WO2017047378A1 - 全固体二次電池 - Google Patents
全固体二次電池 Download PDFInfo
- Publication number
- WO2017047378A1 WO2017047378A1 PCT/JP2016/075385 JP2016075385W WO2017047378A1 WO 2017047378 A1 WO2017047378 A1 WO 2017047378A1 JP 2016075385 W JP2016075385 W JP 2016075385W WO 2017047378 A1 WO2017047378 A1 WO 2017047378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- solid electrolyte
- electrode active
- polymer
- binder
- Prior art date
Links
- 239000007787 solid Substances 0.000 title claims abstract description 57
- 239000002245 particle Substances 0.000 claims abstract description 172
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 139
- 239000011230 binding agent Substances 0.000 claims abstract description 92
- 229920000642 polymer Polymers 0.000 claims abstract description 87
- 239000007774 positive electrode material Substances 0.000 claims abstract description 72
- 239000007773 negative electrode material Substances 0.000 claims abstract description 66
- 229920003169 water-soluble polymer Polymers 0.000 claims abstract description 45
- 239000000203 mixture Substances 0.000 claims description 110
- 239000006185 dispersion Substances 0.000 claims description 41
- 239000003960 organic solvent Substances 0.000 claims description 40
- 239000002203 sulfidic glass Substances 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 21
- 229910018091 Li 2 S Inorganic materials 0.000 claims description 13
- 229920000058 polyacrylate Polymers 0.000 claims description 12
- 239000002002 slurry Substances 0.000 description 72
- 238000000034 method Methods 0.000 description 35
- 238000004519 manufacturing process Methods 0.000 description 33
- 239000011246 composite particle Substances 0.000 description 22
- 239000000178 monomer Substances 0.000 description 22
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 239000008096 xylene Substances 0.000 description 21
- -1 2- (perfluoropentyl) ethyl Chemical group 0.000 description 19
- 239000000463 material Substances 0.000 description 17
- 238000006116 polymerization reaction Methods 0.000 description 16
- 238000001035 drying Methods 0.000 description 15
- 239000011883 electrode binding agent Substances 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000011149 active material Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 229910001416 lithium ion Inorganic materials 0.000 description 10
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 9
- 238000003825 pressing Methods 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- 239000003431 cross linking reagent Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 239000002518 antifoaming agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000003995 emulsifying agent Substances 0.000 description 7
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 6
- 239000003505 polymerization initiator Substances 0.000 description 6
- 238000013112 stability test Methods 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 5
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 5
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 5
- 239000003125 aqueous solvent Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 239000002270 dispersing agent Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 229910052723 transition metal Inorganic materials 0.000 description 5
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000006258 conductive agent Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 4
- GCSJLQSCSDMKTP-UHFFFAOYSA-N ethenyl(trimethyl)silane Chemical compound C[Si](C)(C)C=C GCSJLQSCSDMKTP-UHFFFAOYSA-N 0.000 description 4
- 150000002484 inorganic compounds Chemical class 0.000 description 4
- 229910003480 inorganic solid Inorganic materials 0.000 description 4
- 239000010416 ion conductor Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Natural products CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000005280 amorphization Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000010556 emulsion polymerization method Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000003701 mechanical milling Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- JLIDVCMBCGBIEY-UHFFFAOYSA-N 1-penten-3-one Chemical compound CCC(=O)C=C JLIDVCMBCGBIEY-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 description 2
- FWWXYLGCHHIKNY-UHFFFAOYSA-N 2-ethoxyethyl prop-2-enoate Chemical compound CCOCCOC(=O)C=C FWWXYLGCHHIKNY-UHFFFAOYSA-N 0.000 description 2
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910018092 Li 2 S-Al 2 S 3 Inorganic materials 0.000 description 2
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- FUSUHKVFWTUUBE-UHFFFAOYSA-N buten-2-one Chemical compound CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052696 pnictogen Inorganic materials 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 2
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- BEQKKZICTDFVMG-UHFFFAOYSA-N 1,2,3,4,6-pentaoxepane-5,7-dione Chemical compound O=C1OOOOC(=O)O1 BEQKKZICTDFVMG-UHFFFAOYSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- UWDCUCCPBLHLTI-UHFFFAOYSA-N 1-fluoropyridin-1-ium Chemical class F[N+]1=CC=CC=C1 UWDCUCCPBLHLTI-UHFFFAOYSA-N 0.000 description 1
- OYLCUJRJCUXQBQ-UHFFFAOYSA-N 1-hepten-3-one Chemical compound CCCCC(=O)C=C OYLCUJRJCUXQBQ-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- XUDBVJCTLZTSDC-UHFFFAOYSA-N 2-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C=C XUDBVJCTLZTSDC-UHFFFAOYSA-N 0.000 description 1
- XVTXLKJBAYGTJS-UHFFFAOYSA-N 2-methylpenta-1,4-dien-3-one Chemical compound CC(=C)C(=O)C=C XVTXLKJBAYGTJS-UHFFFAOYSA-N 0.000 description 1
- AUZRCMMVHXRSGT-UHFFFAOYSA-N 2-methylpropane-1-sulfonic acid;prop-2-enamide Chemical compound NC(=O)C=C.CC(C)CS(O)(=O)=O AUZRCMMVHXRSGT-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- TYNRPOFACABVSI-UHFFFAOYSA-N 3,3,4,4,5,5,6,6,6-nonafluorohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC(F)(F)C(F)(F)C(F)(F)C(F)(F)F TYNRPOFACABVSI-UHFFFAOYSA-N 0.000 description 1
- GYUPEJSTJSFVRR-UHFFFAOYSA-N 3,3,4,4,5,5,6,6,6-nonafluorohexyl prop-2-enoate Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)CCOC(=O)C=C GYUPEJSTJSFVRR-UHFFFAOYSA-N 0.000 description 1
- WPIYAXQPRQYXCN-UHFFFAOYSA-N 3,3,5-trimethylhexanoyl 3,3,5-trimethylhexaneperoxoate Chemical compound CC(C)CC(C)(C)CC(=O)OOC(=O)CC(C)(C)CC(C)C WPIYAXQPRQYXCN-UHFFFAOYSA-N 0.000 description 1
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- VJZFUZFHMSGMTC-UHFFFAOYSA-N C(=C)C(=O)C=C.C(=C)OCCCC Chemical class C(=C)C(=O)C=C.C(=C)OCCCC VJZFUZFHMSGMTC-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910005839 GeS 2 Inorganic materials 0.000 description 1
- 239000002200 LIPON - lithium phosphorus oxynitride Substances 0.000 description 1
- 239000002227 LISICON Substances 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 229910018127 Li 2 S-GeS 2 Inorganic materials 0.000 description 1
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910007857 Li-Al Inorganic materials 0.000 description 1
- 229910021102 Li0.5La0.5TiO3 Inorganic materials 0.000 description 1
- 229910005317 Li14Zn(GeO4)4 Inorganic materials 0.000 description 1
- 229910007860 Li3.25Ge0.25P0.75S4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910008447 Li—Al Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 229910020346 SiS 2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- AOJOEFVRHOZDFN-UHFFFAOYSA-N benzyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1=CC=CC=C1 AOJOEFVRHOZDFN-UHFFFAOYSA-N 0.000 description 1
- ZPECUSGQPIKHLT-UHFFFAOYSA-N bis(ethenyl)-dimethoxysilane Chemical compound CO[Si](OC)(C=C)C=C ZPECUSGQPIKHLT-UHFFFAOYSA-N 0.000 description 1
- QRHCILLLMDEFSD-UHFFFAOYSA-N bis(ethenyl)-dimethylsilane Chemical compound C=C[Si](C)(C)C=C QRHCILLLMDEFSD-UHFFFAOYSA-N 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910021387 carbon allotrope Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 238000007600 charging Methods 0.000 description 1
- OOCCDEMITAIZTP-UHFFFAOYSA-N cinnamyl alcohol Chemical compound OCC=CC1=CC=CC=C1 OOCCDEMITAIZTP-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- ZDSFBVVBFMKMRF-UHFFFAOYSA-N dimethyl-bis(prop-2-enyl)silane Chemical compound C=CC[Si](C)(C)CC=C ZDSFBVVBFMKMRF-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- BITPLIXHRASDQB-UHFFFAOYSA-N ethenyl-[ethenyl(dimethyl)silyl]oxy-dimethylsilane Chemical compound C=C[Si](C)(C)O[Si](C)(C)C=C BITPLIXHRASDQB-UHFFFAOYSA-N 0.000 description 1
- NUFVQEIPPHHQCK-UHFFFAOYSA-N ethenyl-methoxy-dimethylsilane Chemical compound CO[Si](C)(C)C=C NUFVQEIPPHHQCK-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012765 fibrous filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000012690 ionic polymerization Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000007578 melt-quenching technique Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- HILCQVNWWOARMT-UHFFFAOYSA-N non-1-en-3-one Chemical compound CCCCCCC(=O)C=C HILCQVNWWOARMT-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920005650 polypropylene glycol diacrylate Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 1
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- OPQYOFWUFGEMRZ-UHFFFAOYSA-N tert-butyl 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOC(=O)C(C)(C)C OPQYOFWUFGEMRZ-UHFFFAOYSA-N 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- UFHILTCGAOPTOV-UHFFFAOYSA-N tetrakis(ethenyl)silane Chemical compound C=C[Si](C=C)(C=C)C=C UFHILTCGAOPTOV-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- KEROTHRUZYBWCY-UHFFFAOYSA-N tridecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCOC(=O)C(C)=C KEROTHRUZYBWCY-UHFFFAOYSA-N 0.000 description 1
- HYWCXWRMUZYRPH-UHFFFAOYSA-N trimethyl(prop-2-enyl)silane Chemical compound C[Si](C)(C)CC=C HYWCXWRMUZYRPH-UHFFFAOYSA-N 0.000 description 1
- PKRKCDBTXBGLKV-UHFFFAOYSA-N tris(ethenyl)-methylsilane Chemical compound C=C[Si](C)(C=C)C=C PKRKCDBTXBGLKV-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an all solid state secondary battery such as an all solid state lithium ion secondary battery.
- secondary batteries such as lithium-ion batteries have been used in various applications such as small-sized electric power storage devices for home use, electric motorcycles, electric vehicles, and hybrid electric vehicles in addition to portable terminals such as portable information terminals and portable electronic devices.
- Demand is increasing.
- Patent Document 1 a polymer solid electrolyte using polyethylene oxide or the like is known (Patent Document 1), but the polymer solid electrolyte is a combustible material.
- Patent Document 2 an inorganic solid electrolyte made of an inorganic material has been proposed as a solid electrolyte (Patent Document 2, etc.).
- an inorganic solid electrolyte is a solid electrolyte made of an inorganic substance and is a nonflammable substance, and has a very high safety compared to a commonly used organic solvent electrolyte.
- Patent Document 2 development of an all-solid secondary battery having high safety using an inorganic solid electrolyte is progressing.
- the all solid state secondary battery has an inorganic solid electrolyte layer as an electrolyte layer between a positive electrode and a negative electrode.
- Patent Document 3 and Patent Document 4 all the solid electrolyte layers formed by a method (coating method) in which a slurry composition for a solid electrolyte layer containing solid electrolyte particles and a solvent is applied on a positive electrode or a negative electrode and dried.
- a solid lithium secondary battery is described.
- additives such as a binder other than the active material and the electrolyte are important for the electrode and the electrolyte layer formed by drying the solvent after applying the slurry composition in order to develop the characteristics as a battery. Therefore, in patent document 5, it is proposed to use an acrylate polymer for a binder.
- Patent Documents 3 and 4 propose the ion conductivity inside the solid electrolyte layer and inside the active material layer. In some cases, capacity characteristics and cycle characteristics are insufficient, and Patent Document 5 proposes an all-solid secondary battery with good battery characteristics. However, a battery with higher characteristics is required.
- An object of the present invention is to provide an all-solid secondary battery having good battery characteristics.
- the present inventors have found that the above object can be achieved by using a binder composition in which a polymer having a particle structure and a water-soluble polymer are combined as a binder for an all-solid secondary battery, The present invention has been completed.
- the binder described in (1) is based on a binder composition in which a solvent of a mixture of an aqueous dispersion of a polymer having a particle structure and a water-soluble polymer solution is solvent-exchanged with an organic solvent (1 )
- the all-solid-state secondary battery is provided.
- an all-solid secondary battery with good battery characteristics More specifically, an all-solid-state secondary battery with good charge / discharge performance can be provided by including in the solid electrolyte layer a binder containing a polymer having a particle structure and a water-soluble polymer. Since a solid electrolyte containing sulfur reacts when it comes into contact with a highly polar organic solvent, a battery slurry cannot be prepared using a polar solvent such as N-methylpyrrolidone. Therefore, water-soluble polymers having ion conductivity such as polyethylene oxide cannot be used as battery binders.
- a water-soluble polymer such as polyethylene oxide can be used as a binder for an all-solid-state secondary battery, so that the ion conductivity is high.
- An all-solid secondary battery can be provided.
- the all-solid secondary battery of the present invention is an all-solid secondary battery having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers, A binder containing a polymer having a particle structure and a water-soluble polymer is used. That is, in the all solid state secondary battery of the present invention, a binder containing a polymer having a particle structure and a water-soluble polymer is used for at least one of the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer.
- the positive electrode has a positive electrode active material layer on the current collector
- the negative electrode has a negative electrode active material layer on the current collector.
- a binder containing a polymer having a particle structure and a water-soluble polymer will be described first, and then (1) a solid electrolyte layer, (2) a positive electrode active material layer, and (3) a negative electrode active material layer will be described. To do.
- the binder is used, for example, for binding solid electrolyte particles to form a solid electrolyte layer.
- the binder used in the present invention contains a polymer having a particle structure and a water-soluble polymer.
- a binder it is known from Patent Document 5 that an acrylate polymer is suitable.
- an acrylate polymer it is preferable to use an acrylate polymer as a binder from the standpoint that the withstand voltage can be increased and the energy density of the all-solid-state secondary battery can be increased, there is a demand for higher performance.
- the acrylate polymer can be obtained by a solution polymerization method or an emulsion polymerization method, and the obtained polymer is usually a linear polymer and is soluble in an organic solvent.
- a polymer is used as a binder, it is conventionally used after being dissolved in an organic solvent.
- Polymer having particle structure As the polymer having a particle structure used in the present invention, an acrylate polymer is preferably used, and the acrylate polymer is preferably used with a particle structure.
- An acrylate-based polymer is a polymer containing an acrylate or methacrylate (hereinafter sometimes abbreviated as “(meth) acrylate”) and a repeating unit (polymerized unit) obtained by polymerizing these derivatives.
- (meth) acrylates include acrylic acid such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, and benzyl acrylate.
- Alkyl esters acrylic acid alkoxyalkyl esters such as 2-methoxyethyl acrylate and 2-ethoxyethyl acrylate; acrylics such as 2- (perfluorobutyl) ethyl acrylate and 2- (perfluoropentyl) ethyl acrylate 2- (perfluoroalkyl) ethyl acid; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, and t-butyl methacrylate, 2-ethylhexyl methacrylate Methacrylic acid alkyl esters such as methacrylic acid, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate and benzyl methacrylate; 2-methacrylic acid such as 2- (perfluorobutyl) ethyl methacrylate
- acrylic acid alkyl esters such as -2-ethylhexyl and benzyl acrylate
- acrylic acid alkoxyalkyl esters such as 2-methoxyethyl acrylate and 2-ethoxyethyl acrylate.
- the content ratio of the monomer unit derived from (meth) acrylate in the acrylate polymer is usually 40% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more.
- the upper limit of the content ratio of the monomer unit derived from (meth) acrylate in the acrylate polymer is usually 100% by mass or less, and preferably 99% by mass or less.
- the acrylate polymer can be a copolymer of (meth) acrylate and a monomer copolymerizable with the (meth) acrylate.
- the copolymerizable monomer include styrene monomers such as styrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, hydroxymethyl styrene, ⁇ -methyl styrene, and divinyl benzene; Amide monomers such as methacrylamide, N-methylolacrylamide, and acrylamide-2-methylpropanesulfonic acid; ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; olefins such as ethylene and propylene; butadiene and isoprene Diene monomers; vinyl esters such as vinyl acetate, vinyl propionate,
- styrene monomers amide monomers, ⁇ , ⁇ -unsaturated nitrile compounds and silanes are preferred from the viewpoint of affinity for organic solvents.
- silanes are more preferable from the viewpoint that the amount of the binder used can be reduced because the binding force is good, and the close contact with the current collector is good because the close contact with the metal is good.
- the content of the copolymerizable monomer in the acrylate polymer is usually 50% by mass or less, preferably 40% by mass or less, and more preferably 30% by mass or less.
- the binder used in the present invention includes a polymer having a particle structure.
- An indicator of having a particle structure is the gel fraction.
- the gel fraction is a value indicating the weight ratio of the components insoluble in the organic solvent because the polymer chains are bonded or entangled, and the gel of the polymer having a particle structure in the present invention.
- the fraction is 70% or more, preferably 90% or more.
- the present invention in order to give the polymer contained in the binder a particle structure, generally a method of copolymerizing a compound capable of functioning as a crosslinking agent or a monomer capable of forming a self-crosslinking structure during the polymerization of the polymer. Is mentioned.
- the crosslinking agent includes monomers having two or more double bonds.
- polyfunctional acrylate compounds such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, trimethylolpropane triacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetraacrylate, ethylene glycol dimethacrylate, divinyl
- polyfunctional aromatic compounds such as benzene.
- a polyfunctional acrylate compound such as ethylene glycol dimethacrylate is preferred.
- the amount of the crosslinking agent used varies depending on the type, but is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 1 part by mass with respect to 100 parts by mass of the total amount of monomers.
- Examples of monomers that can easily form a self-crosslinking structure include diene monomers such as butadiene and isoprene, and unsaturated nitrile compounds such as acrylonitrile. A method of copolymerizing acrylonitrile is preferable.
- Method for producing polymer having particle structure any method of polymerizing in a dispersion system such as a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
- a method for producing the polymer having the above-described particle structure any method of polymerizing in a dispersion system such as a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
- the polymerization reaction any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
- the emulsion polymerization method is preferable because the polymer having a particle structure can be obtained as it is dispersed in an aqueous solvent.
- the water-based solvent is a solvent containing water, is not flammable, and water is preferable because a polymer dispersion having the above particle structure can be easily obtained.
- water may be used as a main solvent and an aqueous solvent other than water may be mixed and used as long as the dispersion state of the copolymer can be ensured without impairing the effects of the present invention.
- aqueous solvents other than water include ketones, alcohols, glycols, glycol ethers, and ethers.
- the emulsion polymerization can be performed according to a conventional method.
- a commonly used polymerization auxiliary material such as an emulsifier, a polymerization initiator, a molecular weight modifier or a chain transfer agent can be used.
- Any emulsifier can be used as long as a desired polymer is obtained, and examples thereof include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
- anionic surfactants such as alkylbenzene sulfonates, aliphatic sulfonates, higher alcohol sulfates, ⁇ -olefin sulfonates, and alkyl ether sulfates can be preferably used.
- the amount of the emulsifier is arbitrary as long as a desired polymer is obtained, and is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, preferably 10 parts by mass with respect to 100 parts by mass of the monomer composition. Hereinafter, it is more preferably 5 parts by mass or less.
- polymerization initiator used for the polymerization examples include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like.
- the polymer having a particle structure used in the present invention is used in a state dispersed in an aqueous solvent (aqueous dispersion).
- the binder used in the present invention contains a water-soluble polymer.
- examples of the water-soluble polymer used in the present invention include polyethylene oxide, polyethylene glycol, polyvinyl alcohol and the like, and polyethylene oxide is preferable.
- the molecular weight of the water-soluble polymer used in the present invention is usually 500 to 5,000,000, preferably 5,000 to 3,000,000.
- the viscosity of the water-soluble polymer used in the present invention is usually 100 mPa ⁇ s or more and 100,000 mPa ⁇ s or less when a 1% aqueous solution is used.
- the binder used in the present invention contains a polymer having a particle structure and a water-soluble polymer, and the content ratio of the polymer having a particle structure in the binder is preferably 80 to 99.1 wt%, more preferably 85 to 99 wt%. More preferably, it is 90 to 98 wt%.
- the content ratio of the polymer having a particle structure is in the above range, the phenomenon that the ionic conductivity is lowered because the content ratio of the polymer having a particle structure is too large can be suppressed.
- the electrode since the content of the polymer having a particle structure is too small, the electrode becomes hard and suppresses the phenomenon that the electrode is likely to be cracked or chipped when the electrode is cut or wound when assembling the battery. Can do.
- the content of the water-soluble polymer in the binder is preferably 0.1 to 10 wt%, more preferably 0.5 to 5 wt%.
- the content ratio of the water-soluble polymer is in the above range, the phenomenon that the electrode becomes hard because the content ratio of the water-soluble polymer is too large can be suppressed, and the content ratio of the water-soluble polymer is too small. The phenomenon that the effect of the present invention is hardly exhibited can be suppressed.
- the binder used in the present invention is preferably a binder composition obtained by exchanging a solvent of a mixture of an aqueous dispersion of a polymer having a particle structure and a water-soluble polymer solution with an organic solvent.
- the mixture used for obtaining the binder composition used in the present invention mixes the aqueous dispersion of the polymer having the particle structure obtained above and the aqueous solution of the water-soluble polymer (water-soluble polymer solution). Can be obtained. That is, the solvent of the mixture is an aqueous solvent such as water.
- the binder composition used in the present invention can be obtained by exchanging the solvent of the mixture with an organic solvent.
- the solvent exchange can be performed by a known method.
- the mixture and the organic solvent are put into a rotary evaporator, and the solvent exchange and dehydration operations can be performed at a predetermined temperature by reducing the pressure.
- the solid content concentration of the binder composition used in the present invention is preferably 1 to 20 wt%. Moreover, the moisture content contained in the binder composition used in the present invention is preferably less than 1000 ppm, more preferably less than 500 ppm, and even more preferably less than 100 ppm.
- organic solvent examples include organic solvents having a boiling point of 100 ° C. or higher.
- organic solvent having a boiling point of 100 ° C. or higher aromatic hydrocarbons such as toluene and xylene; ethers such as cyclopentylmethyl ether; esters such as butyl acetate are preferable, and xylene is more preferable.
- these solvents can be used individually or in mixture of 2 or more types.
- the above water-soluble polymer does not dissolve in low-polarity organic solvents such as toluene and xylene and does not uniformly disperse, so the water-soluble polymer alone can be used as a binder for an all-solid secondary battery.
- an aqueous dispersion of a polymer having a particle structure and a water-soluble polymer solution are mixed to form a mixture, and then the solvent of the mixture is changed to an organic solvent, thereby uniformly in the organic solvent. Since it can be dispersed, the water-soluble polymer can be used as a binder for an all-solid secondary battery.
- the glass transition temperature (Tg) of the binder is preferably ⁇ 50 to 25 ° C., more preferably ⁇ 45 from the viewpoint of obtaining an all-solid secondary battery having excellent strength and flexibility and high output characteristics. -15 ° C, particularly preferably -40-5 ° C.
- the glass transition temperature of the binder can be adjusted by combining various monomers.
- the solid electrolyte layer used in the present invention contains solid electrolyte particles and a solid electrolyte layer binder, and the solid electrolyte layer binder contains a polymer having the above particle structure and a water-soluble polymer. A binder is preferred.
- the solid electrolyte layer is formed by applying a solid electrolyte layer slurry composition containing solid electrolyte particles and a solid electrolyte layer binder onto a positive electrode active material layer or a negative electrode active material layer, which will be described later, and drying.
- the slurry composition for a solid electrolyte layer is produced by mixing solid electrolyte particles, a binder for a solid electrolyte layer, an organic solvent, and other components added as necessary.
- Solid electrolyte particles The solid electrolyte is used in the form of particles. Since the solid electrolyte particles are those that have undergone a pulverization step, they are not completely spherical but irregular. In general, the size of the fine particles is measured by a method of measuring the scattered light by irradiating the laser light to the particles. In this case, the particle diameter is a value assuming that the shape of one particle is spherical. When a plurality of particles are measured together, the proportion of particles having a corresponding particle size can be expressed as a particle size distribution. The solid electrolyte particles forming the solid electrolyte layer are often shown as an average particle diameter as measured by this method.
- the ionic conduction resistance of the solid electrolyte layer is greatly influenced by the particle diameter of the solid electrolyte particles.
- the ion transfer resistance inside the solid electrolyte particles is smaller than the transfer resistance between the particles. Therefore, when the average particle diameter of the solid electrolyte particles is equal to or smaller than a predetermined value, it is possible to suppress a phenomenon that the movement resistance value of ions increases as a result of an increase in voids in the electrolyte layer.
- the average particle size is a predetermined value or more, the problem that the interparticle resistance becomes too large or the viscosity of the slurry composition for the solid electrolyte layer becomes high, resulting in difficulty in controlling the thickness of the solid electrolyte layer. It can be avoided. Therefore, it is necessary to set the average particle size within an appropriate range, but the battery performance is improved by controlling not only the average particle size but also the particle size distribution state within a specific range.
- the average particle diameter of the solid electrolyte particles is preferably 0.1 to 10 ⁇ m.
- a slurry composition for a solid electrolyte layer having good dispersibility and coating property can be obtained.
- the solid electrolyte particles are not particularly limited as long as they have lithium ion conductivity, but preferably contain a crystalline inorganic lithium ion conductor or an amorphous inorganic lithium ion conductor.
- Examples of crystalline inorganic lithium ion conductors include Li 3 N, LIICON (Li 14 Zn (GeO 4 ) 4 ), perovskite type Li 0.5 La 0.5 TiO 3 , LIPON (Li 3 + y PO 4-x N x ), And Thio-LISICON (Li 3.25 Ge 0.25 P 0.75 S 4 ).
- the amorphous inorganic lithium ion conductor is not particularly limited as long as it contains S (sulfur atom) and has ion conductivity (sulfide solid electrolytic particles).
- S sulfur atom
- sulfide solid electrolytic particles Li 2 S and a group 13 to group 15 element sulfide are used. What uses the raw material composition containing this can be mentioned.
- Examples of a method for synthesizing a sulfide solid electrolyte material using such a raw material composition include an amorphization method.
- the amorphization method include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because according to the mechanical milling method, processing at room temperature is possible, and the manufacturing process can be simplified.
- Examples of the Group 13 to Group 15 elements include Al, Si, Ge, P, As, and Sb.
- Specific examples of the sulfides of elements belonging to Group 13 to Group 15 include Al 2 S 3 , SiS 2 , GeS 2 , P 2 S 3 , P 2 S 5 , As 2 S 3 , and Sb 2. S 3 etc. can be mentioned.
- a sulfide solid electrolyte material using a raw material composition containing Li 2 S and a sulfide of an element belonging to Group 13 to Group 15 is Li 2 SP—P 2 S 5.
- Li 2 S-SiS 2 material is preferably Li 2 S-GeS 2 material or Li 2 S-Al 2 S 3 material, and more preferably Li 2 S-P 2 S 5 material. This is because Li ion conductivity is excellent.
- the sulfide solid electrolyte material in the present invention preferably has bridging sulfur. It is because ion conductivity becomes high by having bridge
- the molar fraction of Li 2 S in the Li 2 S—P 2 S 5 material or the Li 2 S—Al 2 S 3 material is, for example, from the viewpoint of obtaining a sulfide solid electrolyte material having bridging sulfur more reliably. It is preferably in the range of 50 to 74%, more preferably in the range of 60 to 74%.
- the sulfide solid electrolyte material in the present invention may be sulfide glass, or may be crystallized sulfide glass obtained by heat-treating the sulfide glass.
- the sulfide glass can be obtained, for example, by the above-described amorphization method. Crystallized sulfide glass can be obtained, for example, by heat-treating sulfide glass.
- the sulfide solid electrolyte material is preferably a crystallized sulfide glass represented by Li 7 P 3 S 11 composed of Li 2 S and P 2 S 5 .
- Li 7 P 3 S 11 a crystallized sulfide glass represented by Li 7 P 3 S 11 composed of Li 2 S and P 2 S 5 .
- a sulfide glass is synthesized by mixing Li 2 S and P 2 S 5 at a molar ratio of 70:30 and amorphizing with a ball mill.
- Li 7 P 3 S 11 can be synthesized by heat-treating the obtained sulfide glass at 150 ° C. to 360 ° C.
- the amount is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 7 parts by mass, and particularly preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the solid electrolyte particles.
- Organic solvent As an organic solvent for producing the slurry composition for a solid electrolyte layer, the same organic solvent as exemplified as the organic solvent that can be used for the solvent exchange described above can be used.
- the content of the organic solvent in the solid electrolyte layer slurry composition is determined from the viewpoint of obtaining good coating properties while maintaining the dispersibility of the solid electrolyte particles in the solid electrolyte layer slurry composition.
- the amount is preferably 10 to 700 parts by mass, and more preferably 30 to 500 parts by mass with respect to 100 parts by mass of the particles.
- the slurry composition for a solid electrolyte layer may contain, in addition to the above components, components having functions of a dispersant, a leveling agent, and an antifoaming agent as other components added as necessary. These components are not particularly limited as long as they do not affect the battery reaction.
- Dispersant examples include an anionic compound, a cationic compound, a nonionic compound, and a polymer compound.
- a dispersing agent is selected according to the solid electrolyte particle to be used.
- the content of the dispersant in the slurry composition for the solid electrolyte layer is preferably within a range that does not affect the battery characteristics. Specifically, the content is 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte particles.
- Leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants. By mixing the surfactant, it is possible to prevent the repelling that occurs when the slurry composition for the solid electrolyte layer is applied to the surface of the positive electrode active material layer or the negative electrode active material layer, which will be described later. Can be improved.
- the content of the leveling agent in the solid electrolyte layer slurry composition is preferably in a range that does not affect the battery characteristics, and specifically, is 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte particles.
- Examples of the antifoaming agent include mineral oil antifoaming agents, silicone antifoaming agents, and polymer antifoaming agents.
- An antifoaming agent is selected according to the solid electrolyte particle to be used.
- the content of the antifoaming agent in the solid electrolyte layer slurry composition is preferably in a range that does not affect the battery characteristics, and specifically, 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte particles.
- the positive electrode active material layer is formed by applying a slurry composition for a positive electrode active material layer containing a positive electrode active material, solid electrolyte particles, and a positive electrode binder to the surface of a current collector, which will be described later, and drying. It is formed.
- the positive electrode active material layer slurry composition is produced by mixing a positive electrode active material, solid electrolyte particles, a positive electrode binder, an organic solvent, and other components added as necessary.
- the positive electrode active material is a compound that can occlude and release lithium ions.
- the positive electrode active material is roughly classified into those made of inorganic compounds and those made of organic compounds.
- the positive electrode active material made of an inorganic compound examples include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
- transition metal Fe, Co, Ni, Mn and the like are used.
- inorganic compounds used for the positive electrode active material include lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 ; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 It is done. These compounds may be partially element-substituted.
- Examples of the positive electrode active material made of an organic compound include polyaniline, polypyrrole, polyacene, disulfide compounds, polysulfide compounds, and N-fluoropyridinium salts.
- the positive electrode active material may be a mixture of the above inorganic compound and organic compound.
- the average particle size of the positive electrode active material used in the present invention is such that the all-solid-state secondary battery having a large charge / discharge capacity can be obtained from the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics, and the positive electrode active material layer From the viewpoint of easy handling of the slurry composition for use and easy handling during production of the positive electrode, the thickness is usually 0.1 to 50 ⁇ m, preferably 1 to 20 ⁇ m.
- the average particle size can be determined by measuring the particle size distribution by laser diffraction.
- Solid electrolyte particles The same solid electrolyte particles as those exemplified in the solid electrolyte layer can be used.
- Binder for positive electrode Although there is no restriction
- the content of the positive electrode binder in the positive electrode active material layer slurry composition is 100 mass parts of the positive electrode active material from the viewpoint of preventing the positive electrode active material from falling off the electrode without inhibiting the battery reaction. On the other hand, it is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass.
- the organic solvent in the positive electrode active material layer slurry composition and other components added as necessary may be the same as those exemplified for the solid electrolyte layer.
- the content of the organic solvent in the positive electrode active material layer slurry composition is preferably based on 100 parts by mass of the positive electrode active material from the viewpoint of obtaining good coating properties while maintaining the dispersibility of the solid electrolyte. Is 20 to 80 parts by mass, more preferably 30 to 70 parts by mass.
- the slurry composition for the positive electrode active material layer may contain, in addition to the above components, additives that exhibit various functions such as a conductive agent and a reinforcing material as other components added as necessary. These are not particularly limited as long as they do not affect the battery reaction.
- the conductive agent is not particularly limited as long as it can impart conductivity, and usually includes carbon powders such as acetylene black, carbon black and graphite, and fibers and foils of various metals.
- reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
- Negative electrode active material layer contains a negative electrode active material.
- the negative electrode active material examples include carbon allotropes such as graphite and coke.
- the negative electrode active material composed of the allotrope of carbon can also be used in the form of a mixture with a metal, a metal salt, an oxide, or the like or a cover.
- oxides and sulfates such as silicon, tin, zinc, manganese, iron, and nickel
- lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, Lithium transition metal nitride, silicon, etc.
- a metal material a metal foil or a metal plate can be used as an electrode as it is, but it may be in the form of particles.
- the negative electrode active material layer is formed by applying a slurry composition for a negative electrode active material layer containing a negative electrode active material, solid electrolyte particles and a negative electrode binder to the surface of a current collector, which will be described later, and drying.
- the slurry composition for a negative electrode active material layer is produced by mixing a negative electrode active material, solid electrolyte particles, a negative electrode binder, an organic solvent, and other components added as necessary.
- the solid electrolyte particles, the organic solvent, and other components added as necessary in the slurry composition for the negative electrode active material layer can be the same as those exemplified for the positive electrode active material layer. .
- the average particle size of the negative electrode active material is usually 1 to 50 ⁇ m, preferably 15 to 30 ⁇ m, from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics.
- the weight ratio of the negative electrode active material is within this range, the weight ratio of the negative electrode active material is too small, and as a result, the amount of the negative electrode active material in the battery is reduced, resulting in a decrease in capacity as a battery. Can do.
- the weight ratio of the solid electrolyte particles is within this range, the weight ratio of the solid electrolyte particles is too small, so that sufficient conductivity cannot be obtained and the negative electrode active material cannot be effectively used. It is possible to suppress the phenomenon that leads to a decrease in capacity.
- Binder for negative electrode Although there is no restriction
- the content of the negative electrode binder in the slurry composition for the negative electrode active material layer can prevent the electrode active material from dropping from the electrode without inhibiting the battery reaction. Therefore, the amount is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass with respect to 100 parts by mass of the negative electrode active material.
- the current collector used for forming the positive electrode active material layer and the negative electrode active material layer is not particularly limited as long as it has electrical conductivity and is electrochemically durable, but from the viewpoint of heat resistance, for example, Metal materials such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode, and copper is particularly preferable for the negative electrode.
- the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength between the current collector and the positive and negative electrode active material layers described above, the current collector is preferably used after being subjected to a roughening treatment.
- Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
- a mechanical polishing method an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
- an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity between the current collector and the positive / negative electrode active material layer.
- the slurry composition for a solid electrolyte layer is obtained by mixing the solid electrolyte particles, the binder for the solid electrolyte layer, the organic solvent, and other components added as necessary.
- a binder containing a polymer having a particle structure and a water-soluble polymer as the binder for the solid electrolyte layer, and it is preferable to add the above binder composition as the binder for the solid electrolyte layer.
- the slurry composition for the positive electrode active material layer is obtained by mixing the positive electrode active material, the solid electrolyte particles, the positive electrode binder, the organic solvent, and other components added as necessary.
- a binder containing a polymer having a particle structure and a water-soluble polymer is preferably used as the positive electrode binder, and the binder composition described above is preferably added as the positive electrode binder.
- the slurry composition for the negative electrode active material layer is obtained by mixing the negative electrode active material, the solid electrolyte particles, the negative electrode binder, the organic solvent, and other components added as necessary.
- a binder containing a polymer having a particle structure and a water-soluble polymer is preferably used as the negative electrode binder, and the binder composition described above is preferably added as the negative electrode binder.
- the method of mixing the slurry composition is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
- a method using a dispersion kneader such as a homogenizer, a ball mill, a bead mill, a planetary mixer, a sand mill, a roll mill, and a planetary kneader can be mentioned. From the viewpoint that aggregation of solid electrolyte particles can be suppressed, a planetary mixer, a ball mill Alternatively, a method using a bead mill is preferable.
- the positive electrode in the all-solid-state secondary battery is manufactured by applying the slurry composition for positive electrode active material layer on the current collector and drying it to form a positive electrode active material layer.
- the negative electrode in the all solid state secondary battery can be used as it is when a metal foil is used.
- the negative electrode active material is in the form of particles
- the negative electrode active material layer slurry composition is applied onto a current collector different from the positive electrode current collector and dried to form a negative electrode active material layer.
- the solid electrolyte layer slurry composition is applied on the formed positive electrode active material layer or negative electrode active material layer and dried to form a solid electrolyte layer.
- an all-solid-state secondary battery element is manufactured by bonding together the electrode which did not form a solid electrolyte layer, and the electrode which formed said solid electrolyte layer.
- the method for applying the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer to the current collector is not particularly limited.
- the doctor blade method, the dip method, the reverse roll method, the direct roll method, the gravure method It is applied by the extrusion method, brush coating or the like.
- the amount to be applied is not particularly limited, but is such an amount that the thickness of the active material layer formed after removing the organic solvent is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m.
- the drying method is not particularly limited, and examples thereof include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
- the drying conditions are usually adjusted so that the organic solvent volatilizes as quickly as possible within a speed range in which stress concentration occurs and the active material layer cracks or the active material layer does not peel from the current collector. Furthermore, you may stabilize an electrode by pressing the electrode after drying. Examples of the pressing method include, but are not limited to, a mold press and a calendar press.
- the drying temperature is a temperature at which the organic solvent is sufficiently volatilized. Specifically, from the viewpoint that a good active material layer can be formed without thermal decomposition of the positive / negative electrode binder, it is preferably 50 to 250 ° C., more preferably 80 to 200 ° C.
- the drying time is not particularly limited, but is usually in the range of 10 to 60 minutes.
- the method for applying the slurry composition for the solid electrolyte layer to the positive electrode active material layer or the negative electrode active material layer is not particularly limited, and the current collection of the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer described above is performed.
- the gravure method is preferable from the viewpoint that a thin solid electrolyte layer can be formed.
- the amount to be applied is not particularly limited, but the amount is such that the thickness of the solid electrolyte layer formed after removing the organic solvent is 2 to 20 ⁇ m, preferably 3 to 15 ⁇ m.
- the drying method, drying conditions, and drying temperature are also the same as those of the positive electrode active material layer slurry composition and the negative electrode active material layer slurry composition described above.
- the pressurizing method is not particularly limited, and examples thereof include a flat plate press, a roll press, and CIP (Cold Isostatic Press).
- the pressure for pressing is preferably from 5 to 700 MPa, more preferably from the viewpoint of exhibiting good battery characteristics since resistance at each interface between the electrode and the solid electrolyte layer, and further, contact resistance between particles in each layer is reduced. Is 7 to 500 MPa.
- the solid electrolyte layer and the active material layer may be compressed by pressing, and may be thinner than before pressing. When pressing is performed, the thickness of the solid electrolyte layer and the active material layer in the present invention may be such that the thickness after pressing is in the above range.
- the positive electrode active material layer or the negative electrode active material layer is coated with the slurry composition for the solid electrolyte layer, but the solid electrolyte layer slurry is applied to the active material layer having the larger particle diameter of the electrode active material to be used. It is preferable to apply the composition.
- the particle diameter of the electrode active material is large, irregularities are formed on the surface of the active material layer. Therefore, the irregularities on the surface of the active material layer can be reduced by applying the slurry composition. Therefore, when the electrode formed with the solid electrolyte layer and the electrode not formed with the solid electrolyte layer are bonded and laminated, the contact area between the solid electrolyte layer and the electrode is increased, and the interface resistance can be suppressed. .
- the obtained all-solid-state secondary battery element is put into a battery container as it is or wound or folded according to the shape of the battery, and sealed to obtain an all-solid-state secondary battery.
- an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate or the like can be placed in the battery container to prevent an increase in pressure inside the battery and overcharge / discharge.
- the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
- ⁇ Gel fraction> The obtained polymer aqueous dispersion having a particle structure was dried using a PTFE petri dish to prepare a polymer film. The obtained film was immersed in THF for 24 hours and then filtered through a 200 mesh SUS wire mesh. The wire mesh after filtration was dried at 100 ° C. for 1 hour, and the value obtained by dividing the weight increase of the wire mesh by the weight of the film (weight increase of the wire mesh / film weight) was defined as the gel fraction.
- ⁇ Storage stability of binder composition The obtained binder composition was sealed in a 500 mL glass container and allowed to stand at 23 ° C. for 1 month to confirm the presence or absence of precipitation. The case where no precipitation or separation was observed with the naked eye was evaluated as “no”, and the case where precipitation or separation was observed was determined as “present”.
- ⁇ Battery characteristics Output characteristics> In a constant temperature bath at 25 ° C., a 5-cell all-solid-state secondary battery is charged to 4.3 V by a constant current method of 0.1 C, then discharged to 3.0 V at 0.1 C, and a 0.1 C discharge capacity a Asked. Thereafter, the battery was charged to 4.3 V at 0.1 C, and then discharged to 3.0 V at 5 C to obtain a 5 C discharge capacity b. Using the average value of 5 cells as a measured value, the capacity retention represented by the ratio (b / a (%)) of the electric capacity between 5C discharge capacity b and 0.1C discharge capacity a was determined.
- ⁇ Battery characteristics Charging / discharging cycle characteristics> Using the obtained all-solid-state secondary battery, the battery was charged at a constant current until it reached 4.2 V by a method of constant current constant voltage charging at 25 ° C. and 0.5 C, and then charged at a constant voltage. A charge / discharge cycle was performed in which the battery was discharged to 3.0 V at a constant current of 5 C. The charge / discharge cycle was performed up to 100 cycles, and the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity was determined as the capacity retention rate. The larger this value, the smaller the capacity loss due to repeated charge / discharge, and the better the charge / discharge cycle characteristics.
- Example 1 ⁇ Production of polymer having particle structure>
- a glass container with a stirrer 47 parts of ethyl acrylate, 47 parts of butyl acrylate, 5 parts of vinyltrimethylsilane, 1 part of ethylene glycol dimethacrylate as a crosslinking agent, 1 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, Then, 0.5 part of potassium persulfate as a polymerization initiator was added and stirred sufficiently, and then heated to 70 ° C. to initiate polymerization.
- distillation under heating and reduced pressure was performed at 80 ° C. in order to remove unreacted monomers from the aqueous dispersion of the polymer having the particle structure adjusted to pH 7.
- ⁇ Manufacture of composite particle binder> A 5% aqueous solution of polyethylene glycol (manufactured by Aldrich, average molecular weight 100000) as a water-soluble polymer is added to an aqueous dispersion of a polymer having a particle structure with a solid content concentration adjusted to 30 wt% with respect to 100 parts of the solid content of the polymer. 0.7 parts in terms of solid content were added and mixed well. Thereafter, in order to exchange the solvent from water to an organic solvent, 500 g of xylene was added to 100 g of an aqueous dispersion of a polymer having a particle structure, followed by heating under reduced pressure.
- polyethylene glycol manufactured by Aldrich, average molecular weight 100000
- a transparent liquid and a white solid were present.
- the whole was a translucent liquid, and the polymer particles were composited with water-soluble polymer to form composite particles and dispersed in xylene.
- the number average particle diameter of the obtained composite particles was 400 nm.
- the water content of the xylene dispersion liquid of the obtained composite particle binder was 25 ppm, and the solid content concentration was 8.7 wt%. No precipitation or separation was observed in the storage stability test.
- the slurry composition for negative electrode active material layers was prepared later by mixing with a planetary mixer.
- the positive electrode active material layer slurry composition was applied to the current collector surface and dried (110 ° C., 20 minutes) to form a positive electrode active material layer having a thickness of 50 ⁇ m to produce a positive electrode. Further, the negative electrode active material layer slurry composition was applied to another current collector surface and dried (110 ° C., 20 minutes) to form a negative electrode active material layer having a thickness of 30 ⁇ m to produce a negative electrode.
- the solid electrolyte layer slurry composition was applied to the surface of the positive electrode active material layer and dried (110 ° C., 10 minutes) to form a solid electrolyte layer having a thickness of 26 ⁇ m.
- the solid electrolyte layer laminated on the surface of the positive electrode active material layer and the negative electrode active material layer of the negative electrode were bonded together and pressed to obtain an all-solid secondary battery.
- the thickness of the all-solid secondary battery after pressing was 65 ⁇ m. Using this battery, output characteristics and charge / discharge cycle characteristics were evaluated. The results are shown in Table 1.
- Example 2 ⁇ Production of polymer having particle structure>
- a glass container equipped with a stirrer 45 parts of ethyl acrylate, 45 parts of butyl acrylate, 10 parts of vinyltrimethylsilane, 1 part of ethylene glycol dimethacrylate as a crosslinking agent, 1 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, Then, 0.5 part of potassium persulfate as a polymerization initiator was added and stirred sufficiently, and then heated to 70 ° C. to initiate polymerization.
- distillation under heating and reduced pressure was performed at 80 ° C. in order to remove unreacted monomers from the aqueous dispersion of the polymer having the particle structure adjusted to pH 7.
- polyethylene oxide manufactured by Aldrich, average molecular weight 4000000
- Example 3 ⁇ Production of polymer having particle structure>
- a glass container with a stirrer 55 parts ethyl acrylate, 45 parts butyl acrylate, 5 parts acrylonitrile, 1 part ethylene glycol dimethacrylate as a crosslinking agent, 1 part sodium dodecylbenzenesulfonate as an emulsifier, 150 parts ion-exchanged water, and After adding 0.5 parts of potassium persulfate as a polymerization initiator and stirring sufficiently, the polymerization was started by heating to 70 ° C. When the polymerization conversion rate reached 96%, cooling was started and the reaction was stopped to obtain an aqueous dispersion of a polymer having a particle structure.
- pH was adjusted to 7 using 10 wt% NaOH aqueous solution to the obtained aqueous dispersion.
- the volume average particle diameter of the obtained polymer particles was 255 nm.
- the gel fraction of the obtained polymer aqueous dispersion having a particle structure was 95 wt%.
- distillation under heating and reduced pressure was performed at 80 ° C. in order to remove unreacted monomers from the aqueous dispersion of the polymer having the particle structure adjusted to pH 7.
- ⁇ Manufacture of composite particle binder> Except that the polymer having the particle structure obtained above was used and that 1 part of a 5% aqueous solution of polyethylene oxide (Aldrich, average molecular weight: 4000000) was used as the water-soluble polymer, corresponding to the solid content.
- a composite particle binder was produced.
- the number average particle diameter of the obtained composite particles was 340 nm.
- the water content of the xylene dispersion liquid of the obtained composite particle binder was 43 ppm, and the solid content concentration was 7.9 wt%. No precipitation or separation was observed in the storage stability test.
- Example 4 ⁇ Production of polymer having particle structure>
- a glass container equipped with a stirrer 70 parts of 2-ethylhexyl acrylate, 10 parts of butyl acrylate, 5 parts of vinyltrimethylsilane, 15 parts of acrylonitrile, 1 part of ethylene glycol dimethacrylate as a crosslinking agent, 1 part of sodium dodecylbenzenesulfonate as an emulsifier, After adding 150 parts of ion-exchanged water and 0.5 part of potassium persulfate as a polymerization initiator and stirring sufficiently, the mixture was heated to 70 ° C. to initiate polymerization.
- distillation under heating and reduced pressure was performed at 80 ° C. in order to remove unreacted monomers from the aqueous dispersion of the polymer having the particle structure adjusted to pH 7.
- Example 2 ⁇ Manufacture of composite particle binder> Example, except that the polymer having the particle structure obtained above was used and that 2 parts of a 5% aqueous solution of polyethylene oxide (Aldrich, average molecular weight: 4000000) was used as the water-soluble polymer, corresponding to the solid content.
- a composite particle binder was produced.
- the number average particle diameter of the obtained composite particles was 285 nm.
- the water content of the xylene dispersion liquid of the obtained composite particle binder was 25 ppm, and the solid content concentration was 8.8 wt%. No precipitation or separation was observed in the storage stability test.
- Example 1 A particulate binder was produced in the same manner as in Example 1 except that the polymer having the particle structure obtained in Example 3 was used and that the composite particles were not formed without using a water-soluble polymer.
- the number average particle diameter of the obtained particulate binder was 255 nm.
- the water content of the xylene dispersion liquid of the obtained particulate binder was 18 ppm, and the solid content concentration was 7.9 wt%. No precipitation or separation was observed in the storage stability test.
- Example 1 Except that the particulate binder obtained above was used, the production of the slurry composition for the positive electrode active material layer, the production of the slurry composition for the negative electrode active material layer, and the slurry composition for the solid electrolyte layer, as in Example 1. And an all-solid-state secondary battery were manufactured, and output characteristics and charge / discharge cycle characteristics were evaluated using the obtained batteries. The results are shown in Table 1.
- Comparative Example 2 100 parts by weight of the polymer having the particle structure obtained in Example 3 in solid content and 1 part of a powder of polyethylene oxide (Aldrich, average molecular weight: 4000000), which is a water-soluble polymer, are mixed using a bead mill. A mixture was produced. Moreover, the water content of the xylene dispersion liquid of the obtained binder mixture was 33 ppm, and solid content concentration was 8.0 wt%. Precipitation was observed in the storage stability test.
- a powder of polyethylene oxide Aldrich, average molecular weight: 4000000
- an all-solid secondary battery having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers, having a particle structure As shown in Table 1, an all-solid secondary battery having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers, having a particle structure
- the output characteristics and charge / discharge cycle of the all-solid-state secondary battery using the binder containing the polymer having water and a water-soluble polymer were good.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
(1) 正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いてなる全固体二次電池、
(2) 前記固体電解質層は固体電解質粒子を含み、前記固体電解質粒子が、Li2SとP2S5とからなる硫化物ガラスである(1)に記載の全固体二次電池、
(3) 前記バインダーは、前記粒子構造を有するポリマーを80~99.1wt%含む(1)又は(2)に記載の全固体二次電池、
(4) 前記粒子構造を有するポリマーは、アクリレート系ポリマーである(1)~(3)の何れかに記載の全固体二次電池、
(5) (1)に記載のバインダーは、粒子構造を有するポリマーの水分散液と水溶性ポリマー溶液との混合物の溶媒が、有機溶媒に溶媒交換されてなるバインダー組成物によるものである(1)~(4)の何れかに記載の全固体二次電池
が提供される。
以下、本発明の全固体二次電池について説明する。本発明の全固体二次電池は正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いてなる。即ち、本発明の全固体二次電池においては、正極活物質層、負極活物質層または固体電解質層の少なくとも1つに、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーが用いられる。なお、正極は集電体上に正極活物質層を有し、負極は集電体上に負極活物質層を有する。
以下において、まず、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーについて説明し、その後、(1)固体電解質層、(2)正極活物質層、及び(3)負極活物質層について説明する。
バインダーは、例えば、固体電解質粒子同士を結着して固体電解質層を形成するために用いられる。本発明に用いられるバインダーは、粒子構造を有するポリマーと水溶性ポリマーとを含有する。バインダーとしては、アクリレート系ポリマーが好適であることが特許文献5などで知られている。アクリレート系ポリマーをバインダーとして用いることが、耐電圧を高くでき、かつ全固体二次電池のエネルギー密度を高くすることができる点で好ましいが、より高性能化することが求められている。
本発明に用いられる粒子構造を有するポリマーとしては、アクリレート系ポリマーを用いることが好ましく、アクリレート系ポリマーに粒子構造を持たせて用いることが好ましい。
上述した粒子構造を有するポリマーの製造方法としては、懸濁重合法、塊状重合法、乳化重合法などの分散系で重合する方法のいずれの方法も用いることができる。重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。
本発明に用いられるバインダーは、水溶性ポリマーを含む。本発明に用いられる水溶性ポリマーとしては、ポリエチレンオキサイド、ポリエチレングリコール、ポリビニルアルコール等が挙げられ、ポリエチレンオキサイドが好ましい。
また、バインダーにおける水溶性ポリマーの含有割合は、好ましくは0.1~10wt%、より好ましくは0.5~5wt%である。水溶性ポリマーの含有割合が上記範囲であると、水溶性ポリマーの含有割合が多すぎるために電極が硬くなる、という現象を抑えることができ、また、水溶性ポリマーの含有割合が少なすぎるために本発明の効果を発揮しにくい、という現象を抑えることができる。
本発明に用いられるバインダーは、粒子構造を有するポリマーの水分散液と水溶性ポリマー溶液の混合物の溶媒を、有機溶媒に交換してなるバインダー組成物によるものであることが好ましい。
本発明に用いられるバインダー組成物を得る際に用いる混合物は、上記にて得られた粒子構造を有するポリマーの水分散液と、上記した水溶性ポリマーの水溶液(水溶性ポリマー溶液)とを混合することにより得られる。即ち、混合物の溶媒は、水などの水系の溶媒である。
本発明に用いられるバインダー組成物は、混合物の溶媒を有機溶媒に溶媒交換することにより得られる。ここで、溶媒交換は、公知の方法により行うことができる。例えば、ロータリーエバポレーターに混合物及び有機溶媒を入れ、減圧して所定の温度にて溶媒交換及び脱水操作を行うことができる。
溶媒交換に用いることのできる有機溶媒としては、沸点が100℃以上の有機溶媒が挙げられる。沸点が100℃以上の有機溶媒としては、トルエン、キシレンなどの芳香族炭化水素類;シクロペンチルメチルエーテルなどのエーテル類;酢酸ブチルなどのエステル類が好ましく、キシレンがより好ましい。なお、これらの溶媒は、単独または2種以上を混合して用いることができる。
しかし、本発明においては、粒子構造を有するポリマーの水分散液と水溶性ポリマー溶液とを混合して混合物とした後に、混合物の溶媒を有機溶媒に溶媒交換することにより、有機溶媒中に均一に分散させることができるため、水溶性ポリマーを全固体二次電池用のバインダーとして使用することができる。
本発明に用いる固体電解質層は、固体電解質粒子と、固体電解質層用バインダーとを含有し、固体電解質層用バインダーは、上記粒子構造を有するポリマーと水溶性ポリマーとを含むバインダーであることが好ましい。
また、固体電解質層は、固体電解質粒子及び固体電解質層用バインダーを含む固体電解質層用スラリー組成物を、後述する正極活物質層または負極活物質層の上に塗布し、乾燥することにより形成される。固体電解質層用スラリー組成物は、固体電解質粒子、固体電解質層用バインダー、有機溶媒、及び必要に応じて添加される他の成分を混合することにより製造される。
固体電解質は、粒子状で用いる。固体電解質粒子は、粉砕工程を経たものを用いるため、完全な球形ではなく、不定形である。一般に微粒子の大きさは、レーザー光を粒子に照射し散乱光を測定する方法などにより測定されるが、この場合の粒子径は1個の粒子としては形状を球形と仮定した値である。複数の粒子をまとめて測定した場合、相当する粒子径の粒子の存在割合を粒度分布としてあらわすことができる。固体電解質層を形成する固体電解質粒子は、この方法で測定した値で、平均粒子径として示されることが多い。
固体電解質層用スラリー組成物を製造するための有機溶媒としては、上記した溶媒交換に用いることのできる有機溶媒として例示したものと同じものを用いることができる。
分散剤としてはアニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物が例示される。分散剤は、用いる固体電解質粒子に応じて選択される。固体電解質層用スラリー組成物中の分散剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質粒子100質量部に対して10質量部以下である。
レベリング剤としてはアルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。上記界面活性剤を混合することにより、固体電解質層用スラリー組成物を後述する正極活物質層又は負極活物質層の表面に塗工する際に発生するはじきを防止でき、正負極の平滑性を向上させることができる。固体電解質層用スラリー組成物中のレベリング剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質粒子100質量部に対して10質量部以下である。
消泡剤としてはミネラルオイル系消泡剤、シリコーン系消泡剤、ポリマー系消泡剤が例示される。消泡剤は、用いる固体電解質粒子に応じて選択される。固体電解質層用スラリー組成物中の消泡剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質粒子100質量部に対して10質量部以下である。
正極活物質層は、正極活物質、固体電解質粒子及び正極用バインダーを含む正極活物質層用スラリー組成物を、後述する集電体表面に塗布し、乾燥することにより形成される。正極活物質層用スラリー組成物は、正極活物質、固体電解質粒子、正極用バインダー、有機溶媒及び必要に応じて添加される他の成分を混合することにより製造される。
正極活物質は、リチウムイオンを吸蔵および放出可能な化合物である。正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
固体電解質粒子は、固体電解質層において例示したものと同じものを用いることができる。
正極用バインダーとしては、特に制限はないが、上記粒子構造を有するポリマーと水溶性ポリマーとを含むバインダーを用いることが好ましい。
導電剤は、導電性を付与できるものであれば特に制限されないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。
補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。
負極活物質層は、負極活物質を含む。
負極活物質としては、グラファイトやコークス等の炭素の同素体が挙げられる。前記炭素の同素体からなる負極活物質は、金属、金属塩、酸化物などとの混合体や被覆体の形態で利用することも出来る。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の酸化物や硫酸塩、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコン等を使用できる。金属材料の場合は金属箔または金属板をそのまま電極として用いることができるが、粒子状でも良い。
負極用バインダーとしては、特に制限はないが、上記粒子構造を有するポリマーと水溶性ポリマーとを含むバインダーを用いることが好ましい。
正極活物質層および負極活物質層の形成に用いる集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有する観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、上述した正・負極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、集電体と正・負極活物質層との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
固体電解質層用スラリー組成物は、上述した固体電解質粒子、固体電解質層用バインダー、有機溶媒及び必要に応じて添加される他の成分を混合して得られる。ここで、固体電解質層用バインダーとして、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いることが好ましく、固体電解質層用バインダーとして上記のバインダー組成物を添加することが好ましい。
正極活物質層用スラリー組成物は、上述した正極活物質、固体電解質粒子、正極用バインダー、有機溶媒及び必要に応じて添加される他の成分を混合して得られる。ここで、正極用バインダーとして、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いることが好ましく、正極用バインダーとして上記のバインダー組成物を添加することが好ましい。
負極活物質層用スラリー組成物は、上述した負極活物質、固体電解質粒子、負極用バインダー、有機溶媒及び必要に応じて添加される他の成分を混合して得られる。ここで、負極用バインダーとして、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いることが好ましく、負極用バインダーとして上記のバインダー組成物を添加することが好ましい。
全固体二次電池における正極は、上記の正極活物質層用スラリー組成物を集電体上に塗布、乾燥して正極活物質層を形成して製造される。全固体二次電池における負極は、金属箔を用いる場合はそのまま用いることができる。負極活物質が粒子状である場合は、上記の負極活物質層用スラリー組成物を、正極の集電体とは別の集電体上に塗布、乾燥して負極活物質層を形成して製造される。次いで、形成した正極活物質層または負極活物質層の上に、固体電解質層用スラリー組成物を塗布し、乾燥して固体電解質層を形成する。そして、固体電解質層を形成しなかった電極と、上記の固体電解質層を形成した電極とを貼り合わせることで、全固体二次電池素子を製造する。
全固体二次電池を所定圧でプレス後、マイクロメーターを用いて電解質層膜厚をランダムに5点計測し、その平均値から算出した。
得られた粒子構造を有するポリマーの水分散液を、PTFE製シャーレを用いて乾燥させて、ポリマーのフィルムを作製した。得られたフィルムをTHFに24時間浸漬したのち、200メッシュのSUS金網で濾過した。濾過後の金網を100℃で1時間乾燥し、金網の重量増加分をフィルムの重量で除した値(金網の重量増加/フィルム重量)をゲル分率とした。
JIS Z8825-1:2001に準じて、レーザー解析装置(島津製作所社製 レーザー回折式粒度分布測定装置 SALD-3100)により粒子径を測定した。
カールフィッシャー水分計を用いて容量法で測定した。3回繰り返し測定を行いその平均値を測定値とした。
得られたバインダー組成物を500mLのガラス容器に密閉し、23℃で1か月間静置し、沈殿の有無を確認した。目視で沈殿あるいは分離が見られなかったものを「無」、沈殿あるいは分離が見られたものを「有」とした。
25℃の恒温槽中で、5セルの全固体二次電池を0.1Cの定電流法によって4.3Vまで充電しその後0.1Cにて3.0Vまで放電し、0.1C放電容量aを求めた。その後0.1Cにて4.3Vまで充電しその後5Cにて3.0Vまで放電し5C放電容量bを求めた。5セルの平均値を測定値とし、5C放電容量bと0.1C放電容量aの電気容量の比(b/a(%))で表される容量保持率を求めた。
得られた全固体二次電池を用いて、それぞれ25℃ で0.5Cの定電流定電圧充電法という方式で、4.2Vになるまで定電流で充電、その後定電圧で充電し、また0.5Cの定電流で3.0Vまで放電する充放電サイクルを行った。充放電サイクルは100サイクルまで行い、初期放電容量に対する100サイクル目の放電容量の比を容量維持率として求めた。この値が大きいほど繰り返し充放電による容量減が少なく、充放電サイクル特性に優れることを示す。
<粒子構造を有するポリマーの製造>
攪拌機付きガラス容器に、エチルアクリレート47部、ブチルアクリレート47部、ビニルトリメチルシラン5部、架橋剤としてのエチレングリコールジメタクリレート1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子構造を有するポリマーの水分散液を得た。
そして、得られた水分散液に10wt%のNaOH水溶液を用いてpHを7に調整した。得られたポリマー粒子の体積平均粒子径は199nmであった。得られた粒子構造を有するポリマーの水分散液のゲル分率は97wt%であった。
固形分濃度を30wt%に調整した粒子構造を有するポリマーの水分散液に、ポリマーの固形分100部に対し、水溶性ポリマーとしてのポリエチレングリコール(アルドリッチ社製、平均分子量100000)の5%水溶液を固形分相当で0.7部添加し十分に混合した。その後、溶媒を水から有機溶媒に交換するため、キシレンを、粒子構造を有するポリマーの水分散液100gに対して500g添加して加熱減圧蒸留を行なった。
正極活物質としてコバルト酸リチウム(平均粒子径:11.5μm)100部と、固体電解質粒子としてLi2SとP2S5とからなる硫化物ガラス(Li2S/P2S5=70 mol%/30mol%、平均粒子径が2.2μm)150部と、導電剤としてアセチレンブラック13部と、正極用バインダーとして上述の複合粒子バインダーのキシレン分散液を固形分相当で2部加え、さらに有機溶媒としてキシレンを加えて固形分濃度78%に調整した後にプラネタリーミキサーで60分間混合した。さらにキシレンで固形分濃度74%に調整した後に10分間混合して、正極活物質層用スラリー組成物を調製した。
負極活物質としてグラファイト(平均粒子径:20μm)100部と、固体電解質粒子としてLi2SとP2S5とからなる硫化物ガラス(Li2S/P2S5=70mol%/30mol%、平均粒子径が2.2μm)50部と、負極用バインダーとして上述の複合粒子バインダーのキシレン分散液を固形分相当で2部加え、さらに有機溶媒としてキシレンを加えて固形分濃度60%に調整した後にプラネタリーミキサーで混合して負極活物質層用スラリー組成物を調製した。
固体電解質粒子として、Li2SとP2S5とからなる硫化物ガラス(Li2S/P2S5=70mol%/30mol%、平均粒子径が2.2μm)100部と、バインダーとして上述の複合粒子バインダーのキシレン分散液を固形分相当で2部加え、さらに有機溶媒としてキシレンを加えて固形分濃度30%に調整した後にプラネタリーミキサーで混合して固体電解質層用スラリー組成物を調製した。
集電体表面に上記正極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて厚さが50μmの正極活物質層を形成して正極を製造した。また、別の集電体表面に上記負極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて厚さが30μmの負極活物質層を形成して負極を製造した。
<粒子構造を有するポリマーの製造>
攪拌機付きガラス容器に、エチルアクリレート45部、ブチルアクリレート45部、ビニルトリメチルシラン10部、架橋剤としてのエチレングリコールジメタクリレート1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子構造を有するポリマーの水分散液を得た。
そして、得られた水分散液に10wt%のNaOH水溶液を用いてpHを7に調整した。得られたポリマー粒子の体積平均粒子径は230nmであった。得られた粒子構造を有するポリマーの水分散液のゲル分率は98wt%であった。
固形分濃度を30wt%に調整した上記粒子構造を有するポリマーの水分散液に、ポリマーの固形分100部に対し、水溶性ポリマーとしてのポリエチレンオキサイド(アルドリッチ社製、平均分子量4000000)の5%水溶液を固形分相当で1部添加し十分に混合した。その後、溶媒を水から有機溶媒に交換するため、キシレンを、粒子構造を有するポリマーの水分散液100gに対して500g添加して加熱減圧蒸留を行なった。得られた複合粒子の数平均粒子径は、280nmであった。また、得られた複合粒子バインダーのキシレン分散液の水分量は38ppmであり、固形分濃度は9.6wt%であった。保存安定性試験で沈殿あるいは分離は見られなかった。
<粒子構造を有するポリマーの製造>
攪拌機付きガラス容器に、エチルアクリレート55部、ブチルアクリレート45部、アクリロニトリル5部、架橋剤としてのエチレングリコールジメタクリレート1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子構造を有するポリマーの水分散液を得た。
そして、得られた水分散液に10wt%のNaOH水溶液を用いてpHを7に調整した。得られたポリマー粒子の体積平均粒子径は255nmであった。得られた粒子構造を有するポリマーの水分散液のゲル分率は95wt%であった。
上記で得られた粒子構造を有するポリマーを用いたこと、および水溶性ポリマーとしてポリエチレンオキサイド(アルドリッチ社製、平均分子量4000000)の5%水溶液を固形分相当で1部用いたこと以外は、実施例1と同様に、複合粒子バインダーの製造を行った。得られた複合粒子の数平均粒子径は、340nmであった。また、得られた複合粒子バインダーのキシレン分散液の水分量は43ppmであり、固形分濃度は7.9wt%であった。保存安定性試験で沈殿あるいは分離は見られなかった。
<粒子構造を有するポリマーの製造>
攪拌機付きガラス容器に、2-エチルヘキシルアクリレート70部、ブチルアクリレート10部、ビニルトリメチルシラン5部、アクリロニトリル15部、架橋剤としてのエチレングリコールジメタクリレート1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子構造を有するポリマーの水分散液を得た。
そして、得られた水分散液に10wt%のNaOH水溶液を用いてpHを7に調整した。得られたポリマー粒子の体積平均粒子径は265nmであった。得られた粒子構造を有するポリマーの水分散液のゲル分率は95wt%であった。
上記で得られた粒子構造を有するポリマーを用いたこと、および水溶性ポリマーとしてポリエチレンオキサイド(アルドリッチ社製、平均分子量4000000)の5%水溶液を固形分相当で2部用いたこと以外は、実施例1と同様に、複合粒子バインダーの製造を行った。得られた複合粒子の数平均粒子径は、285nmであった。また、得られた複合粒子バインダーのキシレン分散液の水分量は25ppmであり、固形分濃度は8.8wt%であった。保存安定性試験で沈殿あるいは分離は見られなかった。
実施例3で得られた粒子構造を有するポリマーを用いたこと、および、水溶性ポリマーを用いず複合粒子化しなかったこと以外は、実施例1と同様に粒子状バインダーの製造を行った。得られた粒子状バインダーの数平均粒子径は、255nmであった。また、得られた粒子状バインダーのキシレン分散液の水分量は18ppmであり、固形分濃度は7.9wt%であった。保存安定性試験で沈殿あるいは分離は見られなかった。
実施例3で得られた粒子構造を有するポリマーを固形分で100部と、水溶性ポリマーであるポリエチレンオキサイド(アルドリッチ社製、平均分子量4000000)の粉末1部とをビーズミルを用いて混合し、バインダー混合物の製造を行った。また、得られたバインダー混合物のキシレン分散液の水分量は33ppmであり、固形分濃度は8.0wt%であった。保存安定性試験で沈殿が見られた。
Claims (5)
- 正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、粒子構造を有するポリマーと水溶性ポリマーとを含有するバインダーを用いてなる全固体二次電池。
- 前記固体電解質層は固体電解質粒子を含み、前記固体電解質粒子が、Li2SとP2S5とからなる硫化物ガラスである請求項1に記載の全固体二次電池。
- 前記バインダーは、前記粒子構造を有するポリマーを80~99.1wt%含む請求項1又は2に記載の全固体二次電池。
- 前記粒子構造を有するポリマーは、アクリレート系ポリマーである請求項1~3の何れかに記載の全固体二次電池。
- 請求項1に記載のバインダーは、粒子構造を有するポリマーの水分散液と水溶性ポリマー溶液との混合物の溶媒が、有機溶媒に溶媒交換されてなるバインダー組成物によるものである請求項1~4の何れかに記載の全固体二次電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16846249.7A EP3352278A4 (en) | 2015-09-16 | 2016-08-31 | SOLID SECONDARY BATTERY |
US15/753,402 US20180254519A1 (en) | 2015-09-16 | 2016-08-31 | All-solid-state secondary battery |
JP2017539819A JP6834963B2 (ja) | 2015-09-16 | 2016-08-31 | 全固体二次電池および全固体二次電池の製造方法 |
KR1020177035052A KR20180052558A (ko) | 2015-09-16 | 2016-08-31 | 전고체 2차 전지 |
CN201680032860.0A CN107615554B (zh) | 2015-09-16 | 2016-08-31 | 全固体二次电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015182471 | 2015-09-16 | ||
JP2015-182471 | 2015-09-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017047378A1 true WO2017047378A1 (ja) | 2017-03-23 |
Family
ID=58289064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075385 WO2017047378A1 (ja) | 2015-09-16 | 2016-08-31 | 全固体二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180254519A1 (ja) |
EP (1) | EP3352278A4 (ja) |
JP (1) | JP6834963B2 (ja) |
KR (1) | KR20180052558A (ja) |
CN (1) | CN107615554B (ja) |
WO (1) | WO2017047378A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018173839A1 (ja) * | 2017-03-24 | 2018-09-27 | 日本ゼオン株式会社 | バインダー組成物の保管方法 |
CN109599561A (zh) * | 2017-09-30 | 2019-04-09 | 宁德时代新能源科技股份有限公司 | 全固态锂离子二次电池用粘结剂、电解质膜片、电极膜片、电池及制备方法 |
WO2019074075A1 (ja) * | 2017-10-12 | 2019-04-18 | 富士フイルム株式会社 | 全固体二次電池用バインダー組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 |
JP2020004508A (ja) * | 2018-06-25 | 2020-01-09 | 凸版印刷株式会社 | アルカリ二次電池用負極組成物及びアルカリ二次電池用負極 |
WO2020137434A1 (ja) | 2018-12-28 | 2020-07-02 | 日本ゼオン株式会社 | 全固体二次電池用バインダー組成物 |
WO2021085141A1 (ja) * | 2019-10-31 | 2021-05-06 | 日本ゼオン株式会社 | 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池 |
US11552331B2 (en) | 2017-11-17 | 2023-01-10 | Fujifilm Corporation | Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary |
KR20230061341A (ko) | 2020-08-31 | 2023-05-08 | 니폰 제온 가부시키가이샤 | 전고체 이차 전지용 바인더 조성물의 제조 방법, 전고체 이차 전지용 슬러리 조성물의 제조 방법, 고체 전해질 함유층의 제조 방법, 및 전고체 이차 전지의 제조 방법 |
WO2023148515A1 (ja) * | 2022-02-01 | 2023-08-10 | 日産自動車株式会社 | 二次電池 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3276734B1 (en) * | 2015-03-25 | 2020-07-08 | Zeon Corporation | All-solid secondary battery |
DE112019001591B4 (de) * | 2018-03-28 | 2024-07-25 | Tdk Corporation | Festkörperbatterie |
WO2019209089A1 (ko) * | 2018-04-27 | 2019-10-31 | 주식회사 엘지화학 | 리튬 이차 전지 및 이의 제조방법 |
WO2020080261A1 (ja) * | 2018-10-15 | 2020-04-23 | 富士フイルム株式会社 | 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法 |
DE102018218556A1 (de) * | 2018-10-30 | 2020-04-30 | Robert Bosch Gmbh | Kompositfolie, deren Herstellung und deren Verwendung in einer elektrochemischen Festkörperzelle |
CN114361456B (zh) * | 2022-01-11 | 2023-05-05 | 中国科学院化学研究所 | 一种锂电池用水性功能化导离子粘结剂、制备方法及应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003249265A (ja) * | 2002-02-22 | 2003-09-05 | Yuasa Corp | ポリマー電解質電池 |
JP2008146917A (ja) * | 2006-12-07 | 2008-06-26 | Nippon Synthetic Chem Ind Co Ltd:The | 全固体型リチウム二次電池 |
JP2013008611A (ja) * | 2011-06-27 | 2013-01-10 | Nippon Zeon Co Ltd | 全固体二次電池 |
WO2014051032A1 (ja) * | 2012-09-28 | 2014-04-03 | 日本ゼオン株式会社 | 全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池 |
JP2015159067A (ja) * | 2014-02-25 | 2015-09-03 | 富士フイルム株式会社 | 複合固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3736045B2 (ja) * | 1997-06-19 | 2006-01-18 | 松下電器産業株式会社 | 全固体リチウム電池 |
JP5523965B2 (ja) * | 2010-07-23 | 2014-06-18 | 三井化学株式会社 | 高分子電解質粒子及びその製造方法、並びに固体高分子電解質 |
JP5994354B2 (ja) * | 2011-09-05 | 2016-09-21 | ソニー株式会社 | セパレータおよび非水電解質電池、並びに、電池パック、電子機器、電動車両、蓄電装置および電力システム |
WO2013051302A1 (ja) * | 2011-10-05 | 2013-04-11 | 国立大学法人東北大学 | 二次電池 |
CN105027325A (zh) * | 2013-03-21 | 2015-11-04 | 日本瑞翁株式会社 | 锂离子二次电池多孔膜用浆料及其制造方法、锂离子二次电池用隔板以及锂离子二次电池 |
-
2016
- 2016-08-31 EP EP16846249.7A patent/EP3352278A4/en active Pending
- 2016-08-31 WO PCT/JP2016/075385 patent/WO2017047378A1/ja active Application Filing
- 2016-08-31 JP JP2017539819A patent/JP6834963B2/ja active Active
- 2016-08-31 US US15/753,402 patent/US20180254519A1/en not_active Abandoned
- 2016-08-31 KR KR1020177035052A patent/KR20180052558A/ko not_active Application Discontinuation
- 2016-08-31 CN CN201680032860.0A patent/CN107615554B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003249265A (ja) * | 2002-02-22 | 2003-09-05 | Yuasa Corp | ポリマー電解質電池 |
JP2008146917A (ja) * | 2006-12-07 | 2008-06-26 | Nippon Synthetic Chem Ind Co Ltd:The | 全固体型リチウム二次電池 |
JP2013008611A (ja) * | 2011-06-27 | 2013-01-10 | Nippon Zeon Co Ltd | 全固体二次電池 |
WO2014051032A1 (ja) * | 2012-09-28 | 2014-04-03 | 日本ゼオン株式会社 | 全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池 |
JP2015159067A (ja) * | 2014-02-25 | 2015-09-03 | 富士フイルム株式会社 | 複合固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3352278A4 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018173839A1 (ja) * | 2017-03-24 | 2020-01-23 | 日本ゼオン株式会社 | バインダー組成物の保管方法 |
JP7024781B2 (ja) | 2017-03-24 | 2022-02-24 | 日本ゼオン株式会社 | バインダー組成物の保管方法 |
WO2018173839A1 (ja) * | 2017-03-24 | 2018-09-27 | 日本ゼオン株式会社 | バインダー組成物の保管方法 |
CN109599561A (zh) * | 2017-09-30 | 2019-04-09 | 宁德时代新能源科技股份有限公司 | 全固态锂离子二次电池用粘结剂、电解质膜片、电极膜片、电池及制备方法 |
JPWO2019074075A1 (ja) * | 2017-10-12 | 2020-10-22 | 富士フイルム株式会社 | 全固体二次電池用バインダー組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 |
WO2019074075A1 (ja) * | 2017-10-12 | 2019-04-18 | 富士フイルム株式会社 | 全固体二次電池用バインダー組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 |
US11489163B2 (en) | 2017-10-12 | 2022-11-01 | Fujifilm Corporation | Binder composition for all-solid state secondary battery, solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery |
US11552331B2 (en) | 2017-11-17 | 2023-01-10 | Fujifilm Corporation | Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary |
JP2020004508A (ja) * | 2018-06-25 | 2020-01-09 | 凸版印刷株式会社 | アルカリ二次電池用負極組成物及びアルカリ二次電池用負極 |
US11670758B2 (en) | 2018-06-25 | 2023-06-06 | Toppan Printing Co., Ltd. | Negative-electrode composition for alkaline secondary batteries, and alkaline secondary battery negative electrode |
WO2020137434A1 (ja) | 2018-12-28 | 2020-07-02 | 日本ゼオン株式会社 | 全固体二次電池用バインダー組成物 |
KR20210110297A (ko) | 2018-12-28 | 2021-09-07 | 니폰 제온 가부시키가이샤 | 전고체 이차 전지용 바인더 조성물 |
WO2021085141A1 (ja) * | 2019-10-31 | 2021-05-06 | 日本ゼオン株式会社 | 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池 |
KR20230061341A (ko) | 2020-08-31 | 2023-05-08 | 니폰 제온 가부시키가이샤 | 전고체 이차 전지용 바인더 조성물의 제조 방법, 전고체 이차 전지용 슬러리 조성물의 제조 방법, 고체 전해질 함유층의 제조 방법, 및 전고체 이차 전지의 제조 방법 |
WO2023148515A1 (ja) * | 2022-02-01 | 2023-08-10 | 日産自動車株式会社 | 二次電池 |
Also Published As
Publication number | Publication date |
---|---|
EP3352278A1 (en) | 2018-07-25 |
EP3352278A4 (en) | 2019-02-13 |
JPWO2017047378A1 (ja) | 2018-06-28 |
US20180254519A1 (en) | 2018-09-06 |
KR20180052558A (ko) | 2018-05-18 |
CN107615554B (zh) | 2021-03-30 |
CN107615554A (zh) | 2018-01-19 |
JP6834963B2 (ja) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6834963B2 (ja) | 全固体二次電池および全固体二次電池の製造方法 | |
US10797304B2 (en) | All-solid-state secondary battery | |
JP5644851B2 (ja) | 全固体二次電池及び全固体二次電池の製造方法 | |
JP7017081B2 (ja) | 全固体二次電池用バインダー、全固体二次電池用バインダーの製造方法および全固体二次電池 | |
JP6459691B2 (ja) | 全固体二次電池 | |
KR102340874B1 (ko) | 고체 전해질 전지용 바인더 조성물 및 고체 전해질 전지용 슬러리 조성물 | |
JP7003917B2 (ja) | 固体電解質電池用バインダー組成物 | |
JP6791144B2 (ja) | 全固体電池用バインダ組成物 | |
JPWO2012173089A1 (ja) | 全固体二次電池 | |
KR102425398B1 (ko) | 전고체 전지용 바인더 조성물, 전고체 전지용 슬러리 조성물, 전고체 전지용 전극, 및 전고체 전지 | |
CN111433961A (zh) | 全固体二次电池用粘结剂组合物、全固体二次电池用浆料组合物、全固体二次电池用功能层和全固体二次电池 | |
JP2016181472A (ja) | 全固体二次電池 | |
JPWO2020137435A5 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16846249 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017539819 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177035052 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15753402 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016846249 Country of ref document: EP |