WO2020137434A1 - 全固体二次電池用バインダー組成物 - Google Patents

全固体二次電池用バインダー組成物 Download PDF

Info

Publication number
WO2020137434A1
WO2020137434A1 PCT/JP2019/047714 JP2019047714W WO2020137434A1 WO 2020137434 A1 WO2020137434 A1 WO 2020137434A1 JP 2019047714 W JP2019047714 W JP 2019047714W WO 2020137434 A1 WO2020137434 A1 WO 2020137434A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
secondary battery
mass
solid electrolyte
binder composition
Prior art date
Application number
PCT/JP2019/047714
Other languages
English (en)
French (fr)
Inventor
祐作 松尾
園部 健矢
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020563013A priority Critical patent/JPWO2020137434A1/ja
Priority to US17/413,949 priority patent/US20220045360A1/en
Priority to KR1020217018636A priority patent/KR20210110297A/ko
Priority to EP19905923.9A priority patent/EP3904406B1/en
Priority to PL19905923.9T priority patent/PL3904406T3/pl
Priority to CN201980083368.XA priority patent/CN113242866B/zh
Publication of WO2020137434A1 publication Critical patent/WO2020137434A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/375Thiols containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/378Thiols containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/527Cyclic esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is a binder composition for all-solid secondary battery, a slurry composition for all-solid secondary battery solid electrolyte layer, a slurry composition for all-solid secondary battery electrode, a solid electrolyte layer for all-solid secondary battery, all-solid
  • the present invention relates to an electrode for a secondary battery and an all solid state secondary battery.
  • rechargeable batteries such as lithium-ion rechargeable batteries have been used in various applications such as household small power storage devices, motorcycles, electric vehicles, hybrid electric vehicles, in addition to portable terminals such as portable information terminals and portable electronic devices.
  • Demand is increasing.
  • secondary batteries are required to have further improved safety.
  • an all-solid secondary battery which uses a solid electrolyte instead of an organic solvent electrolyte, which is highly flammable and has a high risk of ignition when leaking, is drawing attention.
  • the all-solid-state secondary battery has a solid electrolyte layer between the positive electrode and the negative electrode.
  • a slurry composition containing an electrode active material positive electrode active material, negative electrode active material
  • a binder and a solid electrolyte is applied on a current collector and dried to form an electrode mixture on the current collector. It can be formed by providing a material layer (positive electrode mixture layer, negative electrode mixture layer), and the solid electrolyte layer is obtained by applying a slurry composition containing a binder and a solid electrolyte onto an electrode or a release substrate. It can be formed by drying.
  • An all-solid secondary battery is produced by stacking a positive electrode and a negative electrode so that a positive electrode composite material layer of a positive electrode and a negative electrode composite material layer of a negative electrode face each other with a solid electrolyte layer in between, and generally press-working.
  • Patent Document 1 describes that by using a polymer having a particle structure and a water-soluble polymer together in a binder, the output characteristics and charge/discharge cycle characteristics of an all-solid secondary battery are improved.
  • Patent Documents 2 and 3 by using a polymer having a hard segment and a soft segment selected from an amide bond, a urea bond, a urethane bond and an imide bond as a binder, a solid electrolyte layer is formed without depending on pressure. It is described that such an increase in interface resistance is suppressed.
  • Patent Document 4 polyurethane, polyurea, polyamide, polyimide and/or polyester is used as a binder, and an antioxidant is blended to prevent oxidative deterioration of the solid electrolyte and the binder, and suppress performance deterioration in long-term use. It is described to do.
  • Patent Documents 2 and 3 it is necessary to prepare a specific polymer, which imposes a heavy load on the implementation.
  • Patent Document 4 in order to prevent oxidation, a large amount of antioxidant is added to the binder. , There is a concern that the output characteristics of the all solid state secondary battery may be affected.
  • the output characteristics and charge/discharge cycle characteristics intended by Patent Document 1 are characteristics that are particularly focused among the characteristics of the all-solid-state secondary battery expected to be applied to electric vehicles, large-sized storage batteries, and the like. Further improvement in cycle characteristics is required in the high temperature region.
  • An object of the present invention is to provide a binder composition for an all-solid secondary battery that can bring about an all-solid secondary battery having excellent output characteristics and high-temperature cycle characteristics.
  • the present inventors have found that the above object can be achieved by using a specific polymer as a binder and combining a specific amount of an antioxidant in a binder composition for an all-solid secondary battery, and completed the present invention. It was
  • a binder composition for an all-solid-state secondary battery containing a polymer, an antioxidant and an organic solvent is a polymer containing 25% by mass or more and 95% by mass or less of a (meth)acrylic acid ester monomer unit and having a gel amount of 50% by mass or less,
  • the amount of the antioxidant with respect to 100 parts by mass of the polymer is 0.005 parts by mass or more and 0.5 parts by mass or less
  • the present invention relates to a binder composition for all solid state secondary batteries.
  • a polymer containing 25% by mass or more and 95% by mass or less of a (meth)acrylic acid ester monomer unit and having a gel amount of 50% by mass or less is hereinafter also referred to as “(meth)acrylic polymer”.
  • An amount of 0.005 parts by mass or more and 0.5 parts by mass or less of the aging agent with respect to 100 parts by mass of the coalescence is hereinafter also referred to as "a specific amount of antiaging agent”.
  • the "binder composition for all-solid secondary battery” means a slurry composition for all-solid secondary battery (slurry composition for all-solid secondary battery solid electrolyte layer, all-solid secondary battery electrode slurry composition).
  • the material used to produce the product) and includes a binder and an organic solvent.
  • the binder composition for an all-solid secondary battery of the present invention is characterized in that the binder is the above-mentioned (meth)acrylic polymer and a specific amount of the antioxidant is blended.
  • the mechanism by which the binder composition for an all-solid-state secondary battery of the present invention provides an all-solid-state secondary battery having excellent output characteristics and high-temperature cycle characteristics in an all-solid-state secondary battery is not clear, but is speculated as follows. be able to.
  • the binder composition for the all-solid secondary battery of the present invention is mainly used for the solid electrolyte layer slurry composition for the all-solid secondary battery and the all-solid secondary battery electrode slurry composition using the (meta ) It imparts dispersibility based on the acrylic polymer, and imparts plasticity to the layer formed by using the slurry composition thereof mainly based on the specific amount of the antioxidant.
  • the leveling property at the time of coating the slurry composition is improved, and the adhesion of the layer formed after drying the slurry composition to the substrate is improved.
  • This provides the all-solid secondary battery with excellent output characteristics.
  • the impartation of plasticity by the specific amount of the anti-aging agent is because the specific amount of the anti-aging agent makes the slip between the respective components in the layer formed by using the slurry composition good.
  • the specific amount of the anti-aging agent reduces the internal stress of each layer even when pressure is applied to each layer in the manufacturing process of the battery. This avoids the situation where the presence of internal stress in each layer is manifested and the cycle characteristics are deteriorated when the charge/discharge cycle is repeated, and the cycle characteristics in the high temperature region are improved in the all solid state secondary battery. Be done.
  • the use of the binder composition for an all-solid secondary battery of the present invention makes it possible to reduce the internal stress of each layer during press working. Further, since the adhesion of the layer formed after drying the slurry composition is improved, the pressure during pressing is reduced, the amount of the binder is relatively reduced, and the amount of the electrode active material and the solid electrolyte is relatively reduced. It is possible to increase. As described above, the binder composition for an all-solid-state secondary battery of the present invention is effective in improving the battery performance (pressing property), which is premised on the production of an all-solid-state secondary battery, which is press working.
  • (meth)acrylic means “acrylic and/or methacrylic”.
  • the “monomer unit” means “a structural unit derived from the monomer”.
  • “including a monomer unit” means that "a structural unit derived from a monomer is contained in the polymer obtained using the monomer”, The content ratio is represented by the ratio of the entire polymer as 100% by mass.
  • the “gel amount” can be measured by the method described in the examples of the present specification.
  • the polymer further contains an ⁇ , ⁇ -unsaturated nitrile monomer unit.
  • a polymer further containing an ⁇ , ⁇ -unsaturated nitrile monomer unit as a binder, better dispersibility can be imparted to the slurry composition, thereby effectively improving the output characteristics. Can be made.
  • the polymer further contains a hydrophobic monomer unit.
  • the “hydrophobic monomer unit” means “the solubility of the monomer itself in water (25° C.) is 1 g/1 L or less, and (meth)acrylic acid ester monomer. Unit and monomer unit other than ⁇ , ⁇ -unsaturated nitrile monomer unit”.
  • the antioxidant is one or more selected from the group consisting of a phenol antioxidant and an organic phosphorus antioxidant.
  • the present invention relates to a slurry composition for an all-solid-state secondary battery solid electrolyte layer, which contains any of the above-mentioned binder compositions for all-solid-state secondary batteries and a solid electrolyte.
  • a slurry composition for an all-solid secondary battery solid electrolyte of the present invention is excellent in dispersibility and pressability, and can provide excellent output characteristics and high-temperature cycle characteristics in an all-solid secondary battery.
  • the present invention relates to a slurry composition for an all-solid-state secondary battery electrode, which contains the binder composition for an all-solid-state secondary battery, an electrode active material and a solid electrolyte described above.
  • INDUSTRIAL APPLICABILITY The slurry composition for an electrode of an all-solid secondary battery of the present invention is excellent in dispersibility and pressability, and can provide excellent output characteristics and high-temperature cycle characteristics in an all-solid secondary battery.
  • the present invention relates to a solid electrolyte layer for an all-solid secondary battery formed by using the slurry composition for an all-solid secondary battery solid electrolyte layer.
  • the solid electrolyte layer for an all-solid-state secondary battery of the present invention can bring excellent output characteristics and high-temperature cycle characteristics in an all-solid-state secondary battery.
  • the present invention relates to an electrode for an all-solid secondary battery, which includes an electrode mixture layer formed using the slurry composition for an electrode of the all-solid secondary battery.
  • INDUSTRIAL APPLICABILITY The electrode for an all-solid-state secondary battery of the present invention can bring excellent output characteristics and high-temperature cycle characteristics in an all-solid-state secondary battery.
  • the all-solid-state secondary battery of the present invention includes at least one of the solid electrolyte layer for all-solid-state secondary battery and the electrode for all-solid-state secondary battery, and has excellent output characteristics and high-temperature cycle characteristics.
  • the binder composition for all-solid secondary batteries which can bring about the all-solid secondary battery excellent in output characteristic and cycle characteristic is provided. Further, according to the present invention, it is possible to provide an all-solid secondary battery having excellent output characteristics and cycle characteristics, an all-solid secondary battery solid electrolyte layer slurry composition, an all-solid secondary battery electrode slurry composition. A solid electrolyte layer for an all-solid secondary battery and an electrode for an all-solid secondary battery are provided.
  • the all-solid secondary battery of the present invention has excellent output characteristics and high-temperature cycle characteristics, and is highly industrially useful.
  • the binder composition for an all-solid secondary battery of the present invention produces a slurry composition for all-solid secondary batteries (slurry composition for all-solid secondary battery solid electrolyte layer, all-solid secondary battery electrode slurry composition). It is used as a material when doing.
  • the slurry composition for an all-solid secondary battery solid electrolyte layer of the present invention is used when forming a solid electrolyte layer of an all-solid secondary battery, and the all-solid secondary battery electrode slurry composition of the present invention is It is used when forming an electrode mixture layer (a positive electrode mixture layer, a negative electrode mixture layer) of an all-solid secondary battery.
  • the electrode (positive electrode, negative electrode) for an all-solid-state secondary battery of the present invention includes the electrode mixture layer (positive electrode mixture layer, negative electrode mixture layer).
  • the all-solid secondary battery of the present invention includes at least one of the solid electrolyte layer for all-solid secondary battery of the present invention and the electrode for all-solid secondary battery of the present invention.
  • the binder composition for an all-solid secondary battery of the present invention is a binder composition for an all-solid secondary battery containing a polymer, an antioxidant and an organic solvent, wherein the polymer is a (meth)acrylic acid ester monomer. It contains 25% by mass or more and 95% by mass or less of a monomer unit, the amount of gel is 50% by mass or less, and the amount of the antioxidant is 0.005 parts by mass or more and 0.5 parts by mass with respect to 100 parts by mass of the polymer. It is as follows.
  • the polymer ((meth)acrylic polymer) containing 25% by mass or more and 95% by mass or less of the (meth)acrylic acid ester monomer unit in the present invention and having a gel amount of 50% by mass or less is a binder component.
  • the binder component is a component for binding the components contained in the solid electrolyte layer to each other or the components contained in the electrode mixture layer to each other so as not to be separated from the mixture layer.
  • the (meth)acrylic polymer may be a single type or a combination of two or more types in any ratio.
  • Examples of the (meth)acrylic acid ester monomer in the (meth)acrylic acid ester monomer unit include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate and pentyl.
  • Acrylic alkyl esters such as acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate, 2-ethylhexyl acrylate; 2-methoxyethyl acrylate, 2-ethoxyethyl Acrylic acid alkoxy esters such as acrylates; 2-(perfluoroalkyl)ethyl acrylates such as 2-(perfluorobutyl)ethyl acrylate and 2-(perfluoropentyl)ethyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, Isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, pentyl methacrylate,
  • the (meth)acrylic acid ester monomer also includes a diester of ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid, and examples thereof include a lower alkyl diester of itaconic acid such as diethyl itaconate and dibutyl itaconate.
  • a diester of ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid examples thereof include a lower alkyl diester of itaconic acid such as diethyl itaconate and dibutyl itaconate.
  • methyl acrylate, ethyl acrylate, methyl methacrylate, 2-ethylhexyl acrylate, n-butyl acrylate, t-butyl acrylate and dibutyl itaconate are preferable, and ethyl acrylate, n-butyl acrylate and t-butyl acrylate are more preferable.
  • These may be a combination of
  • the content ratio of the (meth)acrylic acid ester monomer unit in the (meth)acrylic polymer is 25% by mass or more and 95% by mass or less. From the viewpoint that the dispersion state of the solid electrolyte and the like in the slurry composition using the binder composition is good, excellent leveling property is obtained, and it is advantageous in improving the output characteristics, it is preferably 28% by mass or more, and more preferably Is 30% by mass, more preferably 32% by mass or more, preferably 90% by mass or less, more preferably 85% by mass or less, further preferably 83% by mass or less.
  • the gel amount of the (meth)acrylic polymer is 50% by mass or less, more preferably 10% by mass or less, and particularly preferably 0%. When it is at most the above upper limit, the binder composition is easily dissolved in an organic solvent, and a good dispersion state of a solid electrolyte or the like is easily obtained in a slurry composition.
  • the gel amount can be controlled by the type and amount of the monomer in the polymer, the type and amount of the chain transfer agent used in the polymerization, the polymerization temperature and the like.
  • the (meth)acrylic polymer in the present invention contains a (meth)acrylic acid ester monomer unit in an amount of 25% by mass or more and 95% by mass or less and a gel amount of 50% by mass or less.
  • the type and content ratio of the monomer units other than the (meth)acrylic acid ester monomer unit can be arbitrary.
  • the (meth)acrylic polymer preferably further contains an ⁇ , ⁇ -unsaturated nitrile monomer unit.
  • the ⁇ , ⁇ -unsaturated nitrile monomer include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile and the like. Among them, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is more preferable.
  • the ⁇ , ⁇ -unsaturated nitrile monomer can be used alone or in any combination of two or more kinds.
  • the content ratio of the ⁇ , ⁇ -unsaturated nitrile monomer unit is preferably 2% by mass or more, more preferably 3% by mass or more, particularly preferably 4% by mass, and preferably 30% by mass or less, 28% by mass. Is more preferable and 26 mass% or less is particularly preferable.
  • it is at least the above lower limit value the dispersion state of the solid electrolyte and the like in the slurry composition using the binder composition can be further improved, and the output characteristics can be effectively improved.
  • it is at most the above upper limit it is advantageous in that the polymer is easily dissolved in an organic solvent.
  • the (meth)acrylic polymer may further include a hydrophobic monomer unit.
  • the hydrophobic monomer unit include an aromatic vinyl monomer unit, a conjugated diene monomer unit and an olefin monomer unit.
  • the hydrophobic monomer unit does not include a (meth)acrylic acid ester monomer unit and an ⁇ , ⁇ -unsaturated nitrile monomer.
  • the hydrophobic monomer units can be one kind or a combination of two or more kinds in any ratio.
  • aromatic vinyl monomer styrene, chlorostyrene, vinyltoluene, t-butylstyrene, vinylbenzoic acid, methyl vinylbenzoate, vinylnaphthalene, chloromethylstyrene, hydroxymethylstyrene, ⁇ -methylstyrene, divinylbenzene, etc.
  • aromatic vinyl-based monomer styrene and vinylnaphthalene are preferable.
  • conjugated diene monomer include conjugated diene compounds having 4 or more carbon atoms such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene and 1,3-pentadiene.
  • 1,3-butadiene and isoprene are preferable.
  • the olefin monomer include 1-olefin monomers, and examples of the 1-olefin include ethylene, propylene, 1-butene, and the like, among which ethylene is preferable.
  • the olefin monomer unit may be a structural unit (conjugated diene hydride unit) obtained by hydrogenating a conjugated diene monomer unit, among which 1,3-butadiene monomer unit and isoprene monomer unit A 1,3-butadiene hydride unit and an isoprene hydride unit, which are structural units obtained by hydrogenating the unit, are preferable.
  • the content ratio of the hydrophobic monomer unit is preferably 3% by mass or more, and more preferably 5% by mass or more, from the viewpoint of further imparting dispersibility to the solid electrolyte and the like in the slurry composition and further improving the output characteristics. 12 mass% or more is more preferable, 14 mass% or more is particularly preferable, 60 mass% or less is preferable, 55 mass% or less is more preferable, 50 mass% or less is further preferable, and 45 mass% or less is particularly preferable. .. Further, when the upper limit and the lower limit are in the above ranges, it is possible to easily improve the dispersibility of the electrode active material and the conductive material when used in the slurry composition for all-solid secondary battery electrodes.
  • the (meth)acrylic polymer may contain monomer units other than the above-mentioned various monomer units.
  • Other monomer units include unsaturated carboxylic acid monomers such as acrylic acid, methacrylic acid, itaconic acid and fumaric acid; amide units such as acrylamide, N-methylol acrylamide and acrylamido-2-methylpropane sulfonic acid Halogen atom-containing monomers such as vinyl chloride and vinylidene chloride; Vinyl ester monomers such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; Vinyl ether mono-units such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether Body; vinyl ketone monomer such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, isopropenyl vinyl ketone; heterocyclic ring-containing vinyl monomer such as N-vinylpyrrol
  • the (meth)acrylic polymer includes a (meth)acrylic acid ester monomer unit of 25% by mass or more and 95% by mass or less, an ⁇ , ⁇ -unsaturated nitrile monomer unit, a hydrophobic monomer unit and other It may be composed of one or more selected from monomers. Suitable amounts and types of ⁇ , ⁇ -unsaturated nitrile monomer units, hydrophobic monomer units and other monomers are as described above.
  • the weight average molecular weight of the (meth)acrylic polymer is preferably 50,000 or more, more preferably 100,000 or more, from the viewpoint of slurry storage stability, and preferably 5,000,000 or less, from the viewpoint of slurry dispersibility. 10,000 or less is more preferable.
  • the “weight average molecular weight” can be measured by the method described in Examples of the present specification.
  • the method for preparing the (meth)acrylic polymer is not particularly limited, and a (meth)acrylic polymer can be obtained by polymerizing a monomer composition containing the above-mentioned monomer.
  • the content ratio of each monomer in the monomer composition can be determined based on the content ratio of each monomer unit of the polymer.
  • the polymerization mode is not particularly limited, and examples thereof include a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method. In each polymerization method, an emulsifier, a polymerization initiator, etc. can be used as needed.
  • the olefin monomer unit can be introduced by hydrogenating the conjugated diene monomer unit.
  • the mode of hydrogenation is not particularly limited, and a known method can be used.
  • the binder composition for an all-solid secondary battery of the present invention contains an antioxidant.
  • the anti-aging agent is not particularly limited, and examples thereof include a phenol anti-aging agent, an organic phosphorus anti-aging agent, an amine anti-aging agent, a quinone anti-aging agent, a sulfur anti-aging agent, a phenothiazine anti-aging agent and the like. .. Phenol-based anti-aging agents and organic phosphorus-based anti-aging agents are preferable from the viewpoint that even better adhesion can be obtained and the pressability can be effectively improved, and phenol-based anti-aging agents and phosphite-based anti-aging agents are preferred. Is more preferable.
  • Anti-aging agents can be one or a combination of two or more in any ratio.
  • the antiaging agent preferably contains at least one selected from a phenol antiaging agent and an organic phosphorus antiaging agent, and more preferably contains at least a phenol antiaging agent.
  • phenolic antiaging agents examples include 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl- ⁇ -dimethyl.
  • Preferred sulfur-free phenolic antioxidants are 2,6-di-t-butyl-4-methylphenol and octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate.
  • As the sulfur-containing phenolic antiaging agent 4,6-bis(octylthiomethyl)-o-cresol, 2,6-di-t-butyl-4-(4,6-bis(octylthio)-1 ,3,5-Triazin-2-ylamino)phenol is preferred. These may be a combination of one kind or two kinds or more in an arbitrary ratio.
  • a sulfur-containing phenolic antioxidant and a sulfur-free phenolic antioxidant can be used in combination.
  • organic phosphorus antiaging agent examples include triphenylphosphite, diphenylisodecylphosphite, phenyldiisodecylphosphite, 4,4′-butylidene-bis(3-methyl-6-t-butylphenylditridecyl)phosphite, 3,9-bis(octadecyloxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane (also known as cyclic neopentanetetraylbis(octadecylphosphite)), tris( Nonylphenylphosphite), tris(mono(or di)nonylphenyl)phosphite, diisodecylpentaerythritol diphosphite, tris(2,4-di-t-butylphenyl)phosphit
  • a phosphite-based antioxidant is preferable, and a phosphite-based antioxidant having a long-chain alkyl (for example, having 9 or more carbon atoms) is more preferable from the viewpoint of improving pressability.
  • a phosphite-based antioxidant having a long-chain alkyl for example, having 9 or more carbon atoms
  • diphenylisodecyl phosphite, phenyl is more preferable from the viewpoint of improving pressability.
  • Diisodecyl phosphite 4,4'-butylidene-bis(3-methyl-6-t-butylphenylditridecyl)phosphite, 3,9-bis(octadecyloxy)-2,4,8,10-tetraoxa-3 , 9-diphosphaspiro[5.5]undecane, tris(nonylphenylphosphite), tris(mono(or di)nonylphenyl)phosphite, diisodecylpentaerythritol diphosphite.
  • Amine-based antioxidants include bis(4-t-butylphenyl)amine, poly(2,2,4-trimethyl-1,2-dihydroquinoline), 6-ethoxy-1,2-dihydro-2,2 ,4-Trimethylquinoline, reaction product of diphenylamine and acetone, 1-(N-phenylamino)-naphthalene, diphenylamine derivative, dialkyldiphenylamines, N,N'-diphenyl-p-phenylenediamine, mixed diallyl-p-phenylene Examples thereof include diamine, N-phenyl-N′-isopropyl-p-phenylenediamine, N,N′-di-2-naphthyl-p-phenylenediamine compound and the like.
  • quinone-based antiaging agents examples include 2,5-di-t-butylhydroquinone, 2,5-di-t-octylhydroquinone, 2,6-di-n-dodecylhydroquinone, 2-n-dodecyl-5-chloro.
  • Hydroquinone compounds such as hydroquinone and 2-t-octyl-5-methylhydroquinone may be mentioned.
  • sulfur anti-aging agent examples include dilauryl-3,3'-thiodipropionate and distearyl-3,3'-tridipropionate.
  • phenothiazine antiaging agent examples include phenothiazine, 10-methylphenothiazine, 2-methylphenothiazine, and 2-trifluoromethylphenothiazine.
  • the binder composition for all-solid secondary batteries of the present invention contains an organic solvent.
  • the organic solvent include aromatic hydrocarbons such as toluene and xylene; ethers such as cyclopentyl methyl ether; esters such as butyl acetate and butyl butyrate, with butyl butyrate and xylene being preferred.
  • the organic solvent can be one kind or a combination of two or more kinds in any ratio.
  • the solvent of the aqueous dispersion can be solvent-exchanged with the above organic solvent.
  • the method of solvent exchange is not particularly limited, and examples thereof include a method in which an aqueous dispersion and an organic solvent are put into a rotary evaporator, the pressure is reduced, and solvent exchange and dehydration operations are performed at a predetermined temperature.
  • the binder composition for an all-solid secondary battery of the present invention may contain components such as a leveling agent, a reinforcing material, a defoaming agent, an antioxidant, a surfactant, and a dispersant in addition to the above components. .. Known components can be used as these components. Further, a binder other than the (meth)acrylic polymer may be contained as long as the effects of the present invention are not impaired.
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • body units eg, polyvinylidene fluoride (PVDF), poly(hexafluoropropylene) (PHFP), etc.
  • SBR styrene-butadiene copolymers
  • NBR copolymer
  • NBR hydrogenated NBR
  • composition/viscosity of binder composition In the binder composition for an all-solid secondary battery of the present invention, it is important to use the antioxidant in an amount of 0.005 parts by mass or more and 0.5 parts by mass or less based on 100 parts by mass of the polymer.
  • the content of the antioxidant is preferably 0.0085 parts by mass or more, more preferably 0.01 parts by mass or more from the viewpoint of improving pressability and cycle characteristics, and from the viewpoint of output characteristics. , 0.3 parts by mass or less is preferable, and 0.2 parts by mass or less is more preferable.
  • the high performance liquid chromatography/mass spectrometry can be used to identify the antioxidant in the binder composition, and the fast atom bombardment method (FAB) can be used at that time.
  • the quantification of the antioxidant in the binder composition can be performed by, for example, a calibration curve method using high performance liquid chromatography.
  • the solid content concentration of the binder composition is preferably 5% by mass or more, more preferably 6% by mass or more, and preferably 20% by mass or less, more preferably 15% by mass or less.
  • the viscosity of the binder composition (Brookfield B type viscometer, 60 rpm, 25° C.) can be 2000 mPa ⁇ s or less, preferably 1800 mPa ⁇ s or less. From the viewpoint of stability over time, the viscosity is preferably 50 mPa ⁇ s or more, more preferably 500 mPa ⁇ s or more.
  • the method for preparing the binder composition for an all-solid secondary battery of the present invention is not particularly limited, and a method of mixing the above (meth)acrylic polymer, an antioxidant and any other component in an organic solvent may be used. Can be mentioned.
  • the solvent of the aqueous dispersion is solvent-exchanged with the above organic solvent, and the antioxidant and other components are mixed before or after the solvent exchange. By doing so, a binder composition can be obtained.
  • the method of solvent exchange is not particularly limited, and examples thereof include a method in which an aqueous dispersion and an organic solvent are put into a rotary evaporator, the pressure is reduced, and solvent exchange and dehydration operations are performed at a predetermined temperature.
  • the timing of mixing the anti-aging agent is not particularly limited and may be before or after the organic solvent exchange.
  • An organic solvent may be further added after the solvent exchange in order to adjust the concentration of the binder composition.
  • a slurry composition for an all-solid secondary battery solid electrolyte layer of the present invention contains the above all-solid-state secondary battery binder composition and a solid electrolyte.
  • the solid electrolyte is not particularly limited as long as it has the conductivity of a charge carrier such as lithium ion, and examples thereof include an inorganic solid electrolyte and a polymer inorganic solid electrolyte.
  • the solid electrolyte may be one kind or a combination of two or more kinds in any ratio, and may be a mixture of an inorganic solid electrolyte and a polymer inorganic solid electrolyte.
  • the inorganic solid electrolyte is not particularly limited, and examples thereof include crystalline inorganic ion conductors and amorphous inorganic ion conductors.
  • the inorganic solid electrolyte is preferably a crystalline inorganic lithium-ion conductor or an amorphous inorganic lithium-ion conductor.
  • the all-solid-state secondary battery is an all-solid-state lithium-ion secondary battery
  • the crystalline inorganic lithium ion conductor include Li 3 N, LISON (Li 14 Zn(GeO 4 ) 4 ), perovskite type Li 0.5 La 0.5 TiO 3 , garnet type Li 7 La 3 Zr 2 O 10 and LIPON(Li. 3+y PO 4-x N x ), Thio-LISICON (Li 3.75 Ge 0.25 P 0.75 S 4 ) and the like.
  • the amorphous inorganic lithium ion conductor include glass Li—Si—S—O and Li—P—S.
  • the amorphous inorganic lithium ion conductor is preferable from the viewpoint of the conductivity of the inorganic solid electrolyte, the lithium ion conductivity is high, and the amorphous state containing Li and P from the viewpoint that the internal resistance can be reduced. More preferred is a sul?de.
  • the amorphous sulfide containing Li and P is more preferably a sulfide glass composed of Li 2 S and P 2 S 5 from the viewpoint of reducing the internal resistance of the battery and improving the output characteristics, and Li 2 S:P 2 A sulfide glass produced from a mixed raw material of Li 2 S and P 2 S 5 in which the molar ratio of S 5 is 65:35 to 85:15 is particularly preferable.
  • a sulfide glass ceramic obtained by reacting such a mixed raw material by a mechanochemical method can also be suitably used.
  • the mixed raw material preferably has a Li 2 S:P 2 S 5 molar ratio of 68:32 to 80:20.
  • the lithium ion conductivity of the inorganic solid electrolyte is not particularly limited and is preferably 1 ⁇ 10 ⁇ 4 S/cm or more, more preferably 1 ⁇ 10 ⁇ 3 S/cm or more.
  • the amorphous sulfide inorganic solid electrolyte containing Li and P contains Al 2 S 3 , B 2 S 3 and B 2 S 3 as starting materials in addition to the above Li 2 S and P 2 S 5 as long as the ionic conductivity is not deteriorated. It may contain at least one sulfide selected from the group consisting of SiS 2 . Thereby, the glass component in the inorganic solid electrolyte can be stabilized.
  • the inorganic solid electrolyte is, in addition to Li 2 S and P 2 S 5 , at least selected from the group consisting of Li 3 PO 4 , Li 4 SiO 4 , Li 4 GeO 4 , Li 3 BO 3 and Li 3 AlO 3. It may contain one type of lithium orthooxoate. Thereby, the glass component in the inorganic solid electrolyte can be stabilized.
  • the number average particle diameter of the inorganic solid electrolyte is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, further preferably 7 ⁇ m or less, particularly preferably 5 ⁇ m or less.
  • handling is easy and the adhesiveness of the layer formed using the slurry composition can be sufficiently enhanced.
  • the surface area of the inorganic solid electrolyte can be sufficiently secured, and the output characteristics of the all solid state secondary battery can be sufficiently improved.
  • the “number average particle diameter” of the inorganic solid electrolyte is 100 particles of the inorganic solid electrolyte, observed by an electron microscope, and the particle diameter is measured according to JIS Z8827-1:2008 to calculate the average value. Can be obtained by doing.
  • polymer inorganic solid electrolyte examples include polyethylene oxide derivatives and polymers containing polyethylene oxide derivatives, polypropylene oxide derivatives and polymers containing polypropylene oxide derivatives, phosphate ester polymers, and polymers containing polycarbonate derivatives and polycarbonate derivatives. Examples include those containing an electrolyte salt.
  • the electrolyte salt is not particularly limited, and lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium bis( Examples thereof include fluorine-containing lithium salts such as trifluoromethanesulfonyl)imide (LiTFSI).
  • the slurry composition for a solid electrolyte layer may contain components such as a leveling agent, a reinforcing material, an antifoaming agent and an antiaging agent, in addition to the above components. Known components can be used as these components.
  • the slurry composition for the solid electrolyte layer may include an organic solvent optionally added at the time of preparing the slurry composition, and as the additional solvent, the organic solvent described for the binder composition can be used. Specifically, butyl butyrate and xylene are mentioned as preferable solvents.
  • the amount of the binder composition contained in the slurry composition for the solid electrolyte layer is preferably an amount such that the (meth)acrylic polymer in the binder composition is 0.1 part by mass or more based on 100 parts by mass of the solid electrolyte. , 0.5 parts by mass or more, more preferably 7 parts by mass or less, and further preferably 5 parts by mass or less.
  • the viscosity (Brookfield B type viscometer, 60 rpm, 25° C.) of the slurry composition for the solid electrolyte layer is preferably 500 mPa ⁇ s or more, more preferably 1000 mPa ⁇ s or more, and preferably 10000 mPa ⁇ s or less, 6000 mPa ⁇ s. s or less is more preferable.
  • the method for preparing the slurry composition for the solid electrolyte layer is not particularly limited, and examples thereof include a method of mixing the above binder composition, the solid electrolyte, any additional organic solvent, and any other component.
  • the slurry composition for an all-solid-state secondary battery electrode of the present invention contains the all-solid-state secondary battery binder composition, a solid electrolyte and an electrode active material.
  • Solid electrolyte Regarding the solid electrolyte, the description in the slurry composition for a solid electrolyte layer described above is applied, and those listed as examples and suitable examples in the description can be used.
  • the electrode active material is a substance that transfers electrons at the electrode of the all-solid-state secondary battery.
  • the all-solid-state secondary battery is an all-solid-state lithium-ion secondary battery, it usually absorbs lithium as the electrode active material. And releasable substances are used.
  • the case where the all-solid-state secondary battery is an all-solid-state lithium-ion secondary battery will be described, but the present invention is not limited to this.
  • the positive electrode active material is not particularly limited, and examples thereof include a positive electrode active material made of an inorganic compound and a positive electrode active material made of an organic compound.
  • the positive electrode active material may be one kind or a combination of two or more kinds in any ratio, and may be a mixture of an inorganic compound and an organic compound.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, composite oxides of lithium and transition metals (lithium-containing composite metal oxides), transition metal sulfides, and the like.
  • Examples of the transition metal include Fe, Co, Ni and Mn.
  • Examples of the inorganic compound used for the positive electrode active material include lithium-containing composite metal oxide of Co—Ni—Mn (Li(Co Mn Ni)O 2 ), lithium-containing metal composite oxide of Ni—Co—Al, lithium-containing Lithium-containing composite metals such as cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), lithium manganate (LiMnO 2 , LiMn 2 O 4 ), olivine-type lithium iron phosphate (LiFePO 4 ), and LiFeVO 4.
  • lithium-containing composite metal oxide of Co—Ni—Mn Li(Co Mn Ni)O 2
  • lithium-containing metal composite oxide of Ni—Co—Al lithium-containing Lithium-containing composite metals such as cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), lithium manganate (LiMnO 2 , LiMn 2 O 4 ), olivine-type lithium iron phosphate (Li
  • Transition metal oxides such as TiS 2 , TiS 3 and amorphous MoS 2 ; Cu 2 V 2 O 3 , amorphous V 2 O-P 2 O 5 , MoO 3 , V 2 O 5 and V 6 Transition metal oxides such as O 13 ; and the like. These compounds may be partially elementally substituted.
  • Examples of the positive electrode active material made of an organic compound include polyaniline, polypyrrole, polyacene, disulfide compound, polysulfide compound, N-fluoropyridinium salt and the like.
  • negative electrode active materials include carbon allotropes such as graphite and coke.
  • the negative electrode active material composed of an allotrope of carbon may be in the form of a mixture with metal, metal salt, oxide, or the like, or a cover.
  • the number average particle size of the electrode active material is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 40 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the “number average particle diameter” of the electrode active material is obtained by observing 100 electrode active materials with an electron microscope, measuring the particle diameter according to JIS Z8827-1:2008, and calculating the average value. Can be obtained by doing.
  • the slurry composition for electrodes can contain a conductive material.
  • a conductive material By containing the conductive material, it is possible to easily secure electrical contact between the electrode active materials in the electrode mixture layer.
  • the conductive material carbon black (for example, acetylene black, Ketjen Black (registered trademark), furnace black, etc.), single-walled or multi-walled carbon nanotubes (multi-walled carbon nanotubes include a cup-stacked type), carbon nanohorn, Conductive carbon materials such as vapor grown carbon fibers, milled carbon fibers obtained by crushing polymer fibers after firing, single-layer or multi-layer graphene, carbon nonwoven fabric sheets obtained by firing a nonwoven fabric made of polymer fibers; various metals Fiber or foil of the above. Of these, acetylene black, Ketjen black, and furnace black are preferable.
  • the conductive material can be one kind or a combination of two or more kinds in any ratio.
  • the electrode slurry composition can contain components such as a leveling agent, a reinforcing material, a defoaming agent, a surfactant, and a dispersant, in addition to the above components.
  • Known components can be used as these components.
  • the electrode slurry composition may include an organic solvent optionally added at the time of preparing the slurry composition, and the organic solvent described for the binder composition may be used as the additional solvent. Specifically, butyl butyrate and xylene are mentioned as preferable solvents.
  • the amount of the solid electrolyte contained in the electrode slurry composition is preferably such that the ratio of the solid electrolyte in the total amount (100% by mass) of the electrode active material and the solid electrolyte is 10% by mass or more, and 20% by mass.
  • the amount of the above is more preferable, the amount of 70% by mass or less is preferable, and the amount of 60% by mass or less is more preferable.
  • it is at least the above lower limit value sufficient ion conductivity can be ensured, the electrode active material can be effectively utilized, and the capacity of the all-solid secondary battery can be sufficiently increased.
  • the quantity of an electrode active material can fully be ensured and the capacity
  • the amount of the binder composition contained in the electrode slurry composition is 0.1 part by mass of the (meth)acrylic polymer in the binder composition with respect to 100 parts by mass of the total amount of the electrode active material and the solid electrolyte.
  • the amount of the above is preferable, the amount of 0.5 parts by mass or more is more preferable, the amount of 7 parts by mass or less is preferable, and the amount of 5 parts by mass or less is more preferable.
  • the viscosity (Brookfield B type viscometer, 60 rpm, 25° C.) of the electrode slurry composition is preferably 500 mPa ⁇ s or more, more preferably 1000 mPa ⁇ s or more, and preferably 10000 mPa ⁇ s or less and 6000 mPa ⁇ s or less. Is more preferable.
  • the method for preparing the slurry composition is not particularly limited, and examples thereof include a method of mixing the binder composition, the solid electrolyte, the electrode active material, any conductive material, any additional organic solvent, and any other component. ..
  • the binder composition and the conductive material may be mixed in advance, and the solid electrolyte, the electrode active material and the like may be added thereto.
  • Solid electrolyte layer for all solid state secondary batteries The solid electrolyte layer for an all-solid secondary battery of the present invention (hereinafter also referred to as "solid electrolyte layer") is formed using the slurry composition for an all-solid secondary battery solid electrolyte layer of the present invention, For example, it can be obtained by applying the slurry composition for a solid electrolyte layer to the surface of a suitable substrate to form a coating film, and then drying the formed coating film.
  • the solid electrolyte layer of the present invention contains at least a solid electrolyte, a (meth)acrylic polymer and an antioxidant, and the content ratio of these components is usually equal to the content ratio in the solid electrolyte layer slurry composition. ..
  • Examples of the method for forming the solid electrolyte layer include the following methods. 1) A method of forming a solid electrolyte layer on an electrode by applying the slurry composition for a solid electrolyte layer of the present invention on an electrode (generally, the surface of an electrode mixture layer; the same applies hereinafter), and then drying; 2) A method of forming a solid electrolyte layer on an electrode by applying the slurry composition for a solid electrolyte layer of the present invention on a substrate, drying the same, and then transferring the obtained solid electrolyte layer onto the electrode; as well as, 3) The slurry composition for a solid electrolyte layer of the present invention is applied onto a substrate and dried to obtain a dried product of the slurry composition for a solid electrolyte layer, which is then pulverized to obtain a powder.
  • the methods such as coating, drying, transferring, crushing, and molding used in the above methods 1) to 3) are not particularly limited, and known methods can be adopted.
  • coating methods include doctor blade method, dip method, reverse roll method, direct roll method, gravure method, extrusion method, brush coating and the like.
  • drying methods include drying with warm air, hot air or low humidity air, vacuum drying, and irradiation with (far) infrared rays or electron beams.
  • the drying conditions can be appropriately set, and the drying temperature is preferably 50°C or higher and 250°C or lower, and more preferably 80°C or higher and 200°C or lower.
  • the drying time is not particularly limited and is usually 10 minutes or more and 60 minutes or less.
  • the solid electrolyte layer may be stabilized by pressing the dried solid electrolyte layer.
  • the pressing method is not particularly limited, and examples thereof include a die pressing method and a calendar pressing method.
  • the coating amount of the solid electrolyte layer slurry composition is not particularly limited and can be appropriately set according to the desired thickness of the electrode mixture layer and the like.
  • the thickness of the solid electrolyte layer is not particularly limited, and is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, further preferably 30 ⁇ m or more, and preferably 1000 ⁇ m or less, more preferably 800 ⁇ m or less, and further preferably 600 ⁇ m or less.
  • it is at least the above lower limit it is possible to sufficiently prevent short circuit between the positive electrode and the negative electrode, and when it is at most the above lower limit, it is advantageous from the viewpoint of reduction in internal resistance.
  • Electrodes for all solid state secondary batteries The electrode for an all-solid secondary battery of the present invention (hereinafter also referred to as “electrode”) is formed by using the slurry composition for an all-solid secondary battery electrode of the present invention. It is possible to obtain an electrode including a current collector and an electrode mixture layer on the current collector by applying a material to the surface of the current collector to form a coating film and then drying the formed coating film. it can.
  • the electrode of the present invention contains at least a solid electrolyte, an electrode active material, a (meth)acrylic polymer and an antioxidant, and the content ratio of these components is usually equal to the content ratio in the electrode slurry composition.
  • the current collector is not particularly limited as long as it has electrical conductivity and is electrochemically durable. From the viewpoint of heat resistance, metal materials such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold and platinum are preferable, and among them, aluminum is particularly preferable for the positive electrode and copper is particularly preferable for the negative electrode. ..
  • the shape of the current collector is not particularly limited, and a sheet shape having a thickness of 0.001 mm or more and 0.5 mm or less is preferable.
  • the current collector is preferably used after being roughened in advance in order to enhance the adhesive strength with the electrode mixture layer.
  • the surface roughening method is not particularly limited, and examples thereof include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a polishing cloth paper to which abrasive particles are fixed, a grindstone, an emery buff, a wire brush equipped with a steel wire, or the like is used.
  • an intermediate layer may be formed on the surface of the current collector in order to enhance the adhesive strength and conductivity between the current collector and the electrode mixture layer.
  • the method for applying the slurry composition for electrodes is not particularly limited, and the method described for applying the slurry composition for solid electrolyte layer can be used.
  • the method for drying the slurry composition for electrodes is not particularly limited, and the methods mentioned for drying the slurry composition for solid electrolyte layers can be used.
  • the electrode may be stabilized by pressing the dried electrode.
  • the pressing method is not particularly limited, and examples thereof include a die pressing method and a calendar pressing method.
  • the coating amount of the electrode slurry composition is not particularly limited and can be appropriately set according to the desired thickness of the electrode mixture layer and the like.
  • the basis weight of the electrode mixture layer is not particularly limited and is preferably 1.0 mg/cm 2 or more, more preferably 5.0 mg/cm 2 or more, and preferably 30.0 mg/cm 2 or less, 25 It is more preferably 0.0 mg/cm 2 or less.
  • the all solid state secondary battery of the present invention comprises at least one of the solid electrolyte layer of the present invention and an electrode (positive electrode, negative electrode). That is, in the all-solid secondary battery of the present invention, at least one of the solid electrolyte layer, the positive electrode and the negative electrode is a slurry composition containing the binder composition of the present invention (in the case of the solid electrolyte layer, a slurry composition for a solid electrolyte layer). In the case of the positive electrode or the negative electrode, it is formed by using the slurry composition for electrodes).
  • the electrode which does not correspond to the electrode of the present invention and which can be used in the all-solid secondary battery of the present invention is not particularly limited, and any electrode for the all-solid secondary battery can be used.
  • the solid electrolyte layer that does not correspond to the solid electrolyte layer of the present invention and can be used in the all solid state secondary battery of the present invention is not particularly limited, and any solid electrolyte layer can be used.
  • the all-solid secondary battery of the present invention comprises a positive electrode and a negative electrode, which are laminated such that the positive electrode composite material layer of the positive electrode and the negative electrode composite material layer of the negative electrode are opposed to each other with the solid electrolyte layer interposed therebetween, and are laminated by optionally applying pressure.
  • an expanded metal, a fuse, an overcurrent preventing element such as a PTC element, a lead plate, and the like can be placed in the battery container to prevent pressure increase inside the battery and overcharging/discharging.
  • the shape of the battery is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a cylindrical type, a prismatic type, and a flat type.
  • any of the production steps of the all-solid secondary battery such as the step of forming a solid electrolyte layer or electrode mixture layer, the step of laminating each layer, the step of assembling battery cells, etc. Processing is performed.
  • This press working is generally performed at a pressure of 50 MPa or more and 1500 MPa or less, but by using the binder composition of the present invention, a press excellent in the formed layer (solid electrolyte layer, electrode mixture layer) is performed. Since the property is imparted, it becomes possible to realize excellent output characteristics and high-temperature cycle characteristics in an all-solid-state secondary battery.
  • ⁇ Weight average molecular weight in polymer> The weight average molecular weight of the polymers prepared in each of the Examples and Comparative Examples was calculated based on the polystyrene-converted molecular weight obtained by using high performance liquid chromatography (apparatus: manufactured by Tosoh Corporation, model number “HLC8220”). In high performance liquid chromatography, three connected columns (Showa Denko KK, model number “Shodex KF-404HQ”, column temperature: 40° C., carrier: tetrahydrofuran of flow rate 0.35 ml/min), and differential refraction as a detector A meter and UV detector were used. The molecular weight was calibrated with 12 points of standard polystyrene (Polymer Laboratory, standard molecular weight: 500 to 3,000,000).
  • ⁇ Leveling property> Prepare a flat-bottomed cylindrical transparent glass tube with an inner diameter of 30 mm and a height of 120 mm, and use two marked lines at the heights of 55 mm and 85 mm from the bottom of the tube. Line", and a marked line at a height of 85 mm is referred to as "line B".
  • the slurry compositions obtained in the examples and comparative examples were filled up to the line A of the glass tube, and after plugging with a rubber plug, the glass tube was left standing upright in a 25° C. environment for 10 minutes. After that, the time t from when the glass tube was laid horizontally to when the tip of the liquid surface of the slurry composition passed the line B was measured, and the leveling property was evaluated according to the following criteria.
  • Time t is less than 1 second
  • B Time t is 1 second or more and less than 5 seconds
  • C Time t is 5 seconds or more and less than 10 seconds
  • D Time t is 10 seconds or more
  • a copper foil provided with an electrode or a solid electrolyte layer obtained in Examples and Comparative Examples was cut into a rectangle having a width of 2.5 cm and a length of 10 cm to obtain a test piece, and the electrode mixture layer or the solid electrolyte layer surface of the test piece was cut.
  • the stress when the cellophane tape was peeled off from one end of the test piece in the 180° direction at a speed of 50 mm/min was measured. The measurement was performed 10 times, the average value was calculated
  • ⁇ Battery characteristics high temperature cycle characteristics> Regarding the all solid state secondary batteries prepared in Examples and Comparative Examples, charging and discharging were performed at 60° C. by charging from 0.1V to 3V to 4.3V, and then discharging from 0.1V to 4.3V to 3V. 100 cycles were repeated.
  • the capacity retention rate represented by the ratio (d/c (%)) of the 0.1 C discharge capacity d at the 100th cycle to the 0.1C discharge capacity c at the 5th cycle was determined and evaluated according to the following criteria. The larger this value is, the smaller the decrease in discharge capacity is and the better the high temperature cycle characteristics are.
  • B Capacity maintenance rate 50% or more and less than 60%
  • C Capacity maintenance rate 40% or more and less than 50%
  • D Capacity maintenance rate 30% or more and less than 40%
  • Example 1 All-solid secondary battery including the negative electrode of the present invention
  • ⁇ Preparation of (meth)acrylic polymer and binder composition> To a septum-equipped 1 L flask equipped with a stirrer, 100 parts of ion-exchanged water and 0.2 part of sodium dodecylbenzenesulfonate as an emulsifier were added, the gas phase part was replaced with nitrogen gas, and the temperature was raised to 60° C., then polymerization was started. As an agent, 0.25 part of potassium persulfate (KPS) was dissolved in 20.0 parts of ion-exchanged water and added.
  • KPS potassium persulfate
  • xylene is added to the obtained mixed liquid.
  • This composition was mixed by a planetary kneader to obtain a slurry composition for negative electrode mixture layer. The leveling property was evaluated using the obtained negative electrode slurry composition.
  • ⁇ Preparation of slurry composition for positive electrode> 65 parts of Co-Ni-Mn lithium composite oxide active material NMC532 (LiNi 5/10 Co 2/10 Mn 3/10 O 2 , number average particle diameter: 10.0 ⁇ m) as a positive electrode active material, solid 30 parts of a sulfide glass (Li 2 S/P 2 S 5 70 mol%/30 mol%, number average particle diameter: 0.9 ⁇ m) composed of Li 2 S and P 2 S 5 as an electrolyte, and a conductive material 3 parts of acetylene black was mixed with a binder composition (for positive electrode mixture layer) prepared in the same manner as in Example 1 except that the antioxidant was not mixed (2 parts solid content), and the mixture was obtained.
  • a binder composition for positive electrode mixture layer
  • Xylene was added to the mixed solution to prepare a composition having a solid content concentration of 75%.
  • This composition was mixed with a planetary kneader for 60 minutes, further adjusted to a solid content concentration of 70% with xylene, and then mixed with a planetary kneader for 10 minutes to obtain a positive electrode slurry composition.
  • the above positive electrode slurry composition was applied to the surface of an aluminum foil serving as a current collector and dried at 120° C. for 30 minutes, whereby a positive electrode mixture layer (unit weight: 18) was formed on one surface of the aluminum foil serving as a current collector.
  • a positive electrode having a concentration of 0.0 mg/cm 2 ) was obtained.
  • This composition was mixed with a planetary kneader to obtain a slurry composition for a solid electrolyte layer.
  • ⁇ Preparation of solid electrolyte layer> The slurry composition for a solid electrolyte layer was dried on a release sheet as a substrate, and the dried product separated from the release sheet was ground in a mortar to obtain a powder. 0.05 mg of the obtained powder was put in a mold of 10 mm ⁇ and molded at a pressure of 200 MPa to obtain a pellet (solid electrolyte layer) having a thickness of 500 ⁇ m.
  • Example 1 in the same manner as in Example 1, the binder composition, the slurry composition for the negative electrode mixture layer, the slurry composition for the positive electrode mixture layer, and the solid electrolyte layer.
  • a slurry composition for a negative electrode, a positive electrode, and an all-solid secondary battery were manufactured. Regarding the type and amount of each monomer in the monomer composition and the type and amount of the antioxidant, the types and amounts shown in Table 1 were used. And quantity.
  • the cell characteristics of the produced all-solid secondary battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Antiaging agents in the table are as follows.
  • Phenolic anti-aging agent Anti-aging agent 1 3-(3,5-di-t-butyl-4-hydroxyphenyl)octadecyl propionate
  • Anti-aging agent 2 4,6-bis(octylthiomethyl)-o-cresol
  • Anti-aging agent 3 4-[[4,6-bis(octylthio)-1,3,5-triazin-2-yl]amino]-2,6-di-t-butylphenol
  • Example 8 A negative electrode slurry composition, a positive electrode slurry composition, a solid electrolyte layer solid electrolyte layer were prepared in the same manner as in Example 1 except that a (meth)acrylic polymer was prepared and a binder composition was obtained as described below.
  • a reactor was charged with 2 parts of potassium oleate as an emulsifier, 0.1 part of potassium phosphate as a stabilizer and 150 parts of water, and further 19 parts of acrylonitrile (AN), 48 parts of 1,3-butadiene (BD) and butyl acrylate.
  • (BA) 33 parts and t-dodecyl mercaptan 0.31 part as a molecular weight modifier, 0.015 part of ferrous sulfate as an activator and 0.05 part of paramenthane hydroperoxide as a polymerization initiator. Then, emulsion polymerization was started at 10°C.
  • Example 13 A slurry composition for a positive electrode containing the binder composition of the present invention was prepared, and a positive electrode provided with a positive electrode mixture layer formed using this slurry composition was produced.
  • the above positive electrode slurry composition was applied to the surface of an aluminum foil serving as a current collector and dried at 120° C. for 30 minutes, whereby a positive electrode mixture layer (unit weight: 18) was formed on one surface of the aluminum foil serving as a current collector. A positive electrode having a concentration of 0.0 mg/cm 2 ) was obtained. Adhesiveness was evaluated using the obtained positive electrode.
  • Example 14 A slurry composition for a solid electrolyte layer containing the binder composition of the present invention was prepared.
  • ⁇ Preparation of slurry composition for solid electrolyte layer> 98 parts of a sulfide glass (Li 2 S/P 2 S 5 70 mol%/30 mol%, number average particle diameter: 0.9 ⁇ m) composed of Li 2 S and P 2 S 5 as a solid electrolyte, and Example 1
  • the binder composition (corresponding to 2 parts solid content) prepared in 1 above was mixed, and xylene was added to the resulting mixed solution to prepare a composition having a solid content concentration of 60%.
  • This composition was mixed with a planetary kneader to obtain a slurry composition for a solid electrolyte layer.
  • the leveling property was evaluated using the obtained slurry composition for a solid electrolyte layer.
  • the solid electrolyte layer slurry composition was applied onto a copper foil and dried at 120° C. for 30 minutes to obtain a solid electrolyte layer having a thickness of 100 ⁇ m on the copper foil. Adhesion was evaluated using the solid electrolyte layer on the obtained copper foil.
  • the negative electrode slurry composition using the binder composition for an all-solid secondary battery of the present invention is excellent in leveling property and adhesion, and by using this, excellent output is obtained. It was confirmed that an all solid state secondary battery having characteristics and high temperature cycle characteristics was obtained. Regarding the excellent leveling property and adhesion, it was obtained in Examples 13 and 14 when the binder composition for an all-solid secondary battery of the present invention was used for a slurry composition for a positive electrode and a slurry composition for a solid electrolyte layer. Was confirmed.
  • Comparative Example 1 using the binder composition containing no antiaging agent the obtained all-solid secondary battery was inferior in output characteristics and high temperature cycle characteristics.
  • Comparative Examples 2 to 3 the antiaging agent was used, but the binder was out of the scope of the present invention, the leveling property and the adhesion strength were poor, and the obtained all solid state secondary batteries were The output characteristics and the high temperature cycle characteristics were inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、出力特性及び高温サイクル特性に優れた全固体二次電池をもたらすことができる、全固体二次電池用バインダー組成物を提供することを目的とする。本発明は、重合体、老化防止剤及び有機溶媒を含む全固体二次電池用バインダー組成物であって、前記重合体が、(メタ)アクリル酸エステル単量体単位を25質量%以上95質量%以下含有し、ゲル量が50質量%以下である重合体であり、前記重合体100質量部に対する前記老化防止剤の量が0.005質量部以上0.5質量部以下である、全固体二次電池用バインダー組成物である。

Description

全固体二次電池用バインダー組成物
 本発明は、全固体二次電池用バインダー組成物、全固体二次電池固体電解質層用スラリー組成物、全固体二次電池電極用スラリー組成物、全固体二次電池用固体電解質層、全固体二次電池用電極及び全固体二次電池に関する。
 近年、リチウムイオン二次電池等の二次電池は、携帯情報端末や携帯電子機器等の携帯端末に加えて、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車等、様々な用途での需要が増加している。そして、用途の広がりに伴い、二次電池には安全性の更なる向上が要求されている。
 そこで、安全性の高い二次電池として、引火性が高くて漏洩時の発火危険性が高い有機溶媒電解質に替えて固体電解質を用いた全固体二次電池が注目されている。
 ここで、全固体二次電池は、正極及び負極の間に固体電解質層を有するものである。電極(正極、負極)は、電極活物質(正極活物質、負極活物質)、バインダー及び固体電解質を含むスラリー組成物を集電体上に塗布し、乾燥させて、集電体上に電極合材層(正極合材層、負極合材層)を設けることにより形成することができ、固体電解質層は、バインダー及び固体電解質を含むスラリー組成物を、電極又は離型基材の上に塗布し、乾燥させることにより形成することができる。全固体二次電池は、正極と負極とを、正極の正極合材層と負極の負極合材層とが固体電解質層を介して対向するように積層し、一般にプレス加工を経て作製される。
 従来、電極用又は固体電解質層用のスラリー組成物に含まれるバインダーの工夫により、全固体二次電池の性能向上を図る試みがなされている。
 特許文献1には、バインダーに、粒子構造を有するポリマーと水溶性ポリマーを併用することにより、全固体二次電池の出力特性及び充放電サイクル特性を向上させることが記載されている。
 特許文献2~3には、バインダーに、アミド結合、ウレア結合、ウレタン結合及びイミド結合から選ばれるハードセグメントとソフトセグメントとを有するポリマーを用いることにより、加圧によらずに、固体電解質層に係る界面抵抗の上昇を抑制することが記載されている。
 特許文献4には、バインダーに、ポリウレタン、ポリウレア、ポリアミド、ポリイミド及び/又はポリエステルを用い、酸化防止剤を配合することにより、固体電解質やバインダーの酸化劣化を防止し、長期使用における性能低下を抑制することが記載されている。
国際公開第2017/47378号 国際公開第2015/46313号 特開2015-88480号公報 特開2018-88306号公報
 しかしながら、特許文献2及び3では、特定のポリマーの調製が必要であり、実施に際して負荷が大きく、特許文献4では、さらに、酸化防止のため、バインダーに対し多量の酸化防止剤が配合されており、全固体二次電池の出力特性等への影響の懸念がある。
 一方、特許文献1が目的とする出力特性及び充放電サイクル特性は、電気自動車や大型蓄電池等への応用も期待される全固体二次電池の特性のうち、特に着目されている特性であり、サイクル特性については高温領域での一層の向上が求められている。
 本発明の目的は、出力特性及び高温サイクル特性に優れた全固体二次電池をもたらすことができる、全固体二次電池用バインダー組成物を提供することである。
 本発明者らは、全固体二次電池用バインダー組成物において、バインダーとして特定の重合体を用い、特定量の老化防止剤を組み合わせることにより、上記目的を達成できることを見出し、本発明を完成させた。
 即ち、本発明は、上記課題を有利に解決するものであり、
 重合体、老化防止剤及び有機溶媒を含む全固体二次電池用バインダー組成物であって、
 前記重合体が、(メタ)アクリル酸エステル単量体単位を25質量%以上95質量%以下含有し、ゲル量が50質量%以下である重合体であり、
 前記重合体100質量部に対する前記老化防止剤の量が0.005質量部以上0.5質量部以下である、
全固体二次電池用バインダー組成物に関する。
 (メタ)アクリル酸エステル単量体単位を25質量%以上95質量%以下含有し、ゲル量が50質量%以下である重合体を、以下「(メタ)アクリル系重合体」ともいい、前記重合体100質量部に対し0.005質量部以上0.5質量部以下の量の老化剤を、以下「特定量の老化防止剤」ともいう。
 本明細書において、「全固体二次電池用バインダー組成物」は、全固体二次電池用スラリー組成物(全固体二次電池固体電解質層用スラリー組成物、全固体二次電池電極用スラリー組成物)を製造する際の材料を意味し、バインダー及び有機溶媒を含む。本発明の全固体二次電池用バインダー組成物は、バインダーが上記(メタ)アクリル系重合体であり、特定量の老化防止剤が配合されていることを特徴とする。
 本発明の全固体二次電池用バインダー組成物が、全固体二次電池において、出力特性及び高温サイクル特性に優れた全固体二次電池をもたらすメカニズムは明らかではないが、以下のように推察することができる。
 本発明の全固体二次電池用バインダー組成物は、これを用いた全固体二次電池用固体電解質層用スラリー組成物や全固体二次電池電極用スラリー組成物に対して、主に(メタ)アクリル系重合体に基づき分散性を付与するとともに、主に特定量の老化防止剤に基づき、それらのスラリー組成物を用いて形成される層に可塑性を付与する。このため、スラリー組成物塗工時のレベリング性が向上し、かつスラリー組成物乾燥後に形成される層の基材への密着性が向上する。これによって、全固体二次電池に優れた出力特性がもたらされる。
 ここで、上記特定量の老化防止剤による可塑性の付与は、上記スラリー組成物を用いて形成される層中の各成分間のすべりを、特定量の老化防止剤が良好にすることによるものであり、同様の作用により、電池の製造過程で各層に圧力が負荷された際にも、特定量の老化防止剤は各層の内部応力を低減させる。これによって、充放電サイクルを繰り返した場合に、各層中の内部応力の存在が顕在下してサイクル特性を劣化させるといった事態が回避され、全固体二次電池に高温領域におけるサイクル特性の向上がもたらされる。
 上記のとおり、本発明の全固体二次電池用バインダー組成物を用いれば、プレス加工時の各層の内部応力を低減させることができる。また、スラリー組成物乾燥後に形成される層の密着性が向上するため、プレス加工時の圧力を低下させたり、バインダーの量を相対的に減らし、電極活物質や固体電解質の量を相対的に増やすことが可能となる。このように、本発明の全固体二次電池用バインダー組成物は、プレス加工という全固体二次電池の製造を前提とした電池性能(プレス性)の向上に効果的である。
 本明細書において、「(メタ)アクリル」とは、「アクリル及び/又はメタクリル」を意味する。
 本明細書において、「単量体単位」とは「その単量体由来の構造単位」を意味する。また、「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の構造単位が含まれている」ことを意味し、単量体単位の含有割合は、重合体全体を100質量%とし、それに占める割合で表わされる。
 本明細書において、「ゲル量」は、本明細書の実施例に記載の方法で測定することができる。
 本発明の全固体二次電池用バインダー組成物においては、上記重合体が、さらにα,β-不飽和ニトリル単量体単位を含むことが好ましい。バインダーとして、さらにα,β-不飽和ニトリル単量体単位を含有する重合体を用いることにより、一層良好な分散性をスラリー組成物に付与することができ、それにより出力特性を効果的に向上させることができる。本発明の全固体二次電池用バインダー組成物においては、α,β-不飽和ニトリル単量体単位を2質量%以上30質量%以下で含有する重合体を用いることがさらに好ましい。
 本発明の全固体二次電池用バインダー組成物においては、上記重合体が、さらに疎水性単量体単位を含むことが好ましい。本明細書において、「疎水性単量体単位」とは、「その単量体自体の水への溶解性(25℃)が1g/1L以下であり、かつ(メタ)アクリル酸エステル単量体単位及びα,β-不飽和ニトリル単量体単位以外の単量体単位」を意味する。バインダーとして、さらに疎水性単量体単位を含有する重合体を用いることにより、一層良好な分散性をスラリー組成物に付与することができ、それにより出力特性を効果的に向上させることができる。本発明の全固体二次電池用バインダー組成物においては、疎水性単量体単位を3質量%以上60質量%以下で含有する重合体を用いることがさらに好ましい。
 本発明の全固体二次電池用バインダー組成物は、上記老化防止剤が、フェノール系老化防止剤及び有機リン系老化防止剤からなる群より選択される1種以上であることが好ましい。これらの老化防止剤を用いることにより、プレス性を効果的に向上させることができ、それにより高温サイクル特性を一層向上させることができる。
 本発明は、上記のいずれかの全固体二次電池用バインダー組成物及び固体電解質を含む、全固体二次電池固体電解質層用スラリー組成物に関する。本発明の全固体二次電池固体電解質用スラリー組成物は、分散性及びプレス性に優れ、全固体二次電池において、優れた出力特性及び高温サイクル特性をもたらすことができる。
 本発明は、上記のいずれかの全固体二次電池用バインダー組成物、電極活物質及び固体電解質を含む、全固体二次電池電極用スラリー組成物に関する。本発明の全固体二次電池電極用スラリー組成物は、分散性及びプレス性に優れ、全固体二次電池において、優れた出力特性及び高温サイクル特性をもたらすことができる。
 本発明は、上記全固体二次電池固体電解質層用スラリー組成物を用いて形成した全固体二次電池用固体電解質層に関する。本発明の全固体二次電池用固体電解質層は、全固体二次電池において、優れた出力特性及び高温サイクル特性をもたらすことができる。
 本発明は、上記全固体二次電池電極用スラリー組成物を用いて形成した電極合材層を備える、全固体二次電池用電極に関する。本発明の全固体二次電池用電極は、全固体二次電池において、優れた出力特性及び高温サイクル特性をもたらすことができる。
 本発明の全固体二次電池は、上記全固体二次電池用固体電解質層及び上記全固体二次電池用電極の少なくとも一方を備えるものであり、優れた出力特性及び高温サイクル特性を有する。
 本発明によれば、出力特性及びサイクル特性に優れた全固体二次電池をもたらすことができる、全固体二次電池用バインダー組成物が提供される。
 また、本発明によれば、出力特性及びサイクル特性に優れた全固体二次電池をもたらすことができる、全固体二次電池固体電解質層用スラリー組成物、全固体二次電池電極用スラリー組成物、全固体二次電池用固体電解質層及び全固体二次電池用電極が提供される。
 本発明の全固体二次電池は、優れた出力特性及び高温サイクル特性を有しており、産業上有用性が高い。
 以下、本発明の実施形態について詳細に説明する。
 本発明の全固体二次電池用バインダー組成物は、全固体二次電池用スラリー組成物(全固体二次電池固体電解質層用スラリー組成物、全固体二次電池電極用スラリー組成物)を製造する際の材料として用いられる。
 本発明の全固体二次電池固体電解質層用スラリー組成物は、全固体二次電池の固体電解質層を形成する際に用いられ、また、本発明の全固体二次電池電極用スラリー組成物は、全固体二次電池の電極合材層(正極合材層、負極合材層)を形成する際に用いられる。
 本発明の全固体二次電池用電極(正極、負極)は、上記電極合材層(正極合材層、負極合材層)を備える。
 本発明の全固体二次電池は、本発明の全固体二次電池用固体電解質層及び本発明の全固体二次電池用電極の少なくとも一方を備える。
(全固体二次電池用バインダー組成物)
 本発明の全固体二次電池用バインダー組成物は、重合体、老化防止剤及び有機溶媒を含む全固体二次電池用バインダー組成物であって、前記重合体が、(メタ)アクリル酸エステル単量体単位を25質量%以上95質量%以下含有し、ゲル量が50質量%以下であり、前記重合体100質量部に対する前記老化防止剤の量が0.005質量部以上0.5質量部以下である。
<(メタ)アクリル系重合体>
 本発明における(メタ)アクリル酸エステル単量体単位を25質量%以上95質量%以下含有し、ゲル量が50質量%以下である重合体((メタ)アクリル系重合体)は、バインダー成分である。バインダー成分は、固体電解質層に含まれる成分同士を結着させたり、電極合材層に含まれる成分同士を結着させ、合材層から脱離しないように保持するための成分である。(メタ)アクリル系重合体は、1種又は2種以上の任意の比率での組み合わせであることができる。
 (メタ)アクリル酸エステル単量体単位における(メタ)アクリル酸エステル単量体としては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート、2-エチルヘキシルアクリレート等のアクリル酸アルキルエステル;2-メトキシエチルアクリレート、2-エトキシエチルアクリレート等のアクリル酸アルコキシエステル;2-(パーフルオロブチル)エチルアクリレート、2-(パーフルオロペンチル)エチルアクリレート等の2-(パーフルオロアルキル)エチルアクリレート;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、へプチルメタクリレート、オクチルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、トリデシルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート、2-エチルヘキシルメタクリレート等のメタクリル酸アルキルエステル;2-メトキシエチルメタクリレート、2-エトキシエチルメタクリレート等のメタクリル酸アルコキシエステル;2-(パーフルオロブチル)エチルメタクリレート、2-(パーフルオロペンチル)エチルメタクリレート等の2-(パーフルオロアルキル)エチルメタクリレート;ベンジルアクリレート;ベンジルメタクリレート;等が挙げられる。(メタ)アクリル酸エステル単量体には、α,β-エチレン性不飽和ジカルボン酸のジエステルも包含され、イタコン酸ジエチル、イタコン酸ジブチル等のイタコン酸の低級アルキルジエステル等が挙げられる。中でも、メチルアクリレート、エチルアクリレート、メチルメタクリレート、2-エチルヘキシルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、イタコン酸ジブチルが好ましく、エチルアクリレート、n-ブチルアクリレート、t-ブチルアクリレートがより好ましい。これらは、1種又は2種以上の任意の比率での組み合わせであることができる。
 (メタ)アクリル系重合体における(メタ)アクリル酸エステル単量体単位の含有割合は、25質量%以上95質量%以下である。バインダー組成物を用いたスラリー組成物における固体電解質等の分散状態が良好で、優れたレベリング性が得られ、出力特性の向上において有利である点から、好ましくは28質量%以上であり、より好ましくは30質量%であり、さらに好ましくは32質量%以上であり、また、好ましくは90質量%以下であり、より好ましくは85質量%以下、さらに好ましくは83質量%以下である。
 (メタ)アクリル系重合体のゲル量は、50質量%以下であり、より好ましくは10質量%以下であり、特に好ましくは0%である。上記上限値以下であれば、バインダー組成物が有機溶媒に溶解しやすく、スラリー組成物において、固体電解質等の良好な分散状態を得やすい。ゲル量は、重合体における単量体の種類及び量、重合の際に使用される連鎖移動剤の種類及び量、重合温度等によって制御することができる。
 本発明における(メタ)アクリル系重合体は、(メタ)アクリル酸エステル単量体単位を25質量%以上95質量%以下で含み、ゲル量が50質量%以下であることが重要である。この点を満たす限り、(メタ)アクリル酸エステル単量体単位以外の単量体単位の種類及び含有割合は、任意とすることができる。
 (メタ)アクリル系重合体は、さらにα,β-不飽和ニトリル単量体単位を含むことが好ましい。α,β-不飽和ニトリル単量体としては、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-エチルアクリロニトリル等が挙げられる。中でも、アクリロニトリル及びメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。α,β-不飽和ニトリル単量体は、1種又は2種以上の任意の比率の組み合わせであることができる。
 α,β-不飽和ニトリル単量体単位の含有割合は、2質量%以上が好ましく、3質量%以上がより好ましく、4質量%が特に好ましく、また、30質量%以下が好ましく、28質量%がより好ましく、26質量%以下が特に好ましい。上記下限値以上であれば、バインダー組成物を用いたスラリー組成物における、固体電解質等の分散状態を一層良好なものとし、効果的に出力特性を向上させることができる。上記上限値以下であれば、重合体が有機溶媒に溶解しやすい点で有利である。
 (メタ)アクリル系重合体は、さらに疎水性単量体単位を含むことができる。疎水性単量体単位としては、芳香族ビニル単量体単位、共役ジエン単量体単位、オレフィン単量体単位等が挙げられる。疎水性単量体単位は、(メタ)アクリル酸エステル単量体単位、α,β-不飽和ニトリル単量体を包含しないこととする。疎水性単量体単位は、1種又は2種以上の任意の比率の組み合わせであることができる。
 芳香族ビニル単量体としては、スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等の芳香族ビニル系単量体等が挙げられる。中でも、スチレン、ビニルナフタレンが好ましい。
 共役ジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン等の炭素数4以上の共役ジエン化合物が挙げられる。中でも、1,3-ブタジエン、イソプレンが好ましい。
 オレフィン単量体としては、1-オレフィン単量体が挙げられ、1-オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン等が挙げられ、中でもエチレンが好ましい。オレフィン単量体単位は、共役ジエン単量体単位を水素化して得られる構造単位(共役ジエン水素化物単位)であることができ、中でも、1,3-ブタジエン単量体単位、イソプレン単量体単位を水素化して得られる構造単位である1,3-ブタジエン水素化物単位、イソプレン水素化物単位が好ましい。
 疎水性単量体単位の含有割合は、スラリー組成物における固体電解質等に対する一層の分散性の付与と、出力特性の一層の向上の点から、3質量%以上が好ましく、5質量%以上がより好ましく、12質量%以上がさらに好ましく、14質量%以上が特に好ましく、また、60質量%以下が好ましく、55質量%以下がより好ましく、50質量%以下がさらに好ましく、45質量%以下が特に好ましい。また、上限及び下限が上記範囲であれば、全固体二次電池電極用スラリー組成物に用いた場合、電極活物質、導電材の分散性の向上を容易に図ることができる。
 (メタ)アクリル系重合体は、上記の各種単量体単位以外のその他の単量体単位を含んでいてもよい。その他の単量体単位としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸等の不飽和カルボン酸単量体;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸等のアミド単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル単量体;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル単量体;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン単量体;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル単量体;アクリル酸グリシジル、メタクリル酸グリシジル、アリルグリシジルエーテル等のグリシジル基含有単量体;等が挙げられる。これらは、1種又は2種以上の任意の比率の組み合わせであることができる。
 (メタ)アクリル系重合体は、(メタ)アクリル酸エステル単量体単位25質量%以上95質量%以下と、α,β-不飽和ニトリル単量体単位、疎水性単量体単位及びその他の単量体から選択される1つ以上とから構成されていることができる。α,β-不飽和ニトリル単量体単位、疎水性単量体単位及びその他の単量体の好適な量及び種類は、上記のとおりである。
 (メタ)アクリル系重合体の重量平均分子量は、スラリー保存安定性の点から、5万以上が好ましく、10万以上がより好ましく、また、スラリー分散性の点から、500万以下が好ましく、200万以下がより好ましい。
 本明細書において、「重量平均分子量」は、本明細書の実施例に記載の方法で測定することができる。
 (メタ)アクリル系重合体の調製方法は、特に限定されず、上記の単量体を含む単量体組成物を重合して(メタ)アクリル系重合体を得ることができる。単量体組成物中の各単量体の含有割合は、重合体の各単量体単位の含有割合に基づき定めることができる。
 重合様式は、特に限定されず、溶液重合法、懸濁重合法、塊状重合法、乳化重合法等が挙げられる。各重合法において、必要に応じて、乳化剤、重合開始剤等を使用することができる。オレフィン単量体単位は、共役ジエン単量体単位を水素添加することにより導入することができる。水素添加の様式は、特に限定されず、公知の方法を使用することができる。
<老化防止剤>
 本発明の全固体二次電池用バインダー組成物は老化防止剤を含む。老化防止剤は、特に限定されず、フェノール系老化防止剤、有機リン系老化防止剤、アミン系老化防止剤、キノン系老化防止剤、硫黄系老化防止剤、フェノチアジン系老化防止剤等が挙げられる。一層良好な密着性が得られ、効果的にプレス性を向上することができる点から、フェノール系老化防止剤、有機リン系老化防止剤が好ましく、フェノール系老化防止剤、ホスファイト系老化防止剤がより好ましい。老化防止剤は、1種又は2種以上の任意の比率での組み合わせであることができる。老化防止剤は、フェノール系老化防止剤及び有機リン系老化防止剤から選ばれる1種以上を含むことが好ましく、少なくともフェノール系老化防止剤を含むことがより好ましい。
 フェノール系老化防止剤としては、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチルフェノール、ブチルヒドロキシアニソール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸オクタデシル(別名:オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)、スチレン化フェノール、2,2'-メチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)、4,4'-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2'-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、アルキル化ビスフェノール、p-クレゾールとジシクロペンタジエンのブチル化反応生成物、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチルー4-ヒドロキシフェニル)プロピオナート]、2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)メシチレン等の硫黄非含有のフェノール系老化防止剤;2,2'-チオビス-(4-メチル-6-t-ブチルフェノール)、4,4'-チオビス-(6-t-ブチル-o-クレゾール)、4,6-ビス(オクチルチオメチル)-o-クレゾール(別名:2,4-ビス(オクチルチオメチル)-6-メチルフェノール)、4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-t-ブチルフェノール(別名:2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール)等の硫黄含有のフェノール系老化防止剤等が挙げられる。硫黄非含有のフェノール系老化防止剤としては、2,6-ジ-t-ブチル-4-メチルフェノール、3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸オクタデシルが好ましく、硫黄含有のフェノール系老化防止剤としては、4,6-ビス(オクチルチオメチル)-o-クレゾール、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノールが好ましい。これらは、1種又は2種以上の任意の比率での組み合わせであることができる。硫黄含有のフェノール系老化防止剤と硫黄非含有のフェノール系老化防止剤を併用することもできる。
 有機リン系老化防止剤としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニルジトリデシル)ホスファイト、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(別名;サイクリックネオペンタンテトライルビス(オクタデシルホスファイト))、トリス(ノニルフェニルホスファイト)、トリス(モノ(又はジ)ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-t-ブチル-4-メチルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト等のホスファイト系老化防止剤;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファフェナントレン環を有する老化防止剤が挙げられる。ホスファイト系老化防止剤が好ましく、プレス性の向上の点から、長鎖アルキル(例えば、炭素原子数9以上)を有するホスファイト系老化防止剤がより好ましく、例えば、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニルジトリデシル)ホスファイト、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、トリス(ノニルフェニルホスファイト)、トリス(モノ(又はジ)ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールジホスファイトが挙げられる。
 アミン系老化防止剤としては、ビス(4-t-ブチルフェニル)アミン、ポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン)、6-エトキシ-1,2-ジヒドロ-2,2,4-トリメチルキノリン、ジフェニルアミンとアセトンとの反応物、1-(N-フェニルアミノ)-ナフタレン、ジフェニルアミン誘導体、ジアルキルジフェニルアミン類、N,N’-ジフェニル-p-フェニレンジアミン、混合ジアリル-p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン化合物等が挙げられる。
 キノン系老化防止剤としては、2,5-ジ-t-ブチルハイドロキノン、2,5-ジ-t-オクチルハイドロキノン、2,6-ジ-n-ドデシルハイドロキノン、2-n-ドデシル-5-クロロハイドロキノン、2-t-オクチル-5-メチルハイドロキノン等のハイドロキノン化合物等が挙げられる。
 硫黄系老化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジステアリル-3,3’-トリジプロピオネート等が挙げられる。
 フェノチアジン系老化防止剤としては、フェノチアジン、10-メチルフェノチアジン、2-メチルフェノチアジン、2-トリフルオロメチルフェノチアジン等が挙げられる。
<有機溶媒>
 本発明の全固体二次電池用バインダー組成物は、有機溶媒を含む。有機溶媒としては、トルエン、キシレン等の芳香族炭化水素類;シクロペンチルメチルエーテル等のエーテル類;酢酸ブチル、酪酸ブチル等のエステル類が挙げられ、酪酸ブチル、キシレンが好ましい。有機溶媒は、1種又は2種以上の任意の比率の組み合わせであることができる。
 (メタ)アクリル系重合体が水系分散液として得られた場合には、水系分散液の溶媒を上記有機溶媒で溶媒交換することができる。溶媒交換の方法は、特に限定されず、ロータリーエバポレーターに水系分散液及び有機溶媒を入れ、減圧して所定の温度にて溶媒交換及び脱水操作を行う方法が挙げられる。
<その他の成分>
 本発明の全固体二次電池用バインダー組成物は、上記成分以外に、レべリング剤、補強材、消泡剤、老化防止剤、界面活性剤、分散剤等の成分を含有することができる。これらの成分は、公知のものを使用することができる。また、本発明の効果を損なわない限り、(メタ)アクリル系重合体以外のバインダーを含有していてもよく、例えば、フッ化ビニリデン(VDF)単量体単位及びヘキサフルオロプロピレン(HFP)単量体単位より選ばれる単量体単位を含む重合体(例えば、ポリフッ化ビニリデン(PVDF)、ポリ(ヘキサフルオロプロピレン)(PHFP)等)、スチレン-ブタジエン系共重合体(SBR)、アクリロニトリル-ブタジエン系共重合体(NBR)、水素化NBR、ゲル量50%超の重合体が挙げられる。
<バインダー組成物の組成・粘度>
 本発明の全固体二次電池用バインダー組成物においては、老化防止剤を、上記重合体100質量部に対し、0.005質量部以上0.5質量部以下で使用することが重要である。老化防止剤の含有量は、プレス性を向上させてサイクル特性を向上させる点からは、0.0085質量部以上が好ましく、0.01質量部以上がより好ましく、また、出力特性の観点からは、0.3質量部以下が好ましく、0.2質量部以下がより好ましい。
 なお、バインダー組成物中の老化防止剤の特定には、例えば、高速液体クロマトグラフィー/質量分析法を用いることができ、その際、高速原子衝撃法(FAB)を利用することができる。また、バインダー組成物中の老化防止剤の定量は、例えば、高速液体クロマトグラフィーを用いた検量線法によって行うことができる。
 バインダー組成物の固形分濃度は、5質量%以上が好ましく、6質量%以上がより好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましい。
 バインダー組成物は、粘度(ブルックフィールドB型粘度計、60rpm、25℃)を2000mPa・s以下とすることができ、好ましくは1800mPa・s以下である。経時安定性の点から、粘度は、50mPa・s以上が好ましく、500mPa・s以上がより好ましい。
<バインダー組成物の調製方法>
 本発明の全固体二次電池用バインダー組成物の調製方法は、特に限定されず、上記の(メタ)アクリル系重合体、老化防止剤及び任意のその他の成分を有機溶媒中で混合する方法が挙げられる。
 (メタ)アクリル系重合体が水系分散液として得られた場合には、水系分散液の溶媒を上記有機溶媒で溶媒交換し、溶媒交換の前又は後で、老化防止剤及びその他の成分を混合することにより、バインダー組成物を得ることができる。溶媒交換の方法は、特に限定されず、ロータリーエバポレーターに水系分散液及び有機溶媒を入れ、減圧して所定の温度にて溶媒交換及び脱水操作を行う方法が挙げられる。老化防止剤の混合のタイミングは特に限定されず、有機溶媒交換の前後のいずれでもよい。バインダー組成物の濃度調整のために、溶媒交換の後に、有機溶媒をさらに加えてもよい。
(全固体二次電池固体電解質層用スラリー組成物)
 本発明の全固体二次電池固体電解質層用スラリー組成物(以下「固体電解質層用スラリー組成物」ともいう。)は、上記全固体二次電池用バインダー組成物及び固体電解質を含む。
<固体電解質>
 固体電解質は、リチウムイオン等の電荷担体の伝導性を有していれば、特に限定されず、無機固体電解質及び高分子無機固体電解質が挙げられる。固体電解質は、1種又は2種以上の任意の比率の組み合わせであることができ、無機固体電解質と高分子無機固体電解質との混合物であってもよい。
<<無機固体電解質>>
 無機固体電解質は、特に限定されず、結晶性の無機イオン伝導体、非晶性の無機イオン伝導体が挙げられる。例えば、全固体二次電池が全固体リチウムイオン二次電池の場合、無機固体電解質としては、結晶性の無機リチウムイオン伝導体、非晶性の無機リチウムイオン伝導体が好ましい。
 以下、全固体二次電池が全固体リチウムイオン二次電池である場合を例にとって説明するが、本発明はこの場合に限定されない。
 結晶性の無機リチウムイオン伝導体としては、Li3N、LISICON(Li14Zn(GeO44)、ペロブスカイト型Li0.5La0.5TiO3、ガーネット型Li7La3Zr210、LIPON(Li3+yPO4-xx)、Thio-LISICON(Li3.75Ge0.250.754)等が挙げられる。非晶性の無機リチウムイオン伝導体としては、ガラスLi-Si-S-O、Li-P-S等が挙げられる。
 中でも、無機固体電解質の導電性の点から、非晶性の無機リチウムイオン伝導体が好ましく、リチウムイオン電導性が高く、内部抵抗の低下を図ることができる点から、Li及びPを含む非晶性の硫化物がより好ましい。
 Li及びPを含む非晶性の硫化物は、電池の内部抵抗低下及び出力特性向上という点から、Li2SとP25とからなる硫化物ガラスがより好ましく、Li2S:P25のモル比が65:35~85:15であるLi2SとP25との混合原料から製造された硫化物ガラスが特に好ましい。このような混合原料をメカノケミカル法によって反応させて得られる硫化物ガラスセラミックスも好適に用いることができる。リチウムイオン伝導度を高い状態で維持する点からは、混合原料は、Li2S:P25のモル比が68:32~80:20であることが好ましい。
 無機固体電解質のリチウムイオン伝導度は、特に限定されず、1×10-4S/cm以上が好ましく、1×10-3S/cm以上がさらに好ましい。
 Li及びPを含む非晶性の硫化物無機固体電解質は、イオン伝導性を低下させない程度において、上記Li2S、P25の他に出発原料としてAl23、B23及びSiS2からなる群より選ばれる少なくとも1種の硫化物を含むことができる。これにより、無機固体電解質中のガラス成分を安定化させることができる。
 同様に、無機固体電解質は、Li2S及びP25に加え、Li3PO4、Li4SiO4、Li4GeO4、Li3BO3及びLi3AlO3からなる群より選ばれる少なくとも1種のオルトオキソ酸リチウムを含んでいてもよい。これにより、無機固体電解質中のガラス成分を安定化させることができる。
 無機固体電解質の個数平均粒子径は、0.1μm以上が好ましく、0.3μm以上がより好ましく、また、20μm以下が好ましく、10μm以下がより好ましく、7μm以下がさらに好ましく、5μm以下が特に好ましい。上記下限値以上であれば、ハンドリングが容易であるとともに、スラリー組成物を用いて形成される層の接着性を十分に高めることができる。一方、上記上限値以下であれば、無機固体電解質の表面積を十分に確保し、全固体二次電池の出力特性を十分に向上させることができる。
 本明細書において、無機固体電解質の「個数平均粒子径」は、100個の無機固体電解質について、それぞれ電子顕微鏡にて観察し、JIS Z8827-1:2008に従って粒子径を測定し、平均値を算出することにより求めることができる。
<<高分子無機固体電解質>>
 高分子無機固体電解質としては、ポリエチレンオキサイド誘導体及びポリエチレンオキサイド誘導体を含む重合体、ポリプロピレンオキサイド誘導体及びポリプロピレンオキサイド誘導体を含む重合体、リン酸エステル重合体、ならびにポリカーボネート誘導体及びポリカーボネート誘導体を含む重合体等に電解質塩を含有させたものが挙げられる。
 全固体二次電池が全固体リチウムイオン二次電池の場合、電解質塩は、特に限定されず、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)等の含フッ素リチウム塩が挙げられる。
<その他の成分>
 固体電解質層用スラリー組成物は、上記成分以外に、レべリング剤、補強材、消泡剤、老化防止剤等の成分を含有することができる。これらの成分は、公知のものを使用することができる。
 固体電解質層用スラリー組成物は、スラリー組成物の調製時に任意に追加された有機溶媒を含むことができ、追加する溶媒としては、バインダー組成物に関して挙げられた有機溶媒を使用することができる。具体的には、酪酸ブチル、キシレンが好ましい溶媒として挙げられる。
<固体電解質層用スラリー組成物の組成・粘度>
 固体電解質層用スラリー組成物に含まれるバインダー組成物の量は、固体電解質100質量部に対して、バインダー組成物中の(メタ)アクリル系重合体が0.1質量部以上となる量が好ましく、0.5質量部以上となる量がより好ましく、また、7質量部以下となる量が好ましく、5質量部以下となる量がより好ましい。
 固体電解質層用スラリー組成物の粘度(ブルックフィールドB型粘度計、60rpm、25℃)は、500mPa・s以上が好ましく、1000mPa・s以上がより好ましく、また、10000mPa・s以下が好ましく、6000mPa・s以下がより好ましい。
<固体電解質層用スラリー組成物の調製方法>
 固体電解質層用スラリー組成物の調製方法は、特に限定されず、上記のバインダー組成物、固体電解質、任意の追加の有機溶媒、任意のその他の成分を混合する方法が挙げられる。
(全固体二次電池電極用スラリー組成物)
 本発明の全固体二次電池電極用スラリー組成物(以下「電極用スラリー組成物」ともいう。)は、上記全固体二次電池バインダー組成物、固体電解質及び電極活物質を含む。
<固体電解質>
 固体電解質については、上記固体電解質層用スラリー組成物における記載が適用され、当該記載中の例示や好適例として挙げられたものを使用することができる。
<電極活物質>
 電極活物質は、全固体二次電池の電極において電子の受け渡しをする物質であり、全固体二次電池が全固体リチウムイオン二次電池の場合には、電極活物質として、通常、リチウムを吸蔵及び放出し得る物質を用いる。
 以下、全固体二次電池が全固体リチウムイオン二次電池である場合について説明するが、本発明はこれに限定されない。
 正極活物質は、特に限定されず、無機化合物からなる正極活物質、有機化合物からなる正極活物質が挙げられる。正極活物質は、1種又は2種以上の任意の比率の組み合わせであることができ、無機化合物と有機化合物との混合物であってもよい。
 無機化合物からなる正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物(リチウム含有複合金属酸化物)、遷移金属硫化物等が挙げられる。上記遷移金属としては、Fe、Co、Ni、Mn等が挙げられる。正極活物質に使用される無機化合物としては、Co-Ni-Mnのリチウム含有複合金属酸化物(Li(Co Mn Ni)O2)、Ni-Co-Alのリチウム含有金属複合酸化物、リチウム含有コバルト酸化物(LiCoO2)、リチウム含有ニッケル酸化物(LiNiO2)、マンガン酸リチウム(LiMnO2、LiMn24)、オリビン型リン酸鉄リチウム(LiFePO4)、LiFeVO4等のリチウム含有複合金属酸化物;TiS2、TiS3、非晶質MoS2等の遷移金属硫化物;Cu223、非晶質V2O-P25、MoO3、V25、V613等の遷移金属酸化物;等が挙げられる。これらの化合物は、部分的に元素置換されたものであってもよい。
 有機化合物からなる正極活物質としては、ポリアニリン、ポリピロール、ポリアセン、ジスルフィド系化合物、ポリスルフィド系化合物、N-フルオロピリジニウム塩等が挙げられる。
 負極活物質としては、グラファイト、コークス等の炭素の同素体が挙げられる。炭素の同素体からなる負極活物質は、金属、金属塩、酸化物等との混合体や被覆体の形態であることもできる。負極活物質としては、ケイ素、スズ、亜鉛、マンガン、鉄、ニッケル等の酸化物又は硫酸塩;金属リチウム;Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金;リチウム遷移金属窒化物;シリコーン;等も挙げられる。
 電極活物質の個数平均粒子径は、0.1μm以上が好ましく、1μm以上がより好ましく、また、40μm以下が好ましく、30μm以下がより好ましい。上記下限値以上であれば、ハンドリングが容易であるとともに、得られる電極合材層の接着性を十分に高めることができる。一方、上記上限値以下であれば、電極活物質の表面積を十分に確保し、全固体二次電池の出力特性を十分に向上させることができる。
 本明細書において、電極活物質の「個数平均粒子径」は、100個の電極活物質について、それぞれ電子顕微鏡にて観察し、JIS Z8827-1:2008に従って粒子径を測定し、平均値を算出することにより求めることができる。
<導電材>
 電極用スラリー組成物は、導電材を含有することができる。導電材を含有することにより、電極合材層中において電極活物質同士の電気的接触の確保を容易にすることができる。導電材としては、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック等)、単層又は多層のカーボンナノチューブ(多層カーボンナノチューブにはカップスタック型が含まれる)、カーボンナノホーン、気相成長炭素繊維、ポリマー繊維を焼成後に破砕して得られるミルドカーボン繊維、単層又は多層のグラフェン、ポリマー繊維からなる不織布を焼成して得られるカーボン不織布シート等の導電性炭素材料;各種金属のファイバー又は箔等が挙げられる。中でも、アセチレンブラック、ケッチェンブラック、ファーネスブラックが好ましい。導電材は、1種又は2種以上の任意の比率の組み合わせであることができる。
<その他の成分>
 電極用スラリー組成物は、上記成分以外に、レべリング剤、補強材、消泡剤、界面活性剤、分散剤等の成分を含有することができる。これらの成分は、公知のものを使用することができる。
 電極用スラリー組成物は、スラリー組成物の調製時に任意に追加された有機溶媒を含むことができ、追加する溶媒としては、バインダー組成物に関して挙げられた有機溶媒を使用することができる。具体的には、酪酸ブチル、キシレンが好ましい溶媒として挙げられる。
<電極用スラリー組成物の組成・粘度>
 電極用スラリー組成物に含まれる固体電解質の量は、電極活物質と固体電解質との合計量(100質量%)中に占める固体電解質の比率が10質量%以上となる量が好ましく、20質量%以上となる量がより好ましく、また、70質量%以下となる量が好ましく、60質量%以下となる量がより好ましい。上記下限値以上であれば、イオン伝導性を十分に確保し、電極活物質を有効に活用して、全固体二次電池の容量を十分に高めることができる。また、上記上限値以下であれば、電極活物質の量を十分に確保し、全固体二次電池の容量を十分に高めることができる。
 電極用スラリー組成物に含まれるバインダー組成物の量は、電極活物質と固体電解質との合計量100質量部に対して、バインダー組成物中の(メタ)アクリル系重合体が0.1質量部以上となる量が好ましく、0.5質量部以上となる量がより好ましく、また、7質量部以下となる量が好ましく、5質量部以下となる量がより好ましい。
 電極用スラリー組成物の粘度(ブルックフィールドB型粘度計、60rpm、25℃)は、500mPa・s以上が好ましく、1000mPa・s以上がより好ましく、また、10000mPa・s以下が好ましく、6000mPa・s以下がより好ましい。
<電極用スラリー組成物の調製方法>
 スラリー組成物の調製方法は、特に限定されず、上記のバインダー組成物、固体電解質、電極活物質、任意の導電材、任意の追加の有機溶媒、任意のその他の成分を混合する方法が挙げられる。導電材を使用する場合、バインダー組成物と導電材をあらかじめ混合し、これに固体電解質、電極活物質等を添加してもよい。
(全固体二次電池用固体電解質層)
 本発明の全固体二次電池用固体電解質層(以下「固体電解質層」ともいう。)は、本発明の全固体二次電池固体電解質層用スラリー組成物を用いて形成されたものであり、例えば、固体電解質層用スラリー組成物を適切な基材の表面に塗布して塗膜を形成した後、形成した塗膜を乾燥することにより得られる。
 本発明の固体電解質層は、少なくとも、固体電解質、(メタ)アクリル系重合体及び老化防止剤を含み、これらの成分の含有割合は、通常、固体電解質層用スラリー組成物中の含有割合と等しい。
 固体電解質層を形成する方法としては、例えば、以下の方法が挙げられる。
1)本発明の固体電解質層用スラリー組成物を電極上(通常、電極合材層の表面。以下同じ。)に塗布し、次いで乾燥することで、電極上に固体電解質層を形成する方法;
2)本発明の固体電解質層用スラリー組成物を基材上に塗布し、乾燥した後、得られた固体電解質層を電極上に転写することで、電極上に固体電解質層を形成する方法;及び、
3)本発明の固体電解質層用スラリー組成物を基材上に塗布し、乾燥して得られた固体電解質層用スラリー組成物の乾燥物を粉砕して粉体とし、次いで、得られた粉体を層状に成型することで、自立可能な固体電解質層を形成する方法。
 上記1)~3)の方法で用いられる、塗布、乾燥、転写、粉砕、成型等の方法は、特に限定されず、公知の方法を採用することができる。
 例えば、塗布の方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り等が挙げられる。
 例えば、乾燥の方法としては、温風、熱風又は低湿風による乾燥、真空乾燥、(遠)赤外線や電子線等の照射による乾燥が挙げられる。乾燥条件は、適宜設定することができ、乾燥温度としては、50℃以上250℃以下が好ましく、80℃以上200℃以下が好ましい。乾燥時間は、特に限定されず、通常10分以上60分以下の範囲で行われる。
 なお、乾燥後の固体電解質層をプレスすることにより固体電解質層を安定させてもよい。プレス方法は、特に限定されず、金型プレスやカレンダープレス等の方法が挙げられる。
 固体電解質層スラリー組成物の塗布量は、特に限定されず、所望の電極合材層の厚み等に応じて適宜設定することができる。
 固体電解質層の厚みは、特に限定されず、10μm以上が好ましく、20μm以上がより好ましく、30μm以上がさらに好ましく、また、1000μm以下が好ましく、800μm以下がより好ましく、600μm以下がさらに好ましい。上記下限以上であれば、正極と負極の短絡を十分防止することができ、また、上記下限値以下であれば、内部抵抗の低下の点から有利である。
(全固体二次電池用電極)
 本発明の全固体二次電池用電極(以下「電極」ともいう。)は、本発明の全固体二次電池電極用スラリー組成物を用いて形成されたものであり、例えば、電極用スラリー組成物を集電体の表面に塗布して塗膜を形成した後、形成した塗膜を乾燥することにより、集電体と、集電体上の電極合材層とを備える電極を得ることができる。
 本発明の電極は、少なくとも、固体電解質、電極活物質、(メタ)アクリル系重合体及び老化防止剤を含み、これらの成分の含有割合は電極用スラリー組成物中の含有割合と通常、等しい。
 集電体は、電気導電性を有し、かつ電気化学的に耐久性のある材料であれば、特に限定されない。耐熱性の点から、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金等の金属材料が好ましく、中でも、正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。集電体の形状は、特に限定されず、厚さ0.001mm以上0.5mm以下程度のシート状のものが好ましい。集電体は、電極合材層との接着強度を高めるため、予め粗面化処理して使用することが好ましい。粗面化方法としては、特に限定されず、機械的研磨法、電解研磨法、化学研磨法等が挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線等を備えたワイヤーブラシ等が使用される。また、集電体と電極合材層との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
 電極用スラリー組成物を塗布する方法は、特に限定されず、固体電解質層用スラリー組成物の塗布に関して挙げられた方法を利用することができる。
 電極用スラリー組成物を乾燥する方法は、特に限定されず、固体電解質層用スラリー組成物の乾燥に関して挙げられた方法を利用することができる。
 乾燥後の電極をプレスすることにより電極を安定させてもよい。プレス方法は、特に限定されず、金型プレスやカレンダープレス等の方法が挙げられる。
 電極用スラリー組成物の塗布量は、特に限定されず、所望の電極合材層の厚み等に応じて適宜設定することができる。
 電極合材層の目付量は、特に限定されず、1.0mg/cm2以上が好ましく、より好ましくは5.0mg/cm2以上であり、また、30.0mg/cm2以下が好ましく、25.0mg/cm2以下がより好ましい。
(全固体二次電池)
 本発明の全固体二次電池は、本発明の固体電解質層及び電極(正極、負極)の少なくとも1つを備える。すなわち、本発明の全固体二次電池は、固体電解質層、正極及び負極の少なくとも1つが、本発明のバインダー組成物を含むスラリー組成物(固体電解質層の場合は、固体電解質層用スラリー組成物であり、正極又は負極の場合は、電極用スラリー組成物)を用いて形成されたものである。
 ここで、本発明の全固体二次電池に使用し得る、本発明の電極に該当しない電極は、特に限定されず、任意の全固体二次電池用電極を用いることができる。
 また、本発明の全固体二次電池に使用し得る、本発明の固体電解質層に該当しない固体電解質層は、特に限定されず、任意の固体電解質層を用いることができる。
 本発明の全固体二次電池は、正極と負極とを、正極の正極合材層と負極の負極合材層とが固体電解質層を介して対向するように積層し、任意に加圧して積層体を得た後、電池形状に応じて、そのままの状態で、あるいは巻く、折る等して電池容器に入れ、封口することにより得ることができる。必要に応じて、エキスパンドメタルや、ヒューズ、PTC素子等の過電流防止素子、リード板等を電池容器に入れ、電池内部の圧力上昇、過充放電の防止をすることもできる。電池の形状は、特に限定されず、コイン型、ボタン型、シート型、円筒型、角形、扁平型等が挙げられる。
 全固体二次電池の製造において、固体電解質層又は電極合材層の形成段階、各層を積層した段階、電池セルの組立段階等の全固体二次電池の製造工程のいずれかにおいて、通常、プレス加工が行われる。このプレス加工は、一般的には、50MPa以上1500MPa以下の圧力で行われるが、本発明のバインダー組成物を用いることにより、形成される層(固体電解質層、電極合材層)に優れたプレス性が付与されているため、全固体二次電池において、優れた出力特性及び高温サイクル特性を実現することが可能となる。
 以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれらに限定されない。以下において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。実施例及び比較例における、重合体の重量平均分子量、単量体単位の含有割合及びゲル量の測定は、以下のようにして行った。スラリー組成物のレベリング性、密着性(ピール強度)、全固体二次電池の電池特性(出力特性、高温サイクル特性)の評価は、以下のようにして行った。
<重合体中の重量平均分子量>
 各実施例及び比較例において調製した重合体の重量平均分子量は、高速液体クロマトグラフィー(装置:東ソー社製、型番「HLC8220」)を用いて得たポリスチレン換算分子量に基づいて算出した。高速液体クロマトグラフィーに際しては、3本連結したカラム(昭和電工社製、型番「Shodex KF-404HQ」、カラム温度:40℃、キャリア:流速0.35ml/分のテトラヒドロフラン)、ならびに検出器として示差屈折計及び紫外検出器を用いた。分子量の較正は、標準ポリスチレン(ポリマーラボラトリー社製、標準分子量:500~3,000,000)の12点で実施した。
<重合体中の単量体単位の含有割合>
 後述する実施例8において調製したバインダー組成物100gを、メタノール1Lで凝固させた後、温度60℃で12時間真空乾燥した。得られた乾燥重合体を1H-NMRで分析した。得られた分析値に基づいて、バインダー組成物中の重合体に含まれる各単量体単位及び構造単位の含有割合(質量%)を算出した。他の実施例及び比較例の単量体単位の含有割合は、単量体組成物中の各単量体の含有割合(仕込み量)と実質的に同じである。
<ゲル量(THF不溶解分量)>
 各実施例及び比較例のバインダー組成物の調製における、単量体の重合後、老化防止剤を混合する前の反応液(実施例8については、水素化反応後、濃縮し、老化防止剤を混合する前の水分散液)を、50%湿度、23℃~25℃の環境下で乾燥させて、厚み3±0.3mmのフィルムを作製した。作製したフィルムを5mm角に裁断して複数のフィルム片を用意し、これらのフィルム片を約1g精秤した。精秤されたフィルム片の重量をW0とした。次いで、精秤されたフィルム片を、100gのテトラヒドロフラン(THF)に25℃で24時間浸漬した。その後、THFからフィルム片を引き揚げ、引き揚げたフィルム片を105℃で3時間真空乾燥して、その重量(不溶解分の重量)W1を計測した。そして、下記式に従って、THF不溶解分量を算出し、ゲル量(質量%)とした。
 ゲル量(質量%)=W1/W0×100
<レベリング性>
 内径30mm、高さ120mm の平底円筒型透明ガラス管を用意し、管底からの高さが55mm及び85mmの位置に2本の標線(以下、高さが55mmの位置の標線を「A線」、高さが85mmの位置の標線を「B線」という。)を付した。
 実施例及び比較例で得られたスラリー組成物を、上記ガラス管のA線まで充填し、ゴム栓をした後、25℃環境下で10分間直立状態のまま放置した。
 その後、ガラス管を水平状態に倒してからスラリー組成物の液面の先端がB線を通過するまでの時間tを測定し、以下の基準でレベリング性を評価した。時間tが短い程、塗工時のレベリング性に優れていることを示す。
 A:時間tが1秒未満
 B:時間tが1秒以上5秒未満
 C:時間tが5秒以上10秒未満
 D:時間tが10秒以上
<密着性(ピール強度)>
 実施例及び比較例で得られた電極又は固体電解質層を備える銅箔を、幅2.5cm、長さ10cmの矩形に切り出して試験片とし、試験片の電極合材層又は固体電解質層表面にセロハンテープを貼り付けた後、試験片の一端からセロハンテープを50mm/分の速度で180°方向に引き剥がしたときの応力を測定した。測定を10回行い、その平均値を求めて、これをピール強度(N/m)とし、以下の基準で密着性を評価した。ピール強度の平均値が大きい程、密着性に優れていることを示す。
 A:ピール強度の平均値が20N/m以上
 B:ピール強度の平均値が15N/m以上20N/m未満
 C:ピール強度の平均値が10N/m以上15N/m未満
 D:ピール強度の平均値が10N/m未満
<電池特性:出力特性>
 実施例及び比較例で作製した全固体二次電池を、0.1Cの定電流法によって4.3Vまで充電し、その後0.1Cにて3.0Vまで放電し、0.1C放電容量を求めた。その後0.1Cにて4.3Vまで充電し、その後10Cにて3.0Vまで放電し、10C放電容量を求めた。
 10セルについて同様に測定を行い、0.1C放電容量の平均値を0.1C放電容量a、10C放電容量の平均値を10C放電容量bとし、0.1C放電容量aに対する10C放電容量bの比(b/a(%))で表される容量比を求め、下記の基準で評価した。この値が大きい程、内部抵抗が小さく、出力特性に優れることを示す。
 A:容量比50%以上
 B:容量比40%以上50%未満
 C:容量比30%以上40%未満
 D:容量比30%未満
<電池特性:高温サイクル特性>
 実施例及び比較例で作製した全固体二次電池について、60℃にて、0.1Cで3Vから4.3Vまで充電し、次いで0.1Cで4.3Vから3Vまで放電する充放電を、100サイクル繰り返し行った。5サイクル目の0.1C放電容量cに対する100サイクル目の0.1C放電容量dの比(d/c(%))で表わされる容量維持率を求め、下記の基準で評価した。この値が大きい程、放電容量減が少なく、高温サイクル特性に優れることを示す。
 A:容量維持率60%以上
 B:容量維持率50%以上60%未満
 C:容量維持率40%以上50%未満
 D:容量維持率30%以上40%未満
(実施例1:本発明の負極を備える全固体二次電池)
<(メタ)アクリル系重合体及びバインダー組成物の調製>
 撹拌機を備えたセプタム付き1Lフラスコにイオン交換水100部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.2部を加え、気相部を窒素ガスで置換し、60℃に昇温した後、重合開始剤として過硫酸カリウム(KPS)0.25部をイオン交換水20.0部に溶解させ加えた。
 一方、別の容器でイオン交換水40部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1.0部、そしてスチレン(St)15部、n-ブチルアクリレート(BA)80部、アクリロニトリル(AN)5部を混合して単量体組成物を得た。この単量体組成物を3時間かけて、上記セプタム付き1Lフラスコに連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに80℃で3時間撹拌して反応を終了した。
 次いで、この反応液に、反応液中の固形分100部当たり、フェノール系老化防止剤として3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸オクタデシル(老化防止剤1)0.08部、4,6-ビス(オクチルチオメチル)-o-クレゾール(老化防止剤2)0.02部を加えて混合した。
 続いて、得られた重合体の水分散液に、キシレンを適量添加して混合物を得た。その後、80℃にて減圧蒸留を実施して混合物から水及び過剰なキシレンを除去し、バインダー組成物(固形分濃度:8%)を得た。
<負極用スラリー組成物の調製>
 負極活物質としてのグラファイト(個数平均粒子径:20μm)65部と、固体電解質としてのLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、個数平均粒子径:0.9μm)30部と、導電材としてのアセチレンブラック3部と、上記バインダー組成物(固形分2部相当量)とを混合して、得られた混合液にキシレンを加えて、固形分濃度60%の組成物を調製した。この組成物を遊星式混練機で混合して、負極合材層用スラリー組成物を得た。得られた負極用スラリー組成物を用いて、レベリング性を評価した。
<負極の作製>
 集電体としての銅箔の表面に、上記負極用スラリー組成物を塗布し、120℃で30分間乾燥することで、集電体としての銅箔の片面に負極合材層(目付け量:10.0mg/cm2)を有する負極を得た。得られた負極を用いて、密着性を評価した。
<正極用スラリー組成物の調製>
 正極活物質としてのCo-Ni-Mnのリチウム複合酸化物系の活物質NMC532(LiNi5/10Co2/10Mn3/102、個数平均粒子径:10.0μm)65部と、固体電解質としてのLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、個数平均粒子径:0.9μm)30部と、導電材としてのアセチレンブラック3部と、老化防止剤を配合しないこと以外は実施例1と同様にして調製したバインダー組成物(正極合材層用)(固形分2部相当量)とを混合し、得られた混合液にキシレンを加えて、固形分濃度75%の組成物を調製した。この組成物を遊星式混練機で60分混合し、さらにキシレンで固形分濃度70%に調整した後に遊星式混練機で10分間混合して、正極用スラリー組成物を得た。
<正極の作製>
 集電体としてのアルミニウム箔の表面に、上記正極用スラリー組成物を塗布し、120℃で30分間乾燥することで、集電体としてのアルミニウム箔の片面に正極合材層(目付け量:18.0mg/cm2)を有する正極を得た。
<固体電解質層用スラリー組成物の調製>
 固体電解質としてのLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、個数平均粒子径:0.9μm)98部と、老化防止剤を配合しないこと以外は実施例1と同様にして調製したバインダー組成物(固形分2部相当量)とを混合し、得られた混合液にキシレンを加えて、固形分濃度60%の組成物を調製した。この組成物を遊星式混練機で混合して、固体電解質層用スラリー組成物を得た。
<固体電解質層の作製>
 上記固体電解質層用スラリー組成物を、基材としての剥離シート上で乾燥させ、剥離シート上から剥離させた乾燥物を乳鉢ですりつぶし粉体を得た。得られた粉体0.05mgを10mmφの金型に入れて、200MPaの圧力で成型することで、厚みが500μmのペレット(固体電解質層)を得た。
<全固体二次電池の作製>
 上記のようにして得られた負極、正極を、それぞれ10mmφで打ち抜いた。打ち抜いた後の正極と負極で、上記のようにして得られた固体電解質層を挟み(この際、各電極の電極合材層が固体電解質層に接する)、200MPaの圧力でプレスして全固体二次電池用の積層体を得た。得られた積層体を、評価用セル内に配置して(拘束圧:40Mpa)、全固体二次電池を得た。そして、得られた全固体二次電池のセル特性を評価した。
 実施例1~7、9~12、比較例1~3では、実施例1と同様にして、バインダー組成物、負極合材層用スラリー組成物、正極合材層用スラリー組成物、固体電解質層用スラリー組成物、負極、正極、全固体二次電池を製造したが、単量体組成物における各単量体の種類及び量、老化防止剤の種類及び量については、表1に示す種類及び量とした。なお、正極合材層用スラリー組成物及び固体電解質層用スラリー組成物に使用したバインダー組成物は、老化防止剤を配合しないこと以外は、各実施例及び比較例における負極合材層用スラリー組成物用のバインダー組成物と同様にして調製したものである。作製した全固体二次電池について、実施例1と同様に電池のセル特性を評価した。結果を表1に示す。
 表中の老化防止剤は、以下のとおりである。
 フェノール系老化防止剤
  老化防止剤1:3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸オクタデシル
  老化防止剤2:4,6-ビス(オクチルチオメチル)-o-クレゾール
  老化防止剤3:4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-t-ブチルフェノール
  老化防止剤4:2,6-ジ-t-ブチル-4-メチルフェノール
 ホスファイト系老化防止剤
  老化防止剤5:3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン
(実施例8)
 下記のようにして(メタ)アクリル系重合体を調製し、バインダー組成物を得たことを除き、実施例1と同様にして、負極用スラリー組成物、正極用スラリー組成物、固体電解質層用スラリー組成物、固体電解質層、負極、正極及び全固体二次電池を製造し、電池のセル特性を評価した。結果を表1に示す。(メタ)アクリル系重合体における単量体単位の含有割合の測定方法は上記のとおりである。
 反応器に、乳化剤としてオレイン酸カリウム2部、安定剤としてリン酸カリウム0.1 部、水150部を仕込み、さらにアクリロニトリル(AN)19部、1,3-ブタジエン(BD)48部、ブチルアクリレート(BA)33部及び分子量調整剤としてt-ドデシルメルカプタン0.31部を加えて、活性剤として硫酸第一鉄0.015部及び重合開始剤としてパラメンタンハイドロパーオキサイド0.05部の存在下に、10℃で乳化重合を開始した。重合転化率が85% になった時点で、単量体100部当たり0.2部のヒドロキシルアミン硫酸塩を添加して重合を停止させた。
 重合停止に続いて、加温し、減圧下、80℃で、水蒸気蒸留により、未反応単量体を回収し、重合体の水分散液を得た。
 得られた重合体の水分散液400mL(全固形分:48g)を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して水分散液中の溶存酸素を除去した。その後、水素化反応触媒として、酢酸パラジウム50mgを、Pdに対して4倍モルの硝酸を添加した水180mLに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素化反応させた。
 内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮して、(メタ)アクリル系重合体の水分散液を得た。
 次いで、この(メタ)アクリル系重合体の水分散液に、水分散液中の固形分100部当たり、フェノール系老化防止剤として3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸オクタデシル(老化防止剤1)0.08部、4,6-ビス(オクチルチオメチル)-o-クレゾール(老化防止剤2)0.02部を加えて混合した。
 続いて、老化防止剤を添加した水分散液に、キシレンを適量添加して混合物を得た。その後、90℃にて減圧蒸留を実施して混合物から水及び過剰なキシレンを除去し、バインダー組成物(固形分濃度:8%)を得た。
(実施例13)
 本発明のバインダー組成物を含む正極用スラリー組成物を調製し、このスラリー組成物を用いて形成した正極合材層を備える正極を作製した。
<正極用スラリー組成物の調製>
 次いで、正極活物質としてのCo-Ni-Mnのリチウム複合酸化物系の活物質NMC532(LiNi5/10Co2/10Mn3/102、個数平均粒子径:10.0μm)65部と、固体電解質としてのLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、個数平均粒子径:0.9μm)30部と、導電材としてのアセチレンブラック3部と、実施例1において調製したバインダー組成物(固形分2部相当量)とを混合し、得られた混合液にキシレンを加えて、固形分濃度75%の組成物を調製した。この組成物を遊星式混練機で60分混合し、さらにキシレンで固形分濃度70%に調整した後に遊星式混練機で10分間混合して、正極用スラリー組成物を得た。得られた正極用スラリー組成物を用いて、レベリング性を評価した。
<正極の作製>
 集電体としてのアルミニウム箔の表面に、上記正極用スラリー組成物を塗布し、120℃で30分間乾燥することで、集電体としてのアルミニウム箔の片面に正極合材層(目付け量:18.0mg/cm2)を有する正極を得た。得られた正極を用いて、密着性を評価した。
(実施例14)
 本発明のバインダー組成物を含む固体電解質層用スラリー組成物を調製した。
<固体電解質層用スラリー組成物の調製>
 固体電解質としてのLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、個数平均粒子径:0.9μm)98部と、実施例1において調製したバインダー組成物(固形分2部相当量)とを混合し、得られた混合液にキシレンを加えて、固形分濃度60%の組成物を調製した。この組成物を遊星式混練機で混合して、固体電解質層用スラリー組成物を得た。得られた固体電解質層用スラリー組成物を用いて、レベリング性を評価した。
<固体電解質層の作製>
 上記固体電解質層用スラリー組成物を、銅箔に塗布し、120℃30分間乾燥することで、銅箔上に厚みが100μmの固体電解質層を得た。得られた銅箔上の固体電解質層を用いて、密着性を評価した。
Figure JPOXMLDOC01-appb-T000001
 実施例1~12に示されるように、本発明の全固体二次電池用バインダー組成物を用いた負極用スラリー組成物は、レベリング性及び密着性に優れ、これを用いることにより、優れた出力特性及び高温サイクル特性を有する全固体二次電池が得られることが確認された。優れたレベリング性及び密着性については、実施例13及び14において、本発明の全固体二次電池用バインダー組成物を正極用スラリー組成物及び固体電解質層用スラリー組成物に用いたときにも得られることが確認された。
 老化防止剤を含まないバインダー組成物を用いた比較例1では、得られた全固体二次電池は、出力特性及び高温サイクル特性について劣っていた。
 また、比較例2~3は、老化防止剤を用いたものであるが、バインダーが本発明の範囲から外れており、レベリング性及び密着強度に劣り、また、得られた全固体二次電池は、出力特性及び高温サイクル特性について劣っていた。

Claims (11)

  1.  重合体、老化防止剤及び有機溶媒を含む全固体二次電池用バインダー組成物であって、
     前記重合体が、(メタ)アクリル酸エステル単量体単位を25質量%以上95質量%以下含有し、ゲル量が50質量%以下である重合体であり、
     前記重合体100質量部に対する前記老化防止剤の量が0.005質量部以上0.5質量部以下である、
    全固体二次電池用バインダー組成物。
  2.  前記重合体が、さらにα,β-不飽和ニトリル単量体単位を含有する、請求項1記載の全固体二次電池用バインダー組成物。
  3.  前記重合体に占める前記α,β-不飽和ニトリル単量体単位の含有割合が2質量%以上30質量%以下である、請求項2記載の全固体二次電池用バインダー組成物。
  4.  前記重合体が、さらに疎水性単量体単位を有する、請求項1~3のいずれか一項に記載の全固体二次電池用バインダー組成物。
  5.  前記重合体に占める前記疎水性単量体単位の含有割合が3質量%以上60質量%以下である、請求項4記載の全固体二次電池用バインダー組成物。
  6.  前記老化防止剤が、フェノール系老化防止剤及び有機リン系老化防止剤からなる群より選択される1種以上である、請求項1~5のいずれか一項に記載の全固体二次電池用バインダー組成物。
  7.  請求項1~6のいずれか一項に記載の全固体二次電池用バインダー組成物及び固体電解質を含む、全固体二次電池固体電解質層用スラリー組成物。
  8.  請求項1~6のいずれか一項に記載の全固体二次電池用バインダー組成物、固体電解質及び電極活物質を含む、全固体二次電池電極用スラリー組成物。
  9.  請求項7に記載の全固体二次電池固体電解質層用スラリー組成物を用いて形成した全固体二次電池用固体電解質層。
  10.  請求項8に記載の全固体二次電池電極用スラリー組成物を用いて形成した電極合材層を備える、全固体二次電池用電極。
  11.  請求項9に記載の全固体二次電池用固体電解質層及び請求項10に記載の全固体二次電池用電極の少なくとも一方を備える、全固体二次電池。
PCT/JP2019/047714 2018-12-28 2019-12-05 全固体二次電池用バインダー組成物 WO2020137434A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020563013A JPWO2020137434A1 (ja) 2018-12-28 2019-12-05 全固体二次電池用バインダー組成物
US17/413,949 US20220045360A1 (en) 2018-12-28 2019-12-05 Binder composition for all-solid-state secondary battery
KR1020217018636A KR20210110297A (ko) 2018-12-28 2019-12-05 전고체 이차 전지용 바인더 조성물
EP19905923.9A EP3904406B1 (en) 2018-12-28 2019-12-05 Binder composition for all-solid-state secondary batteries
PL19905923.9T PL3904406T3 (pl) 2018-12-28 2019-12-05 Kompozycja spoiwa dla w pełni stałych baterii wtórnych
CN201980083368.XA CN113242866B (zh) 2018-12-28 2019-12-05 全固态二次电池用粘结剂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018248081 2018-12-28
JP2018-248081 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020137434A1 true WO2020137434A1 (ja) 2020-07-02

Family

ID=71129764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047714 WO2020137434A1 (ja) 2018-12-28 2019-12-05 全固体二次電池用バインダー組成物

Country Status (8)

Country Link
US (1) US20220045360A1 (ja)
EP (1) EP3904406B1 (ja)
JP (1) JPWO2020137434A1 (ja)
KR (1) KR20210110297A (ja)
CN (1) CN113242866B (ja)
HU (1) HUE064320T2 (ja)
PL (1) PL3904406T3 (ja)
WO (1) WO2020137434A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230108463A1 (en) * 2021-09-01 2023-04-06 Enevate Corporation Phosphorus-containing compounds as additives for silicon-based li ion batteries
WO2024116796A1 (ja) * 2022-11-30 2024-06-06 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114074A (ja) * 1990-09-03 1992-04-15 Origin Electric Co Ltd 被覆組成物
JP2003012916A (ja) * 2001-06-29 2003-01-15 Nippon Zeon Co Ltd 高分子固体電解質用組成物およびその用途
JP2010205449A (ja) * 2009-02-27 2010-09-16 Nippon Zeon Co Ltd 全固体二次電池用固体電解質層、全固体二次電池用積層体および全固体二次電池
JP2013008611A (ja) * 2011-06-27 2013-01-10 Nippon Zeon Co Ltd 全固体二次電池
JP2013055049A (ja) * 2011-08-10 2013-03-21 Nippon Zeon Co Ltd 電気化学素子電極用複合粒子、電気化学素子電極材料、電気化学素子電極、及び電気化学素子
WO2013146916A1 (ja) * 2012-03-28 2013-10-03 日本ゼオン株式会社 全固体二次電池用電極およびその製造方法
WO2015046313A1 (ja) 2013-09-25 2015-04-02 富士フイルム株式会社 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
WO2017047378A1 (ja) 2015-09-16 2017-03-23 日本ゼオン株式会社 全固体二次電池
JP2018088306A (ja) 2016-11-28 2018-06-07 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに、固体電解質含有シートおよび全固体二次電池の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974435B2 (ja) * 2002-04-26 2012-07-11 日本ゼオン株式会社 ポリエーテル重合体、その製造方法、および高分子固体電解質
KR101539819B1 (ko) * 2009-06-30 2015-07-27 제온 코포레이션 이차 전지용 전극 및 이차 전지
JP5299178B2 (ja) * 2009-09-02 2013-09-25 日本ゼオン株式会社 全固体二次電池
KR20120004209A (ko) * 2010-07-06 2012-01-12 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
JPWO2012023626A1 (ja) * 2010-08-20 2013-10-28 Jsr株式会社 電極用バインダー組成物
JP5761197B2 (ja) * 2010-08-24 2015-08-12 日本ゼオン株式会社 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池負極、二次電池及び二次電池負極用バインダー組成物の製造方法
KR101941428B1 (ko) * 2011-12-06 2019-01-23 제온 코포레이션 2 차 전지 정극용 바인더 조성물, 2 차 전지 정극용 슬러리 조성물, 2 차 전지 정극 및 2 차 전지
CN108701833B (zh) * 2016-03-10 2022-02-01 日本瑞翁株式会社 非水系二次电池电极用粘结剂、非水系二次电池电极用浆料、非水系二次电池用电极及非水系二次电池
CN109643801A (zh) * 2016-09-06 2019-04-16 日本瑞翁株式会社 全固体电池用粘结剂组合物、全固体电池用浆料组合物、全固体电池用电极和全固体电池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114074A (ja) * 1990-09-03 1992-04-15 Origin Electric Co Ltd 被覆組成物
JP2003012916A (ja) * 2001-06-29 2003-01-15 Nippon Zeon Co Ltd 高分子固体電解質用組成物およびその用途
JP2010205449A (ja) * 2009-02-27 2010-09-16 Nippon Zeon Co Ltd 全固体二次電池用固体電解質層、全固体二次電池用積層体および全固体二次電池
JP2013008611A (ja) * 2011-06-27 2013-01-10 Nippon Zeon Co Ltd 全固体二次電池
JP2013055049A (ja) * 2011-08-10 2013-03-21 Nippon Zeon Co Ltd 電気化学素子電極用複合粒子、電気化学素子電極材料、電気化学素子電極、及び電気化学素子
WO2013146916A1 (ja) * 2012-03-28 2013-10-03 日本ゼオン株式会社 全固体二次電池用電極およびその製造方法
WO2015046313A1 (ja) 2013-09-25 2015-04-02 富士フイルム株式会社 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
JP2015088480A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
WO2017047378A1 (ja) 2015-09-16 2017-03-23 日本ゼオン株式会社 全固体二次電池
JP2018088306A (ja) 2016-11-28 2018-06-07 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに、固体電解質含有シートおよび全固体二次電池の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230108463A1 (en) * 2021-09-01 2023-04-06 Enevate Corporation Phosphorus-containing compounds as additives for silicon-based li ion batteries
WO2024116796A1 (ja) * 2022-11-30 2024-06-06 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池

Also Published As

Publication number Publication date
HUE064320T2 (hu) 2024-03-28
KR20210110297A (ko) 2021-09-07
EP3904406B1 (en) 2023-10-04
EP3904406A1 (en) 2021-11-03
EP3904406A4 (en) 2022-09-28
PL3904406T3 (pl) 2024-02-26
JPWO2020137434A1 (ja) 2021-11-11
CN113242866B (zh) 2023-06-09
US20220045360A1 (en) 2022-02-10
CN113242866A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
KR20150021004A (ko) 이차전지용 바인더 조성물, 이를 사용한 전극 및 리튬 이차전지
KR101822638B1 (ko) 우수한 성능을 갖는 바인더 조성물 및 이를 포함하는 이차전지
WO2020137434A1 (ja) 全固体二次電池用バインダー組成物
CN113195562B (zh) 全固态二次电池电极用导电材料糊
US11967719B2 (en) Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery electrode mixed material layer, slurry composition for all-solid-state secondary battery solid electrolyte layer, and all-solid-state secondary battery
WO2021085044A1 (ja) 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層および二次電池
JP6759566B2 (ja) 非水系二次電池
JPWO2020137435A5 (ja)
US12074275B2 (en) Slurry composition for all-solid-state secondary battery, solid electrolyte-containing layer, and all-solid-state secondary battery
US11453808B2 (en) Adhesive composition for electrical storage device, functional layer for electrical storage device, electrical storage device, and method of producing electrical storage device
JP2012150900A (ja) 双極型二次電池用シール材および双極型二次電池
KR20150037276A (ko) 이차전지용 바인더 조성물 및 이를 포함하는 리튬 이차전지
US11476544B2 (en) Adhesive composition for electrical storage device, functional layer for electrical storage device, electrical storage device, and method of producing electrical storage device
KR101743623B1 (ko) 이차전지용 바인더 조성물 및 이를 포함하는 리튬 이차전지
WO2023120120A1 (ja) 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層及び全固体二次電池
KR20160084053A (ko) 리튬 이차전지용 바인더 및 이를 포함하는 리튬 이차전지
CN117321806A (zh) 全固态二次电池用黏结剂组合物、全固态二次电池用浆料组合物、全固态二次电池用功能层、以及全固态二次电池
CN114556636A (zh) 全固态二次电池用粘结剂组合物、全固态二次电池用浆料组合物、含固态电解质层以及全固态二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563013

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019905923

Country of ref document: EP

Effective date: 20210728