WO2023112811A1 - 固体電解質、電池及びフレキシブルデバイス - Google Patents

固体電解質、電池及びフレキシブルデバイス Download PDF

Info

Publication number
WO2023112811A1
WO2023112811A1 PCT/JP2022/045220 JP2022045220W WO2023112811A1 WO 2023112811 A1 WO2023112811 A1 WO 2023112811A1 JP 2022045220 W JP2022045220 W JP 2022045220W WO 2023112811 A1 WO2023112811 A1 WO 2023112811A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
group
mass
electrolyte according
different
Prior art date
Application number
PCT/JP2022/045220
Other languages
English (en)
French (fr)
Inventor
牧人 中村
千登志 鈴木
省吾 藤▲崎▼
豊一 鈴木
豪明 荒井
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023112811A1 publication Critical patent/WO2023112811A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte, a battery comprising the solid electrolyte, and a flexible device comprising the battery.
  • Batteries in wearable devices and implant devices are required to have high safety and durability (toughness) against bending, etc., in addition to battery performance.
  • solid-state batteries are mainly used because they do not use organic solvents and are safe without liquid leakage.
  • conventional solid-state electronic electrolytes polyethylene glycol (PEG)-based polymers (see Non-Patent Document 1), polycarbonate-based polymers (see Patent Documents 1 and 2), and the like have been studied.
  • PEG-based polymers have high flexibility, they are inferior in toughness and have the problem of low cation transport numbers.
  • polyethylene carbonate-based polymers have high cation transference numbers and ionic conductivity, they have problems of insufficient flexibility and insufficient toughness.
  • the ionic conductivity is generally high above the Tg of the polymer used in the solid electrolyte, it decreases below the Tg, making it difficult to obtain stable ionic conductivity over a wider temperature range.
  • the present invention is intended to solve such problems, and an object of the present invention is to provide a solid electrolyte having excellent toughness and excellent ionic conductivity and cation transference number, a battery comprising the solid electrolyte, and a flexible device comprising the battery. do.
  • a solid electrolyte containing a reaction product of a polyol having a specific structure and a polyisocyanate can solve the above problems.
  • the present invention is as follows. [1] A solid electrolyte containing a reaction product of a polyol having a structure represented by the following general formula (1), a polyisocyanate, and a metal salt.
  • B represents -R 2 O-
  • n is a number from 1 to 170
  • m is a number from 0 to 170
  • R 1 , R 2 and R 3 each independently represent a divalent hydrocarbon group having 2 to 10 carbon atoms
  • a is a number of 1 to 30.
  • the plurality of (R 1 O) may be the same or different.
  • the plurality of (R 1 O) may be bonded in a block manner or randomly bonded.
  • the plurality of A's may be the same or different.
  • the plurality of B's may be the same or different.
  • A, B and R 3 may be bonded in any order.
  • the plurality of A's and the plurality of B of may be bound in blocks or may be bound in random.
  • n is a number of 1 to 170
  • m is a number of 0 to 170.
  • R 1 , R 2 and R 3 are each independently a divalent hydrocarbon having 2 to 10 carbon atoms. represents a group, a is a number from 1 to 30.
  • a is 2 or more
  • the plurality of (R 1 O) may be the same or different, and the plurality of (R 1 O) may be It may be bonded or randomly bonded.
  • n is a number of 1 to 170
  • m is a number of 0 to 170.
  • R 1 , R 2 and R 3 are each independently a divalent hydrocarbon having 2 to 10 carbon atoms. represents a group, a is a number from 1 to 30.
  • a is 2 or more
  • the plurality of (R 1 O) may be the same or different, and the plurality of (R 1 O) may be It may be bonded or randomly bonded.
  • a solid electrolyte having excellent toughness and excellent ionic conductivity and cation transport number, a battery comprising the solid electrolyte, and a flexible device comprising the battery.
  • the term "unit" constituting a polymer means an atomic group formed by polymerization of monomers.
  • Mn number average molecular weight of the reaction product is determined using gel permeation chromatography (GPC) by the method described in the Examples, and a standard polystyrene sample with a known molecular weight is used.
  • Mn of the polyol and the weight average molecular weight are determined using gel permeation chromatography (GPC) by the method described in the Examples, and a standard polypropylene glycol having a known hydroxyl value equivalent molecular weight. It is a polypropylene glycol equivalent molecular weight measured by preparing a calibration curve using a sample. Further, in this specification, the molecular weight distribution is a value calculated from the above Mw and Mn, and is the ratio of Mw to Mn (hereinafter sometimes referred to as "Mw/Mn").
  • Solid electrolyte contains a reaction product of a polyol having a structure represented by the following general formula (1), a polyisocyanate, and a metal salt.
  • B represents -R 2 O-.
  • n is a number from 1 to 170 and m is a number from 0 to 170.
  • R 1 , R 2 and R 3 each independently represent a divalent hydrocarbon group having 2 to 10 carbon atoms.
  • a is a number from 1 to 30;
  • multiple (R 1 O) may be the same or different.
  • a plurality of (R 1 O) may be bonded in blocks or randomly.
  • the multiple A's may be the same or different.
  • B's the multiple B's may be the same or different.
  • the order of bonding of A, B and R3 does not matter.
  • a plurality of A's and a plurality of B's may be combined in a block-like manner or in a random manner.
  • reaction product A reaction product of a polyol having a structure represented by the general formula (1) and a polyisocyanate has a soft segment having a carbonate chain and a hard segment having a urethane bond.
  • the soft segment facilitates localization of cations such as Li ions, and is presumed to improve the ionic conductivity and cation transference number of the solid electrolyte.
  • the hard segment maintains the layered structure of the polymer through hydrogen bonding or the like, and is presumed to contribute to the maintenance of the toughness of the solid electrolyte and the maintenance of ion conductivity during deformation.
  • the cation transference number refers to the ratio of ionic conductivity due to cations to the total ionic conductivity.
  • toughness is a property that achieves both excellent strength and excellent toughness, and is also excellent in elongation.
  • a polyol has a structure represented by the following general formula (1).
  • B represents -R 2 O-.
  • n is a number from 1 to 170 and m is a number from 0 to 170.
  • R 1 , R 2 and R 3 each independently represent a divalent hydrocarbon group having 2 to 10 carbon atoms.
  • a is a number from 1 to 30;
  • multiple (R 1 O) may be the same or different.
  • a plurality of (R 1 O) may be bonded in blocks or randomly.
  • the multiple A's may be the same or different.
  • B's the multiple B's may be the same or different.
  • the order of bonding of A, B and R3 does not matter.
  • a plurality of A's and a plurality of B's may be combined in a block-like manner or in a random manner.
  • the divalent hydrocarbon group having 2 to 10 carbon atoms as R 1 is preferably a linear or branched alkylene group having 4 to 6 carbon atoms, more preferably, from the viewpoint of obtaining a solid electrolyte having excellent toughness.
  • the divalent hydrocarbon group having 2 to 10 carbon atoms as R 2 is preferably a linear or branched alkylene group having 2 to 6 carbon atoms, more preferably, from the viewpoint of obtaining a solid electrolyte having excellent toughness. It is an ethylene group, n-propylene group, isopropylene group, n-butylene group or 2-methylbutylene group, more preferably ethylene group, isopropylene group or n-butylene group.
  • the divalent hydrocarbon group having 2 to 10 carbon atoms as R 3 is preferably a linear or branched alkylene group having 4 to 6 carbon atoms, more preferably, from the viewpoint of obtaining a solid electrolyte having excellent toughness.
  • n is not particularly limited as long as it is a number from 1 to 170, but it is preferably a number from 1 to 150, more preferably a number from 2 to 100, and still more preferably a number from 2 to 50.
  • n is at least the above lower limit, a solid electrolyte with superior toughness and cation transference can be obtained, and when it is at most the above upper limit, the flexibility of the solid electrolyte can be easily adjusted within a favorable range.
  • m is not particularly limited as long as it is a number from 0 to 170, it is preferably a number from 0 to 150, more preferably a number from 0 to 100, and still more preferably a number from 0 to 50.
  • m is at least the above lower limit, a solid electrolyte with excellent ionic conductivity and flexibility can be obtained, and when it is at most the above upper limit, the solid electrolyte is excellent in toughness.
  • the above a is not particularly limited as long as it is a number from 1 to 30, but it is preferably a number from 1 to 25, more preferably a number from 2 to 20, and still more preferably a number from 2 to 18.
  • a is at least the above lower limit value, a solid electrolyte having excellent ionic conductivity and flexibility can be obtained, and when it is at most the above upper limit value, the flexibility of the solid electrolyte can be easily adjusted to a favorable range.
  • a plurality of (R 1 O) may be the same or different.
  • a plurality of (R 1 O) may be bonded in a block or randomly, but from the viewpoint of obtaining a solid electrolyte with more excellent ionic conductivity, they are preferably bonded in a random manner. .
  • the multiple A's may be the same or different.
  • the multiple B's may be the same or different.
  • the order of bonding of A, B and R3 is not limited.
  • a plurality of A's and a plurality of B's may be bonded in blocks or randomly, but from the viewpoint of obtaining a solid electrolyte with more excellent ionic conductivity, they are preferably bonded in blocks. .
  • the ratio of A to the total of A and B is preferably 3 to 100% by mass, more preferably 10 to 98% by mass, and still more preferably 15 to 97% by mass. %.
  • the ratio of A is equal to or higher than the lower limit, the solid electrolyte becomes tougher and the cation transport number becomes better.
  • the proportion of A is equal to or less than the upper limit, the solid electrolyte is more excellent in flexibility and ionic conductivity.
  • B in the general formula (1) preferably contains at least one selected from the group consisting of an oxyethylene group and an oxypropylene group from the viewpoint of better ionic conductivity and cation transference in the solid electrolyte. .
  • the proportion of the oxyethylene group contained in B in the general formula (1) is preferably 25 to 100% by mass, more preferably 30 to 95, from the viewpoint of better ion conductivity of the solid electrolyte. % by mass, more preferably 30 to 90% by mass.
  • the ratio of the oxyethylene group is calculated by determining the monomer composition of the oxyalkylene chain using 1 H-NMR. Specifically, it can be measured by the method described in Examples.
  • the proportion of the oxypropylene group contained in B in the general formula (1) is preferably 0 to 75% by mass, more preferably 0 to 75% by mass, from the viewpoint of better ionic conductivity and flexibility of the solid electrolyte. It is 5 to 70% by mass, more preferably 10 to 65% by mass.
  • the proportion of the oxypropylene group is calculated by determining the monomer composition of the oxyalkylene chain using 1 H-NMR. Specifically, it can be measured by the method described in Examples.
  • the number average molecular weight (Mn) of the polyol is preferably 500 to 15,000, more preferably 800 to 14,000, still more preferably 1,000 to 12,000.
  • Mn The number average molecular weight of the polyol is at least the lower limit, the flexibility of the reaction product obtained using the polyol is improved, and the ionic conductivity and cation transference number of the solid electrolyte are improved.
  • the toughness of the reaction product obtained using this polyol as it is below the said upper limit becomes more favorable.
  • the Mw/Mn of the above polyol is not particularly limited, but is preferably 3.0 or less, more preferably 1.01 to 2.5, still more preferably 1.02 to 2.0.
  • the Mw/Mn of the polyol is equal to or higher than the lower limit, the flexibility and toughness of the reaction product obtained using the polyol will be better, and the ionic conductivity and cation transference number of the solid electrolyte will be better.
  • the polyol tends to have a low viscosity and is easy to handle as it is equal to or less than the above upper limit.
  • the polyol is not particularly limited as long as it has the structure represented by the general formula (1), but from the viewpoint of improving the ionic conductivity and cation transference number of the solid electrolyte, it is represented by the following general formula (2). are preferred.
  • R 1 , R 2 , R 3 , a, m, and n are R 1 , R 2 , R 3 , a, m, and n in general formula (1) above, respectively. They are the same, and so are the preferences.
  • the structures represented by a plurality of (R 1 O) may be the same or different.
  • a plurality of structures represented by (R 1 O) may be combined in a block or randomly.
  • the diol represented by the general formula (2) may be a polycarbonate diol, a polyether polycarbonate diol, or a polyoxyalkylene polycarbonate diol.
  • Polyoxyalkylene polycarbonate diols are preferred because of their excellent toughness.
  • Polycarbonate diols include, for example, T6002 (product name of Asahi Kasei Corporation, solid, Mn: 2,100, R 1 and R 3 : hexamethylene group, a: 1, n: 18, m: 0), NIPPOLAN 981 (Tosoh Corporation Product name, solid, Mn: 1,000, R 1 and R 3 : hexamethylene group, a: 1, n: 6, m: 0), Nippon 982R (Tosoh Corporation product name, solid, Mn: 2,000, R 1 and R 3 : hexamethylene group, a: 1, n: 13, m: 0), T5651 (product name of Asahi Kasei Corporation, solid, Mn: 1,000, R 1 and R 3 : hexamethylene group and pentamethylene group, a: 1, n: 7, m: 0), T5652 (product name of Asahi Kasei Corporation, solid, Mn: 2,000, R 1 and R 3 :
  • Polyether polycarbonate diols include, for example, NT1002 (product name of Mitsubishi Chemical Corporation, transparent viscous liquid, Mn: 1,000, glass transition temperature: -78°C, R 1 , R 2 and R 3 : n-butylene group, a : 3.2, n: 2.7, m: 3.2), NT2002 (product name of Mitsubishi Chemical Corporation, transparent viscous liquid, Mn: 2,000, glass transition temperature: -71 ° C., R 1 , R 2 and R 3 : n-butylene group, a: 3.2, n: 6.3, m: 3.2), NT2006 (product name of Mitsubishi Chemical Corporation, transparent viscous liquid, Mn: 2,000, glass transition temperature: - 84° C., R 1 , R 2 and R 3 : n-butylene group, a: 8.8, n: 2.0, m: 8.8) can also be used.
  • NT1002 product name of Mitsubishi Chemical Corporation, transparent viscous liquid, Mn: 1,000
  • a polyoxyalkylene polycarbonate diol has a polyoxyalkylene chain composed of oxyalkylene units, a carbonate group, and a terminal hydroxyl group.
  • Polyoxyalkylene polycarbonate diols are prepared, for example, by using the above polycarbonate diol or polyether polycarbonate diol as an initiator and adding a cyclic It is obtained by ring-opening addition polymerization of ether.
  • Cyclic ethers include, for example, ethylene oxide (hereinafter sometimes referred to as "EO”), propylene oxide (hereinafter sometimes referred to as “PO”), 1,2-butylene oxide, and 2,3-butylene oxide. These may be used individually by 1 type, and may be used 2 or more types. Among these, at least one selected from EO and PO is preferable from the viewpoint of easiness of reaction with polycarbonate diol or polyether polycarbonate diol and better ionic conductivity and flexibility of the solid electrolyte.
  • EO ethylene oxide
  • PO propylene oxide
  • 1,2-butylene oxide 1,2-butylene oxide
  • 2,3-butylene oxide 1,2-butylene oxide
  • at least one selected from EO and PO is preferable from the viewpoint of easiness of reaction with polycarbonate diol or polyether polycarbonate diol and better ionic conductivity and flexibility of the solid electrolyte.
  • the ratio of EO to the total of EO and PO in the polyoxyalkylene polycarbonate diol is preferably 25 to 100 from the viewpoint of better ionic conductivity of the solid electrolyte. % by mass, more preferably 30 to 95% by mass, still more preferably 30 to 90% by mass.
  • the proportion of PO in the total of EO and PO in the polyoxyalkylene polycarbonate diol is preferably 0 to 75% by mass, more preferably 5 to 70% by mass, from the viewpoint of better ionic conductivity of the solid electrolyte. and more preferably 10 to 65% by mass.
  • the ring-opening addition polymerization when two or more cyclic ethers are reacted with a polycarbonate diol or a polyether polycarbonate diol may be random polymerization, block polymerization, or a combination of random polymerization and block polymerization. may be
  • the polymerization temperature for the ring-opening polymerization reaction of the cyclic ether is not particularly limited, but is preferably 30 to 180°C, more preferably 70 to 160°C, still more preferably 90 to 140°C.
  • the polymerization temperature is equal to or higher than the above lower limit, the ring-opening polymerization of the cyclic ether can be reliably started, and when it is equal to or lower than the above upper limit, a decrease in the polymerization activity of the ring-opening polymerization catalyst can be suppressed.
  • the polymerization time for the ring-opening polymerization reaction of the cyclic ether is not particularly limited, but is preferably 2 to 18 hours, more preferably 3 to 14 hours, still more preferably 4 to 10 hours.
  • the polymerization time is at least the above lower limit, the reaction performance is excellent, and when it is at most the above upper limit, the economy is excellent.
  • the amount of the cyclic ether charged is not particularly limited, but is preferably 25 to 1500 parts by mass, more preferably 50 to 1200 parts by mass, and still more preferably 100 to 100 parts by mass with respect to 100 parts by mass of the polyether polycarbonate diol (PEPCD). 700 parts by mass.
  • the charged amount of the cyclic ether is within the above preferred range, the flexibility and toughness of the reaction product obtained using the cyclic ether can be further improved.
  • the ionic conductivity and cation transport number of the solid electrolyte are improved.
  • the ring-opening polymerization reaction of the cyclic ether is preferably carried out under good stirring conditions.
  • a general stirring method using a stirring blade it is preferable to increase the rotational speed of the stirring blade as high as possible within a range in which a large amount of gas in the gas phase portion is not taken into the reaction liquid and the stirring efficiency is not reduced.
  • a reaction solvent may be used for the ring-opening polymerization reaction of the cyclic ether.
  • the reaction solvent is not particularly limited, and examples include aliphatic hydrocarbons such as hexane, heptane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; halogen solvents such as chloroform and dichloromethane; Ethers are mentioned. These may be used individually by 1 type, and may be used 2 or more types. Among these, hexane and tetrahydrofuran are preferable from the viewpoint of having a low boiling point and being easy to remove after completion of the reaction.
  • the amount of the reaction solvent to be used is not particularly limited, and any desired amount can be used.
  • the ring-opening addition polymerization catalyst is not particularly limited, and examples thereof include double metal cyanide complex catalysts (hereinafter sometimes referred to as "DMC catalysts"); a Ziegranatta catalyst comprising an aluminum compound and a transition metal compound; a metal porphyrin catalyst as a complex obtained by reacting porphyrin; a phosphazene catalyst; an imino group-containing phosphazenium salt; Catalysts comprising reduced Robson's type Macrocyclic ligands are preferred. These may be used individually by 1 type, and may be used 2 or more types.
  • DMC catalysts double metal cyanide complex catalysts
  • Ziegranatta catalyst comprising an aluminum compound and a transition metal compound
  • a metal porphyrin catalyst as a complex obtained by reacting porphyrin
  • a phosphazene catalyst phosphazene catalyst
  • an imino group-containing phosphazenium salt an imino group-containing phosphazenium salt
  • the DMC catalyst is not particularly limited, and examples thereof include a zinc hexacyanocobaltate complex whose ligand is t-butyl alcohol (hereinafter sometimes referred to as "TBA-DMC catalyst"), and a ligand of ethylene glycol dimethyl ether (" and a zinc hexacyanocobaltate complex whose ligand is diethylene glycol dimethyl ether (sometimes referred to as "diglyme”). These may be used individually by 1 type, and may be used 2 or more types.
  • the TBA-DMC catalyst is preferable from the viewpoint that the activity during polymerization is higher and the Mw/Mn of the polyoxyalkylene polycarbonate diol can be made narrower, so that the viscosity can be made lower.
  • the amount of the ring-opening addition polymerization catalyst to be added is not particularly limited as long as it is an amount necessary for the ring-opening polymerization of the cyclic ether, but it is preferably as small as possible. 0.003 to 0.03 parts by mass, more preferably 0.004 to 0.025 parts by mass, and still more preferably 0.005 to 0.02 parts by mass.
  • Ring-opening addition polymerization using a ring-opening addition polymerization catalyst for example, International Publication No. 2003/062301, International Publication No. 2004/067633, JP-A-2004-269776, JP-A-2005-15786, International Publication
  • the manufacturing conditions described in Japanese Patent Application Laid-Open No. 2013/065802 and Japanese Patent Application Laid-Open No. 2015-010162 can be employed.
  • the polyisocyanate is not particularly limited as long as it is a compound having a plurality of isocyanate groups in one molecule. Diisocyanate is preferred from the viewpoint of better conductivity and cation transference number.
  • Diisocyanates include, for example, 4,4′-diphenylmethane diisocyanate (hereinafter sometimes referred to as “MDI”), naphthalene-1,5-diisocyanate, polyphenylenepolymethylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tri Aromatic diisocyanates such as diisocyanate; aralkyl diisocyanates such as tetramethylxylylene diisocyanate and xylylene diisocyanate; aliphatic diisocyanates such as hexamethylene diisocyanate; alicyclic diisocyanates such as isophorone diisocyanate and 4,4'-methylenebis(cyclohexylisocyanate) urethane modified products obtained from diisocyanates; buret modified products obtained from diisocyanates; allophanate modified products obtained from diisocyanates; carbodiimide modified products obtained from diis
  • aromatic diisocyanates are preferable, and 4,4'-diphenylmethane diisocyanate is more preferable, and from the viewpoint of easily suppressing yellowing over time, aliphatic diisocyanates, alicyclic Group diisocyanates are preferred, and hexamethylene diisocyanate and isophorone diisocyanate are more preferred.
  • the ratio of the isocyanate groups of the polyisocyanate to the hydroxyl groups of the polyol is not particularly limited as an index of the isocyanate groups, but it is preferable. is 150-300, more preferably 180-280.
  • the molecular weight of the polyisocyanate is not particularly limited, it is preferably 120-400, more preferably 130-390, still more preferably 140-380. When the molecular weight of the polyisocyanate is within the above range, the reaction product obtained using the polyisocyanate has better toughness.
  • the reaction product further contains structural units derived from a chain extender.
  • the chain extender is at least one selected from the group consisting of polyols (excluding polyols having a structure represented by the general formula (1)) and polyamines, and has at least two active hydrogens that react with isocyanate groups. is preferred.
  • chain extender examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8 - linear diols such as octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol; 2-methyl-1,3-propanediol, 2,2-dimethyl-1, 3-propanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2,4-heptanediol, 1,4-dimethylolhexane, 2- ethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-methyl-1,
  • ethylene glycol, propylene glycol, 1,4-butanediol, and 1,6-hexanediol are preferable in that the flexibility of the reaction product is excellent and that it is industrially available in large quantities at low cost. 1,4-butanediol is more preferred.
  • the molecular weight of the chain extender is not particularly limited, it is preferably 60 to 1,000, more preferably 60 or more and less than 300. When the molecular weight of the chain extender is within the above range, the flexibility and toughness of the reaction product can be further improved. In addition, the ionic conductivity and cation transport number of the solid electrolyte are improved.
  • the number average molecular weight (Mn) of the reaction product is preferably 20,000 to 150,000, more preferably 25,000 to 120,000, still more preferably 30,000 to 100,000.
  • Mn The number average molecular weight of the reaction product is at least the lower limit, the toughness of the solid electrolyte tends to be better, and when it is at most the upper limit, the flexibility of the solid electrolyte tends to be better.
  • the solid electrolyte has both toughness and flexibility, the ionic conductivity and cation transference number are less likely to fluctuate even when the solid electrolyte is bent, and good battery performance is likely to occur.
  • the number average molecular weight of the reaction product is measured by the method described in Examples below.
  • the amount of carbonate groups per molecule of the reaction product is preferably 3 to 70% by weight, more preferably 5 to 50% by weight, even more preferably 5 to 30% by weight.
  • the amount of carbonate groups per molecule of the reaction product is at least the lower limit, the toughness of the solid electrolyte tends to be better, and when it is at most the upper limit, the flexibility of the solid electrolyte is good. easy to become.
  • the solid electrolyte has both toughness and flexibility, the ionic conductivity and cation transference number are less likely to fluctuate even when the solid electrolyte is bent, and good battery performance is likely to occur.
  • the amount of carbonate groups per molecule of the above reaction product is determined by calculating the ratio of peaks based on hydrogen bonded to carbons adjacent to the carbonate groups by 1 H-NMR. Specifically, it is measured by the method described in Examples below.
  • the proportion of structural units derived from polyisocyanate in the reaction product is preferably 10 to 40% by mass, more preferably 15 to 35% by mass, and still more preferably 18 to 30% by mass.
  • the proportion of structural units derived from polyisocyanate in the reaction product is at least the lower limit, the toughness of the solid electrolyte tends to be better, and when it is at most the upper limit, the flexibility of the solid electrolyte And the ionic conductivity and cation transference number tend to be good.
  • the solid electrolyte has both toughness and flexibility, the ionic conductivity and cation transference number are less likely to fluctuate even when the solid electrolyte is bent, and good battery performance is likely to occur.
  • the ratio of each structural unit in the reaction product can be obtained, for example, as follows.
  • the reaction product is placed in a polytetrafluoroethylene-coated pressure vessel together with pyridine and distilled water and heated at 130° C. for 15 hours. Thereafter, pyridine is distilled off to obtain a solution dissolved in tetrahydrofuran.
  • a measurement solution measurement is performed by preparative GPC (for example, LC-Force, product name of YMC), and for the peaks of the obtained chromatogram, the measurement solution of the portion corresponding to each peak is collected. .
  • Tetrahydrofuran is removed from each of the measured solutions corresponding to the separated peaks by drying under reduced pressure at 80° C.
  • the glass transition temperature Tg of the reaction product is not particularly limited, but is preferably -60 to 0°C, more preferably -55 to -10°C, still more preferably -50 to -15°C. When the glass transition temperature Tg of the reaction product is within the preferred range, the low-temperature properties are excellent.
  • the glass transition temperature Tg of the reaction product is measured by the method described in Examples below.
  • the breaking strength of the reaction product is not particularly limited, but is preferably 1.0 MPa or higher, more preferably 1.5 MPa or higher, and still more preferably 5.0 MPa or higher.
  • the elongation at break of the reaction product is not particularly limited, it is preferably 1000% or more, more preferably 1100% or more, and still more preferably 1200% or more.
  • the toughness of the reaction product is not particularly limited, it is preferably 40 MJ/m 3 or more, more preferably 45 MJ/m 3 or more, still more preferably 50 MJ/m 3 or more.
  • the "strength at break", "elongation at break” and “toughness" are measured in the same manner as in the examples.
  • the content of the reaction product is preferably 10-95% by mass, more preferably 15-90% by mass, and still more preferably 20-85% by mass, relative to the total amount of the solid electrolyte.
  • the content of the reaction product is at least the lower limit, the ionic conductivity and cation transference number of the solid electrolyte tend to be better, and when it is at most the upper limit, the toughness of the solid electrolyte is enhanced. likely to be good.
  • the metal salt various metal salts composed of an electrically positive compound and an electrically negative compound can be used. From the viewpoint of further improving the ionic conductivity, the metal salt is preferably at least one selected from the group consisting of alkali metal salts and alkaline earth metal salts that have a high ionization tendency and tend to become cations. Alkali metal salts are more preferred. Alkali metal salts include lithium, sodium and potassium salts.
  • the metal salts include LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiNbF 6 , LiAsF 6 , LiNH 2 , LiF, LiCl, LiSCN, LiCF 3 SO 3 , LiC 6 H 5 SO 3 , LiBr, LiI, LiCN, LiClO 4 , LiNO 3 , Li + (CF 3 SO 2 ) 2 N ⁇ (lithium bis(trifluoromethanesulfonyl)imide: LiTFSI), C 6 H 5 COOLi, NaCl, NaBr, NaF, NaI, NaClO 4 , NaCN, NaPF 6 , Mg 2+ [(CF 3 SO 2 ) 2 N ⁇ ] 2 (magnesium bis(trifluoromethanesulfonyl)imide: MgTFSI), Mg(BH 4 ) 2 (magnesium borohydride), Mg[B(O 2C2 ( CF3 , Li
  • LiTFSI LiTFSI, NaPF 6 and MgTFSI
  • LiTFSI, NaPF 6 and MgTFSI are more preferred, from the viewpoint of easily achieving good ionic conductivity.
  • the metal salt is preferably dispersed uniformly in the electrolyte containing the reaction product.
  • the solid state may be directly mixed in the electrolyte, or dissolved in a solvent. You may mix after dispersing.
  • the content of the metal salt is preferably 0.01 to 50% by mass, more preferably 0.1 to 40% by mass, and still more preferably 0.5 to 30% by mass with respect to the total amount of the solid electrolyte. be.
  • the content of the metal salt is at least the lower limit, the ionic conductivity in the solid electrolyte tends to be better, and when it is at most the upper limit, the cation transference number in the solid electrolyte tends to be better.
  • the solid electrolyte of the present invention may further contain a plasticizer from the viewpoint of better toughness.
  • the plasticizer is not particularly limited, and examples thereof include diethylene glycol dimethyl ether, di-2-ethylhexyl phthalate, dibutyl phthalate, dilauryl phthalate, dioctyl adipate, diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), diisodecyl adipate, tributyl phosphate, trioctyl phosphate, propylene glycol adipate polyester, butylene glycol adipate polyester, epoxidized soybean oil, chlorinated paraffin, liquid paraffin. These may be used individually by 1 type, and may be used 2 or more types.
  • the solid electrolyte of the present invention contains a plasticizer
  • its content is preferably 0.1 to 50% by mass, more preferably 0.5 to 45% by mass, more preferably 0.5 to 45% by mass, based on the total amount of the solid electrolyte. is 1 to 40% by mass.
  • the solid electrolyte of the present invention may further contain a filler from the viewpoint of improving the toughness of the solid electrolyte.
  • the filler is not particularly limited, and examples thereof include carbon black, aluminum hydroxide, calcium carbonate, titanium oxide, aluminum oxide, silica, glass, bone powder, wood powder, fiber flakes, cellulose, and cellulose nanofibers. These may be used individually by 1 type, and may be used 2 or more types.
  • the solid electrolyte of the present invention contains a filler
  • its content is preferably 0.1 to 30% by mass, more preferably 0.2 to 25% by mass, more preferably 0.2 to 25% by mass, based on the total amount of the solid electrolyte. It is 0.5 to 20% by mass.
  • the filler content is within the above range, the ionic conductivity can be further improved.
  • the solid electrolyte of the present invention may, if necessary, contain components generally blended in this type of material within a range that does not impair the effects of the present invention. , light stabilizers, photosensitizers, flame retardants, and other additives.
  • the content of the reaction product and metal salt contained in the solid electrolyte of the present invention is preferably 50% by mass or more, more preferably 60% by mass or more.
  • the method for producing the solid electrolyte of the present invention is not particularly limited. It is obtained by mixing agents and drying.
  • a battery of the present invention comprises the solid electrolyte described above. Therefore, since it has excellent toughness and excellent ionic conductivity and cation transference number, it can be used as a flexible battery.
  • the battery of the present invention can be obtained by joining various known positive electrode materials and negative electrode materials to the solid electrolyte.
  • positive electrode materials include LiMnO 2 , LiMn 2 O 4 , LiCoO 2 , Li 2 Cr 2 O 7 , LiNiO 2 and Li 2 CrO 4 .
  • Examples of negative electrode materials include hard carbon, soft carbon, and lithium metal.
  • the hard carbon, soft carbon, and lithium metal used in the negative electrode material may have a microstructure such as laminated, spherical, fibrous, helical, or fibril-like, and the shape of the negative electrode material may be flat or corrugated. , rods, powders, and the like.
  • Aluminum foil, aluminum vapor-deposited organic film, etc. can be used as the exterior material for packaging the battery.
  • Various known materials can be used for the organic film, and specific examples include polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, nylon, and polyethylene tetrafluorate.
  • Examples of articles equipped with the above batteries include flexible devices such as wearable devices, electrochromic displays, and implant devices.
  • Number average molecular weight (Mn) and molecular weight distribution (Mw/Mn) The number average molecular weight (Mn) of the polyurethane resins obtained in Synthesis Examples 1 to 3, the number average molecular weight (Mn) of the polyol, and the weight average molecular weight (Mw) of the polyol were measured by gel permeation chromatography (GPC). Also, Mw/Mn of the polyol was calculated from the above Mn and Mw. Tetrahydrofuran was used as the solvent.
  • the calibration curve is prepared using polystyrene with a known molecular weight, and when measuring a polyol, using polypropylene glycol with a known hydroxyl value conversion molecular weight. bottom. That is, the number average molecular weight of the polyurethane resin was calculated as the polystyrene equivalent molecular weight, and the number average molecular weight of the polyol was calculated as the polypropylene glycol equivalent molecular weight.
  • the Tg of the polyurethane resins obtained in Synthesis Examples 1-3 was measured according to JIS K7121:2012. Specifically, each of the polyurethane resins of Synthesis Examples 1 to 3 was laminated on a PET film subjected to silicone release treatment, and hot pressed at 150 to 180° C. so that the thickness after pressing was 150 ⁇ m. Obtained.
  • the glass transition temperature of the obtained specimen was measured using a dynamic viscoelasticity measuring device (EXSTAR 6000 DMS6100, manufactured by Seiko Instruments Inc.). The measurement conditions were a temperature range of ⁇ 100° C. to +130° C. and a heating rate of 3° C./min.
  • the content ratio of oxyethylene groups (ethylene oxide unit content) and the content ratio of oxypropylene groups (propylene oxide unit content) with respect to the total amount of oxyalkylene groups in the polyoxyalkylene polycarbonate diol are determined by 1 H-NMR.
  • the monomer composition of the chain was determined, and the ethylene oxide unit content and the propylene oxide unit content were determined from the area ratio of the methyl group signal in the propylene oxide unit and the methylene group signal in the propylene oxide unit and ethylene oxide unit.
  • the hard segment content is a value (% by mass) calculated using the following formula (I) in each example. (mass of polyisocyanate + mass of chain extender) / (mass of polyisocyanate + mass of chain extender + Q) ⁇ 100 (I)
  • Q represents the mass of polyoxyalkylene polycarbonate diol (PEPCD+PO+EO)
  • Q represents the mass of polyether polycarbonate (PEPCD).
  • Carbonate group content The number of repeating units of a carbonate group per polyol molecule was determined by dissolving each polyol in deuterated chloroform so as to be 10% by mass, and measuring 1 H-NMR at a resolution of 400 MHz (JNM-ECZ400SJNM, product name of JEOL Ltd.). , calculated from the peak due to the hydrogen atoms bonded to the carbon adjacent to the carbonate group. Also, the carbonate group content is the amount of carbonate groups per polyol molecule, and is specifically determined by the following formula (III).
  • the solid electrolyte was poured into a silicone mold and dried at 80° C. so that the thickness after drying was 0.1 ⁇ m. Then, it was punched into a dumbbell shape to obtain a test piece. The resulting specimen was measured for breaking strength (unit: MPa) and breaking elongation (unit: %) according to JIS K 7311 (1995) using Tensilon (product name: RTG-1310 from A&D) at a tensile speed of 50 mm/ Measured under conditions of minutes. Also, the energy required for fracture (unit: MJ/m 3 ) was calculated from the area of the obtained stress-strain curve.
  • the energy required for fracture is an index of toughness, and a larger value indicates better toughness of the solid electrolyte. If the breaking strength is in the range of 1.0 MPa or more, it can be said that the mechanical strength of the solid electrolyte is good. If the elongation at break is in the range of 1000% or more, it can be said that the flexibility of the solid electrolyte is good. If the energy required for fracture is in the range of 40 MJ/m 3 or more, it can be said that the toughness of the solid electrolyte is good.
  • the solid electrolyte was poured into a silicone mold so that the thickness after drying was 2 mm, and dried at 80°C. Then, a cylinder having a diameter of 5 mm was punched out to obtain a specimen.
  • the ionic conductivity ( ⁇ ) of the obtained specimen was obtained by preparing a measurement cell in which the specimen was sandwiched between a pair of electrodes (made of SUS: thickness 4 mm ⁇ diameter 20 mm), and using this to measure the complex impedance. , was evaluated by calculating the logarithm (log( ⁇ )) of the ionic conductivity based on the following formula (IV).
  • polyoxyalkylene polycarbonate diol (a1) in general formula (2), 266 g of R 1 and R 3 : n-butylene group, R 2 : n-butylene group, ethylene group and isopropylene group, a: 3.2, n: 2.7, m: 19) were obtained.
  • the obtained polyoxyalkylene polycarbonate diol (a1) was a transparent liquid.
  • the molecular weight calculated from the structure of the PO/EO sites in the polyoxyalkylene polycarbonate diol (a1) calculated from the charged amount of PO (50 parts by mass) and the charged amount of EO (50 parts by mass) is 1,000. Met.
  • the resulting polyoxyalkylene polycarbonate diol (a1) had a hydroxyl value of 54.7 mgKOH/g, Mn of 2,200, and Mw/Mn of 1.13.
  • the content of oxyethylene groups and the content of oxypropylene groups in the polyoxyalkylene polycarbonate diol (a1) were 31% by mass and 23% by mass, respectively, relative to the total amount of oxyalkylene groups in the polyoxyalkylene polycarbonate diol (a1). Note that a, n, and m are theoretically calculated values.
  • a polyurethane resin (A1) having a segment content of 25% by mass and an NCO unit content of 20.7% by mass was obtained.
  • the obtained polyurethane resin (A1) had an Mn of 86,000 and a Tg of -42°C.
  • the amount of carbonate groups per molecule of polyurethane resin (A1) was 5.5% by mass.
  • a polyurethane resin (A2) having a segment content of 25% by mass and an NCO unit content of 20.8% by mass was obtained.
  • the resulting polyurethane resin (A2) had an Mn of 88,400 and a Tg of -42°C.
  • the amount of carbonate groups per molecule of polyurethane resin (A2) was 13.6% by mass.
  • a polyurethane resin (A3) having a segment content of 25% by mass and an NCO unit content of 20.9% by mass was obtained.
  • the obtained polyurethane resin (A3) had an Mn of 71,400 and a Tg of -18°C.
  • the amount of carbonate groups per molecule of polyurethane resin (A3) was 38.9% by mass.
  • Examples 1--7 Each component was mixed at the composition ratio shown in Table 1 to obtain solid electrolytes of Examples 1-7. The obtained solid electrolyte was evaluated for tensile properties, ionic conductivity and cation transport number by the methods described above. Examples 1-5 are working examples, and examples 6 and 7 are comparative examples. Abbreviations in the table are as follows.
  • A2 Polyurethane resin obtained in Synthesis Example 2
  • A3 Polyurethane resin obtained in Synthesis Example 3
  • LiTFSI Lithium bis (trifluoromethanesulfonyl) imide, manufactured by Morita Chemical Industry Co., Ltd.
  • the solid electrolytes of Examples 1 to 5 are excellent in toughness and ionic conductivity.
  • the solid electrolyte of Example 5 is excellent in cation transference number.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

強靭性に優れるとともにイオン伝導度及びカチオン輸率に優れる固体電解質、固体電解質を備える電池及び電池を備えるフレキシブルデバイスを提供する。特定の構造を有するポリオールと、ポリイソシアネートとの反応生成物、及び金属塩を含む、固体電解質。

Description

固体電解質、電池及びフレキシブルデバイス
 本発明は、固体電解質、固体電解質を備える電池及び電池を備えるフレキシブルデバイスに関する。
 ウェアラブルデバイス、インプラントデバイスにおける電池は、電池としての性能に加えて、安全性が高く、折り曲げなどに対する耐久性(強靭性)が求められている。このようなデバイスに用いられる電池としては、有機溶媒を使用せず、液漏れの心配がなく安全であることから固体電池が主流となっている。従来の固体電子用電解質としてはポリエチレングリコール(PEG)系のポリマー(非特許文献1参照)及びポリカーボネート系のポリマー(特許文献1及び特許文献2参照)等が検討されている。
ライト(Wright)、ブリティッシュ ポリマー ジャーナル(British Polymer Journal)、英国、1975年、第7号、第319頁
特開平8-217868号公報 国際公開第2017/033805号
 しかしながら、PEG系のポリマーは、柔軟性は高いものの強靭性には劣り、カチオン輸率が低いという問題があった。ポリエチレンカーボネート系のポリマーは、カチオン輸率及びイオン伝導度は高いものの、柔軟性が不足し強靭性が不足するという問題があった。さらに、一般にイオン伝導度は固定電解質に用いられるポリマーのTg以上では高いものの、Tg以下では低下するため、より広い温度域において安定したイオン伝導度を得ることは難しかった。
 本発明は、このような課題を解決するものであり、強靭性に優れるとともにイオン伝導度及びカチオン輸率に優れる固体電解質、固体電解質を備える電池及び電池を備えるフレキシブルデバイスを提供することを目的とする。
 本発明者らは、前記課題を解決するために鋭意検討を行った結果、特定の構造を有するポリオールと、ポリイソシアネートとの反応物を含む固体電解質が、前記課題を解決し得ることを見出し、本発明を完成させた。
 すなわち、本発明は下記の通りである。
[1]下記一般式(1)に示す構造を有するポリオールと、ポリイソシアネートとの反応生成物、及び金属塩を含む、固体電解質。
Figure JPOXMLDOC01-appb-C000004

(式中、Aは-(RO)C(=O)O-を表し、Bは-RO-を表す。nは1~170の数であり、mは0~170の数である。R、R及びRは、それぞれ独立して、炭素数2~10の二価の炭化水素基を表す。aは1~30の数である。aが2以上である場合、複数の(RO)は同一でも異なっていてもよい。複数の(RO)は、ブロック状に結合していてもランダム状に結合していてもよい。Aが複数存在する場合、複数のAは同一でも異なっていてもよい。Bが複数存在する場合、複数のBは同一でも異なっていてもよい。A、B及びRの結合順序は問わない。複数のA及び複数のBは、ブロック状に結合していてもランダム状に結合していてもよい。)
[2]前記一般式(1)において、前記A及び前記Bの合計に対する前記Aの割合が、3~100質量%である、上記[1]に記載の固体電解質。
[3]前記一般式(1)におけるBがオキシエチレン基及びオキシプロピレン基からなる群より選択される少なくとも1種を含む、上記[1]又は[2]に記載の固体電解質。
[4]前記一般式(1)におけるBに含まれる、前記オキシエチレン基の割合が、25~100質量%であり、前記オキシプロピレン基の割合が、0~75質量%である、上記[3]に記載の固体電解質。
[5]前記ポリオールの数平均分子量が500~15,000である、上記[1]~[4]のいずれかに記載の固体電解質。
[6]前記ポリオールが下記一般式(2)に示す構造を有するジオールである、上記[1]~[5]のいずれかに記載の固体電解質。
Figure JPOXMLDOC01-appb-C000005

(式中、nは1~170の数であり、mは0~170の数である。R、R及びRは、それぞれ独立して、炭素数2~10の二価の炭化水素基を表す。aは1~30の数である。aが2以上である場合、複数の(RO)は同一でも異なっていてもよい。複数の(RO)は、ブロック状に結合していてもランダム状に結合していてもよい。「-(RO)C(=O)O-」で表される構造が複数存在する場合、複数の「-(RO)C(=O)O-」で表される構造は同一でも異なっていてもよい。「-(RO)-」で表される構造が複数存在する場合、複数の「-(RO)-」で表される構造は同一でも異なっていてもよい。「-(RO)C(=O)O-」で表される構造、「-(RO)-」で表される構造及びRの結合順序は問わない。複数の「-(RO)C(=O)O-」で表される構造及び複数の「-(RO)-」で表される構造は、ブロック状に結合していてもランダム状に結合していてもよい。)
[7]前記反応生成物の数平均分子量が20,000~150,000である、上記[1]~[6]のいずれかに記載の固体電解質。
[8]前記反応生成物1分子当たりのカーボネート基の量が、3~70質量%である、上記[1]~[7]のいずれかに記載の固体電解質。
[9]前記ポリイソシアネートがジイソシアネートである、上記[1]~[8]のいずれかに記載の固体電解質。
[10]前記金属塩が、アルカリ金属塩及びアルカリ土類金属塩からなる群より選択される少なくとも1種である、上記[1]~[9]のいずれかに記載の固体電解質。
[11]さらに可塑剤を含む、上記[1]~[10]のいずれかに記載の固体電解質。
[12]さらにフィラーを含む、上記[1]~[11]のいずれかに記載の固体電解質。
[13]下記一般式(2)で表されるジオールと、ポリイソシアネートとを反応させた反応生成物、及び金属塩を含む固体電解質の製造方法。
Figure JPOXMLDOC01-appb-C000006

(式中、nは1~170の数であり、mは0~170の数である。R、R及びRは、それぞれ独立して、炭素数2~10の二価の炭化水素基を表す。aは1~30の数である。aが2以上である場合、複数の(RO)は同一でも異なっていてもよい。複数の(RO)は、ブロック状に結合していてもランダム状に結合していてもよい。「-(RO)C(=O)O-」で表される構造が複数存在する場合、複数の「-(RO)C(=O)O-」で表される構造は同一でも異なっていてもよい。「-(RO)-」で表される構造が複数存在する場合、複数の「-(RO)-」で表される構造は同一でも異なっていてもよい。「-(RO)C(=O)O-」で表される構造、「-(RO)-」で表される構造及びRの結合順序は問わない。複数の「-(RO)C(=O)O-」で表される構造及び複数の「-(RO)-」で表される構造は、ブロック状に結合していてもランダム状に結合していてもよい。)
[14]前記ジオールが、ポリカーボネートジオール又はポリエーテルポリカーボネートジオールを開始剤として、開環重合触媒の存在下で、環状エーテルを開環付加重合させて得られるポリオキシアルキレンポリカーボネートジオールである、上記[13]に記載の固体電解質の製造方法。
[15]前記環状エーテルがエチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド及び2,3-ブチレンオキシドからなる群より選択される少なくとも1種を含む、上記[14]に記載の固体電解質の製造方法。
[16]前記環状エーテルは、エチレンオキシド及びプロピレンオキシドを含み、前記ポリオキシアルキレンポリカーボネートジオール中のエチレンオキシドとプロピレンオキシドの合計におけるエチレンオキシドの割合が25~100質量%である、上記[14]又は[15]に記載の固体電解質の製造方法。
[17]上記[1]~[12]のいずれかに記載の固体電解質を備える、電池。
[18]上記[17]に記載の電池を備える、フレキシブルデバイス。
 本発明によれば、強靭性に優れるとともにイオン伝導度及びカチオン輸率に優れる固体電解質、固体電解質を備える電池及び電池を備えるフレキシブルデバイスを提供できる。
 以下、本発明について詳細に説明する。
 本明細書において、好ましいとされているものは任意に採用でき、好ましいもの同士の組み合わせはより好ましいといえる。
 また、本明細書において、「XX~YY」との記載は、「XX以上YY以下」を意味する。
 また、本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせ得る。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書において、重合体を構成する「単位」とは単量体の重合により形成された原子団を意味する。
 また、本明細書において、反応生成物の数平均分子量(以下「Mn」ということがある)は、実施例に記載の方法でゲル浸透クロマトグラフィー(GPC)を使用し、分子量が
既知の標準ポリスチレン試料を用いて検量線を作成して測定したポリスチレン換算分子量である。また、ポリオールのMn、及び重量平均分子量(以下「Mw」ということがある)は、実施例に記載の方法でゲル浸透クロマトグラフィー(GPC)を使用し、水酸基価換算分子量が既知の標準ポリプロピレングリコール試料を用いて検量線を作成して測定したポリプロピレングリコール換算分子量である。
 また、本明細書において、分子量分布は、上記MwとMnより算出した値であり、Mnに対するMwの比率(以下「Mw/Mn」ということがある)である。
[固体電解質]
 本発明の固体電解質は、下記一般式(1)に示す構造を有するポリオールと、ポリイソシアネートとの反応生成物、及び金属塩を含む。
Figure JPOXMLDOC01-appb-C000007
 上記一般式(1)中、Aは-(RO)C(=O)O-を表し、Bは-RO-を表す。nは1~170の数であり、mは0~170の数である。R、R及びRは、それぞれ独立して、炭素数2~10の二価の炭化水素基を表す。aは1~30の数である。aが2以上である場合、複数の(RO)は同一でも異なっていてもよい。複数の(RO)は、ブロック状に結合していてもランダム状に結合していてもよい。Aが複数存在する場合、複数のAは同一でも異なっていてもよい。Bが複数存在する場合、複数のBは同一でも異なっていてもよい。A、B及びRの結合順序は問わない。複数のA及び複数のBは、ブロック状に結合していてもランダム状に結合していてもよい。
(反応生成物)
 上記一般式(1)に示す構造を有するポリオールと、ポリイソシアネートとの反応生成物は、カーボネート鎖を有するソフトセグメントと、ウレタン結合を有するハードセグメントとを有する。上記ソフトセグメントは、Liイオン等のカチオンを局在化しやすく、固体電解質のイオン伝導度及びカチオン輸率を優れたものにすると推察される。また、上記ハードセグメントは、水素結合などによりポリマーの層構造を維持することで、固体電解質の強靭性及び変形時のイオン伝導性の維持に寄与すると推察される。
 なお、カチオン輸率とは、イオン伝導度全体におけるカチオンによるイオン伝導度の割合をいう。また、強靱性は、優れた強度および優れた靭性を両立する性質であり、伸びにも優れる。
〔ポリオール〕
 ポリオールは、下記一般式(1)に示す構造を有する。
Figure JPOXMLDOC01-appb-C000008
 上記一般式(1)において、Aは-(RO)C(=O)O-を表し、Bは-RO-を表す。nは1~170の数であり、mは0~170の数である。R、R及びRは、それぞれ独立して、炭素数2~10の二価の炭化水素基を表す。aは1~30の数である。aが2以上である場合、複数の(RO)は同一でも異なっていてもよい。複数の(RO)は、ブロック状に結合していてもランダム状に結合していてもよい。Aが複数存在する場合、複数のAは同一でも異なっていてもよい。Bが複数存在する場合、複数のBは同一でも異なっていてもよい。A、B及びRの結合順序は問わない。複数のA及び複数のBは、ブロック状に結合していてもランダム状に結合していてもよい。
 上記Rとしての炭素数2~10の二価の炭化水素基は、強靭性により優れる固体電解質を得る観点から、好ましくは炭素数4~6の直鎖又は分岐アルキレン基であり、より好ましくはn-ブチレン基(炭素数4)又は2-メチルブチレン基(炭素数5)であり、更に好ましくはn-ブチレン基である。
 上記Rとしての炭素数2~10の二価の炭化水素基は、強靭性により優れる固体電解質を得る観点から、好ましくは炭素数2~6の直鎖又は分岐アルキレン基であり、より好ましくはエチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基又は2-メチルブチレン基であり、更に好ましくはエチレン基、イソプロピレン基、n-ブチレン基である。
 上記Rとしての炭素数2~10の二価の炭化水素基は、強靭性により優れる固体電解質を得る観点から、好ましくは炭素数4~6の直鎖又は分岐アルキレン基であり、より好ましくはn-ブチレン基又は2-メチルブチレン基であり、更に好ましくはn-ブチレン基である。
 上記nは1~170の数である限り、特に制限はないが、好ましくは1~150の数であり、より好ましくは2~100の数であり、更に好ましくは2~50の数である。nが上記下限値以上であると、強靭性、カチオン輸率により優れる固体電解質を得ることができ、また、上記上限値以下であると、固体電解質における柔軟性を良好な範囲に調整しやすい。
 上記mは0~170の数である限り、特に制限はないが、好ましくは0~150の数であり、より好ましくは0~100の数であり、更に好ましくは0~50の数である。mが上記下限値以上であると、イオン伝導度及び柔軟性により優れる固体電解質を得ることができ、また、上記上限値以下であると、固体電解質の強靭性により優れる。
 上記aは1~30の数である限り、特に制限はないが、好ましくは1~25の数であり、より好ましくは2~20の数であり、更に好ましくは2~18の数である。aが上記下限値以上であると、イオン伝導度及び柔軟性により優れる固体電解質を得ることができ、また、上記上限値以下であると、固体電解質における柔軟性を良好な範囲に調整しやすい。
 上記aが2以上である場合、複数の(RO)は同一でも異なっていてもよい。複数の(RO)は、ブロック状に結合していてもランダム状に結合していてもよいが、イオン伝導度により優れる固体電解質を得る観点から、ランダム状に結合していることが好ましい。
 上記Aが複数存在する場合、複数のAは同一でも異なっていてもよい。Bが複数存在する場合、複数のBは同一でも異なっていてもよい。
 また、上記A、上記B及び上記Rの結合順序は問わない。複数のA及び複数のBは、ブロック状に結合していてもランダム状に結合していてもよいが、イオン伝導度により優れる固体電解質を得る観点から、ブロック状に結合していることが好ましい。
 上記一般式(1)において、上記A及び上記Bの合計に対する上記Aの割合は、好ましくは3~100質量%であり、より好ましくは10~98質量%であり、更に好ましくは15~97質量%である。上記Aの割合が上記下限値以上であると、固体電解質がより強靭となり、カチオン輸率がより良好となる。上記Aの割合が上記上限値以下であると、固体電解質がより柔軟性及びイオン伝導度に優れる。
 上記一般式(1)におけるBは、固体電解質におけるイオン伝導度及びカチオン輸率がより良好となる観点から、オキシエチレン基及びオキシプロピレン基からなる群より選択される少なくとも1種を含むことが好ましい。
 上記一般式(1)におけるBに含まれる、上記オキシエチレン基の割合は、固体電解質のイオン伝導度がより良好となる観点から、好ましくは25~100質量%であり、より好ましくは30~95質量%であり、更に好ましくは30~90質量%である。
 上記オキシエチレン基の割合は、H-NMRを用いてオキシアルキレン鎖のモノマー組成を求めることにより、算出したものである。具体的には実施例に記載の方法により測定できる。
 上記一般式(1)におけるBに含まれる、上記オキシプロピレン基の割合は、固体電解質のイオン伝導度及び柔軟性がより良好となる観点から、好ましくは0~75質量%であり、より好ましくは5~70質量%であり、更に好ましくは10~65質量%である。
 上記オキシプロピレン基の割合は、H-NMRを用いてオキシアルキレン鎖のモノマー組成を求めることにより、算出したものである。具体的には実施例に記載の方法により測定できる。
 上記ポリオールの数平均分子量(Mn)は、好ましくは500~15,000であり、より好ましくは800~14,000であり、更に好ましくは1,000~12,000である。上記ポリオールの数平均分子量が、上記下限値以上であると、該ポリオールを用いて得られる反応生成物の柔軟性がより良好となり、固体電解質のイオン伝導度及びカチオン輸率がより良好となる。また、上記上限値以下であると、該ポリオールを用いて得られる反応生成物の靱性がより良好となる。
 上記ポリオールのMw/Mnとしては、特に制限はないが、好ましくは3.0以下、より好ましくは1.01~2.5、更に好ましく1.02~2.0である。上記ポリオールのMw/Mnが、上記下限値以上であると、該ポリオールを用いて得られる反応生成物の柔軟性及び靱性がより良好となり、固体電解質のイオン伝導度及びカチオン輸率がより良好となる。また、上記上限値以下であると、ポリオールが低粘度になりやすく取り扱いやすい。
 上記ポリオールは、上記一般式(1)に示す構造を有する限り、特に制限はないが、固体電解質のイオン伝導度及びカチオン輸率がより良好となる観点から、下記一般式(2)で表されるジオールが好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記一般式(2)において、R、R、R、a、m、及びnは、それぞれ、上記一般式(1)におけるR、R、R、a、m、及びnと同じであり、好適なものも同じである。上記一般式(2)において、aが2以上である場合、複数の(RO)で表される構造は同一でも異なっていてもよい。複数の(RO)で表される構造は、ブロック状に結合していてもランダム状に結合していてもよい。「-(RO)C(=O)O-」で表される構造が複数存在する場合、複数の「-(RO)C(=O)O-」で表される構造は同一でも異なっていてもよい。「-(RO)-」で表される構造が複数存在する場合、複数の「-(RO)-」で表される構造は同一でも異なっていてもよい。「-(RO)C(=O)O-」で表される構造、「-(RO)-」で表される構造及びRの結合順序は問わない。複数の「-(RO)C(=O)O-」で表される構造及び複数の「-(RO)-」で表される構造は、ブロック状に結合していてもランダム状に結合していてもよい。
 上記一般式(2)で表されるジオールは、ポリカーボネートジオールであってもよく、ポリエーテルポリカーボネートジオールであってもよく、ポリオキシアルキレンポリカーボネートジオールであってもよい。靭性に優れることからポリオキシアルキレンポリカーボネートジオールが好ましい。
 ポリカーボネートジオールとしては、例えば、T6002(旭化成社製品名、固体、Mn:2,100、R及びR:ヘキサメチレン基、a:1、n:18、m:0)、ニッポラン981(東ソー社製品名、固体、Mn:1,000、R及びR:ヘキサメチレン基、a:1、n:6、m:0)、ニッポラン982R(東ソー社製品名、固体、Mn:2,000、R及びR:ヘキサメチレン基、a:1、n:13、m:0)、T5651(旭化成社製品名、固体、Mn:1,000、R及びR:ヘキサメチレン基及びペンタメチレン基、a:1、n:7、m:0)、T5652(旭化成社製品名、固体、Mn:2,000、R及びR:ヘキサメチレン基及びペンタメチレン基、a:1、n:14、m:0)、PH50(宇部興産社製品名、固体、Mn:500、R及びR:ヘキサメチレン基及びペンタメチレン基、a:1、n:2.5、m:0)、NL1005B(三菱ケミカル製品名、固体、Mn:1,000、R及びR:ブチレン基及びネオペンタン基、a:1、n:2.5、m:0)を用いることもできる。
 ポリエーテルポリカーボネートジオールとしては、例えば、NT1002(三菱ケミカル社製品名、透明粘性液体、Mn:1,000、ガラス転移温度:-78℃、R、R及びR:n-ブチレン基、a:3.2、n:2.7、m:3.2)、NT2002(三菱ケミカル社製品名、透明粘性液体、Mn:2,000、ガラス転移温度:-71℃、R、R及びR:n-ブチレン基、a:3.2、n:6.3、m:3.2)、NT2006(三菱ケミカル社製品名、透明粘性液体、Mn:2,000、ガラス転移温度:-84℃、R、R及びR:n-ブチレン基、a:8.8、n:2.0、m:8.8)を用いることもできる。
 ポリオキシアルキレンポリカーボネートジオールは、オキシアルキレン単位からなるポリオキシアルキレン鎖、カーボネート基及び末端に水酸基を有する。ポリオキシアルキレンポリカーボネートジオールは、例えば、上記ポリカーボネートジオール又はポリエーテルポリカーボネートジオールを開始剤として、該ポリカーボネートジオール又はポリエーテルポリカーボネートジオールの水酸基(活性水素含有基)に、開環重合触媒の存在下で、環状エーテルを開環付加重合させることにより得られる。
 環状エーテルとしては、例えば、エチレンオキシド(以下「EO」ということがある)、プロピレンオキシド(以下「PO」ということがある)、1,2-ブチレンオキシド、2,3-ブチレンオキシドが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。
 これらの中でも、ポリカーボネートジオール又はポリエーテルポリカーボネートジオールとの反応し易さ並びに固体電解質のイオン伝導度及び柔軟性がより良好となる観点から、EO及びPOから選ばれる少なくとも1種が好ましい。
 環状エーテルとしてEOとPOの両方を用いる場合の、ポリオキシアルキレンポリカーボネートジオール中のEOとPOの合計におけるEOの割合は、固体電解質のイオン伝導度がより良好となる観点から、好ましくは25~100質量%であり、より好ましくは30~95質量%であり、更に好ましくは30~90質量%である。ポリオキシアルキレンポリカーボネートジオール中のEOとPOの合計におけるPOの割合は、固体電解質のイオン伝導度がより良好となる観点から、好ましくは0~75質量%であり、より好ましくは5~70質量%であり、更に好ましくは10~65質量%である。
 2種類以上の環状エーテルをポリカーボネートジオール又はポリエーテルポリカーボネートジオールと反応させる場合の開環付加重合は、ランダム重合であってもよく、ブロック重合であってもよく、また、ランダム重合及びブロック重合の組み合わせであってもよい。
 環状エーテルの開環重合反応の重合温度としては、特に制限はないが、好ましくは30~180℃、より好ましくは70~160℃、更に好ましくは90~140℃である。
 重合温度が、上記下限値以上であると、環状エーテルの開環重合を確実に開始させることができ、また、上記上限値以下であると、開環重合触媒の重合活性低下を抑制できる。
 環状エーテルの開環重合反応の重合時間としては、特に制限はないが、好ましくは2~18時間、より好ましくは3~14時間、更に好ましくは4~10時間である。
 重合時間が、上記下限値以上であると、反応遂行性に優れ、また、上記上限値以下であると、経済性に優れる。
 環状エーテルの仕込量としては、特に制限はないが、ポリエーテルポリカーボネートジオール(PEPCD)100質量部に対して、好ましくは25~1500質量部、より好ましくは50~1200質量部、更に好ましくは100~700質量部である。
 環状エーテルの仕込量が、上記好ましい範囲内であると、該環状エーテルを用いて得られる反応生成物の柔軟性及び靱性をより向上させることができる。また、固体電解質のイオン伝導度及びカチオン輸率がより良好となる。
 環状エーテルの開環重合反応は、良好な撹拌条件下で行うことが好ましい。
 一般的な撹拌翼を用いる撹拌法を用いる場合は、反応液に気相部のガスが多量に取り込まれて撹拌効率が低下しない範囲で撹拌翼の回転速度をできるだけ速くすることが好ましい。また、得られる重合体のMw/Mnを狭くできる観点からは、反応容器内への環状エーテルの供給速度はできるだけ遅くすることが好ましいが、生産効率が低下するため、これらを比較衡量して環状エーテルの供給速度を定めることが好ましい。
 環状エーテルの開環重合反応には、反応溶媒を用いてもよい。
 反応溶媒としては、特に制限はなく、例えば、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;クロロホルム、ジクロロメタン等のハロゲン系溶媒;テトラヒドロフラン、ジオキサン等のエーテル類が挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。
 これらの中でも、沸点が低く、反応終了後に除去しやすいという観点から、ヘキサン、テトラヒドロフランが好ましい。
 なお、反応溶媒の使用量としては、特に制限はなく、所望量を用いることができる。
 開環付加重合触媒としては、特に制限はなく、例えば、複合金属シアン化物錯体触媒(以下「DMC触媒」ということがある);水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ触媒;有機アルミニウム化合物と遷移金属化合物とよりなるチーグラナッタ触媒;ポルフィリンを反応させて得られる錯体としての金属ポルフィリン触媒;ホスファゼン触媒;イミノ基含有ホスファゼニウム塩;トリス(ペンタフルオロフェニル)ボラン;金属サレン錯体よりなる触媒;reduced Robson’s type Macrocyclic ligandよりなる触媒が好適に挙げられる。これらは1種単独で用いてもよく、2種以上用いてもよい。
 開環付加重合触媒としてDMC触媒を用いると、Mw/Mnが狭く、粘度がより低いポリオキシアルキレンポリカーボネートジオールが得られる。
 DMC触媒としては、特に制限はなく、例えば、配位子がt-ブチルアルコールである亜鉛ヘキサシアノコバルテート錯体(以下「TBA-DMC触媒」ということがある)、配位子がエチレングリコールジメチルエーテル(「グライム」ともいうことがある)である亜鉛ヘキサシアノコバルテート錯体、配位子がジエチレングリコールジメチルエーテル(「ジグライム」ともいうことがある)である亜鉛ヘキサシアノコバルテート錯体が挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。
 これらの中でも、重合時の活性がより高く、ポリオキシアルキレンポリカーボネートジオールのMw/Mnをより狭くできるため、より低粘度にすることができる観点から、TBA-DMC触媒が好ましい。
 開環付加重合触媒の添加量としては、環状エーテルの開環重合に必要な量である限り、特に制限はないが、できるだけ少量が好ましく、ポリオキシアルキレンポリカーボネートジオール100質量部に対して、好ましくは0.003~0.03質量部、より好ましくは0.004~0.025質量部、更に好ましくは0.005~0.02質量部である。
 環状エーテルの開環重合反応に用いる開環付加重合触媒の添加量が少ないほど、生成物であるポリオキシアルキレンポリカーボネートジオールに含まれる開環付加重合触媒の量を少なくできる。これにより、ポリオキシアルキレンポリカーボネートジオールとポリイソシアネートとの反応性に対する開環付加重合触媒の影響を少なくできると共に、コストを低減することができる。
 開環付加重合触媒を用いた開環付加重合は、例えば、国際公開第2003/062301号、国際公開第2004/067633号、特開2004-269776号公報、特開2005-15786号公報、国際公開第2013/065802号、特開2015-010162号公報に記載の製造条件を採用できる。
〔ポリイソシアネート〕
 ポリイソシアネートとしては、1分子中に複数個のイソシアネート基を有する化合物である限り、特に制限はないが、該ポリイソシアネートを用いて得られる反応生成物の柔軟性がより良好となり、固体電解質のイオン伝導度及びカチオン輸率がより良好となる観点から、ジイソシアネートが好ましい。ジイソシアネートとしては、例えば、4,4’-ジフェニルメタンジイソシアネート(以下「MDI」ということがある)、ナフタレン-1,5-ジイソシアネート、ポリフェニレンポリメチレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート等の芳香族ジイソシアネート;テトラメチルキシリレンジイソシアネート、キシリレンジイソシアネート等のアラルキルジイソシアネート;ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート;イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)等の脂環族ジイソシアネート;ジイソシアネートから得られるウレタン変性体;ジイソシアネートから得られるビュレット変性体;ジイソシアネートから得られるアロファネート変性体;ジイソシアネートから得られるカルボジイミド変性体;ジイソシアネートから得られるイソシアヌレート変性体が挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。
 これらの中でも、ポリオールとの反応性の観点から、芳香族ジイソシアネートが好ましく、4,4’-ジフェニルメタンジイソシアネートがより好ましく、また、経時的な黄変を抑制しやすい観点から、脂肪族ジイソシアネート、脂環族ジイソシアネートが好ましく、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートがより好ましい。
 ポリオールの水酸基に対する、ポリイソシアネートのイソシアネート基の割合((ポリイソシアネートに含まれるイソシアネート基数)/(ポリオールに含まれる水酸基数)×100)であるイソシアネート基のインデックスとしては、特に制限はないが、好ましくは150~300、より好ましくは180~280である。
 ポリイソシアネートの分子量としては、特に制限はないが、好ましくは120~400、より好ましくは130~390、更に好ましくは140~380である。ポリイソシアネートの分子量が上記範囲内であると、該ポリイソシアネートを用いて得られる反応生成物の靱性がより良好となる。
 上記反応生成物は、さらに、鎖延長剤に由来する構成単位を有することが該反応生成物の柔軟性及び靱性の観点から好ましい。上記鎖延長剤は、ポリオール(上記一般式(1)に示す構造を有するポリオールを除く)及びポリアミンからなる群より選ばれる少なくとも1種であって、イソシアネート基と反応する活性水素を少なくとも2個有することが好ましい。
 鎖延長剤の具体例としては、特に制限はなく、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール等の直鎖ジオール類;2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,4-ヘプタンジオール、1,4-ジメチロールヘキサン、2-エチル-1,3-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、ダイマージオール、ネオペンチルグリコール等の分岐鎖を有するジオール類;ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール等のエーテル基を有するジオール類;1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,4-ジヒドロキシシクロヘキサン、1,4-ジヒドロキシエチルシクロヘキサン等の脂環構造を有するジオール類;キシリレングリコール、1,4-ジヒドロキシエチルベンゼン、4,4’-メチレンビス(ヒドロキシエチルベンゼン)等の芳香族基を有するジオール類;グリセリン、トリメチロールプロパン、ペンタエリスリトール等のポリオール類;N-メチルエタノールアミン、N-エチルエタノールアミン等のヒドロキシアミン類;エチレンジアミン、1,3-ジアミノプロパン、ヘキサメチレンジアミン、トリエチレンテトラミン、ジエチレントリアミン、イソホロンジアミン、4,4’-ジアミノジシクロヘキシルメタン、2-ヒドロキシエチルプロピレンジアミン、ジ-2-ヒドロキシエチルエチレンジアミン、ジ-2-ヒドロキシエチルプロピレンジアミン、2-ヒドロキシプロピルエチレンジアミン、ジ-2-ヒドロキシプロピルエチレンジアミン、4,4’-ジフェニルメタンジアミン、メチレンビス(o-クロロアニリン)、キシリレンジアミン、ジフェニルジアミン、トリレンジアミン、ヒドラジン、ピペラジン、N,N’-ジアミノピペラジン等のポリアミン類を挙げることができる。これらは、1種単独で用いてもよく、2種以上用いてもよい。
 これらの中でも、反応生成物の柔軟性により優れる点、工業的に安価に多量に入手が可能な点で、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールが好ましく、1,4-ブタンジオールがより好ましい。
 鎖延長剤の分子量としては、特に制限はないが、60~1,000が好ましく、60以上300未満がより好ましい。
 鎖延長剤の分子量が上記範囲内であると、反応生成物の柔軟性及び靱性をより向上させることができる。また、固体電解質のイオン伝導度及びカチオン輸率がより良好となる。
 上記反応生成物の数平均分子量(Mn)は、好ましくは20,000~150,000であり、より好ましくは25,000~120,000であり、更に好ましくは30,000~100,000である。上記反応生成物の数平均分子量が、上記下限値以上であると、固体電解質の強靭性がより良好となりやすく、また、上記上限値以下であると、固体電解質の柔軟性が良好となりやすい。固体電解質が強靭性と柔軟性を兼ね備えると、固体電解質を曲げた場合でもイオン伝導度やカチオン輸率が変動しにくく、良好な電池性能を発現しやすい。
 上記反応生成物の数平均分子量は、後述の実施例に記載される方法で測定される。
 上記反応生成物1分子当たりのカーボネート基の量は、好ましくは3~70質量%であり、より好ましくは5~50質量%であり、更に好ましくは5~30質量%である。上記反応生成物1分子当たりのカーボネート基の量が、上記下限値以上であると、固体電解質の強靭性がより良好となりやすく、また、上記上限値以下であると、固体電解質の柔軟性が良好となりやすい。固体電解質が強靭性と柔軟性を兼ね備えると、固体電解質を曲げた場合でもイオン伝導度やカチオン輸率が変動しにくく、良好な電池性能を発現しやすい。
 上記反応生成物1分子当たりのカーボネート基の量は、H-NMRによるカーボネート基に隣接した炭素に結合した水素に基づくピークの割合を算出することにより決定される。具体的には後述の実施例に記載される方法で測定される。
 上記反応生成物におけるポリイソシアネートに由来する構成単位の割合は、好ましくは10~40質量%であり、より好ましくは15~35質量%であり、更に好ましくは18~30質量%である。上記反応生成物におけるポリイソシアネートに由来する構成単位の割合が、上記下限値以上であると、固体電解質の強靭性がより良好となりやすく、また、上記上限値以下であると、固体電解質の柔軟性及びイオン電導度、カチオン輸率が良好となりやすい。固体電解質が強靭性と柔軟性を兼ね備えると、固体電解質を曲げた場合でもイオン伝導度やカチオン輸率が変動しにくく、良好な電池性能を発現しやすい。
 上記反応生成物における各構成単位の割合は、例えば、以下のようにして求めることができる。
 反応生成物を、ピリジン、蒸留水と共にポリテトラフルオロエチレンでコートされた耐圧容器に入れ、130℃で15時間加熱する。その後、ピリジンを留去し、テトラヒドロフランに溶解させた溶液を得る。
 この溶液を測定溶液として、分取GPC(例えば、LC-Force、ワイエムシィ社製品名)にて測定して、得られたクロマトグラムのピークについて、各ピークに該当する部分の測定溶液を分取する。
 分取したピークに該当する測定溶液の各々について、テトラヒドロフランを80℃で1時間減圧乾燥させて除き、残った液体のそれぞれについて、H-NMRで分析する。これにより、各ピークのいずれが、ポリオールに由来する構成単位、ポリイソシアネートに由来する構成単位、鎖延長剤に由来する構成単位であるかを特定し、また、GPCから得られたクロマトグラムのピークにより、それぞれの成分の含有割合について決定する。
 上記反応生成物のガラス転移温度Tgとしては、特に制限はないが、好ましくは-60~0℃、より好ましくは-55~-10℃、更に好ましくは-50~-15℃である。上記反応生成物のガラス転移温度Tgが、上記好ましい範囲内であると、低温特性により優れる。
 上記反応生成物のガラス転移温度Tgとしては、後述の実施例に記載される方法で測定される。
 上記反応生成物の破断強度としては、特に制限はないが、好ましくは1.0MPa以上、より好ましくは1.5MPa以上、更に好ましくは5.0MPa以上である。
 上記反応生成物の破断伸びとしては、特に制限はないが、好ましくは1000%以上、より好ましくは1100%以上、更に好ましくは1200%以上である。
 上記反応生成物の靱性としては、特に制限はないが、好ましくは40MJ/m以上、より好ましくは45MJ/m以上、更に好ましくは50MJ/m以上である。
 なお、ここでの「破断強度」、「破断伸び」、及び「靱性」は、実施例と同様の方法で測定される。
 上記反応生成物の含有量は、固体電解質全量に対して好ましくは10~95質量%であり、より好ましくは15~90質量%であり、更に好ましくは20~85質量%である。上記反応生成物の含有量が、上記下限値以上であると、固体電解質のイオン伝導度及びカチオン輸率がより良好となりやすく、また、上記上限値以下であると、固体電解質の強靭性がより良好となりやすい。
(金属塩)
 金属塩としては、電気的に正を帯びた化合物と、電気的に負を帯びた化合物とからなる各種金属塩を用いることができる。上記金属塩は、イオン伝導度をより向上させる観点から、イオン化傾向が大きく、陽イオンになりやすいアルカリ金属塩及びアルカリ土類金属塩からなる群より選択される少なくとも1種であることが好ましく、アルカリ金属塩であることがより好ましい。アルカリ金属塩としては、リチウム塩、ナトリウム塩、カリウム塩が挙げられる。
 上記金属塩の具体例としては、LiBF、LiPF、LiAlCl、LiSbF、LiNbF、LiAsF、LiNH、LiF、LiCl、LiSCN、LiCFSO、LiCSO、LiBr、LiI、LiCN、LiClO、LiNO、Li(CFSO(リチウムビス(トリフルオロメタンスルホニル)イミド:LiTFSI)、CCOOLi、NaCl、NaBr、NaF、NaI、NaClO、NaCN、NaPF、Mg2+[(CFSO(マグネシウムビス(トリフルオロメタンスルホニル)イミド:MgTFSI)、Mg(BH(マグネシウムボロハイドライド)、Mg[B(O(CF(Mg(FPB))、PhMgCl、EtMgBr、Mg(HMDS)、Mg[BBuPhが挙げられる。中でも、イオン伝導度が良好となりやすい観点から、LiTFSI、NaPF及びMgTFSIからなる群より選択される少なくとも1種であることが好ましく、LiTFSI、NaPF、MgTFSIがより好ましい。
 上記金属塩は、上記反応生成物を含む電解質中に均一に分散されていることが好ましく、分散する方法としては、上記電解質中に固形状のまま直接混合しても溶剤に溶解などの手法で分散させた後に混合してもよい。
 上記金属塩の含有量は、固体電解質全量に対して好ましくは0.01~50質量%であり、より好ましくは0.1~40質量%であり、更に好ましくは0.5~30質量%である。上記金属塩の含有量が、上記下限値以上であると、固体電解質におけるイオン伝導度がより良好となりやすく、また、上記上限値以下であると、固体電解質におけるカチオン輸率がより良好となりやすい。
 本発明の固体電解質は、靭性がより良好となる観点から、さらに可塑剤を含んでもよい。可塑剤としては、特に制限はなく、例えば、ジエチレングリコールジメチルエーテル、ジ-2-エチルヘキシルフタレート、ジブチルフタレート、ジラウリルフタレート、ジオクチルアジペート、ジイソノニルフタレート(DINP)、ジイソデシルフタレート(DIDP)、ジイソデシルアジペート、トリブチルホスフェート、トリオクチルホスフェート、アジピン酸プロピレングリコールポリエステル、アジピン酸ブチレングリコールポリエステル、エポキシ化大豆油、塩素化パラフィン、流動パラフィンが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。
 本発明の固体電解質が可塑剤を含む場合、その含有量は、固体電解質全量に対して好ましくは0.1~50質量%であり、より好ましくは0.5~45質量%であり、更に好ましくは1~40質量%である。
 本発明の固体電解質は、固体電解質の靭性をより良好にする観点から、さらにフィラーを含んでもよい。フィラーとしては、特に制限はなく、例えば、カーボンブラック、水酸化アルミニウム、炭酸カルシウム、酸化チタン、酸化アルミニウム、シリカ、ガラス、骨粉、木粉、繊維フレーク、セルロース、セルロースナノファイバーが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。
 本発明の固体電解質がフィラーを含む場合、その含有量は、固体電解質全量に対して好ましくは0.1~30質量%であり、より好ましくは0.2~25質量%であり、更に好ましくは0.5~20質量%である。フィラーの含有量が上記範囲内であると、イオン伝導度をさらに向上させることができる。
 本発明の固体電解質は、上述の各成分の他に、本発明の効果を損なわない範囲で、必要に応じて、この種の材料に一般に配合される成分を含んでもよく、例えば、酸化防止剤、光安定化剤、光増感剤、難燃防止剤等の添加剤を含んでもよい。
 本発明の固体電解質中に含まれる上記反応生成物及び金属塩の含有量は、好ましくは50質量%以上であり、より好ましくは60質量%以上である。
 本発明の固体電解質を製造する方法は、特に制限はないが、例えば、上記ポリオールと上記ポリイソシアネートとの反応生成物、上記金属塩、並びに必要に応じて含有される可塑剤、フィラー、及び添加剤を混合し、乾燥させることで得られる。
[電池]
 本発明の電池は、上述の固体電解質を備える。したがって、強靭性に優れるとともにイオン伝導度及びカチオン輸率に優れるため、フレキシブル電池とすることができる。
 本発明の電池は、上記固体電解質に各種公知の正極材料及び負極材料を接合することにより得ることができる。
 正極材料としては、LiMnO、LiMn、LiCoO、LiCr、LiNiO、LiCrOなどが挙げられる。負極材料としては、ハードカーボン、ソフトカーボン、リチウム金属などが挙げられる。負極材料に使用されるハードカーボン、ソフトカーボン、リチウム金属は積層状、球状、繊維状、螺旋状、フィブリル状などのミクロ構造のものを適宜使用でき、負極材料の形状は平板状、波板状、棒状、粉末状などが挙げられる。
 上記電池を包装する外装材としてはアルミ箔、アルミ蒸着した有機フィルムなどを使用できる。有機フィルムの材質は各種公知のものが使用でき、具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ナイロン、ポリエチレンテトラフルオレートなどが挙げられる。
 上記電池を備える物品としては、ウェアラブルデバイスなどのフレキシブルデバイス、エレクトロクロミックディスプレイ、インプラントデバイスなどが挙げられる。
 以下、実施例に基づいて、本発明を具体的に説明するが、本発明は、下記実施例により限定されるものではない。
<評価試験>
(水酸基価)
 ポリオールの水酸基価は、JIS K 1557:2007 B法に準拠して、フタル化試薬を用いた方法にて算出した。
(数平均分子量(Mn)及び分子量分布(Mw/Mn))
 合成例1~3で得られたポリウレタン樹脂の数平均分子量(Mn)、並びにポリオールの数平均分子量(Mn)及びポリオールの重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)で測定した。また、上記Mn及びMwよりポリオールのMw/Mnを算出した。
 なお、溶媒としては、テトラヒドロフランを用いた。検量線は、合成例1~3で得られたポリウレタン樹脂を測定する場合には、分子量既知のポリスチレンを用い、ポリオールを測定する場合には、水酸基価換算分子量が既知のポリプロピレングリコールを用いて作成した。すなわち、ポリウレタン樹脂の数平均分子量はポリスチレン換算分子量として算出し、ポリオールの数平均分子量はポリプロピレングリコール換算分子量として算出した。
(ガラス転移温度)
 合成例1~3で得られたポリウレタン樹脂のTgは、JIS K7121:2012に準拠して測定した。具体的には、合成例1~3の各ポリウレタン樹脂をシリコーン離型処理したPETフィルムに積層させ、プレス後の厚さが150μmになるように150~180℃で熱プレスすることで試験体を得た。得られた試験体について、動的粘弾性測定装置(EXSTAR 6000 DMS6100、セイコーインスツル株式会社製)を用いて、ガラス転移温度を測定した。測定条件は、温度範囲-100℃~+130℃、昇温速度3℃/分とした。
(オキシエチレン基の含有割合(エチレンオキシド単位(EO単位)含有量)及びオキシプロピレン基の含有割合(プロピレンオキシド単位(PO単位)含有量))
 ポリオキシアルキレンポリカーボネートジオールについてのオキシアルキレン基の総量に対するオキシエチレン基の含有割合(エチレンオキシド単位含有量)及びオキシプロピレン基の含有割合(プロピレンオキシド単位含有量)は、H-NMRを用いてオキシアルキレン鎖のモノマー組成を求め、プロピレンオキシド単位中のメチル基のシグナルとプロピレンオキシド単位中及びエチレンオキシド単位中のメチレン基のシグナルの面積比から、エチレンオキシド単位含有量及びプロピレンオキシド単位含有量を求めた。
(ハードセグメント含有量)
 ハードセグメント含有量は、各例において、下式(I)を使用して計算して得られる値(質量%)である。
  (ポリイソシアネートの質量+鎖延長剤の質量)/(ポリイソシアネートの質量+鎖延長剤の質量+Q)×100  (I)
 ただし、合成例1において、Qはポリオキシアルキレンポリカーボネートジオール(PEPCD+PO+EO)の質量を表し、合成例2及び3において、Qはポリエーテルポリカーボネート(PEPCD)の質量を表す。
(NCO単位含有量)
 ウレタン結合の含有量は、各例において、下式(II)を使用して計算して得られる値(質量%)である。
  (ポリイソシアネートの質量)/(ポリイソシアネートの質量+鎖延長剤の質量+Q)×100 (II)
 ただし、Qは、式(I)と同様である。
(カーボネート基含有量)
 ポリオール1分子あたりのカーボネート基の繰り返し単位数は、各ポリオールを10質量%となるように重クロロホルムに溶解し、分解能400MHz(JNM-ECZ400SJNM、日本電子社製品名)でH-NMRを測定し、カーボネート基に隣接した炭素に結合した水素原子に基づくピークより算出する。
 また、カーボネート基含有量はポリオール1分子あたりのカーボネート基の量であり、具体的には下記式(III)で求められる。
  カーボネート基含有量(%)=(カーボネート基分子量)×(1分子中のカーボネート基の繰り返し単位数)/(ポリオールの数平均分子量)×100  (III)
 (ここでカーボネート基(-O-C=O-O-)の分子量は60.01である。)
(引張物性)
 乾燥後の厚さが0.1μmになるよう、固体電解質をシリコーン型に流し込んで、80℃で乾燥させた。次いで、ダンベル状に打ち抜き、試験体を得た。得られた試験体をJIS K 7311(1995)に準じ、破断強度(単位:MPa)および破断伸び(単位:%)を、テンシロン(エーアンドデイ社製品名:RTG-1310)を用いて引張速度50mm/分の条件で測定した。また、得られた応力-ひずみ曲線の面積から破壊に要するエネルギー(単位:MJ/m)を算出した。破壊に要するエネルギーは靭性を表す指標であり、値が大きい程、固体電解質の靭性が良好であることを示す。
 破断強度は、1.0MPa以上の範囲であれば固体電解質の機械強度が良好であると言える。
 破断伸びは、1000%以上の範囲であれば固体電解質の柔軟性が良好であると言える。
 破壊に要するエネルギーは、40MJ/m以上の範囲であれば固体電解質の靱性が良好であると言える。
(イオン伝導度)
 乾燥後の厚さが2mmになるよう、固体電解質をシリコーン型に流し込んで、80℃で乾燥させた。次いで、直径5mmの円柱状に打ち抜き、試験体を得た。
 得られた試験体のイオン伝導度(σ)は、試験体を1対の電極(SUS製:厚さ4mm×直径20mm)で挟んだ測定セルを作製し、これを用いて複素インピーダンスを測定し、下記式(IV)に基づきイオン伝導度の対数(log(σ))を算出することで評価した。
  log(σ)=log(d/(R×A))   (IV)
(式中、Rはバルク抵抗値、dは試験体の厚さ、Aは電極の面積である。)
 複素インピーダンスの測定を行うと、電位勾配に沿ったイオンの泳動と同時に、電気二重層の充放電、電極反応などが起こるために周波数依存性を示す。この周波数依存性を、実数部を横軸、虚数部を縦軸とした平面にプロット(Cole-Coleプロット)し、その軌跡を説明する等価回路の値(抵抗値、単位:S/cm)を求めた。測定温度は15℃及び23℃で行った。
(カチオン輸率)
 例5及び6の固体電解質を乾燥後の厚さが30μmになるよう、シリコーン型に流し込んで、80℃で乾燥させた。次いで、直径10mmの円形に打ち抜き、試験体を得た。
 得られた試験体のカチオン輸率(t)は、試験体を1対の電極(Li箔:直径4mm)で挟んだ測定セルを作製し、これを用いてインピーダンス測定およびクロノアンペノメトリー測定を行った。得られた初期状態及び定常状態の電流値(それぞれI、I)および界面抵抗(それぞれR 、R )からBruce-Vincent-Evance法により、下記式(V)に基づきカチオン輸率を算出した。なお、カチオン輸率は値が大きい程良好であることを示す。
  t=I(ΔV-I )/I(ΔV-I )   (V)
<ポリウレタン樹脂の合成>
(合成例1)
 ポリエーテルポリカーボネートジオール(PEPCD)(製品名:NT1002、三菱ケミカル社製、透明粘性液体、Mn:1,000、ガラス転移温度-78℃)(一般式(2)中、R、R、R:n-ブチレン基、a:3.2、n:2.7、m:3.2)を開始剤として用いた。この開始剤100質量部に対して、配位子がt-ブチルアルコールである亜鉛ヘキサシアノコバルテート錯体(TBA-DMC触媒)0.02質量部を開環重合触媒として使用して、環状エーテルとしてのプロピレンオキシド(PO)50質量部、エチレンオキシド(EO)50質量部を反応容器内で、130℃で4時間開環付加重合して、ポリオキシアルキレンポリカーボネートジオール(a1)(一般式(2)中、R及びR:n-ブチレン基、R:n-ブチレン基、エチレン基及びイソプロピレン基、a:3.2、n:2.7、m:19)を266g得た。得られたポリオキシアルキレンポリカーボネートジオール(a1)は、透明液体であった。なお、上記POの仕込量(50質量部)及びEOの仕込量(50質量部)から算出されるポリオキシアルキレンポリカーボネートジオール(a1)におけるPO/EO部位の構造から算出される分子量は1,000であった。得られたポリオキシアルキレンポリカーボネートジオール(a1)の水酸基価は54.7mgKOH/g、Mnは2,200、Mw/Mnは1.13であった。また、ポリオキシアルキレンポリカーボネートジオール(a1)におけるオキシアルキレン基の総量に対するオキシエチレン基の含有割合は31質量%であり、オキシプロピレン基の含有割合は23質量%であった。
 なお、a、n、及びmは理論計算値である。
 得られたポリオキシアルキレンポリカーボネートジオール(a1)266g、4,4’-ジフェニルメタンジイソシアネート(以下「MDI」ということがある)73.4g、及び酸化防止剤(Irganox1010)3.5gを混合し、80℃に加熱して3時間反応させてポリウレタン樹脂前駆体を得た(イソシアネート基のインデックス:226)。次いで、得られたポリウレタン樹脂前駆体に、鎖延長剤としての1,4-ブタンジオール 15.3gを加え、得られた混合物をステンレス製パレットに移してさらに130℃にて4時間反応させ、ハードセグメント含有量が25質量%、NCO単位含有量が20.7質量%のポリウレタン樹脂(A1)を得た。得られたポリウレタン樹脂(A1)のMnは86,000であり、Tgは-42℃であった。また、ポリウレタン樹脂(A1)1分子当たりのカーボネート基の量は5.5質量%であった。
(合成例2)
 反応容器内で、PEPCD(製品名:NT2002、三菱ケミカル社製、粘性液体、Mn:2,090、ガラス転移温度-71℃)(一般式(2)中、R、R、R:n-ブチレン基、a:3.2、n:6.3、m:3.2)266g、MDI 73.9g、及び酸化防止剤(Irganox1010)3.5gを混合し、80℃に加熱して5時間反応させてポリウレタン樹脂前駆体を得た(イソシアネート基のインデックス:215)。
 次いで、得られたポリウレタン樹脂前駆体に、鎖延長剤としての1,4-ブタンジオール14.8gを加え、得られた混合物をステンレス製パレットに移してさらに180℃にて3時間反応させ、ハードセグメント含有量が25質量%、NCO単位含有量が20.8質量%のポリウレタン樹脂(A2)を得た。得られたポリウレタン樹脂(A2)のMnは88,400であり、Tgは-42℃であった。また、ポリウレタン樹脂(A2)1分子当たりのカーボネート基の量は13.6質量%であった。
(合成例3)
 反応容器内で、ポリカーボネートジオール(PCD)(製品名:T6002、旭化成社製、固体、Mn:2,100)(一般式(2)中、R、R:ヘキサメチレン基、a:1、n:18、m:0)266g、MDI 73.7g、及び酸化防止剤(Irganox1010)3.5gを混合し、80℃に加熱して3時間反応させてポリウレタン樹脂前駆体を得た(イソシアネート基のインデックス:226)。
 次いで、得られたポリウレタン樹脂前駆体に、鎖延長剤としての1,4-ブタンジオール12.4gを加え、得られた混合物をステンレス製パレットに移してさらに130℃にて4時間反応させ、ハードセグメント含有量が25質量%、NCO単位含有量が20.9質量%のポリウレタン樹脂(A3)を得た。得られたポリウレタン樹脂(A3)のMnは71,400であり、Tgは-18℃であった。また、ポリウレタン樹脂(A3)1分子当たりのカーボネート基の量は38.9質量%であった。
(例1~7)
 表1に示す組成比で各成分を混合し、例1~7の固体電解質を得た。得られた固体電解質を用いて上述の方法で、引張物性、イオン伝導度及びカチオン輸率を評価した。例1~5は実施例であり、例6及び7は比較例である。なお、表中の略称は、以下のとおりである。
〔ポリウレタン樹脂〕
・A1:合成例1で得られたポリウレタン樹脂
・A2:合成例2で得られたポリウレタン樹脂
・A3:合成例3で得られたポリウレタン樹脂
〔ポリウレタン樹脂(一般式(1)に示す構造を有するポリオールと、ポリイソシアネートとの反応生成物)以外の樹脂〕
・PEG:ポリエチレングリコール、シグマアルドリッチ社製(数平均分子量100,000、重合体中のカーボネート基のモル数は0個、Tgは-55℃)。
・QPAC:QPAC-25、ポリカーボネート、EMPOWER MATERIALS社製(数平均分子量101,000、重合体中のカーボネート基のモル数は1個、Tgは10℃。)
〔金属塩〕
・LiTFSI:リチウムビス(トリフルオロメタンスルホニル)イミド、森田化学工業社製
〔可塑剤〕
・DEGDME:ジエチレングリコールジメチルエーテル、東京化成工業社製
〔フィラー〕
・シリカ:AGCエスアイテック社製 NP-30
Figure JPOXMLDOC01-appb-T000010
 例1~5の固体電解質は、強靭性に優れるとともにイオン伝導度に優れることがわかる。また、例5の固体電解質は、カチオン輸率に優れる。

Claims (18)

  1.  下記一般式(1)に示す構造を有するポリオールと、ポリイソシアネートとの反応生成物、及び金属塩を含む、固体電解質。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Aは-(RO)C(=O)O-を表し、Bは-RO-を表す。nは1~170の数であり、mは0~170の数である。R、R及びRは、それぞれ独立して、炭素数2~10の二価の炭化水素基を表す。aは1~30の数である。aが2以上である場合、複数の(RO)は同一でも異なっていてもよい。複数の(RO)は、ブロック状に結合していてもランダム状に結合していてもよい。Aが複数存在する場合、複数のAは同一でも異なっていてもよい。Bが複数存在する場合、複数のBは同一でも異なっていてもよい。A、B及びRの結合順序は問わない。複数のA及び複数のBは、ブロック状に結合していてもランダム状に結合していてもよい。)
  2.  前記一般式(1)において、前記A及び前記Bの合計に対する前記Aの割合が、3~100質量%である、請求項1に記載の固体電解質。
  3.  前記一般式(1)におけるBがオキシエチレン基及びオキシプロピレン基からなる群より選択される少なくとも1種を含む、請求項1又は2に記載の固体電解質。
  4.  前記一般式(1)におけるBに含まれる、前記オキシエチレン基の割合が、25~100質量%であり、前記オキシプロピレン基の割合が、0~75質量%である、請求項3に記載の固体電解質。
  5.  前記ポリオールの数平均分子量が500~15,000である、請求項1~4のいずれか一項に記載の固体電解質。
  6.  前記ポリオールが下記一般式(2)に示す構造を有するジオールである、請求項1~5のいずれか一項に記載の固体電解質。
    Figure JPOXMLDOC01-appb-C000002

    (式中、nは1~170の数であり、mは0~170の数である。R、R及びRは、それぞれ独立して、炭素数2~10の二価の炭化水素基を表す。aは1~30の数である。aが2以上である場合、複数の(RO)は同一でも異なっていてもよい。複数の(RO)は、ブロック状に結合していてもランダム状に結合していてもよい。「-(RO)C(=O)O-」で表される構造が複数存在する場合、複数の「-(RO)C(=O)O-」で表される構造は同一でも異なっていてもよい。「-(RO)-」で表される構造が複数存在する場合、複数の「-(RO)-」で表される構造は同一でも異なっていてもよい。「-(RO)C(=O)O-」で表される構造、「-(RO)-」で表される構造及びRの結合順序は問わない。複数の「-(RO)C(=O)O-」で表される構造及び複数の「-(RO)-」で表される構造は、ブロック状に結合していてもランダム状に結合していてもよい。)
  7.  前記反応生成物の数平均分子量が20,000~150,000である、請求項1~6のいずれか一項に記載の固体電解質。
  8.  前記反応生成物1分子当たりのカーボネート基の量が、3~70質量%である、請求項1~7のいずれか一項に記載の固体電解質。
  9.  前記ポリイソシアネートがジイソシアネートである、請求項1~8のいずれか一項に記載の固体電解質。
  10.  前記金属塩が、アルカリ金属塩及びアルカリ土類金属塩からなる群より選択される少なくとも1種である、請求項1~9のいずれか一項に記載の固体電解質。
  11.  さらに可塑剤を含む、請求項1~10のいずれか一項に記載の固体電解質。
  12.  さらにフィラーを含む、請求項1~11のいずれか一項に記載の固体電解質。
  13.  下記一般式(2)で表されるジオールと、ポリイソシアネートとを反応させた反応生成物、及び金属塩を含む固体電解質の製造方法。
    Figure JPOXMLDOC01-appb-C000003

    (式中、nは1~170の数であり、mは0~170の数である。R、R及びRは、それぞれ独立して、炭素数2~10の二価の炭化水素基を表す。aは1~30の数である。aが2以上である場合、複数の(RO)は同一でも異なっていてもよい。複数の(RO)は、ブロック状に結合していてもランダム状に結合していてもよい。「-(RO)C(=O)O-」で表される構造が複数存在する場合、複数の「-(RO)C(=O)O-」で表される構造は同一でも異なっていてもよい。「-(RO)-」で表される構造が複数存在する場合、複数の「-(RO)-」で表される構造は同一でも異なっていてもよい。「-(RO)C(=O)O-」で表される構造、「-(RO)-」で表される構造及びRの結合順序は問わない。複数の「-(RO)C(=O)O-」で表される構造及び複数の「-(RO)-」で表される構造は、ブロック状に結合していてもランダム状に結合していてもよい。)
  14.  前記ジオールが、ポリカーボネートジオール又はポリエーテルポリカーボネートジオールを開始剤として、開環重合触媒の存在下で、環状エーテルを開環付加重合させて得られるポリオキシアルキレンポリカーボネートジオールである、請求項13に記載の固体電解質の製造方法。
  15.  前記環状エーテルがエチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド及び2,3-ブチレンオキシドからなる群より選択される少なくとも1種を含む、請求項14に記載の固体電解質の製造方法。
  16.  前記環状エーテルは、エチレンオキシド及びプロピレンオキシドを含み、前記ポリオキシアルキレンポリカーボネートジオール中のエチレンオキシドとプロピレンオキシドの合計におけるエチレンオキシドの割合が25~100質量%である、請求項14又は15に記載の固体電解質の製造方法。
  17.  請求項1~12のいずれか一項に記載の固体電解質を備える、電池。
  18.  請求項17に記載の電池を備える、フレキシブルデバイス。
PCT/JP2022/045220 2021-12-15 2022-12-08 固体電解質、電池及びフレキシブルデバイス WO2023112811A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021203520 2021-12-15
JP2021-203520 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023112811A1 true WO2023112811A1 (ja) 2023-06-22

Family

ID=86774656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045220 WO2023112811A1 (ja) 2021-12-15 2022-12-08 固体電解質、電池及びフレキシブルデバイス

Country Status (1)

Country Link
WO (1) WO2023112811A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313074A (ja) * 2000-04-27 2001-11-09 Hitachi Chem Co Ltd ゲル状イオン伝導性電解質並びにそれを用いた電池及び電気化学的デバイス
WO2018151119A1 (ja) * 2017-02-16 2018-08-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質含有シートおよび全固体二次電池の製造方法
WO2018151161A1 (ja) * 2017-02-17 2018-08-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物
JP2021025038A (ja) * 2019-08-07 2021-02-22 三菱ケミカル株式会社 ポリエーテルポリカーボネートジオール及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313074A (ja) * 2000-04-27 2001-11-09 Hitachi Chem Co Ltd ゲル状イオン伝導性電解質並びにそれを用いた電池及び電気化学的デバイス
WO2018151119A1 (ja) * 2017-02-16 2018-08-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質含有シートおよび全固体二次電池の製造方法
WO2018151161A1 (ja) * 2017-02-17 2018-08-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物
JP2021025038A (ja) * 2019-08-07 2021-02-22 三菱ケミカル株式会社 ポリエーテルポリカーボネートジオール及びその製造方法

Similar Documents

Publication Publication Date Title
EP3493317A1 (en) Solid electrolyte composition, solid-electrolyte-containing sheet and all-solid-state secondary battery, production method for solid-electrolyte-containing sheet and all-solid-state secondary battery, segmented polymer, and non-aqueous-solvent dispersion of polymer and segmented polymer
KR100538680B1 (ko) 폴리에테르공중합체및고분자고체전해질
EP2771380B1 (en) Polyurethane based membranes and/or separators for electrochemical cells
CN105378988B (zh) 锂二次电池的电极用粘合剂、电极及锂二次电池
JPWO2018151119A1 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP2016069388A (ja) ポリマー電解質組成物、リチウム金属二次電池用負極及びリチウムイオン二次電池用電解質並びにそれらを用いたリチウム金属二次電池及びリチウムイオン二次電池
DE112014004424T5 (de) Festelektrolytzusammensetzung, Bindemittel für vollständig im festen Zustand vorliegende Sekundärbatterien und Elektrodenblatt für Batterien und vollständig in festem Zustand vorliegende Sekundärbatterie, die jeweils die Festelektrolytzusammensetzung verwenden
US11581570B2 (en) Polyurethane hybrid solid ion-conductive compositions
KR20010025099A (ko) 고분자화합물,바인더수지,이온도전성고분자 전해질용조성물 및 2차전지
US10756388B2 (en) Solid electrolyte and battery
JP5605936B2 (ja) ゲル状イオン導電体及びその用途
JP2016181448A (ja) 硫化物系固体電解質組成物、電池用電極シートおよびその製造方法、並びに、全固体二次電池およびその製造方法
CN112838267A (zh) 一种聚合物基电解质及其制备方法和固态电池
EP4372026A2 (en) Polymeric binder and all-solid-state secondary battery
EP3561910B1 (en) Lithium-ion battery negative electrode
WO2019017311A1 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
JP2017188454A (ja) リチウムイオン電池用被覆正極活物質
WO2023112811A1 (ja) 固体電解質、電池及びフレキシブルデバイス
CN115917794A (zh) 基于热塑性聚氨酯的聚合型电解质组合物
JP4578203B2 (ja) ゲル状リチウムイオン導電体及びその製法
EP3951939A1 (en) Lithium ion battery
KR100773533B1 (ko) 고분자 전해질, 그 제조방법 및 이를 이용한 연료 전지
US20200381780A1 (en) Solid polymer electrolyte
JP2011198691A (ja) ゲル状イオン導電体及びその製造方法
JP6896479B2 (ja) リチウムイオン電池用被覆正極活物質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907338

Country of ref document: EP

Kind code of ref document: A1