:カルボニルオキシ基、カルボニル基、NR、S、O、OCOO、ウレタン基(NRCOO)、CONR、ウレア基(NR-CO-NR
 Rは水素原子、アルキル基(炭素数1~12が好ましく、炭素数1~6がより好ましく、炭素数1~3が特に好ましい)、またはアリール基(炭素数6~22が好ましく、炭素数6~14がより好ましく、炭素数6~10が特に好ましい)である。
 これらの官能基は、ポリマーの主鎖に有していてもよく、ポリマー側鎖に有していてもよい。
 本発明においては、特定ポリマー中に酸性基および/または塩基性基を含むことが結着性向上のうえで好ましい。酸性基、塩基性基は、上記のとおり、酸解離定数pKa14以下の酸性基、または共役酸のpKaが14以下の塩基性基であることが結着性向上の観点からさらに好ましい。上記のpKaは12以下であることがより好ましく、10以下であることがさらに好ましく、8以下であることが特に好ましい。pKaがこの領域となることで無機固体電解質や活物質、集電体とのイオン相互作用が高まり結着性が向上する。
 pKaとは、酸強度を定量的に表すための指標のひとつであり、酸性度定数と同義である。酸から水素イオンが放出される解離反応を考え、その平衡定数Kaをその負の常用対数pKaによって表したものである。pKaが小さいほど強い酸であることを示す。例えば、ACD/Labs(Advanced Chemistry Development社製)等を用いて算出した値を用いることができる。下記に、代表的な置換基の計算例を示しておく。
  置換基      pKa
  ―COOH     4.14
  ―SOH    -2.80
  ―PO     2.12 (2段 7.06)
  -NH (NHの共役酸のpKa) 10.66
 このような官能基としてたとえば酸性基としてはカルボキシル基、スルホン酸基、リン酸基、アセチルアセトナート基などが挙げられる。塩基性基としてはたとえば、ニトリル基、アミノ基(NR )、アミド基(CONR )、ウレタン基(NRCOO)、ウレア基(NR-CO-NR)などが挙げられる。
 また官能基群(a)のなかでは、イオン伝導度を向上させるうえでリチウムイオンの溶解に寄与しうるエーテル基、カルボニル基、カルボニルアミノ基(CONR)、カルボニルオキシ基(COO)、カーボネート基(OCOO)が好ましい。
 官能基群(a)のなかで特に好ましいのはカルボニルアミノ基(CONR)である。特に、カルボニルアミノ基をポリマー主鎖に有するポリマーが好ましい。なお、ウレア基やウレタン基を有するポリマーは、カルボニル基またはカルボニルアミノ基を有するポリマーに含まれる。
 上記特定ポリマーはラジカル重合、カチオン重合、重縮合反応によって得られる。ラジカル重合によって得られるポリマーとしては、各種置換基を有していても良い(メタ)アクリルモノマーに由来する基を部分構造として有するポリマー、アクリロニトリルに由来する基を部分構造として有するポリマー、マレイミドに由来する基を部分構造として有するポリマーなどが挙げられる。カチオン重合によって得られるポリマーとしてはエポキシモノマーやオキセタンモノマーに由来する基を部分構造として有するポリマーが挙げられる。重縮合反応によって得られるポリマーとしては、ポリエステル、ポリイミド、ポリアミド、ポリウレタンなどが挙げられる。本発明においては、これらのなかでも特にアクリル系ポリマーまたはポリウレタンが最も好ましい。
 特定ポリマーは、柔軟かつゴム弾性を有することが好ましく、3次元架橋構造を有していることがさらに好ましい。3次元架橋は合成されたポリマーの段階で備えていてもよいし、熱または光によって架橋可能な潜在的な架橋性基を持っていてもよい。架橋性基はラジカル重合性基、カチオン重合性基などがあげられる。ラジカル重合性基としては炭素-炭素不飽和基があげられ、具体的にはアクリル基、メタクリル基、ビニル基、アリル基、マレイミド基、末端エチニル基、内部エチニル基、プロパルギル基等があげられる。カチオン重合性基としてはヘテロ環があげられ具体的にはエポキシ基、オキセタニル基、アジリジン基などが挙げられる。合成されたポリマーの段階で3次元架橋を備えているものとしてはたとえば、アクリルゴム、ニトリルゴム、ウレタンゴム、シリコンゴムなどが挙げられる。
 なお、本明細書において、「アクリル」というときにはアクリロイル基を有する構造群を広く指し、例えば、α位に置換基を有する構造を含むものとする。ただし、α位にメチル基を有するものをメタクリルと呼び、これを含む意味で(メタ)クリルなどと称することもある。
 上記ポリマー粒子をなす特定ポリマーは、イオン伝導性向上の観点から下記のポリマー鎖のいずれかまたはその組合せを有することが好ましい。
 ・ポリアルキレンオキシド鎖:-(L-O)n-      式(C1)
 ・ポリカーボネート鎖:  -(L-OCOO)n-    式(C2)
 ・ポリエステル鎖: -(L-COO)n-        式(C3)
          -(OOC-LC1-COO-Lc2)n- 式(C4)
 ・ポリシロキサン鎖:-(SiL -O)n-       式(C5)
 Lはアルキレン基(炭素数1~12が好ましく、炭素数2~6がより好ましく、炭素数2~4が特に好ましい)を表す。
 Lはアルキレン基(炭素数1~12が好ましく、炭素数2~10がより好ましく、炭素数3~6が特に好ましい)、アリーレン基(炭素数6~22が好ましく、炭素数6~14がより好ましく、炭素数6~10が特に好ましい)、またはそれらの組合せを表す。
 L、LC1、LC2はアルキレン基(炭素数1~12が好ましく、炭素数2~10がより好ましく、炭素数2~8が特に好ましい)、アリーレン基(炭素数6~22が好ましく、炭素数6~14がより好ましく、炭素数6~10が特に好ましい)、またはそれらの組合せを表す。なお、LC1とLC2とが同じであることはない。
 Lは水素原子、ヒドロキシル基、アルキル基(炭素数1~12が好ましく、炭素数1~6がより好ましく、炭素数1~3が特に好ましい)、アリール基(炭素数6~22が好ましく、炭素数6~14がより好ましく、炭素数6~10が特に好ましい)を表す。
 nは3以上の整数を表し、6以上が好ましく、10以上がより好ましい。上限は、2500以下であり、200以下が好ましく、50以下がより好ましい。nで規定される連結基において、複数のL、L、LC1C2、Lは、互いに同じであっても異なっていてもよい。
 アルキル基、アリール基、アルキレン基、アリーレン基はさらに任意の置換基(例えば置換基T)を有していてもよい。このことは、逐一断ることはしないが、いずれの化合物ないし置換基においても本明細書を通じて同様である。
 上記のポリマー鎖は、重量平均分子量200以上であることが好ましく、600以上であることがより好ましく、800以上であることが特に好ましい。上限としては、重量平均分子量200,000以下であることが好ましく、10,000以下であることがより好ましく、5,000以下であることが特に好ましい。
 なお、ポリマー鎖の分子量は、ポリマーに組み込む前のモノマーについてGPCにおけるポリスチレン換算重量平均分子量として求めることができる。
 特定ポリマーは、下記式(1)または式(2)の繰り返し単位を含むことが好ましく、その両者を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000003
 Lは炭素数1以上20以下のアルキレン基(好ましくは炭素数1~12、より好ましくは炭素数1~6)、炭素数6以上22以下のアリーレン基(好ましくは炭素数6~14、より好ましくは炭素数6~10)、またはその組合せを示す。
 Lはへテロ原子を有する連結基を介在することがあるアルキレン基(炭素数1~12が好ましく、炭素数1~6がより好ましく、炭素数1~4が特に好ましい)、へテロ原子を有する連結基を介在することがあるアリーレン基(炭素数6~22が好ましく、炭素数6~14がより好ましく、炭素数6~10が特に好ましい)、またはそれらの組合せを示す。へテロ原子を有する連結基の例としては、下記の連結基Xまたはカルボニル基が挙げられる。Rは水素原子、アルキル基(炭素数1~12が好ましく、炭素数1~6がより好ましく、炭素数1~3が特に好ましい)、またはアリール基(炭素数6~22が好ましく、炭素数6~14がより好ましく、炭素数6~10が特に好ましい)である。
 XはO、S、NR、およびこれらの組合せのいずれかを示す。
 上記特定ポリマーは、ハードセグメントおよびソフトセグメントを所定の割合で含有することが好ましい。ハードセグメントとは、主骨格に芳香族基や複素芳香族基、脂肪族脂環式基といった剛直基を有し、あるいは分子間水素結合やπ-π相互作用による分子間パッキングを可能にする結合部を有する、一般的に剛直性を備え凝集力が強くかつ繊維形態を有するセグメントと説明することができる。その部位からなる化合物のガラス転移温度は高く、典型的には100℃以上を示すものをいう。ソフトセグメントとは、主鎖に長鎖直線状基や長鎖分岐基を有し、柔らかく、伸縮性を有するセグメントと説明することができる。そのガラス転移温度が低く、50℃以下を示すものをいう。
・ハードセグメント
 ハードセグメントは、水素結合を介在して分子間擬似架橋を形成する骨格を有するものであることが好ましい。また、ハードセグメントは、アミド結合、ウレア結合、ウレタン結合、およびイミド結合の少なくともいずれかの結合を含有することが好ましい。ハードセグメントは下記I群から選ばれることがより好ましい。
Figure JPOXMLDOC01-appb-C000004
*は結合部位を表す。
 R11およびR12はそれぞれ独立にアルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アリーレン基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、またはその組合せである。R11およびR12の好ましい連結基として、下記式(M2)で表される基が挙げられる。なお、式(I-1)および式(I-2)が、結合部位*で、酸素原子やイミノ基(NR)に連結していくことで、ウレタン基やウレア基になる。さらに、各式のNH基の水素原子は任意の置換基Tで置換されていてもよい。Nに置換する置換基としては、上記Rの例が挙げられる。このことは本明細書を通じて同様である。
 R13はアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましく、7~11が特に好ましい)である。なお、式(I-3)において主鎖のエチレン基には任意の置換基(メチル基、エチル基、プロピル基、ハロゲン原子、ヒドロキシ基等)が置換していてもよい。
 ここで、R13は環を形成していてもよく、例えば、式(I-4)において、Nと結合して、N位で置換したピロリドン環を形成していてもよい。
 なお、式(I-3),(I-4)において、主鎖のエチレン基は置換基Tを有していてもよい。この置換基としては、例えば、メチル基、エチル基、ハロゲン原子、シアノ基等が挙げられる。また、主鎖のエチレン基と置換基のCO基またはNH基の間には任意の連結基が介在していてもよい。
 R14は芳香族または脂肪族の4価の連結基を表す。R14は下記の式(i)~(iix)のいずれかで表される連結基であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 式中、Xは単結合又は2価の連結基を表す。2価の連結基としては、炭素数1~6のアルキレン基(メチレン基、エチレン基、プロピレン基)、-SO-、-S-、-CO-、又は-O-が好ましい。中でも、上記のアルキレン基がより好ましい。Lはアルケニレン基(例えば-CH=CH-)又はアルキレン基(例えば-CH-、-CHCH-)を表す。R及びRは水素原子又は置換基(例えば置換基T)を示す。*はカルボニル基との結合部位を示す。
・ソフトセグメント
 一方、ソフトセグメントは、ポリアルキレンオキシド鎖(ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖が好ましい)、ポリカーボネート鎖、ポリエステル鎖の少なくともいずれかを含有することが好ましい。ソフトセグメントは下記II群から選ばれることがより好ましい。
Figure JPOXMLDOC01-appb-C000006
*は結合部位を表す。
 R21は水素原子またはアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)を表す。
 R22はポリアルキレンオキシド鎖(ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖が好ましい)、ポリカーボネート鎖、ポリエステル鎖、またはポリシロキサン(シリコーン)鎖を含有する重量平均分子量200以上200,000以下の置換基を表す。R22は、末端にアルキル基(炭素数1~12が好ましく、1~6がより好ましい)を有することが好ましい。このアルキル基は、その中に、エーテル基(O)、チオエーテル基(S)、カルボニル基(CO)、イミノ基(NR)を有していてもよい。また、R22は、後記第三成分で定義されるヘテロ原子含有基または炭素-炭素不飽和基を有していてもよい。上記分子量はさらに500以上であることが好ましく、700以上であることがより好ましく、1,000以上であることが特に好ましい。上限としては、100,000以下であることが好ましく、10,000以下であることがより好ましい。
 R23は、上記式(C1)~(C4)のいずれかまたはその組み合わせに係る連結基であることが好ましい。なかでも、ポリアルキレンオキシド鎖(ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖が好ましい)、ポリカーボネート鎖、ポリエステル鎖、またはポリシロキサン(シリコーン)鎖を含有する重量平均分子量200以上200,000以下の連結基であることが好ましい。上記分子量はさらに500以上であることが好ましく、700以上であることがより好ましく、1,000以上であることが特に好ましい。上限としては、100,000以下であることが好ましく、10,000以下であることがより好ましい。
 なお、R22およびR23の分子量は、ポリマーに組み込む前のモノマーについてGPCにおけるポリスチレン換算重量平均分子量として求めることができる。
 上記特定ポリマーのハードセグメント成分とソフトセグメント成分との比率は、ハードセグメント成分が、全ポリマー中、50mol%以上であることが好ましく、60mol%以上であることがより好ましく、70mol%以上であることが特に好ましい。上限としては、99mol%以下であることが好ましく、90mol%以下であることがより好ましく、80mol%以下であることが特に好ましい。
 ソフトセグメント成分は、全ポリマー中、1mol%以上であることが好ましく、2mol%以上であることがより好ましく、5mol%以上であることが特に好ましい。上限としては、50mol%以下であることが好ましく、30mol%以下であることがより好ましく、20mol%以下であることが特に好ましい。
 ハードセグメント成分100質量部に対しては、モル比で、ソフトセグメント成分が、1部以上であることが好ましく、10質量部以上であることがより好ましく、100質量部以上であることが特に好ましい。上限としては、10,000質量部以下であることが好ましく、5,000質量部以下であることがより好ましく、1,000質量部以下であることが特に好ましい。
 各セグメントを上記の範囲で調整することにより、全固体二次電池における界面抵抗の低減性およびその維持性において一層優れた効果が得られ好ましい。
・第三成分
 上記特定ポリマーは、さらに、ヘテロ原子含有基をもつ繰り返し単位を有することが好ましい。へテロ原子含有基としては、アルコール性水酸基含有基(例えばヒドロキシアルキル基:炭素数1~6が好ましく、炭素数1~3がより好ましい。)、フェノール性水酸基含有基(例えばヒドロキシフェニル基)、チオール基、カルボキシル基、スルホン酸基、スルホンアミド基、リン酸基、ニトリル基、アミノ基、双性イオン含有基、金属ヒドロキシド基、および金属アルコキシド基の少なくともいずれかを有することが好ましい。ここで、アミノ基はNR で表されるものが好ましい。双性イオン含有基は、具体的には、ベタイン構造(炭素数1~12が好ましく、1~6がより好ましい)であり、カチオン部分は4級アンモニウム、スルホニウム、ホスホニウムが挙げられ、アニオン部はカルボキシレート、スルホネートが挙げられる。金属ヒドロキシドは、具体的には、ヒドロキシルシリル基、ヒドロキシルチタニル基である。金属アルコキシドは、具体的には、アルコキシシリル基(炭素数1~12が好ましく、1~6がより好ましい)、アルコキシチタニル基(炭素数1~12が好ましく、1~6がより好ましい)が好ましく、より具体的には、トリメトキシシリル基、メチルジメトキシシリル基、トリエトキシシリル基、メチルジエトキシシリル基、トリメトキシチタニル基である。
 上記特定ポリマーにおいて、ヘテロ原子含有基をもつ繰り返し単位は、全ポリマー中で0mol%~30mol%であることが好ましい。このヘテロ原子含有基をもつ繰り返し単位を特定ポリマーに組み込むことで、リチウムイオンの伝導性が向上、あるいは無機固体電解質との相互作用が生じ密着性が向上するという作用が期待でき好ましい。
 また、上記特定ポリマーは、熱または光によって架橋可能な潜在的な架橋性基を持っていてもよい。架橋性基はラジカル重合性基、カチオン重合性基などがあげられる。ラジカル重合性基としては炭素-炭素不飽和基があげられ、具体的にはアクリル基、メタクリル基、ビニル基、アリル基、マレイミド基、末端エチニル基、内部エチニル基、プロパルギル基等があげられる。カチオン重合性基としてはヘテロ環があげられ具体的にはエポキシ基、オキセタニル基、アジリジン基などが挙げられる。
 上記架橋性基は、下記式(11)、(12)、または(13)で示されることがより好ましい。
Figure JPOXMLDOC01-appb-C000007
 *は結合部位を表す。
 RおよびRはそれぞれ独立に酸素原子またはイミノ基(NR)を示す。Rは上記と同義である。R~R、R~R10はそれぞれ独立に水素原子またはアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)を表す。R11~R13はそれぞれ独立に水素原子またはアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)を表す。X13は酸素原子、硫黄原子、イミノ基(NR)を示す。Rは上記と同義である。上記架橋性基をもつ繰り返し単位は、全ポリマー中で0mol%~30mol%であることが好ましい。この上記架橋性基をもつ繰り返し単位を特定ポリマーに組み込むことで、無機固体電解質との化学結合が生じ密着性の向上が期待でき好ましい。
 第三成分は特定ポリマーの鎖中で、ハードセグメント部、ソフトセグメント部のいずれに存在していてもよい。またポリマー側鎖に存在してもよいし、ポリマー主鎖の末端に存在していてもよい。
 以下に、特定ポリマーの具体例について説明する。とくにポリマーはハードセグメントとソフトセグメントとを有するものを中心に説明しているが、本発明はこれに限定して解釈されるものではない。
・アミド結合を有するポリマー
 アミド結合を有するポリマーとしてポリアミド、ポリアクリルアミドなどが挙げられる。ポリアミドはジアミンとジカルボン酸を縮合重合するか、ラクタムの開環重合によって得ることができる。一方、ポリアクリルアミドはアクリルアミドモノマーをラジカル重合することによって得られる。ポリアクリルアミドはアクリルアミドモノマーと共重合するものであれば任意のラジカル性モノマーと共重合することができる。共重合方法としてはランダム重合、グラフト重合、ブロック重合などが挙げられるが、ハードセグメントとしてポリアクリルアミドを構築するためにはブロック重合であることがより好ましい。アミドポリマーのソフトセグメントの導入は、例えば、ヘテロ原子で分断されてもよい長鎖アルキル基、たとえばエチレンオキシド鎖、プロピレンオキシド鎖を有する末端ジアミンとジカルボン酸を縮合重合させることで行うことができる。上記ソフトセグメント含有ジアミンは、たとえば市販品として「ジェファーミン」シリーズ(ハンツマン(株)社製、三井化学ファイン(株)社製)を用いることができる。
・ウレア結合を有するポリマー
 ウレア結合を有するポリマーとしてはポリウレアが挙げられる。ジイソシアネート化合物とジアミン化合物をアミン触媒存在下で縮合重合によってポリウレアを合成することができる。ジイソシアネートの例としては、特に制限はなく、適宜選択することができ、例えば、下記式(M1)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000008
 RM1は、置換基(例えば、アルキル基、アラルキル基、アリール基、アルコキシ基、及びハロゲノ基のいずれかが好ましい)を有していてもよい二価の脂肪族又は芳香族炭化水素を表す。必要に応じ、上記RM1は、イソシアネート基と反応しない他の官能基、例えば、エステル基、ウレタン基、アミド基、及びウレイド基のいずれかを有していてもよい。
 上記式(M1)で表されるジイソシアネート化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、下記式(M2)で表される基を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000009
 式中、Xは、単結合、-CH-、-C(CH-、-SO-、-S-、-CO-、又は-O-を表す。結着性の観点で、-CH-、-O-が好ましく、-CH-がより好ましい。ここで例示した上記アルキレン基はハロゲン原子(好ましくはフッ素原子)で置換されていてもよい。
 RM2~RM5は、互いに同一であってもよいし、異なっていてもよく、それぞれ、水素原子、一価の有機基、ハロゲン原子、-ORM6、―N(RM6、又は-SRM6を表す。RM6は、それぞれ独立に、水素原子、又は一価の有機基を表す。一価の有機基としては、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、-ORM7(ただし、RM7は一価の有機基(好ましくは炭素数1~20のアルキル基等、炭素数6~10のアリール基)を表す)、アルキルアミノ基(炭素数1~20が好ましく、1~6がより好ましい)、アリールアミノ基(炭素数6~40が好ましく、6~20がより好ましい)などが挙げられる。上記RM2~RM5としては、水素原子、炭素数1~20のアルキル基、-ORM7が好ましく、水素原子、炭素数1~20のアルキル基がより好ましく、水素原子が特に好ましい。ハロゲン原子としては、例えば、フッ素、塩素、臭素などが挙げられる。なかでも、RM2~RM5が水素原子であることが好ましい。
 上記式(M1)および(M2)で表される芳香族基の組成比率としては、ポリマー中、10mol%以上が好ましく、10mol%~50mol%がより好ましく、30mol%~50mol%が更に好ましい。
 ウレア結合を有するポリマーのソフトセグメントの導入は、ヘテロ原子で分断されても良い長鎖アルキル基、たとえばエチレンオキシド鎖、プロピレンオキシド鎖を有する末端ジアミンとイソシアネートを縮合重合させることで行うことができる。上記ソフトセグメント含有ジアミンは、たとえば市販品として「ジェファーミン」シリーズ(ハンツマン(株)社製、三井化学ファイン(株)社製)を用いることができる。具体的にはジェファーミンD-230、ジェファーミンD-400、ジェファーミンD-2000、ジェファーミンXTJ-510、ジェファーミンXTJ-500、ジェファーミンXTJ-501、ジェファーミンXTJ-502、ジェファーミンHK-511、ジェファーミンEDR-148、ジェファーミンXTJ-512、ジェファーミンXTJ-542、ジェファーミンXTJ-533、ジェファーミンXTJ-536が挙げられる。
・イミド結合を有するポリマー
 イミド結合を有するポリマーとしてポリイミドが挙げられる。ポリイミドはテトラカルボン酸二無水物とジアミンを付加させポリアミック酸を形成したのち、閉環することで得られる。ジアミンはソフトセグメントとして用いることが好ましいため、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖の両末端にアミノ基を有する構造が好ましい。上記ソフトセグメント含有ジアミンは、たとえば市販品として「ジェファーミン」シリーズ(ハンツマン(株)社製、三井化学ファイン(株)社製)を用いることができる。具体的にはジェファーミンD-230、ジェファーミンD-400、ジェファーミンD-2000、ジェファーミンXTJ-510、ジェファーミンXTJ-500、ジェファーミンXTJ-501、ジェファーミンXTJ-502、ジェファーミンHK-511、ジェファーミンEDR-148、ジェファーミンXTJ-512、ジェファーミンXTJ-542、ジェファーミンXTJ-533、ジェファーミンXTJ-536が挙げられる。
・ウレタン結合を有するポリマー
 ウレタン結合を有するポリマーとしてポリウレタンが挙げられる。イソシアネート化合物とジオール化合物をチタン、スズ、ビスマス触媒存在下で縮合重合することで得られる。イソシアネート化合物は上記に挙げた化合物を用いることができる。ジオールとしては、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖を有していることが好ましい。またジオールは炭素-炭素不飽和基や極性基(アルコール性水酸基、フェノール性水酸基、チオール基、カルボキシル基、スルホン酸基、スルホンアミド基、リン酸基、ニトリル基、アミノ基、双性イオン含有基,金属ヒドロキシド、金属アルコキシド)を有していることが好ましい。たとえば2,2-ビス(ヒドロキシメチル)プロピオン酸を用いることができる。炭素-炭素不飽和基を含有するジオール化合物は市販品としてブレンマーGLM(日油株式会社製)のほか、特開2007-187836記載の化合物を好適に用いることができる。
 ポリウレタンの場合、重合停止剤としてモノアルコールやモノアミンを用いることができる。重合停止剤はポリウレタン主鎖の末端部位に導入される。ソフトセグメントをポリウレタン末端に導入する手法として、ポリアルキレングリコールモノアルキルエーテル(ポリエチレングリコールモノアルキルエーテル、ポリプロピレンモノアルキルエーテルが好ましい)や、ポリカーボネートジオールモノアルキルエーテル、ポリエステルジオールモノアルキルエーテル、ポリエステルモノアルコールなどを用いることができる。
 また、極性基や炭素―炭素不飽和基を有するモノアルコールやモノアミンを用いることで、ポリウレタン主鎖の末端に極性基や炭素-炭素不飽和基の導入が可能である。たとえば、ヒドロキシ酢酸、ヒドロキシプロピオン酸、4-ヒドロキシベンジルアルコール、3-メルカプト―1プロパノール、2,3-ジメルカプト-1-プロパノール、3-メルカプト―1―ヘキサノール、3-ヒドロキシプロパンスルホン酸、2-シアノエタノール、3-ヒドロキシグルタロニトリル、2-アミノエタノール、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、N-メタクリレンジアミンなどが挙げられる。
 ポリウレタンの場合、イソシアネート化合物部分がハードセグメントとして、ジオール化合物部分がソフトセグメントとして機能することが好ましい。
 以下に、非球状のポリマー粒子をなす特定ポリマーの具体的化合物例を示す。ただし、本発明はこの化合物例に限られない。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 上記の例示化合物には、適宜置換基を有していてもよい。その任意の置換基としては、下記置換基Tが挙げられる。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~30のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘキシル、2-エチルヘキシル、ヘプチル、1-エチルペンチル、デシル、ドデシル、ヘキサデカン、オクタデカン、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環の炭素原子数2~20のヘテロ環基が好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、スルホンアミド基(好ましくは炭素原子数0~20のスルファもイル基、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-エチルベンゼンスルホンアミド等)、ヒドロキシ基、カルボキシル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、シアノ基又はハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基又はシアノ基が挙げられる。
 化合物ないし置換基等がアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。
 本明細書において、化合物の置換基や連結基の選択肢を始め、温度、厚さといった各技術事項は、そのリストがそれぞれ独立に記載されていても、相互に組み合わせることができる。
 非球状ポリマー粒子をなす特定ポリマーの重量平均分子量は5,000以上であることが好ましく、10,000以上であることがより好ましく、30,000以上であることが特に好ましい。上限としては、1,000,000以下であることが好ましく、200,000以下であることがより好ましい。
-分子量の測定-
 本発明においてポリマーの分子量については、特に断らない限り、重量平均分子量をいい、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の重量平均分子量を計測する。測定方法としては、基本として下記条件1または条件2(優先)の方法により測定した値とする。ただし、ポリマー種によっては適宜適切な溶離液を選定して用いればよい。
(条件1)
カラム:TOSOH TSKgel Super AWM-Hをつなげる
キャリア:10mMLiBr/N-メチルピロリドン
(条件2)
カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000をつないだカラムを用いる
キャリア:テトラヒドロフラン
 特定ポリマーのガラス転移温度(Tg)は100℃以下であることが結着性向上のうえで好ましく、50℃以下がより好ましく、30℃以下が特に好ましい。下限は、製造適正や性能の安定性の点から-70℃以上が好ましく、-50℃以上がより好ましい。Tgが低すぎるとボールミル分散中に粒子が凝集して固着する可能性がある。逆に、Tgが高すぎると、無機固体電解質粒子の良好な固着効果が得がたくなる。
 特定ポリマーは結晶性でも非晶性であってもよい。結晶性の場合、融点は250℃以下であることが好ましく、200℃以下がより好ましく、180℃以下が特に好ましい。下限は特にないが、100℃以上が好ましく、120℃以上がより好ましい。
 本発明において特定ポリマーのTgや融点は特に断らない限り後記実施例で採用した測定方法(DSC測定)によるものとする。なお、作成された全固体二次電池からの測定は、例えば、電池を分解し電極を水に入れてその材料を分散させた後、ろ過を行い、残った固体を収集し後述するTgの測定方法でガラス転移温度を測定することにより行うことができる。
 非球状のポリマー粒子はポリマー固体を分散媒体(貧溶媒)中で機械分散または粉砕処理することによって得ることができる。すなわち、固体を粉砕するブレイクダウン法を適用することが好ましく、溶液から粒子を形成するビルドアップ法で良好な非球状粒子を得ることが難しい。ブレイクダウン法としては機械分散法が挙げられ、たとえばビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダーなどが好適に用いられる。なかでもボールミルにより機械分散することが好ましい。
 ボールミルは、粉砕機の1種で、セラミックなどの硬質のボールと、材料の粉を円筒形の容器にいれて回転させることによって、材料をすりつぶして微細な粉末を作る装置を指す。粉砕方法としては、ドイツ・フリッチュ社製遊星型ボールミルを用いることが好ましい。遊星式粉砕方法は、自転・公転運動にさらに強い遠心力を加えて、ボールと容器の壁とを使って粉砕する方法である。容器、ボールの材質は、メノー、シンタードアルミナ、タングステンカーバイト、クローム鋼、ステンレンススチール、ジルコニア、プラスチックポリアミド、窒化珪素があげられる。容器の大きさはドイツ・フリッチェ社製のものより12mLから500mLのものが入手できる。またボールは2mm~40mmまでのものを入手することができる。
 容器の大きさとボールの大きさ、それぞれの場合の好適な挿入量について述べる。
・12mL容器の場合:ボール直径<2mm(14g),5mm(50個)、10mm(6個)
・45mL容器の場合:ボール直径<2mm(50g),5mm(180個)、10mm(18個),15mm(7個)
・80mL容器の場合:ボール直径<2mm(85g),5mm(250個)、10mm(30個),15mm(10個)、20mm(5個)、30mm、40mm
・250mL容器の場合:ボール直径<2mm(280g),5mm(1200個)、10mm(50個),15mm(45)、20mm(15個)、30mm(6個)、40mm
・500mL容器の場合:ボール直径<2mm(560g),5mm(2000個)、10mm(100個),15mm(70個)、20mm(25個)、30mm(10個)、40mm(4個)
 分散時間は特に限定されないが、10分~10時間、好ましくは30分~8時間、より好ましくは1時間~4時間である。分散温度は特に限定されないが、粉砕するポリマーのTg以下で分散することが微細粒子を得るうえで好ましい。好ましくは50℃以下、より好ましくは20℃以下、さらに好ましくは0℃以下である。ボールと粉砕するポリマーの重量比は、ボール1gに対しポリマー0.05g以下、好ましくは0.02g以下、より好ましくは0.01g以下である。材質、使用する容器、ボール直径、分散時間によって粉砕されるポリマーの平均粒径が変化する。一例としては、25℃でジルコニア製45mL容器、ボール直径5mm 180個を使用し4時間380rpmで粉砕することで約1μmの非球状ポリマー粒子を得ることができる。
 非球状のポリマー粒子は平均粒子径が0.01μm以上であることが好ましく、0.05μm以上であることがより好ましく、0.1μm以上であることが特に好ましい。上限としては、500μm以下であることが好ましく、100μm以下であることがより好ましく、10μm以下であることがさらに好ましく、5μm以下であることが特に好ましい。
 粒子のばらつきを細かいほうから数え、全個数の10%に値する粒子径をd10,全個数の50%に値する粒子径(メジアン径)をd50,全個数の90%に値する粒子径をd90と定義する。このとき分散の大きさ指標として D=(d90-d10)/d50とする。Dが大きいほど粒子のバラつきが大きいことになるDは1.5以上が好ましく、2以上が好ましく、さらに好ましくは3以上である。上限は特に設けないが10000以下が一般的であり、10以下が実際的である。
 本発明においてポリマー粒子の粒径あるいはばらつき(D)は、特に断らない限り、後記実施例で測定した条件によるものとする。
 無機固体電解質が粒子状であるときには、無機固体電解質の平均粒径より、上記ポリマー粒子の粒径が小さいことが好ましい。ポリマー粒子の大きさを上記の範囲とすることにより、良好な密着性と界面抵抗の抑制とを実現することができる。
 なお、作成された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について後述のポリマーの粒径測定の方法に準じてその測定を行い、あらかじめ測定していたポリマー以外の粒子の粒径の測定値を排除することにより行うことができる。
 特定ポリマーの配合量は、上記無機固体電解質(活物質を用いる場合はこれを含む)100質量部に対して、0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましく、1質量部以上であることが特に好ましい。上限としては、50質量部以下であることが好ましく、20質量部以下であることがより好ましく、10質量部以下であることが特に好ましい。
 固体電解質組成物に対しては、その固形分中、ポリマー粒子が0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、1質量%以上であることが特に好ましい。上限としては、50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。
 ポリマー粒子を上記の範囲で用いることにより、一層効果的に無機固体電解質の固着性と界面抵抗の抑制性とを両立して実現することができる。
 特定ポリマーは一種を単独で用いても、複数の種類のものを組み合わせて用いてもよい。また、他の粒子と組み合わせて用いてもよい。
 非球状ポリマー粒子はこれを構成する特定ポリマーのみからなっていてもよく、あるいは、別種の材料(ポリマーや低分子化合物、無機化合物など)を含む形で構成されていてもよい。好ましくは、構成する特定ポリマーのみからなる粒子である。
(リチウム塩)
 本発明の全固体二次電池には、その固体電解質組成物にリチウム塩を含有させてもよい。リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はないが、例えば、以下に述べるものが好ましい。
 (L-1)無機リチウム塩:LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩;LiClO、LiBrO、LiIO等の過ハロゲン酸塩;LiAlCl等の無機塩化物塩等。
 (L-2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(FSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等。
 (L-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。
 これらのなかで、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(RfSO)、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)が好ましく、LiPF、LiBF、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)などのリチウムイミド塩がさらに好ましい。ここで、Rf、Rfはそれぞれパーフルオロアルキル基を示す。
 リチウム塩の含有量は、無機固体電解質100質量部に対して0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましい。上限としては、10質量部以下であることが好ましく、5質量部以下であることがより好ましい。
 なお、電解液に用いる電解質は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
(分散媒体)
 本発明の固体電解質組成物においては、上記の各成分を分散させる分散媒体を用いてもよい。分散媒体としては、例えば、水溶性有機溶媒が挙げられる。具体例としては、下記のものが挙げられる。
・脂肪族化合物
 ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ペンタン、シクロペンタンなど
・ハロゲン化炭化水素化合物
 塩化メチレン、クロロホルム、ジクロルメタン、二塩化エタン、四塩化炭素、トリクロロエチレン、テトラクロロエチレン、エピクロロヒドリン、モノクロロベンゼン、オルソジクロロベンゼン、アリルクロライド、HCFC、モノクロロ酢酸メチル、モノクロロ酢酸エチル、モノクロロ酢酸トリクロル酢酸、臭化メチル、ウ化メチル、トリ(テトラ)クロロエチレなど
・アルコール化合物
 メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールなど
・エーテル化合物(水酸基含有エーテル化合物を含む)
 ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、シクロヘキシルメチルエーテル、アニソール、テトラヒドロフラン、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)など
・エステル化合物
 酢酸エチル、乳酸エチル、2-(1-メトキシ)プロピルアセテート、プロピレングリコール1-モノメチルエーテル2-アセタートなど
・ケトン化合物
 アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヘプタノンなど
・ニトリル化合物
 アセトニトリルなど
・アミド化合物
 N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなど
・スルホキシド化合物
 ジメチルスルホキシドなど
・芳香族化合物
 ベンゼン、トルエン、キシレンなど
 本発明においては、なかでも、エーテル化合物溶媒、ケトン化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒を用いることが好ましい。分散媒体は常圧(1気圧)での沸点が80℃以上であることが好ましく、100℃以上であることがさらに好ましい。上限は220℃以下であることが好ましく、160℃以下であることがさらに好ましい。
 分散媒体に対する特定ポリマーの溶解度は20℃において20質量%未満であることが好ましく、10質量%未満であることがより好ましく、3質量%未満であることが特に好ましい。下限は0.01質量%以上であることが実際的である。
 分散媒体の水への溶解性は、20℃において5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることが特に好ましい。下限は0.001質量%以上が実際的である。
 上記分散媒体は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(正極活物質)
 本発明の固体電解質組成物には、正極活物質を含有させてもよい。それにより、正極材料用の組成物とすることができる。正極活物質には遷移金属酸化物を用いることが好ましく、中でも、遷移元素M(Co、Ni、Fe、Mn、Cu、Vから選択される1種以上の元素)を有することが好ましい。また、混合元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなど)を混合してもよい。この、遷移金属酸化物として例えば、下記式(MA)~(MC)のいずれかで表されるものを含む特定遷移金属酸化物、あるいはその他の遷移金属酸化物としてV、MnO等が挙げられる。正極活物質には、粒子状の正極活性物質を用いてもよい。具体的に、可逆的にリチウムイオンを挿入・放出できる遷移金属酸化物を用いることができるが、上記特定遷移金属酸化物を用いるのが好ましい。
 遷移金属酸化物としては、上記遷移元素Mを含む酸化物等が好適に挙げられる。このとき混合元素M(好ましくはAl)などを混合してもよい。混合量としては、遷移金属の量に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
〔式(MA)で表される遷移金属酸化物(層状岩塩型構造)〕
 リチウム含有遷移金属酸化物としては中でも下式で表されるものが好ましい。
  Li     ・・・ (MA)
 式中、Mは上記Maと同義である。aは0~1.2(0.2~1.2が好ましい)を表し、0.6~1.1であることが好ましい。bは1~3を表し、2であることが好ましい。Mの一部は上記混合元素Mで置換されていてもよい。上記式(MA)で表される遷移金属酸化物は典型的には層状岩塩型構造を有する。
 本遷移金属酸化物は下記の各式で表されるものであることがより好ましい。
 (MA-1)  LiCoO
 (MA-2)  LiNiO
 (MA-3)  LiMnO
 (MA-4)  LiCoNi1-j
 (MA-5)  LiNiMn1-j
 (MA-6)  LiCoNiAl1-j-i
 (MA-7)  LiCoNiMn1-j-i
 ここでgは上記aと同義である。jは0.1~0.9を表す。iは0~1を表す。ただし、1-j-iは0以上になる。kは上記bと同義である。上記遷移金属化合物の具体例を示すと、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.01Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi0.33Co0.33Mn0.33(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)である。
 式(MA)で表される遷移金属酸化物は、一部重複するが、表記を変えて示すと、下記で表されるものも好ましい例として挙げられる。
(i)LiNiMnCo(x>0.2,y>0.2,z≧0,x+y+z=1)
 代表的なもの:
   LiNi1/3Mn1/3Co1/3
   LiNi1/2Mn1/2
(ii)LiNiCoAl(x>0.7,y>0.1,0.1>z≧0.05,x+y+z=1)
 代表的なもの:
   LiNi0.8Co0.15Al0.05
〔式(MB)で表される遷移金属酸化物(スピネル型構造)〕
 リチウム含有遷移金属酸化物としては中でも下記式(MB)で表されるものも好ましい。
  Li     ・・・ (MB)
 式中、Mは上記Maと同義である。cは0~2(0.2~2が好ましい)を表し、0.6~1.5であることが好ましい。dは3~5を表し、4であることが好ましい。
 式(MB)で表される遷移金属酸化物は下記の各式で表されるものであることがより好ましい。
 (MB-1)  LiMn
 (MB-2)  LiMnAl2-p
 (MB-3)  LiMnNi2-p
 mはcと同義である。nはdと同義である。pは0~2を表す。上記遷移金属化合物の具体例を示すと、LiMn、LiMn1.5Ni0.5である。
 式(MB)で表される遷移金属酸化物はさらに下記で表されるものも好ましい例として挙げられる。
 (a) LiCoMnO
 (b) LiFeMn
 (c) LiCuMn
 (d) LiCrMn
 (e) LiNiMn
 高容量、高出力の観点で上記のうちNiを含む電極が更に好ましい。
〔式(MC)で表される遷移金属酸化物〕
 リチウム含有遷移金属酸化物としてはリチウム含有遷移金属リン酸化物を用いることも好ましく、中でも下記式(MC)で表されるものも好ましい。
  Li(PO ・・・ (MC)
 式中、eは0~2(0.2~2が好ましい)を表し、0.5~1.5であることが好ましい。fは1~5を表し、0.5~2であることが好ましい。
 上記MはV、Ti、Cr、Mn、Fe、Co、Ni、Cuから選択される一種以上の元素を表す。上記Mは、上記の混合元素Mのほか、Ti、Cr、Zn、Zr、Nb等の他の金属で置換していてもよい。具体例としては、例えば、LiFePO、LiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類、Li(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 なお、Liの組成を表す上記a,c,g,m,e値は、充放電により変化する値であり、典型的には、Liを含有したときの安定な状態の値で評価される。上記式(a)~(e)では特定値としてLiの組成を示しているが、これも同様に電池の動作により変化するものである。
 正極活物質の平均粒子サイズは特に限定されないが、0.1μm~50μmが好ましい。正極活性物質を所定の粒子サイズにするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。
 正極活物質の濃度は特に限定されないが、固体電解質組成物中、固形成分100質量%において、20~90質量%であることが好ましく、40~80質量%であることがより好ましい。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(負極活物質)
 本発明の固体電解質組成物には、負極活物質を含有させてもよい。それにより、負極材料用の組成物とすることができる。負極活物質としては、可逆的にリチウムイオンを挿入・放出できるものが好ましい。その材料は、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、及び、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。なかでも炭素質材料又はリチウム酸化物が信頼性の点から好ましく用いられる。また、金属酸化物としては、リチウムを吸蔵、放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、天然黒鉛、気相成長黒鉛等の人造黒鉛、及びPAN系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素材料と黒鉛系炭素材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔や密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
 負極活物質として適用される金属酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群のなかでも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、Biの一種単独あるいはそれらの2種以上の組み合わせからなる酸化物、及びカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、Sb、Bi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb、SnSiSなどが好ましく挙げられる。また、これらは、酸化リチウムとの酸化物、例えば、LiSnOであってもよい。
 負極活物質の平均粒子サイズは、0.1μm~60μmが好ましい。所定の粒子サイズにするには、よく知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵・放出できる炭素材料や、リチウム、リチウム合金、リチウムと合金可能な金属が好適に挙げられる。
 負極活物質はチタン原子を含有することが好ましい。より具体的にはLiTi12がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。特定の負極と更に特定の電解液を組合せることにより、様々な使用条件においても二次電池の安定性が向上する。
 本発明の全固体二次電池においては、Si元素を含有する負極活物質を適用することも好ましい。一般的にSi負極は、現行の炭素負極(黒鉛、アセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、重量あたりのLiイオン吸蔵量が増加するため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点があり、車用のバッテリー等への使用が今後期待されている。一方で、Liイオンの吸蔵、放出に伴う体積変化が大きいことが知られており、一例では、炭素負極で体積膨張が1.2~1.5倍程度のところ、Si負極では約3倍になる例もある。この膨張収縮を繰り返すこと(充放電を繰り返すこと)によって、電極層の耐久性が不足し、例えば接触不足を起こしやすくなったり、サイクル寿命(電池寿命)が短くなったりすることも挙げられる。
 本発明に係る固体電解質組成物によれば、このような膨張・収縮が大きくなる電極層においてもその高い耐久性(強度)を発揮し、より効果的にその優れた利点を発揮しうるものである。
 負極活物質の濃度は特に限定されないが、固体電解質組成物中、固形成分100質量%において、10~80質量%であることが好ましく、20~70質量%であることがより好ましい。
 なお、上記の実施形態では、本発明に係る固体電解質組成物に正極活物質ないし負極活物質を含有させる例を示したが、本発明はこれにより限定して解釈されるものではない。例えば、上記特定ポリマーを含まないポリマー組成物として正極活物質ないし負極活物質を含むペーストを調製してもよい。このとき、上記の無機固体電解質を含有させることが好ましい。このような、常用される正極材料ないし負極材料と組み合わせて、上記本発明の好ましい実施形態に係る固体電解質組成物を用い無機固体電解質層を形成してもよい。また、正極および負極の活物質層には、適宜必要に応じて導電助剤を含有させてもよい。一般的な電子伝導性材料として、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブなどの炭素繊維や金属粉、金属繊維、ポリフェニレン誘導体などを含ませることができる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
<集電体(金属箔)>
 正・負極の集電体としては、化学変化を起こさない電子伝導体が用いられることが好ましい。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。負極の集電体としては、アルミニウム、銅、ステンレス鋼、ニッケル、チタンが好ましく、アルミニウム、銅、銅合金がより好ましい。
 上記集電体の形状としては、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。上記集電体の厚みとしては、特に限定されないが、1μm~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
<全固体二次電池の作製>
 全固体二次電池を作製するに当たり、先に述べた固体電解質組成物を調製することが好ましい。固体電解質組成物の製造方法は常法によればよく、例えば、非球状のポリマー粒子と分散媒体とを混合して機械分散して非球状ポリマー粒子のスラリー液を形成する第一の工程と、上記によって得られたポリマー粒子のスラリー液を、少なくとも無機固体電解質の存在下で再度機械分散する第二の工程とを経て調製することが好ましい。上記の第一の工程および/または第二の工程における機械分散は、どのような分散方法によってもよいが、ボールミル分散法であることが中でも好ましい。
 全固体二次電池の作製は常法によればよい。具体的には、上記固体電解質組成物を集電体となる金属箔上に塗布し膜を形成した電池用電極シートとする方法が挙げられる。例えば、金属箔上に正極材料となる組成物を塗布し、膜形成する。次いでその電池用電極シートの正極活物質層の上面に無機固体電解質の組成物を塗布し、膜形成する。さらに、同様にして負極の活物質の膜を形成して負極側の集電体(金属箔)を付与することで、所望の全固体二次電池の構造を得ることができる。なお、上記の各組成物の塗布方法は常法によればよい。このとき、正極活物質層をなす組成物、無機固体電解質層をなす組成物、及び負極活物質層をなす組成物のそれぞれの塗布の後に、加熱処理を施すことが好ましい。加熱温度は非球状ポリマー粒子のガラス転移温度以上であることが好ましい。具体的には30℃以上が好ましく、60℃以上がより好ましく、100℃以上であることが最も好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましい。このような温度範囲で加熱することで、ポリマー粒子を好適に軟化させ、一方でその形状を好適に維持することができる。これにより、全固体二次電池において、良好な結着性と非加圧でのイオン伝導性を得ることができる。
 また加熱しながら加圧することも好ましい。加圧圧力としては5kN/cm以上が好ましく、10kN/cm以上であることがさらに好ましく、20kN/cm以上であることが最も好ましい。
<全固体二次電池の用途>
 本発明に係る全固体二次電池は種々の用途に適用することができる。適用態様は特に限定されないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 なかでも、高容量且つ高レート放電特性が要求されるアプリケーションに適用されることが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い信頼性が必須となりさらに電池性能の両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定され、過充電時に対して一層の信頼性が求められる。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。
 本発明の好ましい実施形態によれば、以下のような各応用形態が導かれる。
・周期律表第一族または第二族に属する金属のイオンの挿入放出が可能な活物質を含んでいる固体電解質組成物(正極または負極の電極用組成物)。
・上記固体電解質組成物を金属箔上に製膜した電池用電極シート。
・正極活物質層と負極活物質層と無機固体電解質層とを具備する全固体二次電池であって、上記正極活物質層、負極活物質層、および無機固体電解質層の少なくともいずれかを上記固体電解質組成物で構成した層とした全固体二次電池。
・上記固体電解質組成物を集電体上に配置し、所定の温度で加熱する電池用電極シートの製造方法。
・上記電池用電極シートの製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
 全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池を言う。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。このなかで、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi-P-S、LLTやLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に高分子化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質粒子のバインダーとして高分子化合物を適用することができる。
 無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-S、LLT、LLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがあるが、上記のイオン輸送材料としての電解質と区別するときにはこれを「電解質塩」または「支持電解質」と呼ぶ。電解質塩としては例えばLiTFSI(リチウムビストリフルオロメタンスルホンイミド)が挙げられる。
 本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。
 以下に、実施例に基づき本発明についてさらに詳細に説明するが、本発明がこれにより限定して解釈されるものではない。以下の実施例において「部」および「%」というときには、特に断らない限り質量基準である。
ポリマーの合成
(A-5)の合成
 200mLの3口フラスコに、PGMEA(プロピレングリコールモノメチルエーテルアセテート)5gを加えて窒素気流下で80℃に加熱した。これにメタクリル酸ベンジル15.5g、メタクリル酸1.0g、メタクリル酸2-ヒドロキシエチル3.2gとV-601 0.23g(和光純薬(株)製)のPGMEA 45g溶液を4時間かけて滴下した。滴下終了後80℃でさらに2時間加熱攪拌した。得られたポリマー溶液をヘキサン/酢酸エチル(80/20)1Lで晶析させ、ポリマーを80℃で6時間真空乾燥した。得られたポリマーの重量平均分子量は52300、ガラス転移温度は23℃であった。
 参考までに、図4にポリマーA-5のDSC測定結果を示した。
(A-7)の合成
 200mLの3口フラスコに、PGMEA(プロピレングリコールモノメチルエーテルアセテート)5gを加えて窒素気流下で80℃に加熱した。これにメタクリル酸イソブチル10.3g、メタクリル酸1.0g、メタクリル酸ジメチルアミノエチル3.7g、M-90G(新中村化学(株)製)4.0gとV-601 0.23g(和光純薬(株)製)のPGMEA 45g溶液を4時間かけて滴下した。滴下終了後80℃でさらに2時間加熱攪拌した。得られたポリマー溶液をヘキサン/酢酸エチル(90/10)1Lで晶析させ、ポリマーを80℃で6時間真空乾燥した。得られたポリマーの重量平均分子量は67400、ガラス転移温度は-12℃であった。
(A-14)の合成
 200mLの3口フラスコに、PGMEA(プロピレングリコールモノメチルエーテルアセテート)5gを加えて窒素気流下で80℃に加熱した。これに、メタクリル酸2-エチルヘキシル13.7g、メタクリル酸グリシジル3.4g、メタクリル酸1.0g、メタクリル酸ジメチルアミノエチル1.8gとV-601 0.23g(和光純薬(株)製)のPGMEA 45g溶液を4時間かけて滴下した。滴下終了後80℃でさらに2時間加熱攪拌した。得られたポリマー溶液をヘキサン1Lで晶析させ、ポリマーを80℃で6時間真空乾燥した。得られたポリマーの重量平均分子量は64300、ガラス転移温度は-5℃であった。
(A-24)の合成
 200mLの3口フラスコに、PGMEA(プロピレングリコールモノメチルエーテルアセテート)3gを加えて窒素気流下で80℃に加熱した。これに、アクリロニトリル3.4g、メタクリル酸0.5g、メタクリル酸グリシジル3.4g、M-90G(新中村化学(株)製)2.0g、メタクリル酸ジメチルアミノエチル0.9gとV-601 0.23g(和光純薬(株)製)のPGMEA 40g溶液を4時間かけて滴下した。滴下終了後80℃でさらに2時間加熱攪拌した。得られたポリマー溶液をヘキサン1Lで晶析させ、ポリマーを80℃で6時間真空乾燥した。得られたポリマーの重量平均分子量は49800、ガラス転移温度は7℃であった。
(A-29)の合成
 200mLの3口フラスコに、PGMEA(プロピレングリコールモノメチルエーテルアセテート)3gを加えて窒素気流下で80℃に加熱した。これにN-ビニルピロリドン8.5g、メタクリル酸2.0g、メタクリル酸2-ヒドロキシエチル3.2gとV-601 0.23g(和光純薬(株)製)のPGMEA 40g溶液を4時間かけて滴下した。滴下終了後80℃でさらに2時間加熱攪拌した。得られたポリマー溶液をヘキサン1Lで晶析させ、ポリマーを80℃で6時間真空乾燥した。得られたポリマーの重量平均分子量は76200、ガラス転移温度は15℃であった。
(A-56)の合成
 200mLの3口フラスコに、ジシクロヘキシルメタン-4,4‘-ジイソシアネート13.2g、1,4-ブタンジオール2.6g、ポリテトラメチレングリコール(重量平均分子量650)6.5g、ブレンマーGLM(日油(株)製)0.8g、2,2-(ビスヒドロキシメチル)プロピオン酸0.7gを加え、さらにテトラヒドロフラン56gを加えて60℃で加熱溶解した。これにネオスタンU-600(日東化成製)50mgを10分間かけて加え、5時間60℃で加熱攪拌した。得られたポリマー溶液にメタノール10mLを加えて1時間60℃で攪拌し重合を停止させた。このポリマー溶液をメタノール1Lに晶析させ、ポリマー固体を80℃で6時間真空乾燥した。得られたポリマーの重量平均分子量は126900、ガラス転移温度は-15℃であった。
(A-57)の合成
 200mLの3口フラスコに、4,4‘ジイソシアン酸メチレンジフェニル12.8g、1,4-ブタンジオール2.6g、ポリテトラメチレングリコール(重量平均分子量650)6.5g、2,2-(ビスヒドロキシメチル)プロピオン酸0.7g、N-ブチルジエタノールアミン0.8gを加え、さらにテトラヒドロフラン60gを加えて60℃で加熱溶解した。これにネオスタンU-600(日東化成製)50mgを10分間かけて加え、5時間60℃で加熱攪拌した。得られたポリマー溶液にエタノール10mLを加えて1時間60℃で攪拌し重合を停止させた。このポリマー溶液をメタノール1Lに晶析させ、ポリマー固体を80℃で6時間真空乾燥した。得られたポリマーの重量平均分子量は104200、ガラス転移温度は-28℃であった。
<実施例>
硫化物系無機固体電解質(Li-P-S系ガラス)の合成
 アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて5分間混合した。なお、LiSおよびPはモル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記硫化リチウムと五硫化二リンの全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃℃、回転数510rpmで20時間メカニカルミリングを行うことで黄色粉体の硫化物固体電解質材料(Li-P-S系ガラス)6.20gを得た。
固体電解質組成物(スラリー)の調製
(1)ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、例示化合物(A-5)1.0g、分散媒体として、トルエン15.0gを投入した後に、フリッチュ社製遊星ボールミルP-7に容器をセットし、25℃で、回転数300rpmで2時間機械分散を続け、例示化合物(A-5)が粉砕された非球状ポリマー粒子の分散液を得た。このポリマー粒子の球換算平均粒子径は0.85μm、分散度はD=3.6であった。扁平率は表中に示した。
(2)上記非球状ポリマー分散液に、無機固体電解質LLT(豊島製作所製)9.0g、LiTFSI(Aldrich社製)0.2gを投入した。その後に、フリッチュ社製遊星ボールミルP-7に容器をセットし、25℃で、回転数300rpmで2時間混合を続け、固体電解質組成物S-1を得た。他の例示固体電解質組成物も同様の方法で調製した(下表1参照)。なお、S-2、S-3など、粒径の異なる粒子は上記のボールミルによる処理条件を変更して調製した。
 なお、(1)の処理で形成された非球状ポリマーは十分微細化されている。また、(2)であらたに投入されたLLTの方が粒径が大きく、さらに量も多いことから、(2)の処理ではLLTの粉砕が優先的に起こるものと解される。したがって(2)のミリングではほとんど非球状ポリマーの粒子形状は変化しておらず、製品中のポリマー粒子径は(1)のポリマー単体での粒子径をほぼそのまま反映する。
Figure JPOXMLDOC01-appb-T000018
<表1の注>
(1)SBR:スチレンブタジエンゴム
  日本ゼオン社製 Nipol NS116R(商品名)
(2)PTFE:ポリテトラフルオロエチレン
  常法により合成したPTFE樹脂を上記実施例と同様の条件でボールミルにより機械分散した。
(3)AB-St:アクリル酸ブチル-スチレン共重合体
  WO2011/105574号公報の段落[0090]の記載に準じて合成した。乳化重合法による。
(4)AB-MA-St:アクリル酸ブチル-メタクリル酸-スチレン共重合体
  特開2013-008611号公報の段落[0087]の記載に準じて合成した。乳化重合法による。
(5)LLT:LiLaTiO〔x=0.3~0.7、y=0.3~0.7〕
(6)LLZ:LiLaZr12
(7)LiTFSI:リチウムビス(トリフルオロメタンスルホニル)イミド
(8)扁平率f1:MaxL/MinL   図2参照
(9)扁平率f2:フェレ系/ヘイウッド径 図2参照
(10)ばらつきD:(d90-d10)/d50
(11)Li-P-S: 上記で合成したLi-P-S系ガラス
(固体電解質シートの作製例)
 上記で調製した固体電解質組成物を厚み20μmのアルミ箔上に、クリアランスが調節可能なアプリケーターにより塗布し、80℃で1時間加熱後、さらに110℃で1時間加熱し、塗布溶媒を乾燥させた。その後、厚み20μmの銅箔を合わせ、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、固体電解質シートを得た。電解質層の膜厚は30μmであった。他の固体電解質シートも同様の方法で調製した。
二次電池正極用組成物の調製
 プラネタリーミキサー(TKハイビスミックス、PRIMIX社製)に、コバルト酸リチウム100質量部、アセチレンブラック5質量部、上記で得られた固体電解質組成物S-1 75質量部、N-メチルピロリドン270質量部を加え、40rpmで一時間撹拌をおこなった。
二次電池負極用組成物の調製
 プラネタリーミキサー(TKハイビスミックス、PRIMIX社製)に、チタン酸リチウム(商品名「エナマイトLT-106」、石原産業株式会社製)100質量部、アセチレンブラック5質量部、上記で得られた固体電解質組成物S-1 75質量部、N-メチルピロリドン270質量部を加え、40rpmで一時間撹拌をおこなった。
二次電池用正極シートの作製
 上記で得られた二次電池正極用組成物を厚み20μmのアルミ箔上に、任意のクリアランスを有するアプリケーターにより塗布し、80℃1時間とさらに110℃1時間加熱し、塗布溶媒を乾燥させた。その後、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、二次電池用正極シートを得た。
二次電池用電極シートの作製
 上記で得られた二次電池用正極シート上に、上記で得られた固体電解質組成物を、任意のクリアランスを有するアプリケーターにより塗布し、80℃1時間とさらに110℃1時間加熱し、乾燥させた。その後、上記で得られた二次電池負極用組成物をさらに塗布し、80℃1時間とさらに110℃1時間加熱し、乾燥させた。負極層上に厚み20μmの銅箔を合わせ、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、二次電池用電極シートを得た。このとき、各組成物は同時に塗布しても良いし、塗布乾燥プレスを同時に行っても良く、逐次に行っても良い。別々の基材に塗布した後に、転写により積層してもよい。
<結着性の評価>
 電極シートに粘着テープを貼り、一定速度で引き剥がした際に、剥離しなかった部分の面積の比率で表した。
  A:100%
  B:95%以上100%未満
  C:80%以上95%未満
  D:50%以上80%未満
  E:50%未満
<イオン伝導度の測定>
 上記で得られた固体電解質シートまたは二次電池電極シートを直径14.5mmの円板状に切り出し、スペーサーとワッシャーを組み込んだステンレス製の2032型コインケースに入れてコイン電池を作製した。コイン電池の外部より、電極間に圧力をかけることができるジグに挟み、各種電気化学的測定に用いた。電極間の圧力は500kgf/cmとした。
 上記で得られたコイン電池を用いて、30℃の恒温槽中、交流インピーダンス法によりイオン伝導度を求めた。このとき、コイン電池の加圧には図2に示す試験体を用いた。11が上部支持板、12が下部支持板、13がコイン電池、14がコインケース、15が電極シート(固体電解質シートまたは二次電池電極シート)、Sがネジである。表3において、加圧状態とは、コイン電池を上記ジグで挟んだ状態で測定した場合であり、非加圧状態は、コイン電池を加圧せずに測定したことを表す。
Figure JPOXMLDOC01-appb-T000019
<表2の注>
LMO:LiMn マンガン酸リチウム
LTO:LiTi12 チタン酸リチウム
LCO:LiCoO コバルト酸リチウム
NMC:Li(Ni1/3Mn1/3Co1/3)O ニッケル、マンガン、コバルト酸リチウム
 表2に示す結果から明らかなように、本発明の固体電解質組成物を用いた二次電池用電極シートおよび積層した電池は結着性に優れ、かつ非加圧状態でのイオン伝導性に優れる。このことから、その好ましい実施形態においては、製造上電極シートの取扱い時に、固体電解質および電極活物質の剥離が生じず、固体界面の電気化学的接触を維持できるため、電極間を加圧する機構が不要にもなり、サイクル性が改善されうることが分かる。
 特に、極性官能基を有するポリマーは無機固体電解質の表面親水基とイオン相互作用しやすく、極性官能基を持たないポリマーと比較して結着性が優れることが分かる。
 一方、比較例T-1、T-2に用いたポリマーは極性官能基を有していないため結着性に劣る。比較例T-3、T-4に用いたポリマー粒子は非球状でないため、同様に結着性に劣る結果となった。また、T-1~T-4のいずれも、非加圧下でのイオン伝導度の低下が著しいことが分かる。
 非球状ポリマーが球状ポリマーと比較して結着性に優れる理由としては、球状では無機固体電解質との接着面積が小さいのに対して、非球状では表面の扁平構造、凹凸構造などにより無機固体電解質との接着面積が大きいこと、さらにアンカリング効果などにより結着性が向上していると考えられる。
<ポリマーの平均粒径の測定>
 ポリマー粒子の平均粒径の測定は、以下の手順で行った。上記にて調製したポリマー粒子を任意の溶媒(基本的には固体電解質組成物の調製に用いる分散媒体)を用いて1質量%の分散液を調製した。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、樹脂粒子の体積平均粒径を測定した。粒子の累積分布曲線も同様にして測定し、d10、d50、d90の粒子径を読み取り、ばらつきを算出した。
<粒子の扁平率>
 ポリマー粒子の扁平率は、電子顕微鏡像より画像処理により、算定した。50個の平均値を採用した。
 走査型電子顕微鏡(SEM)(PHILIPS社製 XL30)を用いて1000~3000倍にて撮影した任意の3視野の走査型電子顕微鏡(SEM)像を、BMPファイルに変換し、旭エンジニアリング株式会社製のIP-1000PCの統合アプリケーションである「A像くん」で取り込み、標本数50で粒子解析を行い、長さの最大値と最小値を読み取ることで算出した。
 具体的には下記の手順とした。
 まず「A像くん」でSEM画像から50個の粒子を取り込む。
 50個の粒子の最大長のうち、上下5点を除く40点の平均値を、フェレ径の最大長MaxLと定義する。
 50個の粒子の最小長のうち、上下5点を除く40点の平均値を、フェレ径の最小長MinLと定義する。
 50個の粒子の面積のうち、上下5点を除く40点の平均値を、粒子面積Sとし、これを真円の面積の式S=π(HD/2)に従い、ヘイウッド径HDを算出する。
 「最大長、最小長を用いた扁平率f1」の計算は、f1=MaxL/MinL で計算した。
 「フェレ径とヘイウッド径を用いた扁平率f2」の計算は、f2=MaxL/HD で計算した。
<Tgの測定方法>
 ガラス転移点は、上記の乾燥試料を用いて、示差走査熱量計(SIIテクノロジー社製、DSC7000)を用いて下記の条件で測定した。測定は同一の試料で二回実施し、二回目の測定結果を採用した。
 ・測定室内の雰囲気:窒素(50mL/min)
 ・昇温速度:5℃/min
 ・測定開始温度:-100℃
 ・測定終了温度:200℃
 ・試料パン:アルミニウム製パン
 ・測定試料の質量:5mg
 ・Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度をTgとした
 上記の試験No.1で用いたポリマーA-1に替え、A-11、A-19、A-23、A-26、A-34、A-36、A-37、A-39、A-43、A-44、A-49、A-54について上記と同様の試験を行った。その結果、いずれも加圧後で良好なイオン伝導度を維持していた。結着性については、アミド基を有するA-26~A-54が「A」の結果であり、それ以外は「B」の結果となった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2014年2月17日に日本国で特許出願された特願2014-027677及び2015年1月27日に日本国で特許出願された特願2015-013305に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 無機固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 上部支持板
12 下部支持板
13 コイン電池
14 コインケース
15 電極シート
S ネジ

Claims (17)

  1.  非球状ポリマー粒子と分散媒体と無機固体電解質とを含有する固体電解質組成物であって、
     上記の非球状ポリマー粒子が、下記の官能基群aから選ばれる官能基、酸解離定数pKa14以下の酸性基、または共役酸のpKaが14以下の塩基性基の少なくとも1つを有するポリマーで構成されている固体電解質組成物。
     官能基群aは下記置換基または連結基を示す。
      置換基:カルボキシル基、スルホン酸基、リン酸基、ヒドロキシ基、CONR 、シアノ基、NR 、またはチオール基。
      連結基:カルボニルオキシ基、カルボニル基、NR、S、O、CONR、OCOO、NRCOO,またはウレア基。
       Rは水素原子、アルキル基、またはアリール基。
  2.  上記非球状ポリマー粒子のガラス転移温度が-50℃以上50℃以下である請求項1に記載の固体電解質組成物。
  3.  上記非球状ポリマー粒子をなすポリマーが重量平均分子量200以上のポリアルキレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖、またはポリシロキサン鎖を有する請求項1または2に記載の固体電解質組成物。
  4.  上記非球状ポリマー粒子をなすポリマーが架橋性基を有する請求項1~3のいずれか1項に記載の固体電解質組成物。
  5.  上記非球状ポリマー粒子をなすポリマーが下記式(1)または式(2)の繰り返し単位を含む請求項1~4のいずれか1項に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000001
     Lは炭素数1以上20以下のアルキレン基または炭素数6以上22以下のアリーレン基を示す。Lはへテロ原子を有する連結基を介在することがあるアルキレン基またはへテロ原子を有する連結基を介在することがあるアリーレン基を示す。XはO、CO、S、NR、およびこれらの組合せのいずれかを示す。Rは水素原子、アルキル基、またはアリール基を表す。
  6.  分散媒体の常圧での沸点が80℃以上220℃以下である請求項1~5のいずれか1項に記載の固体電解質組成物。
  7.  分散媒体の水への溶解性が20℃において5質量%以下である請求項1~6のいずれか1項に記載の固体電解質組成物。
  8.  上記非球状ポリマー粒子の扁平率が1.1以上である請求項1~7のいずれか1項に記載の固体電解質組成物。
  9.  上記非球状ポリマー粒子の粒子ばらつきDが2以上である請求項1~8のいずれか1項に記載の固体電解質組成物。
  10.  上記非球状ポリマー粒子の含有量が、無機固体電解質100質量部に対して0.1~10質量部である請求項1~9のいずれか1項に記載の固体電解質組成物。
  11.  さらに周期律表第一族または第二族に属する金属のイオンの挿入放出が可能な活物質を含む請求項1~10のいずれか1項に記載の固体電解質組成物。
  12.  前記無機固体電解質が硫化物系無機固体電解質である請求項1~11のいずれか1項に記載の固体電解質組成物。
  13.  下記非球状のポリマー粒子と分散媒体とを混合して機械分散して非球状ポリマー粒子のスラリー液を形成する第一の工程と、上記によって得られたポリマー粒子のスラリー液を、無機固体電解質の存在下で再度機械分散する第二の工程とを経て行う固体電解質組成物の製造方法。
     非球状ポリマー粒子:下記の官能基群aから選ばれる官能基、酸解離定数pKa14以下の酸性基、または共役酸のpKaが14以下の塩基性基の少なくとも1つを有するポリマーで構成される。
     官能基群aは下記置換基または連結基を示す。
      置換基:カルボキシル基、スルホン酸基、リン酸基、ヒドロキシ基、CONR 、シアノ基、NR 、またはチオール基。
      連結基:カルボニルオキシ基、カルボニル基、NR、S、O、CONR、OCOO、NRCOO,またはウレア基。
       Rは水素原子、アルキル基、またはアリール基。
  14.  上記第一の工程および/または第二の工程における機械分散がボールミル分散法による請求項13に記載の固体電解質組成物の製造方法。
  15.  請求項1~12のいずれか1項に記載の固体電解質組成物を含んでなる電池用電極シート。
  16.  請求項1~12のいずれか1項に記載の固体電解質組成物を集電体上に塗布し、非球状ポリマー粒子のガラス転移温度以上の温度で加熱する第三の工程を含む電池用電極シートの製造方法。
  17.  請求項15に記載の電池用電極シートを具備してなる全固体二次電池。
PCT/JP2015/052561 2014-02-17 2015-01-29 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法 WO2015122290A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167024632A KR101897883B1 (ko) 2014-02-17 2015-01-29 고체 전해질 조성물, 이를 이용한 전지용 전극 시트 및 전고체 이차 전지와 그들의 제조 방법
CN201580008823.1A CN106030721B (zh) 2014-02-17 2015-01-29 固体电解质组合物、使用其的电池用电极片及全固态二次电池及它们的制造方法
US15/237,845 US10535896B2 (en) 2014-02-17 2016-08-16 Solid electrolyte composition containing nonspherical polymer particles, dispersion medium and inorganic solid electrolyte

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014027677 2014-02-17
JP2014-027677 2014-02-17
JP2015-013305 2015-01-27
JP2015013305A JP6059743B2 (ja) 2014-02-17 2015-01-27 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/237,845 Continuation US10535896B2 (en) 2014-02-17 2016-08-16 Solid electrolyte composition containing nonspherical polymer particles, dispersion medium and inorganic solid electrolyte

Publications (1)

Publication Number Publication Date
WO2015122290A1 true WO2015122290A1 (ja) 2015-08-20

Family

ID=53800038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052561 WO2015122290A1 (ja) 2014-02-17 2015-01-29 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法

Country Status (5)

Country Link
US (1) US10535896B2 (ja)
JP (1) JP6059743B2 (ja)
KR (1) KR101897883B1 (ja)
CN (1) CN106030721B (ja)
WO (1) WO2015122290A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029902A1 (ja) * 2015-08-14 2017-02-23 旭化成株式会社 電気化学素子用電極
WO2017204028A1 (ja) * 2016-05-23 2017-11-30 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
CN109155161A (zh) * 2016-05-23 2019-01-04 富士胶片株式会社 固体电解质组合物、全固态二次电池用电极片及全固态二次电池以及全固态二次电池用电极片及全固态二次电池的制造方法
JP2019046796A (ja) * 2017-08-31 2019-03-22 三洋化成工業株式会社 炭素材料用分散剤、炭素材料用分散剤を含有する分散物、全固体リチウムイオン二次電池用電極スラリー、全固体リチウムイオン二次電池用電極の製造方法、全固体リチウムイオン二次電池用電極及び全固体リチウムイオン二次電池
CN110024206A (zh) * 2016-11-28 2019-07-16 丰田自动车株式会社 锂离子二次电池用电解液、其制造方法和锂离子二次电池
CN110100347A (zh) * 2016-12-28 2019-08-06 松下知识产权经营株式会社 非水电解质二次电池
WO2020075749A1 (ja) * 2018-10-11 2020-04-16 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池
WO2020110993A1 (ja) * 2018-11-26 2020-06-04 株式会社大阪ソーダ 無機固体電解質二次電池用電極、および無機固体電解質二次電池
US12034115B2 (en) 2018-10-11 2024-07-09 Fujifilm Corporation Solid electrolyte composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3389129B8 (en) * 2015-12-11 2023-10-11 FUJIFILM Corporation Solid electrolyte composition, binder particles, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing same
WO2017099247A1 (ja) 2015-12-11 2017-06-15 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及びその製造方法、並びに、全固体二次電池及びその製造方法
JP6762319B2 (ja) * 2015-12-25 2020-09-30 富士フイルム株式会社 全固体二次電池、全固体二次電池用粒子、全固体二次電池用固体電解質組成物および全固体二次電池用電極シートならびにこれらの製造方法
CN108604676B (zh) 2016-02-24 2021-04-27 富士胶片株式会社 二次电池电极活性物质、全固态二次电池及其电极片、三者的制造方法和固体电解质组合物
KR102133384B1 (ko) 2016-09-02 2020-07-14 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2018044129A1 (ko) * 2016-09-02 2018-03-08 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
CN106549187B (zh) * 2016-10-27 2018-11-02 浙江大学 一种含有两性离子全固态聚合物的电解质膜及其制备方法和用途
EP3582316B1 (en) * 2017-02-13 2023-12-13 FUJIFILM Corporation Solid electrolyte composition, solid electrolyte-containing sheet and manufacturing method therefor, all-solid-state secondary battery and manufacturing method therefor
US11631839B2 (en) 2017-03-22 2023-04-18 Lg Energy Solution, Ltd. Electrode for solid state battery and method for manufacturing the same
CN107394263B (zh) * 2017-06-29 2019-09-27 深圳大学 一种高锂离子含量的硫化物微晶玻璃及其制备方法
WO2019054173A1 (ja) * 2017-09-15 2019-03-21 日本ゼオン株式会社 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法
KR102403532B1 (ko) * 2017-11-17 2022-05-30 후지필름 가부시키가이샤 고체 전해질 조성물, 고체 전해질 함유 시트와 전고체 이차 전지, 및 고체 전해질 함유 시트와 전고체 이차 전지의 제조 방법
KR102568794B1 (ko) * 2017-12-12 2023-08-22 삼성전자주식회사 복합 전해질, 이를 포함하는 보호막, 이를 포함하는 보호 음극 및 리튬금속전지
WO2020036055A1 (ja) * 2018-08-13 2020-02-20 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池
KR102517991B1 (ko) * 2018-09-28 2023-04-03 주식회사 엘지에너지솔루션 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
JP7245847B2 (ja) 2018-10-15 2023-03-24 富士フイルム株式会社 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
JPWO2020110994A1 (ja) * 2018-11-26 2021-12-16 株式会社大阪ソーダ 複合固体電解質、および複合固体電解質二次電池
CN113196521A (zh) * 2018-12-26 2021-07-30 富士胶片株式会社 固体电解质组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材或全固态二次电池的制造方法
WO2020203042A1 (ja) * 2019-03-29 2020-10-08 Jsr株式会社 全固体二次電池用バインダー、全固体二次電池用バインダー組成物、全固体二次電池用スラリー、全固体二次電池用固体電解質シート及びその製造方法、並びに全固体二次電池及びその製造方法
WO2021020031A1 (ja) 2019-07-26 2021-02-04 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
CN113054248B (zh) * 2019-12-27 2022-11-29 张家港市国泰华荣化工新材料有限公司 一种复合型固态电解质及其制备方法和应用
WO2021166968A1 (ja) * 2020-02-20 2021-08-26 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
US20230246231A1 (en) * 2020-08-13 2023-08-03 Drexel University Solid polymer electrolytes for solid-state lithium metal batteries
WO2023068237A1 (ja) 2021-10-18 2023-04-27 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
CN114530629B (zh) * 2022-01-25 2023-06-02 湘潭大学 一种固态电解质及其添加剂的制备和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134820A (ja) * 1996-02-26 1998-05-22 Sekisui Chem Co Ltd 非水電解質二次電池
JPH11233143A (ja) * 1998-02-17 1999-08-27 Fuji Photo Film Co Ltd 非水二次電池
JP2000100441A (ja) * 1998-09-25 2000-04-07 Sekisui Chem Co Ltd リチウム電池用負極電極及びその製造方法
JP2000294246A (ja) * 1999-04-02 2000-10-20 Sekisui Chem Co Ltd 非水電解質二次電池用結着剤の製造方法
JP2010212058A (ja) * 2009-03-10 2010-09-24 Toyota Motor Corp 固体電解質層の製造方法
JP2012243496A (ja) * 2011-05-18 2012-12-10 Toyota Motor Corp 硫化物固体電解質材料の製造方法および硫化物固体電解質材料
JP2013179041A (ja) * 2012-02-01 2013-09-09 Fujifilm Corp 二次電池電極用組成物及び二次電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3655443B2 (ja) 1997-09-03 2005-06-02 松下電器産業株式会社 リチウム電池
JP4092669B2 (ja) 1998-04-27 2008-05-28 ソニー株式会社 固体電解質二次電池
JP4280339B2 (ja) * 1998-10-16 2009-06-17 パナソニック株式会社 固体電解質成型体、電極成型体および電気化学素子
CN1133685C (zh) * 1999-07-09 2004-01-07 中国科学院化学研究所 一种聚合物固体电解质及其制备方法和用途
JP4116788B2 (ja) * 2000-11-21 2008-07-09 日本曹達株式会社 スターポリマーおよび高分子電解質
JP4562364B2 (ja) 2003-09-12 2010-10-13 日本曹達株式会社 ブロック・グラフト共重合体及びそれらを用いた高分子固体電解質
JP4156481B2 (ja) * 2003-09-19 2008-09-24 日東電工株式会社 ゲル電解質とその製造方法とその利用
KR100773247B1 (ko) * 2005-04-20 2007-11-05 주식회사 엘지화학 향상된 과충전 안전성의 리튬 이차전지
KR20110135933A (ko) 2009-02-11 2011-12-20 다우 글로벌 테크놀로지스 엘엘씨 고전도성 중합체 전해질 및 이를 포함하는 2차 배터리
CN102859780B (zh) 2010-02-26 2015-07-01 日本瑞翁株式会社 全固体二次电池及全固体二次电池的制造方法
KR20110105574A (ko) 2010-03-19 2011-09-27 삼성전자주식회사 휴대용 단말기의 표시 장치 및 방법
JP2012099315A (ja) 2010-11-01 2012-05-24 Sumitomo Electric Ind Ltd 全固体リチウム電池用正極とその製造方法および全固体リチウム電池
JP5120522B2 (ja) * 2010-11-29 2013-01-16 Jsr株式会社 電池用バインダー組成物、電池電極用スラリー、固体電解質組成物、電極及び全固体型電池
WO2012173089A1 (ja) * 2011-06-17 2012-12-20 日本ゼオン株式会社 全固体二次電池
JP5652344B2 (ja) 2011-06-27 2015-01-14 日本ゼオン株式会社 全固体二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134820A (ja) * 1996-02-26 1998-05-22 Sekisui Chem Co Ltd 非水電解質二次電池
JPH11233143A (ja) * 1998-02-17 1999-08-27 Fuji Photo Film Co Ltd 非水二次電池
JP2000100441A (ja) * 1998-09-25 2000-04-07 Sekisui Chem Co Ltd リチウム電池用負極電極及びその製造方法
JP2000294246A (ja) * 1999-04-02 2000-10-20 Sekisui Chem Co Ltd 非水電解質二次電池用結着剤の製造方法
JP2010212058A (ja) * 2009-03-10 2010-09-24 Toyota Motor Corp 固体電解質層の製造方法
JP2012243496A (ja) * 2011-05-18 2012-12-10 Toyota Motor Corp 硫化物固体電解質材料の製造方法および硫化物固体電解質材料
JP2013179041A (ja) * 2012-02-01 2013-09-09 Fujifilm Corp 二次電池電極用組成物及び二次電池

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029902A1 (ja) * 2015-08-14 2017-02-23 旭化成株式会社 電気化学素子用電極
CN109155161B (zh) * 2016-05-23 2020-03-17 富士胶片株式会社 固体电解质组合物、全固态二次电池用电极片及全固态二次电池以及它们的制造方法
WO2017204028A1 (ja) * 2016-05-23 2017-11-30 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
CN109155162A (zh) * 2016-05-23 2019-01-04 富士胶片株式会社 固体电解质组合物、含固体电解质的片材及全固态二次电池以及含固体电解质的片材及全固态二次电池的制造方法
CN109155161A (zh) * 2016-05-23 2019-01-04 富士胶片株式会社 固体电解质组合物、全固态二次电池用电极片及全固态二次电池以及全固态二次电池用电极片及全固态二次电池的制造方法
JPWO2017204028A1 (ja) * 2016-05-23 2019-03-14 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
CN110024206B (zh) * 2016-11-28 2022-05-31 丰田自动车株式会社 锂离子二次电池用电解液、其制造方法和锂离子二次电池
EP3547436A4 (en) * 2016-11-28 2019-10-09 Toyota Jidosha Kabushiki Kaisha ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERIES, METHOD FOR THE MANUFACTURE THEREOF AND LITHIUM ION SECONDARY BATTERY
CN110024206A (zh) * 2016-11-28 2019-07-16 丰田自动车株式会社 锂离子二次电池用电解液、其制造方法和锂离子二次电池
CN110100347A (zh) * 2016-12-28 2019-08-06 松下知识产权经营株式会社 非水电解质二次电池
CN110100347B (zh) * 2016-12-28 2022-05-13 松下知识产权经营株式会社 非水电解质二次电池
US11316163B2 (en) 2017-08-31 2022-04-26 Sanyo Chemical Industries, Ltd. Dispersant for carbon material, dispersion containing dispersant for carbon material, electrode slurry for all-solid lithium-ion secondary battery, manufacturing method for electrode for all-solid lithium-ion secondary battery, electrode for all-solid lithium-ion secondary battery, and all-solid lithium-ion secondary battery
JP7156859B2 (ja) 2017-08-31 2022-10-19 三洋化成工業株式会社 炭素材料用分散剤、炭素材料用分散剤を含有する分散物、全固体リチウムイオン二次電池用電極スラリー、全固体リチウムイオン二次電池用電極の製造方法、全固体リチウムイオン二次電池用電極及び全固体リチウムイオン二次電池
JPWO2019044716A1 (ja) * 2017-08-31 2020-08-13 三洋化成工業株式会社 炭素材料用分散剤、該炭素材料用分散剤を含有する分散物、全固体リチウムイオン二次電池用電極スラリー、全固体リチウムイオン二次電池用電極の製造方法、全固体リチウムイオン二次電池用電極及び全固体リチウムイオン二次電池
JP7152406B2 (ja) 2017-08-31 2022-10-12 三洋化成工業株式会社 炭素材料用分散剤、該炭素材料用分散剤を含有する分散物、全固体リチウムイオン二次電池用電極スラリー、全固体リチウムイオン二次電池用電極の製造方法、全固体リチウムイオン二次電池用電極及び全固体リチウムイオン二次電池
JP2019046796A (ja) * 2017-08-31 2019-03-22 三洋化成工業株式会社 炭素材料用分散剤、炭素材料用分散剤を含有する分散物、全固体リチウムイオン二次電池用電極スラリー、全固体リチウムイオン二次電池用電極の製造方法、全固体リチウムイオン二次電池用電極及び全固体リチウムイオン二次電池
WO2020075749A1 (ja) * 2018-10-11 2020-04-16 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池
US12034115B2 (en) 2018-10-11 2024-07-09 Fujifilm Corporation Solid electrolyte composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery
JPWO2020075749A1 (ja) * 2018-10-11 2021-09-02 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池
JP7143433B2 (ja) 2018-10-11 2022-09-28 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池
CN112805862A (zh) * 2018-10-11 2021-05-14 富士胶片株式会社 固体电解质组合物、全固态二次电池用片材、全固态二次电池用电极片及全固态二次电池
CN112805862B (zh) * 2018-10-11 2023-05-05 富士胶片株式会社 固体电解质组合物、全固态二次电池用片材、全固态二次电池用电极片及全固态二次电池
WO2020110993A1 (ja) * 2018-11-26 2020-06-04 株式会社大阪ソーダ 無機固体電解質二次電池用電極、および無機固体電解質二次電池
JP7400729B2 (ja) 2018-11-26 2023-12-19 株式会社大阪ソーダ 無機固体電解質二次電池用電極、および無機固体電解質二次電池
JPWO2020110993A1 (ja) * 2018-11-26 2021-12-16 株式会社大阪ソーダ 無機固体電解質二次電池用電極、および無機固体電解質二次電池

Also Published As

Publication number Publication date
JP6059743B2 (ja) 2017-01-11
KR101897883B1 (ko) 2018-09-12
US10535896B2 (en) 2020-01-14
KR20160119194A (ko) 2016-10-12
CN106030721A (zh) 2016-10-12
CN106030721B (zh) 2017-10-13
US20160359195A1 (en) 2016-12-08
JP2015167126A (ja) 2015-09-24

Similar Documents

Publication Publication Date Title
JP6059743B2 (ja) 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法
US10818967B2 (en) Solid electrolyte composition, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
CN105580186B (zh) 固体电解质组合物、全固态二次电池用的粘合剂、使用它们的电池用电极片及全固态二次电池
JP6253155B2 (ja) 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP6295332B2 (ja) 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
JP6295333B2 (ja) 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
JP6318099B2 (ja) 固体電解質組成物およびこれを用いた電池用電極シートならびに電池用電極シートおよび全固体二次電池の製造方法
JP6452814B2 (ja) 正極用材料、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP6140631B2 (ja) 全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに全固体二次電池の製造方法
JP6332882B2 (ja) 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
WO2015129704A1 (ja) 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法
JP6587394B2 (ja) 固体電解質組成物、電池用電極シートおよび全固体二次電池ならびに電池用電極シートおよび全固体二次電池の製造方法
WO2015125800A1 (ja) 固体電解質組成物およびその製造方法、これを用いた電池用電極シートおよび全固体二次電池
JP6071938B2 (ja) 全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに電池用電極シートおよび全固体二次電池の製造方法
WO2016132872A1 (ja) 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法
JPWO2019087752A1 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池並びに固体電解質含有シート及び全固体二次電池の製造方法
CN116018362A (zh) 二次电池用粘合剂组合物、电极用组合物、电极片及二次电池以及这些电极片及二次电池的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167024632

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15749590

Country of ref document: EP

Kind code of ref document: A1