WO2018151119A1 - 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質含有シートおよび全固体二次電池の製造方法 - Google Patents
固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質含有シートおよび全固体二次電池の製造方法 Download PDFInfo
- Publication number
- WO2018151119A1 WO2018151119A1 PCT/JP2018/004951 JP2018004951W WO2018151119A1 WO 2018151119 A1 WO2018151119 A1 WO 2018151119A1 JP 2018004951 W JP2018004951 W JP 2018004951W WO 2018151119 A1 WO2018151119 A1 WO 2018151119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- solid
- polymer
- group
- active material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0091—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a solid electrolyte composition, a solid electrolyte-containing sheet and an all-solid secondary battery, and a method for producing a solid electrolyte-containing sheet and an all-solid secondary battery.
- a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and enables charging and discharging by reciprocating lithium ions between the two electrodes.
- an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
- the organic electrolyte is liable to leak, and there is a possibility that a short circuit occurs inside the battery due to overcharge or overdischarge, resulting in ignition, and further improvements in safety and reliability are required. Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention.
- All-solid-state secondary batteries are composed of a solid negative electrode, electrolyte, and positive electrode, which can greatly improve safety and reliability, which is a problem of batteries using organic electrolytes, and can also extend the life. It will be. Furthermore, the all-solid-state secondary battery can have a structure in which electrodes and an electrolyte are directly arranged in series. Therefore, it is possible to increase the density of energy as compared with a secondary battery using an organic electrolyte, and therefore, application to an electric vehicle, a large storage battery, and the like is expected.
- the all-solid-state secondary battery can increase the output by making the power generation element have a laminated structure.
- the laminated structure is usually formed in a form in which a positive electrode layer and a negative electrode layer are provided on the front and back of the current collector.
- a spacer is disposed on the outer periphery of a position where a power generation unit is disposed on one surface side of a current collector, and corresponds to a position where a spacer is disposed on the other surface side.
- a technique for facilitating positioning when laminating electrode bodies by forming a concave portion at a position and preventing displacement of the electrode bodies by fitting with spacers even when the electrode bodies are subjected to a pressing process is disclosed. .
- the sheet may be deteriorated due to friction between the sheets, and an all-solid secondary battery having desired performance is obtained. May not be obtained. This problem is an important problem to be solved in industrial production of all solid state secondary batteries.
- the present invention is a solid electrolyte composition for use in a solid electrolyte-containing sheet or an all-solid secondary battery, and is used as a constituent material of the solid electrolyte-containing sheet, whereby solid particles such as an inorganic solid electrolyte of the obtained solid electrolyte-containing sheet
- this invention makes it a subject to provide the solid electrolyte containing sheet
- this solid electrolyte composition can be obtained by adopting a polymer exhibiting a specific Young's modulus and a specific elongation at break as a binder. It has been found that a solid electrolyte-containing sheet produced using can be made excellent in the above binding property and scratch resistance. The present invention has been further studied based on this finding and has been completed.
- a solid electrolyte composition comprising a polymer that satisfies the following condition (1) or (2).
- Consdition 2 Young's modulus 0.2-2 GPa, elongation at break 10-1000% ⁇ 2>
- Consdition 2 Young's modulus 0.2-2 GPa, elongation at break 10-1000% ⁇ 7>
- An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is ⁇ 6> or ⁇ All-solid-state secondary battery which is a solid electrolyte containing sheet
- All-solid-state secondary battery which is a solid electrolyte containing sheet
- ⁇ 9> ⁇ 1>- ⁇ 5>
- seat including the process of apply
- each substitution may be the same as or different from each other. Further, when a plurality of substituents and the like are close to each other, they may be bonded to each other or condensed to form a ring.
- the weight average molecular weight (Mw) can be measured as a molecular weight in terms of polystyrene by GPC unless otherwise specified.
- GPC device HLC-8220 manufactured by Tosoh Corporation
- G3000HXL + G2000HXL is used as the column
- the flow rate is 1 mL / min at 23 ° C.
- detection is performed by RI.
- the eluent can be selected from THF (tetrahydrofuran), chloroform, NMP (N-methyl-2-pyrrolidone), m-cresol / chloroform (manufactured by Shonan Wako Pure Chemical Industries, Ltd.) and dissolves. If present, use THF.
- the glass transition temperature (Tg) is a differential scanning calorimeter “X-DSC7000” (trade name, manufactured by SII Nanotechnology Co., Ltd.) using a dry sample. And measured under the following conditions. The measurement is performed twice on the same sample, and the second measurement result is adopted. Measurement chamber atmosphere: Nitrogen (50 mL / min) Temperature increase rate: 5 ° C / min Measurement start temperature: -100 ° C Measurement end temperature: 200 ° C Sample pan: Aluminum pan Mass of measurement sample: 5 mg Calculation of Tg: Tg is calculated by rounding off the decimal point of the intermediate temperature between the lowering start point and the lowering end point of the DSC chart.
- the solid electrolyte composition of the present invention can improve the binding property and scratch resistance of the solid electrolyte-containing sheet by using it for the production of the solid electrolyte-containing sheet.
- the solid electrolyte-containing sheet of the present invention is excellent in binding property and scratch resistance between solid particles such as inorganic solid electrolytes.
- seat excellent in the physical property can be provided.
- a solid electrolyte-containing sheet and an all-solid secondary battery having excellent physical properties or performance can be produced.
- FIG. 1 is a longitudinal sectional view schematically showing an all solid state secondary battery according to a preferred embodiment of the present invention.
- FIG. 2 is a diagram showing Young's modulus, breaking elongation, and yield elongation on a stress-strain curve.
- FIG. 3 is a chart showing the elastic modulus, elongation at break and measurement results of the polymers used in the examples.
- FIG. 4 is an enlarged view of FIG.
- FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
- the all-solid-state secondary battery 10 of this embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order as viewed from the negative electrode side. .
- Each layer is in contact with each other and has a laminated structure.
- the solid electrolyte composition of the present invention can be preferably used as a molding material for the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer.
- the solid electrolyte-containing sheet of the present invention is suitable as the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer.
- a positive electrode active material layer (hereinafter also referred to as a positive electrode layer) and a negative electrode active material layer (hereinafter also referred to as a negative electrode layer) may be collectively referred to as an electrode layer or an active material layer.
- the thicknesses of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 are not particularly limited. In consideration of general battery dimensions, the thickness is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m. In the all solid state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 is 50 ⁇ m or more and less than 500 ⁇ m.
- the solid electrolyte composition of the present invention contains an inorganic solid electrolyte (A) having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table, and a binder (B). ) Includes a polymer that satisfies the following condition (1) or (2). (Condition 1) Young's modulus 0.003 GPa or more and less than 0.2 GPa, breaking elongation 300 to 700% (Condition 2) Young's modulus 0.2-2 GPa, elongation at break 10-1000%
- the inorganic solid electrolyte (A) having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table may be simply referred to as inorganic solid electrolyte (A).
- the component contained in a solid electrolyte composition, or the component which may be contained may be described without attaching
- the binder (B) may be simply referred to as a binder.
- the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). In addition, since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions.
- organic solid electrolytes polymer electrolytes typified by polyethylene oxide (PEO), etc.
- LiTFSI lithium bis (trifluoromethanesulfonyl) imide
- inorganic electrolyte salts LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.
- the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
- the inorganic solid electrolyte has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
- a solid electrolyte material applied to this type of product can be appropriately selected and used.
- Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes.
- a sulfide-based inorganic solid electrolyte is preferably used.
- the sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and Those having electronic insulating properties are preferred.
- the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S and P may be used. An element may be included.
- a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (I) can be mentioned.
- L represents an element selected from Li, Na and K, and Li is preferred.
- M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge.
- A represents an element selected from I, Br, Cl and F.
- a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
- a1 is further preferably 1 to 9, and more preferably 1.5 to 7.5.
- b1 is preferably 0 to 3.
- d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5.
- e1 is preferably 0 to 5, and more preferably 0 to 3.
- composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
- the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized.
- glass glass
- glass ceramic glass ceramic
- Li—PS system glass containing Li, P and S, or Li—PS system glass ceramics containing Li, P and S can be used.
- the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, LiI, LiBr, LiCl) and a sulfide of an element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by reaction of at least two raw materials.
- Li 2 S lithium sulfide
- P 2 S 5 diphosphorus pentasulfide
- simple phosphorus simple sulfur
- sodium sulfide sodium sulfide
- hydrogen sulfide lithium halide
- a sulfide of an element represented by M for example, SiS 2 , SnS, GeS 2
- the ratio of Li 2 S and P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 60:40 to 90:10, more preferably 68:32 to 78:22.
- the lithium ion conductivity can be increased.
- the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more.
- the upper limit is not particularly limited, but is practically 1 ⁇ 10 ⁇ 1 S / cm or less.
- Li 2 S—P 2 S 5 Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SiS 2 —LiCl, Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2
- Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method.
- Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quench method. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
- Oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and A compound having an electronic insulating property is preferable.
- Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
- lithium phosphate Li 3 PO 4
- LiPON obtained by replacing a part of oxygen of lithium phosphate with nitrogen
- LiPOD 1 LiPOD 1
- LiA 1 ON A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
- the volume average particle diameter of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
- the measurement of the average particle diameter of an inorganic solid electrolyte particle is performed in the following procedures.
- the inorganic solid electrolyte particles are diluted and adjusted in a 20 ml sample bottle using water (heptane in the case of a substance unstable to water).
- the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
- the content of the solid component in the solid electrolyte composition of the inorganic solid electrolyte is 100% by mass of the solid component when considering the reduction of the interface resistance when used in an all-solid secondary battery and the maintenance of the reduced interface resistance. It is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 20% by mass or more. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
- the said inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
- solid content refers to a component that does not disappear by evaporation or evaporation when subjected to a drying treatment at 170 ° C. for 6 hours in a nitrogen atmosphere. Typically, it refers to components other than the dispersion medium described below.
- the solid electrolyte composition of the present invention contains a binder (B).
- the binder (B) used in the present invention is an organic polymer and contains a polymer or resin that satisfies the following condition 1 or 2.
- a polymer and a resin that satisfy the following condition 1 or 2 may be referred to as a polymer (B1).
- the Young's modulus and elongation at break of the polymer (B1) are in the specific numerical range shown in the above condition 1 or 2, deformation or breakage of the polymer with respect to external stress is suppressed, so that the solid containing this polymer (B1)
- the solid electrolyte-containing sheet produced using the electrolyte composition is excellent not only in binding properties but also in scratch resistance. As a result, the production efficiency of the all-solid secondary battery can be improved.
- the polymer (B1) preferably satisfies the following condition 3 because deformation and breakage of the polymer with respect to external stress are further suppressed.
- Condition 3 Young's modulus 0.2-2 GPa (preferably 0.3-1 GPa), elongation at break 300-700% (preferably 500-700%)
- the Young's modulus means a tensile elastic modulus, and can be calculated by using an inclination of an elastic region (linear part thereof) in a stress strain diagram obtained by a tensile test of a material.
- the Young's modulus is obtained by preparing a test piece described in JIS K7161 “Plastics—Test Method for Tensile Properties” from a binder solution and measuring the tensile modulus and tensile fracture strain or tensile fracture nominal strain described in this standard. (See FIG. 2).
- the Young's modulus may be referred to as an elastic modulus.
- the elongation at break is defined as the permanent elongation after fracture of the test piece in the stress strain diagram obtained by the tensile test of the material. Elongation at break is obtained by preparing a test piece described in JIS K7161 “Plastics-Test Method for Tensile Properties” from a binder solution and measuring the tensile modulus and tensile fracture strain or tensile fracture nominal strain described in this standard. (See FIG. 2).
- the yield elongation of the polymer (B1) is not particularly limited, but is preferably 0.5% or more, more preferably 5% or more, and further preferably 10% or more.
- the upper limit is preferably 100% or less, more preferably 50% or less, and even more preferably 40% or less.
- Yield elongation is 0.5% or more means that the yield point appears when the length of the specimen before tension is 100% and the length becomes 100.5% or more. To do.
- the yield elongation is defined as the elongation to the yield point in the stress strain diagram obtained by the tensile test of the material. It is obtained by preparing a test piece described in JIS K7161 “Plastics—Test Method for Tensile Properties” from a binder solution and measuring the elongation (%) from the start of measurement to the yield point. The method of reading the yield point in the stress-strain curve obtained by the tensile test is shown below. When the stress-strain curve has a normal yield point, the strain up to the upper yield point is defined as the yield elongation (FIG. 2 (a)). If the yield point cannot be clearly read, determine the yield point as follows. (1) Find the maximum and minimum points obtained by first-order differentiation of the stress-strain curve. (2) The intersection of the tangents at these two points is taken as the yield point (FIG. 2 (b)).
- the polymer (B1) is not particularly limited as long as the condition 1 or 2 is satisfied, and may be either a thermoplastic resin or a thermosetting resin.
- thermoplastic resins examples include polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), a copolymer of acrylonitrile, butadiene and styrene (ABS), and a copolymer of acrylonitrile and styrene.
- PVC polyvinyl chloride
- PE polyethylene
- PP polypropylene
- PS polystyrene
- ABS butadiene and styrene
- ABS copolymer of acrylonitrile and styrene
- Polymer Polymer (AS), polymethylmethacrylate (PMMA), polyvinyl alcohol (PVA), polyvinylidene chloride (PVDC), polyethylene terephthalate (PET), polyamide (PA), polyacetal (POM), polycarbonate (PC), polyphenylene ether (PPE), polybutylene terephthalate (PBT), ultra high molecular weight polyethylene (U-PE), polyvinylidene fluoride (PVDF), polysulfone (PSU), polyethersulfone (PES), polyphenylene sulfide ( PS), polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI), polyetheretherketone (PEEK), polyimide (PI), liquid crystal polymer (LCP), polytetrafluoroethylene (PTFE), styrene -Butadiene rubber (SBR), isoprene rubber (IR), butadiene rubber (BR), chloroprene rubber (CR), acrylon
- the binder (B) may have a crosslinked structure composed of covalent bonds.
- the crosslinked structure is represented by the following general formula (1) or (2).
- n1 and n2 each represent an integer of 0-4.
- m1 represents an integer of 2 to 4.
- m2 represents an integer of 1 to 4.
- p represents an integer of 2 to 4.
- R represents a monovalent substituent.
- Y 1 represents an n1 + m1 valent organic group.
- L represents a single bond or a divalent linking group.
- X represents an oxygen atom, a nitrogen atom, a sulfur atom, a carbonyl group, or a divalent functional group containing at least one of them.
- Z represents a p-valent linking group.
- Y 2 represents an n2 + m2 + 1 valent organic group. * Indicates a binding site.
- Examples of the monovalent substituent represented by R include an alkyl group and an aryl group.
- the alkyl group preferably has 1 to 10 carbon atoms, and specific examples thereof include methyl, ethyl, propyl, i-propyl and butyl.
- the aryl group preferably has 6 to 10 carbon atoms and may be substituted with the above alkyl group. Specific examples of the aryl group include a phenyl group, a tolyl group, and a mesityl group.
- Y 1 represents an n1 + m1-valent organic group, that is, a divalent to octavalent organic group, preferably a divalent to hexavalent organic group, and more preferably a divalent to tetravalent organic group.
- the divalent organic group include an alkylene group and an arylene group.
- the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and examples include methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, and octylene groups.
- the arylene group preferably has 6 to 20 carbon atoms, more preferably 6 to 14 carbon atoms, and examples thereof include phenylene and naphthalenediyl.
- the divalent organic group may be an oxygen atom (—O—).
- Examples of the trivalent organic group include an alkanetriyl group and an arenetriyl group.
- the alkanetriyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and examples thereof include methanetriyl, ethanetriyl, propanetriyl and butanetriyl.
- the carbon number of the arenetriyl group is preferably 6 to 20, more preferably 6 to 14, and examples thereof include benzenetriyl and naphthalenetriyl.
- the trivalent organic group may be a nitrogen atom.
- Examples of the tetravalent organic group include an alkanetetrayl group and an arenetetrayl group.
- the alkanetetrayl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and examples thereof include methanetetrayl, ethanetetrayl, propanetetrayl and butanetetrayl.
- the carbon number of the arenetetrayl group is preferably 6 to 20, more preferably 6 to 14, and examples thereof include benzenetetrayl and naphthalenetetrayl.
- Examples of pentavalent organic groups include alkanepentile groups and arenepentile groups.
- the alkanepentile group preferably has 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and examples thereof include ethane pentiles, propane pentiles, and butane pentiles.
- the carbon number of the arenepentile group is preferably 6 to 20, more preferably 6 to 14, and examples thereof include benzene pentile and naphthalene pentile.
- Examples of the hexavalent organic group include an alkanehexayl group and an arenehexayl group.
- the alkanehexayl group preferably has 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and examples thereof include ethanehexayl, propanehexayl and butanehexayl.
- the carbon number of the arenehexayl group is preferably 6 to 20, more preferably 6 to 14, and examples thereof include benzenehexayl and naphthalenehexayl.
- Examples of the 7-valent organic group include an alkaneheptyl group and an areneheptyl group.
- the alkaneheptyl group preferably has 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms, and examples thereof include propane heptile and butane heptile.
- the carbon number of the areneheptyl group is preferably 10 to 20, more preferably 10 to 14, and examples thereof include naphthalene heptile.
- Examples of the octavalent organic group include an alkaneoctyl group and an areneoctyl group.
- the alkaneoctyl group preferably has 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms, and examples thereof include propaneoctyl and butaneoctyl.
- the areneoctyl group preferably has 10 to 20 carbon atoms, more preferably 10 to 14 carbon atoms, and examples thereof include naphthaleneoctyl.
- the divalent organic group represented by Y 1 can be employed as the divalent linking group represented by L.
- the divalent linking group represented by L is also preferably a group obtained by removing two constituent atoms (for example, hydrogen atoms) from a polymer belonging to the following polymer group (A). Specific examples include a divalent group obtained by removing two hydrogen atoms from polyester and a divalent group obtained by removing two hydrogen atoms from polyethylene glycol.
- the functional group containing a carbonyl group represented by X preferably has an ester group, a thioester group, a urethane group, a urea group, an amide group, or an imide group.
- the divalent to tetravalent organic group represented by Y 1 can be employed as the p-valent linking group represented by Z.
- Y 2 represents an n2 + m2 + 1 valent organic group, that is, a 3-9 valent organic group, preferably 3-6 valent, more preferably 3-4 valent.
- the 3-8 divalent linking group represented by Y 2 may be employed 3-8 divalent organic group represented by Y 1.
- Examples of the 9-valent linking group represented by Y 2 include an alkanenonyl group and an arene nonayl group.
- the alkanenonyl group preferably has 4 to 20 carbon atoms, more preferably 4 to 10 carbon atoms, and examples thereof include butanenonyl.
- the arene nonyl group preferably has 14 to 20 carbon atoms, more preferably 10 to 14 carbon atoms, and examples thereof include pyrennonyl.
- the crosslinked structure of the binder (B) may have a trifunctional modified isocyanate structure.
- the trifunctional modified isocyanate structure it is also preferable to use a biuret type, isocyanurate type, or block type. Specifically, it is preferable that Y 1 and Y 2 have a trifunctional modified isocyanate structure.
- the crosslinked structure of the binder (B) may include an organic polymer bonded to the main chain of the binder (B) via three or more ether groups.
- polyvinyl alcohol and modified polyrotaxane-graft-polycaprolactone are preferably used.
- the “main chain” is a line in which all molecular chains (long molecular chain and / or short molecular chain) other than the main chain among all molecular chains in the polymer can be regarded as a pendant with respect to the main chain.
- the longest chain among the molecular chains constituting the polymer is the main chain.
- the functional group possessed by the polymer terminal is not included in the main chain and is separately defined as a terminal functional group.
- the polymer (B1) used in the present invention preferably has a functional group capable of forming a crosslinked structure by a radical polymerization reaction, a cationic polymerization reaction or an anionic polymerization reaction (hereinafter also referred to as a crosslinkable functional group).
- a crosslinkable functional group capable of forming a crosslinked structure by a radical polymerization reaction, a cationic polymerization reaction or an anionic polymerization reaction (hereinafter also referred to as a crosslinkable functional group).
- the crosslinkable functional groups react to form a bond
- the polymer (B1) used in the present invention has a structure in which the polymer particles are crosslinked in or between the polymer particles, and the strength can be improved.
- the crosslinked structure which can be formed by the said crosslinkable functional group differs from the crosslinked structure which the binder (B) represented by the said General formula (1) or (2) has.
- the crosslinkable functional group is preferably a group having a carbon-carbon unsaturated bond and / or a cyclic ether group, more preferably a functional group belonging to the following functional group group (I).
- a group having a carbon-carbon unsaturated bond can form a crosslinked structure by radical polymerization reaction, and specifically, an alkenyl group (the number of carbon atoms is preferably 2 to 12, and more preferably 2 to 8). ), Alkynyl groups (the number of carbon atoms is preferably 2-12, more preferably 2-8), acryloyl groups and methacryloyl groups are preferred, vinyl group, ethynyl group, acryloyl group, methacryloyl group and 2-trifluoromethyl.
- a propenoyl group is more preferable.
- the cyclic ether group can form a crosslinked structure by a cationic polymerization reaction, and specific examples thereof preferably include an epoxy group and an oxetanyl group.
- the reaction between the crosslinkable functional groups used in the radical polymerization reaction, the cation polymerization reaction or the anion polymerization reaction is carried out by adding a polymerization initiator (radical, cation or anion) corresponding to each crosslinkable functional group in the solid electrolyte composition of the present invention.
- a polymerization initiator Radical, cation or anion
- the radical polymerization initiator may be either a thermal radical polymerization initiator that is cleaved by heat to generate an initiation radical, or a photo radical polymerization initiator that generates an initiation radical by light, electron beam, or radiation.
- a commonly used polymerization initiator can be used without any particular limitation.
- the amount of the crosslinked structure introduced is not particularly limited, but the lower limit is preferably 5% by mass or more and the upper limit is preferably 50% by mass or less with respect to the total mass of the polymer (B1).
- the polymer (B1) used in the present invention preferably has a functional group for enhancing wettability and / or adsorption to the solid particle surface.
- the functional group include a functional group exhibiting an interaction such as a hydrogen bond on the surface of the solid particle and a functional group capable of forming a chemical bond with the group on the surface of the solid particle. It is preferable to have at least one functional group belonging to.
- the salt may be sufficient as a sulfonic acid group and a phosphoric acid group, for example, a sodium salt and a calcium salt are mentioned.
- the group having a condensed ring structure of three or more rings is preferably a group having a cholesterol ring structure or a group having a structure in which three or more aromatic rings are condensed, more preferably a cholesterol residue or a pyrenyl group.
- the content of the functional group belonging to the functional group (II) in the polymer (B1) used in the present invention is not particularly limited, but is all repeating units constituting the polymer (B1) used in the present invention.
- the ratio of the repeating unit having a functional group belonging to the functional group group (II) is preferably 1 to 50 mol%, more preferably 5 to 20 mol%.
- the weight average molecular weight of the polymer (B1) is preferably from 5,000 to less than 5,000,000, more preferably from 5,000 to less than 500,000, and even more preferably from 5,000 to less than 100,000.
- the upper limit of the glass transition temperature of the polymer (B1) is preferably 80 ° C. or less, more preferably 50 ° C. or less, and further preferably 30 ° C. or less.
- the lower limit is not particularly limited, but is generally ⁇ 80 ° C. or higher.
- the polymer (B1) used in the present invention preferably has the following characteristics in order to satisfy the above condition 1 or 2.
- the polymer (B1) preferably has a structure described later.
- the polymer (B1) preferably has a polymer portion showing a hard segment and a soft segment. This is to form a microphase separation structure in which hard segments and soft segments are aggregated.
- the hard segment is a rigid group such as an aromatic group, a heteroaromatic group, or an aliphatic alicyclic group, or a bond that enables intermolecular packing by intermolecular hydrogen bonding or ⁇ - ⁇ interaction.
- the polymer (B1) preferably has a hydrogen bond-forming functional group. This is because the polymer (B1) forms an intramolecular or intermolecular hydrogen bond, thereby increasing the cohesiveness of the polymer (B1).
- the hydrogen bond-forming functional group include a carbonyl group, an imino group, a sulfo group, a carboxy group, a hydroxy group, and an amino group.
- the polymer (B1) can have a benzene ring.
- the cohesiveness of the polymer (B1) is improved by showing a structure in which aromatic rings contained in the polymer (B1) are stacked by interaction between molecules or within a molecule.
- a structure in which a plurality of benzene rings are condensed may be used, and examples thereof include a naphthalene skeleton, an anthracene skeleton, a chrysene skeleton, and a pyrene skeleton.
- the polymer (B1) preferably has a crosslinked structure. This is because the polymer is three-dimensionally linked between the molecules due to cross-linking to increase the cohesive force.
- the polymer (B1) In order to improve the elongation at break of the polymer (B1), it is preferable to have a soft segment having a highly flexible repeating structure. This is because when the external stress is applied, the binder chain is elongated to suppress the breakage.
- the soft segment include a polyisoprene structure, a polybutadiene structure, a polyalkylene glycol structure, and a polysiloxy structure.
- the polymer (B1) preferably has the following characteristics in order to increase the yield elongation to 10% or more.
- the polymer (B1) preferably has a polymer portion showing a hard segment and a soft segment. This is to form a microphase separation structure in which hard segments and soft segments are aggregated. Moreover, in order to improve the cohesion between soft segments, it is preferable to have a carbonate structure in a soft segment part.
- the shape of the polymer (B1) used in the present invention is not particularly limited, and may be particulate or indefinite in the solid electrolyte composition, the solid electrolyte-containing sheet, or the all-solid secondary battery.
- the polymer (B1) is a particle insoluble in the dispersion medium, from the viewpoint of dispersion stability of the solid electrolyte composition and from the viewpoint of obtaining an all-solid secondary battery having high ion conductivity.
- “the polymer (B1) is a particle insoluble in the dispersion medium” means that the average particle diameter does not decrease by 5% or more even when added to the dispersion medium at 30 ° C. and left to stand for 24 hours.
- the polymer (B1) in the solid electrolyte composition is preferably in the form of particles in order to suppress the decrease in interparticle ion conductivity of the inorganic solid electrolyte and the like, and the average particle diameter is preferably 10 nm to 1000 nm, preferably 100 nm. More preferably, ⁇ 500 nm.
- the average particle size of the polymer (B1) particles used in the present invention can be measured under the measurement conditions described below unless otherwise specified.
- the polymer (B1) particles are diluted with a solvent (dispersion medium used for preparing the solid electrolyte composition, for example, octane), and 1% by mass of the dispersion is diluted in a 20 ml sample bottle.
- the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
- LA-920 laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA)
- JISZ8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level and measured, and the average value is adopted. In addition, the measurement from the produced all-solid-state secondary battery is performed, for example, after disassembling the battery and peeling off the electrode, and then measuring the electrode material according to the measurement method of the average particle diameter of the polymer (B1) particles. This can be done by excluding the measured value of the average particle diameter of particles other than the polymer (B1) particles, which has been measured in advance.
- the binder (B) contains a polymer and / or resin other than the polymer (B1), that is, a polymer and / or resin that does not satisfy the condition 1 or 2, such a polymer is usually used as a binder for an all-solid-state secondary battery. And polymers that can be used.
- polymers and resins other than the polymer (B1) that may be contained in the binder (B) will be described. Polymers and resins other than polymer (B1) are referred to as polymer (b).
- fluorine-containing resin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
- hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile-butadiene rubber, polybutadiene, and polyisoprene.
- acrylic resin examples include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of these monomers (preferably a copolymer of acrylic acid and methyl acrylate). It is done. Further, a copolymer (copolymer) with other vinyl monomers is also preferably used. Examples thereof include a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile, and styrene.
- the copolymer may be either a statistical copolymer or a periodic copolymer, and a block copolymer is preferred.
- other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, and cellulose derivative resin. These may be used individually by 1 type, or may be used in combination of 2 or more type.
- the form of the polymer (B) used in the present invention can be preferably applied.
- the average particle diameter of the binder is usually preferably 10 nm to 30 ⁇ m, and more preferably 10 to 1000 nm nanoparticles.
- the water concentration of the polymer (b) is synonymous with the polymer (B) used in the present invention.
- the weight average molecular weight (Mw) of the polymer (b) is preferably 10,000 or more, more preferably 20,000 or more, and further preferably 30,000 or more. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, and 100,000 or less is more preferable.
- the said binder (B) and polymer (b) can use a commercial item. Moreover, it can also prepare by a conventional method.
- binder (B) used in the present invention may be used in a solid state, or may be used in the state of a polymer particle dispersion or a polymer solution.
- the content of the binder (B) used in the present invention in the solid electrolyte composition is 100 masses of a solid component in consideration of good interfacial resistance reduction and maintenance when used in an all-solid secondary battery.
- % Is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and further preferably 1% by mass or more.
- 10 mass% or less is preferable from a viewpoint of a battery characteristic, 5 mass% or less is more preferable, and 3 mass% or less is further more preferable.
- the mass ratio of the total mass (total amount) of the inorganic solid electrolyte and the active material to the mass of the binder (B) [(mass of the inorganic solid electrolyte + mass of the active material) / mass of the binder (B)] is: A range of 1,000 to 1 is preferred. This ratio is more preferably 500 to 2, and further preferably 100 to 10.
- the solid electrolyte composition of the present invention may contain an active material capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the Periodic Table.
- the active material include a positive electrode active material and a negative electrode active material, and a transition metal oxide that is a positive electrode active material or a metal oxide that is a negative electrode active material is preferable.
- a solid electrolyte composition containing an active material positive electrode active material, negative electrode active material
- an electrode composition positive electrode composition, negative electrode composition
- the positive electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
- the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element that can be complexed with Li, such as sulfur, or a complex of sulfur and metal.
- the positive electrode active material it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu and V). More preferred.
- this transition metal oxide includes an element M b (metal other than lithium, Group 1 (Ia) group element, Group 2 (IIa) group element, Al, Ga, In, Ge, Sn, Pb. , Elements such as Sb, Bi, Si, P or B) may be mixed.
- the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). Those synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2 are more preferable.
- transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halide phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
- transition metal oxides having (MA) layered rock-salt structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 ( lithium nickelate) LiNi 0.85 Co 0.10 Al 0.05 O 2 (lithium nickel cobalt aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobaltate [NMC]) and LiNi 0.5 Mn 0.5 O 2 (manganese) Lithium nickelate).
- transition metal oxides having (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 is mentioned.
- (MC) lithium-containing transition metal phosphate compounds include olivine-type phosphate iron salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
- (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Cobalt fluorophosphates such as
- Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
- a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO, LMO, NCA or NMC is more preferable.
- the shape of the positive electrode active material is not particularly limited, but is preferably particulate.
- the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited.
- the thickness can be 0.1 to 50 ⁇ m.
- an ordinary pulverizer or classifier may be used.
- the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
- the volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
- the positive electrode active materials may be used alone or in combination of two or more.
- the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
- the content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and even more preferably 50 to 85% by mass at 100% by mass. Preferably, it is 55 to 80% by mass.
- the negative electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
- the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a metal oxide such as tin oxide, a silicon oxide, a metal composite oxide, a lithium simple substance and a lithium alloy such as a lithium aluminum alloy, and , Metals such as Sn, Si, Al, and In that can form an alloy with lithium.
- a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability.
- the metal composite oxide is preferably capable of inserting and extracting lithium.
- the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
- the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
- various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), PAN (polyacrylonitrile) -based resin, furfuryl alcohol resin, etc.
- the carbonaceous material which baked resin can be mentioned.
- various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. Examples thereof include mesophase microspheres, graphite whiskers, and flat graphite.
- an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done.
- amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
- the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb and Bi are used alone or in combination of two or more thereof, and chalcogenides are particularly preferable.
- preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
- the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during the insertion and release of lithium ions, and the deterioration of the electrodes is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
- Li 4 Ti 5 O 12 lithium titanate [LTO]
- a Si-based negative electrode it is also preferable to apply a Si-based negative electrode.
- a Si negative electrode can occlude more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the amount of occlusion of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
- the shape of the negative electrode active material is not particularly limited, but is preferably particulate.
- the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
- a normal pulverizer or classifier is used.
- a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, and a sieve are preferably used.
- pulverizing wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
- classification is preferably performed.
- the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
- the average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
- the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
- ICP inductively coupled plasma
- the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
- the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
- the content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass with a solid content of 100% by mass.
- the surfaces of the positive electrode active material and the negative electrode active material may be coated with another metal oxide.
- the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si, or Li.
- Specific examples include spinel titanate, tantalum oxide, niobium oxide, and lithium niobate compound. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , and LiTaO 3.
- the electrode surface containing a positive electrode active material or a negative electrode active material may be surface-treated with sulfur or phosphorus. Further, the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with actinic rays or an active gas (plasma or the like) before and after the surface coating.
- the solid electrolyte composition of the present invention preferably contains a dispersion medium in order to disperse the solid components.
- a dispersion medium include the following.
- alcohol compound solvent examples include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, 1,3-butanediol, and 1,4-butane. Diols are mentioned.
- ether compound solvents examples include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol.
- alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol.
- amide compound solvent examples include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide and hexamethylphosphoric triamide.
- amino compound solvents examples include triethylamine and tributylamine.
- ketone compound solvent examples include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, and dibutyl ketone.
- ester compound solvents include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate, Examples include butyl butyrate, pentyl butyrate, methyl valerate, ethyl valerate, propyl valerate, butyl valerate, methyl caproate, ethyl caproate, propyl caproate, and butyl caproate.
- aromatic compound solvent examples include benzene, toluene, xylene, and mesitylene.
- Examples of the aliphatic compound solvent include hexane, heptane, cyclohexane, methylcyclohexane, octane, pentane, cyclopentane and cyclooctane.
- nitrile compound solvent examples include acetonitrile, propyronitrile, and butyronitrile.
- the dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 70 ° C. or higher at normal pressure (1 atm).
- the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
- the said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
- the dispersion medium (D) used in the present invention is preferably an ether compound solvent or a hydrocarbon solvent (aromatic compound solvent or aliphatic compound solvent), and the solid electrolyte composition of the present invention contains a particulate binder (B).
- a hydrocarbon solvent is more preferable.
- the content of the hydrocarbon solvent in the dispersion medium (D) is preferably 50% by mass or more, more preferably 70% by mass or more, from the viewpoint that the solid electrolyte composition of the present invention can contain a particulate binder.
- the mass% or more is more preferable.
- the upper limit is not particularly limited but is preferably 100% by mass.
- toluene or xylene is preferable as the aromatic compound solvent
- heptane, octane, cyclohexane or cyclooctane is preferable as the aliphatic compound solvent.
- the binder (B) used in the present invention has a crosslinkable functional group and / or a functional group selected from the functional group group (II) capable of binding to solid particles
- the binder (B) has a cross-linked structure.
- the aspect which is forming and / or the aspect which forms the bond between solid particles shall be included.
- the content of the dispersion medium in the solid electrolyte composition of the present invention is not particularly limited, but is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
- the solid electrolyte composition of the present invention may contain a conductive additive.
- a conductive support agent What is known as a general conductive support agent can be used.
- graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fiber and carbon nanotubes, which are electron conductive materials
- Carbon fibers such as graphene, carbonaceous materials such as graphene and fullerene, metal powders such as copper and nickel, and metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives may be used.
- the present invention when a negative electrode active material and a conductive additive are used in combination, Li is not inserted and released when the battery is charged / discharged, and the one that does not function as the negative electrode active material is used as the conductive aid. Therefore, among the conductive assistants, those that can function as the negative electrode active material in the negative electrode active material layer when the battery is charged and discharged are classified as negative electrode active materials, not conductive assistants. Whether or not the battery functions as a negative electrode active material when the battery is charged / discharged is not unambiguous and is determined in combination with the negative electrode active material.
- the content of the conductive assistant is preferably 0 to 5% by mass, more preferably 0.5 to 3% by mass with respect to 100% by mass of the solid content in the solid electrolyte composition.
- the solid electrolyte composition of the present invention may contain a dispersant. Even when the content of any of the electrode active material and the inorganic solid electrolyte is large by adding a dispersant, or when the average particle diameter of the electrode active material and / or the inorganic solid electrolyte is fine and the surface area is increased, the aggregation is caused. It is possible to form an active material layer and a solid electrolyte layer that are suppressed and the distance between components is uniform.
- the dispersant those usually used for all-solid secondary batteries can be appropriately selected and used. In general, compounds intended for particle adsorption and steric repulsion and / or electrostatic repulsion are preferably used.
- the solid electrolyte composition of the present invention may contain a lithium salt.
- the lithium salt is not particularly limited, and for example, lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
- the content of the lithium salt is preferably 0 parts by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the sulfide-based inorganic solid electrolyte. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
- Preparation of solid electrolyte composition As an example of the method for preparing the solid electrolyte composition of the present invention, there can be mentioned a method of dispersing an inorganic solid electrolyte (A) and a binder (B) in the presence of a dispersion medium (D) to form a slurry.
- Slurry can be performed by mixing an inorganic solid electrolyte and a dispersion medium using various mixers.
- the mixing apparatus is not particularly limited, and examples thereof include a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, and a disk mill.
- the mixing conditions are not particularly limited.
- the mixing is preferably performed at 150 to 700 rpm (rotation per minute) for 1 to 24 hours.
- a solid electrolyte composition containing components such as an active material and a dispersant, it may be added and mixed simultaneously with the dispersion step of the inorganic solid electrolyte (A), or may be added and mixed separately.
- the form of adding and / or mixing the binder (B) to the solid electrolyte composition of the present invention may be the binder (B) itself, a solution of the binder (B), the binder (B ) Dispersion liquid.
- a dispersion of the particulate binder (B) is preferable from the viewpoint that the decomposition of the inorganic solid electrolyte is suppressed and the ion conductivity can be ensured by being scattered on the particle surfaces of the active material and the inorganic solid electrolyte. .
- the solid electrolyte-containing sheet of the present invention contains an inorganic solid electrolyte (A) having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table, and a binder (B), and the binder (B). Includes a polymer that satisfies the following condition (1) or (2).
- the solid electrolyte-containing sheet of the present invention preferably contains an active material (C).
- the above-mentioned active material (C) can be adopted as the active material (C).
- the solid electrolyte-containing sheet of the present invention contains the binder (B) that satisfies the above condition 1 or 2, it has excellent binding properties between solid particles and excellent scratch resistance.
- the reason is considered as follows. That is, since the binder (B) has a high Young's modulus, deformation of the solid electrolyte-containing sheet with respect to external stress can be suppressed. Moreover, since elongation at break is large, it exhibits a high restoring force against the force by which the solid electrolyte-containing sheet is stretched by external stress, and suppresses cracking of the solid electrolyte-containing sheet. As a result, it is considered that the solid electrolyte-containing sheet of the present invention exhibits scratch resistance.
- the solid electrolyte composition of the present invention is contained in the solid electrolyte composition of the present invention.
- the polymer (B) wets and spreads on the solid surface as the dispersion medium is removed.
- the average particle diameter of the polymer (B) is extremely small, it is estimated that the polymer particles are wet and spread without completely covering the surface of the solid particles, and the inhibition of ionic conductivity is greatly reduced while exhibiting the binding effect. be able to.
- the solid electrolyte-containing sheet of the present invention can achieve both high binding properties and high ionic conductivity, and the solid electrolyte-containing sheet of the present invention exhibits high battery voltage and excellent scratch resistance. it is conceivable that.
- the solid electrolyte-containing sheet of the present invention can be suitably used for an all-solid-state secondary battery, and includes various modes depending on the application.
- a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte sheet for an all-solid secondary battery or a solid electrolyte sheet
- a sheet preferably used for an electrode or a laminate of an electrode and a solid electrolyte layer an all-solid secondary battery
- Electrode sheet Moreover, the solid electrolyte containing sheet
- the solid electrolyte-containing sheet of the present invention can be used as an ion exchange membrane of an ion exchange membrane electrodialyzer.
- the solid electrolyte-containing sheet may be a sheet having a solid electrolyte layer or an active material layer (electrode layer). Even if the solid electrolyte layer or the active material layer (electrode layer) is formed on the substrate, the substrate The sheet may be formed from a solid electrolyte layer or an active material layer (electrode layer).
- the sheet in an embodiment having a solid electrolyte layer or an active material layer (electrode layer) on the substrate will be described in detail.
- This solid electrolyte-containing sheet may have other layers as long as it has a substrate and a solid electrolyte layer or an active material layer, but those containing an active material are for an all-solid-state secondary battery described later.
- Examples of other layers include a protective layer, a current collector, and a coat layer (current collector, solid electrolyte layer, active material layer) and the like.
- Examples of the solid electrolyte sheet for an all-solid secondary battery include a sheet having a solid electrolyte layer and a protective layer in this order on a base material.
- the substrate is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include materials described in the current collector, sheet materials (plate bodies) such as organic materials and inorganic materials, and the like.
- Examples of the organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
- Examples of the inorganic material include glass and ceramic.
- Each of the solid electrolyte layer and the active material layer in the solid electrolyte-containing sheet is preferably the same as that in the solid content of the solid electrolyte composition, unless otherwise specified, with respect to the component species to be contained and the content ratio thereof. is there.
- the layer thickness of the solid electrolyte layer of the solid electrolyte-containing sheet is the same as the layer thickness of the solid electrolyte layer described in the above-described all-solid secondary battery according to the preferred embodiment of the present invention.
- the electrode sheet for an all-solid-state secondary battery of the present invention (also simply referred to as “electrode sheet”.
- the positive electrode sheet may be referred to as “positive electrode sheet” and the negative electrode sheet may be referred to as “negative electrode sheet”).
- This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer, and a solid electrolyte layer in this order, and a current collector, an active material layer, and a solid electrolyte
- the aspect which has a layer and an active material layer in this order is also included.
- the layer thickness of each layer constituting the electrode sheet is the same as the layer thickness of each layer described in the above-described all-solid-state secondary battery according to the preferred embodiment of the present invention.
- the all solid state secondary battery of the present invention has a positive electrode, a negative electrode facing the positive electrode, and a solid electrolyte layer between the positive electrode and the negative electrode.
- the positive electrode has a positive electrode active material layer on a positive electrode current collector.
- the negative electrode has a negative electrode active material layer on a negative electrode current collector.
- At least one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is formed using the solid electrolyte composition of the present invention.
- at least one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is the solid electrolyte-containing sheet of the present invention.
- the active material layer and / or the solid electrolyte layer formed by using the solid electrolyte composition are preferably in the solid content of the solid electrolyte composition unless otherwise specified with respect to the component species and the content ratio thereof. Basically the same as the thing.
- the polymer (B) used in the present invention has a crosslinkable functional group and / or a functional group selected from the functional group group (II) capable of binding to solid particles, the polymer (B) forms a cross-linked structure. And / or an embodiment in which a bond is formed with the solid particles.
- a preferred embodiment of the present invention will be described with reference to FIG. 1, but the present invention is not limited to this.
- any one of a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer is produced using the solid electrolyte composition of the present invention. That is, when the solid electrolyte layer 3 is produced using the solid electrolyte composition of the present invention, the solid electrolyte layer 3 includes an inorganic solid electrolyte (A) and a binder (B). The solid electrolyte layer usually does not contain a positive electrode active material and / or a negative electrode active material.
- the positive electrode active material layer 4 and / or the negative electrode active material layer 2 are produced using the solid electrolyte composition of the present invention containing an active material
- the positive electrode active material layer 4 and the negative electrode active material layer 2 are respectively And a positive electrode active material or a negative electrode active material, and further include an inorganic solid electrolyte (A) and a binder (B).
- the active material layer contains an inorganic solid electrolyte
- the ionic conductivity can be improved.
- the inorganic solid electrolyte (A) and the binder (B) contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be the same or different from each other.
- the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors. In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
- Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel and titanium, as well as the surface of aluminum or stainless steel treated with carbon, nickel, titanium or silver (formation of a thin film) Among them, aluminum and aluminum alloys are more preferable.
- the material for forming the negative electrode current collector is treated with carbon, nickel, titanium or silver on the surface of aluminum, copper, copper alloy or stainless steel. What was made to do is preferable, and aluminum, copper, a copper alloy, and stainless steel are more preferable.
- the current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
- the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
- the current collector surface is roughened by surface treatment.
- a functional layer, a member, or the like is appropriately interposed or disposed between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be.
- Each layer may be composed of a single layer or a plurality of layers.
- the basic structure of the all-solid-state secondary battery can be manufactured by arranging each of the above layers. Depending on the application, it may be used as an all-solid secondary battery as it is, but in order to form a dry battery, it is further enclosed in a suitable housing.
- the housing may be metallic or made of resin (plastic). When using a metallic thing, the thing made from an aluminum alloy and stainless steel can be mentioned, for example.
- the metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively.
- the casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
- the solid electrolyte sheet of the present invention is formed into a film (coating and drying) on the base material (which may contain another layer) the solid electrolyte composition of the present invention (preferably containing (D) a dispersion medium). And it is obtained by forming a solid electrolyte layer on a base material.
- the solid electrolyte sheet which has an inorganic solid electrolyte (A) and a binder (B) (containing the solid electrolyte layer) on a base material is producible.
- a base material can be peeled from the produced solid electrolyte sheet, and the solid electrolyte sheet which consists of a solid electrolyte layer can also be produced.
- the solid electrolyte layer described in the manufacturing method of the all-solid-state secondary battery mentioned later is also contained in the solid electrolyte sheet of this invention.
- the method as described in manufacture of the following all-solid-state secondary battery can be used.
- the solid electrolyte sheet may contain the dispersion medium (D) within a range that does not affect the battery performance. Specifically, you may contain 1 ppm or more and 10000 ppm or less in the total mass.
- the electrode sheet for all-solid-state secondary batteries may also contain the dispersion medium (D) within a range that does not affect the battery performance. Specifically, you may contain 1 ppm or more and 10000 ppm or less in the total mass.
- seat of this invention can be measured with the following method.
- the solid electrolyte-containing sheet is punched out with a 20 mm square and immersed in deuterated tetrahydrofuran in a glass bottle.
- the obtained eluate is filtered through a syringe filter, and quantitative operation is performed by 1 H-NMR.
- the correlation between the 1 H-NMR peak area and the amount of solvent is determined by preparing a calibration curve.
- Manufacture of all-solid-state secondary battery and electrode sheet for all-solid-state secondary battery can be performed by a conventional method. Specifically, the all-solid-state secondary battery and the electrode sheet for the all-solid-state secondary battery can be manufactured by forming each of the above layers using the solid electrolyte composition of the present invention. This will be described in detail below.
- the all-solid-state secondary battery of the present invention includes a step of applying the solid electrolyte composition of the present invention on a base material (for example, a metal foil to be a current collector) to form a coating film (film formation) ( Can be manufactured by a method.
- a solid electrolyte composition containing a positive electrode active material is applied as a positive electrode material (positive electrode composition) on a metal foil that is a positive electrode current collector to form a positive electrode active material layer, and an all-solid secondary A positive electrode sheet for a battery is prepared.
- a solid electrolyte composition for forming a solid electrolyte layer is applied on the positive electrode active material layer to form a solid electrolyte layer.
- a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on the solid electrolyte layer to form a negative electrode active material layer.
- An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer is obtained by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer. Can do. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
- each layer is reversed, and a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery.
- Another method includes the following method. That is, a positive electrode sheet for an all-solid secondary battery is produced as described above. Further, a negative electrode active material layer is formed by applying a solid electrolyte composition containing a negative electrode active material as a negative electrode material (negative electrode composition) on a metal foil as a negative electrode current collector, and forming an all-solid secondary A negative electrode sheet for a battery is prepared. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, the other of the positive electrode sheet for an all solid secondary battery and the negative electrode sheet for an all solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
- Another method includes the following method. That is, as described above, a positive electrode sheet for an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery are produced. Separately from this, a solid electrolyte composition is applied on a substrate to produce a solid electrolyte sheet for an all-solid secondary battery comprising a solid electrolyte layer. Furthermore, it laminates
- An all-solid-state secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet for an all-solid secondary battery are produced. Then, after laminating the solid electrolyte layer peeled off from the base material on the negative electrode sheet for an all solid secondary battery, an all solid secondary battery can be produced by pasting the positive electrode sheet for the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for an all-solid secondary battery, and bonded to the negative electrode sheet for an all-solid secondary battery. In addition, the form which does not have a base material is also contained in the electrode sheet for all-solid-state secondary batteries of this invention similarly to the above-mentioned solid electrolyte sheet.
- the method for applying the solid electrolyte composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating. At this time, the solid electrolyte composition may be dried after being applied, or may be dried after being applied in multiple layers.
- the drying temperature is not particularly limited.
- the lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher.
- the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
- a dispersion medium (D) By heating in such a temperature range, a dispersion medium (D) can be removed and it can be set as a solid state. Moreover, it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance can be exhibited and good binding properties can be obtained.
- each layer or all-solid secondary battery After producing the solid electrolyte-containing sheet or all-solid secondary battery. Moreover, it is also preferable to pressurize in the state which laminated
- An example of the pressurizing method is a hydraulic cylinder press.
- the applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa. Moreover, you may heat the apply
- the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
- the pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
- each composition may be applied simultaneously, and application and drying presses may be performed simultaneously and / or sequentially. You may laminate
- the atmosphere during pressurization is not particularly limited, and may be any of the following: air, dry air (dew point -20 ° C. or lower), and inert gas (for example, argon gas, helium gas, nitrogen gas).
- the pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more).
- a restraining tool screw tightening pressure or the like
- the pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
- the pressing pressure can be changed according to the area and film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
- the press surface may be smooth or roughened.
- the all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use.
- the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
- the all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc.
- Others for consumer use include automobiles (electric cars, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.) . Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
- An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
- this invention presupposes an inorganic all-solid-state secondary battery.
- the all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery that uses a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state that uses the above-described Li—PS glass, LLT, LLZ, or the like. It is divided into secondary batteries.
- an organic compound to an inorganic all-solid secondary battery is not hindered, and the organic compound can be applied as a binder or additive for a positive electrode active material, a negative electrode active material, and an inorganic solid electrolyte.
- the inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the above-described Li—PS glass, LLT, and LLZ.
- the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
- electrolyte a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations (Li ions) is sometimes called an electrolyte.
- electrolyte salt When distinguishing from the electrolyte as the above ion transport material, this is called “electrolyte salt” or “supporting electrolyte”.
- electrolyte salt An example of the electrolyte salt is LiTFSI.
- composition means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
- Li 2 S lithium sulfide
- P 2 S 5 diphosphorus pentasulfide
- Neostan U-600 (trade name, manufactured by Nitto Kasei Co., Ltd.) was added and stirred at 80 ° C. for 4 hours to obtain a prepolymer having a Mw of 27,000.
- THF solution of 3.7 g of Epol (trade name, terminal diol-modified hydrogenated polyisoprene, manufactured by Idemitsu Kosan Co., Ltd., Mw 2,500) was added, and the mixture was further stirred at 80 ° C. for 4 hours. A viscous polymer solution was obtained.
- the polymer (B-7) was prepared in the same manner as in the preparation of the polymer (B-10) dispersion except that DURANOL T5650J (trade name, manufactured by Asahi Kasei Co., Ltd., Mw800) was used as the polycarbonate diol instead of Etanacol UH-200. 10% by mass of octane dispersion was obtained.
- the weight average molecular weight of the polymer (B-7) was 66,000, and the average particle size was 290 nm.
- Neostan U-600 was added and stirred for 4 hours at 80 ° C. to obtain a prepolymer with Mw 27,000.
- 5 g of THF solution of 3.7 g of Epol (trade name, terminal diol-modified hydrogenated polyisoprene, manufactured by Idemitsu Kosan Co., Ltd., Mw 2,500) was added, and stirring was further continued at 80 ° C. for 4 hours.
- a cloudy viscous polymer solution was obtained.
- 1 g of methanol was added to this solution to seal the polymer ends, the polymerization reaction was stopped, and the solution was diluted with MEK to obtain a 20% by mass MEK solution of polymer (B-13).
- the polymer (B-13) has a carboxy group and has a modified polyrotaxane-graft-polycaprolactone as a crosslinked structure. Includes both hard and soft segments.
- Polymer (B-8) has a carboxy group and does not contain a crosslinked structure. Includes both hard and soft segments.
- a polymer (B-8) was prepared in the same manner as in the preparation of the polymer (B-8) dispersion, except that etanacol UH-50 (trade name, manufactured by Ube Industries, Ltd., Mw500) was used as the polycarbonate diol instead of etanacol UH-100. A 14% by mass octane dispersion of -14) was obtained. The Mw of the polymer (B-14) was 17,000, and the average particle size was 220 nm.
- the polymer (B-14) has a carboxy group and does not contain a crosslinked structure. Includes both hard and soft segments.
- a polymer was prepared in the same manner as in the preparation of the polymer (B-8) dispersion except that the polycarbonate diol was changed to etanacol UH-200 (trade name, manufactured by Ube Industries, Ltd., Mw 2,000) instead of etanacol UH-100.
- etanacol UH-200 trade name, manufactured by Ube Industries, Ltd., Mw 2,000
- a 10 mass% octane dispersion of (B-15) was obtained.
- the Mw of the polymer (B-15) was 33,000, and the average particle size was 290 nm.
- Polymer (B-15) has a carboxy group and does not contain a crosslinked structure. Includes both hard and soft segments.
- Examples of tensile test specimens and test outline> (Preparation of test specimens) A dispersion or solution of the above polymers B-1 to 16 and T-1 to T-4 is applied onto a Teflon (registered trademark) sheet using a baker type applicator (manufactured by Partec Co., Ltd.). ) And dried at 80 ° C. for 40 hours. Next, using a shopper type sample punch (manufactured by Yasuda Seiki Seisakusho), the dried film is a standard defined by JIS K 7127 “Plastics-Test method for tensile properties, Part 3: Test conditions for films and sheets”. Test specimen type 5 was produced.
- T-1 to T-4 are comparative examples.
- T-1 to T-4 correspond to Comparative Examples 1 to 4, respectively.
- B-1 to B-16 and T-1 to T-4 test pieces were subjected to a tensile test using a digital force gauge ZTS-5N and a vertical electric measurement stand MX2 series (both trade names, manufactured by Imada). It was. Two parallel markings are made at the center of the test piece at a distance of 50 mm, and the test piece is stretched at a speed of 10 mm per minute. And yield elongation was calculated.
- HNBR Hydrogenated acrylonitrile butadiene rubber (manufactured by Nippon Zeon)
- HSBR Hydrogenated Styrene Butadiene Rubber (manufactured by JSR)
- PVDF-HFP Copolymer of vinylidene fluoride and hexafluoropropylene (manufactured by Arkema)
- PI Polyimide (manufactured by Ube Industries) “-”: Means that none of the conditions 1 to 3 is satisfied.
- Example 10 ⁇ Preparation example of solid electrolyte composition> After putting 180 zirconia beads with a diameter of 5 mm into a 45 mL container (made by Fritsch) made of zirconia and putting an inorganic solid electrolyte, a polymer and a dispersion medium, the container is put into a planetary ball mill P-7 (product name) made by Fritsch. Was set and mixed at room temperature for 2 hours at a rotation speed of 300 rpm to prepare a solid electrolyte composition. When the solid electrolyte composition contained an active material, the active material was added and further mixed at room temperature at a rotation speed of 150 rpm for 5 minutes to prepare a solid electrolyte composition.
- a planetary ball mill P-7 product name
- Solid electrolyte compositions of S-1 to S-16 and T′-1 to T′-4 were prepared.
- S-1 to S-16 are examples of the present invention.
- T′-1 to T′-4 are comparative examples.
- LCO LiCoO 2 (lithium cobaltate)
- NMC LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobaltate)
- NCA LiNi 0.85 Co 0.10 Al 0.05 O 2 (nickel cobalt lithium aluminum oxide)
- E Conductive auxiliary agent AB: Acetylene black
- VGCF Trade name, carbon nanofibers manufactured by Showa Denko KK
- D Dispersion medium S-1 to S-16 and No. All of T′-1 to T′-4 were used in an amount of 18 parts by mass. “-”: Means that the corresponding component is not contained.
- the solid electrolyte composition S-1 prepared above was applied onto a stainless steel (SUS) foil having a thickness of 20 ⁇ m, which is a current collector, with a bar coder.
- the SUS foil was placed on a hot plate with the bottom surface, heated at 80 ° C. for 1 hour to remove the dispersion medium, and further press-pressed at 300 MPa to obtain a No. 2 solid electrolyte layer.
- a solid electrolyte containing sheet 101 was prepared. No. In the same manner as the production of the solid electrolyte-containing sheet of No. 101, No. Using solid electrolyte compositions of S-2 to S-16 and T′-1 to T′-4, no.
- Solid electrolyte-containing sheets of 102 to 116 and c11 to c14 were produced.
- no. Nos. 101 to 116 are the present invention.
- c11 to c14 are comparative examples.
- the thickness of the solid electrolyte layer or the active material layer of the obtained solid electrolyte-containing sheet is shown in Table 2 below. Each sheet is 50 mm long and 30 mm wide.
- Classification 0 The edge of the cut was completely smooth, and there was no peeling to the eyes of any lattice.
- Classification 1 Small peeling of the coating film at the intersection of cuts was observed. The cross cut portion was clearly not affected by more than 5%.
- Classification 2 The solid electrolyte layer or the active material layer was peeled along the edge of the cut and / or at the intersection. The cross-cut part is clearly affected by more than 5% but not more than 15%.
- Classification 3 The solid electrolyte layer or the active material layer is partially or completely peeled along the edge of the cut, and / or various parts of the eye are partially or completely peeled off. . It was clearly over 15% but not over 35% that was affected in the crosscut part.
- Classification 4 The solid electrolyte layer or the active material layer was partially or completely peeled along the edge of the cut, and / or some eyes were partially or completely peeled off. The cross-cut portion was clearly not affected by more than 35%. Classification 5: There was peeling to the extent that classification 4 was not possible. [Cross-cut portion means a portion where cutting with a cutter knife goes straight. ]
- the movable part to which the steel wool (# 0000) was attached was rubbed back and forth 20 times on the solid electrolyte-containing sheet at a speed of 10 reciprocations per minute with a load of 200 g and an operating width of 20 mm.
- the surface was visually observed and evaluated according to the following AF.
- evaluation "C" or more is a pass level of this test.
- the layer thickness does not include the thickness of the substrate.
- No. 1 was prepared from a solid electrolyte composition containing as a binder a polymer that does not satisfy the provisions of the present invention.
- the comparative solid electrolyte-containing sheets c11 to c14 all failed in binding properties and scratch resistance.
- the solid electrolyte-containing sheets prepared from the solid electrolyte composition of the present invention containing a polymer satisfying the provisions of the present invention as a binder exhibit high binding properties and scratch resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質および正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。さらに、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べてエネルギーの高密度化が可能となるので、電気自動車や大型蓄電池等への応用が期待されている。
全固体二次電池は、発電要素を積層構造とすることにより高出力化することができる。この積層構造では通常、集電体の表裏に正極層と負極層とを設けた形態で積層構造を形成する。この積層構造においては集電体同士の接触による短絡を防止するために、集電体と集電体との間にスペーサを設けることが知られている。例えば、特許文献1には、積層型電池において、集電体の一面側には発電部が配される位置の外周にスペーサを配し、他面側にはスペーサが配される位置と対応する位置に凹部を形成することにより、電極体を積層する際の位置決めを容易にし、プレス工程に供する場合にも、スペーサの嵌合により、電極体同士の位置ずれを防止する技術が開示されている。
<1>
周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、バインダー(B)とを含有する固体電解質組成物であって、バインダー(B)が、下記条件(1)または(2)を満たすポリマーを含む固体電解質組成物。
(条件1)ヤング率0.003GPa以上0.2GPa未満、破断伸び300~700%
(条件2)ヤング率0.2~2GPa、破断伸び10~1000%
<2>
ポリマーが、下記条件3を満たす<1>に記載の固体電解質組成物。
(条件3)ヤング率0.2~2GPa、破断伸び300~700%
<3>
ポリマーの降伏伸びが、10%以上である<1>又は<2>に記載の固体電解質組成物。
<4>
活物質(C)を含有する<1>~<3>のいずれか1つに記載の固体電解質組成物。
<5>
分散媒(D)を含有する<1>~<4>のいずれか1つに記載の固体電解質組成物。
<6>
周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、バインダー(B)とを含有する固体電解質含有シートであって、バインダー(B)が、下記条件(1)または(2)を満たすポリマーを含む固体電解質含有シート。
(条件1)ヤング率0.003GPa以上0.2GPa未満、破断伸び300~700%
(条件2)ヤング率0.2~2GPa、破断伸び10~1000%
<7>
活物質(C)を含有する<6>に記載の固体電解質含有シート。
<8>
正極活物質層、負極活物質層および固体電解質層を具備する全固体二次電池であって、正極活物質層、負極活物質層および固体電解質層の少なくとも1つの層が、<6>または<7>に記載の固体電解質含有シートである全固体二次電池。
<9>
<1>~<5>のいずれか1つに記載の固体電解質組成物を基材上に塗布する工程を含む固体電解質含有シートの製造方法。
<10>
<9>に記載の製造方法を介して全固体二次電池を製造する、全固体二次電池の製造方法。
測定室内の雰囲気:窒素(50mL/min)
昇温速度:5℃/min
測定開始温度:-100℃
測定終了温度:200℃
試料パン:アルミニウム製パン
測定試料の質量:5mg
Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度の小数点以下を四捨五入することでTgを算定する。
図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e-)が供給され、そこにリチウムイオン(Li+)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li+)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。本発明の固体電解質組成物は、上記負極活物質層、正極活物質層、固体電解質層の成形材料として好ましく用いることができる。また、本発明の固体電解質含有シートは、上記負極活物質層、正極活物質層、固体電解質層として好適である。
本明細書において、正極活物質層(以下、正極層とも称す。)と負極活物質層(以下、負極層とも称す。)をあわせて電極層または活物質層と称することがある。
本発明の固体電解質組成物は、周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、バインダー(B)とを含有し、このバインダー(B)は下記条件(1)または(2)を満たすポリマーを含む。
(条件1)ヤング率0.003GPa以上0.2GPa未満、破断伸び300~700%
(条件2)ヤング率0.2~2GPa、破断伸び10~1000%
無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオンおよびアニオンに解離または遊離していない。この点で、電解液若しくはポリマー中でカチオンおよびアニオンが解離または遊離している無機電解質塩(LiPF6、LiBF4、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族または第2族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、SおよびPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的または場合に応じて、Li、SおよびP以外の他の元素を含んでもよい。
例えば下記式(I)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
La1Mb1Pc1Sd1Ae1 式(I)
式中、LはLi、NaおよびKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1はさらに、1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましい。d1はさらに、2.5~10が好ましく、3.0~8.5がより好ましい。e1はさらに、0~5が好ましく、0~3がより好ましい。
硫化物系無機固体電解質は、例えば硫化リチウム(Li2S)、硫化リン(例えば五硫化二燐(P2S5))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mであらわされる元素の硫化物(例えばSiS2、SnS、GeS2)の中の少なくとも2つ以上の原料の反応により製造することができる。
酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
上記無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
なお、本明細書において固形分(固形成分)とは、窒素雰囲気下170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
本発明の固体電解質組成物は、バインダー(B)を含有する。
本発明に用いられるバインダー(B)は、有機高分子であり、下記条件1または2を満たすポリマーまたは樹脂を含有する。以下、下記条件1または2を満たすポリマーおよび樹脂をポリマー(B1)と称することもある。
(条件1)ヤング率0.003GPa以上(好ましくは0.01GPa以上)0.2GPa未満、破断伸び300~700%(好ましくは500~700%)
(条件2)ヤング率0.2~2GPa、破断伸び10~1000%
なお、バインダー(B)の全質量に占めるポリマー(B1)の含有量は、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。上限に特に制限はないが、100質量%以下が好ましい。
ポリマー(B1)のヤング率と破断伸びが上記条件1または2に示す特定の数値範囲にあることで、外部応力に対するポリマーの変形あるいは破断が抑制されるため、このポリマー(B1)を含有する固体電解質組成物を用いて作製される固体電解質含有シートは、結着性だけでなく、耐擦傷性に優れる。その結果、全固体二次電池の製造効率を向上させることができる。
(条件3)ヤング率0.2~2GPa(好ましくは0.3~1GPa)、破断伸び300~700%(好ましくは500~700%)
なお、本明細書において、ヤング率を弾性率と称することもある。
なお、例えば、「降伏伸びが0.5%以上」とは、引張前の試験片の長さを100%として、100.5%以上の長さになったときに降伏点が現れることを意味する。
2価の有機基としては、例えば、アルキレン基及びアリーレン基が挙げられる。アルキル基の炭素数は1~20が好ましく、炭素数1~10がより好ましく、例えば、メチレン、エチレン、プロピレン、ブチレン、ペンチレン、ヘキシレン、ヘプチレン及びオクチレン基が挙げられる。アリーレン基の炭素数は6~20が好ましく、炭素数6~14がより好ましく、例えば、フェニレン及びナフタレンジイルが挙げられる。また、2価の有機基は、酸素原子(-O-)であってもよい。
ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエステル、ポリカーボネート、ポリシロキサン
Y2で示される3~8価の連結基としては、上記Y1で示される3~8価の有機基を採用することができる。
Y2で示される9価の連結基としては、例えば、アルカンノナイル基及びアレーンノナイル基が挙げられる。アルカンノナイル基の炭素数は4~20が好ましく、炭素数4~10がより好ましく、例えば、ブタンノナイルが挙げられる。アレーンノナイル基の炭素数は14~20が好ましく、炭素数10~14がより好ましく、例えば、ピレンノナイルが挙げられる。
<官能基群(I)>
炭素-炭素不飽和結合を有する基、エポキシ基およびオキセタニル基。
本発明の固体電解質組成物が含有してもよい重合開始剤としては、常用される重合開始剤を特に制限することなく用いることができる。
カルボキシ基、スルホン酸基(-SO3H)、リン酸基(-PO4H2)、アミノ基(-NH2)、ヒドロキシ基、スルファニル基、イソシアナト基および3環以上の縮環構造を有する基。
3環以上の縮環構造を有する基は、コレステロール環構造を有する基、または3環以上の芳香族環が縮環した構造を有する基が好ましく、コレステロール残基またはピレニル基がより好ましい。
ポリマー(B1)のガラス転移温度は、上限は80℃以下が好ましく、50℃以下がより好ましく、30℃以下がさらに好ましい。下限は特に限定されないが、一般的には-80℃以上である。
ポリマー(B1)の弾性率を向上させるために、ポリマー(B1)は後述の構造を有することが好ましい。ポリマー(B1)はハードセグメントおよびソフトセグメントを示すポリマー部位を有することが好ましい。ハードセグメント同士およびソフトセグメント同士が集合したミクロ相分離構造を形成するためである。
ここで、ハードセグメントとは、芳香族基若しくは複素芳香族基、若しくは脂肪族脂環式基といった剛直な基、又は、分子間水素結合若しくはπ-π相互作用による分子間パッキングを可能にする結合部(ウレタン結合、ウレア結合、アミド結合若しくはイミド結合等)を有するセグメントの事である。
また、ポリマー(B1)は水素結合形成官能基を有することが好ましい。ポリマー(B1)が分子内あるいは分子間水素結合を形成することにより、ポリマー(B1)の凝集性が増大するためである。水素結合形成官能基とは、カルボニル基、イミノ基、スルホ基、カルボキシ基、ヒドロキシ基、アミノ基などが挙げられる。
ポリマー(B1)はベンゼン環を有することができる。ポリマー(B1)に含まれる芳香環同士が分子間あるいは分子内で相互作用により積み重なった構造を示すことで、ポリマー(B1)の凝集性が向上するためである。複数のベンゼン環が縮環した構造でもよく、例えばナフタレン骨格、アントラセン骨格、クリセン骨格、ピレン骨格が挙げられる。
ポリマー(B1)は架橋構造を有することが好ましい。高分子が架橋形成により分子間で3次元的に連結され、凝集力が増大するためである。
ポリマー(B1)の破断伸びを向上させるには、柔軟性の高い繰り返し構造であるソフトセグメントを有することが好ましい。外部応力が加えられた際に、バインダー鎖が伸長することにより、破断を抑制するためである。ソフトセグメントの例としては、ポリイソプレン構造、ポリブタジエン構造、ポリアルキレングリコール構造、ポリシロキシ構造などを挙げることができる。また、ポリマー(B1)がハードセグメントおよびソフトセグメントを有する場合、ポリマー全質量のうちのソフトセグメントの占める割合を増加させることにより、破断伸びを向上させることができる。
ポリマー(B1)はハードセグメントおよびソフトセグメントを示すポリマー部位を有することが好ましい。ハードセグメント同士およびソフトセグメント同士が集合したミクロ相分離構造を形成するためである。また、ソフトセグメント間の凝集性を向上させるため、ソフトセグメント部位にカーボネート構造を有することが好ましい。
本発明において、ポリマー(B1)が分散媒に対して不溶の粒子であることが、固体電解質組成物の分散安定性の観点、及び、高いイオン伝導性を有する全固体二次電池を得られる観点から好ましい。ここで、「ポリマー(B1)が分散媒に対して不溶の粒子である」とは、30℃の分散媒に添加し、24時間静置しても、平均粒子径が5%以上低下しないことを意味し、3%以上低下しないことが好ましく、1%以上低下しないことがより好ましい。
また、固体電解質組成物中におけるポリマー(B1)は、無機固体電解質等の粒子間イオン伝導性の低下抑制のため、粒子状であることが好ましく、平均粒子径は、10nm~1000nmが好ましく、100nm~500nmがより好ましい。
本発明に用いられるポリマー(B1)粒子の平均粒子径は、特に断らない限り、以下に記載の測定条件により測定することができる。
ポリマー(B1)粒子を任意の溶媒(固体電解質組成物の調製に用いる分散媒。例えば、オクタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とする。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製して測定し、その平均値を採用する。
なお、作製された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について上記ポリマー(B1)粒子の平均粒子径の測定方法に準じてその測定を行い、あらかじめ測定していたポリマー(B1)粒子以外の粒子の平均粒子径の測定値を排除することにより行うことができる。
以下、バインダー(B)に含まれてもよいポリマー(B1)以外のポリマー及び樹脂について記載する。ポリマー(B1)以外のポリマー及び樹脂をポリマー(b)と称する。
炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリル-ブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
アクリル樹脂としては、各種の(メタ)アクリルモノマー類、(メタ)アクリルアミドモノマー類、およびこれら樹脂を構成するモノマーの共重合体(好ましくは、アクリル酸とアクリル酸メチルとの共重合体)が挙げられる。
また、そのほかのビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられる。本願明細書において、コポリマーは、統計コポリマーおよび周期コポリマーのいずれでもよく、ブロックコポリマーが好ましい。
その他の樹脂としては例えばポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
ただし、上記バインダーの平均粒子径は、通常10nm~30μmが好ましく、10~1000nmのナノ粒子がより好ましい。
上記ポリマー(b)の水分濃度は、本発明に用いられるポリマー(B)と同義である。
本発明では、バインダー(B)の質量に対する、無機固体電解質と活物質の合計質量(総量)の質量比[(無機固体電解質の質量+活物質の質量)/バインダー(B)の質量]は、1,000~1の範囲が好ましい。この比率はさらに500~2がより好ましく、100~10がさらに好ましい。
本発明の固体電解質組成物は、周期律表第1族又は第2族に属する金属元素のイオンの挿入放出が可能な活物質を含有してもよい。
活物質としては、正極活物質及び負極活物質が挙げられ、正極活物質である遷移金属酸化物、又は、負極活物質である金属酸化物が好ましい。
本発明において、活物質(正極活物質、負極活物質)を含有する固体電解質組成物を、電極用組成物(正極用組成物、負極用組成物)ということがある。
本発明の固体電解質組成物が含有してもよい正極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物や、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素Ma(Co、Ni、Fe、Mn、CuおよびVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素Mb(リチウム以外の金属、周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、PまたはBなどの元素)を混合してもよい。混合量としては、遷移金属元素Maの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物および(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
(MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn2O4(LMO)、LiCoMnO4、Li2FeMn3O8、Li2CuMn3O8、Li2CrMn3O8およびLi2NiMn3O8が挙げられる。
(MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO4およびLi3Fe2(PO4)3等のオリビン型リン酸鉄塩、LiFeP2O7等のピロリン酸鉄類、LiCoPO4等のリン酸コバルト類ならびにLi3V2(PO4)3(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
(MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、Li2FePO4F等のフッ化リン酸鉄塩、Li2MnPO4F等のフッ化リン酸マンガン塩およびLi2CoPO4F等のフッ化リン酸コバルト類が挙げられる。
(ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、Li2FeSiO4、Li2MnSiO4およびLi2CoSiO4等が挙げられる。
本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO、LMO、NCA又はNMCがより好ましい。
正極活物質層を形成する場合、正極活物質層の単位面積(cm2)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
本発明の固体電解質組成物が含有してもよい負極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体およびリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、AlおよびIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵および放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
負極活物質層を形成する場合、負極活物質層の単位面積(cm2)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
また、正極活物質または負極活物質を含む電極表面は硫黄またはリンで表面処理されていてもよい。
さらに、正極活物質または負極活物質の粒子表面は、上記表面被覆の前後において活性光線または活性気体(プラズマ等)により表面処理を施されていても良い。
本発明の固体電解質組成物は、固形成分を分散させるため分散媒を含有することが好ましい。分散媒の具体例としては下記のものが挙げられる。
分散媒中(D)の炭化水素溶媒の含有量は、本発明の固体電解質組成物が粒子状のバインダーを含有し得る点から、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上がさらに好ましい。上限値は特に制限されないが100質量%であることが好ましい。
なかでも、芳香族化合物溶媒としてはトルエンまたはキシレンが好ましく、脂肪族化合物溶媒としてはヘプタン、オクタン、シクロヘキサンまたはシクロオクタンが好ましい。
本発明の固体電解質組成物は、導電助剤を含有してもよい。導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維やカーボンナノチューブなどの炭素繊維類、グラフェンやフラーレンなどの炭素質材料であっても良いし、銅、ニッケルなどの金属粉、金属繊維でも良く、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いても良い。またこれらの内1種を用いても良いし、2種以上を用いても良い。
本発明において、負極活物質と導電助剤とを併用する場合、電池を充放電した際にLiの挿入と放出が起きず、負極活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に負極活物質層中において負極活物質として機能しうるものは、導電助剤ではなく負極活物質に分類する。電池を充放電した際に負極活物質として機能するか否かは、一義的ではなく、負極活物質との組み合わせにおいて決定される。
導電助剤の含有量は、固体電解質組成物中の固形分100質量%に対して、0~5質量%が好ましく、0.5~3質量%がより好ましい。
本発明の固体電解質組成物は分散剤を含有してもよい。分散剤を添加することで電極活物質及び無機固体電解質のいずれかの含有量が多い場合や、電極活物質及び/または無機固体電解質の平均粒子径が細かく表面積が増大する場合においてもその凝集を抑制し、成分間距離が均一な活物質層及び固体電解質層を形成することができる。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発および/または静電反発を意図した化合物が好適に使用される。
本発明の固体電解質組成物は、リチウム塩を含有してもよい。
リチウム塩としては、特に制限はなく、例えば、特開2015-088486号公報の段落0082~0085記載のリチウム塩が好ましい。
リチウム塩の含有量は、硫化物系無機固体電解質100質量部に対して0質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
本発明の固体電解質組成物の調製法の一例としては、無機固体電解質(A)とバインダー(B)とを分散媒(D)の存在下で分散して、スラリー化する方法を挙げることができる。
スラリー化は、各種の混合機を用いて無機固体電解質と分散媒とを混合することにより行うことができる。混合装置としては、特に限定されないが、例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダーおよびディスクミルが挙げられる。混合条件は特に制限されないが、例えば、ボールミルを用いた場合、150~700rpm(rotation per minute)で1時間~24時間混合することが好ましい。
活物質、分散剤等の成分を含有する固体電解質組成物を調製する場合には、上記の無機固体電解質(A)の分散工程と同時に添加及び混合してもよく、別途添加及び混合してもよい。なお、バインダー(B)は、上記の無機固体電解質(A)の分散工程と、別途添加及び混合してもよい。また、本発明の固体電解質組成物にバインダー(B)を添加及び/又は混合する際の形態は、バインダー(B)そのものであっても、バインダー(B)の溶液であっても、バインダー(B)の分散液であってもよい。なかでも、無機固体電解質の分解を抑制し、かつ、活物質と無機固体電解質の粒子表面に点在化してイオン伝導度を担保できる点からは、粒子状のバインダー(B)の分散液が好ましい。
本発明の固体電解質含有シートは、周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、バインダー(B)とを含有し、バインダー(B)が、下記条件(1)または(2)を満たすポリマーを含む。
(条件1)ヤング率0.003GPa以上0.2GPa未満、破断伸び300~700%
(条件2)ヤング率0.2~2GPa、破断伸び10~1000%
無機固体電解質(A)及びバインダー(B)は、上述の無機固体電解質(A)及びバインダー(B)を採用することができる。
活物質(C)は、上述の活物質(C)を採用することができる。
この固体電解質含有シートは、基材と固体電解質層又は活物質層を有していれば、他の層を有してもよいが、活物質を含有するものは後述する全固体二次電池用電極シートに分類される。他の層としては、例えば、保護層、集電体、コート層(集電体、固体電解質層、活物質層)等が挙げられる。
全固体二次電池用固体電解質シートとして、例えば、固体電解質層と保護層とを基材上に、この順で有するシートが挙げられる。
基材としては、固体電解質層を支持できるものであれば特に限定されず、後記集電体で説明した材料、有機材料および無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレンおよびセルロース等が挙げられる。無機材料としては、例えば、ガラスおよびセラミック等が挙げられる。
固体電解質含有シートの固体電解質層の層厚は、上述の、本発明の好ましい実施形態に係る全固体二次電池において説明した固体電解質層の層厚と同じである。
電極シートを構成する各層の層厚は、上述の、本発明の好ましい実施形態に係る全固体二次電池において説明した各層の層厚と同じである。
本発明の全固体二次電池は、正極と、この正極に対向する負極と、正極及び負極の間の固体電解質層とを有する。正極は、正極集電体上に正極活物質層を有する。負極は、負極集電体上に負極活物質層を有する。
負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層は、本発明の固体電解質組成物を用いて形成される。また、負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層は、本発明の固体電解質含有シートである。
固体電解質組成物を用いて形成された活物質層および/または固体電解質層は、好ましくは、含有する成分種及びその含有量比について、特段の断りをしない限り、固体電解質組成物の固形分におけるものと基本的に同じである。本発明に用いられるポリマー(B)が架橋性官能基及び/又は固体粒子と結合し得る官能基群(II)から選択される官能基を有する場合、ポリマー(B)は、架橋構造を形成している態様及び/又は固体粒子との間に結合を形成している態様を含むものとする。
以下に、図1を参照して、本発明の好ましい実施形態について説明するが、本発明はこれに限定されない。
全固体二次電池10においては、正極活物質層、固体電解質層及び負極活物質層のいずれかが本発明の固体電解質組成物を用いて作製されている。
すなわち、固体電解質層3が本発明の固体電解質組成物を用いて作製されている場合、固体電解質層3は、無機固体電解質(A)とバインダー(B)とを含む。固体電解質層は、通常、正極活物質及び/又は負極活物質を含まない。
正極活物質層4及び/又は負極活物質層2が、活物質を含有する本発明の固体電解質組成物を用いて作製されている場合、正極活物質層4及び負極活物質層2は、それぞれ、正極活物質又は負極活物質を含み、さらに、無機固体電解質(A)とバインダー(B)とを含む。活物質層が無機固体電解質を含有するとイオン伝導度を向上させることができる。
正極活物質層4、固体電解質層3及び負極活物質層2が含有する無機固体電解質(A)及びバインダー(B)は、それぞれ、互いに同種であっても異種であってもよい。
正極集電体5及び負極集電体1は、電子伝導体が好ましい。
本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウムまたはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウムおよびアルミニウム合金がより好ましい。
負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウム、銅、銅合金またはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金およびステンレス鋼がより好ましい。
集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
上記の各層を配置して全固体二次電池の基本構造を作製することができる。用途によってはこのまま全固体二次電池として使用してもよいが、乾電池の形態とするためにはさらに適当な筐体に封入して用いる。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金およびステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
本発明の固体電解質シートは、本発明の固体電解質組成物(好ましくは(D)分散媒を含有する。)を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。
上記態様により、無機固体電解質(A)とバインダー(B)とを(含有する固体電解質層を)基材上に有する固体電解質シートを作製することができる。また、作製した固体電解質シートから基材を剥がし、固体電解質層からなる固体電解質シートを作製することもできる。また、後述の全固体二次電池の製造方法において記載される固体電解質層も本発明の固体電解質シートに含まれる。
その他、塗布等の工程については、下記全固体二次電池の製造に記載の方法を使用することができる。
なお、固体電解質シートは、電池性能に影響を与えない範囲内で分散媒(D)を含有してもよい。具体的には、全質量中1ppm以上10000ppm以下含有してもよい。また、全固体二次電池用電極シートも電池性能に影響を与えない範囲内で分散媒(D)を含有してもよい。具体的には、全質量中1ppm以上10000ppm以下含有してもよい。
固体電解質含有シートを20mm角で打ち抜き、ガラス瓶中で重テトラヒドロフランに浸漬させる。得られた溶出物をシリンジフィルターでろ過して1H-NMRにより定量操作を行う。1H-NMRピーク面積と溶媒の量の相関性は検量線を作成して求める。
全固体二次電池及び全固体二次電池用電極シートの製造は、常法によって行うことができる。具体的には、全固体二次電池及び全固体二次電池用電極シートは、本発明の固体電解質組成物等を用いて、上記の各層を形成することにより、製造できる。以下詳述する。
例えば、正極集電体である金属箔上に、正極用材料(正極用組成物)として、正極活物質を含有する固体電解質組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物を塗布して、固体電解質層を形成する。さらに、固体電解質層の上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。さらに、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
なお、上述の固体電解質シートと同様、本発明の全固体二次電池用電極シートには、基材を有さない形態も含まれる。
固体電解質組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布およびバーコート塗布が挙げられる。
このとき、固体電解質組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。このような温度範囲で加熱することで、分散媒(D)を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
加圧は塗布溶媒又は分散媒をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
なお、各組成物は同時に塗布しても良いし、塗布乾燥プレスを同時および/または逐次行っても良い。別々の基材に塗布した後に、転写により積層してもよい。
プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
プレス面は平滑であっても粗面化されていてもよい。
上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-S系ガラス、LLTやLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがある。上記のイオン輸送材料としての電解質と区別する際には、これを「電解質塩」または「支持電解質」と呼ぶ。電解質塩としては、例えばLiTFSIが挙げられる。
本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。
硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.HamGa,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235およびA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記の硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7(商品名、フリッチュ社製)に容器をセットし、温度25℃で、回転数510rpmで20時間メカニカルミリングを行うことで、黄色粉体の硫化物系無機固体電解質(Li-P-Sガラス、LPSと表記することがある。)6.20gを得た。
以下、ポリマー(B)分散液または溶液の調製例を記載する。なお、ポリマーの平均粒子径は、分散媒中に粒子状で存在するもののみ記載している。
200mL3つ口フラスコに1,4-ブタンジオール0.20gと2,2-ビス(ヒドロキシメチル)酪酸0.41gとポリカーボネートジオール(商品名:エタナコールUH-200、宇部興産社製 Mw2,000)10.0gとトリメチロールプロパン(東京化成工業社製)0.193gとを加え、MEK(メチルエチルケトン)22gに溶解した。この溶液に、4,4’-ジシクロヘキシルメタンジイソシアネート3.8gを加えて80℃で撹拌し、均一に溶解させた。この溶液に、ネオスタンU-600(商品名、日東化成社製)100mgを添加して80℃で4時間攪伴し、Mw27,000のプレポリマーを得た。このプレポリマーに、エポール(商品名、末端ジオール変性水添ポリイソプレン、出光興産社製、Mw2,500)3.7gのTHF溶液5gを加えて、さらに80℃で4時間攪伴を続け、白濁した粘性ポリマー溶液を得た。この溶液にメタノール1gを加えてポリマー末端を封止して、重合反応を停止し、MEKで希釈してポリマー(B-10)の20質量%MEK溶液を得た。重量平均分子量は33000であった。
次に、上記で得られたポリマー溶液を500rpmで撹拌しながら、オクタン96gを1時間かけて滴下し、ポリマーの乳化液を得た。窒素フローしながらこの乳化液を85℃で120分加熱した。さらに、残留物にオクタン50gを加えて同様に85℃で60分加熱する操作を4回繰り返して、MEKを除去してポリマー(B-10)の10質量%オクタン分散液を得た。ポリマー(B-10)のMwは51,000で、平均粒子径は300nmであった。
ポリカーボネートジオールとしてエタナコールUH-200に代えてデュラノールT5650J(商品名、旭化成社製、Mw800)を用いたこと以外は上記ポリマー(B-10)分散液の調製と同様にして、ポリマー(B-7)の10質量%オクタン分散液を得た。ポリマー(B-7)の重量平均分子量は66,000で、平均粒子径は290nmであった。
ポリカーボネートジオールとしてエタナコールUH-200に代えてデュラノールG3450J(商品名、旭化成社製、Mw2,000)を用いたこと以外は上記ポリマー(B-10)分散液の調製と同様にして、ポリマー(B-6)の10質量%オクタン分散液を得た。ポリマー(B-6)の重量平均分子量は51,000で、平均粒子径は330nmであった。
200mL3つ口フラスコに1,4-ブタンジオール0.30gと2,2-ビス(ヒドロキシメチル)酪酸0.45gとポリカーボネートジオール(商品名:デュラノールT5650J、旭化成社製 Mw800)4.2gとセルムSH1310P(商品名、アドバンスト・ソフトマテリアルズ社製)0.55gとを加え、MEK13gに溶解した。この溶液に、4,4’-ジシクロヘキシルメタンジイソシアネート3.8gを加えて80℃で撹拌し、均一に溶解させた。この溶液に、ネオスタンU-600 100mgを添加して80℃で4時間攪伴し、Mw27,000のプレポリマーを得た。得られたプレポリマーに、エポール(商品名、末端ジオール変性水添ポリイソプレン、出光興産社製、Mw2,500)3.7gのTHF溶液5gを加えて、さらに80℃で4時間攪伴を続け、白濁した粘性ポリマー溶液を得た。この溶液にメタノール1gを加えてポリマー末端を封止して、重合反応を停止し、MEKで希釈してポリマー(B-13)の20質量%MEK溶液を得た。
次に、上記で得られたポリマー溶液を500rpmで撹拌しながら、オクタン96gを1時間かけて滴下し、ポリマーの乳化液を得た。窒素フローしながらこの乳化液を85℃で120分加熱した。さらに、残留物にオクタン50gを加えて同様に85℃で60分加熱する操作を4回繰り返して、MEKを除去してポリマー(B-13)の10質量%オクタン分散液を得た。ポリマー(B-13)のMwは53,000で、平均粒子径は390nmであった。
トリメチロールプロパン(東京化成工業社製)5.4g、ε-カプロラクトン(和光純薬工業社製)68gおよびモノブチルスズオキシド(東京化成工業社製)0.034gを200mLフラスコに仕込み、90℃に昇温させて5時間攪拌した。その後、150℃に昇温させて2.5時間攪拌して、3官能ヒドロキシ基を有するポリエステルを得た。この3官能ヒドロキシ基を有するポリエステルの重量平均分子量は、GPCにより4,600であった。
200mL3つ口フラスコに1,4-ブタンジオール0.27gと2,2-ビス(ヒドロキシメチル)酪酸0.44gとポリカーボネートジオール(商品名:デュラノールT5650J、旭化成社製 Mw800)1.0gと、上記3官能ヒドロキシ基を有するポリエステルを7g加え、MEK15gに溶解した。この溶液に、4,4’-ジシクロヘキシルメタンジイソシアネート3.8gを加えて80℃で撹拌し、均一に溶解させた。この溶液に、ネオスタンU-600 100mgを添加して80℃で4時間攪伴し、Mw21,000のプレポリマーを得た。得られたプレポリマーに、エポール(商品名、末端ジオール変性水添ポリイソプレン、出光興産社製、Mw2,500)1.4gのTHF溶液5gを加えて、さらに80℃で4時間攪伴を続け、白濁した粘性ポリマー溶液を得た。この溶液にメタノール2gを加えてポリマー末端を封止して、重合反応を停止し、MEKで希釈してポリマー(B-3)の20質量%MEK溶液を得た。
次に、上記で得られたポリマー溶液を500rpmで撹拌しながら、オクタン96gを1時間かけて滴下し、ポリマーの乳化液を得た。窒素フローしながらこの乳化液を85℃で120分加熱した。さらに、残留物にオクタン50gを加えて同様に85℃で60分加熱する操作を4回繰り返して、MEKを除去してポリマー(B-3)の10質量%オクタン分散液を得た。ポリマー(B-3)のMwは78,000で、平均粒子径は380nmであった。
200mL3つ口フラスコに1,4-ブタンジオール0.54gと2,2-ビス(ヒドロキシメチル)酪酸0.89gとポリカーボネートジオール(商品名:エタナコールUH-100、宇部興産社製、Mw2,000)12.0gを加え、MEK31gに溶解した。この溶液に、4,4’-ジシクロヘキシルメタンジイソシアネート7.6gを加えて80℃で撹拌し、均一に溶解させた。この溶液に、ネオスタンU-600 100mgを添加して80℃で4時間攪伴し、Mw20,000のプレポリマーを得た。得られたプレポリマーに、エポール(商品名、末端ジオール変性水添ポリイソプレン、出光興産社製、Mw2,500)5.3gのTHF溶液5gを加えて、さらに80℃で4時間攪伴を続け、白濁した粘性ポリマー溶液を得た。この溶液にメタノール1gを加えてポリマー末端を封止して、重合反応を停止し、MEKで希釈してポリマー(B-8)の20質量%MEK溶液を得た。
次に、上記で得られたポリマー溶液を500rpmで撹拌しながら、オクタン96gを1時間かけて滴下し、ポリマーの乳化液を得た。窒素フローしながらこの乳化液を85℃で120分加熱した。さらに、残留物にオクタン50gを加えて同様に85℃で60分加熱する操作を4回繰り返して、MEKを除去してポリマー(B-8)の10質量%オクタン分散液を得た。ポリマー(B-8)のMwは37,000で、平均粒子径は250nmであった。
ポリカーボネートジオールとしてエタナコールUH-100に代えてエタナコールUH-50(商品名、宇部興産社製、Mw500)を用いたこと以外は上記ポリマー(B-8)分散液の調製と同様にして、ポリマー(B-14)の10質量%オクタン分散液を得た。ポリマー(B-14)のMwは17,000で、平均粒子径は220nmであった。
ポリカーボネートジオールとしてエタナコールUH-100に代えてエタナコールUH-200(商品名、宇部興産社製、Mw2,000)に変更した以外は、上記ポリマー(B-8)分散液の調製と同様にして、ポリマー(B-15)の10質量%オクタン分散液を得た。ポリマー(B-15)のMwは33,000で、平均粒子径は290nmであった。
エラストランET680(商品名、エヌティーダブリュー社製)10gに対して、1,4-ジオキサンを40g加えて80℃に加熱して溶解させることで、ポリマー(B-1)の20質量%溶液を得た。
プリマロイA1704(商品名、三菱化学社製)10gに対して、1,4-ジオキサンを40g加えて80℃に加熱して溶解させることで、ポリマー(B-2)の20質量%溶液を得た。
トライゼクトXB-A90(商品名、アロン化成社製)10gに対して、酪酸ブチルを40g加えて80℃に加熱して溶解させることで、ポリマー(B-4)の20質量%溶液を得た。
ユピゼータFPC-2136(商品名、三菱ガス化学社製)10gに対して、トルエンを40g加えて80℃に加熱して溶解させることで、ポリマー(B-5)の20質量%溶液を得た。
ナイポール1041(商品名、日本ゼオン社製)10gに対して、イソブチロニトリルを40g加えて80℃に加熱して溶解させることで、ポリマー(B-9)の20質量%溶液を得た。
ポリマー(B-9)は、ハードセグメントを含まず、ソフトセグメントを含む。
ユニチカナイロン6 A1030BRF(商品名、ユニチカ社製)10gに対して、1,4-ジオキサンを40g加えて80℃に加熱して溶解させることで、ポリマー(B-11)の20質量%溶液を得た。
テオネックス(商品名、帝人デュポンフィルム社製)10gに対して、1,4-ジオキサンを40g加えて80℃に加熱して溶解させることで、ポリマー(B-12)20質量%溶液を得た。
カイナーフレックス3120-50(商品名、アルケマ社製)10gに対して、イソブチロニトリルを40g加えて80℃に加熱して溶解させることで、ポリマー(B-16)の20質量%溶液を得た。
ポリマー(B-16)は、ハードセグメントを含まず、ソフトセグメントを含む。
(試験用試験片の作製)
上記ポリマーB-1~16およびT-1~T-4の分散液または溶液をテフロン(登録商標)シート上にベーカー式アプリケーター(パルテック社製)を用いて塗布し、送風乾燥機(ヤマト科学製)内に静置して80℃で40時間乾燥させた。次に、乾燥後の膜をショッパー形試料打抜器(安田精機製作所製)を用いてJIS K 7127「プラスチック-引張特性の試験方法 第3部:フィルム及びシートの試験条件」により規定される標準試験片タイプ 5を作製した。このようにして、下記表1に記載の引っ張り試験用試験片を調製した。ここで、No.B-1~B-16が本発明例であり、No.T-1~T-4が比較例である。また、図3において、No.B-1~B-16が実施例1~16、No.T-1~T-4が比較例1~4にそれぞれ対応する。
上記手法で作製したNo.B-1~B-16およびT-1~T-4の試験片についてデジタルフォースゲージZTS-5Nおよび縦型電動計測スタンドMX2シリーズ(いずれも商品名、イマダ社製)を用いて引っ張り試験を行った。 試験片中央部には 50mm 離れて平行な 2 本の標線をつけ、1 分間に10mmの速度で試験片を引き延ばし、JIS K7161「プラスチック-引張特性の試験方法」に基づいて弾性率、破断伸びおよび降伏伸びを算出した。
HNBR:水素添加アクリロニトリル・ブタジエンゴム(日本ゼオン製)
HSBR:水素添加スチレンブタフエジエンゴム(JSR社製)
PVDF-HFP:フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体(アルケマ社製)
PI:ポリイミド(宇部興産社製)
「-」:条件1~3のいずれも充足しないことを意味する。
<固体電解質組成物の調製例>
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、無機固体電解質とポリマーと分散媒とを投入した後に、フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、室温下、回転数300rpmで2時間混合して固体電解質組成物を調製した。なお、固体電解質組成物が活物質を含有する場合は、活物質を投入してさらに室温下、回転数150rpmで5分間混合し、固体電解質組成物を調製した。また、固体電解質組成物が導電助剤を含有する場合は、上記無機固体電解質とポリマーと導電助剤とを合わせてボールミルP-7に投入して混合し、固体電解質組成物を調製した。このようにして、下記表2に記載の、No.S-1~S-16およびT’-1~T’-4の固体電解質組成物を調製した。
ここで、No.S-1~S-16が本発明例であり、No.T’-1~T’-4が比較例である。
(A):無機固体電解質
LLT:Li0.33La0.55TiO3(平均粒径3.25μm豊島製作所製)
Li-P-S:上記で合成したLi-P-S系ガラス
(B):ポリマー
B-1~B-16およびT-1~T-4:上記ポリマーB-1~B-16およびT-1~T-4
B-1、2、4、5、9、11、12及び16については、ポリマーを固体のまま使用した。
上記表中の質量部は、固形分の質量部を示す。
(C):活物質
(C)(正極)は正極活物質を意味し、(C)(負極)は負極活物質を意味する。
LCO:LiCoO2(コバルト酸リチウム)
NMC:LiNi1/3Co1/3Mn1/3O2(ニッケルマンガンコバルト酸リチウム)
NCA:LiNi0.85Co0.10Al0.05O2(ニッケルコバルトアルミニウム酸リチウム)
(E):導電助剤
AB:アセチレンブラック
VGCF:商品名、昭和電工社製カーボンナノファイバー
(D):分散媒体
No.S-1~S-16およびNo.T’-1~T’-4のいずれも18質量部用いた。
「-」:該当する成分を含有しないことを意味する。
上記で調製した固体電解質組成物S-1を、集電体である厚み20μmのステンレス鋼(SUS)箔上にバーコーダーにより塗工した。SUS箔を下面としてホットプレート上に設置し、80℃で1時間加熱して分散媒を除去し、さらに300MPaで加圧プレスして、固体電解質層を有するNo.101の固体電解質含有シートを作製した。No.101の固体電解質含有シートの作製と同様にして、上記表2に記載のNo.S-2~S-16およびT’-1~T’-4の固体電解質組成物を用いて、No.102~116およびc11~c14の固体電解質含有シートを作製した。ここで、No.101~116が本発明であり、No.c11~c14が比較例である。得られた固体電解質含有シートの固体電解質層または活物質層の厚さを下記表2に示す。また、各シートはいずれも縦50mm、横30mmである。
上記で作製した固体電解質含有シートについて結着性試験および耐擦傷性試験を行った。以下に試験方法を記載し、結果を下記表3にまとめて記載する。
得られた固体電解質含有シートについて、JIS K 5600-5-6:1999に基づき結着性試験を行った。固体電解質含有シートを固体電解質層または活物質層が上側になるように設置した。SUS箔面に、縦40mm、横20mmの両面粘着テープ(商品名:ナイスタック NW-10、ニチバン社製)を張り、サイド実験台(型番:SSE-127、柴田科学社製)に固定した。小型カッターナイフ(型番:215BS、オルファ社製)とカッターガイド(カッターガイド1mm、2mm用、TP技研製)を用い、固体電解質層に2mm間隔で6本の切り込みを入れた。その後、90°方向を変えて直行する6本の切込みを入れた。透明粘着テープ(商品名:セロテープ(登録商標)、型番:CT405AP-24、ニチバン社製)を縦約75mm、横15mmに取り出し、固体電解質層の格子状に切り込みを入れた部位に張り、指で押しながらテープをよく密着させた。付着して3分後に75°の角度で、テープを引き離した。表面を目視で観察し、JIS5600-5-6:1999の分類0から5に基づいて評価した。なお、分類「0」、「1」、「2」が本試験の合格レベルである。
分類0:カットの縁が完全に滑らかで、どの格子の目にもはがれがなかった。
分類1:カットの交差点における塗膜の小さなはがれが観察された。クロスカット部分で影響を受けるのは、明確に5%を上回ることはなかった。
分類2:固体電解質層または活物質層がカットの縁に沿って、及び/又は交差点においてはがれていた。クロスカット部分で影響を受けるのは明確に5%を超えるが15%を上回ることはない。
分類3:固体電解質層または活物質層がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は目のいろいろな部分が、部分的又は全面的にはがれている。クロスカット部分で影響を受けたのは、明確に15%を超えるが35%を上回ることはなかった。
分類4:固体電解質層または活物質層がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は数か所の目が部分的又は全面的にはがれていた。クロスカット部分で影響を受けたのは、明確に35%を上回ることはなかった。
分類5:分類4でも分類できない程度のはがれがあった。
[クロスカット部分とは、カッターナイフによる切れ込みが直行する部分を意味する。]
得られた固体電解質含有シートについてラビングテスター151B(商品名、井元製作所製)、スチールウールとしてボンスタースチールウールポンド巻(商品名、品番:B-204、等級:#0000、ボンスター社製)を用いて耐擦傷性試験を行った。
ラビングテスターのテーブル上に、上記で調製した固体電解質含有シートを固体電解質層または活物質層が上側になるように設置した。SUS箔面に、縦40mm、横20mmの両面粘着テープ(商品名:ナイスタック NW-10、ニチバン社製)を張り、ラビングテスターのテーブルに固定した。スチールウール(#0000)を取り付けた可動部を、荷重200g、動作幅20mmで1分間に10往復の速度で固体電解質含有シート上を20回往復摩擦させた。表面を目視で観察し、以下のA~Fで評価した。なお、評価「C」以上が本試験の合格レベルである。
A:傷が0本以上10本未満
B:傷が10本以上20本未満
C:傷が20本以上30本未満
D:傷が30本以上40本未満
E:傷が40本以上50本未満
F:傷が50本以上
層厚には基材の厚さは含まれない。
これに対して、本発明の規定を満たすポリマーをバインダーとして含有する本発明の固体電解質組成物から作製した固体電解質含有シートは、いずれも高い結着性および耐擦傷性を示すことがわかった。
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
Claims (10)
- 周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、バインダー(B)とを含有する固体電解質組成物であって、前記バインダー(B)が、下記条件(1)または(2)を満たすポリマーを含む固体電解質組成物。
(条件1)ヤング率0.003GPa以上0.2GPa未満、破断伸び300~700%
(条件2)ヤング率0.2~2GPa、破断伸び10~1000% - 前記ポリマーが、下記条件3を満たす請求項1に記載の固体電解質組成物。
(条件3)ヤング率0.2~2GPa、破断伸び300~700% - 前記ポリマーの降伏伸びが、10%以上である請求項1又は2に記載の固体電解質組成物。
- 活物質(C)を含有する請求項1~3のいずれか1項に記載の固体電解質組成物。
- 分散媒(D)を含有する請求項1~4のいずれか1項に記載の固体電解質組成物。
- 周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、バインダー(B)とを含有する固体電解質含有シートであって、前記バインダー(B)が、下記条件(1)または(2)を満たすポリマーを含む固体電解質含有シート。
(条件1)ヤング率0.003GPa以上0.2GPa未満、破断伸び300~700%
(条件2)ヤング率0.2~2GPa、破断伸び10~1000% - 活物質(C)を含有する請求項6に記載の固体電解質含有シート。
- 正極活物質層、負極活物質層および固体電解質層を具備する全固体二次電池であって、前記正極活物質層、前記負極活物質層および前記固体電解質層の少なくとも1つの層が、請求項6または7に記載の固体電解質含有シートである全固体二次電池。
- 請求項1~5のいずれか1項に記載の固体電解質組成物を基材上に塗布する工程を含む固体電解質含有シートの製造方法。
- 請求項9に記載の製造方法を介して全固体二次電池を製造する、全固体二次電池の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018568543A JP6722780B2 (ja) | 2017-02-16 | 2018-02-14 | 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質含有シートおよび全固体二次電池の製造方法 |
KR1020197018681A KR102178108B1 (ko) | 2017-02-16 | 2018-02-14 | 고체 전해질 조성물, 고체 전해질 함유 시트 및 전고체 이차 전지와 고체 전해질 함유 시트 및 전고체 이차 전지의 제조 방법 |
EP18754812.8A EP3584871B1 (en) | 2017-02-16 | 2018-02-14 | Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery |
CN201880011104.9A CN110291675B (zh) | 2017-02-16 | 2018-02-14 | 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及后两者的制造方法 |
US16/452,815 US20190319303A1 (en) | 2017-02-16 | 2019-06-26 | Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and methods for manufacturing solid electrolyte-containing sheet and all-solid state secondary battery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-027332 | 2017-02-16 | ||
JP2017027332 | 2017-02-16 | ||
JP2017-114186 | 2017-06-09 | ||
JP2017114186 | 2017-06-09 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/452,815 Continuation US20190319303A1 (en) | 2017-02-16 | 2019-06-26 | Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and methods for manufacturing solid electrolyte-containing sheet and all-solid state secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018151119A1 true WO2018151119A1 (ja) | 2018-08-23 |
Family
ID=63170700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004951 WO2018151119A1 (ja) | 2017-02-16 | 2018-02-14 | 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質含有シートおよび全固体二次電池の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20190319303A1 (ja) |
EP (1) | EP3584871B1 (ja) |
JP (1) | JP6722780B2 (ja) |
KR (1) | KR102178108B1 (ja) |
CN (1) | CN110291675B (ja) |
WO (1) | WO2018151119A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021020031A1 (ja) * | 2019-07-26 | 2021-02-04 | ||
WO2021250437A1 (ja) * | 2020-06-12 | 2021-12-16 | 日産自動車株式会社 | 二次電池 |
WO2022004729A1 (ja) * | 2020-06-29 | 2022-01-06 | 大日本印刷株式会社 | 全固体電池用外装材、その製造方法、及び全固体電池 |
EP4024501A4 (en) * | 2019-08-30 | 2023-02-22 | FUJIFILM Corporation | INORGANIC SOLID COMPOSITION CONTAINING ELECTROLYTES, SOLID STATE SECONDARY BATTERY FOIL, SOLID STATE SECONDARY BATTERY AND METHOD OF MAKING A SOLID STATE SECONDARY BATTERY AND SOLID STATE SECONDARY BATTERY FOIL |
WO2023112811A1 (ja) * | 2021-12-15 | 2023-06-22 | Agc株式会社 | 固体電解質、電池及びフレキシブルデバイス |
JP7523659B2 (ja) | 2021-02-04 | 2024-07-26 | エルジー エナジー ソリューション リミテッド | 固体電解質製造用組成物、これを用いる固体電解質及びリチウム二次電池 |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10734642B2 (en) | 2016-03-30 | 2020-08-04 | Global Graphene Group, Inc. | Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries |
US11495792B2 (en) | 2017-02-16 | 2022-11-08 | Global Graphene Group, Inc. | Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material |
US11978904B2 (en) | 2017-02-24 | 2024-05-07 | Honeycomb Battery Company | Polymer binder for lithium battery and method of manufacturing |
US10840502B2 (en) | 2017-02-24 | 2020-11-17 | Global Graphene Group, Inc. | Polymer binder for lithium battery and method of manufacturing |
US10985373B2 (en) | 2017-02-27 | 2021-04-20 | Global Graphene Group, Inc. | Lithium battery cathode and method of manufacturing |
US11742475B2 (en) | 2017-04-03 | 2023-08-29 | Global Graphene Group, Inc. | Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing |
US10483533B2 (en) | 2017-04-10 | 2019-11-19 | Global Graphene Group, Inc. | Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing |
US10862129B2 (en) | 2017-04-12 | 2020-12-08 | Global Graphene Group, Inc. | Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method |
US10804537B2 (en) * | 2017-08-14 | 2020-10-13 | Global Graphene Group, Inc. | Protected particles of anode active materials, lithium secondary batteries containing same and method of manufacturing |
US10964951B2 (en) | 2017-08-14 | 2021-03-30 | Global Graphene Group, Inc. | Anode-protecting layer for a lithium metal secondary battery and manufacturing method |
US11721832B2 (en) | 2018-02-23 | 2023-08-08 | Global Graphene Group, Inc. | Elastomer composite-encapsulated particles of anode active materials for lithium batteries |
US10971722B2 (en) | 2018-03-02 | 2021-04-06 | Global Graphene Group, Inc. | Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries |
US10818926B2 (en) | 2018-03-07 | 2020-10-27 | Global Graphene Group, Inc. | Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries |
US11005094B2 (en) | 2018-03-07 | 2021-05-11 | Global Graphene Group, Inc. | Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries |
US11043694B2 (en) | 2018-04-16 | 2021-06-22 | Global Graphene Group, Inc. | Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles |
US10978698B2 (en) | 2018-06-15 | 2021-04-13 | Global Graphene Group, Inc. | Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery |
US11121398B2 (en) | 2018-06-15 | 2021-09-14 | Global Graphene Group, Inc. | Alkali metal-sulfur secondary battery containing cathode material particulates |
US10978744B2 (en) | 2018-06-18 | 2021-04-13 | Global Graphene Group, Inc. | Method of protecting anode of a lithium-sulfur battery |
US10854927B2 (en) | 2018-06-18 | 2020-12-01 | Global Graphene Group, Inc. | Method of improving cycle-life of alkali metal-sulfur secondary battery |
US10862157B2 (en) | 2018-06-18 | 2020-12-08 | Global Graphene Group, Inc. | Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer |
US10957912B2 (en) | 2018-06-18 | 2021-03-23 | Global Graphene Group, Inc. | Method of extending cycle-life of a lithium-sulfur battery |
US10777810B2 (en) | 2018-06-21 | 2020-09-15 | Global Graphene Group, Inc. | Lithium metal secondary battery containing a protected lithium anode |
US11276852B2 (en) | 2018-06-21 | 2022-03-15 | Global Graphene Group, Inc. | Lithium metal secondary battery containing an elastic anode-protecting layer |
US10873088B2 (en) | 2018-06-25 | 2020-12-22 | Global Graphene Group, Inc. | Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life |
US11043662B2 (en) | 2018-08-22 | 2021-06-22 | Global Graphene Group, Inc. | Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries |
US11239460B2 (en) | 2018-08-22 | 2022-02-01 | Global Graphene Group, Inc. | Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries |
US10886528B2 (en) | 2018-08-24 | 2021-01-05 | Global Graphene Group, Inc. | Protected particles of cathode active materials for lithium batteries |
US11223049B2 (en) | 2018-08-24 | 2022-01-11 | Global Graphene Group, Inc. | Method of producing protected particles of cathode active materials for lithium batteries |
US10971724B2 (en) | 2018-10-15 | 2021-04-06 | Global Graphene Group, Inc. | Method of producing electrochemically stable anode particulates for lithium secondary batteries |
US10971725B2 (en) | 2019-01-24 | 2021-04-06 | Global Graphene Group, Inc. | Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer |
US11791450B2 (en) | 2019-01-24 | 2023-10-17 | Global Graphene Group, Inc. | Method of improving cycle life of a rechargeable lithium metal battery |
US20220190437A1 (en) * | 2020-12-14 | 2022-06-16 | Global Graphene Group, Inc. | Lithium ion-permeable separator for a lithium secondary battery and manufacturing method |
EP4181263A1 (en) | 2021-11-10 | 2023-05-17 | Saft | Thermoplastic vulcanizate compositions as solid polymer electrolytes |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011054439A (ja) * | 2009-09-02 | 2011-03-17 | Nippon Zeon Co Ltd | 全固体二次電池 |
JP2011100693A (ja) | 2009-11-09 | 2011-05-19 | Toyota Motor Corp | 集電体及び積層型電池 |
JP2012178256A (ja) | 2011-02-25 | 2012-09-13 | Toyota Motor Corp | イオン伝導体材料、固体電解質層、電極活物質層および全固体電池 |
JP2014086222A (ja) | 2012-10-22 | 2014-05-12 | Idemitsu Kosan Co Ltd | 二次電池の製造方法 |
JP2014194981A (ja) * | 2013-03-28 | 2014-10-09 | Dainippon Printing Co Ltd | 太陽電池モジュール用裏面保護シート |
WO2015046313A1 (ja) * | 2013-09-25 | 2015-04-02 | 富士フイルム株式会社 | 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池 |
JP2015088486A (ja) | 2013-09-25 | 2015-05-07 | 富士フイルム株式会社 | 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池 |
JP2016115632A (ja) * | 2014-12-17 | 2016-06-23 | 日産自動車株式会社 | 電気デバイス用負極、およびこれを用いた電気デバイス |
JP2017027332A (ja) | 2015-07-22 | 2017-02-02 | ソニー株式会社 | 情報処理装置、情報処理方法、及びプログラム |
JP2017114186A (ja) | 2015-12-22 | 2017-06-29 | 株式会社プロドローン | マルチコプタ |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11288738A (ja) * | 1998-04-01 | 1999-10-19 | Ricoh Co Ltd | 固体電解質電池およびその製造方法 |
EP1536499B1 (en) | 2002-06-26 | 2012-02-29 | Sanyo Electric Co., Ltd. | Negative electrode for lithium secondary cell and lithium secondary cell |
CN101897071B (zh) * | 2007-12-21 | 2014-04-30 | 加拿大巴斯姆有限公司 | 用于锂聚合物电池组的电解质 |
KR101950975B1 (ko) * | 2011-07-11 | 2019-02-21 | 캘리포니아 인스티튜트 오브 테크놀로지 | 전기화학 시스템들용 신규 세퍼레이터들 |
JP2013097969A (ja) * | 2011-10-31 | 2013-05-20 | Toyota Motor Corp | 全固体電池用電極、及び当該電極を含む全固体電池 |
KR20140137371A (ko) * | 2012-03-22 | 2014-12-02 | 스미토모덴키고교가부시키가이샤 | 전고체 리튬 2차 전지 |
JP2014035888A (ja) * | 2012-08-09 | 2014-02-24 | Toyota Motor Corp | 全固体電池及びその製造方法 |
JP2015125893A (ja) * | 2013-12-26 | 2015-07-06 | トヨタ自動車株式会社 | 全固体電池の製造方法 |
JP6096701B2 (ja) * | 2014-03-28 | 2017-03-15 | 富士フイルム株式会社 | 全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに電池用電極シートの製造方法および全固体二次電池の製造方法 |
-
2018
- 2018-02-14 WO PCT/JP2018/004951 patent/WO2018151119A1/ja unknown
- 2018-02-14 EP EP18754812.8A patent/EP3584871B1/en active Active
- 2018-02-14 CN CN201880011104.9A patent/CN110291675B/zh active Active
- 2018-02-14 KR KR1020197018681A patent/KR102178108B1/ko active IP Right Grant
- 2018-02-14 JP JP2018568543A patent/JP6722780B2/ja active Active
-
2019
- 2019-06-26 US US16/452,815 patent/US20190319303A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011054439A (ja) * | 2009-09-02 | 2011-03-17 | Nippon Zeon Co Ltd | 全固体二次電池 |
JP2011100693A (ja) | 2009-11-09 | 2011-05-19 | Toyota Motor Corp | 集電体及び積層型電池 |
JP2012178256A (ja) | 2011-02-25 | 2012-09-13 | Toyota Motor Corp | イオン伝導体材料、固体電解質層、電極活物質層および全固体電池 |
JP2014086222A (ja) | 2012-10-22 | 2014-05-12 | Idemitsu Kosan Co Ltd | 二次電池の製造方法 |
JP2014194981A (ja) * | 2013-03-28 | 2014-10-09 | Dainippon Printing Co Ltd | 太陽電池モジュール用裏面保護シート |
WO2015046313A1 (ja) * | 2013-09-25 | 2015-04-02 | 富士フイルム株式会社 | 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池 |
JP2015088486A (ja) | 2013-09-25 | 2015-05-07 | 富士フイルム株式会社 | 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池 |
JP2016115632A (ja) * | 2014-12-17 | 2016-06-23 | 日産自動車株式会社 | 電気デバイス用負極、およびこれを用いた電気デバイス |
JP2017027332A (ja) | 2015-07-22 | 2017-02-02 | ソニー株式会社 | 情報処理装置、情報処理方法、及びプログラム |
JP2017114186A (ja) | 2015-12-22 | 2017-06-29 | 株式会社プロドローン | マルチコプタ |
Non-Patent Citations (6)
Title |
---|
"Rubber examination method, Ver. 3", 30 January 2006, MARUZEN PUBLISHING CO. LTD.HARDNESS - YOUNG MODULUS, article "Relation between hardness and elacticity modulus", pages: 202 - 205, XP055807033 |
A. HAYASHIS. HAMAH. MORIMOTOM. TATSUMISAGOT. MINAMI, CHEM. LETT., 2001, pages 872,873 |
ANONYMOUS: "Kynar® Resin - Physical & Mechanical Properties", ARKEMA, 21 February 2017 (2017-02-21), XP055807001, Retrieved from the Internet <URL:https://www.extremematerials-arkema.com/en/product-families/kynar-pvdf-family/physical-and-mechanical-properties/> |
ANONYMOUS: "Tuftec™. Hydrogenated Styrenic Thermoplastic Elastomer (SEBS) Tuftec™ MP10", ASAHI KASEI, Retrieved from the Internet <URL:https://www.akelastomer.com/en/products-families/tuftec/mp10/> |
ASTM: "Standard Test Method for Tensile Properties of Plastics", ASTM D638-14, 31 March 2015 (2015-03-31), pages 1 - 4, XP055667687, Retrieved from the Internet <URL:https://www.astm.org/Standards/D638> |
T. OHTOMOA. HAYASHIM. TATSUMISAGOY. TSUCHIDAS. HAMGAK. KAWAMOTO, JOURNAL OF POWER SOURCES, vol. 233, 2013, pages 231 - 235 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021020031A1 (ja) * | 2019-07-26 | 2021-02-04 | 富士フイルム株式会社 | 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法 |
CN114175339B (zh) * | 2019-07-26 | 2024-07-02 | 富士胶片株式会社 | 含有无机固体电解质的组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法 |
JPWO2021020031A1 (ja) * | 2019-07-26 | 2021-02-04 | ||
CN114175339A (zh) * | 2019-07-26 | 2022-03-11 | 富士胶片株式会社 | 含有无机固体电解质的组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法 |
JP7257520B2 (ja) | 2019-07-26 | 2023-04-13 | 富士フイルム株式会社 | 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法 |
EP4024501A4 (en) * | 2019-08-30 | 2023-02-22 | FUJIFILM Corporation | INORGANIC SOLID COMPOSITION CONTAINING ELECTROLYTES, SOLID STATE SECONDARY BATTERY FOIL, SOLID STATE SECONDARY BATTERY AND METHOD OF MAKING A SOLID STATE SECONDARY BATTERY AND SOLID STATE SECONDARY BATTERY FOIL |
EP4167335A4 (en) * | 2020-06-12 | 2024-03-13 | Nissan Motor Co., Ltd. | SECONDARY BATTERY |
WO2021250437A1 (ja) * | 2020-06-12 | 2021-12-16 | 日産自動車株式会社 | 二次電池 |
JP7523539B2 (ja) | 2020-06-12 | 2024-07-26 | 日産自動車株式会社 | 二次電池 |
JP7056810B1 (ja) * | 2020-06-29 | 2022-04-19 | 大日本印刷株式会社 | 全固体電池用外装材、その製造方法、及び全固体電池 |
WO2022004729A1 (ja) * | 2020-06-29 | 2022-01-06 | 大日本印刷株式会社 | 全固体電池用外装材、その製造方法、及び全固体電池 |
JP7523659B2 (ja) | 2021-02-04 | 2024-07-26 | エルジー エナジー ソリューション リミテッド | 固体電解質製造用組成物、これを用いる固体電解質及びリチウム二次電池 |
WO2023112811A1 (ja) * | 2021-12-15 | 2023-06-22 | Agc株式会社 | 固体電解質、電池及びフレキシブルデバイス |
Also Published As
Publication number | Publication date |
---|---|
EP3584871A4 (en) | 2020-04-08 |
EP3584871B1 (en) | 2023-08-16 |
CN110291675A (zh) | 2019-09-27 |
JPWO2018151119A1 (ja) | 2019-11-07 |
KR102178108B1 (ko) | 2020-11-12 |
KR20190088525A (ko) | 2019-07-26 |
CN110291675B (zh) | 2023-02-21 |
EP3584871A1 (en) | 2019-12-25 |
US20190319303A1 (en) | 2019-10-17 |
JP6722780B2 (ja) | 2020-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018151119A1 (ja) | 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質含有シートおよび全固体二次電池の製造方法 | |
WO2017141735A1 (ja) | 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法 | |
JP6744928B2 (ja) | 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマー及びその非水溶媒分散物 | |
JP6621443B2 (ja) | 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法 | |
WO2019188487A1 (ja) | 全固体二次電池及びその製造方法 | |
JP2018088306A (ja) | 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに、固体電解質含有シートおよび全固体二次電池の製造方法 | |
JP7008080B2 (ja) | 固体電解質組成物、固体電解質含有シート及び全固体二次電池並びに固体電解質含有シート及び全固体二次電池の製造方法 | |
JP6839264B2 (ja) | 固体電解質含有シート、固体電解質組成物および全固体二次電池、ならびに、固体電解質含有シートおよび全固体二次電池の製造方法 | |
JP7165747B2 (ja) | 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法 | |
WO2019017311A1 (ja) | 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 | |
WO2020138122A1 (ja) | 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 | |
JP7320062B2 (ja) | 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法 | |
JPWO2020075749A1 (ja) | 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池 | |
WO2020203545A1 (ja) | 複合電極活物質、電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、複合電極活物質、全固体二次電池用電極シート及び全固体二次電池の製造方法 | |
JP2017162597A (ja) | 電極用材料、これを用いた全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法 | |
JP6649856B2 (ja) | 全固体二次電池用負極シートおよび全固体二次電池の製造方法 | |
CN114303272B (zh) | 含有无机固体电解质的组合物、复合聚合物粒子、全固态二次电池及相关片材和制造方法 | |
JP7257520B2 (ja) | 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法 | |
WO2020067108A1 (ja) | 全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法 | |
JP2018044111A (ja) | ポリマー、固体電解質、固体電解質組成物、無機固体電解質組成物、固体電解質含有シート、二次電池、全固体二次電池、固体電解質含有シートの製造方法、無機固体電解質含有シートの製造方法、二次電池の製造方法および全固体二次電池の製造方法 | |
US12051809B2 (en) | Electrode composition, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and respective methods of manufacturing electrode composition, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery | |
WO2020138216A1 (ja) | 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法 | |
CN117716524A (zh) | 电极用片材及全固态二次电池、以及电极用片材、电极片及全固态二次电池的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18754812 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018568543 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197018681 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018754812 Country of ref document: EP Effective date: 20190916 |