WO2014050911A1 - 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および色素吸着電極 - Google Patents

金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および色素吸着電極 Download PDF

Info

Publication number
WO2014050911A1
WO2014050911A1 PCT/JP2013/075950 JP2013075950W WO2014050911A1 WO 2014050911 A1 WO2014050911 A1 WO 2014050911A1 JP 2013075950 W JP2013075950 W JP 2013075950W WO 2014050911 A1 WO2014050911 A1 WO 2014050911A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
atom
dye
integer
Prior art date
Application number
PCT/JP2013/075950
Other languages
English (en)
French (fr)
Inventor
小林 克
野村 公篤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP13842105.2A priority Critical patent/EP2903078B1/en
Publication of WO2014050911A1 publication Critical patent/WO2014050911A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/16Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/06Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/107The polymethine chain containing an even number of >CH- groups four >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/008Dyes containing a substituent, which contains a silicium atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a metal complex dye, a photoelectric conversion element, a dye-sensitized solar cell, a dye solution, and a dye-adsorbing electrode.
  • Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like.
  • Various types of photoelectric conversion elements have been put to practical use, such as those using metals, semiconductors, organic pigments and dyes, or combinations thereof.
  • a solar cell using non-depleting solar energy does not require fuel, and full-scale practical use is highly expected as it uses inexhaustible clean energy.
  • silicon-based solar cells have been researched and developed for a long time, and are spreading due to the policy considerations of each country.
  • silicon is an inorganic material, there is a limit to improving throughput and cost.
  • dyes generally called N3, N719, Z907, and J2 have been developed as metal complex dyes used in photoelectric conversion elements.
  • the conventional dye-sensitized solar cell has insufficient production stability necessary for practical use.
  • Metal complex dyes generally have a ligand atom of the nitrogen atom of the pyridine ring, such as bipyridyl or terpyridyl, but recently, research on ligands to replace these is also available. (For example, see Patent Documents 1 to 3).
  • Patent Documents 1 to 3 it is not always satisfactory, and moreover, solar cells have been attracting attention and expectation as an energy source to replace nuclear power generation, and there has been a demand for early practical application as solar cells.
  • an object of the present invention is to provide a photoelectric conversion element that improves these performances and at the same time has improved manufacturing stability. That is, photoelectric conversion efficiency and durability are further improved, stable reproducibility of performance and variations in quality are small, high-speed manufacturing suitability (high-speed suitability), and low-thermal deterioration photoelectric conversion element, and metal for obtaining this It is an object of the present invention to provide a complex dye, a dye-adsorbing electrode, a dye solution for producing the same, and a dye-sensitized solar cell.
  • the present inventors need to improve the short circuit current density (Jsc) and the open circuit voltage (Voc), but semiconductor fine particles such as titanium oxide of a metal complex dye. coating on the surface, the adsorption force, stability of the complex of a metal complex dye, an electrolyte of electrons injected into titanium oxide (e.g., I 3 -, etc.) back electron transfer inhibition to the adsorption of the metal complex dye to a semiconductor microparticle surface Alternatively, the metal complex dyes were examined by identifying the expected factors such as desorption, their speed, and the association of two or more molecules of the metal complex dye.
  • the coordination atom for the central metal As a result, the coordination atom for the central metal, the coating of the metal complex dye on the surface of the semiconductor fine particles, the dye association, the stability of the metal complex dye itself, the type of substituents that substitute the coordination atom and the dye skeleton
  • the inventors have found that these performances change greatly and have reached the present invention. That is, the subject of this invention was achieved by the following means.
  • a photoelectric conversion element having semiconductor fine particles carrying a dye is represented by the following formula (I)
  • M represents Fe 2+ , Ru 2+ or Os 2+ .
  • LD represents a ligand represented by the following formula (DL).
  • LA represents a bidentate or tridentate ligand having a nitrogen-containing aromatic heterocyclic skeleton and having at least one acidic group.
  • X represents a monodentate or bidentate ligand.
  • mX represents an integer of 0 to 3.
  • CI represents the counter ion as necessary to neutralize the charge.
  • mY represents an integer of 0-2.
  • Z represents a nonmetallic atom group necessary for forming a ring, and the ring-constituting atom may include a coordinating atom coordinated with M described above.
  • D represents a coordination atom selected from an oxygen atom and a nitrogen atom that is coordinated to M.
  • E represents a single bond, —O—, —N (R 1 ) —, —C (R 2 ) 2 —, —C ( ⁇ R 3 ) —, —C ( ⁇ O) —, —C ( ⁇ NR 1 ).
  • — Or —C (R 2 ) 2 —C ( ⁇ O) — is represented.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group or an aryloxy group
  • R 3 represents an alkylidene group, an alkenylidene group or a cycloalkylidene group.
  • Two R 2 may be the same or different from each other.
  • R represents a substituent.
  • m and n each independently represents an integer of 1 or more. However, at least one coordinating atom is the coordinating atom A, and at least one of the n Rs is a substituent W, and D does not form a ring with E or Z.
  • the coordination atom A is an oxygen atom or a nitrogen atom having no unsaturated bond
  • the substituent W is substituted by a monovalent alkyl group having 2 or more carbon atoms or a group having this alkyl group.
  • R and n have the same meanings as R and n in formula (DL).
  • n ′ represents an integer of 0 or more.
  • Za, Zb, Zb ′ and Zc represent a nonmetallic atom group necessary for forming a ring.
  • the bond connecting Da to the carbon atom to which -E1-D1 is bonded the bond connecting the carbon atom to which D2 or D2 'is bonded to the carbon atom to which D3 is bonded, and -E1-D1 or -E1'-D1'
  • the bond connecting the carbon atom to which is bonded to Da may be a single bond or a double bond.
  • D1 to D3, D1 ′, D2 ′, and Da each independently represent a coordination atom that coordinates to M
  • D1 to D3, D1 ′, and D2 ′ are atoms selected from an oxygen atom and a nitrogen atom
  • E1 and E1 ′ are each independently a single bond, —O—, —N (R 1 ) —, —C (R 2 ) 2 —, —C ( ⁇ R 3 ) —, —C ( ⁇ O) —, —C ( ⁇ NR 1 ) — or —C (R 2 ) 2 —C ( ⁇ O) — is represented.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group or an aryloxy group, and R 3 represents an alkylidene group, an alkenylidene group or a cycloalkylidene group.
  • Two R 2 may be the same or different from each other.
  • d represents 0 or 1; When d is 1, Zb and Zb ′ may be bonded to each other to form a ring. When n and n ′ are each an integer of 2 or more, a plurality of R may be bonded to each other to form a ring.
  • Formula (DL) is any of the following formulas (DL-1a), (DL-1b), (DL-2a), (DL-2b), (DL-3a) or (DL-3b)
  • n1 represents an integer of 1 to 4
  • n2 represents an integer of 1 to 3
  • n3 represents 1 or 2.
  • n1 ′ represents an integer of 0 to 4.
  • D1 to D3, D1 ′, D2 ′, Da1 and Da2 each independently represent a coordination atom which coordinates to M, and D1 to D3, D1 ′ and D2 ′ are atoms selected from an oxygen atom and a nitrogen atom.
  • Da1 and Da2 are atoms selected from an oxygen atom, a nitrogen atom and a carbon atom.
  • E1 and E1 ′ are each independently a single bond, —O—, —N (R 1 ) —, —C (R 2 ) 2 —, —C ( ⁇ R 3 ) —, —C ( ⁇ O) —, —C ( ⁇ NR 1 ) — or —C (R 2 ) 2 —C ( ⁇ O) — is represented.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group or an aryloxy group
  • R 3 represents an alkylidene group, an alkenylidene group or a cycloalkylidene group.
  • Two R 2 may be the same or different from each other.
  • Substituent W is 1) substituted at the 2-position by an alkyl group having 2 or more carbon atoms, an alkylamino group having 2 or more carbon atoms, an alkoxy group having 2 or more carbon atoms or an alkylthio group having 2 or more carbon atoms, An ethenyl group or an ethynyl group having an aryl group or a heteroaryl group, or 2) an alkyl group having 2 or more carbon atoms, an alkylamino group having 2 or more carbon atoms, an alkoxy group having 2 or more carbon atoms or an alkoxy group having 2 or more carbon atoms.
  • the photoelectric conversion device according to any one of (1) to (3), which is an aryl group or a heteroaryl group substituted with an alkylthio group.
  • R W represents a monovalent alkyl group having 2 or more carbon atoms or a group having the alkyl group, w1 represents an integer of 1 to 5, and w2 represents an integer of 1 to 3.
  • LA is represented by any of the following formulas (AL-1) to (AL-6).
  • Zd, Ze and Zf are each independently a benzene ring, pyrrole ring, imidazole ring, pyrazole ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazole ring, oxazole ring, triazine ring, thiazole ring, isothiazole ring.
  • A represents an acidic group.
  • Q 1 to Q 4 each independently represents a carbon atom or a nitrogen atom
  • Db 1 to Db 3 each independently represents a nitrogen atom having a lone electron pair, an anionic nitrogen atom, or an anionic carbon atom.
  • R A represents a substituent. a1, a3, b1 and b3 each independently represent an integer of 0 to 4, a2 and b2 each independently represent an integer of 0 to 3, and c represents 0 or 1.
  • the ligands represented by the formulas (AL-1) to (AL-6) have at least one acidic group.
  • LA is the following formula (AL-1).
  • A represents an acidic group.
  • R A represents a substituent.
  • a1, a3, b1 and b3 each independently represent an integer of 0 to 4
  • a2 and b2 each independently represent an integer of 0 to 3
  • c represents 0 or 1.
  • the compound represented by the formula (AL-1) has at least one acidic group.
  • the photoelectric conversion device according to any one of (1) to (7) .
  • CI in formula (I) is halogen ion, aryl sulfonate ion, aryl disulfonate ion, alkyl sulfate ion, sulfate ion, thiocyanate ion, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate
  • the photoelectric conversion device according to any one of (1) to (8) which is an ion, acetate ion, trifluoromethanesulfonate ion, ammonium ion, alkali metal ion, or hydrogen ion.
  • a dye-sensitized solar cell comprising the photoelectric conversion device according to any one of (1) to (9).
  • M represents Fe 2+ , Ru 2+ or Os 2+ .
  • LD represents a ligand represented by the following formula (DL).
  • LA represents a bidentate or tridentate ligand having a nitrogen-containing aromatic heterocyclic skeleton and having at least one acidic group.
  • X represents a monodentate or bidentate ligand.
  • mX represents an integer of 0 to 3.
  • CI represents the counter ion as necessary to neutralize the charge.
  • mY represents an integer of 0-2.
  • Z represents a nonmetallic atom group necessary for forming a ring, and the ring-constituting atom may include a coordinating atom coordinated with M described above.
  • D represents a coordination atom selected from an oxygen atom and a nitrogen atom that is coordinated to M.
  • E represents a single bond, —O—, —N (R 1 ) —, —C (R 2 ) 2 —, —C ( ⁇ R 3 ) —, —C ( ⁇ O) —, —C ( ⁇ NR 1 ).
  • — Or —C (R 2 ) 2 —C ( ⁇ O) — is represented.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group or an aryloxy group
  • R 3 represents an alkylidene group, an alkenylidene group or a cycloalkylidene group.
  • Two R 2 may be the same or different from each other.
  • R represents a substituent.
  • m and n each independently represents an integer of 1 or more. However, at least one coordinating atom is the coordinating atom A, and at least one of the n Rs is a substituent W, and D does not form a ring with E or Z.
  • the coordination atom A is an oxygen atom or a nitrogen atom having no unsaturated bond
  • the substituent W is substituted by a monovalent alkyl group having 2 or more carbon atoms or a group having this alkyl group.
  • the metal complex dye according to (11), wherein the formula (DL) is represented by any of the following formulas (DL-1) to (DL-3).
  • R and n have the same meanings as R and n in formula (DL).
  • n ′ represents an integer of 0 or more.
  • Za, Zb, Zb ′ and Zc represent a nonmetallic atom group necessary for forming a ring.
  • the bond connecting Da to the carbon atom to which -E1-D1 is bonded the bond connecting the carbon atom to which D2 or D2 'is bonded to the carbon atom to which D3 is bonded, and -E1-D1 or -E1'-D1'
  • the bond connecting the carbon atom to which is bonded to Da may be a single bond or a double bond.
  • D1 to D3, D1 ′, D2 ′, and Da each independently represent a coordination atom that coordinates to M
  • D1 to D3, D1 ′, and D2 ′ are atoms selected from an oxygen atom and a nitrogen atom
  • E1 and E1 ′ are each independently a single bond, —O—, —N (R 1 ) —, —C (R 2 ) 2 —, —C ( ⁇ R 3 ) —, —C ( ⁇ O) —, —C ( ⁇ NR 1 ) — or —C (R 2 ) 2 —C ( ⁇ O) — is represented.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group or an aryloxy group, and R 3 represents an alkylidene group, an alkenylidene group or a cycloalkylidene group.
  • Two R 2 may be the same or different from each other.
  • d represents 0 or 1; When d is 1, Zb and Zb ′ may be bonded to each other to form a ring. When n and n ′ are each an integer of 2 or more, a plurality of R may be bonded to each other to form a ring.
  • Formula (DL) is any of the following formulas (DL-1a), (DL-1b), (DL-2a), (DL-2b), (DL-3a) or (DL-3b) The metal complex dye described in (11) or (12).
  • n1 represents an integer of 1 to 4
  • n2 represents an integer of 1 to 3
  • n3 represents 1 or 2.
  • n1 ′ represents an integer of 0 to 4.
  • D1 to D3, D1 ′, D2 ′, Da1 and Da2 each independently represent a coordination atom which coordinates to M, and D1 to D3, D1 ′ and D2 ′ are atoms selected from an oxygen atom and a nitrogen atom.
  • Da1 and Da2 are atoms selected from an oxygen atom, a nitrogen atom and a carbon atom.
  • E1 and E1 ′ are each independently a single bond, —O—, —N (R 1 ) —, —C (R 2 ) 2 —, —C ( ⁇ R 3 ) —, —C ( ⁇ O) —, —C ( ⁇ NR 1 ) — or —C (R 2 ) 2 —C ( ⁇ O) — is represented.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group or an aryloxy group
  • R 3 represents an alkylidene group, an alkenylidene group or a cycloalkylidene group.
  • Two R 2 may be the same or different from each other.
  • Substituent W is 1) substituted at the 2-position by an alkyl group having 2 or more carbon atoms, an alkylamino group having 2 or more carbon atoms, an alkoxy group having 2 or more carbon atoms or an alkylthio group having 2 or more carbon atoms, An ethenyl group or an ethynyl group having an aryl group or a heteroaryl group, or 2) an alkyl group having 2 or more carbon atoms, an alkylamino group having 2 or more carbon atoms, an alkoxy group having 2 or more carbon atoms or an alkoxy group having 2 or more carbon atoms
  • the metal complex dye according to any one of (11) to (13), which is an aryl group or a heteroaryl group substituted with an alkylthio group.
  • R W represents a monovalent alkyl group having 2 or more carbon atoms or a group having the alkyl group, w1 represents an integer of 1 to 5, and w2 represents an integer of 1 to 3.
  • LA is represented by any of the following formulas (AL-1) to (AL-6).
  • Zd, Ze and Zf are each independently a benzene ring, pyrrole ring, imidazole ring, pyrazole ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazole ring, oxazole ring, triazine ring, thiazole ring, isothiazole ring.
  • A represents an acidic group.
  • Q 1 to Q 4 each independently represents a carbon atom or a nitrogen atom
  • Db 1 to Db 3 each independently represents a nitrogen atom having a lone electron pair, an anionic nitrogen atom, or an anionic carbon atom.
  • R A represents a substituent. a1, a3, b1 and b3 each independently represent an integer of 0 to 4, a2 and b2 each independently represent an integer of 0 to 3, and c represents 0 or 1.
  • the ligands represented by the formulas (AL-1) to (AL-6) have at least one acidic group.
  • LA is the following formula (AL-1).
  • A represents an acidic group.
  • R A represents a substituent.
  • a1, a3, b1 and b3 each independently represent an integer of 0 to 4
  • a2 and b2 each independently represent an integer of 0 to 3
  • c represents 0 or 1.
  • the compound represented by the formula (AL-1) has at least one acidic group.
  • the dye solution according to (18) wherein 0.001 to 0.1% by mass of a metal complex dye is contained in an organic solvent, and water is suppressed to 0.1% by mass or less.
  • the carbon-carbon double bond may be either E-type or Z-type in the molecule, or a mixture thereof.
  • substituents, etc. linking groups, ligands, etc.
  • substituents etc.
  • a special notice is given.
  • each substituent etc. may mutually be same or different. The same applies to the definition of the number of substituents and the like.
  • substituents and the like when a plurality of substituents and the like are close to each other (especially when they are adjacent to each other), they may be connected to each other to form a ring unless otherwise specified.
  • a ring such as an alicyclic ring, an aromatic ring, or a hetero ring may be further condensed to form a condensed ring.
  • each substituent may be further substituted with a substituent unless otherwise specified.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of the photoelectric conversion element of the present invention, including an enlarged view of a circular portion in a layer.
  • FIG. 2 is a cross-sectional view schematically showing the dye-sensitized solar cell of the second aspect of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element 10 of the present invention has a photoelectric conversion element 10 including a conductive support 1, a photoreceptor layer 2 including semiconductor fine particles sensitized by a dye (metal complex dye) 21, It consists of a charge transfer layer 3 and a counter electrode 4 which are hole transport layers.
  • the co-adsorbent is adsorbed on the semiconductor fine particles 22 together with the dye (metal complex dye) 21.
  • the conductive support 1 provided with the photoreceptor layer 2 functions as a working electrode in the photoelectric conversion element 10.
  • the photoelectric conversion element 10 is shown as a system 100 using a dye-sensitized solar cell that can be used for a battery for causing the operating means M to work with the external circuit 6.
  • the light-receiving electrode 5 includes a conductive support 1 and a photoreceptor layer 2 containing semiconductor fine particles adsorbed with a dye (metal complex dye) 21.
  • the photoreceptor layer 2 is designed according to the purpose, and may be a single layer structure or a multilayer structure.
  • the dye (metal complex dye) 21 in one photosensitive layer may be one kind or a mixture of various kinds, but at least one of them uses the metal complex dye of the present invention described above.
  • the light incident on the photoreceptor layer 2 excites the dye (metal complex dye) 21.
  • the excited dye has high energy electrons, and the electrons are transferred from the dye (metal complex dye) 21 to the conduction band of the semiconductor fine particles 22 and reach the conductive support 1 by diffusion.
  • the dye (metal complex dye) 21 is an oxidant, but the electrons on the electrode work in the external circuit 6 and pass through the counter electrode 4 so that the oxidant of the dye (metal complex dye) 21 and By returning to the photoreceptor layer 2 where the electrolyte is present, it functions as a solar cell.
  • the material used for the photoelectric conversion element or the dye-sensitized solar cell and the method for producing each member may be the usual ones of this type, for example, US Pat. No. 4,927,721.
  • U.S. Pat.No. 4,684,537, U.S. Pat.No. 5,0843,65, U.S. Pat.No. 5,350,644, U.S. Pat.No. 5,463,057 Reference can be made to US Pat. No. 5,525,440, JP-A-7-249790, JP-A-2004-220974, and JP-A-2008-135197.
  • JP-A-7-249790 JP-A-2004-220974
  • JP-A-2008-135197 JP-A-2008-135197
  • the photoreceptor layer is a layer containing semiconductor fine particles containing an electrolyte described later and carrying a sensitizing dye containing the metal complex dye of the present invention described below.
  • the metal complex dye of the present invention is represented by the following formula (I).
  • M represents Fe 2+ , Ru 2+ or Os 2+ .
  • LD represents a ligand represented by the following formula (DL).
  • LA represents a bidentate or tridentate ligand having a nitrogen-containing aromatic heterocyclic skeleton and having at least one acidic group.
  • X represents a monodentate or bidentate ligand.
  • mX represents an integer of 0 to 3.
  • CI represents the counter ion as necessary to neutralize the charge.
  • mY represents an integer of 0-2.
  • the ligand LD is classified as a donor ligand and is represented by the following formula (DL).
  • Z represents a nonmetallic atom group necessary for forming a ring, and the ring-constituting atom may include a coordinating atom coordinated with M described above.
  • D represents a coordination atom selected from an oxygen atom and a nitrogen atom that is coordinated to M.
  • E represents a single bond, —O—, —N (R 1 ) —, —C (R 2 ) 2 —, —C ( ⁇ R 3 ) —, —C ( ⁇ O) —, —C ( ⁇ NR 1 ).
  • — Or —C (R 2 ) 2 —C ( ⁇ O) — is represented.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group or an aryloxy group
  • R 3 represents an alkylidene group, an alkenylidene group or a cycloalkylidene group.
  • Two R 2 may be the same or different from each other.
  • R represents a substituent.
  • m and n each independently represents an integer of 1 or more. However, at least one coordinating atom is the coordinating atom A, and at least one of the n Rs is a substituent W, and D does not form a ring with E or Z.
  • the coordination atom A is an oxygen atom or a nitrogen atom having no unsaturated bond
  • the substituent W is substituted by a monovalent alkyl group having 2 or more carbon atoms or a substituent having the alkyl group.
  • n is preferably an integer of 1 to 3, and more preferably 1 or 2.
  • n is preferably an integer of 1 to 3, more preferably 1 or 2, and still more preferably 1.
  • the ligand LD of the present invention has at least one coordination atom A.
  • the coordination atom A is an oxygen atom or a nitrogen atom having no unsaturated bond.
  • “Unsaturated bond” means that, for example, an oxygen atom is a carbonyl (> C ⁇ O), and a nitrogen atom is a neighboring atom such as a nitrogen atom ( ⁇ N—) in a pyridine ring. This means that it is not bonded to the bond with an unsaturated bond.
  • the bond ( ⁇ ) on the right side is substituted with a hydrogen atom or a substituent.
  • the ligand LD is a bidentate or tridentate ligand, it can have 1 to 3 coordinating atoms A, but in order to enhance the coordination power with the metal M, 1 Alternatively, it is preferable that two coordination atoms be the coordination atom A.
  • the coordination atom D is bonded (-ED) through the rings Z and E.
  • E represents a single bond, —O—, —N (R 1 ) —, —C (R 2 ) 2 —, —C ( ⁇ R 3 ) —, —C ( ⁇ O) —, —C ( ⁇ NR 1 ).
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group or an aryloxy group
  • R 3 represents an alkylidene group, an alkenylidene group or a cycloalkylidene group.
  • Two R 2 may be the same or different from each other.
  • R represents a substituent.
  • the number of carbon atoms of the alkyl group in R 1 and R 2 is preferably 1 to 6, more preferably 1 to 4, more preferably 1 or 2, and examples thereof include methyl, ethyl, n-propyl, isopropyl, and n-hexyl. .
  • the number of carbon atoms of the aryl group in R 1 and R 2 is preferably 6 to 12, more preferably 6 or 7, and further preferably 6, for example, phenyl, tolyl, and naphthyl.
  • the heteroaryl group in R 1 and R 2 preferably has 0 to 12 carbon atoms, more preferably 0 to 6 carbon atoms, and still more preferably 1 to 5 carbon atoms.
  • the ring-constituting hetero atom of the heteroaryl group is preferably an oxygen atom, a nitrogen atom or a sulfur atom, and preferably a 5-membered ring or 6-membered ring.
  • the heteroaromatic ring of the heteroaryl group include a thiophene ring, a furan ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a pyridine ring, and a pyrazine ring.
  • the number of carbon atoms of the alkoxy group in R 1 and R 2 is preferably 1 to 6, more preferably 1 to 4, and even more preferably 1 or 2, such as methoxy, ethoxy, n-propoxy, isopropoxy, n-hexyloxy. Can be mentioned.
  • the aryloxy group in R 1 and R 2 preferably has 6 to 12 carbon atoms, more preferably 6 to 12 carbon atoms, still more preferably 6 to 8 carbon atoms, and examples thereof include phenoxy, tolyloxy, and naphthoxymethoxy.
  • R 1 and R 2 are preferably a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
  • the alkylidene group in R 3 preferably has 1 to 6 carbon atoms, more preferably 1 to 4, and examples thereof include methylidene, ethylidene, n-propylidene, isopropylidene, and n-hexylidene.
  • the number of carbon atoms of the alkenylidene group in R 3 is preferably 2 to 6, more preferably 2 to 4, and examples thereof include vinylidene arylidene.
  • the number of carbon atoms of the cycloalkylidene group in R 3 is preferably 3 to 8, more preferably 3 to 6, and further preferably 5 or 6, and examples thereof include cyclopropylidene, cyclopentylidene, and cyclohexylidene.
  • E is preferably a single bond, —O—, —N (R 1 ) —, —C (R 2 ) 2 — or —C (R 2 ) 2 —C ( ⁇ O) —, and is preferably a single bond, —O—, —C (R 2 ) 2 — or —C (R 2 ) 2 —C ( ⁇ O) — is more preferable.
  • the ligand LD has a substituent W.
  • the substituent W is an ethenyl group, an ethynyl group, an aryl group, or a heteroaryl group substituted with a monovalent alkyl group having 2 or more carbon atoms or a group having the alkyl group.
  • the “group having an alkyl group” is a group containing a monovalent alkyl group having 2 or more carbon atoms in any part, for example, 2- (monovalent alkyl having 2 or more carbon atoms).
  • An ethenyl group, a 2- (monovalent alkyl having 2 or more carbon atoms) ethynyl group, an aryl group substituted with a monovalent alkyl group having 2 or more carbon atoms, or a monovalent alkyl group having 2 or more carbon atoms was substituted
  • an ethenyl group, an ethynyl group, an aryl group or a heteroaryl group substituted with “the group having the alkyl group” is exemplified by, for example, an ethenyl group substituted with the “group having the alkyl group”.
  • group having a group is the “2- (monovalent alkyl having 2 or more carbon atoms) ethenyl group” in the first example, 2- [2- (monovalent alkyl having 2 or more carbon atoms) ethenyl
  • the monovalent alkyl group having 2 or more carbon atoms is a linear or branched alkyl group, preferably having 2 to 18 carbon atoms, more preferably 4 to 18 carbon atoms, still more preferably 6 to 18 carbon atoms, and particularly preferably 8 to 18 carbon atoms.
  • the substituent W is 1) in the 2-position, “an alkyl group having 2 or more carbon atoms, an alkylamino group having 2 or more carbon atoms, an alkoxy group having 2 or more carbon atoms, or an alkylthio group having 2 or more carbon atoms, An aryl group or a heteroaryl group ”, an ethenyl group or an ethynyl group, or 2)“ an alkyl group having 2 or more carbon atoms, an alkylamino group having 2 or more carbon atoms, an alkoxy group having 2 or more carbon atoms or a carbon atom ”
  • an alkylthio group having a number of 2 or more is substituted, ”an aryl group or a heteroaryl group is preferable.
  • Preferred substituents W are represented by the following formulas (W-1) to (W-6).
  • R W represents a group having a monovalent alkyl or said alkyl group having at least 2 carbon atoms
  • w1 represents an integer of 1 to 5
  • w2 is an integer of 1-3.
  • substituted having the alkyl group is the group described above, and the preferred range is also the same.
  • R W is alkyl group having 2 or more carbon atoms, having two or more alkoxy group having a carbon number 2 or more alkylthio groups or having two or more alkyl amino group carbon atoms preferred.
  • R W represents a bond, an ethynyl group, a position adjacent to a position where there is ethenyl group (alpha-position) or preferably substituted next to it (beta-position).
  • R in the said formula (DL) has at least 1 substituent W, R represents another substituent.
  • R represents another substituent.
  • examples of the substituent in R include the substituent T described later. However, among the substituents T, substituents other than the acidic groups described later are preferable.
  • Z represents a nonmetallic atom group necessary for forming a ring.
  • the ring formed by Z may be any ring.
  • an alicyclic ring, an aromatic ring, a non-aromatic heterocycle, a heteroaromatic ring, and a ring in which another ring or the same ring is condensed to these rings can be mentioned.
  • the ring formed by Z is preferably an aromatic ring or a heteroaromatic ring, or a ring obtained by condensing an aromatic ring or a heteroaromatic ring to these rings, and is preferably a 5- or 6-membered aromatic ring or a heteroaromatic ring.
  • the aromatic ring is preferably a benzene ring
  • the heteroaromatic ring is preferably a nitrogen-containing heteroaromatic ring, such as a pyrrole ring, pyrazole ring, imidazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, indole ring,
  • a furan ring is mentioned, A pyrrole ring and a pyridine ring are preferable.
  • the coordination atoms on both sides are the coordination atoms A rather than in the middle rather than all three being coordination atoms A.
  • a ligand represented by any of the following formulas (DL-1) to (DL-3) is more preferred, and the following formula (DL-1a),
  • the h ligand represented by any of (DL-1b), (DL-2a), (DL-2b), (DL-3a) or (DL-3b) is more preferable.
  • R and n have the same meanings as R and n in the formula (DL).
  • n ′ represents an integer of 0 or more.
  • Za, Zb, Zb ′ and Zc represent a nonmetallic atom group necessary for forming a ring.
  • the bond connecting Da to the carbon atom to which -E1-D1 is bonded the bond connecting the carbon atom to which D2 or D2 'is bonded to the carbon atom to which D3 is bonded, and -E1-D1 or -E1'-D1'
  • the bond connecting the carbon atom to which is bonded to Da may be a single bond or a double bond.
  • D1 to D3, D1 ′, D2 ′ and Da each independently represent a coordination atom coordinated to M
  • D1 to D3, D1 ′ and D2 ′ are atoms selected from an oxygen atom and a nitrogen atom
  • Da is an atom selected from an oxygen atom, a nitrogen atom and a carbon atom.
  • E1 and E1 ′ are each independently a single bond, —O—, —N (R 1 ) —, —C (R 2 ) 2 —, —C ( ⁇ R 3 ) —, —C ( ⁇ O) —, —C ( ⁇ NR 1 ) — or —C (R 2 ) 2 —C ( ⁇ O) — is represented.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group or an aryloxy group
  • R 3 represents an alkylidene group, an alkenylidene group or a cycloalkylidene group.
  • Two R 2 may be the same or different from each other.
  • d represents 0 or 1; When d is 1, Zb and Zb ′ may be bonded to each other to form a ring.
  • n and n ′ are each an integer of 2 or more, a plurality of R may be bonded to each other to form a ring.
  • the ring formed by Za and Zc is preferably a heteroaromatic ring having an oxygen atom or a nitrogen atom, and preferably a 5- or 6-membered ring.
  • examples of such rings include pyrrole ring, furan ring, pyridine ring, pyrazole ring, imidazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, and indole ring, and pyrrole ring and pyridine ring are preferable. .
  • the rings formed by Zb and Zb ′ may be the same or different, and are preferably a benzene ring or a ring in which a hetero ring or an aromatic ring is condensed to a benzene ring, and more preferably a benzene ring.
  • D1 and D1 ′, D2 and D2 ′ may be the same as or different from each other.
  • R ⁇ represents a substituent, and examples of the substituent include the substituent T described later, and an alkyl group is preferable.
  • D3 is preferably —O— or —N (R 1 ) —, more preferably —N (R 1 ) —.
  • R 1 has the same meaning as R 1 of —N (R 1 ) — in E, and the preferred range is also the same.
  • n ′ is preferably an integer of 0 to 2, and preferably 0 or 1.
  • R has the same meaning as R in the formula (DL).
  • n1 represents an integer of 1 to 4
  • n2 represents an integer of 1 to 3
  • n3 represents 1 or 2.
  • n1 ′ represents an integer of 0 to 4.
  • D1 to D3, D1 ′, D2 ′, Da1 and Da2 each independently represent a coordination atom coordinated to M, and D1 to D3, D1 ′ and D2 ′ are atoms selected from an oxygen atom and a nitrogen atom.
  • Da1 and Da2 are atoms selected from an oxygen atom, a nitrogen atom and a carbon atom.
  • E1 and E1 ′ are each independently a single bond, —O—, —N (R 1 ) —, —C (R 2 ) 2 —, —C ( ⁇ R 3 ) —, —C ( ⁇ O) —, —C ( ⁇ NR 1 ) — or —C (R 2 ) 2 —C ( ⁇ O) — is represented.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group or an aryloxy group
  • R 3 represents an alkylidene group, an alkenylidene group or a cycloalkylidene group.
  • Two R 2 may be the same or different from each other.
  • n1 to n3 and n1 ′ are each an integer of 2 or more, a plurality of R may be bonded to each other to form a ring.
  • the ligands represented by the above formulas (DL-1) to (DL-3) are preferable, and the formula (DL- The ligand represented by 3) is more preferable.
  • the ligand represented by the formula (DL-1) is preferably a ligand represented by the formula (DL-1a), and the ligand represented by the formula (DL-3) is represented by the formula (DL- The ligand represented by 3a) is preferred.
  • ligands LD are disclosed in US Patent Application Publication No. 2005/0081911 A1, JP 2010-13500 A, JP 2011-195745 A, US Patent Application Publication No. 2010/0258175 A1, Patent No. No. 4298799, Angew. Chem. Int. Ed. , 2011, 50, 2054 to 2058, or the methods described in these references or references, or a method according to these methods.
  • the ligand LA represents a bidentate or tridentate ligand having a nitrogen-containing aromatic heterocyclic skeleton and having at least one acidic group. It is preferable to have at least two acidic groups.
  • the acidic group is a substituent having a dissociative proton, and pKa is 11 or less.
  • an acid group that is an acid group such as a carboxy group, a phosphonyl group, a phosphoryl group, a sulfo group, or a boric acid group, or a group having any of these, preferably a carboxy group or It is a group having this.
  • the acidic group may take a form of releasing a proton and dissociating, or may be a salt.
  • the acidic group may be a group in which an acid group is bonded via a linking group, and examples of the linking group include an alkylene group.
  • the alkylene group preferably has 1 to 4 carbon atoms.
  • the counter ion when the salt is converted is not particularly limited, and examples thereof include positive ions represented by the counter ion CI in the above-described formula (I).
  • an acidic group that does not involve a linking group is preferable from the viewpoint of electron transfer, and a carboxy group or a salt thereof is particularly preferable.
  • the ligand LA is preferably a ligand represented by any of the following formulas (AL-1) to (AL-6).
  • Zd, Ze and Zf are each independently a benzene ring, a pyrrole ring, an imidazole ring, a pyrazole ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a triazole ring, an oxazole ring, a triazine ring, a thiazole ring, an isothiazole ring, Oxazole ring, isoxazole ring, furan ring, thiophene ring, pyrrolidine ring, piperidine ring, morpholine ring, piperazine ring, tetrahydrofuran ring, tetrahydropyran ring, 4H-pyran ring, 1,4-dihydropyridine ring, tetradehydromorpholine ring or these Represents a benzene condensed ring of the ring.
  • A represents an acidic group.
  • Q 1 to Q 4 each independently represents a carbon atom or a nitrogen atom
  • Db 1 to Db 3 each independently represents a nitrogen atom having a lone electron pair, an anionic nitrogen atom, or an anionic carbon atom.
  • R A represents a substituent.
  • a1, a3, b1 and b3 each independently represent an integer of 0 to 4
  • a2 and b2 each independently represent an integer of 0 to 3
  • c represents 0 or 1.
  • the ligands represented by the formulas (AL-1) to (AL-6) have at least one acidic group.
  • R A examples include the substituent T described later.
  • an electron withdrawing group is preferable.
  • the electron-withdrawing group is preferably a group having a Hammett ⁇ p value of 0 or more.
  • R A is preferably an aryl group or a heteroaryl group, and the aryl group is preferably a phenyl group which may have a substituent.
  • the heteroaryl group the heteroaryl group is a 5- or 6-membered ring.
  • the ring-constituting hetero atom is preferably a nitrogen atom or a sulfur atom.
  • the heterocycle may be condensed with an aromatic ring or a heterocycle.
  • R A may have a substituent, and examples of such a substituent include the substituent T described later.
  • R A is more preferably a phenyl group, a thienyl group, a pyrimidinyl group, or a benzothiazolyl group, which may have a substituent.
  • C is preferably 1.
  • the ligand represented by the formula (AL-1) is particularly preferable.
  • the ligand LA can be easily synthesized by the same method as the ligand LD.
  • the ligand X represents a monodentate or bidentate ligand.
  • An acyloxy group preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy, benzoyloxy, salicylic acid, glycyloxy, N, N-dimethylglycyloxy, oxalylene (—OC (O) C (O) O—), etc.
  • An acylthio group (preferably an acylthio group having 1 to 20 carbon atoms, such as acetylthio and benzoylthio), a thioacyloxy group (preferably a thioacyloxy group having 1 to 20 carbon atoms, such as a thioacetyloxy group (CH 3 C (S) O—) etc.)), thioacylthio groups (preferably thioacylthio groups having 1 to 20 carbon atoms, such as thioacetylthio (CH 3 C (S) S—), thiobenzoylthio (PhC (S) S) -) Etc.)), an acylaminooxy group (preferably an acylaminooxy group having 1 to 20 carbon atoms, such as N- Methylbenzoylaminooxy (PhC (O) N (CH 3 ) O—), acetylaminooxy (CH 3 C (O) NHO—), etc.)),
  • Alkylthio groups such as methylthio and ethylenedithio), arylthio groups (preferably arylthio groups having 6 to 20 carbon atoms such as phenylthio, 1,2-phenylenedithio and the like), alkoxy groups (preferably having 1 to 20 carbon atoms) Alkoxy groups such as methoxy and aryloxy groups (preferably aryl groups having 6 to 20 carbon atoms)
  • the ligand X is preferably an acyloxy group, a thioacylthio group, an acylaminooxy group, a dithiocarbamate group, a dithiocarbonate group, a trithiocarbonate group, a thiocyanate group, an isothiocyanate group, a cyanate group, an isocyanate group, a cyano group, A ligand coordinated by a group selected from the group consisting of an alkylthio group, an arylthio group, an alkoxy group and an aryloxy group, or a ligand consisting of a halogen atom, carbonyl, 1,3-diketone or thiourea, More preferably, a ligand coordinated by a group selected from the group consisting of acyloxy group, acylaminooxy group, dithiocarbamate group, thiocyanate group, isothiocyanate group, cyanate group, isocyanate group, cyano
  • the ligand X contains an alkyl group, an alkenyl group, an alkynyl group, an alkylene group or the like, these may be linear or branched, and may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group, a cycloalkyl group, etc. may be substituted or unsubstituted, and may be monocyclic or condensed.
  • X is a bidentate ligand
  • X is an acyloxy group, an acylthio group, a thioacyloxy group, a thioacylthio group, an acylaminooxy group, a thiocarbamate group, a dithiocarbamate group, a thiocarbonate group, a dithiocarbonate group
  • X is a monodentate ligand
  • X is a ligand coordinated by a group selected from the group consisting of a thiocyanate group, an isothiocyanate group, a cyanate group, an isocyanate group, a cyano group, an alkylthio group, and an arylthio group, or
  • a ligand comprising a halogen atom, carbonyl, dialkyl ketone, or thiourea is preferred.
  • X is preferably NCS ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , CN ⁇ , NCO ⁇ or H 2 O.
  • M- M is a central metal of the metal complex dye and represents Fe 2+ , Ru 2+ or Os 2+, and Ru 2+ is preferred in the present invention.
  • the valence of M may be changed by an oxidation-reduction reaction with surrounding materials.
  • -Charge neutralization counter ion CI- CI represents a counter ion when a counter ion is required to neutralize the charge.
  • a dye is a cation or an anion, or has a net ionic charge, depends on the metal, ligand and substituent in the metal complex dye.
  • the metal complex dye represented by the formula (I) may be dissociated and have a negative charge because the substituent has a dissociable group. In this case, the charge of the entire metal complex dye represented by the formula (I) is electrically neutralized by CI.
  • the counter ion CI is a positive counter ion
  • the counter ion CI is an inorganic or organic ammonium ion (eg, tetraalkylammonium ion, pyridinium ion, etc.), phosphonium ion (eg, tetraalkylphosphonium ion, alkyltriphenylphosphonium ion). Etc.), alkali metal ions or protons.
  • the counter ion CI may be an inorganic anion or an organic anion.
  • a halogen anion eg, fluoride ion, chloride ion, bromide ion, iodide ion, etc.
  • substituted aryl sulfonate ion eg, p-toluene sulfonate ion, p-chlorobenzene sulfonate ion, etc.
  • aryl disulfone Acid ions for example, 1,3-benzenedisulfonate ion, 1,5-naphthalenedisulfonate ion, 2,6-naphthalenedisulfonate ion, etc.
  • alkyl sulfate ions for example, methyl sulfate ion
  • sulfate ions thiocyanate ions Perchlorate ion
  • an ionic polymer or another dye having a charge opposite to that of the dye may be used as the charge balance counter ion, and a metal complex ion (for example, bisbenzene-1,2-dithiolatonickel (III)) can also be used. is there.
  • CI is halogen ion, aryl sulfonate ion, aryl disulfonate ion, alkyl sulfate ion, sulfate ion, thiocyanate ion, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, acetate ion.
  • Inorganic or organic ammonium ions such as trifluoromethanesulfonate ion, ammonium ion, alkali metal ion or hydrogen ion, particularly tetrabutylammonium ion, sodium ion or proton are preferred.
  • mY- MX in the formula (I) represents 0 to 3, preferably 0 or 1.
  • MY in the formula (I) represents 0 to 2, and 0 is preferable.
  • the metal complex dye of the present invention is not limited thereto.
  • the —CO 2 H and ammonio groups of the ligand are non-dissociated or are shown with the counter ion omitted, but the counter ion (CI in the formula (I)) is , tetrabutyl ammonium ion (+ NBu 4) and sodium ion, PF 6 - or Cl - or the like may be halogen ion, it illustrates a representative.
  • the compound represented by the formula (I) of the present invention is M (LD) (LA) (X) mX. (CI) mY, and M represents Ru 2+ as Ru II.
  • the ligand LD is the exemplified tridentate ligand LD-1-1
  • the ligand LA is the exemplified tridentate ligand LA-1-1
  • both mX and mY are 0.
  • the ligand LD is the exemplified tridentate ligand LD-2-7
  • the ligand LA is the exemplified tridentate ligand LA-1-1
  • mX is 0, mY is 2
  • X is In the case of Cl 2 — , it is represented as Ru II (LD-2-7) (LA-1-1) Cl 2 .
  • This is the metal complex dye of Example 2 below.
  • the ligand LD is the bidentate ligand LD-3-5 exemplified above
  • the ligand LA is the exemplified tridentate ligand LA-1-1 exemplified above
  • X is NCS
  • mX is 1
  • mY is In the case of 0, it is represented as Ru II (LD-3-5) (LA-1-1) (NCS). This is the metal complex dye of Example 3 below.
  • the metal complex dyes of the present invention are disclosed in US Patent Application Publication No. 2005/0081911 A1, JP 2010-13500 A, JP 2011-195745 A, JP 2001-291534 A, Chem. Commun. , 2009, 5844 to 5846 and the methods described in the literatures or references described therein, or methods according to these methods.
  • the maximum absorption wavelength in the solution is preferably in the range of 300 to 1000 nm, more preferably in the range of 350 to 950 nm, and particularly preferably in the range of 370 to 900 nm.
  • the conductive support is preferably a support made of glass or plastic having a conductive film layer on the surface, such as a metal, which is conductive in itself.
  • the plastic support include a transparent polymer film described in paragraph No. 0153 of JP-A No. 2001-291534.
  • the support in addition to glass and plastic, ceramic (Japanese Patent Laid-Open No. 2005-135902) or conductive resin (Japanese Patent Laid-Open No. 2001-160425) may be used.
  • the surface may be provided with a light management function. For example, an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated And a light guide function described in JP-A-2002-260746.
  • the thickness of the conductive film layer is preferably 0.01 to 30 ⁇ m, more preferably 0.03 to 25 ⁇ m, and particularly preferably 0.05 to 20 ⁇ m.
  • the conductive support is substantially transparent.
  • substantially transparent means that the light transmittance is 10% or more, preferably 50% or more, particularly preferably 80% or more.
  • a glass or plastic coated with a conductive metal oxide is preferable.
  • the metal oxide tin oxide is preferable, and indium-tin oxide and fluorine-doped oxide are particularly preferable.
  • the coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of glass or plastic support. When a transparent conductive support is used, light is preferably incident from the support side.
  • the semiconductor fine particles are preferably metal chalcogenide (for example, oxide, sulfide, selenide, etc.) or perovskite fine particles.
  • metal chalcogenide for example, oxide, sulfide, selenide, etc.
  • perovskite fine particles Preferred examples of the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, tantalum oxide, cadmium sulfide, cadmium selenide, and the like.
  • Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide (titania), zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
  • titania examples include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, nanowires, and nanorods may be mixed with titania fine particles or used as a semiconductor electrode.
  • the particle diameters of the semiconductor fine particles are 0.001 to 1 ⁇ m as primary particles and 0.01 to 100 ⁇ m as the average particle diameter of the dispersion as the average particle diameter using the diameter when the projected area is converted into a circle. preferable.
  • Examples of the method for coating the semiconductor fine particles on the conductive support include a wet method, a dry method, and other methods.
  • the semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed.
  • the surface area is preferably 10 times or more, more preferably 100 times or more the projected area.
  • the preferred thickness of the photoreceptor layer which is a semiconductor layer, varies depending on the use of the device, but is typically 0.1 to 100 ⁇ m. When used as a dye-sensitized solar cell, the thickness is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m.
  • the semiconductor fine particles may be fired at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours in order to adhere the particles to each other after being applied to the support. When glass is used as the support, the film forming temperature is preferably 60 to 400 ° C.
  • the coating amount of semiconductor fine particles per 1 m 2 of support is preferably 0.5 to 500 g, more preferably 5 to 100 g.
  • the total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, and particularly preferably 0.1 to 10 mmol per 1 m 2 of the support.
  • the amount of the metal complex dye of the present invention is preferably 5 mol% or more.
  • the adsorption amount of the dye to the semiconductor fine particles is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles. By using such a dye amount, the sensitizing effect in the semiconductor fine particles can be sufficiently obtained.
  • the counter ion of the specific metal complex dye is not particularly limited, and examples thereof include alkali metal ions and quaternary ammonium ions.
  • the surface of the semiconductor fine particles may be treated with amines.
  • amines include pyridines (for example, 4-tert-butylpyridine, polyvinylpyridine) and the like. These may be used as they are in the case of a liquid, or may be used by dissolving in an organic solvent.
  • the photoelectric conversion element for example, the photoelectric conversion element 10
  • the dye-sensitized solar cell for example, the dye-sensitized solar cell 20
  • at least the metal complex dye of the present invention is used.
  • the metal complex dye of the present invention may be used in combination with another dye.
  • the dye used in combination include Ru complex dyes described in JP-A-7-500630 (particularly the dyes synthesized in Examples 1 to 19 on page 5, lower left column, line 5 to page 7, upper right column, line 7). ), Ru complex dyes described in JP-T-2002-512729 (especially dyes synthesized in Examples 1 to 16 from the third line to the 29th page and the 23rd line from the bottom of page 20), JP-A-2001- Ru complex dyes described in Japanese Patent No. 59062 (particularly dyes described in paragraphs 0087 to 0104), Ru complex dyes described in Japanese Patent Application Laid-Open No.
  • Ru complex dyes described in JP2012-012570A particularly dyes described in paragraphs 0095 to 0103
  • Ru complex dyes described in JP2013-084594A particularly paragraph numbers
  • Dyes described in JP-A-11-214730 squarylium cyanine dyes described in JP-A-11-214730 (particularly dyes described in paragraphs 0036-0047)
  • squarylium-cyanine dyes described in JP2012-144688A In particular, as described in paragraph numbers 0039 to 0046 and Dyes
  • squarylium cyanine dyes described in JP 2012-84503 A particularly dyes described in paragraph Nos.
  • the dye used in combination is preferably a Ru complex dye, a squarylium cyanine dye, or an organic dye.
  • the ratio of the mass of the metal complex dye of the present invention to the mass of the other dye is preferably 95/5 to 10/90, and 95/5 to 50/50. Is more preferable, 95/5 to 60/40 is further preferable, 95/5 to 65/35 is particularly preferable, and 95/5 to 70/30 is most preferable.
  • the charge transfer layer used in the photoelectric conversion element of the present invention is a layer having a function of replenishing electrons to the dye oxidant, and is provided between the light receiving electrode and the counter electrode (counter electrode).
  • the charge transfer layer includes an electrolyte.
  • the electrolyte include a liquid electrolyte obtained by dissolving a redox couple in an organic solvent, a so-called gel electrolyte obtained by impregnating a polymer matrix obtained by dissolving a redox couple in an organic solvent, and a molten salt containing the redox couple. .
  • a liquid electrolyte is preferable. Nitrile compounds, ether compounds, ester compounds and the like are used as the organic solvent for the liquid electrolyte, but nitrile compounds are preferred, and acetonitrile and methoxypropionitrile are particularly preferred.
  • iodine and iodide iodide salt, ionic liquid is preferable, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, methylpropylimidazolium iodide are preferable
  • alkyl viologen for example, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate
  • polyhydroxybenzenes for example, hydroquinone, naphthohydroquinone, etc.
  • divalent And trivalent iron complexes for example, red blood salt and yellow blood salt
  • divalent and trivalent cobalt complexes and the like.
  • the cobalt complex is preferably a complex represented by the following formula (CC).
  • LL represents a bidentate or tridentate ligand.
  • X represents a monodentate ligand.
  • ma represents an integer of 0 to 3.
  • mb represents an integer of 0-6.
  • CI represents a counter ion when a counter ion is required to neutralize the charge.
  • CI includes CI in the formula (I).
  • LL is preferably a ligand represented by the following formula (LC).
  • X LC1 and X LC3 each independently represent a carbon atom or a nitrogen atom.
  • X LC1 N
  • X LC3 N
  • X LC1 N
  • X LC3 N
  • Z LC1 , Z LC2 and Z LC3 each independently represent a nonmetallic atom group necessary for forming a 5-membered ring or a 6-membered ring.
  • Z LC1 , Z LC2 and Z LC3 may have a substituent and may be closed with an adjacent ring via the substituent.
  • q represents 0 or 1; Examples of the substituent include the substituent T described later.
  • the carbon atom at the position where X LC3 is bonded to the 5-membered or 6-membered ring formed by Z LC2 is a hydrogen atom or a substituent other than the heterocyclic group formed by Z LC3.
  • Join
  • X is preferably a halogen ion.
  • the ligand represented by the above formula (LC) is more preferably a ligand represented by the following formulas (LC-1) to (LC-4).
  • R LC1 to R LC11 each independently represents a substituent.
  • q1, q2, q6 and q7 each independently represents an integer of 0 to 4.
  • q3, q5, q10 and q11 each independently represents an integer of 0 to 3.
  • q4 represents an integer of 0-2.
  • examples of the substituent for R LC1 to R LC11 include an aliphatic group, an aromatic group, a heterocyclic group, and the like. Specific examples of the substituent include alkyl groups, alkoxy groups, alkylthio groups, aryl groups, aryloxy groups, arylthio groups, and heterocyclic rings.
  • Preferred examples include alkyl groups (eg methyl, ethyl, n-butyl, n-hexyl, isobutyl, sec-butyl, t-butyl, n-dodecyl, cyclohexyl, benzyl etc.), aryl groups (eg phenyl, tolyl, naphthyl).
  • alkyl groups eg methyl, ethyl, n-butyl, n-hexyl, isobutyl, sec-butyl, t-butyl, n-dodecyl, cyclohexyl, benzyl etc.
  • aryl groups eg phenyl, tolyl, naphthyl
  • alkoxy groups eg methoxy, ethoxy, isopropoxy, butoxy etc.
  • alkylthio groups eg methylthio, n-butylthio, n-hexylthio, 2-ethylhexylthio etc.
  • aryloxy groups eg phenoxy, naphthoxy etc.
  • arylthio groups eg, phenylthio, naphthylthio, etc.
  • heterocyclic groups eg, 2-thienyl, 2-furyl, etc.
  • cobalt complex represented by the formula (LC) include the following complexes.
  • iodine and iodide When a combination of iodine and iodide is used as the electrolyte, it is preferable to further use an iodine salt of a 5-membered or 6-membered nitrogen-containing aromatic cation.
  • organic solvent for dissolving the redox couple these are aprotic polar solvents (for example, acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone, etc. ) Is preferred.
  • aprotic polar solvents for example, acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone, etc.
  • the polymer used for the matrix of the gel electrolyte include polyacrylonitrile and polyvinylidene fluoride.
  • the molten salt include those imparted with fluidity at room temperature by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (such as lithium acetate and lithium perchlorate). It is
  • aminopyridine compounds As an additive to the electrolyte, in addition to the aforementioned 4-tert-butylpyridine, aminopyridine compounds, benzimidazole compounds, aminotriazole compounds and aminothiazole compounds, imidazole compounds, aminotriazine compounds, urea derivatives, Amide compounds, pyrimidine compounds and nitrogen-free heterocycles can be added.
  • a method of controlling the moisture of the electrolytic solution may be taken.
  • Preferred methods for controlling moisture include a method for controlling the concentration and a method in which a dehydrating agent is allowed to coexist.
  • an inclusion compound of iodine and cyclodextrin may be used, and conversely, a method of constantly supplying water may be used.
  • Cyclic amidine may be used, and an antioxidant, hydrolysis inhibitor, decomposition inhibitor, and zinc iodide may be added.
  • a molten salt may be used as the electrolyte, and preferred molten salts include ionic liquids containing imidazolium or triazolium type cations, oxazolium-based, pyridinium-based, guanidinium-based, and combinations thereof. These cationic systems may be combined with specific anions. Additives may be added to these molten salts. You may have a liquid crystalline substituent. Further, a quaternary ammonium salt-based molten salt may be used.
  • molten salt other than these for example, flowability at room temperature was imparted by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (for example, lithium acetate, lithium perchlorate, etc.). And the like.
  • the electrolyte may be quasi-solidified by adding a gelling agent to an electrolyte solution composed of an electrolyte and a solvent for gelation.
  • a gelling agent include organic compounds having a molecular weight of 1000 or less, Si-containing compounds having a molecular weight in the range of 500 to 5000, organic salts made of a specific acidic compound and a basic compound, sorbitol derivatives, and polyvinylpyridine.
  • a method of confining the matrix polymer, the crosslinkable polymer compound or monomer, the crosslinking agent, the electrolyte, and the solvent in the polymer may be used.
  • a matrix polymer a polymer having a nitrogen-containing heterocyclic ring in the main chain or side chain repeating unit, a crosslinked product obtained by reacting these with an electrophilic compound, a polymer having a triazine structure, or having a ureido structure
  • Polymers liquid crystalline compounds, ether-bonded polymers, polyvinylidene fluoride, methacrylate / acrylate, thermosetting resins, cross-linked polysiloxane, polyvinyl alcohol (PVA), polyalkylene glycol and dextrin, etc.
  • Examples include inclusion compounds, systems to which oxygen-containing or sulfur-containing polymers are added, and natural polymers.
  • An alkali swelling polymer, a polymer having a compound capable of forming a charge transfer complex between a cation moiety and iodine in one polymer may be added to these.
  • a system including a cross-linked polymer obtained by reacting a functional group such as a hydroxyl group, an amino group or a carboxyl group with one or more functional isocyanate as one component may be used.
  • a crosslinking method in which a crosslinked polymer composed of a hydrosilyl group and a double bond compound, polysulfonic acid, polycarboxylic acid, or the like is reacted with a divalent or higher valent metal ion compound may be used.
  • Examples of the solvent that can be preferably used in combination with the quasi-solid electrolyte include a specific phosphate ester, a mixed solvent containing ethylene carbonate, and a solvent having a specific dielectric constant.
  • the liquid electrolyte solution may be held in a solid electrolyte membrane or pores, and preferred methods thereof include conductive polymer membranes, fibrous solids, and cloth solids such as filters.
  • a solid charge transport layer such as a p-type semiconductor or a hole transport material, for example, CuI, CuNCS, or the like can be used. Also, Nature, vol. 486, p. The electrolyte described in 487 (2012) or the like may be used.
  • An organic hole transport material may be used as the solid charge transport layer.
  • the hole transport layer is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole and polysilane, and a spiro compound in which two rings share a central element having a tetrahedral structure such as C or Si, or an aromatic such as triarylamine. Group amine derivatives, triphenylene derivatives, nitrogen-containing heterocyclic derivatives, and liquid crystalline cyano derivatives.
  • the total concentration is preferably 0.01 mol / L or more, more preferably 0.1 mol / L or more, and particularly preferably 0.3 mol / L or more.
  • the upper limit of the total concentration of the redox couple is not particularly limited, but is usually about 5 mol / L.
  • a coadsorbent In the photoelectric conversion element of this invention, it is preferable to use a coadsorbent with the metal complex dye of this invention or the pigment
  • a co-adsorbent a co-adsorbent having at least one acidic group (preferably a carboxyl group or a salt group thereof) is preferable, and examples thereof include a compound having a fatty acid or a steroid skeleton.
  • the fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and examples thereof include butanoic acid, hexanoic acid, octanoic acid, decanoic acid, hexadecanoic acid, dodecanoic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid.
  • Examples of the compound having a steroid skeleton include cholic acid, glycocholic acid, chenodeoxycholic acid, hyocholic acid, deoxycholic acid, lithocholic acid, ursodeoxycholic acid and the like. Preferred are cholic acid, deoxycholic acid and chenodeoxycholic acid, and more preferred are chenodeoxycholic acid.
  • a preferred co-adsorbent is a compound represented by the following formula (CA).
  • R A1 represents a substituent having an acidic group.
  • R A2 represents a substituent.
  • nA represents an integer of 0 or more.
  • R A1 is preferably a carboxyl group or an alkyl group substituted with a sulfo group or a salt thereof, —CH (CH 3 ) CH 2 CH 2 CO 2 H, —CH (CH 3 ) CH 2 CH 2 CONHCH More preferred is 2 CH 2 SO 3 H.
  • R A2 examples include a substituent T described later, and among them, an alkyl group, a hydroxy group, an acyloxy group, an alkylaminocarbonyloxy group, and an arylaminocarbonyloxy group are preferable, and an alkyl group, a hydroxy group, and an acyloxy group are more preferable.
  • nA is preferably 2 to 4.
  • These specific compounds include the compounds exemplified as the compounds having the steroid skeleton described above.
  • the co-adsorbent of the present invention has an effect of suppressing inefficient association of dyes by adsorbing to semiconductor fine particles and an effect of preventing reverse electron transfer from the surface of the semiconductor fine particles to the redox system in the electrolyte.
  • the amount of coadsorbent used is not particularly limited, but it is preferably 1 to 200 mol, more preferably 10 to 150 mol, and particularly preferably 20 to 50 mol with respect to 1 mol of the dye. It is preferable from the viewpoint of being effectively expressed.
  • ⁇ Substituent T> In this specification, about the display of a compound (a complex and a pigment
  • a substituent that does not specify substitution / non-substitution means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution.
  • Preferred substituents include the following substituent T. Further, in the present specification, what is described only as a substituent refers to the substituent T, and when each group, for example, an alkyl group is only described, Preferred ranges and specific examples of the corresponding group of the substituent T are applied.
  • substituent T examples include the following.
  • An alkyl group preferably having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, trifluoromethyl, etc.
  • Alkenyl groups preferably having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.
  • alkynyl groups preferably having 2 to 20 carbon atoms, such as ethynyl, butadiynyl, phenylethynyl, etc.
  • cycloalkyl groups preferably Has 3 to 20 carbon atoms, for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.
  • cycloalkenyl group preferably having 5 to 20
  • cycloalkyloxy Preferably having 3 to 20 carbon atoms, such as cyclopropyloxy, cyclopentyloxy, cyclohexyloxy, 4-methylcyclohexyloxy, etc.
  • aryloxy groups preferably having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyl, etc. Oxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.
  • a heterocyclic oxy group for example, imidazolyloxy, benzimidazolyloxy, thiazolyloxy, benzothiazolyloxy, triazinyloxy, purinyloxy
  • alkoxycarbonyl group preferably having 2 to 20 carbon atoms such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.
  • a cycloalkoxycarbonyl group preferably having 4 to 20 carbon atoms such as cyclopropyloxycarbonyl, cyclopentyloxycarbonyl, etc.
  • Cyclohexyloxycarbonyl, etc. aryloxycarbonyl groups (preferably having 6 to 20 carbon atoms, such as phenyloxycarbonyl, naphthyloxycarbonyl, etc.)
  • amino groups preferably having 0 to 20 carbon atoms, alkylamino groups, alkenyls
  • An acyl group (preferably having 1 to 20 carbon atoms such as acetyl, cyclohexylcarbonyl, benzoyl, etc.), an acyloxy group (preferably having 1 to 20 carbon atoms such as acetyloxy, cyclohexylcarbonyl, etc.) Xy, benzoyloxy, etc.), carbamoyl groups (preferably having 1 to 20 carbon atoms, alkyl, cycloalkyl or aryl carbamoyl groups are preferred, such as N, N-dimethylcarbamoyl, N-cyclohexylcarbamoyl, N-phenylcarbamoyl, etc. ),
  • An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, cyclohexylcarbonylamino, benzoylamino, etc.), a sulfonamide group (preferably an alkyl, cycloalkyl or aryl sulfonamide having 0 to 20 carbon atoms) Groups such as methanesulfonamide, benzenesulfonamide, N-methylmethanesulfonamide, N-cyclohexylsulfonamide, N-ethylbenzenesulfonamide, etc., alkylthio groups (preferably having 1 to 20 carbon atoms, eg, methylthio , Ethylthio, isopropylthio, benzylthio, etc.), cycloalkylthio groups (preferably having 3 to 20 carbon atoms, such as cyclopropylthio, cyclopent
  • a silyl group (preferably a silyl group having 1 to 20 carbon atoms and substituted by alkyl, aryl, alkoxy and aryloxy, such as triethylsilyl, triphenylsilyl, diethylbenzylsilyl, dimethylphenylsilyl, etc.), silyloxy group ( Preferably, it is a silyloxy group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy and aryloxy, such as triethylsilyloxy, triphenylsilyloxy, diethylbenzylsilyloxy, dimethylphenylsilyloxy, etc.), hydroxyl group Cyano group, nitro group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom), carboxyl group, sulfo group, phosphonyl group, phosphoryl group, boric acid group.
  • a compound or a substituent when a compound or a substituent includes an alkyl group, an alkenyl group, etc., these may be linear or branched, and may be substituted or unsubstituted. When an aryl group, a heterocyclic group, or the like is included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
  • the counter electrode is preferably a positive electrode of a dye-sensitized solar cell (photoelectrochemical cell).
  • the counter electrode is usually synonymous with the conductive support described above, but the support is not necessarily required in a configuration in which the strength is sufficiently maintained.
  • As the structure of the counter electrode a structure having a high current collecting effect is preferable.
  • at least one of the conductive support and the counter electrode described above must be substantially transparent.
  • the conductive support is preferably transparent, and sunlight is preferably incident from the support side. In this case, it is more preferable that the counter electrode has a property of reflecting light.
  • a counter electrode of the dye-sensitized solar cell glass or plastic on which metal or conductive oxide is vapor-deposited is preferable, and glass on which platinum is vapor-deposited is particularly preferable.
  • the dye-sensitized solar cell it is preferable to seal the side surface of the battery with a polymer, an adhesive or the like in order to prevent the constituents from evaporating.
  • the present invention is disclosed in Japanese Patent No. 4260494, Japanese Patent Application Laid-Open No. 2004-146425, Japanese Patent Application Laid-Open No. 2000-340269, Japanese Patent Application Laid-Open No. 2002-289274, Japanese Patent Application Laid-Open No. 2004-152613, and Japanese Patent Application Laid-Open No. 9-27352. It can apply to the described photoelectric conversion element and a dye-sensitized solar cell.
  • the metal complex dye of the present invention is dissolved in an organic solvent, and may contain a co-adsorbent and other components as necessary.
  • the solvent to be used include, but are not particularly limited to, the solvents described in JP-A No. 2001-291534.
  • an organic solvent is preferable, and alcohols, amides, nitriles, alcohols, hydrocarbons, and a mixed solvent of two or more of these are preferable.
  • a mixed solvent of an alcohol and a solvent selected from amides, nitriles or hydrocarbons is preferable. Further preferred are alcohols and amides, mixed solvents of alcohols and hydrocarbons, and particularly preferred are mixed solvents of alcohols and amides. Specifically, methanol, ethanol, propanol, butanol, dimethylformamide, and dimethylacetamide are preferable.
  • the dye solution preferably contains a co-adsorbent.
  • the co-adsorbent the above-mentioned co-adsorbent is preferable, and among them, the compound represented by the formula (CA) is preferable.
  • the dye solution of the present invention is preferably one in which the concentration of the metal complex dye or coadsorbent is adjusted so that the solution can be used as it is when producing a photoelectric conversion element or a dye-sensitized solar cell.
  • the metal complex dye of the present invention is preferably contained in an amount of 0.001 to 0.1% by mass.
  • the water content of the dye solution is particularly preferably adjusted. Therefore, in the present invention, the water content (content ratio) is preferably adjusted to 0 to 0.1% by mass. Similarly, the adjustment of the water content of the electrolyte in the photoelectric conversion element or the dye-sensitized solar cell is also preferable in order to effectively exhibit the effect of the present invention. For this reason, the water content (content rate) of the electrolyte solution is It is preferable to adjust to 0 to 0.1% by mass.
  • the electrolyte is particularly preferably adjusted with a dye solution.
  • a dye adsorption electrode which is a semiconductor electrode for a dye-sensitized solar cell in which a metal complex dye is supported on the surface of a semiconductor fine particle provided in a semiconductor electrode using the dye solution is preferable. That is, a dye-adsorbing electrode for a dye-sensitized solar cell is obtained by applying a composition obtained from the dye solution onto a conductive support provided with semiconductor fine particles, and curing the composition after application. What was made into the photoreceptor layer is preferable.
  • a dye-sensitized solar cell by using the dye-adsorbing electrode for the dye-sensitized solar cell, preparing an electrolyte and a counter electrode, and assembling them using these.
  • Example 1 [Synthesis of Metal Complex Dye Ru II (LD-1-1) (LA-1-1)] In the following reaction scheme, ligand LD-1-1 was synthesized and metal complex dye Ru II (LD-1-1) (LA-1-1) was synthesized.
  • Example 3 [Synthesis of Metal Complex Dye Ru II (LD-3-1) (LA-1-1) NCS]
  • ligand LD-3-1 was synthesized and metal complex dye Ru II (LD-3-1) (LA-1-1) NCS was synthesized.
  • Example 7 [Synthesis of Metal Complex Dye Ru II (LD-1-24) (LA-1-1)]
  • Ligand LD-1-24 was synthesized in the same manner as ligand LD-1-26, and the same method as the above metal complex dye Ru II (LD-1-26) (LA-1-1)
  • the metal complex dye Ru II (LD-1-24) (LA-1-1) was synthesized by
  • Example 7 [Synthesis of Metal Complex Dye Ru II (LD-2-12) (LA-1-1)] In the following reaction scheme to synthesize ligands LD-2-12, wherein the metal complex dye Ru II (LD-1-1) a metal complex dye (LA-1-1) In the same manner as Ru II (LD -2-12) (LA-1-1) was synthesized.
  • Example 8 [Synthesis of Metal Complex Dye Ru II (LD-1-24) (LA-3-1)]
  • the ligand LA-3-1Me was synthesized according to the following method, and the metal complex dye Ru II (LD-) was synthesized in the same manner as the metal complex dye Ru II (LD-1-24) (LA-1-1). 1-24) (LA-3-1) was synthesized.
  • Example 9 [Synthesis of Metal Complex Dye Ru II (LD-1-26) (LA-3-3) N + (C 4 H 9 ) 4 ]
  • the ligand LA-3-3Me was synthesized according to the following method, and the metal complex dye Ru II (LD-) was synthesized in the same manner as the metal complex dye Ru II (LD-1-26) (LA-1-1). 1-26) (LA-3-3) N + (C 4 H 9 ) 4 was synthesized.
  • Example 10 The remaining metal complex dyes used in Example 10 were also synthesized in the same manner as in Examples 1 to 9 above.
  • each metal complex dye was confirmed by MS (mass spectrum) measurement.
  • MS mass spectrum
  • Example 10 [Production of dye-sensitized solar cell]
  • a photoelectrode having the same configuration as that of the photoelectrode 12 shown in FIG. 5 described in JP-A-2002-289274 is prepared by the following procedure, and further, using the photoelectrode, A 10 mm ⁇ 10 mm scale dye-sensitized solar cell 1 having the same configuration as that of the dye-sensitized solar cell 20 except for the photoelectrode shown in FIG.
  • a specific configuration is shown in FIG. 2 attached to the drawings of the present application. In FIG.
  • 41 is a transparent electrode
  • 42 is a semiconductor electrode
  • 43 is a transparent conductive film
  • 44 is a substrate
  • 45 is a semiconductor layer
  • 46 is a light scattering layer
  • 40 is a photoelectrode
  • 20 is a dye-sensitized solar cell
  • CE is a counter electrode
  • E is an electrolyte
  • S is a spacer.
  • Paste A A titania slurry was prepared by placing spherical TiO 2 particles (anatase, average particle size; 25 nm, hereinafter referred to as spherical TiO 2 particles A) in a nitric acid solution and stirring. Next, a cellulose binder as a thickener was added to the titania slurry and kneaded to prepare a paste.
  • a titania slurry was prepared by stirring spherical TiO 2 particles A and spherical TiO 2 particles (anatase, average particle size: 200 nm, hereinafter referred to as spherical TiO 2 particles B) in a nitric acid solution. .
  • a transparent electrode in which a fluorine-doped SnO 2 conductive film (film thickness: 500 nm) was formed on a glass substrate was prepared. Then, the SnO 2 conductive film, a paste 1 of the above screen printing and then dried. Then, it baked on the conditions of 450 degreeC in the air. Further, by repeating this screen printing and baking using the paste 2, a semiconductor electrode having the same configuration as the semiconductor electrode 42 shown in FIG.
  • dye was made to adsorb
  • this dye solution When the water content of this dye solution was measured by Karl Fischer titration, the water content was less than 0.01% by mass.
  • the semiconductor electrode is immersed in this solution at 40 ° C. for 10 hours, and then pulled up and dried at 50 ° C., thereby completing the photoelectrode 40 in which the dye is adsorbed to the semiconductor electrode by about 2 ⁇ 10 ⁇ 7 mol / cm 2. It was.
  • a platinum electrode (Pt thin film thickness: 100 nm) having the same shape and size as the above-mentioned photoelectrode as a counter electrode, and 0.1M iodine, 0.05M lithium iodide, 4-t-butyl as an electrolyte
  • An iodine-based redox propionitrile solution containing pyridine 0.25M was prepared.
  • a DuPont spacer S (trade name: “Surlin”) having a shape matched to the size of the semiconductor electrode is prepared, and the photoelectrode 40 and the counter electrode CE are opposed to each other through the spacer S and thermocompression bonded.
  • Each of the dye-sensitized solar cells (sample numbers 101 to 126, c11 to c17) was completed by filling the above-described electrolyte therein.
  • the performance of these dye-sensitized solar cells was evaluated as follows.
  • Evaluation criteria A The photoelectric conversion efficiency is 1.3 times or more of the comparative compound (1) B: 1.1 times or more and less than 1.3 times C: less than 1.1 times
  • the dye adsorption amount was calculated from the resonance frequency shift ( ⁇ F) of the crystal resonator by the following Sauerbrey equation.
  • ⁇ F ⁇ 2 ⁇ F 0 2 ⁇ ⁇ m / A ( ⁇ ⁇ P) 1/2
  • F 0 is the single frequency of the crystal resonator
  • ⁇ m is the mass change
  • A is the piezoelectric active area of the Au electrode
  • ⁇ and P are the density and rigidity of the crystal, respectively.
  • the amount of the dye desorbed was measured by flowing the electrolyte E at 80 ° C. for 4 hours.
  • the amount of desorbed dye was also calculated by the Sauerbrey equation.
  • the desorption rate was calculated from the amount of desorption dye obtained. The obtained speed was evaluated according to the following criteria.
  • Evaluation criteria A The relative value is 1.3 times or more B: 1.1 times or more and less than 1.3 times C: Less than 1.1 times
  • the dye-sensitized solar cell using the metal complex dye of the present invention is excellent in photoelectric conversion efficiency and durability, and exhibits stable performance without causing electrode unevenness even in continuous production. It can be seen that it is very good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層及び対極を有し、該感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子、金属錯体色素、色素吸着電極とそれを製造するための色素溶液、及び色素増感太陽電池。 M(LD)(LA)(X)mX・(CI)mY 式(I) 式中、MはFe2+、Ru2+又はOs2+を表す。LDは下記式(DL)で表される配位子を表す。LAは含窒素芳香族ヘテロ環骨格を有しかつ少なくとも1つの酸性基を有する2又は3座の配位子を表す。Xは単座又は2座の配位子、CIは電荷を中和させる対イオンを表す。mXは0~3の整数、mYは0~2の整数を表す。 式中、Zは環形成基を表し、Dは、その少なくとも一つが不飽和結合手を有しない酸素原子又は窒素原子の配位原子を表す。Eは特定の結合を表す。Rは、その少なくとも一つが特定の置換基を表す。m及びnは1以上の整数を表す。

Description

金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および色素吸着電極
 本発明は、金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および色素吸着電極に関する。
 光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いたもの、半導体を用いたもの、有機顔料や色素を用いたもの、あるいはこれらを組み合わせたものなどの様々な方式が実用化されている。特に、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵のクリーンエネルギーを利用するものとして、その本格的な実用化が大いに期待されている。その中でも、シリコン系太陽電池は古くから研究開発が進められ、各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループットおよびコスト等の改良には自ずと限界がある。
 そこで色素増感太陽電池の研究が精力的に行われている。特にその契機となったのは、スイス ローザンヌ工科大学のGraetzel等の研究成果である。彼らは、ポーラス酸化チタン薄膜の表面にルテニウム錯体からなる色素を固定した構造を採用し、アモルファスシリコン並の光電変換効率を実現した。これにより、高価な真空装置を使用しなくても製造できる色素増感太陽電池が一躍世界の研究者から注目を集めるようになった。
 現在までに、光電変換素子に使用される金属錯体色素として一般的にN3、N719、Z907、J2と呼ばれる色素等が開発されている。しかしながら、従来の色素増感太陽電池は、実用化に必要な製造安定性が十分でなかった。
 金属錯体色素は、配位子として、ビピリジルやターピリジルなどのようなピリジン環の窒素原子を配位原子とするものが一般的であるが、最近になって、これらに代わる配位子の研究も行われている(例えば、特許文献1~3参照)。しかしながら、必ずしも満足できるものではなく、しかも太陽電池は原子力発電に代わるエネルギー源としてその注目と期待が高まり、太陽電池として早期実用化が求められていた。
米国特許出願公開第2005/0081911A1号明細書 特開2010-13500号公報 特開2011-195745号公報
 実用化のために必要な製造安定性として問題となる電極ムラ、熱劣化、高速特性および初期特性について、従来の色素では十分でなく更なる改良が求められていた。
 従って、本発明は、これらの性能を改善すると同時に、製造安定性が向上した光電変換素子を提供することを課題とする。すなわち、光電変換効率と耐久性がさらに向上し、性能の安定な再現性と品質のばらつきが少なく、高速製造適性(高速適正)があり、熱劣化の少ない光電変換素子、これを得るための金属錯体色素、色素吸着電極とそれを製造するための色素溶液、および色素増感太陽電池を提供することを課題とする。
 本発明者らは、光電変換効率(η)を向上させるには、短絡電流密度(Jsc)と開放電圧(Voc)を向上させることが必要であるが、金属錯体色素の酸化チタン等の半導体微粒子表面への被覆、吸着力、金属錯体色素の錯体としての安定性、酸化チタンに注入した電子の電解質(例えば、I など)への逆電子移動抑制、半導体微粒子表面に対する金属錯体色素の吸着または脱着と、それらの速度、金属錯体色素の2分子もしくは多分子会合等、予想される因子を洗い出し、金属錯体色素の検討を行った。
 この結果、中心金属に対する配位力の向上、半導体微粒子表面への金属錯体色素の被覆、色素会合性、金属錯体色素自身の安定性に対し、配位原子、色素骨格に置換する置換基の種類でこれらの性能が大きく変化することを見出し、本発明に至った。
 すなわち、本発明の課題は、以下の手段によって達成された。
(1)導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層および対極を有する光電変換素子であって、該感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。
   M(LD)(LA)(X)mX・(CI)mY     式(I)
[式中、MはFe2+、Ru2+またはOs2+を表す。
 LDは、下記式(DL)で表される配位子を表す。
 LAは、含窒素芳香族ヘテロ環骨格を有しかつ少なくとも1つの酸性基を有する2座または3座の配位子を表す。
 Xは単座または2座の配位子を表す。mXは0~3の整数を表す。
 CIは電荷を中和させるのに必要な場合の対イオンを表す。
 mYは0~2の整数を表す。]
Figure JPOXMLDOC01-appb-C000013
[式中、Zは環を形成するのに必要な非金属原子群を表し、環構成原子に上記Mに配位する配位原子を環構成原子に含んでもよい。Dは上記Mに配位する、酸素原子および窒素原子から選択される配位原子を表す。Eは単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。Rは置換基を表す。mおよびnは各々独立に1以上の整数を表す。
 ただし、少なくとも1つの配位原子は、配位原子Aであり、かつn個のRのうち、少なくとも1つは置換基Wであり、Dは、EまたはZと環を形成することはない。
 ここで、配位原子Aは、不飽和結合手を有しない酸素原子もしくは窒素原子であり、置換基Wは、炭素数2以上の1価のアルキル基もしくはこのアルキル基を有する基が置換した、エテニル基、エチニル基、アリール基またはヘテロアリール基である。]
(2)式(DL)が、下記式(DL-1)~(DL-3)のいずれかで表される(1)に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000014
[式中、Rおよびnは式(DL)におけるRおよびnと同義である。n’は0以上の整数を表す。Za、Zb、Zb’およびZcは環を形成するのに必要な非金属原子群を表す。ただし、-E1-D1が結合する炭素原子とDaを結ぶ結合、D2またはD2’が結合する炭素原子とD3が結合する炭素原子とを結ぶ結合、および-E1-D1または-E1’-D1’が結合する炭素原子とDaとを結ぶ結合は、単結合でも二重結合でもよい。D1~D3、D1’、D2’およびDaは各々独立にMに配位する配位原子を表し、D1~D3、D1’およびD2’は酸素原子および窒素原子から選択される原子であり、Daは酸素原子、窒素原子および炭素原子から選択される原子である。E1およびE1’は各々独立に、単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。dは0または1を表す。dが1のとき、ZbとZb’が互いに結合して環を形成してもよい。nおよびn’が各々において2以上の整数のとき、複数のRが互いに結合して環を形成してもよい。]
(3)式(DL)が、下記式(DL-1a)、(DL-1b)、(DL-2a)、(DL-2b)、(DL-3a)または(DL-3b)のいずれかで表される(1)または(2)に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000015
[式中、Rは式(DL)におけるRと同義である。n1は1~4の整数を表し、n2は1~3の整数を表し、n3は1または2を表す。n1’は0~4の整数を表す。D1~D3、D1’、D2’、Da1およびDa2は各々独立にMに配位する配位原子を表し、D1~D3、D1’およびD2’は酸素原子および窒素原子から選択される原子であり、Da1およびDa2は酸素原子、窒素原子および炭素原子から選択される原子である。E1およびE1’は各々独立に、単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。n1~n3およびn1’が各々において2以上の整数のとき、複数のRが互いに結合して環を形成してもよい。]
(4)置換基Wが、1)2位に、炭素数2以上のアルキル基、炭素数2以上のアルキルアミノ基、炭素数2以上のアルコキシ基もしくは炭素数2以上のアルキルチオ基が置換した、アリール基またはヘテロアリール基を有する、エテニル基またはエチニル基であるか、2)炭素数2以上のアルキル基、炭素数2以上のアルキルアミノ基、炭素数2以上のアルコキシ基もしくは炭素数2以上のアルキルチオ基が置換した、アリール基またはヘテロアリール基である(1)~(3)のいずれかに記載の光電変換素子。
(5)置換基Wが、下記式(W-1)~(W-6)のいずれかで表される(1)~(4)のいずれかに記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000016
[式中、Rは炭素数2以上の1価のアルキル基もしくは該アルキル基を有する基を表し、w1は1~5の整数を表し、w2は1~3の整数を表す。]
(6)LAが、下記式(AL-1)~(AL-6)のいずれかで表される(1)~(5)のいずれかに記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000017
[式中、Zd、ZeおよびZfは各々独立に、ベンゼン環、ピロール環、イミダゾール環、ピラゾール環、ピラジン環、ピリミジン環、ピリダジン環、トリアゾール環、オキサゾール環、トリアジン環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、フラン環、チオフェン環、ピロリジン環、ピペリジン環、モルホリン環、ピペラジン環、テトラヒドロフラン環、テトラヒドロピラン環、4H-ピラン環、1,4-ジヒドロピリジン環、テトラデヒドロモルホリン環またはこれらの環のベンゼン縮環を表す。Aは酸性基を表す。Q~Qは各々独立に炭素原子または窒素原子を表し、Db~Dbは各々独立に、孤立電子対を有する窒素原子、アニオン性の窒素原子またはアニオン性の炭素原子を表す。Rは置換基を表す。a1、a3、b1およびb3は各々独立に0~4の整数を表し、a2およびb2は各々独立に0~3の整数を表し、cは0または1を表す。
 ただし、式(AL-1)~(AL-6)で表される配位子は、少なくとも1つの酸性基を有する。]
(7)LAが、下記式(AL-1)である(1)~(6)のいずれかに記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000018
[式中、Aは酸性基を表す。Rは置換基を表す。a1、a3、b1およびb3は各々独立に0~4の整数を表し、a2およびb2は各々独立に0~3の整数を表し、cは0または1を表す。
 ただし、式(AL-1)で表される化合物は、少なくとも1つの酸性基を有する。]
(8)式(I)におけるXが、NCS、Cl、Br、I、CN、NCOまたはHOである(1)~(7)のいずれかに記載の光電変換素子。
(9)式(I)におけるCIが、ハロゲンイオン、アリールスルホン酸イオン、アリールジスルホン酸イオン、アルキル硫酸イオン、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、酢酸イオン、トリフルオロメタンスルホン酸イオン、アンモニウムイオン、アルカリ金属イオンまたは水素イオンである(1)~(8)のいずれかに記載の光電変換素子。
(10)前記(1)~(9)のいずれかに記載の光電変換素子を具備する色素増感太陽電池。
(11)下記式(I)で表される金属錯体色素。
   M(LD)(LA)(X)mX・(CI)mY     式(I)
[式中、MはFe2+、Ru2+またはOs2+を表す。
 LDは、下記式(DL)で表される配位子を表す。
 LAは、含窒素芳香族ヘテロ環骨格を有しかつ少なくとも1つの酸性基を有する2座または3座の配位子を表す。
 Xは単座または2座の配位子を表す。mXは0~3の整数を表す。
 CIは電荷を中和させるのに必要な場合の対イオンを表す。
 mYは0~2の整数を表す。]
Figure JPOXMLDOC01-appb-C000019
[式中、Zは環を形成するのに必要な非金属原子群を表し、環構成原子に上記Mに配位する配位原子を環構成原子に含んでもよい。Dは上記Mに配位する、酸素原子および窒素原子から選択される配位原子を表す。Eは単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。Rは置換基を表す。mおよびnは各々独立に1以上の整数を表す。
 ただし、少なくとも1つの配位原子は、配位原子Aであり、かつn個のRのうち、少なくとも1つは置換基Wであり、Dは、EまたはZと環を形成することはない。
 ここで、配位原子Aは、不飽和結合手を有しない酸素原子もしくは窒素原子であり、置換基Wは、炭素数2以上の1価のアルキル基もしくはこのアルキル基を有する基が置換した、エテニル基、エチニル基、アリール基またはヘテロアリール基である。]
(12)式(DL)が、下記式(DL-1)~(DL-3)のいずれかで表される(11)に記載の金属錯体色素。
Figure JPOXMLDOC01-appb-C000020
[式中、Rおよびnは式(DL)におけるRおよびnと同義である。n’は0以上の整数を表す。Za、Zb、Zb’およびZcは環を形成するのに必要な非金属原子群を表す。ただし、-E1-D1が結合する炭素原子とDaを結ぶ結合、D2またはD2’が結合する炭素原子とD3が結合する炭素原子とを結ぶ結合、および-E1-D1または-E1’-D1’が結合する炭素原子とDaとを結ぶ結合は、単結合でも二重結合でもよい。D1~D3、D1’、D2’およびDaは各々独立にMに配位する配位原子を表し、D1~D3、D1’およびD2’は酸素原子および窒素原子から選択される原子であり、Daは酸素原子、窒素原子および炭素原子から選択される原子である。E1およびE1’は各々独立に、単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。dは0または1を表す。dが1のとき、ZbとZb’が互いに結合して環を形成してもよい。nおよびn’が各々において2以上の整数のとき、複数のRが互いに結合して環を形成してもよい。]
(13)式(DL)が、下記式(DL-1a)、(DL-1b)、(DL-2a)、(DL-2b)、(DL-3a)または(DL-3b)のいずれかで表される(11)または(12)に記載の金属錯体色素。
Figure JPOXMLDOC01-appb-C000021
[式中、Rは式(DL)におけるRと同義である。n1は1~4の整数を表し、n2は1~3の整数を表し、n3は1または2を表す。n1’は0~4の整数を表す。D1~D3、D1’、D2’、Da1およびDa2は各々独立にMに配位する配位原子を表し、D1~D3、D1’およびD2’は酸素原子および窒素原子から選択される原子であり、Da1およびDa2は酸素原子、窒素原子および炭素原子から選択される原子である。E1およびE1’は各々独立に、単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。n1~n3およびn1’が各々において2以上の整数のとき、複数のRが互いに結合して環を形成してもよい。]
(14)置換基Wが、1)2位に、炭素数2以上のアルキル基、炭素数2以上のアルキルアミノ基、炭素数2以上のアルコキシ基もしくは炭素数2以上のアルキルチオ基が置換した、アリール基またはヘテロアリール基を有する、エテニル基またはエチニル基であるか、2)炭素数2以上のアルキル基、炭素数2以上のアルキルアミノ基、炭素数2以上のアルコキシ基もしくは炭素数2以上のアルキルチオ基が置換した、アリール基またはヘテロアリール基である(11)~(13)のいずれかに記載の金属錯体色素。
(15)置換基Wが、下記式(W-1)~(W-6)のいずれかで表される(11)~(14)のいずれかに記載の金属錯体色素。
Figure JPOXMLDOC01-appb-C000022
[式中、Rは炭素数2以上の1価のアルキル基もしくは該アルキル基を有する基を表し、w1は1~5の整数を表し、w2は1~3の整数を表す。]
(16)LAが、下記式(AL-1)~(AL-6)のいずれかで表される(11)~(15)のいずれかに記載の金属錯体色素。
Figure JPOXMLDOC01-appb-C000023
[式中、Zd、ZeおよびZfは各々独立に、ベンゼン環、ピロール環、イミダゾール環、ピラゾール環、ピラジン環、ピリミジン環、ピリダジン環、トリアゾール環、オキサゾール環、トリアジン環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、フラン環、チオフェン環、ピロリジン環、ピペリジン環、モルホリン環、ピペラジン環、テトラヒドロフラン環、テトラヒドロピラン環、4H-ピラン環、1,4-ジヒドロピリジン環、テトラデヒドロモルホリン環またはこれらの環のベンゼン縮環を表す。Aは酸性基を表す。Q~Qは各々独立に炭素原子または窒素原子を表し、Db~Dbは各々独立に、孤立電子対を有する窒素原子、アニオン性の窒素原子またはアニオン性の炭素原子を表す。を表す。Rは置換基を表す。a1、a3、b1およびb3は各々独立に0~4の整数を表し、a2およびb2は各々独立に0~3の整数を表し、cは0または1を表す。
 ただし、式(AL-1)~(AL-6)で表される配位子は、少なくとも1つの酸性基を有する。]
(17)LAが、下記式(AL-1)である(11)~(16)のいずれかに記載の金属錯体色素。
Figure JPOXMLDOC01-appb-C000024
[式中、Aは酸性基を表す。Rは置換基を表す。a1、a3、b1およびb3は各々独立に0~4の整数を表し、a2およびb2は各々独立に0~3の整数を表し、cは0または1を表す。
 ただし、式(AL-1)で表される化合物は、少なくとも1つの酸性基を有する。]
(18)前記(11)~(17)のいずれかに記載の金属錯体色素を有機溶媒中に溶解してなる色素溶液。
(19)有機溶媒中に、金属錯体色素を0.001~0.1質量%含有させ、水を0.1質量%以下に抑えてなる(18)に記載の色素溶液。
(20)半導体微粒子を付与した導電性支持体に、(18)または(19)に記載の色素溶液を塗布し、これを反応硬化させて感光体層とした色素増感太陽電池用の色素吸着電極。
 本明細書において、特に断りがない限り、炭素-炭素二重結合については、分子内にE型およびZ型が存在する場合、そのいずれであっても、またこれらの混合物であってもよい。特定の符号で表示された置換基や連結基、配位子等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接するとき(特に、隣接するとき)には特段の断りがない限り、それらが互いに連結して環を形成してもよい。また、環、例えば脂環、芳香環、ヘテロ環、はさらに縮環して縮合環を形成していてもよい。
 本発明においては、各置換基は、特に断らない限り、さらに置換基で置換されていてもよい。
 本発明により、光電変換効率のさらなる向上と耐久性の向上、性能の安定な再現性と品質のばらつきが少ない光電変換素子、これを得るための金属錯体色素、色素吸着電極とそれを製造するための色素溶液、および色素増感太陽電池を提供することができる。
 本発明の上記及び他の特徴及び利点は、下記の記載および添付の図面からより明らかになるであろう。
図1は、本発明の光電変換素子の一実施態様について、層中の円部分の拡大図も含めて模式的に示した断面図である。 図2は、本発明の光電変換素子の第2の態様の色素増感太陽電池を模式的に示す断面図である。
<<光電変換素子および色素増感太陽電池>>
 本発明の光電変換素子は、例えば、図1に示すように、光電変換素子10は、導電性支持体1、色素(金属錯体色素)21により増感された半導体微粒子を含む感光体層2、正孔輸送層である電荷移動体層3および対極4からなる。
 ここで、本発明においては、半導体微粒子22に、色素(金属錯体色素)21とともに、共吸着剤が吸着されていることが好ましい。感光体層2を設置した導電性支持体1は光電変換素子10において作用電極として機能する。本実施形態においては、この光電変換素子10を外部回路6で動作手段Mに仕事をさせる電池用途に使用できるようにした色素増感太陽電池を利用したシステム100として示している。
 本実施形態において受光電極5は、導電性支持体1、および色素(金属錯体色素)21の吸着した半導体微粒子を含む感光体層2よりなる。感光体層2は目的に応じて設計され、単層構成でも多層構成でもよい。一層の感光体層中の色素(金属錯体色素)21は一種類でも多種の混合でもよいが、そのうちの少なくとも1種は、上述した本発明の金属錯体色素を用いる。感光体層2に入射した光は色素(金属錯体色素)21を励起する。励起された色素はエネルギーの高い電子を有しており、この電子が色素(金属錯体色素)21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき色素(金属錯体色素)21は酸化体となっているが、電極上の電子が外部回路6で仕事をしながら、対極4を経由して、色素(金属錯体色素)21の酸化体および電解質が存在する感光体層2に戻ることで太陽電池として働く。
 本発明において光電変換素子もしくは色素増感太陽電池に用いられる材料および各部材の作成方法については、この種のものにおける通常のものを採用すればよく、例えば米国特許第4,927,721号明細書、米国特許第4,684,537号明細書、米国特許第5,0843,65号明細書、米国特許第5,350,644号明細書、米国特許第5,463,057号明細書、米国特許第5,525,440号明細書、特開平7-249790号公報、特開2004-220974号公報、特開2008-135197号公報を参照することができる。以下、主たる部材について概略を説明する。
<感光体層>
 感光体層は後述する電解質を含み、下記本発明の金属錯体色素を含む増感色素が担持された半導体微粒子を含む層である。
 最初に、本発明で使用する金属錯体色素を詳細に説明する。
<<金属錯体色素>>
 本発明の金属錯体色素は下記式(I)で表される。
   M(LD)(LA)(X)mX・(CI)mY     式(I)
 MはFe2+、Ru2+またはOs2+を表す。
 LDは、後述の式(DL)で表される配位子を表す。
 LAは、含窒素芳香族ヘテロ環骨格を有しかつ少なくとも1つの酸性基を有する2座または3座の配位子を表す。
 Xは単座または2座の配位子を表す。mXは0~3の整数を表す。
 CIは電荷を中和させるのに必要な場合の対イオンを表す。
 mYは0~2の整数を表す。
- 配位子LD -
 本発明において、配位子LDは、ドナー配位子に分類されるものであり、下記式(DL)で表される。
Figure JPOXMLDOC01-appb-C000025
 式中、Zは環を形成するのに必要な非金属原子群を表し、環構成原子に上記Mに配位する配位原子を環構成原子に含んでもよい。Dは上記Mに配位する、酸素原子および窒素原子から選択される配位原子を表す。Eは単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。Rは置換基を表す。mおよびnは各々独立に1以上の整数を表す。
 ただし、少なくとも1つの配位原子は、配位原子Aであり、かつn個のRのうち、少なくとも1つは置換基Wであり、Dは、EまたはZと環を形成することはない。
 ここで、配位原子Aは、不飽和結合手を有しない酸素原子もしくは窒素原子であり、置換基Wは、炭素数2以上の1価アルキル基もしくは該アルキル基を有する置換基が置換した、エテニル基、エチニル基、アリール基またはヘテロアリール基である。
 mは1~3の整数が好ましく、1または2がより好ましい。
 nは1~3の整数が好ましく、1または2がより好ましく、1がさらに好ましい。
(配位原子A)
 本発明の配位子LDは、少なくとも1つの配位原子Aを有する。
 配位原子Aは、不飽和結合手を有しない酸素原子もしくは窒素原子である。不飽和結合手を有しないとは、例えば、酸素原子であれば、カルボニル(>C=O)、窒素原子であれば、ピリジン環中の窒素原子(=N-)の様に、隣接する原子との結合に不飽和結合で結合しないことを表す。例えば、酸素原子では、-OH、-Oの酸素原子、-C(=O)-Oの-Oが挙げられ、窒素原子では、-NH、-NH、-C(=O)NC(=O)-、-C(=O)NSO-、-NSO-の各窒素原子等が挙げられる。ここで、右側の結合手(-)は水素原子もしくは置換基で置換されている。
 配位子LDは2座または3座の配位子であるため、1~3個の配位原子Aとすることが可能であるが、金属Mとの配位力を強めるためには、1または2個の配位原子を配位原子Aとすることが好ましい。
 配位原子Dは、環ZとEを介して結合(-E-D)する。
 Eは単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。Rは置換基を表す。
 R、Rにおけるアルキル基の炭素数は1~6が好ましく、1~4がより好ましく、1または2がさらに好ましく、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ヘキシルが挙げられる。
 R、Rにおけるアリール基の炭素数は6~12が好ましく、6または7がより好ましく、6がさらに好ましく、例えば、フェニル、トリル、ナフチルが挙げられる。
 R、Rにおけるヘテロアリール基の炭素数は0~12が好ましく、0~6がより好ましく、1~5がさらに好ましい。ヘテロアリール基の環構成ヘテロ原子は、酸素原子、窒素原子、硫黄原子が好ましく、5員環または6員環が好ましい。ヘテロアリール基のヘテロ芳香環は、例えば、チオフェン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、ピリジン環、ピラジン環が挙げられる。
 R、Rにおけるアルコキシ基の炭素数は1~6が好ましく、1~4がより好ましく、1または2がさらに好ましく、例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ヘキシルオキシが挙げられる。
 R、Rにおけるアリールオキシ基の炭素数は6~12が好ましく、6~12がより好ましく、6~8がさらに好ましく、例えば、フェノキシ、トリルオキシ、ナフトキシメトキシが挙げられる。
 R、Rは水素原子またはアルキル基が好ましく、水素原子がより好ましい。
 Rにおけるアルキリデン基の炭素数は1~6が好ましく、1~4がより好ましく、例えば、メチリデン、エチリデン、n-プロピリデン、イソプロピリデン、n-ヘキシリデンが挙げられる。
 Rにおけるアルケニリデン基の炭素数は2~6が好ましく、2~4がより好ましく、例えば、ビニリデンアリリデンが挙げられる。
 Rにおけるシクロアルキリデン基の炭素数は、3~8が好ましく、3~6がより好ましく、5または6がさらに好ましく、例えば、シクロプロピリデン、シクロペンチリデン、シクロヘキシリデンが挙げられる。
 Eは単結合、-O-、-N(R)-、-C(R-または-C(R-C(=O)-が好ましく、単結合、-O-、-C(R-または-C(R-C(=O)-がより好ましい。
(置換基W)
 配位子LDは置換基Wを有する。
 置換基Wは、炭素数2以上の1価のアルキル基もしくは該アルキル基を有する基で置換された、エテニル基、エチニル基、アリール基またはヘテロアリール基である。
 ここで、「該アルキル基を有する基」とは、炭素数2以上の1価のアルキル基をいずれかの部分に含む基であり、例えば、2-(炭素数2以上の1価のアルキル)エテニル基、2-(炭素数2以上の1価のアルキル)エチニル基、炭素数2以上の1価のアルキル基が置換されたアリール基、炭素数2以上の1価のアルキル基が置換されたヘテロアリール基、炭素数2以上のアルキル基を有するアルコキシ基、炭素数2以上のアルキル基を有するアルキルチオ基、炭素数2以上のアルキル基を有するアルキルアミノ基、またはこれらが置換したアリール基もしくはヘテロアリール基が挙げられる。
 ここで、炭素数2以上のアルキル基を有するアルキルアミノ基は、ジアルキルアミノ基が好ましい。
 「該アルキル基を有する基」で置換された、エテニル基、エチニル基、アリール基またはヘテロアリール基を、例えば、「該アルキル基を有する基」で置換されたエテニル基で例示すると、「該アルキル基を有する基」が、上記最初の例の「2-(炭素数2以上の1価のアルキル)エテニル基」である場合、2-[2-(炭素数2以上の1価のアルキル)エテニル]エテニル基、すなわち、炭素数2以上のアルキル-CH=CH-CH=CH-となる。
 炭素数2以上の1価のアルキル基は直鎖もしくは分岐のアルキル基で、炭素数は2~18が好ましく、4~18がより好ましく、6~18がさらに好ましく、8~18が特に好ましい。
 すなわち、置換基Wは、1)2位に、「炭素数2以上のアルキル基、炭素数2以上のアルキルアミノ基、炭素数2以上のアルコキシ基もしくは炭素数2以上のアルキルチオ基が置換した、アリール基またはヘテロアリール基を有する」、エテニル基またはエチニル基であるか、または、2)「炭素数2以上のアルキル基、炭素数2以上のアルキルアミノ基、炭素数2以上のアルコキシ基もしくは炭素数2以上のアルキルチオ基が置換した」、アリール基またはヘテロアリール基である場合が好ましい。
 置換基Wで好ましいものは、下記式(W-1)~(W-6)で表される。
Figure JPOXMLDOC01-appb-C000026
 式中、Rは炭素数2以上の1価のアルキル基もしくは該アルキル基を有する基を表し、w1は1~5の整数を表し、w2は1~3の整数を表す。
 ここで、「該アルキル基を有する置換基」は上述の基であり、好ましい範囲も同じである。
 Rは、炭素数2以上のアルキル基、炭素数2以上のアルコキシ基、炭素数2以上のアルキルチオ基または炭素数2以上のアルキルアミノ基が好ましい。
 ここで、Rは結合手、エチニル基、エテニル基が存在する位置に隣接する位置(α位)またはその隣(β位)に置換するのが好ましい。
 なお、置換基Wは、上記式(DL)におけるRは、少なくとも1つの置換基Wを有するが、Rはこれ以外の置換基をも表す。Rにおける置換基としては、後述の置換基Tが挙げられる。
 ただし、置換基Tのうち、後述の酸性基以外の置換基が好ましい。
 式(DL)において、Zは環を形成するのに必要な非金属原子群を表す。
 Zで形成される環は、どのような環でも構わない。例えば、脂環、芳香環、非芳香族ヘテロ環、ヘテロ芳香環、これらの環に他の環もしくは同じ環が縮環した環が挙げられる。Zで形成される環は、芳香環またはヘテロ芳香環もしくはこれらの環に芳香環またはヘテロ芳香環が縮環した環が好ましく、5または6員環の芳香環もしくはヘテロ芳香環が好ましい。芳香環はベンゼン環が好ましく、ヘテロ芳香環は、含窒素ヘテロ芳香環が好ましく、例えば、ピロール環、ピラゾール環、イミダゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、インドール環、フラン環が挙げられ、ピロール環、ピリジン環が好ましい。
 なお、配位子LDが、3座配位子の場合、3個とも配位原子Aとするより、真ん中でなく、両側の配位原子が配位原子Aであることが好ましい。
 前記式(DL)で表される配位子のうち、下記式(DL-1)~(DL-3)のいずれかで表される配位子がより好ましく、下記式(DL-1a)、(DL-1b)、(DL-2a)、(DL-2b)、(DL-3a)または(DL-3b)のいずれかで表されるh配位子がさらに好ましい。
Figure JPOXMLDOC01-appb-C000027
 式中、Rおよびnは前記式(DL)におけるRおよびnと同義である。n’は0以上の整数を表す。Za、Zb、Zb’およびZcは環を形成するのに必要な非金属原子群を表す。ただし、-E1-D1が結合する炭素原子とDaを結ぶ結合、D2またはD2’が結合する炭素原子とD3が結合する炭素原子とを結ぶ結合、および-E1-D1または-E1’-D1’が結合する炭素原子とDaとを結ぶ結合は、単結合でも二重結合でもよい。D1~D3、D1’、D2’およびDaは各々独立に前記Mに配位する配位原子を表し、D1~D3、D1’およびD2’は酸素原子および窒素原子から選択される原子であり、Daは酸素原子、窒素原子および炭素原子から選択される原子である。E1およびE1’は各々独立に、単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。dは0または1を表す。dが1のとき、ZbとZb’が互いに結合して環を形成してもよい。nおよびn’が各々において2以上の整数のとき、複数のRが互いに結合して環を形成してもよい。
 ZaおよびZcで形成される環は、酸素原子または窒素原子を有するヘテロ芳香環が好ましく、5または6員環が好ましい。このような環としては、ピロール環、フラン環、ピリジン環、ピラゾール環、イミダゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、インドール環が挙げられ、ピロール環、ピリジン環が好ましい。
 ZbおよびZb’で形成される環は、同一でも異なってもよく、ベンゼン環またはベンゼン環にヘテロ環もしくは芳香環が縮環した環が好ましく、ベンゼン環がより好ましい。
 E1およびE1’における-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-、-C(R-C(=O)-は、式(DL)におけるEの-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-、-C(R-C(=O)-と同義であり、好ましい範囲も同じである。
 D1およびD1’、D2およびD2’は、それぞれにおいて、互いに同一でも異なってもよい。
 D1、D1’、D2およびD2’は-OH、-NH、-O、-NH、-NSOα、-N(C=O)ORα、-N(C=O)Rαが好ましい。ここで、Rαは置換基を表し、該置換基としては後述の置換基Tが挙げられるが、アルキル基が好ましい。
 D3は、-O-または-N(R)-が好ましく、-N(R)-がより好ましい。Rは、前記Eにおける-N(R)-のRと同義であり、好ましい範囲も同じである。
 -E-D1および-E’-D1’としては、-CHOH、-CH-NH、-C(=O)-OH、-C(=O)-O、-C(=O)NHが特に好ましい。
 n’は0~2の整数が好ましく、0または1が好ましい。
Figure JPOXMLDOC01-appb-C000028
 式中、Rは前記式(DL)におけるRと同義である。n1は1~4の整数を表し、n2は1~3の整数を表し、n3は1または2を表す。n1’は0~4の整数を表す。D1~D3、D1’、D2’、Da1およびDa2は各々独立に前記Mに配位する配位原子を表し、D1~D3、D1’およびD2’は酸素原子および窒素原子から選択される原子であり、Da1およびDa2は酸素原子、窒素原子および炭素原子から選択される原子である。E1およびE1’は各々独立に、単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。n1~n3およびn1’が各々において2以上の整数のとき、複数のRが互いに結合して環を形成してもよい。
 上記式(DL-1)~(DL-3)で表される配位子のうち、上記式(DL-1)、(DL-3)で表される配位子が好ましく、式(DL-3)で表される配位子がより好ましい。
 また、式(DL-1)で表される配位子は式(DL-1a)で表される配位子が好ましく、式(DL-3)で表される配位子は式(DL-3a)で表される配位子が好ましい。
 以下に、配位子LDの具体例を例示するが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 これらの配位子LDは、米国特許出願公開第2005/0081911A1号明細書、特開2010-13500号公報、特開2011-195745号公報、米国特許出願公開第2010/0258175A1号明細書、特許第4298799号公報、Angew.Chem.Int.Ed.,2011,50,2054~2058に記載の方法またはこれらに記載の文献もしく参照文献に記載されている方法、もしくはこれらの方法に準じた方法で容易に合成することができる。
- 配位子LA -
 配位子LAは、含窒素芳香ヘテロ環骨格を有し、かつ少なくとも1つの酸性基を有する2座または3座の配位子を表す。
 酸性基は少なくとも2個有するのが好ましい。
(酸性基)
 ここで、酸性基とは、解離性のプロトンを有する置換基であり、pKaが11以下である。例えば、カルボキシ基、ホスホニル基、ホスホリル基、スルホ基、ホウ酸基等の酸性を示す基である酸基、あるいはこれらのいずれかを有する基が挙げられ、好ましくは電子注入の観点からカルボキシ基あるいはこれを有する基である。また酸性基はプロトンを放出して解離した形を採っていてもよく、塩であってもよい。
 酸性基は、酸基が連結基を介して結合した基であってもよく、該連結基としては、アルキレン基が挙げられる。ここで、アルキレン基としては炭素数1~4がそれぞれ好ましい。
 また、酸性基が塩の場合、その塩となるときの対イオンとしては特に限定されないが、例えば、前述の式(I)における対イオンCIで示す正のイオンの例が挙げられる。
 本発明においては、電子移動の観点から連結基を介しない酸性基が好ましく、特に好ましくはカルボキシ基またはその塩である。
 配位子LAは、下記式(AL-1)~(AL-6)のいずれかで表される配位子が好ましい。
Figure JPOXMLDOC01-appb-C000035
 式中、Zd、ZeおよびZfは各々独立に、ベンゼン環、ピロール環、イミダゾール環、ピラゾール環、ピラジン環、ピリミジン環、ピリダジン環、トリアゾール環、オキサゾール環、トリアジン環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、フラン環、チオフェン環、ピロリジン環、ピペリジン環、モルホリン環、ピペラジン環、テトラヒドロフラン環、テトラヒドロピラン環、4H-ピラン環、1,4-ジヒドロピリジン環、テトラデヒドロモルホリン環またはこれらの環のベンゼン縮環を表す。Aは酸性基を表す。Q~Qは各々独立に炭素原子または窒素原子を表し、Db~Dbは各々独立に、孤立電子対を有する窒素原子、アニオン性の窒素原子またはアニオン性の炭素原子を表す。を表す。Rは置換基を表す。a1、a3、b1およびb3は各々独立に0~4の整数を表し、a2およびb2は各々独立に0~3の整数を表し、cは0または1を表す。
 ただし、式(AL-1)~(AL-6)で表される配位子は、少なくとも1つの酸性基を有する。
 Rにおける置換基としては、後述の置換基Tが挙げられる。
 これらの置換基の中でも、電子吸引性基が好ましい。なお、電子吸引性基は、ハメットのσp値が、0以上の基が好ましい。
 Rは、アリール基、ヘテロアリール基が好ましく、アリール基としては置換基を有してもよいフェニル基が好ましく、ヘテロアリール基としては、ヘテロアリール基のヘテロ環が、5または6員環で、環構成ヘテロ原子が、窒素原子または硫黄原子が好ましい。該ヘテロ環は芳香環やヘテロ環で縮環していてもよい。
 Rにおけるアリール基、ヘテロアリール基は置換基を有してもよく、このような置換基としては後述の置換基Tが挙げられる。
 Rは、置換基を有してもよい、フェニル基、チエニル基、ピリミジニル基、ベンゾチアゾリル基がさらに好ましい。
 cは1が好ましい。
 前記式(AL-1)~(AL-6)で表される配位子のうち、式(AL-1)で表される配位子が特に好ましい。
 以下に配位子LAの具体例を示すが、これによって本発明が限定されるものではない。
 ここで、Phはフェニルを表す。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 上記配位子LAは、配位子LDと同様の方法で容易に合成できる。
- 配位子X -
 配位子Xは、単座または2座の配位子を表す。
 アシルオキシ基(好ましくは炭素数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ、サリチル酸、グリシルオキシ、N,N-ジメチルグリシルオキシ、オキザリレン(-OC(O)C(O)O-)等)、アシルチオ基(好ましくは炭素数1~20のアシルチオ基、例えば、アセチルチオ、ベンゾイルチオ等)、チオアシルオキシ基(好ましくは炭素数1~20のチオアシルオキシ基、例えば、チオアセチルオキシ基(CHC(S)O-)等))、チオアシルチオ基(好ましくは炭素数1~20のチオアシルチオ基、例えば、チオアセチルチオ(CHC(S)S-)、チオベンゾイルチオ(PhC(S)S-)等))、アシルアミノオキシ基(好ましくは炭素数1~20のアシルアミノオキシ基、例えば、N-メチルベンゾイルアミノオキシ(PhC(O)N(CH)O-)、アセチルアミノオキシ(CHC(O)NHO-)等))、チオカルバメート基(好ましくは炭素数1~20のチオカルバメート基、例えば、N,N-ジエチルチオカルバメート等)、ジチオカルバメート基(好ましくは炭素数1~20のジチオカルバメート基、例えば、N-フェニルジチオカルバメート、N,N-ジメチルジチオカルバメート、N,N-ジエチルジチオカルバメート、N,N-ジベンジルジチオカルバメート等)、チオカルボネート基(好ましくは炭素数1~20のチオカルボネート基、例えば、エチルチオカルボネート等)、ジチオカルボネート(好ましくは炭素数1~20のジチオカルボネート、例えば、エチルジチオカルボネート(COC(S)S-)等)、トリチオカルボネート基(好ましくは炭素数1~20のトリチオカルボネート基、例えば、エチルトリチオカルボネート(CSC(S)S-)等)、アシル基(好ましくは炭素数1~20のアシル基、例えば、アセチル、ベンゾイル等)、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えばメチルチオ、エチレンジチオ等)、アリールチオ基(好ましくは炭素数6~20のアリールチオ基、例えば、フェニルチオ、1,2-フェニレンジチオ等)、アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えばメトキシ等)およびアリールオキシ基(好ましくは炭素数6~20のアリールオキシ基、例えばフェノキシ、キノリン-8-ヒドロキシル等)からなる群から選ばれた基で配位された1座又は2座の配位子、若しくはハロゲン原子(好ましくは塩素原子、臭素原子、ヨウ素原子等)、カルボニル(…CO)、ジアルキルケトン(好ましくは炭素数3~20のジアルキルケトン、例えばアセトン((CHCO…)等)、1,3-ジケトン(好ましくは炭素数3~20の1,3-ジケトン、例えば、アセチルアセトン(CHC(O…)CH=C(O-)CH)、トリフルオロアセチルアセトン(CFC(O…)CH=C(O-)CH)、ジピバロイルメタン(tCC(O…)CH=C(O-)t-C)、ジベンゾイルメタン(PhC(O…)CH=C(O-)Ph)、3-クロロアセチルアセトン(CHC(O…)CCl=C(O-)CH)等)、カルボンアミド(好ましくは炭素数1~20のカルボンアミド、例えば、CHN=C(CH)O-、-OC(=NH)-C(=NH)O-等)、チオカルボンアミド(好ましくは炭素数1~20のチオカルボンアミド、例えば、CHN=C(CH)S-等)、またはチオ尿素(好ましくは炭素数1~20のチオ尿素、例えば、NH(…)=C(S-)NH、CHN(…)=C(S-)NHCH、(CHN-C(S…)N(CH等)からなる配位子を表す。なお、「…」は配位結合を示す。
 配位子Xは、好ましくはアシルオキシ基、チオアシルチオ基、アシルアミノオキシ基、ジチオカルバメート基、ジチオカルボネート基、トリチオカルボネート基、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基、アリールチオ基、アルコキシ基およびアリールオキシ基からなる群から選ばれた基で配位する配位子、あるいはハロゲン原子、カルボニル、1,3-ジケトンまたはチオ尿素からなる配位子であり、より好ましくはアシルオキシ基、アシルアミノオキシ基、ジチオカルバメート基、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基またはアリールチオ基からなる群から選ばれた基で配位する配位子、あるいはハロゲン原子、1,3-ジケトンまたはチオ尿素からなる配位子であり、特に好ましくはジチオカルバメート基、チオシアネート基、イソチオシアネート基、シアネート基およびイソシアネート基からなる群から選ばれた基で配位する配位子、あるいはハロゲン原子または1,3-ジケトンからなる配位子であり、最も好ましくは、ジチオカルバメート基、チオシアネート基およびイソチオシアネート基からなる群から選ばれた基で配位する配位子、あるいは1,3-ジケトンからなる配位子である。なお配位子Xがアルキル基、アルケニル基、アルキニル基、アルキレン基等を含む場合、それらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基、シクロアルキル基等を含む場合、それらは置換されていても無置換でもよく、単環でも縮環していてもよい。
 Xが2座の配位子のとき、Xはアシルオキシ基、アシルチオ基、チオアシルオキシ基、チオアシルチオ基、アシルアミノオキシ基、チオカルバメート基、ジチオカルバメート基、チオカルボネート基、ジチオカルボネート基、トリチオカルボネート基、アシル基、アルキルチオ基、アリールチオ基、アルコキシ基およびアリールオキシ基からなる群から選ばれた基で配位する配位子、あるいは1,3-ジケトン、カルボンアミド、チオカルボンアミド、またはチオ尿素からなる配位子であるのが好ましい。Xが1座配位子のとき、Xはチオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基、アリールチオ基からなる群から選ばれた基で配位する配位子、あるいはハロゲン原子、カルボニル、ジアルキルケトン、チオ尿素からなる配位子が好ましい。
 本発明においては、Xが、NCS、Cl、Br、I、CN、NCOまたはHOが好ましい
- 金属原子M -
 Mは金属錯体色素の中心金属であり、Fe2+、Ru2+またはOs2+を表すが、本発明においてはRu2+が好ましい。なお、光電変換素子中に組み込まれた状態においては、前記Mの価数は、周囲の材料との酸化還元反応により変化することがある。
- 電荷中和対イオンCI -
 CIは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。一般に、色素が陽イオン又は陰イオンであるか、あるいは正味のイオン電荷を有するかどうかは、金属錯体色素中の金属、配位子および置換基に依存する。
 置換基が解離性基を有することなどにより、式(I)で表される金属錯体色素は解離して負電荷を持ってもよい。この場合、式(I)で表される金属錯体色素全体の電荷はCIにより電気的に中性とされる。
 対イオンCIが正の対イオンの場合、例えば、対イオンCIは、無機又は有機のアンモニウムイオン(例えばテトラアルキルアンモニウムイオン、ピリジニウムイオン等)、ホスホニウムイオン(例えばテトラアルキルホスホニウムイオン、アルキルトリフェニルホスホニウムイオン等)、アルカリ金属イオン又はプロトンである。
 対イオンCIが負の対イオンの場合、例えば、対イオンCIは、無機陰イオンでも有機陰イオンでもよい。例えば、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換アリールスルホン酸イオン(例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロホスフェートイオン、ピクリン酸イオン、酢酸イオン、トリフルオロメタンスルホン酸イオン等が挙げられる。さらに電荷均衡対イオンとして、イオン性ポリマーあるいは色素と逆電荷を有する他の色素を用いてもよく、金属錯イオン(例えばビスベンゼン-1,2-ジチオラトニッケル(III)等)も使用可能である。
 本発明において、CIは、ハロゲンイオン、アリールスルホン酸イオン、アリールジスルホン酸イオン、アルキル硫酸イオン、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、酢酸イオン、トリフルオロメタンスルホン酸イオン、アンモニウムイオン、アルカリ金属イオンまたは水素イオンである無機又は有機のアンモニウムイオン、特にテトラブチルアンモニウムイオン、ナトリウムイオン、プロトンが好ましい。
- mX、mY -
 式(I)中のmXは0~3を表し、0または1が好ましい。
 式(I)中のmYは0~2を表し、0が好ましい。
 以下に、本発明の金属錯体色素の具体例を以下に示すが、本発明はこれらに限定されるものではない。
 なお、下記に例示する構造において、配位子の-COH、アンモニオ基は非解離であったり、カウンターイオンを省略して示したりするが、カウンターイオン(前記式(I)におけるCI)は、テトラブチルアンモニウムイオン(NBu)や、ナトリウムイオン、PF や、Cl等のハロゲンイオンであってもよく、代表して示すものである。
・金属錯体色素の具体例の標記方法
 本発明の式(I)で表される化合物は、M(LD)(LA)(X)mX・(CI)mYであり、MがRu2+をRuIIと標記し、配位子LDが前記例示の3座配位子LD-1-1、配位子LAが前記例示の3座配位子LA-1-1、mXとmYがともに0の場合、RuII(LD-1-1)(LA-1-1)と標記する。これは、下記例1の金属錯体色素である。
 また、配位子LDが前記例示の3座配位子LD-2-7、配位子LAが前記例示の3座配位子LA-1-1、mXが0、mYが2、XがClの場合、RuII(LD-2-7)(LA-1-1)Clと標記する。これは、下記例2の金属錯体色素である。
 さらに、配位子LDが前記例示の2座配位子LD-3-5、配位子LAが前記例示の3座配位子LA-1-1、XがNCSでmXが1、mYが0の場合、RuII(LD-3-5)(LA-1-1)(NCS)と標記する。これは、下記例3の金属錯体色素である。
Figure JPOXMLDOC01-appb-C000041
 以下に上記表記法により、本発明の金属錯体色素の具体例を示す。
金属錯体色素1  RuII(LD-1-1)(LA-1-1)
金属錯体色素2  RuII(LD-1-1)(LA-1-3)
金属錯体色素3  RuII(LD-1-2)(LA-1-1)
金属錯体色素4  RuII(LD-1-3)(LA-1-1)
金属錯体色素5  RuII(LD-1-4)(LA-1-1)
金属錯体色素6  RuII(LD-1-6)(LA-1-1)
金属錯体色素7  RuII(LD-1-9)(LA-1-1)
金属錯体色素8  RuII(LD-1-12)(LA-1-1)
金属錯体色素9  RuII(LD-1-13)(LA-1-1)
金属錯体色素10 RuII(LD-1-15)(LA-1-1)
金属錯体色素11 RuII(LD-1-16)(LA-1-1)
金属錯体色素12 RuII(LD-1-17)(LA-1-1)
金属錯体色素13 RuII(LD-1-21)(LA-1-1)
金属錯体色素14 RuII(LD-1-24)(LA-1-1)
金属錯体色素15 RuII(LD-1-26)(LA-1-1)
金属錯体色素16 RuII(LD-1-30)(LA-1-1)N(C
金属錯体色素17 RuII(LD-1-1)(LA-2-1)
金属錯体色素18 RuII(LD-1-1)(LA-2-2)
金属錯体色素19 RuII(LD-1-1)(LA-2-3)
金属錯体色素20 RuII(LD-1-1)(LA-2-9)
金属錯体色素21 RuII(LD-1-1)(LA-2-12)
金属錯体色素22 RuII(LD-1-6)(LA-2-4)
金属錯体色素23 RuII(LD-1-15)(LA-2-3)
金属錯体色素24 RuII(LD-1-17)(LA-2-4)
金属錯体色素25 RuII(LD-1-21)(LA-2-4)
金属錯体色素26 RuII(LD-1-24)(LA-2-3)
金属錯体色素27 RuII(LD-1-26)(LA-2-3)
金属錯体色素28 RuII(LD-1-26)(LA-2-4)
金属錯体色素29 RuII(LD-1-1)(LA-3-1)
金属錯体色素30 RuII(LD-1-15)(LA-3-2)
金属錯体色素31 RuII(LD-1-24)(LA-3-4)N(C
金属錯体色素32 RuII(LD-1-26)(LA-3-4)N(C
金属錯体色素33 RuII(LD-2-1)(LA-1-1)
金属錯体色素34 RuII(LD-2-1)(LA-1-2)
金属錯体色素35 RuII(LD-2-2)(LA-1-1)
金属錯体色素36 RuII(LD-2-2)(LA-1-2)
金属錯体色素37 RuII(LD-2-3)(LA-1-1)
金属錯体色素38 RuII(LD-2-3)(LA-1-2)
金属錯体色素39 RuII(LD-2-4)(LA-1-1)
金属錯体色素40 RuII(LD-2-6)(LA-1-1)
金属錯体色素41 RuII(LD-2-6)(LA-1-2)
金属錯体色素42 RuII(LD-2-7)(LA-1-1)Cl
金属錯体色素43 RuII(LD-2-7)(LA-1-2)Cl
金属錯体色素44 RuII(LD-2-9)(LA-1-1)(NCS)
金属錯体色素45 RuII(LD-2-12)(LA-1-1)
金属錯体色素46 RuII(LD-2-12)(LA-1-2)
金属錯体色素47 RuII(LD-2-12)(LA-1-1)
金属錯体色素48 RuII(LD-2-13)(LA-1-1)
金属錯体色素49 RuII(LD-2-13)(LA-1-2)
金属錯体色素50 RuII(LD-2-13)(LA-1-3)
金属錯体色素51 RuII(LD-2-1)(LA-2-4)
金属錯体色素52 RuII(LD-2-2)(LA-2-1)
金属錯体色素53 RuII(LD-2-3)(LA-2-3)
金属錯体色素54 RuII(LD-2-6)(LA-2-4)
金属錯体色素55 RuII(LD-3-1)(LA-1-1)NCS
金属錯体色素56 RuII(LD-3-1)(LA-1-2)NCS
金属錯体色素57 RuII(LD-3-2)(LA-1-1)NCS
金属錯体色素58 RuII(LD-3-2)(LA-1-3)NCS
金属錯体色素59 RuII(LD-3-3)(LA-1-1)NCS
金属錯体色素60 RuII(LD-3-5)(LA-1-1)NCS
金属錯体色素61 RuII(LD-3-6)(LA-1-1)NCS
金属錯体色素62 RuII(LD-3-7)(LA-1-1)(NCS)
金属錯体色素63 RuII(LD-3-12)(LA-1-1)NCS
金属錯体色素64 RuII(LD-3-13)(LA-1-1)NCS
金属錯体色素65 RuII(LD-3-3)(LA-2-1)NCS
金属錯体色素66 RuII(LD-3-5)(LA-2-2)NCS
金属錯体色素67 RuII(LD-3-6)(LA-2-2)NCS
金属錯体色素68 RuII(LD-3-7)(LA-2-3)(NCS)
金属錯体色素69 RuII(LD-3-12)(LA-2-4)NCS
金属錯体色素70 RuII(LD-3-13)(LA-2-4)NCS
金属錯体色素71 RuII(LD-4-1)(LA-1-1)(NCS)N(C
金属錯体色素72 RuII(LD-4-1)(LA-1-2)(NCS)N(C
金属錯体色素73 RuII(LD-4-2)(LA-1-1)(NCS)N(C
金属錯体色素74 RuII(LD-4-2)(LA-1-3)(NCS)N(C
金属錯体色素75 RuII(LD-4-3)(LA-1-1)(NCS)N(C
金属錯体色素76 RuII(LD-4-3)(LA-1-5)(NCS)N(C
金属錯体色素77 RuII(LD-4-4)(LA-1-1)(NCS)N(C
金属錯体色素78 RuII(LD-4-4)(LA-1-2)(NCS)N(C
金属錯体色素79 RuII(LD-4-6)(LA-1-1)(NCS)N(C
金属錯体色素80 RuII(LD-4-7)(LA-1-1)(NCS)
金属錯体色素81 RuII(LD-4-12)(LA-1-1)(NCS)N(C
金属錯体色素82 RuII(LD-4-13)(LA-1-1)(NCS)N(C
金属錯体色素83 RuII(LD-4-6)(LA-2-3)(NCS)N(C
金属錯体色素84 RuII(LD-4-7)(LA-2-1)(NCS)
金属錯体色素85 RuII(LD-4-12)(LA-2-3)(NCS)N(C
金属錯体色素86 RuII(LD-4-13)(LA-2-3)(NCS)N(C
金属錯体色素87 RuII(LD-5-1)(LA-3-1)
金属錯体色素88 RuII(LD-5-3)(LA-3-4)
金属錯体色素89 RuII(LD-1-24)(LA-3-1)
金属錯体色素90 RuII(LD-1-26)(LA-3-3)N(C
 本発明の金属錯体色素は、米国特許出願公開第2005/0081911A1号明細書、特開2010-13500号公報、特開2011-195745号公報、特開2001-291534号公報、Chem.Commun.,2009,5844~5846に記載の方法およびこれらに記載の文献もしくは参照文献に記載された方法、または、これらの方法に準じた方法で容易に合成することができる。
 本発明の金属錯体色素は、溶液における極大吸収波長が、好ましくは300~1000nmの範囲であり、より好ましくは350~950nmの範囲であり、特に好ましくは370~900nmの範囲である。
- 導電性支持体 -
 導電性支持体は、金属のように支持体そのものに導電性があるものか、または表面に導電膜層を有するガラスもしくはプラスチックの支持体であるのが好ましい。プラスチックの支持体としては、例えば、特開2001-291534号公報の段落番号0153に記載の透明ポリマーフィルムが挙げられる。支持体としては、ガラスおよびプラスチックの他、セラミック(特開2005-135902号公報)、導電性樹脂(特開2001-160425号公報)を用いてもよい。導電性支持体上には、表面に光マネージメント機能を施してもよく、例えば、特開2003-123859号公報に記載の高屈折膜および低屈折率の酸化物膜を交互に積層した反射防止膜、特開2002―260746号公報に記載のライトガイド機能が挙げられる。
 導電膜層の厚さは0.01~30μmであることが好ましく、0.03~25μmであることが更に好ましく、特に好ましくは0.05~20μmである。
 導電性支持体は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上が特に好ましい。透明導電性支持体としては、ガラスもしくはプラスチックに導電性の金属酸化物を塗設したものが好ましい。金属酸化物としてはスズ酸化物が好ましく、インジウム-スズ酸化物、フッ素ドープド酸化物が特に好ましい。このときの導電性の金属酸化物の塗布量は、ガラスもしくはプラスチックの支持体1m当たりの0.1~100gが好ましい。透明導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。
- 半導体微粒子 -
 半導体微粒子は、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイトの微粒子である。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、もしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイトとしては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン(チタニア)、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
 チタニアの結晶構造としては、アナターゼ型、ブルッカイト型、または、ルチル型があげられ、アナターゼ型、ブルッカイト型が好ましい。チタニアナノチューブ・ナノワイヤー・ナノロッドをチタニア微粒子に混合するか、または半導体電極として用いてもよい。
 半導体微粒子の粒径は、投影面積を円に換算したときの直径を用いた平均粒径で1次粒子として0.001~1μm、分散物の平均粒径として0.01~100μmであることが好ましい。半導体微粒子を導電性支持体上に塗設する方法として、湿式法、乾式法、その他の方法が挙げられる。
 透明導電膜と半導体層(感光体層)の間には、電解質と電極が直接接触することによる逆電流を防止するため、短絡防止層を形成することが好ましい。光電極と対極の接触を防ぐために、スペーサーやセパレータを用いることが好ましい。半導体微粒子は多くの色素を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子を支持体上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。一般に、半導体微粒子を含む層の厚みが大きいほど単位面積当たりに担持できる色素の量が増えるため光の吸収効率が高くなるが、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。半導体層である感光体層の好ましい厚みは素子の用途によって異なるが、典型的には0.1~100μmである。色素増感太陽電池として用いる場合は1~50μmであることが好ましく、3~30μmであることがより好ましい。半導体微粒子は、支持体に塗布した後に粒子同士を密着させるために、100~800℃の温度で10分~10時間焼成してもよい。支持体としてガラスを用いる場合、製膜温度は60~400℃が好ましい。
 なお、半導体微粒子の支持体1m当たりの塗布量は0.5~500g、さらには5~100gが好ましい。色素の使用量は、全体で、支持体1m当たり0.01~100ミリモルが好ましく、より好ましくは0.1~50ミリモル、特に好ましくは0.1~10ミリモルである。この場合、本発明の金属錯体色素の使用量は5モル%以上とすることが好ましい。また、色素の半導体微粒子に対する吸着量は半導体微粒子1gに対して0.001~1ミリモルが好ましく、より好ましくは0.1~0.5ミリモルである。このような色素量とすることによって、半導体微粒子における増感効果が十分に得られる。
 前記色素が塩である場合、前記特定の金属錯体色素の対イオンは特に限定されず、例えばアルカリ金属イオンまたは4級アンモニウムイオン等が挙げられる。
 色素を吸着させた後に、アミン類を用いて半導体微粒子の表面を処理してもよい。好ましいアミン類としてピリジン類(例えば4-tert-ブチルピリジン、ポリビニルピリジン)等が挙げられる。これらは液体の場合はそのまま用いてもよいし有機溶媒に溶解して用いてもよい。
 本発明の光電変換素子(例えば光電変換素子10)および色素増感太陽電池(例えば色素増感太陽電池20)においては、少なくとも上記の本発明の金属錯体色素を使用する。
 本発明においては、本発明の金属錯体色素と他の色素を併用してもよい。
 併用する色素としては、特表平7-500630号公報に記載のRu錯体色素(特に第5頁左下欄5行目~第7頁右上欄7行目に例1~例19で合成された色素)、特表2002-512729号公報に記載のRu錯体色素(特に第20頁の下から3行目~第29頁23行目に例1~例16で合成された色素)、特開2001-59062号公報に記載のRu錯体色素(特に、段落番号0087~0104に記載の色素)、特開2001-6760号公報に記載のRu錯体色素(特に、段落番号0093~0102に記載の色素)、特開2001-253894号公報に記載のRu錯体色素(特に、段落番号0009~0010に記載の色素)、特開2003-212851号公報に記載のRu錯体色素(特に、段落番号0005に記載の色素)、国際公開第2007/91525号パンフレットに記載のRu錯体色素(特に、[0067]に記載の色素)、特開2001-291534号公報に記載のRu錯体色素(特に、段落番号0120~0144に記載の色素)、特開2012-012570号公報に記載のRu錯体色素(特に、段落番号0095~0103に記載の色素)、特開2013-084594号公報に記載のRu錯体色素(特に、段落番号0072~0081などに記載の色素)、特開平11-214730号公報に記載のスクアリリウムシアニン色素(特に、段落番号0036~0047に記載の色素)、特開2012-144688号公報に記載のスクアリリウムシアニン色素(特に、段落番号0039~0046および段落番号0054~0060に記載の色素)、特開2012-84503号公報に記載のスクアリリウムシアニン色素(特に、段落番号0066~0076などに記載の色素)、特開2004-063274号公報に記載の有機色素(特に、段落番号0017~0021に記載の色素)、特開2005-123033号公報に記載の有機色素(特に、段落番号0021~0028に記載の色素)、特開2007-287694号公報に記載の有機色素(特に、段落番号0091~0096に記載の色素)、特開2008-71648号公報に記載の有機色素(特に、段落番号0030~0034に記載の色素)、国際公開第2007/119525号パンフレットに記載の有機色素(特に、[0024]に記載の色素)、Angew.Chem.Int.Ed.,49,1~5(2010)などに記載のポルフィリン色素、Angew.Chem.Int.Ed.,46,8358(2007)などに記載のフタロシアニン色素が挙げられる。
 併用する色素として好ましくは、Ru錯体色素、スクアリリウムシアニン色素、または有機色素が挙げられる。
 本発明の金属錯体色素と他の色素を併用する場合、本発明の金属錯体色素の質量/他の色素の質量の比は、95/5~10/90が好ましく、95/5~50/50がより好ましく、95/5~60/40がさらに好ましく、95/5~65/35が特に好ましく、95/5~70/30が最も好ましい。
- 電荷移動体層 -
 本発明の光電変換素子に用いられる電荷移動体層は、色素の酸化体に電子を補充する機能を有する層であり、受光電極と対極(対向電極)との間に設けられる。電荷移動体層は電解質を含む。電解質の例としては、酸化還元対を有機溶媒に溶解した液体電解質、酸化還元対を有機溶媒に溶解した液体をポリマーマトリクスに含浸したいわゆるゲル電解質、酸化還元対を含有する溶融塩などが挙げられる。光電変換効率を高めるためには液体電解質が好ましい。液体電解質の有機溶媒はニトリル化合物、エーテル化合物、エステル化合物等が用いられるが、ニトリル化合物が好ましく、アセトニトリル、メトキシプロピオニトリルが特に好ましい。
 酸化還元対として、例えばヨウ素とヨウ化物(ヨウ化物塩、ヨウ化イオン性液体が好ましく、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化メチルプロピルイミダゾリウムが好ましい)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン類(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体の組み合せ(例えば赤血塩と黄血塩の組み合せ)、2価と3価のコバルト錯体の組み合わせ等が挙げられる。これらのうちヨウ素とヨウ化物との組み合わせ、2価と3価のコバルト錯体の組み合わせが好ましい。
 前記コバルト錯体は、なかでも下記式(CC)で表される錯体が好ましい。
  Co(LL)ma(X)mb・CI      式(CC)
 式(CC)において、LLは2座または3座の配位子を表す。Xは単座の配位子を表す。maは0~3の整数を表す。mbは0~6の整数を表す。CIは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。
 CIは前記式(I)におけるCIが挙げられる。
 LLは下記式(LC)で表される配位子が好ましい。
Figure JPOXMLDOC01-appb-C000042
 式(LC)において、XLC1およびXLC3は各々独立に炭素原子または窒素原子を表す。ここで、XLC1が炭素原子の場合、XLC1とN原子の結合は二重結合(XLC1=N)を表し、XLC3が炭素原子の場合、XLC3とN原子の結合は二重結合(XLC3=N)を表し、XLC1が窒素原子の場合、XLC1とN原子の結合は単結合(XLC1-N)を表し、XLC3が窒素原子の場合、XLC3とN原子の結合は単結合(XLC3-N)を表す。
 ZLC1、ZLC2およびZLC3は各々独立に、5員環または6員環を形成するのに必要な非金属原子群を表す。ZLC1、ZLC2およびZLC3は置換基を有していてもよく、置換基を介して隣接する環と閉環していてもよい。qは0または1を表す。該置換基としては、後述の置換基Tが挙げられる。なお、qが0の場合、XLC3がZLC2で形成される5員環または6員環に結合する位置の炭素原子は水素原子、またはZLC3で形成されるヘテロ環基以外の置換基が結合する。
 Xはハロゲンイオンであることが好ましい。
 上記式(LC)で表される配位子は、下記式(LC-1)~(LC-4)で表される配位子がより好ましい。
Figure JPOXMLDOC01-appb-C000043
 RLC1~RLC11は各々独立に置換基を表す。q1、q2、q6およびq7は各々独立に、0~4の整数を表す。q3、q5、q10およびq11は各々独立に、0~3の整数を表す。q4は0~2の整数を表す。
 式(LC-1)~(LC-4)において、RLC1~RLC11の置換基としては例えば、脂肪族基、芳香族基、複素環基等が挙げられる。置換基の具体的な例としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、ヘテロ環等を挙げることができる。好ましい例としては、アルキル基(例えばメチル、エチル、n-ブチル、n-ヘキシル、イソブチル、sec-ブチル、t-ブチル、n-ドデシル、シクロヘキシル、ベンジル等)、アリール基(例えばフェニル、トリル、ナフチル等)、アルコキシ基(例えば、メトキシ、エトキシ、イソプロポキシ、ブトキシ等)、アルキルチオ基(例えば、メチルチオ、n-ブチルチオ、n-ヘキシルチオ、2-エチルヘキシルチオ等)、アリールオキシ基(例えば、フェノキシ、ナフトキシ等)、アリールチオ基(例えば、フェニルチオ、ナフチルチオ等)、ヘテロ環基(例えば、2-チエニル、2-フリル等)を挙げることができる。
 式(LC)で表されるコバルト錯体の具体例としては、例えば以下の錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000044
 電解質として、ヨウ素とヨウ化物との組み合せを用いる場合、5員環または6員環の含窒素芳香族カチオンのヨウ素塩をさらに併用するのが好ましい。
 酸化還元対を、これらを溶かす有機溶媒としては、非プロトン性の極性溶媒(例えばアセトニトリル、炭酸プロピレン、炭酸エチレン、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、1,3-ジメチルイミダゾリノン、3-メチルオキサゾリジノン等)が好ましい。ゲル電解質のマトリクスに使用されるポリマーとしては、例えばポリアクリロニトリル、ポリビニリデンフルオリド等が挙げられる。溶融塩としては、例えばヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。この場合のポリマーの添加量は1~50質量%である。また、γ-ブチロラクトンを電解液に含んでいてもよく、これによりヨウ化物イオンの拡散効率が高くなり変換効率が向上する。
 電解質への添加物として、前述の4-tert-ブチルピリジンのほか、アミノピリジン系化合物、ベンズイミダゾール系化合物、アミノトリアゾール系化合物およびアミノチアゾール系化合物、イミダゾール系化合物、アミノトリアジン系化合物、尿素誘導体、アミド化合物、ピリミジン系化合物および窒素を含まない複素環を加えることができる。
 また、光電変換効率を向上するために、電解液の水分を制御する方法をとってもよい。水分を制御する好ましい方法としては、濃度を制御する方法や脱水剤を共存させる方法を挙げることができる。ヨウ素の毒性軽減のために、ヨウ素とシクロデキストリンの包摂化合物の使用をしてもよく、逆に水分を常時補給する方法を用いてもよい。また環状アミジンを用いてもよく、酸化防止剤、加水分解防止剤、分解防止剤、ヨウ化亜鉛を加えてもよい。
 電解質として溶融塩を用いてもよく、好ましい溶融塩としては、イミダゾリウムまたはトリアゾリウム型陽イオンを含むイオン性液体、オキサゾリウム系、ピリジニウム系、グアニジウム系およびこれらの組み合わせが挙げられる。これらカチオン系に対して特定のアニオンと組み合わせてもよい。これらの溶融塩に対しては添加物を加えてもよい。液晶性の置換基を持っていてもよい。また、四級アンモニウム塩系の溶融塩を用いてもよい。
 これら以外の溶融塩としては、例えば、ヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。
 電解質と溶媒からなる電解液にゲル化剤を添加してゲル化させることにより、電解質を擬固体化してもよい。ゲル化剤としては、分子量1000以下の有機化合物、分子量500~5000の範囲のSi含有化合物、特定の酸性化合物と塩基性化合物からできる有機塩、ソルビトール誘導体、ポリビニルピリジンが挙げられる。
 また、マトリックス高分子、架橋型高分子化合物またはモノマー、架橋剤、電解質および溶媒を高分子中に閉じ込める方法を用いても良い。
 マトリックス高分子として好ましくは、含窒素複素環を主鎖あるいは側鎖の繰り返し単位中に持つ高分子およびこれらを求電子性化合物と反応させた架橋体、トリアジン構造を持つ高分子、ウレイド構造をもつ高分子、液晶性化合物を含むもの、エーテル結合を有する高分子、ポリフッ化ビニリデン系、メタクリレート・アクリレート系、熱硬化性樹脂、架橋ポリシロキサン、ポリビニルアルコール(PVA)、ポリアルキレングリールとデキストリンなどの包摂化合物、含酸素または含硫黄高分子を添加した系、天然高分子などが挙げられる。これらにアルカリ膨潤型高分子、一つの高分子内にカチオン部位とヨウ素との電荷移動錯体を形成できる化合物を持った高分子などを添加しても良い。
 マトリックスポリマーとして2官能以上のイソシアネートを一方の成分として、ヒドロキシル基、アミノ基、カルボキシル基などの官能基と反応させた架橋ポリマーを含む系を用いても良い。また、ヒドロシリル基と二重結合性化合物による架橋高分子、ポリスルホン酸またはポリカルボン酸などを2価以上の金属イオン化合物と反応させる架橋方法などを用いても良い。
 上記擬固体の電解質との組み合わせで好ましく用いることができる溶媒としては、特定のリン酸エステル、エチレンカーボネートを含む混合溶媒、特定の比誘電率を持つ溶媒などが挙げられる。固体電解質膜あるいは細孔に液体電解質溶液を保持させても良く、その方法として好ましくは、導電性高分子膜、繊維状固体、フィルタなどの布状固体が挙げられる。
 以上の液体電解質および擬固体電解質の代わりにp型半導体あるいはホール輸送材料などの固体電荷輸送層、例えば、CuI、CuNCSなどを用いることができる。また、Nature,vol.486,p.487(2012)等に記載の電解質を用いてもよい。固体電荷輸送層として有機ホール輸送材料を用いても良い。ホール輸送層として好ましくは、ポリチオフェン、ポリアニリン、ポリピロールおよびポリシランなどの導電性高分子、および2個の環がC、Siなど四面体構造をとる中心元素を共有するスピロ化合物、トリアリールアミンなどの芳香族アミン誘導体、トリフェニレン誘導体、含窒素複素環誘導体、液晶性シアノ誘導体が挙げられる。
 酸化還元対は、電子のキャリアになるため、濃度は合計で0.01モル/L以上が好ましく、0.1モル/L以上がより好ましく、0.3モル/L以上が特に好ましい。酸化還元対の合計の濃度の上限は特に制限はないが、通常5モル/L程度である。
- 共吸着剤 -
 本発明の光電変換素子においては、本発明の金属錯体色素または必要により併用する色素とともに共吸着剤を使用することが好ましい。このような共吸着剤としては酸性基(好ましくは、カルボキシル基もしくはその塩の基)を1つ以上有する共吸着剤が好ましく、脂肪酸やステロイド骨格を有する化合物が挙げられる。脂肪酸は、飽和脂肪酸でも不飽和脂肪酸でもよく、例えばブタン酸、ヘキサン酸、オクタン酸、デカン酸、ヘキサデカン酸、ドデカン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸等が挙げられる。
 ステロイド骨格を有する化合物として、コール酸、グリココール酸、ケノデオキシコール酸、ヒオコール酸、デオキシコール酸、リトコール酸、ウルソデオキシコール酸等が挙げられる。好ましくはコール酸、デオキシコール酸、ケノデオキシコール酸であり、さらに好ましくはケノデオキシコール酸である。
 好ましい共吸着剤は、下記式(CA)で表される化合物である。
Figure JPOXMLDOC01-appb-C000045
 式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
 酸性基は、先に示したものと同義であり、好ましい範囲も同じである。
 RA1は、これらの中でも、カルボキシル基またはスルホ基もしくはそれらの塩が置換したアルキル基が好ましく、-CH(CH)CHCHCOH、-CH(CH)CHCHCONHCHCHSOHがさらに好ましい。
 RA2は、後述の置換基Tが挙げられるが、中でもアルキル基、ヒドロキシ基、アシルオキシ基、アルキルアミノカルボニルオキシ基、アリールアミノカルボニルオキシ基が好ましく、アルキル基、ヒドロキシ基、アシルオキシ基がより好ましい。
 nAは2~4であることが好ましい。
 これらの具体的化合物は、上述のステロイド骨格を有する化合物として例示した化合物が挙げられる。
 本発明の共吸着剤は、半導体微粒子に吸着させることにより、色素の非効率な会合を抑制する効果および半導体微粒子表面から電解質中のレドックス系への逆電子移動を防止する効果がある。共吸着剤の使用量は特に限定されないが、上記色素1モルに対して、好ましくは1~200モル、さらに好ましくは10~150モル、特に好ましくは20~50モルであることが上記の作用を効果的に発現させられる観点から好ましい。
<置換基T>
 本明細書において化合物(錯体、色素を含む)の表示については、当該化合物そのもののほか、その塩、錯体、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、所定の一部を変化させた誘導体を含む意味である。また、本明細書において置換・無置換を明記していない置換基(連結基および配位子についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 また、本明細書において、単に置換基としてしか記載されていないは、この置換基Tを参照するものであり、また、各々の基、例えば、アルキル基、が記載されているのみの時は、この置換基Tの対応する基における好ましい範囲、具体例が適用される。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素数1~20で、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル、トリフルオロメチル等)、アルケニル基(好ましくは炭素数2~20で、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20で、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20で、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、シクロアルケニル基(好ましくは炭素数5~20での、例えばシクロペンテニル、シクロヘキセニル等)、アリール基(好ましくは炭素数6~26で、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数2~20で、環構成原子に少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5員環または6員環のヘテロ環基がより好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素数1~20で、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アルケニルオキシ基(好ましくは炭素数2~20で、例えば、ビニルオキシ、アリルオキシ等)、アルキニルオキシ基(好ましくは炭素数2~20で、例えば、2-プロピニルオキシ、4-ブチニルオキシ等)、シクロアルキルオキシ基(好ましくは炭素数3~20で、例えば、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ、4-メチルシクロヘキシルオキシ等)、アリールオキシ基(好ましくは炭素数6~26で、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、ヘテロ環オキシ基(例えば、イミダゾリルオキシ、ベンゾイミダゾリルオキシ、チアゾリルオキシ、ベンゾチアゾリルオキシ、トリアジニルオキシ、プリニルオキシ)、
アルコキシカルボニル基(好ましくは炭素数2~20ので、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、シクロアルコキシカルボニル基(好ましくは炭素数4~20ので、例えば、シクロプロピルオキシカルボニル、シクロペンチルオキシカルボニル、シクロヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~20で、例えば、フェニルオキシカルボニル、ナフチルオキシカルボニル等)、アミノ基(好ましくは炭素数0~20で、アルキルアミノ基、アルケニルアミノ基、アルキニルアミノ基、シクロアルキルアミノ基、シクロアルケニルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、N-アリルアミノ、N-(2-プロピニル)アミノ、N-シクロヘキシルアミノ、N-シクロヘキセニルアミノ、アニリノ、ピリジルアミノ、イミダゾリルアミノ、ベンゾイミダゾリルアミノ、チアゾリルアミノ、ベンゾチアゾリルアミノ、トリアジニルアミノ等)、スルファモイル基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルファモイル基が好ましく、例えば、N,N-ジメチルスルファモイル、N-シクロヘキシルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素数1~20で、例えば、アセチル、シクロヘキシルカルボニル、ベンゾイル等)、アシルオキシ基(好ましくは炭素数1~20で、例えば、アセチルオキシ、シクロヘキシルカルボニルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20で、アルキル、シクロアルキルもしくはアリールのカルバモイル基が好ましく、例えば、N,N-ジメチルカルバモイル、N-シクロヘキシルカルバモイル、N-フェニルカルバモイル等)、
アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、シクロヘキシルカルボニルアミノ、ベンゾイルアミノ等)、スルホンアミド基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルホンアミド基が好ましく、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-シクロヘキシルスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素数1~20で、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、シクロアルキルチオ基(好ましくは炭素数3~20で、例えば、シクロプロピルチオ、シクロペンチルチオ、シクロヘキシルチオ、4-メチルシクロヘキシルチオ等)、アリールチオ基(好ましくは炭素数6~26で、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキル、シクロアルキルもしくはアリールスルホニル基(好ましくは炭素数1~20で、例えば、メチルスルホニル、エチルスルホニル、シクロヘキシルスルホニル、ベンゼンスルホニル等)、
シリル基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリル基が好ましく、例えば、トリエチルシリル、トリフェニルシリル、ジエチルベンジルシリル、ジメチルフェニルシリル等)、シリルオキシ基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリルオキシ基が好ましく、例えば、トリエチルシリルオキシ、トリフェニルシリルオキシ、ジエチルベンジルシリルオキシ、ジメチルフェニルシリルオキシ等)、ヒドロキシル基、シアノ基、ニトロ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)、カルボキシル基、スルホ基、ホスホニル基、ホスホリル基、ホウ酸基である。
 化合物ないし置換基等がアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。
<対極(対向電極)>
 対極は、色素増感太陽電池(光電気化学電池)の正極として働くものであることが好ましい。対極は、通常前述の導電性支持体と同義であるが、強度が十分に保たれるような構成では支持体は必ずしも必要でない。対極の構造としては、集電効果が高い構造が好ましい。感光体層に光が到達するためには、前述の導電性支持体と対極との少なくとも一方は実質的に透明でなければならない。本発明の色素増感太陽電池においては、導電性支持体が透明であって太陽光を支持体側から入射させるのが好ましい。この場合、対極は光を反射する性質を有することがさらに好ましい。色素増感太陽電池の対極としては、金属もしくは導電性の酸化物を蒸着したガラス、またはプラスチックが好ましく、白金を蒸着したガラスが特に好ましい。色素増感太陽電池では、構成物の蒸散を防止するために、電池の側面をポリマーや接着剤等で密封することが好ましい。
 本発明は、特許第4260494号公報、特開2004-146425号公報、特開2000-340269号公報、特開2002-289274号公報、特開2004-152613号公報、特開平9-27352号公報に記載の光電変換素子、色素増感太陽電池に適用することができる。また、特開2004-152613号公報、特開2000-90989号公報、特開2003-217688号公報、特開2002-367686号公報、特開2003-323818号公報、特開2001-43907号公報、特開2000-340269号公報、特開2005-85500号公報、特開2004-273272号公報、特開2000-323190号公報、特開2000-228234号公報、特開2001-266963号公報、特開2001-185244号公報、特表2001-525108号公報、特開2001-203377号公報、特開2000-100483号公報、特開2001-210390号公報、特開2002-280587号公報、特開2001-273937号公報、特開2000-285977号公報、特開2001-320068号公報等に記載の光電変換素子、色素増感太陽電池に適用することができる。
<<色素溶液、それを用いた色素吸着電極および色素増感太陽電池の製造方法>>
 本発明においては、本発明の金属錯体色素を含有する色素溶液を使用して色素吸着電極を製造することが好ましい。
 このような色素溶液には、本発明の金属錯体色素が有機溶媒に溶解されてなり、必要により共吸着剤や他の成分を含んでもよい。
 使用する溶媒としては、特開2001-291534号公報に記載の溶媒が挙げられるが特に限定されない。本発明においては有機溶媒が好ましく、さらにアルコール類、アミド類、ニトリル類、アルコール類、炭化水素類、および、これらの2種以上の混合溶媒が好ましい。混合溶媒としては、アルコール類と、アミド類、ニトリル類または炭化水素類から選択される溶媒との混合溶媒が好ましい。さらに好ましくはアルコール類とアミド類、アルコール類と炭化水素類の混合溶媒、特に好ましくはアルコール類とアミド類の混合溶媒である。具体的にはメタノール、エタノール、プロパノール、ブタノール、ジメチルホルムアミド、ジメチルアセトアミドが好ましい。
 色素溶液は共吸着剤を含有することが好ましく、共吸着剤としては、前述の共吸着剤が好ましく、なかでも前記式(CA)で表される化合物が好ましい。
 ここで、本発明の色素溶液は、光電変換素子や色素増感太陽電池を製造する際に、この溶液をこのまま使用できるように、金属錯体色素や共吸着剤が濃度調整されているものが好ましい。本発明では、本発明の金属錯体色素を0.001~0.1質量%含有することが好ましい。
 色素溶液は、水分含有量を調整することが特に好ましく、従って、本発明では水の含有量(含有率)を0~0.1質量%に調整することが好ましい。
 同様に、光電変換素子や色素増感太陽電池における電解質の水分含有量の調整も、本発明の効果を効果的に奏するために好ましく、このため、この電解液の水分含有量(含有率)を0~0.1質量%に調整することが好ましい。この電解質の調整は、色素溶液で行なうのが特に好ましい。
 本発明では、上記色素溶液を用いて、半導体電極が備える半導体微粒子表面に金属錯体色素を担持させてなる色素増感太陽電池用の半導体電極である色素吸着電極が好ましい。
 すなわち、色素増感太陽電池用の色素吸着電極は、上記色素溶液から得られてなる組成物を、半導体微粒子を付与した導電性支持体上に塗布し、塗布後の該組成物を硬化させて感光体層としたものが好ましい。
 本発明では、この色素増感太陽電池用の色素吸着電極を使用し、電解質、および対極を準備し、これらを用いて組み立てることで、色素増感太陽電池を製造することが好ましい。
 以下に実施例に基づき本発明について更に詳細に説明するが、本発明がこれに限定して解釈されるものではない。
[金属錯体色素の合成]
実施例1〔金属錯体色素RuII(LD-1-1)(LA-1-1)の合成〕
 下記反応スキームで、配位子LD-1-1を合成し、金属錯体色素RuII(LD-1-1)(LA-1-1)を合成した。
Figure JPOXMLDOC01-appb-C000046
(1)化合物LD-1-1-aの合成
 窒素雰囲気下、テトラヒドロフラン(THF)25mLにジイソプロピルアミン(DIPA)5.4gを溶解し、-20℃に冷却した。ここにn-ブチルリチウム(1.6mol/L ヘキサン溶液)35mLを滴下し、-20℃で30分間攪拌後、2,6-ジエチルカルボキシ-4-メチルピリジン6.4gのテトラヒドロフラン溶液50mLを滴下し、0℃で75分間攪拌した。この懸濁液に5-ヘキシルチオフェン-2-カルボキシアルデヒド3.5gのテトラヒドロフラン溶液10mLを滴下し、室温で90分間攪拌した。その後、飽和塩化アンモニウム水溶液100mlを添加後、分液を行い、有機層を減圧下濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製することで目的物5.2gを得た。
(2)化合物LD-1-1-bの合成
 窒素雰囲気下、トルエン50mLに化合物LD-1-1-a 4.9gとPPTS(ピリジニウムパラトルエンスルホン酸)3.7gを加え、4時間加熱還流を行った。飽和重曹水50mLおよび酢酸エチル100mLで分液を行い、有機層を濃縮した。得られた粗生成物をメタノールで再結晶することで目的物4.5gを得た。
(3)配位子LD-1-1の合成
 エタノール50mLに化合物LD-1-1-b 4.2gを50℃で溶解し、水酸化ナトリウム1.0gをエタノール50mlと水5mlの混合液に溶解させた溶液を加え、2時間室温で攪拌した。反応液を氷冷しながら、0.2M塩酸水溶液を徐々に添加し、pHが2になるまで加えた。析出した結晶を濾過して得られた粗生成物をメタノールで再結晶することで目的物3.8gを得た。
(4)RuII(LD-1-1)(LA-1-1)-esterの合成
 窒素雰囲気下、エタノール500mLと水100mLの混合溶液に、(Me-tctpy)RuCl 305mg〔Me-tctpyは4,4’,4”-トリ(メトキシカルボニル)-2,2’:6’,2”-テルピリジルである〕、化合物LD-1-1 260mg、トリエチルアミン1.5mL加え、3時間加熱還流した。反応溶液を減圧濃縮し、酢酸エチル20mLと水200mLを加え、分液を行い、有機層を減圧下濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製することで目的物294mgを得た。
(5)金属錯体色素RuII(LD-1-1)(LA-1-1)の合成
 窒素雰囲気下、メタノール30mLに、RuII(LD-1-1)(LA-1-1)-ester100mgを加え、完全に溶解させた。ここに、1規定の水酸化ナトリウム水溶液10mLを加え、室温で12時間攪拌した。反応液を減圧濃縮し、得られた固体を水30mLに溶解させ、この溶液に1規定のトリフルオロメタンスルホン酸水溶液を10mL加えた。析出した固体を濾過により回収し、水10mL、続いてジエチルエーテル10mL洗浄することで、目的物82mgを得た。
実施例2〔金属錯体色素RuII(LD-1-26)(LA-1-1)の合成〕
 下記反応スキームで、配位子LD-1-26を合成し、上記の金属錯体色素RuII(LD-1-1)(LA-1-1)と同様の方法で金属錯体色素RuII(LD-1-26)(LA-1-1)を合成した。
Figure JPOXMLDOC01-appb-C000047
実施例3〔金属錯体色素RuII(LD-3-1)(LA-1-1)NCSの合成〕
 下記反応スキームで、配位子LD-3-1を合成し、金属錯体色素RuII(LD-3-1)(LA-1-1)NCSを合成した。
Figure JPOXMLDOC01-appb-C000048
実施例4〔金属錯体色素RuII(LD-3-5)(LA-1-1)NCSの合成〕
 下記反応スキームで、配位子LD-3-5を合成し、前記の金属錯体色素RuII(LD-3-1)(LA-1-1)NCSと同様の方法で金属錯体色素RuII(LD-3-5)(LA-1-1)NCSを合成した。
Figure JPOXMLDOC01-appb-C000049
実施例5〔金属錯体色素RuII(LD-1-6)(LA-1-1)の合成〕
 配位子LD-1-1と同様にして、配位子LD-1-6を合成し、前記の金属錯体色素RuII(LD-1-1)(LA-1-1)と同様の方法で金属錯体色素RuII(LD-1-6)(LA-1-1)を合成した。
実施例6〔金属錯体色素RuII(LD-1-9)(LA-1-1)の合成〕
 配位子LD-1-1と同様にして、配位子LD-1-9を合成し、前記の金属錯体色素RuII(LD-1-1)(LA-1-1)と同様の方法で金属錯体色素RuII(LD-1-9)(LA-1-1)を合成した。
実施例7〔金属錯体色素RuII(LD-1-24)(LA-1-1)の合成〕
 配位子LD-1-26と同様にして、配位子LD-1-24を合成し、前記の金属錯体色素RuII(LD-1-26)(LA-1-1)と同様の方法で金属錯体色素RuII(LD-1-24)(LA-1-1)を合成した。
実施例7〔金属錯体色素RuII(LD-2-12)(LA-1-1)の合成〕
 下記反応スキームで、配位子LD-2-12を合成し、前記の金属錯体色素RuII(LD-1-1)(LA-1-1)と同様の方法で金属錯体色素RuII(LD-2-12)(LA-1-1)を合成した。
Figure JPOXMLDOC01-appb-C000050
実施例8〔金属錯体色素RuII(LD-1-24)(LA-3-1)の合成〕
 下記の方法に従って配位子LA-3-1Meを合成し、前記の金属錯体色素RuII(LD-1-24)(LA-1-1)と同様の方法で金属錯体色素RuII(LD-1-24)(LA-3-1)を合成した。
(配位子LA-3-1Meの合成)
 2-ブロモピリミジン5gに下記スズ化反応を適用し、スズ化体LA-3-1Aを得た。ジメチル 6-ブロモ-2,2’-ビピリジン-4,4’-ジカルボキシレート2gと上記スズ化体LA-3-1Aを用いてスティルカップリングを適用し、配位子LA-3-1のジメチルエステル体である配位子LA-3-1Meを得た。
(スズ化反応)
 ハロゲンが置換した基質約5gに対し、1.2倍モルのビストリブチルスズ、0.05倍モルのテトラキストリフェニルフォスフィンパラジウムをトルエン100ml中で窒素雰囲気下、還流した。薄層クロマトグラフィーで反応終了を確認し、室温冷却後、反応液を濾過、濃縮し、分取カラムクロマトグラフィー装置〔山善(株)社製AI-580〕および溶離液としてn-へキサン、酢酸エチル、メタノールの混合溶媒を用いて濃度勾配を制御しながら流すことで分離精製を行った。目的のフラクションを濃縮することでスズ化体が得られる。
実施例9〔金属錯体色素RuII(LD-1-26)(LA-3-3)N(Cの合成〕
 下記の方法に従って配位子LA-3-3Meを合成し、前記の金属錯体色素RuII(LD-1-26)(LA-1-1)と同様の方法で金属錯体色素RuII(LD-1-26)(LA-3-3)N(Cを合成した。
(配位子LA-3-3Meの合成)
 前記の配位子LA-3-1Meの合成において、2-ブロモピリミジン5gを等モルの2-ブロモベンゾチアゾールに置き換え、その他は同様にして配位子LA-3-3のジメチルエステル体である配位子LA-3-3Meを得た。
 実施例10で使用する残りの金属錯体色素も、上記実施例1~9と同様の方法で合成した。
 各金属錯体色素の構造はMS(マススペクトル)測定により確認した。各金属錯体色素のMS測定結果をまとめて下記表1に示した。
Figure JPOXMLDOC01-appb-T000051
実施例10〔色素増感太陽電池の作製〕
 以下に示す手順により、特開2002-289274号公報に記載の図5に示されている光電極12と同様の構成を有する光電極を作製し、更に、光電極を用いて、同公報の図3に示されている光電極以外は色素増感型太陽電池20と同様の構成を有する10mm×10mmのスケールの色素増感太陽電池1を作製した。具体的な構成は本願の図面に添付の図2に示した。本願の図2では、41が透明電極、42が半導体電極、43が透明導電膜、44が基板、45が半導体層、46が光散乱層、40が光電極、20が色素増感太陽電池、CEが対極、Eが電解質、Sがスペーサーである。
(ペーストの調製)
(ペーストA)球形のTiO粒子(アナターゼ、平均粒径;25nm、以下、球形TiO粒子Aという)を硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペーストを調製した。
(ペースト1)球形TiO粒子Aと、球形のTiO粒子(アナターゼ、平均粒径;200nm、以下、球形TiO粒子Bという)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペースト(TiO粒子Aの質量:TiO粒子Bの質量=30:70)を調製した。
(ペースト2)ペーストAに、棒状TiO粒子(アナターゼ、直径;100nm、アスペクト比;5、以下、棒状TiO粒子Cという)を混合し、棒状TiO粒子Cの質量:ペーストAの質量=30:70のペーストを調製した。
(半導体電極の作成)
 ガラス基板上にフッ素ドープされたSnO導電膜(膜厚;500nm)を形成した透明電極を準備した。そして、このSnO導電膜上に、上述のペースト1をスクリーン印刷し、次いで乾燥させた。その後、空気中、450℃の条件のもとで焼成した。更に、ペースト2を用いてこのスクリーン印刷と焼成とを繰り返すことにより、SnO導電膜上に図2に示す半導体電極42と同様の構成の半導体電極(受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;6μm、光散乱層の層厚;4μm、光散乱層に含有される棒状TiO粒子Cの含有率;30質量%)を形成し、色素を含有していない光電極を作製した。
(色素吸着)
 次に、半導体電極(色素吸着電極の前駆体)に色素を以下のようにして吸着させた。先ず、マグネシウムエトキシドで脱水した無水t-ブタノールとジメチルホルムアミドの1:1(体積比)の混合物を溶媒として、下記表2に記載の金属錯体色素を3×10-4モル/Lとなるように溶解し、さらに共吸着剤として、ケノデオキシコール酸とコール酸の等モル混合物を金属錯体色素1モルに対して20モル加え、各色素溶液を調製した。この色素溶液をカール・フィッシャー滴定により水分量を測定したところ、水は0.01質量%未満であった。次に、この溶液に半導体電極を40℃10時間浸漬し、引き上げ後50℃で乾燥させることにより、半導体電極に色素が約2×10-7mol/cm吸着した光電極40をそれぞれ完成させた。
(色素増感太陽電池の組み立て)
 次に、対極として上記の光電極と同様の形状と大きさを有する白金電極(Pt薄膜の厚さ;100nm)、電解質として、ヨウ素0.1M、ヨウ化リチウム0.05M、4-t-ブチルピリジン0.25Mを含むヨウ素系レドックスプロピオニトリル溶液を調製した。更に、半導体電極の大きさに合わせた形状を有するデュポン社製のスペーサーS(商品名:「サーリン」)を準備し、光電極40と対極CEを、スペーサーSを介して対向、熱圧着させ、内部に上記の電解質を充填して各色素増感太陽電池(試料番号101~126、c11~c17)をそれぞれ完成させた。これらの色素増感太陽電池の性能を下記のようにして評価した。
(評価実験1)
 電池特性試験を行い、上記色素増感太陽電池の短絡電流密度(Jsc 単位mA/cm)、開放電圧(Voc 単位v)、フィルファクター(FF)を求め、電池出力を入射エネルギーで除することにより光電変換効率〔η(%)〕を測定した。電池特性試験は、ソーラーシミュレーター(ペクセル・テクノロジーズ株式会社製PEC-L12)を用いた。特性評価はペクセル・テクノロジーズ株式会社製I-V特性計測装置(PECK2400-N)を用いた。得られた結果を下記の評価基準で評価した。
評価基準
 A:光電変換効率が比較化合物(1)に対し1.3倍以上のもの
 B:1.1倍以上1.3倍未満のもの
 C:1.1倍未満のもの
 なお、下記表2には初期特性1として示す。
(評価実験2)
 金属錯体色素の酸化チタン表面への吸着力の評価として、金属錯体色素の酸化チタン表面からの脱着速度を指標とした。
 金属錯体色素の脱着速度はQuartz Crystal microbalance with Dissipation monitoring(QCM-D)分子間相互作用測定装置E1(メイワフォーシス株式会社製)により算出した。
 QCM-Dに用いる金センサー(メイワフォーシス株式会社製)にペーストA(アナターゼ、平均粒径:25nm)をスクリーン印刷により印刷した(膜厚:20μm)。印刷した金センサーを空気中、450℃で1時間焼成することにより半導体層(感光体層)が吸着した金センサーを作製した。
 作製したセンサーをQCM-D分子間相互作用測定装置にセットし、0.2mMの色素溶液(DMF/t-BuOH=1/1)を流すことにより半導体層(感光体層)へ色素を所定値(200μg/cm)となるように吸着させた。色素吸着量は水晶振動子の共振周波数シフト(ΔF)から下記のSauerbreyの式により算出した。
  ΔF=-2×F ×Δm/A(μ×P)1/2
 ここで、Fは水晶振動子の単独の周波数、Δmは質量変化、AはAu電極の圧電活性面積、μとPは各々水晶の密度と剛性率を表す。
 その後、上述した電解質Eに80℃で4時間流すことにより色素の脱着量を測定した。脱着色素量もSauerbreyの式により算出した。得られた脱着色素量から脱着速度を算出した。得られた速度を下記基準で評価した。
評価基準
 A:0.0μg/cm/hr以上2.5μg/cm/hr未満
 B:2.5μg/cm/hr以上10.0μg/cm/hr未満
 C:10.0μg/cm/hr以上
 なお、下記表2には脱着速度として示す。
(評価実験3)
 前述のようにして色素吸着させた各半導体電極を透明電極の反対側から目視により、色素による染色の均一度合いを目視により、下記の基準で評価した。
評価基準
 A:色素の吸着ムラが認められない。
 B:若干の色素の吸着ムラが認められる。
 C:色素の吸着ムラがより多い。
 なお、下記表2には電極ムラとして示す。
(評価実験4)
 ナガセケムテック製レジンXNR-5516を用いて作製した電池の外周および電解質(電解液)注入口を封止、硬化した。この電池を、50℃の環境下に200時間放置する前後の光電変換効率を測定し、その比を劣化率とした。
評価基準
 AA:劣化率がマイナスのもの(良化)したもの
 A :100~90%のもの
 C :90%未満のもの
 なお、表2には熱劣化として示す。
(評価実験5)
 上記と同様に電池を作製するが、電解質を0.2Mのトリス(ビピリジン)コバルトビス(ヘキサフルオロフォスフェート)、0.02Mのトリス(ビピリジン)コバルトトリス(ヘキサフルオロフォスフェート)、0.1 Mの過塩素酸リチウム、0.5M 4-t-ブチルピリジン、プロピオニトリル溶液に変更した。光電変換効率を評価し、評価実験1の場合と比較し、以下の評価基準で評価した。
評価基準
 A:相対値が1.3倍以上のもの
 B:1.1倍以上1.3倍未満のもの
 C:1.1倍未満のもの
 なお、下記表2には初期特性2として示す。
(評価実験6)
 電池の高速製造を模擬するために、評価実験1における色素溶液への浸漬時間を1/10に短縮して電池を作製した。各々の光電変換効率を評価し、評価実験1の場合と比較し、以下の評価基準で評価した。
評価基準
 A:相対値が0.9倍以上のもの
 B:0.7倍以上0.9倍未満のもの
 C:0.7倍未満のもの
 なお、下記表2には高速適性として示す。
 これらの各評価結果をまとめて下記表2に示す。
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-C000053
 上記表2から明らかなように、本発明の金属錯体色素を用いた色素増感太陽電池はいずれも光電変換効率および耐久性に優れ、連続生産においても電極ムラが発生せず安定な性能を発揮でき、非常に優れていることが分かる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2012年9月28日に日本国で特許出願された特願2012-218755及び2013年7月29日に日本国で特許出願された特願2013-156801に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
1 導電性支持体
2 感光体層
 21 色素
 22 半導体微粒子
3 電荷移動体層
4 対極
5 受光電極
6 回路
10 光電変換素子
100 色素増感太陽電池を利用したシステム
M 電動モーター(扇風機)
20 色素増感太陽電池
40 光電極
41 透明電極
42 半導体電極
43 透明導電膜
44 基板
45 半導体層
46 光散乱層
CE 対極
E 電解質
S スペーサー

Claims (20)

  1.  導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層および対極を有する光電変換素子であって、該感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。
       M(LD)(LA)(X)mX・(CI)mY   式(I)
    [式中、MはFe2+、Ru2+またはOs2+を表す。
     LDは、下記式(DL)で表される配位子を表す。
     LAは、含窒素芳香族ヘテロ環骨格を有しかつ少なくとも1つの酸性基を有する2座または3座の配位子を表す。
     Xは単座または2座の配位子を表す。mXは0~3の整数を表す。
     CIは電荷を中和させるのに必要な場合の対イオンを表す。
     mYは0~2の整数を表す。]
    Figure JPOXMLDOC01-appb-C000001
    [式中、Zは環を形成するのに必要な非金属原子群を表し、環構成原子に上記Mに配位する配位原子を環構成原子に含んでもよい。Dは上記Mに配位する、酸素原子および窒素原子から選択される配位原子を表す。Eは単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。Rは置換基を表す。mおよびnは各々独立に1以上の整数を表す。
     ただし、少なくとも1つの配位原子は、配位原子Aであり、かつn個のRのうち、少なくとも1つは置換基Wであり、Dは、EまたはZと環を形成することはない。
     ここで、配位原子Aは、不飽和結合手を有しない酸素原子もしくは窒素原子であり、置換基Wは、炭素数2以上の1価のアルキル基もしくは該アルキル基を有する基が置換した、エテニル基、エチニル基、アリール基またはヘテロアリール基である。]
  2.  前記式(DL)が、下記式(DL-1)~(DL-3)のいずれかで表される請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rおよびnは前記式(DL)におけるRおよびnと同義である。n’は0以上の整数を表す。Za、Zb、Zb’およびZcは環を形成するのに必要な非金属原子群を表す。ただし、-E1-D1が結合する炭素原子とDaを結ぶ結合、D2またはD2’が結合する炭素原子とD3が結合する炭素原子とを結ぶ結合、および-E1-D1または-E1’-D1’が結合する炭素原子とDaとを結ぶ結合は、単結合でも二重結合でもよい。D1~D3、D1’、D2’およびDaは各々独立に前記Mに配位する配位原子を表し、D1~D3、D1’およびD2’は酸素原子および窒素原子から選択される原子であり、Daは酸素原子、窒素原子および炭素原子から選択される原子である。E1およびE1’は各々独立に、単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。dは0または1を表す。dが1のとき、ZbとZb’が互いに結合して環を形成してもよい。nおよびn’が各々において2以上の整数のとき、複数のRが互いに結合して環を形成してもよい。]
  3.  前記式(DL)が、下記式(DL-1a)、(DL-1b)、(DL-2a)、(DL-2b)、(DL-3a)または(DL-3b)のいずれかで表される請求項1または2に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
    [式中、Rは前記式(DL)におけるRと同義である。n1は1~4の整数を表し、n2は1~3の整数を表し、n3は1または2を表す。n1’は0~4の整数を表す。D1~D3、D1’、D2’、Da1およびDa2は各々独立に前記Mに配位する配位原子を表し、D1~D3、D1’およびD2’は酸素原子および窒素原子から選択される原子であり、Da1およびDa2は酸素原子、窒素原子および炭素原子から選択される原子である。E1およびE1’は各々独立に、単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。n1~n3およびn1’が各々において2以上の整数のとき、複数のRが互いに結合して環を形成してもよい。]
  4.  前記置換基Wが、1)2位に、炭素数2以上のアルキル基、炭素数2以上のアルキルアミノ基、炭素数2以上のアルコキシ基もしくは炭素数2以上のアルキルチオ基が置換した、アリール基またはヘテロアリール基を有する、エテニル基またはエチニル基であるか、2)炭素数2以上のアルキル基、炭素数2以上のアルキルアミノ基、炭素数2以上のアルコキシ基もしくは炭素数2以上のアルキルチオ基が置換した、アリール基またはヘテロアリール基である請求項1~3のいずれか1項に記載の光電変換素子。
  5.  前記置換基Wが、下記式(W-1)~(W-6)のいずれかで表される請求項1~4のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000004
    [式中、Rは炭素数2以上の1価のアルキル基もしくは該アルキル基を有する基を表し、w1は1~5の整数を表し、w2は1~3の整数を表す。]
  6.  前記LAが、下記式(AL-1)~(AL-6)のいずれかで表される請求項1~5のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000005
    [式中、Zd、ZeおよびZfは各々独立に、ベンゼン環、ピロール環、イミダゾール環、ピラゾール環、ピラジン環、ピリミジン環、ピリダジン環、トリアゾール環、オキサゾール環、トリアジン環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、フラン環、チオフェン環、ピロリジン環、ピペリジン環、モルホリン環、ピペラジン環、テトラヒドロフラン環、テトラヒドロピラン環、4H-ピラン環、1,4-ジヒドロピリジン環、テトラデヒドロモルホリン環またはこれらの環のベンゼン縮環を表す。Aは酸性基を表す。Q~Qは各々独立に炭素原子または窒素原子を表し、Db~Dbは各々独立に、孤立電子対を有する窒素原子、アニオン性の窒素原子またはアニオン性の炭素原子を表す。Rは置換基を表す。a1、a3、b1およびb3は各々独立に0~4の整数を表し、a2およびb2は各々独立に0~3の整数を表し、cは0または1を表す。
     ただし、式(AL-1)~(AL-6)で表される配位子は、少なくとも1つの酸性基を有する。]
  7.  前記LAが、下記式(AL-1)である請求項1~6のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000006
    [式中、Aは酸性基を表す。Rは置換基を表す。a1、a3、b1およびb3は各々独立に0~4の整数を表し、a2およびb2は各々独立に0~3の整数を表し、cは0または1を表す。
     ただし、式(AL-1)で表される化合物は、少なくとも1つの酸性基を有する。]
  8.  前記式(I)におけるXが、NCS、Cl、Br、I、CN、NCOまたはHOである請求項1~7のいずれか1項に記載の光電変換素子。
  9.  前記式(I)におけるCIが、ハロゲンイオン、アリールスルホン酸イオン、アリールジスルホン酸イオン、アルキル硫酸イオン、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、酢酸イオン、トリフルオロメタンスルホン酸イオン、アンモニウムイオン、アルカリ金属イオンまたは水素イオンである請求項1~8のいずれか1項に記載の光電変換素子。
  10.  請求項1~9のいずれか1項に記載の光電変換素子を具備する色素増感太陽電池。
  11.  下記式(I)で表される金属錯体色素。
       M(LD)(LA)(X)mX・(CI)mY   式(I)
    [式中、MはFe2+、Ru2+またはOs2+を表す。
     LDは、下記式(DL)で表される配位子を表す。
     LAは、含窒素芳香族ヘテロ環骨格を有しかつ少なくとも1つの酸性基を有する2座または3座の配位子を表す。
     Xは単座または2座の配位子を表す。mXは0~3の整数を表す。
     CIは電荷を中和させるのに必要な場合の対イオンを表す。
     mYは0~2の整数を表す。]
    Figure JPOXMLDOC01-appb-C000007
    [式中、Zは環を形成するのに必要な非金属原子群を表し、環構成原子に上記Mに配位する配位原子を環構成原子に含んでもよい。Dは上記Mに配位する、酸素原子および窒素原子から選択される配位原子を表す。Eは単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。Rは置換基を表す。mおよびnは各々独立に1以上の整数を表す。
     ただし、少なくとも1つの配位原子は、配位原子Aであり、かつn個のRのうち、少なくとも1つは置換基Wであり、Dは、EまたはZと環を形成することはない。
     ここで、配位原子Aは、不飽和結合手を有しない酸素原子もしくは窒素原子であり、置換基Wは、炭素数2以上の1価のアルキル基もしくは該アルキル基を有する基が置換した、エテニル基、エチニル基、アリール基またはヘテロアリール基である。]
  12.  前記式(DL)が、下記式(DL-1)~(DL-3)のいずれかで表される請求項11に記載の金属錯体色素。
    Figure JPOXMLDOC01-appb-C000008
    [式中、Rおよびnは前記式(DL)におけるRおよびnと同義である。n’は0以上の整数を表す。Za、Zb、Zb’およびZcは環を形成するのに必要な非金属原子群を表す。ただし、-E1-D1が結合する炭素原子とDaを結ぶ結合、D2またはD2’が結合する炭素原子とD3が結合する炭素原子とを結ぶ結合、および-E1-D1または-E1’-D1’が結合する炭素原子とDaとを結ぶ結合は、単結合でも二重結合でもよい。D1~D3、D1’、D2’およびDaは各々独立に前記Mに配位する配位原子を表し、D1~D3、D1’およびD2’は酸素原子および窒素原子から選択される原子であり、Daは酸素原子、窒素原子および炭素原子から選択される原子である。E1およびE1’は各々独立に、単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。dは0または1を表す。dが1のとき、ZbとZb’が互いに結合して環を形成してもよい。nおよびn’が各々において2以上の整数のとき、複数のRが互いに結合して環を形成してもよい。]
  13.  前記式(DL)が、下記式(DL-1a)、(DL-1b)、(DL-2a)、(DL-2b)、(DL-3a)または(DL-3b)のいずれかで表される請求項11または12に記載の金属錯体色素。
    Figure JPOXMLDOC01-appb-C000009
    [式中、Rは前記式(DL)におけるRと同義である。n1は1~4の整数を表し、n2は1~3の整数を表し、n3は1または2を表す。n1’は0~4の整数を表す。D1~D3、D1’、D2’、Da1およびDa2は各々独立に前記Mに配位する配位原子を表し、D1~D3、D1’およびD2’は酸素原子および窒素原子から選択される原子であり、Da1およびDa2は酸素原子、窒素原子および炭素原子から選択される原子である。E1およびE1’は各々独立に、単結合、-O-、-N(R)-、-C(R-、-C(=R)-、-C(=O)-、-C(=NR)-または-C(R-C(=O)-を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基またはアリールオキシ基を表し、Rはアルキリデン基、アルケニリデン基またはシクロアルキリデン基を表す。また、2個のRは互いに同一でも異なってもよい。n1~n3およびn1’が各々において2以上の整数のとき、複数のRが互いに結合して環を形成してもよい。]
  14.  前記置換基Wが、1)2位に、炭素数2以上のアルキル基、炭素数2以上のアルキルアミノ基、炭素数2以上のアルコキシ基もしくは炭素数2以上のアルキルチオ基が置換した、アリール基またはヘテロアリール基を有する、エテニル基またはエチニル基であるか、2)炭素数2以上のアルキル基、炭素数2以上のアルキルアミノ基、炭素数2以上のアルコキシ基もしくは炭素数2以上のアルキルチオ基が置換した、アリール基またはヘテロアリール基である請求項11~13のいずれか1項に記載の金属錯体色素。
  15.  前記置換基Wが、下記式(W-1)~(W-6)のいずれかで表される請求項11~14のいずれか1項に記載の金属錯体色素。
    Figure JPOXMLDOC01-appb-C000010
    [式中、Rは炭素数2以上の1価のアルキル基もしくは該アルキル基を有する基を表し、w1は1~5の整数を表し、w2は1~3の整数を表す。]
  16.  前記LAが、下記式(AL-1)~(AL-6)のいずれかで表される請求項11~15のいずれか1項に記載の金属錯体色素。
    Figure JPOXMLDOC01-appb-C000011
    [式中、Zd、ZeおよびZfは各々独立に、ベンゼン環、ピロール環、イミダゾール環、ピラゾール環、ピラジン環、ピリミジン環、ピリダジン環、トリアゾール環、オキサゾール環、トリアジン環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、フラン環、チオフェン環、ピロリジン環、ピペリジン環、モルホリン環、ピペラジン環、テトラヒドロフラン環、テトラヒドロピラン環、4H-ピラン環、1,4-ジヒドロピリジン環、テトラデヒドロモルホリン環またはこれらの環のベンゼン縮環を表す。Aは酸性基を表す。Q~Qは各々独立に炭素原子または窒素原子を表し、Db~Dbは各々独立に、孤立電子対を有する窒素原子、アニオン性の窒素原子またはアニオン性の炭素原子を表す。Rは置換基を表す。a1、a3、b1およびb3は各々独立に0~4の整数を表し、a2およびb2は各々独立に0~3の整数を表し、cは0または1を表す。
     ただし、式(AL-1)~(AL-6)で表される配位子は、少なくとも1つの酸性基を有する。]
  17.  前記LAが、下記式(AL-1)である請求項11~16のいずれか1項に記載の金属錯体色素。
    Figure JPOXMLDOC01-appb-C000012
    [式中、Aは酸性基を表す。Rは置換基を表す。a1、a3、b1およびb3は各々独立に0~4の整数を表し、a2およびb2は各々独立に0~3の整数を表し、cは0または1を表す。
     ただし、式(AL-1)で表される化合物は、少なくとも1つの酸性基を有する。]
  18.  請求項11~17のいずれか1項に記載の金属錯体色素を有機溶媒中に溶解してなる色素溶液。
  19.  有機溶媒中に、前記金属錯体色素を0.001~0.1質量%含有させ、水を0.1質量%以下に抑えてなる請求項18に記載の色素溶液。
  20.  半導体微粒子を付与した導電性支持体に、請求項18または19に記載の色素溶液を塗布し、これを反応硬化させて感光体層とした色素増感太陽電池用の色素吸着電極。
PCT/JP2013/075950 2012-09-28 2013-09-25 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および色素吸着電極 WO2014050911A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13842105.2A EP2903078B1 (en) 2012-09-28 2013-09-25 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and dye-adsorbed electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-218755 2012-09-28
JP2012218755 2012-09-28
JP2013-156801 2013-07-29
JP2013156801A JP5913223B2 (ja) 2012-09-28 2013-07-29 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および色素吸着電極

Publications (1)

Publication Number Publication Date
WO2014050911A1 true WO2014050911A1 (ja) 2014-04-03

Family

ID=50388306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075950 WO2014050911A1 (ja) 2012-09-28 2013-09-25 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および色素吸着電極

Country Status (4)

Country Link
EP (1) EP2903078B1 (ja)
JP (1) JP5913223B2 (ja)
TW (1) TWI591878B (ja)
WO (1) WO2014050911A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3522191A4 (en) 2016-09-29 2019-10-02 FUJIFILM Corporation PHOTOELECTRIC CONVERSION ELEMENT, COLOR-SENSITIZED SOLAR CELL, METAL COMPLEX, DYE SOLUTION, AND OXIDE SEMICONDUCTOR ELECTRODE
CN110178193B (zh) 2017-02-17 2021-11-30 富士胶片株式会社 光电转换元件、染料敏化太阳能电池、金属络合物色素、色素组合物及氧化物半导体电极
DE202021105903U1 (de) 2021-10-28 2022-01-07 CYBEX GmbH Kindersitz zur Anbringung auf einem Kraftfahrzeugsitz

Citations (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684537A (en) 1984-04-30 1987-08-04 R. E. Stiftung Process for the sensitization of an oxidation/reduction photocatalyst, and photocatalyst thus obtained
US4927721A (en) 1988-02-12 1990-05-22 Michael Gratzel Photo-electrochemical cell
US5350644A (en) 1990-04-17 1994-09-27 Ecole Polytechnique, Federale De Lausanne Photovoltaic cells
JPH07500630A (ja) 1992-08-21 1995-01-19 エコール ポリテクニーク フェデラル ドゥ ローザンヌ (エーペーエフエル) 有機化合物
JPH07249790A (ja) 1994-03-11 1995-09-26 Ishihara Sangyo Kaisha Ltd 光電変換材料用半導体
US5525440A (en) 1992-03-11 1996-06-11 Ecole Polytechnique Federale De Lausanne (Epfl) Method for the manufacture of a photo-electrochemical cell and a cell made by this method
JPH0927352A (ja) 1994-12-29 1997-01-28 Ishihara Sangyo Kaisha Ltd 多孔性物質−高分子固体電解質複合体およびその製造方法ならびにそれを用いた光電変換素子
JPH11214730A (ja) 1997-07-18 1999-08-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000090989A (ja) 1998-09-16 2000-03-31 Toshiba Corp 色素増感型光化学電池
JP2000100483A (ja) 1998-09-22 2000-04-07 Sharp Corp 光電変換素子及びその製造方法及びこれを用いた太陽電池
JP2000228234A (ja) 1999-02-05 2000-08-15 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000285977A (ja) 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2000323190A (ja) 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子および光電気化学電池
JP2000340269A (ja) 1999-03-25 2000-12-08 Showa Denko Kk 色素増感型光電変換素子
JP2001006760A (ja) 1999-06-17 2001-01-12 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2001043907A (ja) 1999-05-27 2001-02-16 Catalysts & Chem Ind Co Ltd 光電気セルおよび金属酸化物半導体膜形成用塗布液、光電気セル用金属酸化物半導体膜の製造方法
JP2001059062A (ja) 1999-06-14 2001-03-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2001160425A (ja) 1999-12-02 2001-06-12 Japan Gore Tex Inc 光半導体電極及びその製造方法
JP2001185244A (ja) 1999-12-27 2001-07-06 Sharp Corp 色素増感型太陽電池及び色素増感型太陽電池の作製方法並びに太陽電池モジュール
JP2001203377A (ja) 2000-01-19 2001-07-27 Sharp Corp 光電変換素子及びそれを用いた太陽電池
JP2001210390A (ja) 2000-01-26 2001-08-03 Sharp Corp 高分子電解質を用いた色素増感型太陽電池およびその作製方法
JP2001253894A (ja) 2000-03-13 2001-09-18 Natl Inst Of Advanced Industrial Science & Technology Meti β−ジケトナートを有する金属錯体及びその製法、光電変換素子並びに、光化学電池
JP2001266963A (ja) 2000-03-24 2001-09-28 Fuji Photo Film Co Ltd 半導体微粒子、光電変換素子および光電池
JP2001273937A (ja) 2000-03-27 2001-10-05 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2001291534A (ja) 2000-01-31 2001-10-19 Fuji Photo Film Co Ltd 光電変換素子および光電池ならびに金属錯体色素
JP2001320068A (ja) 2000-05-01 2001-11-16 Fuji Photo Film Co Ltd 透明光電変換素子、及びこれを用いた光電池、光センサー並びに窓ガラス
JP2001525108A (ja) 1997-03-20 2001-12-04 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー 光電池
JP2002512729A (ja) 1997-05-07 2002-04-23 エコール ポリテクニーク フェデラル ドゥ ローザンヌ 金属複合体光増感剤および光起電力セル
JP2002260746A (ja) 2001-02-28 2002-09-13 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池及び色素増感型太陽電池モジュール
JP2002280587A (ja) 2001-03-21 2002-09-27 Fuji Photo Film Co Ltd 光電変換素子の製造方法および光電変換素子、光電池
JP2002289274A (ja) 2001-03-27 2002-10-04 Toyota Central Res & Dev Lab Inc 光電極及びこれを備えた色素増感型太陽電池
JP2002367686A (ja) 2001-06-12 2002-12-20 Aisin Seiki Co Ltd 色素増感型太陽電池及びその製造方法
JP2003123859A (ja) 2001-10-19 2003-04-25 Bridgestone Corp 有機色素増感型金属酸化物半導体電極及びこの半導体電極を有する太陽電池
JP2003212851A (ja) 2002-01-22 2003-07-30 National Institute Of Advanced Industrial & Technology 増感剤として有用なルテニウム錯体、酸化物半導体電極及びそれを用いた太陽電池
JP2003217688A (ja) 2002-01-18 2003-07-31 Sharp Corp 色素増感型光電変換素子
JP2003323818A (ja) 2002-02-26 2003-11-14 Fujikura Ltd 透明電極用基材
JP2004063274A (ja) 2002-07-29 2004-02-26 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2004146425A (ja) 2002-10-22 2004-05-20 Fujikura Ltd 電極基板、光電変換素子、並びに色素増感太陽電池
JP2004152613A (ja) 2002-10-30 2004-05-27 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池
JP2004220974A (ja) 2003-01-16 2004-08-05 Toyo Ink Mfg Co Ltd 光機能材料
JP2004273272A (ja) 2003-03-07 2004-09-30 National Institute Of Advanced Industrial & Technology ベンズイミダゾール系化合物を含む電解質溶液を用いた光電変換素子及びそれを用いた色素増感型太陽電池
JP2005085500A (ja) 2003-09-04 2005-03-31 Tsukasa Yoshida 色素増感型太陽電池の製造方法
US20050081911A1 (en) 2003-10-17 2005-04-21 Sharp Kabushiki Kaisha Photosensitizing transition metal complex and its use for photovoltaic cell
JP2005123033A (ja) 2003-10-16 2005-05-12 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2005135902A (ja) 2003-10-06 2005-05-26 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2006298882A (ja) * 2005-04-25 2006-11-02 Sharp Corp ルテニウム錯体、それを用いた色素増感酸化物半導体電極および色素増感太陽電池
WO2007091525A1 (ja) 2006-02-08 2007-08-16 Shimane Prefectural Government 光増感色素
WO2007119525A1 (ja) 2006-03-31 2007-10-25 National Institute Of Advanced Industrial Science And Technology 有機化合物及びそれを用いた半導体薄膜電極、光電変換素子、光電気化学太陽電池
JP2007287694A (ja) 2006-04-17 2007-11-01 Samsung Sdi Co Ltd 色素増感太陽電池用色素および色素増感太陽電池
JP2008071648A (ja) 2006-09-14 2008-03-27 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2008135197A (ja) 2006-11-27 2008-06-12 Konica Minolta Business Technologies Inc 色素増感型光電変換素子及び色素増感型太陽電池
JP2010013500A (ja) 2008-07-01 2010-01-21 National Institute Of Advanced Industrial & Technology 色素及びそれを用いた色素増感太陽電池
US20100258175A1 (en) 2009-04-10 2010-10-14 Yun Chi Panchromatic photosensitizers and dye-sensitized solar cell using the same
JP2011195745A (ja) 2010-03-23 2011-10-06 National Institute Of Advanced Industrial Science & Technology 色素及びそれを用いた色素増感太陽電池
JP2012012570A (ja) 2010-06-02 2012-01-19 Fujifilm Corp 金属錯体色素、光電変換素子及び色素増感太陽電池
JP2012084503A (ja) 2010-09-09 2012-04-26 Fujifilm Corp 光電変換素子、光電気化学電池及び色素
JP2012144688A (ja) 2010-05-31 2012-08-02 Fujifilm Corp 光電変換素子、光電気化学電池、光電変換素子用色素及び光電変換素子用色素溶液
JP2013084594A (ja) 2011-09-29 2013-05-09 Fujifilm Corp 光電変換素子、光電気化学電池およびこれに用いる金属錯体色素
JP2013178968A (ja) * 2012-02-28 2013-09-09 Fujifilm Corp 光電変換素子、金属錯体色素、色素増感太陽電池用色素吸着液組成物、色素増感太陽電池およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI319424B (en) * 2006-05-11 2010-01-11 Univ Nat Central Photosensitizer dye
KR101166017B1 (ko) * 2006-06-01 2012-07-23 삼성에스디아이 주식회사 분산제 기능을 갖는 염료 및 이를 포함하는 태양 전지
KR101050470B1 (ko) * 2010-04-05 2011-07-20 삼성에스디아이 주식회사 루테늄 착체 및 이를 이용한 염료감응 태양전지

Patent Citations (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684537A (en) 1984-04-30 1987-08-04 R. E. Stiftung Process for the sensitization of an oxidation/reduction photocatalyst, and photocatalyst thus obtained
US4927721A (en) 1988-02-12 1990-05-22 Michael Gratzel Photo-electrochemical cell
US5084365A (en) 1988-02-12 1992-01-28 Michael Gratzel Photo-electrochemical cell and process of making same
US5350644A (en) 1990-04-17 1994-09-27 Ecole Polytechnique, Federale De Lausanne Photovoltaic cells
US5525440A (en) 1992-03-11 1996-06-11 Ecole Polytechnique Federale De Lausanne (Epfl) Method for the manufacture of a photo-electrochemical cell and a cell made by this method
JPH07500630A (ja) 1992-08-21 1995-01-19 エコール ポリテクニーク フェデラル ドゥ ローザンヌ (エーペーエフエル) 有機化合物
US5463057A (en) 1992-08-21 1995-10-31 Ecole Polytechnique Federale De Lausanne, (Epfl) Bi-pyridyl-rumetal complexes
JPH07249790A (ja) 1994-03-11 1995-09-26 Ishihara Sangyo Kaisha Ltd 光電変換材料用半導体
JPH0927352A (ja) 1994-12-29 1997-01-28 Ishihara Sangyo Kaisha Ltd 多孔性物質−高分子固体電解質複合体およびその製造方法ならびにそれを用いた光電変換素子
JP2001525108A (ja) 1997-03-20 2001-12-04 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー 光電池
JP4298799B2 (ja) 1997-05-07 2009-07-22 エコール ポリテクニーク フェデラル ドゥ ローザンヌ 金属複合体光増感剤および光起電力セル
JP2002512729A (ja) 1997-05-07 2002-04-23 エコール ポリテクニーク フェデラル ドゥ ローザンヌ 金属複合体光増感剤および光起電力セル
JPH11214730A (ja) 1997-07-18 1999-08-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000090989A (ja) 1998-09-16 2000-03-31 Toshiba Corp 色素増感型光化学電池
JP2000100483A (ja) 1998-09-22 2000-04-07 Sharp Corp 光電変換素子及びその製造方法及びこれを用いた太陽電池
JP2000228234A (ja) 1999-02-05 2000-08-15 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000340269A (ja) 1999-03-25 2000-12-08 Showa Denko Kk 色素増感型光電変換素子
JP2000285977A (ja) 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2000323190A (ja) 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子および光電気化学電池
JP2001043907A (ja) 1999-05-27 2001-02-16 Catalysts & Chem Ind Co Ltd 光電気セルおよび金属酸化物半導体膜形成用塗布液、光電気セル用金属酸化物半導体膜の製造方法
JP2001059062A (ja) 1999-06-14 2001-03-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2001006760A (ja) 1999-06-17 2001-01-12 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2001160425A (ja) 1999-12-02 2001-06-12 Japan Gore Tex Inc 光半導体電極及びその製造方法
JP2001185244A (ja) 1999-12-27 2001-07-06 Sharp Corp 色素増感型太陽電池及び色素増感型太陽電池の作製方法並びに太陽電池モジュール
JP2001203377A (ja) 2000-01-19 2001-07-27 Sharp Corp 光電変換素子及びそれを用いた太陽電池
JP2001210390A (ja) 2000-01-26 2001-08-03 Sharp Corp 高分子電解質を用いた色素増感型太陽電池およびその作製方法
JP2001291534A (ja) 2000-01-31 2001-10-19 Fuji Photo Film Co Ltd 光電変換素子および光電池ならびに金属錯体色素
JP2001253894A (ja) 2000-03-13 2001-09-18 Natl Inst Of Advanced Industrial Science & Technology Meti β−ジケトナートを有する金属錯体及びその製法、光電変換素子並びに、光化学電池
JP2001266963A (ja) 2000-03-24 2001-09-28 Fuji Photo Film Co Ltd 半導体微粒子、光電変換素子および光電池
JP2001273937A (ja) 2000-03-27 2001-10-05 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2001320068A (ja) 2000-05-01 2001-11-16 Fuji Photo Film Co Ltd 透明光電変換素子、及びこれを用いた光電池、光センサー並びに窓ガラス
JP2002260746A (ja) 2001-02-28 2002-09-13 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池及び色素増感型太陽電池モジュール
JP2002280587A (ja) 2001-03-21 2002-09-27 Fuji Photo Film Co Ltd 光電変換素子の製造方法および光電変換素子、光電池
JP2002289274A (ja) 2001-03-27 2002-10-04 Toyota Central Res & Dev Lab Inc 光電極及びこれを備えた色素増感型太陽電池
JP2002367686A (ja) 2001-06-12 2002-12-20 Aisin Seiki Co Ltd 色素増感型太陽電池及びその製造方法
JP2003123859A (ja) 2001-10-19 2003-04-25 Bridgestone Corp 有機色素増感型金属酸化物半導体電極及びこの半導体電極を有する太陽電池
JP2003217688A (ja) 2002-01-18 2003-07-31 Sharp Corp 色素増感型光電変換素子
JP2003212851A (ja) 2002-01-22 2003-07-30 National Institute Of Advanced Industrial & Technology 増感剤として有用なルテニウム錯体、酸化物半導体電極及びそれを用いた太陽電池
JP4260494B2 (ja) 2002-02-26 2009-04-30 株式会社フジクラ 透明電極用基材の製法、光電変換素子の製法、及び色素増感太陽電池の製法
JP2003323818A (ja) 2002-02-26 2003-11-14 Fujikura Ltd 透明電極用基材
JP2004063274A (ja) 2002-07-29 2004-02-26 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2004146425A (ja) 2002-10-22 2004-05-20 Fujikura Ltd 電極基板、光電変換素子、並びに色素増感太陽電池
JP2004152613A (ja) 2002-10-30 2004-05-27 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池
JP2004220974A (ja) 2003-01-16 2004-08-05 Toyo Ink Mfg Co Ltd 光機能材料
JP2004273272A (ja) 2003-03-07 2004-09-30 National Institute Of Advanced Industrial & Technology ベンズイミダゾール系化合物を含む電解質溶液を用いた光電変換素子及びそれを用いた色素増感型太陽電池
JP2005085500A (ja) 2003-09-04 2005-03-31 Tsukasa Yoshida 色素増感型太陽電池の製造方法
JP2005135902A (ja) 2003-10-06 2005-05-26 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2005123033A (ja) 2003-10-16 2005-05-12 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極並びにそれを用いた光電変換素子
US20050081911A1 (en) 2003-10-17 2005-04-21 Sharp Kabushiki Kaisha Photosensitizing transition metal complex and its use for photovoltaic cell
JP2006298882A (ja) * 2005-04-25 2006-11-02 Sharp Corp ルテニウム錯体、それを用いた色素増感酸化物半導体電極および色素増感太陽電池
WO2007091525A1 (ja) 2006-02-08 2007-08-16 Shimane Prefectural Government 光増感色素
WO2007119525A1 (ja) 2006-03-31 2007-10-25 National Institute Of Advanced Industrial Science And Technology 有機化合物及びそれを用いた半導体薄膜電極、光電変換素子、光電気化学太陽電池
JP2007287694A (ja) 2006-04-17 2007-11-01 Samsung Sdi Co Ltd 色素増感太陽電池用色素および色素増感太陽電池
JP2008071648A (ja) 2006-09-14 2008-03-27 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2008135197A (ja) 2006-11-27 2008-06-12 Konica Minolta Business Technologies Inc 色素増感型光電変換素子及び色素増感型太陽電池
JP2010013500A (ja) 2008-07-01 2010-01-21 National Institute Of Advanced Industrial & Technology 色素及びそれを用いた色素増感太陽電池
US20100258175A1 (en) 2009-04-10 2010-10-14 Yun Chi Panchromatic photosensitizers and dye-sensitized solar cell using the same
JP2011195745A (ja) 2010-03-23 2011-10-06 National Institute Of Advanced Industrial Science & Technology 色素及びそれを用いた色素増感太陽電池
JP2012144688A (ja) 2010-05-31 2012-08-02 Fujifilm Corp 光電変換素子、光電気化学電池、光電変換素子用色素及び光電変換素子用色素溶液
JP2012012570A (ja) 2010-06-02 2012-01-19 Fujifilm Corp 金属錯体色素、光電変換素子及び色素増感太陽電池
JP2012084503A (ja) 2010-09-09 2012-04-26 Fujifilm Corp 光電変換素子、光電気化学電池及び色素
JP2013084594A (ja) 2011-09-29 2013-05-09 Fujifilm Corp 光電変換素子、光電気化学電池およびこれに用いる金属錯体色素
JP2013178968A (ja) * 2012-02-28 2013-09-09 Fujifilm Corp 光電変換素子、金属錯体色素、色素増感太陽電池用色素吸着液組成物、色素増感太陽電池およびその製造方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., vol. 46, 2007, pages 8358
ANGEW. CHEM. INT. ED., vol. 49, 2010, pages 1 - 5
ANGEW. CHEM. INT. ED., vol. 50, 2011, pages 2054 - 2058
BO-SO CHEN ET AL.: "Neutral, panchromatic Ru(II) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance", CHEMICAL COMMUNICATIONS, 8 September 2009 (2009-09-08), pages 5844 - 5846, XP055195747 *
CHEM. COMMUN, 2009, pages 5844 - 5846
CHUN-CHENG CHOU ET AL.: "Ruthenium(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 50, 2011, pages 2054 - 2058, XP055195744 *
NATURE, vol. 486, 2012, pages 487
OSMAN DAYAN ET AL.: "Synthesis and catalytic activity of ruthenium(II) complexes containing pyridine-based tridentate triamines ('NNN') and pyridine carboxylate ligands (NO)", INORGANICA CHIMICA ACTA, vol. 392, 8 March 2012 (2012-03-08), pages 246 - 253, XP055240127 *
See also references of EP2903078A4
TAKASHI FUNAKI ET AL.: "A 2- quinolinecarboxylate-substituted ruthenium(II) complex as a new type of sensitizer for dye- sensitized solar cells", INORGANICA CHEMICA ACTA, vol. 362, 29 October 2008 (2008-10-29), pages 2519 - 2522, XP026020376 *
TAKASHI FUNAKI ET AL.: "Efficient Panchromatic Sensitization of Nanocrystalline Ti02-based Solar Cells Using 2-Pyridinecarboxylate- substituted Ruthenium(II) Complexes", CHEMISTRY LETTERS, vol. 38, no. 1, 2009, pages 62 - 63, XP055240272 *

Also Published As

Publication number Publication date
JP5913223B2 (ja) 2016-04-27
TWI591878B (zh) 2017-07-11
EP2903078B1 (en) 2017-10-25
TW201421775A (zh) 2014-06-01
EP2903078A4 (en) 2016-03-16
EP2903078A1 (en) 2015-08-05
JP2014082189A (ja) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5992389B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP6047513B2 (ja) 金属錯体色素、光電変換素子、色素増感太陽電池および金属錯体色素を含有する色素溶液
JP5972849B2 (ja) 金属錯体、金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP6005678B2 (ja) 金属錯体色素、光電変換素子、色素増感太陽電池および金属錯体色素を含有する色素溶液
WO2014050527A1 (ja) 光電変換素子および色素増感太陽電池
JP5913223B2 (ja) 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および色素吸着電極
JP2014209606A (ja) 光電変換素子、色素増感太陽電池、金属錯体色素を含有する色素吸着液および光電変換素子の製造方法
JP6009484B2 (ja) 光電変換素子、色素増感太陽電池およびこれに用いる金属錯体色素
JP5944372B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP5913222B2 (ja) 光電変換素子および色素増感太陽電池
JP6026236B2 (ja) 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液、色素吸着電極及び色素増感太陽電池の製造方法
JP6063359B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および金属錯体色素を溶解してなる色素溶液
JP6154177B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP6253167B2 (ja) 光電変換素子、色素増感太陽電池、ルテニウム錯体色素および色素溶液
WO2015002081A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、配位子、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP6204603B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
JP6063361B2 (ja) 光電変換素子、色素増感太陽電池および光電変換素子用電子移動促進剤
JP2014220228A (ja) 光電変換素子、色素増感太陽電池およびこれに用いる金属錯体色素
JP2016063154A (ja) 光電変換素子、色素増感太陽電池、ルテニウム錯体色素および色素溶液
JP2016072395A (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
JP2016076585A (ja) 光電変換素子、色素増感太陽電池、ルテニウム錯体色素および色素溶液
JP2015220262A (ja) 光電変換素子及び色素増感太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013842105

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013842105

Country of ref document: EP