WO2017047378A1 - 全固体二次電池 - Google Patents

全固体二次電池 Download PDF

Info

Publication number
WO2017047378A1
WO2017047378A1 PCT/JP2016/075385 JP2016075385W WO2017047378A1 WO 2017047378 A1 WO2017047378 A1 WO 2017047378A1 JP 2016075385 W JP2016075385 W JP 2016075385W WO 2017047378 A1 WO2017047378 A1 WO 2017047378A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
solid electrolyte
electrode active
polymer
binder
Prior art date
Application number
PCT/JP2016/075385
Other languages
English (en)
French (fr)
Inventor
耕一郎 前田
小黒 寛樹
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP16846249.7A priority Critical patent/EP3352278A4/en
Priority to US15/753,402 priority patent/US20180254519A1/en
Priority to JP2017539819A priority patent/JP6834963B2/ja
Priority to KR1020177035052A priority patent/KR20180052558A/ko
Priority to CN201680032860.0A priority patent/CN107615554B/zh
Publication of WO2017047378A1 publication Critical patent/WO2017047378A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all solid state secondary battery such as an all solid state lithium ion secondary battery.
  • secondary batteries such as lithium-ion batteries have been used in various applications such as small-sized electric power storage devices for home use, electric motorcycles, electric vehicles, and hybrid electric vehicles in addition to portable terminals such as portable information terminals and portable electronic devices.
  • Demand is increasing.
  • Patent Document 1 a polymer solid electrolyte using polyethylene oxide or the like is known (Patent Document 1), but the polymer solid electrolyte is a combustible material.
  • Patent Document 2 an inorganic solid electrolyte made of an inorganic material has been proposed as a solid electrolyte (Patent Document 2, etc.).
  • an inorganic solid electrolyte is a solid electrolyte made of an inorganic substance and is a nonflammable substance, and has a very high safety compared to a commonly used organic solvent electrolyte.
  • Patent Document 2 development of an all-solid secondary battery having high safety using an inorganic solid electrolyte is progressing.
  • the all solid state secondary battery has an inorganic solid electrolyte layer as an electrolyte layer between a positive electrode and a negative electrode.
  • Patent Document 3 and Patent Document 4 all the solid electrolyte layers formed by a method (coating method) in which a slurry composition for a solid electrolyte layer containing solid electrolyte particles and a solvent is applied on a positive electrode or a negative electrode and dried.
  • a solid lithium secondary battery is described.
  • additives such as a binder other than the active material and the electrolyte are important for the electrode and the electrolyte layer formed by drying the solvent after applying the slurry composition in order to develop the characteristics as a battery. Therefore, in patent document 5, it is proposed to use an acrylate polymer for a binder.
  • Patent Documents 3 and 4 propose the ion conductivity inside the solid electrolyte layer and inside the active material layer. In some cases, capacity characteristics and cycle characteristics are insufficient, and Patent Document 5 proposes an all-solid secondary battery with good battery characteristics. However, a battery with higher characteristics is required.
  • An object of the present invention is to provide an all-solid secondary battery having good battery characteristics.
  • the present inventors have found that the above object can be achieved by using a binder composition in which a polymer having a particle structure and a water-soluble polymer are combined as a binder for an all-solid secondary battery, The present invention has been completed.
  • the binder described in (1) is based on a binder composition in which a solvent of a mixture of an aqueous dispersion of a polymer having a particle structure and a water-soluble polymer solution is solvent-exchanged with an organic solvent (1 )
  • the all-solid-state secondary battery is provided.
  • an all-solid secondary battery with good battery characteristics More specifically, an all-solid-state secondary battery with good charge / discharge performance can be provided by including in the solid electrolyte layer a binder containing a polymer having a particle structure and a water-soluble polymer. Since a solid electrolyte containing sulfur reacts when it comes into contact with a highly polar organic solvent, a battery slurry cannot be prepared using a polar solvent such as N-methylpyrrolidone. Therefore, water-soluble polymers having ion conductivity such as polyethylene oxide cannot be used as battery binders.
  • a water-soluble polymer such as polyethylene oxide can be used as a binder for an all-solid-state secondary battery, so that the ion conductivity is high.
  • An all-solid secondary battery can be provided.
  • the all-solid secondary battery of the present invention is an all-solid secondary battery having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers, A binder containing a polymer having a particle structure and a water-soluble polymer is used. That is, in the all solid state secondary battery of the present invention, a binder containing a polymer having a particle structure and a water-soluble polymer is used for at least one of the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer.
  • the positive electrode has a positive electrode active material layer on the current collector
  • the negative electrode has a negative electrode active material layer on the current collector.
  • a binder containing a polymer having a particle structure and a water-soluble polymer will be described first, and then (1) a solid electrolyte layer, (2) a positive electrode active material layer, and (3) a negative electrode active material layer will be described. To do.
  • the binder is used, for example, for binding solid electrolyte particles to form a solid electrolyte layer.
  • the binder used in the present invention contains a polymer having a particle structure and a water-soluble polymer.
  • a binder it is known from Patent Document 5 that an acrylate polymer is suitable.
  • an acrylate polymer it is preferable to use an acrylate polymer as a binder from the standpoint that the withstand voltage can be increased and the energy density of the all-solid-state secondary battery can be increased, there is a demand for higher performance.
  • the acrylate polymer can be obtained by a solution polymerization method or an emulsion polymerization method, and the obtained polymer is usually a linear polymer and is soluble in an organic solvent.
  • a polymer is used as a binder, it is conventionally used after being dissolved in an organic solvent.
  • Polymer having particle structure As the polymer having a particle structure used in the present invention, an acrylate polymer is preferably used, and the acrylate polymer is preferably used with a particle structure.
  • An acrylate-based polymer is a polymer containing an acrylate or methacrylate (hereinafter sometimes abbreviated as “(meth) acrylate”) and a repeating unit (polymerized unit) obtained by polymerizing these derivatives.
  • (meth) acrylates include acrylic acid such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, and benzyl acrylate.
  • Alkyl esters acrylic acid alkoxyalkyl esters such as 2-methoxyethyl acrylate and 2-ethoxyethyl acrylate; acrylics such as 2- (perfluorobutyl) ethyl acrylate and 2- (perfluoropentyl) ethyl acrylate 2- (perfluoroalkyl) ethyl acid; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, and t-butyl methacrylate, 2-ethylhexyl methacrylate Methacrylic acid alkyl esters such as methacrylic acid, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate and benzyl methacrylate; 2-methacrylic acid such as 2- (perfluorobutyl) ethyl methacrylate
  • acrylic acid alkyl esters such as -2-ethylhexyl and benzyl acrylate
  • acrylic acid alkoxyalkyl esters such as 2-methoxyethyl acrylate and 2-ethoxyethyl acrylate.
  • the content ratio of the monomer unit derived from (meth) acrylate in the acrylate polymer is usually 40% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more.
  • the upper limit of the content ratio of the monomer unit derived from (meth) acrylate in the acrylate polymer is usually 100% by mass or less, and preferably 99% by mass or less.
  • the acrylate polymer can be a copolymer of (meth) acrylate and a monomer copolymerizable with the (meth) acrylate.
  • the copolymerizable monomer include styrene monomers such as styrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, hydroxymethyl styrene, ⁇ -methyl styrene, and divinyl benzene; Amide monomers such as methacrylamide, N-methylolacrylamide, and acrylamide-2-methylpropanesulfonic acid; ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; olefins such as ethylene and propylene; butadiene and isoprene Diene monomers; vinyl esters such as vinyl acetate, vinyl propionate,
  • styrene monomers amide monomers, ⁇ , ⁇ -unsaturated nitrile compounds and silanes are preferred from the viewpoint of affinity for organic solvents.
  • silanes are more preferable from the viewpoint that the amount of the binder used can be reduced because the binding force is good, and the close contact with the current collector is good because the close contact with the metal is good.
  • the content of the copolymerizable monomer in the acrylate polymer is usually 50% by mass or less, preferably 40% by mass or less, and more preferably 30% by mass or less.
  • the binder used in the present invention includes a polymer having a particle structure.
  • An indicator of having a particle structure is the gel fraction.
  • the gel fraction is a value indicating the weight ratio of the components insoluble in the organic solvent because the polymer chains are bonded or entangled, and the gel of the polymer having a particle structure in the present invention.
  • the fraction is 70% or more, preferably 90% or more.
  • the present invention in order to give the polymer contained in the binder a particle structure, generally a method of copolymerizing a compound capable of functioning as a crosslinking agent or a monomer capable of forming a self-crosslinking structure during the polymerization of the polymer. Is mentioned.
  • the crosslinking agent includes monomers having two or more double bonds.
  • polyfunctional acrylate compounds such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, trimethylolpropane triacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetraacrylate, ethylene glycol dimethacrylate, divinyl
  • polyfunctional aromatic compounds such as benzene.
  • a polyfunctional acrylate compound such as ethylene glycol dimethacrylate is preferred.
  • the amount of the crosslinking agent used varies depending on the type, but is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 1 part by mass with respect to 100 parts by mass of the total amount of monomers.
  • Examples of monomers that can easily form a self-crosslinking structure include diene monomers such as butadiene and isoprene, and unsaturated nitrile compounds such as acrylonitrile. A method of copolymerizing acrylonitrile is preferable.
  • Method for producing polymer having particle structure any method of polymerizing in a dispersion system such as a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • a method for producing the polymer having the above-described particle structure any method of polymerizing in a dispersion system such as a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization reaction any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the emulsion polymerization method is preferable because the polymer having a particle structure can be obtained as it is dispersed in an aqueous solvent.
  • the water-based solvent is a solvent containing water, is not flammable, and water is preferable because a polymer dispersion having the above particle structure can be easily obtained.
  • water may be used as a main solvent and an aqueous solvent other than water may be mixed and used as long as the dispersion state of the copolymer can be ensured without impairing the effects of the present invention.
  • aqueous solvents other than water include ketones, alcohols, glycols, glycol ethers, and ethers.
  • the emulsion polymerization can be performed according to a conventional method.
  • a commonly used polymerization auxiliary material such as an emulsifier, a polymerization initiator, a molecular weight modifier or a chain transfer agent can be used.
  • Any emulsifier can be used as long as a desired polymer is obtained, and examples thereof include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
  • anionic surfactants such as alkylbenzene sulfonates, aliphatic sulfonates, higher alcohol sulfates, ⁇ -olefin sulfonates, and alkyl ether sulfates can be preferably used.
  • the amount of the emulsifier is arbitrary as long as a desired polymer is obtained, and is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, preferably 10 parts by mass with respect to 100 parts by mass of the monomer composition. Hereinafter, it is more preferably 5 parts by mass or less.
  • polymerization initiator used for the polymerization examples include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like.
  • the polymer having a particle structure used in the present invention is used in a state dispersed in an aqueous solvent (aqueous dispersion).
  • the binder used in the present invention contains a water-soluble polymer.
  • examples of the water-soluble polymer used in the present invention include polyethylene oxide, polyethylene glycol, polyvinyl alcohol and the like, and polyethylene oxide is preferable.
  • the molecular weight of the water-soluble polymer used in the present invention is usually 500 to 5,000,000, preferably 5,000 to 3,000,000.
  • the viscosity of the water-soluble polymer used in the present invention is usually 100 mPa ⁇ s or more and 100,000 mPa ⁇ s or less when a 1% aqueous solution is used.
  • the binder used in the present invention contains a polymer having a particle structure and a water-soluble polymer, and the content ratio of the polymer having a particle structure in the binder is preferably 80 to 99.1 wt%, more preferably 85 to 99 wt%. More preferably, it is 90 to 98 wt%.
  • the content ratio of the polymer having a particle structure is in the above range, the phenomenon that the ionic conductivity is lowered because the content ratio of the polymer having a particle structure is too large can be suppressed.
  • the electrode since the content of the polymer having a particle structure is too small, the electrode becomes hard and suppresses the phenomenon that the electrode is likely to be cracked or chipped when the electrode is cut or wound when assembling the battery. Can do.
  • the content of the water-soluble polymer in the binder is preferably 0.1 to 10 wt%, more preferably 0.5 to 5 wt%.
  • the content ratio of the water-soluble polymer is in the above range, the phenomenon that the electrode becomes hard because the content ratio of the water-soluble polymer is too large can be suppressed, and the content ratio of the water-soluble polymer is too small. The phenomenon that the effect of the present invention is hardly exhibited can be suppressed.
  • the binder used in the present invention is preferably a binder composition obtained by exchanging a solvent of a mixture of an aqueous dispersion of a polymer having a particle structure and a water-soluble polymer solution with an organic solvent.
  • the mixture used for obtaining the binder composition used in the present invention mixes the aqueous dispersion of the polymer having the particle structure obtained above and the aqueous solution of the water-soluble polymer (water-soluble polymer solution). Can be obtained. That is, the solvent of the mixture is an aqueous solvent such as water.
  • the binder composition used in the present invention can be obtained by exchanging the solvent of the mixture with an organic solvent.
  • the solvent exchange can be performed by a known method.
  • the mixture and the organic solvent are put into a rotary evaporator, and the solvent exchange and dehydration operations can be performed at a predetermined temperature by reducing the pressure.
  • the solid content concentration of the binder composition used in the present invention is preferably 1 to 20 wt%. Moreover, the moisture content contained in the binder composition used in the present invention is preferably less than 1000 ppm, more preferably less than 500 ppm, and even more preferably less than 100 ppm.
  • organic solvent examples include organic solvents having a boiling point of 100 ° C. or higher.
  • organic solvent having a boiling point of 100 ° C. or higher aromatic hydrocarbons such as toluene and xylene; ethers such as cyclopentylmethyl ether; esters such as butyl acetate are preferable, and xylene is more preferable.
  • these solvents can be used individually or in mixture of 2 or more types.
  • the above water-soluble polymer does not dissolve in low-polarity organic solvents such as toluene and xylene and does not uniformly disperse, so the water-soluble polymer alone can be used as a binder for an all-solid secondary battery.
  • an aqueous dispersion of a polymer having a particle structure and a water-soluble polymer solution are mixed to form a mixture, and then the solvent of the mixture is changed to an organic solvent, thereby uniformly in the organic solvent. Since it can be dispersed, the water-soluble polymer can be used as a binder for an all-solid secondary battery.
  • the glass transition temperature (Tg) of the binder is preferably ⁇ 50 to 25 ° C., more preferably ⁇ 45 from the viewpoint of obtaining an all-solid secondary battery having excellent strength and flexibility and high output characteristics. -15 ° C, particularly preferably -40-5 ° C.
  • the glass transition temperature of the binder can be adjusted by combining various monomers.
  • the solid electrolyte layer used in the present invention contains solid electrolyte particles and a solid electrolyte layer binder, and the solid electrolyte layer binder contains a polymer having the above particle structure and a water-soluble polymer. A binder is preferred.
  • the solid electrolyte layer is formed by applying a solid electrolyte layer slurry composition containing solid electrolyte particles and a solid electrolyte layer binder onto a positive electrode active material layer or a negative electrode active material layer, which will be described later, and drying.
  • the slurry composition for a solid electrolyte layer is produced by mixing solid electrolyte particles, a binder for a solid electrolyte layer, an organic solvent, and other components added as necessary.
  • Solid electrolyte particles The solid electrolyte is used in the form of particles. Since the solid electrolyte particles are those that have undergone a pulverization step, they are not completely spherical but irregular. In general, the size of the fine particles is measured by a method of measuring the scattered light by irradiating the laser light to the particles. In this case, the particle diameter is a value assuming that the shape of one particle is spherical. When a plurality of particles are measured together, the proportion of particles having a corresponding particle size can be expressed as a particle size distribution. The solid electrolyte particles forming the solid electrolyte layer are often shown as an average particle diameter as measured by this method.
  • the ionic conduction resistance of the solid electrolyte layer is greatly influenced by the particle diameter of the solid electrolyte particles.
  • the ion transfer resistance inside the solid electrolyte particles is smaller than the transfer resistance between the particles. Therefore, when the average particle diameter of the solid electrolyte particles is equal to or smaller than a predetermined value, it is possible to suppress a phenomenon that the movement resistance value of ions increases as a result of an increase in voids in the electrolyte layer.
  • the average particle size is a predetermined value or more, the problem that the interparticle resistance becomes too large or the viscosity of the slurry composition for the solid electrolyte layer becomes high, resulting in difficulty in controlling the thickness of the solid electrolyte layer. It can be avoided. Therefore, it is necessary to set the average particle size within an appropriate range, but the battery performance is improved by controlling not only the average particle size but also the particle size distribution state within a specific range.
  • the average particle diameter of the solid electrolyte particles is preferably 0.1 to 10 ⁇ m.
  • a slurry composition for a solid electrolyte layer having good dispersibility and coating property can be obtained.
  • the solid electrolyte particles are not particularly limited as long as they have lithium ion conductivity, but preferably contain a crystalline inorganic lithium ion conductor or an amorphous inorganic lithium ion conductor.
  • Examples of crystalline inorganic lithium ion conductors include Li 3 N, LIICON (Li 14 Zn (GeO 4 ) 4 ), perovskite type Li 0.5 La 0.5 TiO 3 , LIPON (Li 3 + y PO 4-x N x ), And Thio-LISICON (Li 3.25 Ge 0.25 P 0.75 S 4 ).
  • the amorphous inorganic lithium ion conductor is not particularly limited as long as it contains S (sulfur atom) and has ion conductivity (sulfide solid electrolytic particles).
  • S sulfur atom
  • sulfide solid electrolytic particles Li 2 S and a group 13 to group 15 element sulfide are used. What uses the raw material composition containing this can be mentioned.
  • Examples of a method for synthesizing a sulfide solid electrolyte material using such a raw material composition include an amorphization method.
  • the amorphization method include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because according to the mechanical milling method, processing at room temperature is possible, and the manufacturing process can be simplified.
  • Examples of the Group 13 to Group 15 elements include Al, Si, Ge, P, As, and Sb.
  • Specific examples of the sulfides of elements belonging to Group 13 to Group 15 include Al 2 S 3 , SiS 2 , GeS 2 , P 2 S 3 , P 2 S 5 , As 2 S 3 , and Sb 2. S 3 etc. can be mentioned.
  • a sulfide solid electrolyte material using a raw material composition containing Li 2 S and a sulfide of an element belonging to Group 13 to Group 15 is Li 2 SP—P 2 S 5.
  • Li 2 S-SiS 2 material is preferably Li 2 S-GeS 2 material or Li 2 S-Al 2 S 3 material, and more preferably Li 2 S-P 2 S 5 material. This is because Li ion conductivity is excellent.
  • the sulfide solid electrolyte material in the present invention preferably has bridging sulfur. It is because ion conductivity becomes high by having bridge
  • the molar fraction of Li 2 S in the Li 2 S—P 2 S 5 material or the Li 2 S—Al 2 S 3 material is, for example, from the viewpoint of obtaining a sulfide solid electrolyte material having bridging sulfur more reliably. It is preferably in the range of 50 to 74%, more preferably in the range of 60 to 74%.
  • the sulfide solid electrolyte material in the present invention may be sulfide glass, or may be crystallized sulfide glass obtained by heat-treating the sulfide glass.
  • the sulfide glass can be obtained, for example, by the above-described amorphization method. Crystallized sulfide glass can be obtained, for example, by heat-treating sulfide glass.
  • the sulfide solid electrolyte material is preferably a crystallized sulfide glass represented by Li 7 P 3 S 11 composed of Li 2 S and P 2 S 5 .
  • Li 7 P 3 S 11 a crystallized sulfide glass represented by Li 7 P 3 S 11 composed of Li 2 S and P 2 S 5 .
  • a sulfide glass is synthesized by mixing Li 2 S and P 2 S 5 at a molar ratio of 70:30 and amorphizing with a ball mill.
  • Li 7 P 3 S 11 can be synthesized by heat-treating the obtained sulfide glass at 150 ° C. to 360 ° C.
  • the amount is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 7 parts by mass, and particularly preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the solid electrolyte particles.
  • Organic solvent As an organic solvent for producing the slurry composition for a solid electrolyte layer, the same organic solvent as exemplified as the organic solvent that can be used for the solvent exchange described above can be used.
  • the content of the organic solvent in the solid electrolyte layer slurry composition is determined from the viewpoint of obtaining good coating properties while maintaining the dispersibility of the solid electrolyte particles in the solid electrolyte layer slurry composition.
  • the amount is preferably 10 to 700 parts by mass, and more preferably 30 to 500 parts by mass with respect to 100 parts by mass of the particles.
  • the slurry composition for a solid electrolyte layer may contain, in addition to the above components, components having functions of a dispersant, a leveling agent, and an antifoaming agent as other components added as necessary. These components are not particularly limited as long as they do not affect the battery reaction.
  • Dispersant examples include an anionic compound, a cationic compound, a nonionic compound, and a polymer compound.
  • a dispersing agent is selected according to the solid electrolyte particle to be used.
  • the content of the dispersant in the slurry composition for the solid electrolyte layer is preferably within a range that does not affect the battery characteristics. Specifically, the content is 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte particles.
  • Leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants. By mixing the surfactant, it is possible to prevent the repelling that occurs when the slurry composition for the solid electrolyte layer is applied to the surface of the positive electrode active material layer or the negative electrode active material layer, which will be described later. Can be improved.
  • the content of the leveling agent in the solid electrolyte layer slurry composition is preferably in a range that does not affect the battery characteristics, and specifically, is 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte particles.
  • Examples of the antifoaming agent include mineral oil antifoaming agents, silicone antifoaming agents, and polymer antifoaming agents.
  • An antifoaming agent is selected according to the solid electrolyte particle to be used.
  • the content of the antifoaming agent in the solid electrolyte layer slurry composition is preferably in a range that does not affect the battery characteristics, and specifically, 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte particles.
  • the positive electrode active material layer is formed by applying a slurry composition for a positive electrode active material layer containing a positive electrode active material, solid electrolyte particles, and a positive electrode binder to the surface of a current collector, which will be described later, and drying. It is formed.
  • the positive electrode active material layer slurry composition is produced by mixing a positive electrode active material, solid electrolyte particles, a positive electrode binder, an organic solvent, and other components added as necessary.
  • the positive electrode active material is a compound that can occlude and release lithium ions.
  • the positive electrode active material is roughly classified into those made of inorganic compounds and those made of organic compounds.
  • the positive electrode active material made of an inorganic compound examples include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
  • transition metal Fe, Co, Ni, Mn and the like are used.
  • inorganic compounds used for the positive electrode active material include lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 ; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 It is done. These compounds may be partially element-substituted.
  • Examples of the positive electrode active material made of an organic compound include polyaniline, polypyrrole, polyacene, disulfide compounds, polysulfide compounds, and N-fluoropyridinium salts.
  • the positive electrode active material may be a mixture of the above inorganic compound and organic compound.
  • the average particle size of the positive electrode active material used in the present invention is such that the all-solid-state secondary battery having a large charge / discharge capacity can be obtained from the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics, and the positive electrode active material layer From the viewpoint of easy handling of the slurry composition for use and easy handling during production of the positive electrode, the thickness is usually 0.1 to 50 ⁇ m, preferably 1 to 20 ⁇ m.
  • the average particle size can be determined by measuring the particle size distribution by laser diffraction.
  • Solid electrolyte particles The same solid electrolyte particles as those exemplified in the solid electrolyte layer can be used.
  • Binder for positive electrode Although there is no restriction
  • the content of the positive electrode binder in the positive electrode active material layer slurry composition is 100 mass parts of the positive electrode active material from the viewpoint of preventing the positive electrode active material from falling off the electrode without inhibiting the battery reaction. On the other hand, it is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass.
  • the organic solvent in the positive electrode active material layer slurry composition and other components added as necessary may be the same as those exemplified for the solid electrolyte layer.
  • the content of the organic solvent in the positive electrode active material layer slurry composition is preferably based on 100 parts by mass of the positive electrode active material from the viewpoint of obtaining good coating properties while maintaining the dispersibility of the solid electrolyte. Is 20 to 80 parts by mass, more preferably 30 to 70 parts by mass.
  • the slurry composition for the positive electrode active material layer may contain, in addition to the above components, additives that exhibit various functions such as a conductive agent and a reinforcing material as other components added as necessary. These are not particularly limited as long as they do not affect the battery reaction.
  • the conductive agent is not particularly limited as long as it can impart conductivity, and usually includes carbon powders such as acetylene black, carbon black and graphite, and fibers and foils of various metals.
  • reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
  • Negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material examples include carbon allotropes such as graphite and coke.
  • the negative electrode active material composed of the allotrope of carbon can also be used in the form of a mixture with a metal, a metal salt, an oxide, or the like or a cover.
  • oxides and sulfates such as silicon, tin, zinc, manganese, iron, and nickel
  • lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, Lithium transition metal nitride, silicon, etc.
  • a metal material a metal foil or a metal plate can be used as an electrode as it is, but it may be in the form of particles.
  • the negative electrode active material layer is formed by applying a slurry composition for a negative electrode active material layer containing a negative electrode active material, solid electrolyte particles and a negative electrode binder to the surface of a current collector, which will be described later, and drying.
  • the slurry composition for a negative electrode active material layer is produced by mixing a negative electrode active material, solid electrolyte particles, a negative electrode binder, an organic solvent, and other components added as necessary.
  • the solid electrolyte particles, the organic solvent, and other components added as necessary in the slurry composition for the negative electrode active material layer can be the same as those exemplified for the positive electrode active material layer. .
  • the average particle size of the negative electrode active material is usually 1 to 50 ⁇ m, preferably 15 to 30 ⁇ m, from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics.
  • the weight ratio of the negative electrode active material is within this range, the weight ratio of the negative electrode active material is too small, and as a result, the amount of the negative electrode active material in the battery is reduced, resulting in a decrease in capacity as a battery. Can do.
  • the weight ratio of the solid electrolyte particles is within this range, the weight ratio of the solid electrolyte particles is too small, so that sufficient conductivity cannot be obtained and the negative electrode active material cannot be effectively used. It is possible to suppress the phenomenon that leads to a decrease in capacity.
  • Binder for negative electrode Although there is no restriction
  • the content of the negative electrode binder in the slurry composition for the negative electrode active material layer can prevent the electrode active material from dropping from the electrode without inhibiting the battery reaction. Therefore, the amount is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the current collector used for forming the positive electrode active material layer and the negative electrode active material layer is not particularly limited as long as it has electrical conductivity and is electrochemically durable, but from the viewpoint of heat resistance, for example, Metal materials such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode, and copper is particularly preferable for the negative electrode.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength between the current collector and the positive and negative electrode active material layers described above, the current collector is preferably used after being subjected to a roughening treatment.
  • Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a mechanical polishing method an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity between the current collector and the positive / negative electrode active material layer.
  • the slurry composition for a solid electrolyte layer is obtained by mixing the solid electrolyte particles, the binder for the solid electrolyte layer, the organic solvent, and other components added as necessary.
  • a binder containing a polymer having a particle structure and a water-soluble polymer as the binder for the solid electrolyte layer, and it is preferable to add the above binder composition as the binder for the solid electrolyte layer.
  • the slurry composition for the positive electrode active material layer is obtained by mixing the positive electrode active material, the solid electrolyte particles, the positive electrode binder, the organic solvent, and other components added as necessary.
  • a binder containing a polymer having a particle structure and a water-soluble polymer is preferably used as the positive electrode binder, and the binder composition described above is preferably added as the positive electrode binder.
  • the slurry composition for the negative electrode active material layer is obtained by mixing the negative electrode active material, the solid electrolyte particles, the negative electrode binder, the organic solvent, and other components added as necessary.
  • a binder containing a polymer having a particle structure and a water-soluble polymer is preferably used as the negative electrode binder, and the binder composition described above is preferably added as the negative electrode binder.
  • the method of mixing the slurry composition is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a method using a dispersion kneader such as a homogenizer, a ball mill, a bead mill, a planetary mixer, a sand mill, a roll mill, and a planetary kneader can be mentioned. From the viewpoint that aggregation of solid electrolyte particles can be suppressed, a planetary mixer, a ball mill Alternatively, a method using a bead mill is preferable.
  • the positive electrode in the all-solid-state secondary battery is manufactured by applying the slurry composition for positive electrode active material layer on the current collector and drying it to form a positive electrode active material layer.
  • the negative electrode in the all solid state secondary battery can be used as it is when a metal foil is used.
  • the negative electrode active material is in the form of particles
  • the negative electrode active material layer slurry composition is applied onto a current collector different from the positive electrode current collector and dried to form a negative electrode active material layer.
  • the solid electrolyte layer slurry composition is applied on the formed positive electrode active material layer or negative electrode active material layer and dried to form a solid electrolyte layer.
  • an all-solid-state secondary battery element is manufactured by bonding together the electrode which did not form a solid electrolyte layer, and the electrode which formed said solid electrolyte layer.
  • the method for applying the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer to the current collector is not particularly limited.
  • the doctor blade method, the dip method, the reverse roll method, the direct roll method, the gravure method It is applied by the extrusion method, brush coating or the like.
  • the amount to be applied is not particularly limited, but is such an amount that the thickness of the active material layer formed after removing the organic solvent is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m.
  • the drying method is not particularly limited, and examples thereof include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying conditions are usually adjusted so that the organic solvent volatilizes as quickly as possible within a speed range in which stress concentration occurs and the active material layer cracks or the active material layer does not peel from the current collector. Furthermore, you may stabilize an electrode by pressing the electrode after drying. Examples of the pressing method include, but are not limited to, a mold press and a calendar press.
  • the drying temperature is a temperature at which the organic solvent is sufficiently volatilized. Specifically, from the viewpoint that a good active material layer can be formed without thermal decomposition of the positive / negative electrode binder, it is preferably 50 to 250 ° C., more preferably 80 to 200 ° C.
  • the drying time is not particularly limited, but is usually in the range of 10 to 60 minutes.
  • the method for applying the slurry composition for the solid electrolyte layer to the positive electrode active material layer or the negative electrode active material layer is not particularly limited, and the current collection of the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer described above is performed.
  • the gravure method is preferable from the viewpoint that a thin solid electrolyte layer can be formed.
  • the amount to be applied is not particularly limited, but the amount is such that the thickness of the solid electrolyte layer formed after removing the organic solvent is 2 to 20 ⁇ m, preferably 3 to 15 ⁇ m.
  • the drying method, drying conditions, and drying temperature are also the same as those of the positive electrode active material layer slurry composition and the negative electrode active material layer slurry composition described above.
  • the pressurizing method is not particularly limited, and examples thereof include a flat plate press, a roll press, and CIP (Cold Isostatic Press).
  • the pressure for pressing is preferably from 5 to 700 MPa, more preferably from the viewpoint of exhibiting good battery characteristics since resistance at each interface between the electrode and the solid electrolyte layer, and further, contact resistance between particles in each layer is reduced. Is 7 to 500 MPa.
  • the solid electrolyte layer and the active material layer may be compressed by pressing, and may be thinner than before pressing. When pressing is performed, the thickness of the solid electrolyte layer and the active material layer in the present invention may be such that the thickness after pressing is in the above range.
  • the positive electrode active material layer or the negative electrode active material layer is coated with the slurry composition for the solid electrolyte layer, but the solid electrolyte layer slurry is applied to the active material layer having the larger particle diameter of the electrode active material to be used. It is preferable to apply the composition.
  • the particle diameter of the electrode active material is large, irregularities are formed on the surface of the active material layer. Therefore, the irregularities on the surface of the active material layer can be reduced by applying the slurry composition. Therefore, when the electrode formed with the solid electrolyte layer and the electrode not formed with the solid electrolyte layer are bonded and laminated, the contact area between the solid electrolyte layer and the electrode is increased, and the interface resistance can be suppressed. .
  • the obtained all-solid-state secondary battery element is put into a battery container as it is or wound or folded according to the shape of the battery, and sealed to obtain an all-solid-state secondary battery.
  • an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate or the like can be placed in the battery container to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • ⁇ Gel fraction> The obtained polymer aqueous dispersion having a particle structure was dried using a PTFE petri dish to prepare a polymer film. The obtained film was immersed in THF for 24 hours and then filtered through a 200 mesh SUS wire mesh. The wire mesh after filtration was dried at 100 ° C. for 1 hour, and the value obtained by dividing the weight increase of the wire mesh by the weight of the film (weight increase of the wire mesh / film weight) was defined as the gel fraction.
  • ⁇ Storage stability of binder composition The obtained binder composition was sealed in a 500 mL glass container and allowed to stand at 23 ° C. for 1 month to confirm the presence or absence of precipitation. The case where no precipitation or separation was observed with the naked eye was evaluated as “no”, and the case where precipitation or separation was observed was determined as “present”.
  • ⁇ Battery characteristics Output characteristics> In a constant temperature bath at 25 ° C., a 5-cell all-solid-state secondary battery is charged to 4.3 V by a constant current method of 0.1 C, then discharged to 3.0 V at 0.1 C, and a 0.1 C discharge capacity a Asked. Thereafter, the battery was charged to 4.3 V at 0.1 C, and then discharged to 3.0 V at 5 C to obtain a 5 C discharge capacity b. Using the average value of 5 cells as a measured value, the capacity retention represented by the ratio (b / a (%)) of the electric capacity between 5C discharge capacity b and 0.1C discharge capacity a was determined.
  • ⁇ Battery characteristics Charging / discharging cycle characteristics> Using the obtained all-solid-state secondary battery, the battery was charged at a constant current until it reached 4.2 V by a method of constant current constant voltage charging at 25 ° C. and 0.5 C, and then charged at a constant voltage. A charge / discharge cycle was performed in which the battery was discharged to 3.0 V at a constant current of 5 C. The charge / discharge cycle was performed up to 100 cycles, and the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity was determined as the capacity retention rate. The larger this value, the smaller the capacity loss due to repeated charge / discharge, and the better the charge / discharge cycle characteristics.
  • Example 1 ⁇ Production of polymer having particle structure>
  • a glass container with a stirrer 47 parts of ethyl acrylate, 47 parts of butyl acrylate, 5 parts of vinyltrimethylsilane, 1 part of ethylene glycol dimethacrylate as a crosslinking agent, 1 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, Then, 0.5 part of potassium persulfate as a polymerization initiator was added and stirred sufficiently, and then heated to 70 ° C. to initiate polymerization.
  • distillation under heating and reduced pressure was performed at 80 ° C. in order to remove unreacted monomers from the aqueous dispersion of the polymer having the particle structure adjusted to pH 7.
  • ⁇ Manufacture of composite particle binder> A 5% aqueous solution of polyethylene glycol (manufactured by Aldrich, average molecular weight 100000) as a water-soluble polymer is added to an aqueous dispersion of a polymer having a particle structure with a solid content concentration adjusted to 30 wt% with respect to 100 parts of the solid content of the polymer. 0.7 parts in terms of solid content were added and mixed well. Thereafter, in order to exchange the solvent from water to an organic solvent, 500 g of xylene was added to 100 g of an aqueous dispersion of a polymer having a particle structure, followed by heating under reduced pressure.
  • polyethylene glycol manufactured by Aldrich, average molecular weight 100000
  • a transparent liquid and a white solid were present.
  • the whole was a translucent liquid, and the polymer particles were composited with water-soluble polymer to form composite particles and dispersed in xylene.
  • the number average particle diameter of the obtained composite particles was 400 nm.
  • the water content of the xylene dispersion liquid of the obtained composite particle binder was 25 ppm, and the solid content concentration was 8.7 wt%. No precipitation or separation was observed in the storage stability test.
  • the slurry composition for negative electrode active material layers was prepared later by mixing with a planetary mixer.
  • the positive electrode active material layer slurry composition was applied to the current collector surface and dried (110 ° C., 20 minutes) to form a positive electrode active material layer having a thickness of 50 ⁇ m to produce a positive electrode. Further, the negative electrode active material layer slurry composition was applied to another current collector surface and dried (110 ° C., 20 minutes) to form a negative electrode active material layer having a thickness of 30 ⁇ m to produce a negative electrode.
  • the solid electrolyte layer slurry composition was applied to the surface of the positive electrode active material layer and dried (110 ° C., 10 minutes) to form a solid electrolyte layer having a thickness of 26 ⁇ m.
  • the solid electrolyte layer laminated on the surface of the positive electrode active material layer and the negative electrode active material layer of the negative electrode were bonded together and pressed to obtain an all-solid secondary battery.
  • the thickness of the all-solid secondary battery after pressing was 65 ⁇ m. Using this battery, output characteristics and charge / discharge cycle characteristics were evaluated. The results are shown in Table 1.
  • Example 2 ⁇ Production of polymer having particle structure>
  • a glass container equipped with a stirrer 45 parts of ethyl acrylate, 45 parts of butyl acrylate, 10 parts of vinyltrimethylsilane, 1 part of ethylene glycol dimethacrylate as a crosslinking agent, 1 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, Then, 0.5 part of potassium persulfate as a polymerization initiator was added and stirred sufficiently, and then heated to 70 ° C. to initiate polymerization.
  • distillation under heating and reduced pressure was performed at 80 ° C. in order to remove unreacted monomers from the aqueous dispersion of the polymer having the particle structure adjusted to pH 7.
  • polyethylene oxide manufactured by Aldrich, average molecular weight 4000000
  • Example 3 ⁇ Production of polymer having particle structure>
  • a glass container with a stirrer 55 parts ethyl acrylate, 45 parts butyl acrylate, 5 parts acrylonitrile, 1 part ethylene glycol dimethacrylate as a crosslinking agent, 1 part sodium dodecylbenzenesulfonate as an emulsifier, 150 parts ion-exchanged water, and After adding 0.5 parts of potassium persulfate as a polymerization initiator and stirring sufficiently, the polymerization was started by heating to 70 ° C. When the polymerization conversion rate reached 96%, cooling was started and the reaction was stopped to obtain an aqueous dispersion of a polymer having a particle structure.
  • pH was adjusted to 7 using 10 wt% NaOH aqueous solution to the obtained aqueous dispersion.
  • the volume average particle diameter of the obtained polymer particles was 255 nm.
  • the gel fraction of the obtained polymer aqueous dispersion having a particle structure was 95 wt%.
  • distillation under heating and reduced pressure was performed at 80 ° C. in order to remove unreacted monomers from the aqueous dispersion of the polymer having the particle structure adjusted to pH 7.
  • ⁇ Manufacture of composite particle binder> Except that the polymer having the particle structure obtained above was used and that 1 part of a 5% aqueous solution of polyethylene oxide (Aldrich, average molecular weight: 4000000) was used as the water-soluble polymer, corresponding to the solid content.
  • a composite particle binder was produced.
  • the number average particle diameter of the obtained composite particles was 340 nm.
  • the water content of the xylene dispersion liquid of the obtained composite particle binder was 43 ppm, and the solid content concentration was 7.9 wt%. No precipitation or separation was observed in the storage stability test.
  • Example 4 ⁇ Production of polymer having particle structure>
  • a glass container equipped with a stirrer 70 parts of 2-ethylhexyl acrylate, 10 parts of butyl acrylate, 5 parts of vinyltrimethylsilane, 15 parts of acrylonitrile, 1 part of ethylene glycol dimethacrylate as a crosslinking agent, 1 part of sodium dodecylbenzenesulfonate as an emulsifier, After adding 150 parts of ion-exchanged water and 0.5 part of potassium persulfate as a polymerization initiator and stirring sufficiently, the mixture was heated to 70 ° C. to initiate polymerization.
  • distillation under heating and reduced pressure was performed at 80 ° C. in order to remove unreacted monomers from the aqueous dispersion of the polymer having the particle structure adjusted to pH 7.
  • Example 2 ⁇ Manufacture of composite particle binder> Example, except that the polymer having the particle structure obtained above was used and that 2 parts of a 5% aqueous solution of polyethylene oxide (Aldrich, average molecular weight: 4000000) was used as the water-soluble polymer, corresponding to the solid content.
  • a composite particle binder was produced.
  • the number average particle diameter of the obtained composite particles was 285 nm.
  • the water content of the xylene dispersion liquid of the obtained composite particle binder was 25 ppm, and the solid content concentration was 8.8 wt%. No precipitation or separation was observed in the storage stability test.
  • Example 1 A particulate binder was produced in the same manner as in Example 1 except that the polymer having the particle structure obtained in Example 3 was used and that the composite particles were not formed without using a water-soluble polymer.
  • the number average particle diameter of the obtained particulate binder was 255 nm.
  • the water content of the xylene dispersion liquid of the obtained particulate binder was 18 ppm, and the solid content concentration was 7.9 wt%. No precipitation or separation was observed in the storage stability test.
  • Example 1 Except that the particulate binder obtained above was used, the production of the slurry composition for the positive electrode active material layer, the production of the slurry composition for the negative electrode active material layer, and the slurry composition for the solid electrolyte layer, as in Example 1. And an all-solid-state secondary battery were manufactured, and output characteristics and charge / discharge cycle characteristics were evaluated using the obtained batteries. The results are shown in Table 1.
  • Comparative Example 2 100 parts by weight of the polymer having the particle structure obtained in Example 3 in solid content and 1 part of a powder of polyethylene oxide (Aldrich, average molecular weight: 4000000), which is a water-soluble polymer, are mixed using a bead mill. A mixture was produced. Moreover, the water content of the xylene dispersion liquid of the obtained binder mixture was 33 ppm, and solid content concentration was 8.0 wt%. Precipitation was observed in the storage stability test.
  • a powder of polyethylene oxide Aldrich, average molecular weight: 4000000
  • an all-solid secondary battery having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers, having a particle structure As shown in Table 1, an all-solid secondary battery having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers, having a particle structure
  • the output characteristics and charge / discharge cycle of the all-solid-state secondary battery using the binder containing the polymer having water and a water-soluble polymer were good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いてなる。

Description

全固体二次電池
 本発明は、全固体リチウムイオン二次電池等の全固体二次電池に関する。
 近年、リチウムイオン電池等の二次電池は、携帯情報端末や携帯電子機器などの携帯端末に加えて、家庭用小型電力貯蔵装置、電動二輪車、電気自動車、ハイブリッド電気自動車など、様々な用途での需要が増加している。
 用途が広がるに伴い、二次電池の更なる安全性の向上が要求されている。安全性を確保するために、液漏れを防止する方法や、可燃性の有機溶媒電解質に代えて、固体電解質を用いる方法が有効である。
 固体電解質としては、ポリエチレンオキサイドなどを用いる高分子固体電解質が知られている(特許文献1)が、高分子固体電解質は可燃性材料である。また、固体電解質として、無機材料からなる無機固体電解質も提案されている(特許文献2など)。高分子固体電解質に比べ、無機固体電解質は、無機物からなる固体電解質であって不燃性物質であり、通常使用される有機溶媒電解質と比較し安全性が非常に高い。特許文献2に記載されているように、無機固体電解質を用いた高い安全性を備えた全固体二次電池の開発が進んでいる。
 全固体二次電池は、正極及び負極の間に、電解質層として無機固体電解質層を有する。特許文献3及び特許文献4には、固体電解質粒子と溶媒とを含む固体電解質層用スラリー組成物を、正極又は負極の上に塗布し乾燥する方法(塗布法)により固体電解質層を形成した全固体リチウム二次電池が記載されている。塗布法で電極や電解質層を形成する場合には、活物質や電解質を含むスラリー組成物の粘度や流動性が、塗布可能な条件の範囲にあることが必要である。一方、スラリー組成物を塗布したのちに溶剤を乾燥してなる電極および電解質層には、電池としての特性を発現させるために活物質や電解質以外のバインダーなどの添加剤が重要である。そのために、特許文献5では、アクリレート系ポリマーをバインダーに使用することが提案されている。
特許第4134617号公報 特開昭59-151770号公報 特開2009-176484号公報 特開2009-211950号公報 国際公開第2011/105574号
 しかしながら、本発明者の検討によれば、特許文献3や4に記載の全固体リチウム二次電池では、固体電解質層内部や、活物質層内部のイオン伝導性が十分ではないために、電池の容量特性やサイクル特性が不十分な場合があり、また、特許文献5では電池特性の良好な全固体二次電池が提案されているが、より特性の高い電池が求められている。
 本発明は、電池特性の良い全固体二次電池を提供することを目的とする。
 本発明者らは、鋭意検討の結果、粒子構造を有するポリマーと水溶性ポリマーとが複合化されたバインダー組成物を全固体二次電池用バインダーとして用いることにより、上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明によれば、
(1) 正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いてなる全固体二次電池、
(2) 前記固体電解質層は固体電解質粒子を含み、前記固体電解質粒子が、Li2SとP25とからなる硫化物ガラスである(1)に記載の全固体二次電池、
(3) 前記バインダーは、前記粒子構造を有するポリマーを80~99.1wt%含む(1)又は(2)に記載の全固体二次電池、
(4) 前記粒子構造を有するポリマーは、アクリレート系ポリマーである(1)~(3)の何れかに記載の全固体二次電池、
(5) (1)に記載のバインダーは、粒子構造を有するポリマーの水分散液と水溶性ポリマー溶液との混合物の溶媒が、有機溶媒に溶媒交換されてなるバインダー組成物によるものである(1)~(4)の何れかに記載の全固体二次電池
が提供される。
 本発明によれば、電池特性の良い全固体二次電池を提供することができる。より具体的には、粒子構造を有するポリマーと水溶性ポリマーとを含むバインダーを固体電解質層等に含ませることにより、充放電性能の良い全固体二次電池を提供することができる。硫黄を含む固体電解質は極性の高い有機溶媒と接触すると反応を起こすため、N-メチルピロリドンなどの極性溶媒を用いて電池用スラリーを作製することはできない。そのため、ポリエチレンオキサイドなどのイオン伝導性を持つ水溶性ポリマーは電池用バインダーとして用いることができなかった。本発明によれば、粒子構造を有するポリマーと水溶性ポリマーとを組み合わせて用いることにより、全固体二次電池用バインダーとしてポリエチレンオキサイドなどの水溶性ポリマーを用いることができるため、イオン伝導性の高い全固体二次電池を提供することができる。
 (全固体二次電池)
 以下、本発明の全固体二次電池について説明する。本発明の全固体二次電池は正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いてなる。即ち、本発明の全固体二次電池においては、正極活物質層、負極活物質層または固体電解質層の少なくとも1つに、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーが用いられる。なお、正極は集電体上に正極活物質層を有し、負極は集電体上に負極活物質層を有する。
 以下において、まず、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーについて説明し、その後、(1)固体電解質層、(2)正極活物質層、及び(3)負極活物質層について説明する。
 (バインダー)
 バインダーは、例えば、固体電解質粒子同士を結着して固体電解質層を形成するために用いられる。本発明に用いられるバインダーは、粒子構造を有するポリマーと水溶性ポリマーとを含有する。バインダーとしては、アクリレート系ポリマーが好適であることが特許文献5などで知られている。アクリレート系ポリマーをバインダーとして用いることが、耐電圧を高くでき、かつ全固体二次電池のエネルギー密度を高くすることができる点で好ましいが、より高性能化することが求められている。
 アクリレート系ポリマーは溶液重合法あるいは乳化重合法などにより得ることができ、得られるポリマーは通常は直鎖状のポリマーであり、有機溶媒に可溶である。このようなポリマーをバインダーとして用いる場合は、従来は有機溶媒に溶解させて用いている。
 (粒子構造を有するポリマー)
 本発明に用いられる粒子構造を有するポリマーとしては、アクリレート系ポリマーを用いることが好ましく、アクリレート系ポリマーに粒子構造を持たせて用いることが好ましい。
 アクリレート系ポリマーは、アクリレートまたはメタクリレート(以降、「(メタ)アクリレート」と略記することがある)およびこれらの誘導体を重合して得られる繰り返し単位(重合単位)を含むポリマーであり、具体的には、(メタ) アクリレートのホモポリマー、(メタ) アクリレートのコポリマー、並びに(メタ) アクリレートと該(メタ) アクリレートと共重合可能な他の単量体とのコポリマーなどが挙げられる。
 (メタ)アクリレートとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、ベンジルアクリレートなどのアクリル酸アルキルエステル;アクリル酸-2-メトキシエチル、アクリル酸-2-エトキシエチルなどのアクリル酸アルコキシアルキルエステル;アクリル酸2-(パーフルオロブチル)エチル、アクリル酸2-(パーフルオロペンチル)エチルなどのアクリル酸2-(パーフルオロアルキル)エチル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、およびメタクリル酸t-ブチル、メタクリル酸-2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、ベンジルメタクリレートなどのメタクリル酸アルキルエステル;メタクリル酸2-(パーフルオロブチル)エチル、メタクリル酸2-(パーフルオロペンチル)エチルなどのメタクリル酸2-(パーフルオロアルキル)エチル;が挙げられる。これらの中でも、本発明においては固体電解質との密着性の高さからアクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、ベンジルアクリレートなどのアクリル酸アルキルエステル;アクリル酸-2-メトキシエチル、アクリル酸-2-エトキシエチルなどのアクリル酸アルコキシアルキルエステルが好ましい。
 アクリレート系ポリマーにおける(メタ)アクリレートから導かれるモノマー単位の含有割合は、通常40質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上である。なお、アクリレート系ポリマーにおける(メタ)アクリレートから導かれるモノマー単位の含有割合の上限は、通常100質量%以下、好ましくは99質量%以下である。
 また、アクリレート系ポリマーとしては、(メタ)アクリレートと、該(メタ)アクリレートと共重合可能なモノマーとのコポリマーとする事も可能である。前記共重合可能なモノマーとしては、スチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系モノマー; アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系モノマー;アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物、ビニルジメチルメトキシシラン、ビニルトリメチルシラン、ジビニルジメトキシシラン、ジビニルジメチルシラン、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、トリビニルメチルシラン、テトラビニルシラン、アリルジメチルメトキシシラン、アリルトリメチルシラン、ジアリルジメトキシシラン、ジアリルジメチルシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン等のシラン類が挙げられる。
 その中でも、有機溶媒への親和性の観点から、スチレン系モノマー、アミド系モノマー、α,β-不飽和ニトリル化合物、シラン類が好ましい。また、結着力が良好なためバインダーの使用量を減らすことが可能で、かつ、金属との密着が良いため集電体との密着が良好となる観点から、シラン類がより好ましい。アクリレート系ポリマーにおける、前記共重合可能なモノマーの含有割合は、通常50質量%以下、好ましくは40質量%以下、より好ましくは30質量%以下である。
 本発明に用いられるバインダーは、粒子構造を有するポリマーを含むものである。粒子構造を有していることの指標はゲル分率である。ゲル分率は、ポリマー鎖同志が結合していたり、絡みあったり等しているために有機溶媒に不溶な成分の全体に対する重量比を示す値であり、本発明における粒子構造を有するポリマーのゲル分率は70%以上であり、好ましくは90%以上である。ゲル分率が上記範囲であると、ゲル分率が小さ過ぎるために粒子構造を維持できない結果、電池性能が低下しやすい、という現象、及び、高温時に流動しやすい、という現象を抑えることができる。
 本発明において、バインダーに含まれるポリマーに粒子構造を持たせるためには、一般的に架橋剤として機能し得る化合物や自己架橋構造を形成し得るモノマーを、ポリマーの重合の際に共重合する方法が挙げられる。
 ゲル分率を所定の範囲に調整するためには、前記のように架橋剤を共重合させることが好ましい。架橋剤としては、二重結合を2以上有するモノマーが挙げられる。たとえば、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラアクリレート、エチレングリコールジメタクリレートなどの多官能アクリレート化合物、ジビニルベンゼンなどの多官能芳香族化合物があげられる。好ましくはエチレングリコールジメタクリレートなどの多官能アクリレート化合物である。
 架橋剤の使用量は、その種類によって異なるが、モノマーの合計量100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.05~1質量部である。
 自己架橋構造を形成しやすいモノマーとしては、ブタジエン、イソプレン等のジエン系単量体や、アクリロニトリルなどの不飽和ニトリル化合物がある。好ましくは、アクリロニトリルを共重合する方法である。
 (粒子構造を有するポリマーの製造方法)
 上述した粒子構造を有するポリマーの製造方法としては、懸濁重合法、塊状重合法、乳化重合法などの分散系で重合する方法のいずれの方法も用いることができる。重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。
 これらの中でも、粒子構造を有するポリマーがそのまま水系の溶媒に分散した状態で得られることから、乳化重合法が好ましい。ここで、水系の溶媒とは水を含む溶媒であり、可燃性がなく、上記粒子構造を有するポリマーの分散液が容易に得られることから、水が好ましい。
 なお、本発明の効果を損なわず、さらに上記共重合体の分散状態が確保可能な範囲において、主溶媒として水を使用し、水以外の水系の溶媒を混合して用いても良い。水以外の水系の溶媒としては、ケトン類、アルコール類、グリコール類、グリコールエーテル類、エーテル類が挙げられる。
 なお、乳化重合は、常法に従い行うことができる。また、乳化重合するに際しては、乳化剤、重合開始剤、分子量調整剤又は連鎖移動剤等の通常用いられる重合副資材を使用することができる。
 乳化剤としては、所望のポリマーが得られる限り任意のものを用いることができ、たとえば、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤が挙げられる。これらのなかでも、アルキルベンゼンスルホン酸塩、脂肪族スルホン酸塩、高級アルコールの硫酸エステル塩、α-オレフィンスルホン酸塩、アルキルエーテル硫酸エステル塩等のアニオン性界面活性剤が好ましく使用できる。
 乳化剤の量は、所望のポリマーが得られる限り任意であり、モノマー組成物100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上であり、好ましくは10質量部以下、より好ましくは5質量部以下である。
 重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’-アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどがあげられる。
 本発明に用いられる粒子構造を有するポリマーは、水系の溶媒に分散した状態(水分散液)で用いられる。
 (水溶性ポリマー)
 本発明に用いられるバインダーは、水溶性ポリマーを含む。本発明に用いられる水溶性ポリマーとしては、ポリエチレンオキサイド、ポリエチレングリコール、ポリビニルアルコール等が挙げられ、ポリエチレンオキサイドが好ましい。
 本発明に用いられる水溶性ポリマーの分子量は、通常500~5,000,000であり、好ましくは5,000~3,000,000である。
 また、本発明に用いられる水溶性ポリマーの粘度は、通常1%水溶液としたときに100mPa・s以上100,000mPa・s以下である。
 本発明に用いられるバインダーは、粒子構造を有するポリマーと水溶性ポリマーとを含有し、バインダーにおける粒子構造を有するポリマーの含有割合は、好ましくは80~99.1wt%、より好ましくは85~99wt%、さらに好ましくは90~98wt%である。粒子構造を有するポリマーの含有割合が上記範囲であると、粒子構造を有するポリマーの含有割合が多すぎるためにイオン伝導度が低下する、という現象を抑えることができる。また、粒子構造を有するポリマーの含有割合が少なすぎるために、電極が硬くなり、電池を組み立てる際の電極の切断または巻回時に、電極に割れや欠けが発生しやすくなる、という現象を抑えることができる。
 また、バインダーにおける水溶性ポリマーの含有割合は、好ましくは0.1~10wt%、より好ましくは0.5~5wt%である。水溶性ポリマーの含有割合が上記範囲であると、水溶性ポリマーの含有割合が多すぎるために電極が硬くなる、という現象を抑えることができ、また、水溶性ポリマーの含有割合が少なすぎるために本発明の効果を発揮しにくい、という現象を抑えることができる。
 (バインダー組成物)
 本発明に用いられるバインダーは、粒子構造を有するポリマーの水分散液と水溶性ポリマー溶液の混合物の溶媒を、有機溶媒に交換してなるバインダー組成物によるものであることが好ましい。
 (混合物)
 本発明に用いられるバインダー組成物を得る際に用いる混合物は、上記にて得られた粒子構造を有するポリマーの水分散液と、上記した水溶性ポリマーの水溶液(水溶性ポリマー溶液)とを混合することにより得られる。即ち、混合物の溶媒は、水などの水系の溶媒である。
 (バインダー組成物の製造方法)
 本発明に用いられるバインダー組成物は、混合物の溶媒を有機溶媒に溶媒交換することにより得られる。ここで、溶媒交換は、公知の方法により行うことができる。例えば、ロータリーエバポレーターに混合物及び有機溶媒を入れ、減圧して所定の温度にて溶媒交換及び脱水操作を行うことができる。
 なお、本発明に用いられるバインダー組成物の固形分濃度は、好ましくは1~20wt%である。また、本発明に用いられるバインダー組成物に含まれる水分量は、好ましくは1000ppm未満であり、より好ましくは500ppm未満であり、さらに好ましくは100ppm未満である。
 (有機溶媒)
 溶媒交換に用いることのできる有機溶媒としては、沸点が100℃以上の有機溶媒が挙げられる。沸点が100℃以上の有機溶媒としては、トルエン、キシレンなどの芳香族炭化水素類;シクロペンチルメチルエーテルなどのエーテル類;酢酸ブチルなどのエステル類が好ましく、キシレンがより好ましい。なお、これらの溶媒は、単独または2種以上を混合して用いることができる。
 上記した水溶性ポリマーは、トルエン、キシレンなどの極性の低い有機溶媒には溶解せず、また、均一分散もしないため、水溶性ポリマー単独では全固体二次電池用のバインダーとしては用いることができなかった。
 しかし、本発明においては、粒子構造を有するポリマーの水分散液と水溶性ポリマー溶液とを混合して混合物とした後に、混合物の溶媒を有機溶媒に溶媒交換することにより、有機溶媒中に均一に分散させることができるため、水溶性ポリマーを全固体二次電池用のバインダーとして使用することができる。
 バインダーのガラス転移温度(Tg)は、優れた強度と柔軟性を有し、高い出力特性の全固体二次電池を得ることができる観点から、好ましくは-50~25℃、より好ましくは-45~15℃、特に好ましくは-40~5℃である。なお、バインダーのガラス転移温度は、様々なモノマーを組み合わせることによって調整可能である。
 (1)固体電解質層
 本発明に用いる固体電解質層は、固体電解質粒子と、固体電解質層用バインダーとを含有し、固体電解質層用バインダーは、上記粒子構造を有するポリマーと水溶性ポリマーとを含むバインダーであることが好ましい。
 また、固体電解質層は、固体電解質粒子及び固体電解質層用バインダーを含む固体電解質層用スラリー組成物を、後述する正極活物質層または負極活物質層の上に塗布し、乾燥することにより形成される。固体電解質層用スラリー組成物は、固体電解質粒子、固体電解質層用バインダー、有機溶媒、及び必要に応じて添加される他の成分を混合することにより製造される。
 (固体電解質粒子)
 固体電解質は、粒子状で用いる。固体電解質粒子は、粉砕工程を経たものを用いるため、完全な球形ではなく、不定形である。一般に微粒子の大きさは、レーザー光を粒子に照射し散乱光を測定する方法などにより測定されるが、この場合の粒子径は1個の粒子としては形状を球形と仮定した値である。複数の粒子をまとめて測定した場合、相当する粒子径の粒子の存在割合を粒度分布としてあらわすことができる。固体電解質層を形成する固体電解質粒子は、この方法で測定した値で、平均粒子径として示されることが多い。
 固体電解質層において、イオン伝導の抵抗を小さくすることが、電池性能の向上に有効である。固体電解質層のイオン伝導抵抗は固体電解質粒子の粒子径に大きく影響される。一般に固体電解質粒子内部のイオン移動抵抗は粒子間の移動抵抗よりも小さい。そのため、固体電解質粒子の平均粒子径が所定値以下であると、電解質層内部の空隙が大きくなる結果、イオンの移動抵抗値が大きくなる、という現象を抑えることができる。また、平均粒子径が所定値以上であると、粒子間抵抗が大きくなりすぎたり、固体電解質層用スラリー組成物の粘度が高くなる結果、固体電解質層の厚さ制御が難しくなる、という課題を回避することができる。そこで、平均粒子径を適切な範囲にすることが必要であるが、平均粒子径だけでなく、粒子径の分布状態も特定の範囲に制御することで電池性能が向上する。
 固体電解質粒子の平均粒子径は、好ましくは0.1~10μmである。固体電解質粒子の平均粒子径が上記範囲にあることで、分散性及び塗工性の良好な固体電解質層用スラリー組成物を得ることができる。
 固体電解質粒子は、リチウムイオンの伝導性を有していれば特に限定されないが、結晶性の無機リチウムイオン伝導体、又は非晶性の無機リチウムイオン伝導体を含むことが好ましい。
 結晶性の無機リチウムイオン伝導体としては、Li3N、LISICON(Li14Zn(GeO44)、ペロブスカイト型Li0.5La0.5TiO3、LIPON(Li3+yPO4-xx)、Thio-LISICON(Li3.25Ge0.250.754)などが挙げられる。
 非晶性の無機リチウムイオン伝導体としては、S(硫黄原子)を含有し、かつ、イオン伝導性を有するもの(硫化物固体電解粒子)であれば特に限定されるものではない。ここで、本発明における全固体二次電池が、全固体リチウム二次電池である場合、用いられる硫化物固体電解質材料として、Li2Sと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなるものを挙げることができる。このような原料組成物を用いて硫化物固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法および溶融急冷法を挙げることができ、中でもメカニカルミリング法が好ましい。メカニカルミリング法によれば、常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
 上記第13族~第15族の元素としては、例えばAl、Si、Ge、P、As、Sb等を挙げることができる。また、第13族~第15族の元素の硫化物としては、具体的には、Al23、SiS2、GeS2、P23、P25、As23、Sb23等を挙げることができる。中でも、本発明においては、第14族または第15族の硫化物を用いることが好ましい。特に、本発明においては、Li2Sと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなる硫化物固体電解質材料は、Li2S-P25材料、Li2S-SiS2材料、Li2S-GeS2材料またはLi2S-Al23材料であることが好ましく、Li2S-P25材料であることがより好ましい。これらは、Liイオン伝導性が優れているからである。
 また、本発明における硫化物固体電解質材料は、架橋硫黄を有することが好ましい。架橋硫黄を有することで、イオン伝導性が高くなるからである。さらに、硫化物固体電解質材料が架橋硫黄を有する場合、通常正極活物質との反応性が高く、高抵抗層が生じやすい。なお、「架橋硫黄を有する」ことは、例えば、ラマン分光スペクトルによる測定結果、原料組成比、NMRによる測定結果等を考慮することでも判断することができる。
 Li2S-P25材料またはLi2S-Al23材料におけるLi2Sのモル分率は、より確実に架橋硫黄を有する硫化物固体電解質材料を得ることができる観点から、例えば50~74%の範囲内、中でも60~74%の範囲内であることが好ましい。
 また、本発明における硫化物固体電解質材料は、硫化物ガラスであっても良く、その硫化物ガラスを熱処理して得られる結晶化硫化物ガラスであっても良い。硫化物ガラスは、例えば、上述した非晶質化法により得ることができる。結晶化硫化物ガラスは、例えば、硫化物ガラスを熱処理することにより得ることができる。
 特に、本発明においては、硫化物固体電解質材料が、Li2SおよびP25とからなるLi7311で表される結晶化硫化物ガラスであることが好ましい。Liイオン伝導度が特に優れているからである。Li7311を合成する方法としては、例えば、Li2SおよびP25を、モル比70:30で混合し、ボールミルで非晶質化することで、硫化物ガラスを合成し、得られた硫化物ガラスを150℃~360℃で熱処理することにより、Li7311を合成することができる。
 固体電解質層用スラリー組成物中のバインダーの含有量は、固体電解質粒子同士の結着性を維持しながら、リチウムの移動を阻害して固体電解質層の抵抗が増大することを抑制できる観点から、固体電解質粒子100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~7質量部、特に好ましくは0.5~5質量部である。
 (有機溶媒)
 固体電解質層用スラリー組成物を製造するための有機溶媒としては、上記した溶媒交換に用いることのできる有機溶媒として例示したものと同じものを用いることができる。
 固体電解質層用スラリー組成物中の有機溶媒の含有量は、固体電解質層用スラリー組成物中の固体電解質粒子の分散性を保持しながら、良好な塗料特性を得ることができる観点から、固体電解質粒子100質量部に対して、好ましくは10~700質量部、より好ましくは30~500質量部である。
 固体電解質層用スラリー組成物は、上記成分の他に、必要に応じて添加される他の成分として、分散剤、レベリング剤及び消泡剤の機能を有する成分を含んでいてもよい。これらの成分は、電池反応に影響を及ぼさないものであれば、特に制限されない。
 (分散剤)
 分散剤としてはアニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物が例示される。分散剤は、用いる固体電解質粒子に応じて選択される。固体電解質層用スラリー組成物中の分散剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質粒子100質量部に対して10質量部以下である。
 (レベリング剤)
 レベリング剤としてはアルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。上記界面活性剤を混合することにより、固体電解質層用スラリー組成物を後述する正極活物質層又は負極活物質層の表面に塗工する際に発生するはじきを防止でき、正負極の平滑性を向上させることができる。固体電解質層用スラリー組成物中のレベリング剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質粒子100質量部に対して10質量部以下である。
 (消泡剤)
 消泡剤としてはミネラルオイル系消泡剤、シリコーン系消泡剤、ポリマー系消泡剤が例示される。消泡剤は、用いる固体電解質粒子に応じて選択される。固体電解質層用スラリー組成物中の消泡剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質粒子100質量部に対して10質量部以下である。
 (2)正極活物質層
 正極活物質層は、正極活物質、固体電解質粒子及び正極用バインダーを含む正極活物質層用スラリー組成物を、後述する集電体表面に塗布し、乾燥することにより形成される。正極活物質層用スラリー組成物は、正極活物質、固体電解質粒子、正極用バインダー、有機溶媒及び必要に応じて添加される他の成分を混合することにより製造される。
 (正極活物質)
 正極活物質は、リチウムイオンを吸蔵および放出可能な化合物である。正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO2、LiNiO2、LiMnO2、LiMn24、LiFePO4、LiFeVO4などのリチウム含有複合金属酸化物;TiS2、TiS3、非晶質MoS2等の遷移金属硫化物;Cu223、非晶質V2O-P25、MoO3、V25、V613などの遷移金属酸化物が挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。
 有機化合物からなる正極活物質としては、例えば、ポリアニリン、ポリピロール、ポリアセン、ジスルフィド系化合物、ポリスルフィド系化合物、N-フルオロピリジニウム塩などが挙げられる。正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。
 本発明で用いる正極活物質の平均粒子径は、負荷特性、サイクル特性などの電池特性の向上の観点、また、充放電容量が大きい全固体二次電池を得ることができ、かつ正極活物質層用スラリー組成物の取扱い、および正極を製造する際の取扱いが容易である観点から、通常0.1~50μm、好ましくは1~20μmである。平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる。
 (固体電解質粒子)
 固体電解質粒子は、固体電解質層において例示したものと同じものを用いることができる。
 正極活物質と固体電解質粒子との重量比率は、好ましくは正極活物質:固体電解質粒子=90:10~50:50、より好ましくは正極活物質:固体電解質粒子=60:40~80:20である。正極活物質の重量比率がこの範囲であると、正極活物質の重量比率が少なすぎるために、電池内の正極活物質量が低減する結果、電池としての容量低下につながる、という現象を抑えることができる。また、固体電解質粒子の重量比率がこの範囲であると、固体電解質粒子の重量比率が少なすぎるために、導電性が十分に得られず正極活物質を有効に利用することができない結果、電池としての容量低下につながる、という現象を抑えることができる。
 (正極用バインダー)
 正極用バインダーとしては、特に制限はないが、上記粒子構造を有するポリマーと水溶性ポリマーとを含むバインダーを用いることが好ましい。
 正極活物質層用スラリー組成物中の正極用バインダーの含有量は、電池反応を阻害せずに、電極から正極活物質が脱落するのを防ぐことができる観点から、正極活物質100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~4質量部である。
 正極活物質層用スラリー組成物中の有機溶媒及び必要に応じて添加される他の成分は、上記の固体電解質層で例示するものと同様のものを用いることができる。正極活物質層用スラリー組成物中の有機溶媒の含有量は、固体電解質の分散性を保持しながら、良好な塗料特性を得ることができる観点から、正極活物質100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部である。
 正極活物質層用スラリー組成物は、上記成分の他に、必要に応じて添加される他の成分として、導電剤、補強材などの各種の機能を発現する添加剤を含んでいてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
 (導電剤)
 導電剤は、導電性を付与できるものであれば特に制限されないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。
 (補強材)
 補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。
 (3)負極活物質層
 負極活物質層は、負極活物質を含む。
 (負極活物質)
 負極活物質としては、グラファイトやコークス等の炭素の同素体が挙げられる。前記炭素の同素体からなる負極活物質は、金属、金属塩、酸化物などとの混合体や被覆体の形態で利用することも出来る。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の酸化物や硫酸塩、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコン等を使用できる。金属材料の場合は金属箔または金属板をそのまま電極として用いることができるが、粒子状でも良い。
 この場合、負極活物質層は、負極活物質、固体電解質粒子及び負極用バインダーを含む負極活物質層用スラリー組成物を、後述する集電体表面に塗布し、乾燥することにより形成される。負極活物質層用スラリー組成物は、負極活物質、固体電解質粒子、負極用バインダー、有機溶媒及び必要に応じて添加される他の成分を混合することにより製造される。なお、負極活物質層用スラリー組成物中の固体電解質粒子、有機溶媒及び必要に応じて添加される他の成分は、上記の正極活物質層で例示するものと同様のものを用いることができる。
 負極活物質が粒子状の場合、負極活物質の平均粒子径は、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、通常1~50μm、好ましくは15~30μmである。
 負極活物質と固体電解質粒子との重量比率は、好ましくは負極活物質:固体電解質粒子=90:10~50:50、より好ましくは負極活物質:固体電解質粒子=60:40~80:20である。負極活物質の重量比率がこの範囲であると、負極活物質の重量比率が少なすぎるために、電池内の負極活物質量が低減する結果、電池としての容量低下につながる、という現象を抑えることができる。また、固体電解質粒子の重量比率がこの範囲であると、固体電解質粒子の重量比率が少なすぎるために、導電性が十分に得られず負極活物質を有効に利用することができない結果、電池としての容量低下につながる、という現象を抑えることができる。
 (負極用バインダー)
 負極用バインダーとしては、特に制限はないが、上記粒子構造を有するポリマーと水溶性ポリマーとを含むバインダーを用いることが好ましい。
 負極活物質が粒子状の場合、負極活物質層用スラリー組成物中の負極用バインダーの含有量は、電池反応を阻害せずに、電極から電極活物質が脱落するのを防ぐことができる観点から、負極活物質100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~4質量部である。
 (集電体)
 正極活物質層および負極活物質層の形成に用いる集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有する観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、上述した正・負極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、集電体と正・負極活物質層との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
 (固体電解質層用スラリー組成物の製造)
 固体電解質層用スラリー組成物は、上述した固体電解質粒子、固体電解質層用バインダー、有機溶媒及び必要に応じて添加される他の成分を混合して得られる。ここで、固体電解質層用バインダーとして、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いることが好ましく、固体電解質層用バインダーとして上記のバインダー組成物を添加することが好ましい。
 (正極活物質層用スラリー組成物の製造)
 正極活物質層用スラリー組成物は、上述した正極活物質、固体電解質粒子、正極用バインダー、有機溶媒及び必要に応じて添加される他の成分を混合して得られる。ここで、正極用バインダーとして、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いることが好ましく、正極用バインダーとして上記のバインダー組成物を添加することが好ましい。
 (負極活物質層用スラリー組成物の製造)
 負極活物質層用スラリー組成物は、上述した負極活物質、固体電解質粒子、負極用バインダー、有機溶媒及び必要に応じて添加される他の成分を混合して得られる。ここで、負極用バインダーとして、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いることが好ましく、負極用バインダーとして上記のバインダー組成物を添加することが好ましい。
 上記のスラリー組成物の混合法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、ビーズミル、プラネタリーミキサー、サンドミル、ロールミル、および遊星式混練機などの分散混練装置を使用した方法が挙げられ、固体電解質粒子の凝集を抑制できるという観点からプラネタリーミキサー、ボールミル又はビーズミルを使用した方法が好ましい。
 (全固体二次電池の製造)
 全固体二次電池における正極は、上記の正極活物質層用スラリー組成物を集電体上に塗布、乾燥して正極活物質層を形成して製造される。全固体二次電池における負極は、金属箔を用いる場合はそのまま用いることができる。負極活物質が粒子状である場合は、上記の負極活物質層用スラリー組成物を、正極の集電体とは別の集電体上に塗布、乾燥して負極活物質層を形成して製造される。次いで、形成した正極活物質層または負極活物質層の上に、固体電解質層用スラリー組成物を塗布し、乾燥して固体電解質層を形成する。そして、固体電解質層を形成しなかった電極と、上記の固体電解質層を形成した電極とを貼り合わせることで、全固体二次電池素子を製造する。
 正極活物質層用スラリー組成物および負極活物質層用スラリー組成物の集電体への塗布方法は特に限定されず、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗りなどによって塗布される。塗布する量も特に制限されないが、有機溶媒を除去した後に形成される活物質層の厚さが通常5~300μm、好ましくは10~250μmになる程度の量である。乾燥方法も特に制限されず、例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥が挙げられる。乾燥条件は、通常は応力集中が起こって活物質層に亀裂が入ったり、活物質層が集電体から剥離しない程度の速度範囲の中で、できるだけ早く有機溶媒が揮発するように調整する。更に、乾燥後の電極をプレスすることにより電極を安定させてもよい。プレス方法は、金型プレスやカレンダープレスなどの方法が挙げられるが、限定されるものではない。
 乾燥温度は、有機溶媒が十分に揮発する温度で行う。具体的には正・負極用バインダーの熱分解なく良好な活物質層を形成することが可能となる観点から、50~250℃が好ましく、さらには80~200℃が好ましい。乾燥時間については、特に限定されることはないが、通常10~60分の範囲で行われる。
 固体電解質層用スラリー組成物を、正極活物質層又は負極活物質層へ塗布する方法は特に限定されず、上述した正極活物質層用スラリー組成物および負極活物質層用スラリー組成物の集電体への塗布方法と同様の方法により行われるが、薄膜の固体電解質層を形成できるという観点からグラビア法が好ましい。塗布する量も特に制限されないが、有機溶媒を除去した後に形成される固体電解質層の厚さが2~20μm、好ましくは3~15μmになる程度の量である。乾燥方法、乾燥条件及び乾燥温度も、上述の正極活物質層用スラリー組成物および負極活物質層用スラリー組成物と同様である。
 更に、上記の固体電解質層を形成した電極と固体電解質層を形成しなかった電極とを貼り合わせた積層体を、加圧してもよい。加圧方法としては特に限定されず、例えば、平板プレス、ロールプレス、CIP(Cold Isostatic Press)などが挙げられる。加圧プレスする圧力としては、電極と固体電解質層との各界面における抵抗、更には各層内の粒子間の接触抵抗が低くなり良好な電池特性を示す観点から、好ましくは5~700MPa、より好ましくは7~500MPaである。なお、プレスにより固体電解質層および活物質層は圧縮され、プレス前よりも厚みが薄くなることがある。プレスを行う場合、本発明における固体電解質層および活物質層の厚みは、プレス後の厚みが前記範囲にあればよい。
 正極活物質層または負極活物質層のどちらに固体電解質層用スラリー組成物を塗布するかは特に限定されないが、使用する電極活物質の粒子径が大きい方の活物質層に固体電解質層用スラリー組成物を塗布することが好ましい。電極活物質の粒子径が大きいと、活物質層表面に凹凸が形成されるため、スラリー組成物を塗布することで、活物質層表面の凹凸を緩和することができる。そのため、固体電解質層を形成した電極と固体電解質層を形成しなかった電極とを貼り合わせて積層する際に、固体電解質層と電極との接触面積が大きくなり、界面抵抗を抑制することができる。
 得られた全固体二次電池素子を、電池形状に応じてそのままの状態又は巻く、折るなどして電池容器に入れ、封口して全固体二次電池が得られる。また、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを電池容器に入れ、電池内部の圧力上昇、過充放電の防止をする事もできる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。
 以下に、実施例を挙げて本発明を説明するが、本発明はこれらの実施例によりなんら限定されるものではない。各特性は、以下の方法により評価する。なお、本実施例における「部」および「%」は、特に断りのない限り、それぞれ、「質量部」および「質量%」である。
 <固体電解質層の厚さ測定>
 全固体二次電池を所定圧でプレス後、マイクロメーターを用いて電解質層膜厚をランダムに5点計測し、その平均値から算出した。
 <ゲル分率>
 得られた粒子構造を有するポリマーの水分散液を、PTFE製シャーレを用いて乾燥させて、ポリマーのフィルムを作製した。得られたフィルムをTHFに24時間浸漬したのち、200メッシュのSUS金網で濾過した。濾過後の金網を100℃で1時間乾燥し、金網の重量増加分をフィルムの重量で除した値(金網の重量増加/フィルム重量)をゲル分率とした。
 <粒子径測定>
 JIS Z8825-1:2001に準じて、レーザー解析装置(島津製作所社製 レーザー回折式粒度分布測定装置 SALD-3100)により粒子径を測定した。
 <バインダー水分量の測定>
 カールフィッシャー水分計を用いて容量法で測定した。3回繰り返し測定を行いその平均値を測定値とした。
 <バインダー組成物の保存安定性>
 得られたバインダー組成物を500mLのガラス容器に密閉し、23℃で1か月間静置し、沈殿の有無を確認した。目視で沈殿あるいは分離が見られなかったものを「無」、沈殿あるいは分離が見られたものを「有」とした。
 <電池特性:出力特性>
 25℃の恒温槽中で、5セルの全固体二次電池を0.1Cの定電流法によって4.3Vまで充電しその後0.1Cにて3.0Vまで放電し、0.1C放電容量aを求めた。その後0.1Cにて4.3Vまで充電しその後5Cにて3.0Vまで放電し5C放電容量bを求めた。5セルの平均値を測定値とし、5C放電容量bと0.1C放電容量aの電気容量の比(b/a(%))で表される容量保持率を求めた。
 <電池特性:充放電サイクル特性>
 得られた全固体二次電池を用いて、それぞれ25℃ で0.5Cの定電流定電圧充電法という方式で、4.2Vになるまで定電流で充電、その後定電圧で充電し、また0.5Cの定電流で3.0Vまで放電する充放電サイクルを行った。充放電サイクルは100サイクルまで行い、初期放電容量に対する100サイクル目の放電容量の比を容量維持率として求めた。この値が大きいほど繰り返し充放電による容量減が少なく、充放電サイクル特性に優れることを示す。
 (実施例1)
 <粒子構造を有するポリマーの製造>
 攪拌機付きガラス容器に、エチルアクリレート47部、ブチルアクリレート47部、ビニルトリメチルシラン5部、架橋剤としてのエチレングリコールジメタクリレート1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子構造を有するポリマーの水分散液を得た。
 そして、得られた水分散液に10wt%のNaOH水溶液を用いてpHを7に調整した。得られたポリマー粒子の体積平均粒子径は199nmであった。得られた粒子構造を有するポリマーの水分散液のゲル分率は97wt%であった。
 重合反応終了後、pHを7に調整した上記粒子構造を有するポリマーの水分散液の未反応単量体を除去するため、80℃で加熱減圧蒸留を行った。
 <複合粒子バインダーの製造>
 固形分濃度を30wt%に調整した粒子構造を有するポリマーの水分散液に、ポリマーの固形分100部に対し、水溶性ポリマーとしてのポリエチレングリコール(アルドリッチ社製、平均分子量100000)の5%水溶液を固形分相当で0.7部添加し十分に混合した。その後、溶媒を水から有機溶媒に交換するため、キシレンを、粒子構造を有するポリマーの水分散液100gに対して500g添加して加熱減圧蒸留を行なった。
 溶媒交換するため、粒子構造を有するポリマーの水分散液およびポリエチレングリコール水溶液の混合物にキシレンを添加した段階では、透明な液体と白色の固体が存在する状態であった。この系を脱水し、溶媒交換を行った後は、全体が半透明な液状であり、ポリマー粒子は、水溶性ポリマーと複合した状態で複合粒子を形成し、キシレンに分散した状態となった。なお、得られた複合粒子の数平均粒子径は、400nmであった。また、得られた複合粒子バインダーのキシレン分散液の水分量は25ppmであり、固形分濃度は8.7wt%であった。保存安定性試験で沈殿あるいは分離は見られなかった。
 <正極活物質層用スラリー組成物の製造>
 正極活物質としてコバルト酸リチウム(平均粒子径:11.5μm)100部と、固体電解質粒子としてLi2SとP25とからなる硫化物ガラス(Li2S/P25=70 mol%/30mol%、平均粒子径が2.2μm)150部と、導電剤としてアセチレンブラック13部と、正極用バインダーとして上述の複合粒子バインダーのキシレン分散液を固形分相当で2部加え、さらに有機溶媒としてキシレンを加えて固形分濃度78%に調整した後にプラネタリーミキサーで60分間混合した。さらにキシレンで固形分濃度74%に調整した後に10分間混合して、正極活物質層用スラリー組成物を調製した。
 <負極活物質層用スラリー組成物の製造>
 負極活物質としてグラファイト(平均粒子径:20μm)100部と、固体電解質粒子としてLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、平均粒子径が2.2μm)50部と、負極用バインダーとして上述の複合粒子バインダーのキシレン分散液を固形分相当で2部加え、さらに有機溶媒としてキシレンを加えて固形分濃度60%に調整した後にプラネタリーミキサーで混合して負極活物質層用スラリー組成物を調製した。
 <固体電解質層用スラリー組成物の製造>
 固体電解質粒子として、Li2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、平均粒子径が2.2μm)100部と、バインダーとして上述の複合粒子バインダーのキシレン分散液を固形分相当で2部加え、さらに有機溶媒としてキシレンを加えて固形分濃度30%に調整した後にプラネタリーミキサーで混合して固体電解質層用スラリー組成物を調製した。
 <全固体二次電池の製造>
 集電体表面に上記正極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて厚さが50μmの正極活物質層を形成して正極を製造した。また、別の集電体表面に上記負極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて厚さが30μmの負極活物質層を形成して負極を製造した。
 次いで、上記正極活物質層の表面に、上記固体電解質層用スラリー組成物を塗布し、乾燥(110℃、10分)させて厚さが26μmの固体電解質層を形成した。
 正極活物質層の表面に積層された固体電解質層と、上記負極の負極活物質層とを貼り合わせ、プレスして全固体二次電池を得た。プレス後の全固体二次電池の厚さは65μmであった。この電池を用いて出力特性及び充放電サイクル特性を評価した。結果を表1に示す。
 (実施例2)
 <粒子構造を有するポリマーの製造>
 攪拌機付きガラス容器に、エチルアクリレート45部、ブチルアクリレート45部、ビニルトリメチルシラン10部、架橋剤としてのエチレングリコールジメタクリレート1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子構造を有するポリマーの水分散液を得た。
 そして、得られた水分散液に10wt%のNaOH水溶液を用いてpHを7に調整した。得られたポリマー粒子の体積平均粒子径は230nmであった。得られた粒子構造を有するポリマーの水分散液のゲル分率は98wt%であった。
 重合反応終了後、pHを7に調整した上記粒子構造を有するポリマーの水分散液の未反応単量体を除去するため、80℃で加熱減圧蒸留を行った。
 <複合粒子バインダーの製造>
 固形分濃度を30wt%に調整した上記粒子構造を有するポリマーの水分散液に、ポリマーの固形分100部に対し、水溶性ポリマーとしてのポリエチレンオキサイド(アルドリッチ社製、平均分子量4000000)の5%水溶液を固形分相当で1部添加し十分に混合した。その後、溶媒を水から有機溶媒に交換するため、キシレンを、粒子構造を有するポリマーの水分散液100gに対して500g添加して加熱減圧蒸留を行なった。得られた複合粒子の数平均粒子径は、280nmであった。また、得られた複合粒子バインダーのキシレン分散液の水分量は38ppmであり、固形分濃度は9.6wt%であった。保存安定性試験で沈殿あるいは分離は見られなかった。
 上記で得られた複合粒子バインダーのキシレン分散液を用いたこと以外は、実施例1と同様に正極活物質層用スラリー組成物の製造、負極活物質層用スラリー組成物の製造、固体電解質層用スラリー組成物の製造、全固体二次電池の製造を行い、得られた電池を用いて出力特性及び充放電サイクル特性を評価した。結果を表1に示す。
 (実施例3)
 <粒子構造を有するポリマーの製造>
 攪拌機付きガラス容器に、エチルアクリレート55部、ブチルアクリレート45部、アクリロニトリル5部、架橋剤としてのエチレングリコールジメタクリレート1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子構造を有するポリマーの水分散液を得た。
 そして、得られた水分散液に10wt%のNaOH水溶液を用いてpHを7に調整した。得られたポリマー粒子の体積平均粒子径は255nmであった。得られた粒子構造を有するポリマーの水分散液のゲル分率は95wt%であった。
 重合反応終了後、pHを7に調整した上記粒子構造を有するポリマーの水分散液の未反応単量体を除去するため、80℃で加熱減圧蒸留を行った。
 <複合粒子バインダーの製造>
 上記で得られた粒子構造を有するポリマーを用いたこと、および水溶性ポリマーとしてポリエチレンオキサイド(アルドリッチ社製、平均分子量4000000)の5%水溶液を固形分相当で1部用いたこと以外は、実施例1と同様に、複合粒子バインダーの製造を行った。得られた複合粒子の数平均粒子径は、340nmであった。また、得られた複合粒子バインダーのキシレン分散液の水分量は43ppmであり、固形分濃度は7.9wt%であった。保存安定性試験で沈殿あるいは分離は見られなかった。
 上記で得られた複合粒子バインダーを用いたこと以外は、実施例1と同様に正極活物質層用スラリー組成物の製造、負極活物質層用スラリー組成物の製造、固体電解質層用スラリー組成物の製造、全固体二次電池の製造を行い、得られた電池を用いて出力特性及び充放電サイクル特性を評価した。結果を表1に示す。
 (実施例4)
 <粒子構造を有するポリマーの製造>
 攪拌機付きガラス容器に、2-エチルヘキシルアクリレート70部、ブチルアクリレート10部、ビニルトリメチルシラン5部、アクリロニトリル15部、架橋剤としてのエチレングリコールジメタクリレート1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子構造を有するポリマーの水分散液を得た。
 そして、得られた水分散液に10wt%のNaOH水溶液を用いてpHを7に調整した。得られたポリマー粒子の体積平均粒子径は265nmであった。得られた粒子構造を有するポリマーの水分散液のゲル分率は95wt%であった。
 重合反応終了後、pHを7に調整した上記粒子構造を有するポリマーの水分散液の未反応単量体を除去するため、80℃で加熱減圧蒸留を行った。
 <複合粒子バインダーの製造>
 上記で得られた粒子構造を有するポリマーを用いたこと、および水溶性ポリマーとしてポリエチレンオキサイド(アルドリッチ社製、平均分子量4000000)の5%水溶液を固形分相当で2部用いたこと以外は、実施例1と同様に、複合粒子バインダーの製造を行った。得られた複合粒子の数平均粒子径は、285nmであった。また、得られた複合粒子バインダーのキシレン分散液の水分量は25ppmであり、固形分濃度は8.8wt%であった。保存安定性試験で沈殿あるいは分離は見られなかった。
 上記で得られた複合粒子バインダーを用いたこと以外は、実施例1と同様に正極活物質層用スラリー組成物の製造、負極活物質層用スラリー組成物の製造、固体電解質層用スラリー組成物の製造、全固体二次電池の製造を行い、得られた電池を用いて出力特性及び充放電サイクル特性を評価した。結果を表1に示す。
 (比較例1)
 実施例3で得られた粒子構造を有するポリマーを用いたこと、および、水溶性ポリマーを用いず複合粒子化しなかったこと以外は、実施例1と同様に粒子状バインダーの製造を行った。得られた粒子状バインダーの数平均粒子径は、255nmであった。また、得られた粒子状バインダーのキシレン分散液の水分量は18ppmであり、固形分濃度は7.9wt%であった。保存安定性試験で沈殿あるいは分離は見られなかった。
 上記で得られた粒子状バインダーを用いたこと以外は、実施例1と同様に正極活物質層用スラリー組成物の製造、負極活物質層用スラリー組成物の製造、固体電解質層用スラリー組成物の製造、全固体二次電池の製造を行い、得られた電池を用いて出力特性及び充放電サイクル特性を評価した。結果を表1に示す。
 (比較例2)
 実施例3で得られた粒子構造を有するポリマーを固形分で100部と、水溶性ポリマーであるポリエチレンオキサイド(アルドリッチ社製、平均分子量4000000)の粉末1部とをビーズミルを用いて混合し、バインダー混合物の製造を行った。また、得られたバインダー混合物のキシレン分散液の水分量は33ppmであり、固形分濃度は8.0wt%であった。保存安定性試験で沈殿が見られた。
 上記で得られたバインダー混合物を用いたこと以外は、実施例1と同様に正極活物質層用スラリー組成物の製造、負極活物質層用スラリー組成物の製造、固体電解質層用スラリー組成物の製造、全固体二次電池の製造を行い、得られた電池を用いて出力特性及び充放電サイクル特性を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いてなる全固体二次電池の出力特性および充放電サイクルは良好であった。

Claims (5)

  1.  正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いてなる全固体二次電池。
  2.  前記固体電解質層は固体電解質粒子を含み、前記固体電解質粒子が、Li2SとP25とからなる硫化物ガラスである請求項1に記載の全固体二次電池。
  3.  前記バインダーは、前記粒子構造を有するポリマーを80~99.1wt%含む請求項1又は2に記載の全固体二次電池。
  4.  前記粒子構造を有するポリマーは、アクリレート系ポリマーである請求項1~3の何れかに記載の全固体二次電池。
  5.  請求項1に記載のバインダーは、粒子構造を有するポリマーの水分散液と水溶性ポリマー溶液との混合物の溶媒が、有機溶媒に溶媒交換されてなるバインダー組成物によるものである請求項1~4の何れかに記載の全固体二次電池。
PCT/JP2016/075385 2015-09-16 2016-08-31 全固体二次電池 WO2017047378A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16846249.7A EP3352278A4 (en) 2015-09-16 2016-08-31 SOLID SECONDARY BATTERY
US15/753,402 US20180254519A1 (en) 2015-09-16 2016-08-31 All-solid-state secondary battery
JP2017539819A JP6834963B2 (ja) 2015-09-16 2016-08-31 全固体二次電池および全固体二次電池の製造方法
KR1020177035052A KR20180052558A (ko) 2015-09-16 2016-08-31 전고체 2차 전지
CN201680032860.0A CN107615554B (zh) 2015-09-16 2016-08-31 全固体二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015182471 2015-09-16
JP2015-182471 2015-09-16

Publications (1)

Publication Number Publication Date
WO2017047378A1 true WO2017047378A1 (ja) 2017-03-23

Family

ID=58289064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075385 WO2017047378A1 (ja) 2015-09-16 2016-08-31 全固体二次電池

Country Status (6)

Country Link
US (1) US20180254519A1 (ja)
EP (1) EP3352278A4 (ja)
JP (1) JP6834963B2 (ja)
KR (1) KR20180052558A (ja)
CN (1) CN107615554B (ja)
WO (1) WO2017047378A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173839A1 (ja) * 2017-03-24 2018-09-27 日本ゼオン株式会社 バインダー組成物の保管方法
CN109599561A (zh) * 2017-09-30 2019-04-09 宁德时代新能源科技股份有限公司 全固态锂离子二次电池用粘结剂、电解质膜片、电极膜片、电池及制备方法
WO2019074075A1 (ja) * 2017-10-12 2019-04-18 富士フイルム株式会社 全固体二次電池用バインダー組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
JP2020004508A (ja) * 2018-06-25 2020-01-09 凸版印刷株式会社 アルカリ二次電池用負極組成物及びアルカリ二次電池用負極
WO2020137434A1 (ja) 2018-12-28 2020-07-02 日本ゼオン株式会社 全固体二次電池用バインダー組成物
WO2021085141A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
US11552331B2 (en) 2017-11-17 2023-01-10 Fujifilm Corporation Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary
KR20230061341A (ko) 2020-08-31 2023-05-08 니폰 제온 가부시키가이샤 전고체 이차 전지용 바인더 조성물의 제조 방법, 전고체 이차 전지용 슬러리 조성물의 제조 방법, 고체 전해질 함유층의 제조 방법, 및 전고체 이차 전지의 제조 방법
WO2023148515A1 (ja) * 2022-02-01 2023-08-10 日産自動車株式会社 二次電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276734B1 (en) * 2015-03-25 2020-07-08 Zeon Corporation All-solid secondary battery
DE112019001591B4 (de) * 2018-03-28 2024-07-25 Tdk Corporation Festkörperbatterie
WO2019209089A1 (ko) * 2018-04-27 2019-10-31 주식회사 엘지화학 리튬 이차 전지 및 이의 제조방법
WO2020080261A1 (ja) * 2018-10-15 2020-04-23 富士フイルム株式会社 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
DE102018218556A1 (de) * 2018-10-30 2020-04-30 Robert Bosch Gmbh Kompositfolie, deren Herstellung und deren Verwendung in einer elektrochemischen Festkörperzelle
CN114361456B (zh) * 2022-01-11 2023-05-05 中国科学院化学研究所 一种锂电池用水性功能化导离子粘结剂、制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249265A (ja) * 2002-02-22 2003-09-05 Yuasa Corp ポリマー電解質電池
JP2008146917A (ja) * 2006-12-07 2008-06-26 Nippon Synthetic Chem Ind Co Ltd:The 全固体型リチウム二次電池
JP2013008611A (ja) * 2011-06-27 2013-01-10 Nippon Zeon Co Ltd 全固体二次電池
WO2014051032A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池
JP2015159067A (ja) * 2014-02-25 2015-09-03 富士フイルム株式会社 複合固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3736045B2 (ja) * 1997-06-19 2006-01-18 松下電器産業株式会社 全固体リチウム電池
JP5523965B2 (ja) * 2010-07-23 2014-06-18 三井化学株式会社 高分子電解質粒子及びその製造方法、並びに固体高分子電解質
JP5994354B2 (ja) * 2011-09-05 2016-09-21 ソニー株式会社 セパレータおよび非水電解質電池、並びに、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2013051302A1 (ja) * 2011-10-05 2013-04-11 国立大学法人東北大学 二次電池
CN105027325A (zh) * 2013-03-21 2015-11-04 日本瑞翁株式会社 锂离子二次电池多孔膜用浆料及其制造方法、锂离子二次电池用隔板以及锂离子二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249265A (ja) * 2002-02-22 2003-09-05 Yuasa Corp ポリマー電解質電池
JP2008146917A (ja) * 2006-12-07 2008-06-26 Nippon Synthetic Chem Ind Co Ltd:The 全固体型リチウム二次電池
JP2013008611A (ja) * 2011-06-27 2013-01-10 Nippon Zeon Co Ltd 全固体二次電池
WO2014051032A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池
JP2015159067A (ja) * 2014-02-25 2015-09-03 富士フイルム株式会社 複合固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3352278A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018173839A1 (ja) * 2017-03-24 2020-01-23 日本ゼオン株式会社 バインダー組成物の保管方法
JP7024781B2 (ja) 2017-03-24 2022-02-24 日本ゼオン株式会社 バインダー組成物の保管方法
WO2018173839A1 (ja) * 2017-03-24 2018-09-27 日本ゼオン株式会社 バインダー組成物の保管方法
CN109599561A (zh) * 2017-09-30 2019-04-09 宁德时代新能源科技股份有限公司 全固态锂离子二次电池用粘结剂、电解质膜片、电极膜片、电池及制备方法
JPWO2019074075A1 (ja) * 2017-10-12 2020-10-22 富士フイルム株式会社 全固体二次電池用バインダー組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2019074075A1 (ja) * 2017-10-12 2019-04-18 富士フイルム株式会社 全固体二次電池用バインダー組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
US11489163B2 (en) 2017-10-12 2022-11-01 Fujifilm Corporation Binder composition for all-solid state secondary battery, solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery
US11552331B2 (en) 2017-11-17 2023-01-10 Fujifilm Corporation Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary
JP2020004508A (ja) * 2018-06-25 2020-01-09 凸版印刷株式会社 アルカリ二次電池用負極組成物及びアルカリ二次電池用負極
US11670758B2 (en) 2018-06-25 2023-06-06 Toppan Printing Co., Ltd. Negative-electrode composition for alkaline secondary batteries, and alkaline secondary battery negative electrode
WO2020137434A1 (ja) 2018-12-28 2020-07-02 日本ゼオン株式会社 全固体二次電池用バインダー組成物
KR20210110297A (ko) 2018-12-28 2021-09-07 니폰 제온 가부시키가이샤 전고체 이차 전지용 바인더 조성물
WO2021085141A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
KR20230061341A (ko) 2020-08-31 2023-05-08 니폰 제온 가부시키가이샤 전고체 이차 전지용 바인더 조성물의 제조 방법, 전고체 이차 전지용 슬러리 조성물의 제조 방법, 고체 전해질 함유층의 제조 방법, 및 전고체 이차 전지의 제조 방법
WO2023148515A1 (ja) * 2022-02-01 2023-08-10 日産自動車株式会社 二次電池

Also Published As

Publication number Publication date
EP3352278A1 (en) 2018-07-25
EP3352278A4 (en) 2019-02-13
JPWO2017047378A1 (ja) 2018-06-28
US20180254519A1 (en) 2018-09-06
KR20180052558A (ko) 2018-05-18
CN107615554B (zh) 2021-03-30
CN107615554A (zh) 2018-01-19
JP6834963B2 (ja) 2021-02-24

Similar Documents

Publication Publication Date Title
JP6834963B2 (ja) 全固体二次電池および全固体二次電池の製造方法
US10797304B2 (en) All-solid-state secondary battery
JP5644851B2 (ja) 全固体二次電池及び全固体二次電池の製造方法
JP7017081B2 (ja) 全固体二次電池用バインダー、全固体二次電池用バインダーの製造方法および全固体二次電池
JP6459691B2 (ja) 全固体二次電池
KR102340874B1 (ko) 고체 전해질 전지용 바인더 조성물 및 고체 전해질 전지용 슬러리 조성물
JP7003917B2 (ja) 固体電解質電池用バインダー組成物
JP6791144B2 (ja) 全固体電池用バインダ組成物
JPWO2012173089A1 (ja) 全固体二次電池
KR102425398B1 (ko) 전고체 전지용 바인더 조성물, 전고체 전지용 슬러리 조성물, 전고체 전지용 전극, 및 전고체 전지
CN111433961A (zh) 全固体二次电池用粘结剂组合物、全固体二次电池用浆料组合物、全固体二次电池用功能层和全固体二次电池
JP2016181472A (ja) 全固体二次電池
JPWO2020137435A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539819

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177035052

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15753402

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846249

Country of ref document: EP