WO2015002081A1 - 光電変換素子、色素増感太陽電池、金属錯体色素、配位子、色素溶液、色素吸着電極および色素増感太陽電池の製造方法 - Google Patents

光電変換素子、色素増感太陽電池、金属錯体色素、配位子、色素溶液、色素吸着電極および色素増感太陽電池の製造方法 Download PDF

Info

Publication number
WO2015002081A1
WO2015002081A1 PCT/JP2014/067138 JP2014067138W WO2015002081A1 WO 2015002081 A1 WO2015002081 A1 WO 2015002081A1 JP 2014067138 W JP2014067138 W JP 2014067138W WO 2015002081 A1 WO2015002081 A1 WO 2015002081A1
Authority
WO
WIPO (PCT)
Prior art keywords
anc
dye
group
formula
ring
Prior art date
Application number
PCT/JP2014/067138
Other languages
English (en)
French (fr)
Inventor
渡辺 康介
征夫 谷
寛敬 佐藤
小林 克
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015002081A1 publication Critical patent/WO2015002081A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element, a dye-sensitized solar cell, a metal complex dye, a ligand, a dye solution, a dye-adsorbing electrode, and a method for producing a dye-sensitized solar cell.
  • Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like.
  • Various methods such as a method using a metal, a method using a semiconductor, a method using an organic pigment or a dye, or a combination of these methods have been put to practical use for this photoelectric conversion element.
  • a solar cell using non-depleting solar energy does not require fuel.
  • full-scale practical use is highly expected as one that uses inexhaustible clean energy.
  • silicon-based solar cells have been researched and developed for a long time, and are spreading due to the policy considerations of each country.
  • silicon is an inorganic material, there is a limit to improving throughput and cost.
  • N3, N719, N749 also referred to as Black Dye
  • Z907, and J2 have been developed as metal complex dyes used in photoelectric conversion elements.
  • a terpyridine ligand having a carboxy group at the p-position with respect to nitrogen atoms on three pyridine rings one of the pyridine rings at both ends is not substituted with a carboxy group, and has a high n-electron donor property.
  • a dye (see Patent Document 1) substituted with an aromatic ring (a heteroaromatic ring or a benzene ring substituted with a diphenylamino group) has been proposed. This dye has a larger extinction coefficient ⁇ than N749 in the long wavelength region.
  • this dye has a high absorbance at 350 to 400 nm, and the bottom of absorption extends to near 550 nm. This increases the photoelectric conversion efficiency.
  • the pyridine rings on both sides mean pyridine rings on the left and right with respect to the central pyridine ring.
  • the present invention has a photoelectric conversion element, a dye-sensitized solar cell, a metal complex dye, a ligand, and a dye solution used in the photoelectric conversion element, dye-sensitized solar cell, which have high photoelectric conversion efficiency, little thermal deterioration, and excellent durability. It is an object of the present invention to provide a method for producing a dye-adsorbing electrode and a dye-sensitized solar cell.
  • the object of the present invention has been achieved by the following means.
  • a photoelectric conversion element having a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer layer containing an electrolyte, and a counter electrode, wherein the photoreceptor layer is represented by the following formula (AL)
  • the photoelectric conversion element which has the semiconductor fine particle by which the metal complex pigment
  • Rp 1 and Rp 2 are each independently an alkenyl group in which the carbon atom bonded to the pyridine ring is sp 2 carbon, an alkynyl group, an aryl group and a heteroaryl group in which the carbon atom bonded to the pyridine ring is sp carbon.
  • R 1 to R 3 each independently represents a substituent having no Anc 1 to Anc 3 , Rp 1 , or Rp 2 .
  • m1 and m2 each independently represents an integer of 0 to 3, and at least one of m1 and m2 is an integer of 1 to 3.
  • n1 to n3 each independently represents an integer of 0 to 2.
  • the two groups may be the same or different, and they may be bonded to each other to form a ring.
  • Rp 1, Rp 2, Anc 1 ⁇ Anc 3, R 1 ⁇ R 3, m1, m2 and n1 ⁇ n3 is, Rp 1, Rp 2, Anc 1 ⁇ Anc 3 in Formula (AL), R 1 ⁇ It is synonymous with R 3 , m1, m2 and n1 to n3.
  • M represents a metal ion.
  • L 1 to L 3 each independently represents a ligand.
  • L 1 and L 2 may be bonded to each other to form a bidentate ligand, or L 1 , L 2 and L 3 may be bonded to each other to form a tridentate ligand.
  • one or two of L 1 to L 3 are ligands whose coordination atoms are anionic.
  • Y represents a counter ion necessary for neutralizing the charge
  • n represents an integer of 0 to 2.
  • L 1 to L 3 L 1 and L 2 are both bidentate ligands having an aromatic ring and bonded to each other, or L 1 , L 2 and L 3 are The photoelectric conversion element according to (2), which is a tridentate ligand having an aromatic ring and bonded to each other.
  • L 1 and L 2 are bidentate ligands bonded to each other, and are represented by any of the following formulas (2L-1) to (2L-5) The photoelectric conversion element according to (2) or (3).
  • ring D represents an aromatic ring.
  • a 111 to A 141 each independently represents a nitrogen atom anion or a carbon atom anion
  • a 151 represents a nitrogen atom anion, an oxygen atom anion or a sulfur atom anion.
  • R 111 to R 154 each independently represents a hydrogen atom or a substituent having no Anc 1 , Anc 2, or Anc 3 .
  • * represents a bonding position to the metal ion M.
  • L 1 , L 2 and L 3 L 1 , L 2 and L 3 are tridentate ligands bonded to each other, and are represented by the following formulas (3L-1) to (3L-5) (2) or the photoelectric conversion element as described in (3) represented by either.
  • ring D and ring D ′ each independently represent an aromatic ring.
  • a 211 to A 242 each independently represents a nitrogen atom or a carbon atom
  • a 251 and A 252 each independently represent a nitrogen atom, an oxygen atom, or a sulfur atom.
  • R 211 to R 253 each independently represents a hydrogen atom or a substituent having no Anc 1 , Anc 2, or Anc 3 .
  • * represents a bonding position to the metal ion M.
  • Rp 1 , Rp 2 , Anc 1 to Anc 3 , M, L 1 to L 3 , Y and n are Rp 1 , Rp 2 , Anc 1 to Anc 3 , M, L 1 to Synonymous with L 3 , Y and n.
  • a semiconductor adsorbent further carries a co-adsorbent having one or more acidic groups.
  • the photoelectric conversion element according to (10), wherein the co-adsorbent is represented by the following formula (CA).
  • R A1 represents a substituent having an acidic group.
  • R A2 represents a substituent.
  • nA represents an integer of 0 or more.
  • (12) A dye-sensitized solar cell comprising the photoelectric conversion element according to any one of (1) to (11).
  • Rp 1 and Rp 2 are each independently an alkenyl group in which the carbon atom bonded to the pyridine ring is sp 2 carbon, an alkynyl group, an aryl group and a heteroaryl group in which the carbon atom bonded to the pyridine ring is sp carbon.
  • R 1 to R 3 each independently represents a substituent having no Anc 1 to Anc 3 , Rp 1 , or Rp 2 .
  • m1 and m2 each independently represents an integer of 0 to 3, and at least one of m1 and m2 is an integer of 1 to 3.
  • n1 to n3 each independently represents an integer of 0 to 2.
  • the two groups may be the same or different, and they may be bonded to each other to form a ring.
  • the metal complex dye according to (13), wherein the metal complex dye is represented by the following formula (I).
  • Rp 1, Rp 2, Anc 1 ⁇ Anc 3, R 1 ⁇ R 3, m1, m2 and n1 ⁇ n3 is, Rp 1, Rp 2, Anc 1 ⁇ Anc 3 in Formula (AL), R 1 ⁇ It is synonymous with R 3 , m1, m2 and n1 to n3.
  • M represents a metal ion.
  • L 1 to L 3 each independently represents a ligand.
  • L 1 and L 2 may be bonded to each other to form a bidentate ligand, or L 1 , L 2 and L 3 may be bonded to each other to form a tridentate ligand.
  • one or two of L 1 to L 3 are ligands whose coordination atoms are anionic.
  • L 1 and L 2 are both bidentate ligands having an aromatic ring and bonded to each other, or L 1 , L 2 and L 3 are The metal complex dye according to (14), which is a tridentate ligand having an aromatic ring and bonded to each other.
  • L 1 and L 2 are bidentate ligands bonded to each other, and are represented by any of the following formulas (2L-1) to (2L-5) (14) or (15).
  • ring D represents an aromatic ring.
  • a 111 to A 141 each independently represents a nitrogen atom anion or a carbon atom anion
  • a 151 represents a nitrogen atom anion, an oxygen atom anion or a sulfur atom anion.
  • R 111 to R 154 each independently represents a hydrogen atom or a substituent having no Anc 1 , Anc 2, or Anc 3 .
  • * represents a bonding position to the metal ion M.
  • L 1 , L 2 and L 3 L 1 , L 2 and L 3 are tridentate ligands bonded to each other and are represented by the following formulas (3L-1) to (3L-5) (14) or the metal complex dye as described in (15) represented by either.
  • ring D and ring D ′ each independently represent an aromatic ring.
  • a 211 to A 242 each independently represents a nitrogen atom or a carbon atom
  • a 251 and A 252 each independently represent a nitrogen atom, an oxygen atom, or a sulfur atom.
  • R 211 to R 253 each independently represents a hydrogen atom or a substituent having no Anc 1 , Anc 2, or Anc 3 .
  • * represents a bonding position to the metal ion M.
  • Rp 1 , Rp 2 , Anc 1 to Anc 3 , M, L 1 to L 3 , Y and n are Rp 1 , Rp 2 , Anc 1 to Anc 3 , M, L 1 to Synonymous with L 3 , Y and n.
  • the dye solution according to (21), wherein the co-adsorbent is represented by the following formula (CA).
  • R A1 represents a substituent having an acidic group.
  • R A2 represents a substituent.
  • nA represents an integer of 0 or more.
  • a composition obtained from the dye solution described in any one of (19) to (22) is applied to a conductive support provided with semiconductor fine particles, and the composition after application is cured to be photosensitive.
  • a method for producing a dye-sensitized solar cell which is assembled using the dye-adsorbing electrode for the dye-sensitized solar cell according to (23), an electrolyte, and a counter electrode.
  • Rp 1 and Rp 2 are each independently an alkenyl group in which the carbon atom bonded to the pyridine ring is sp 2 carbon, an alkynyl group, an aryl group and a heteroaryl group in which the carbon atom bonded to the pyridine ring is sp carbon.
  • R 1 to R 3 each independently represents a substituent having no Anc 1 to Anc 3 , Rp 1 , or Rp 2 .
  • m1 and m2 each independently represents an integer of 0 to 3, and at least one of m1 and m2 is an integer of 1 to 3.
  • n1 to n3 each independently represents an integer of 0 to 2.
  • the two groups may be the same or different, and they may be bonded to each other to form a ring.
  • Rp 1, Rp 2 and Anc 1 ⁇ Anc 3 have the same meaning as Rp 1, Rp 2 and Anc 1 ⁇ Anc 3 in Formula (AL).
  • the carbon-carbon double bond may be either E-type or Z-type in the molecule, or a mixture thereof.
  • substituents, etc. linking groups, ligands, etc.
  • the respective substituents and the like may be the same as or different from each other. The same applies to the definition of the number of substituents and the like.
  • substituents and the like when a plurality of substituents and the like are close to each other (especially when they are adjacent to each other), they may be connected to each other to form a ring unless otherwise specified.
  • a ring such as an alicyclic ring, an aromatic ring, or a hetero ring may be further condensed to form a condensed ring.
  • each substituent may be further substituted with a substituent unless otherwise specified.
  • a photoelectric conversion element a dye-sensitized solar cell having high photoelectric conversion efficiency, less thermal deterioration, and excellent durability, a metal complex dye, a ligand, a dye solution, a dye adsorption electrode, and It has become possible to provide a method for producing a dye-sensitized solar cell.
  • the open circuit voltage (Voc) is high, and it has been possible to achieve both the improvement in durability and the improvement in photoelectric conversion efficiency, both of which have been difficult in the past.
  • FIG. 1 is a 1 H-NMR spectrum diagram of an exemplary metal complex dye Dye-3 synthesized in an example of the present invention.
  • FIG. It is a visible absorption spectrum figure in the N, N- dimethylformamide solution of the exemplary metal complex dye Dye-3 synthesized in the example of the present invention.
  • the photoelectric conversion element of the present invention has a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer body layer containing an electrolyte, and a counter electrode.
  • the metal complex dye of the present invention is a metal complex dye having a ligand represented by the following formula (AL).
  • Rp 1 and Rp 2 are each independently an alkenyl group in which the carbon atom bonded to the pyridine ring is sp 2 carbon, an alkynyl group, an aryl group and a heteroaryl group in which the carbon atom bonded to the pyridine ring is sp carbon.
  • R 1 to R 3 each independently represents a substituent having no Anc 1 to Anc 3 , Rp 1 , or Rp 2 .
  • R 1 to R 3 each independently represent a substituent that may have a substituent other than Anc 1 to Anc 3 , Rp 1 , and Rp 2 .
  • n1 and m2 each independently represents an integer of 0 to 3, and at least one of m1 and m2 is an integer of 1 to 3.
  • n1 to n3 each independently represents an integer of 0 to 2.
  • the two groups may be the same or different, and they may be bonded to each other to form a ring.
  • the ligand represented by the above formula (AL) is a ligand having an acidic group adsorbed on the surface of the semiconductor fine particles.
  • the ligand represented by the formula (AL) of the present invention is a terpyridine skeleton ligand.
  • each of the three pyridine rings has any one of Anc 1 to Anc 3 that is an acidic group at the p (para) position with respect to the nitrogen atom on the pyridine ring.
  • the metal complex dye described in Patent Document 1 is a tridentate ligand of the same terpyridine skeleton.
  • a heteroaromatic ring in which the carboxy group is not substituted is selected instead of one of the pyridine rings at both ends.
  • the rings on both sides mean rings located on the left and right with respect to the center ring.
  • an acidic group such as a carboxy group is included in each pyridine ring of the terpyridine structure, and further, a substituent that expands the conjugated system of the ligand is incorporated. Therefore, the design concept is different from that of Patent Document 1.
  • Rp 1 and Rp 2 are each independently selected from an alkenyl group in which the carbon atom bonded to the pyridine ring is sp 2 carbon, an alkynyl group in which the carbon atom bonded to the pyridine ring is sp carbon, an aryl group, and a heteroaryl group Represents a group.
  • the carbon atom bonded to the pyridine ring is sp 2 carbon or sp carbon.
  • an aryl group has an sp 2 carbon atom attached to the pyridine ring
  • a heteroaryl group also has an sp 2 carbon atom when the atom bonded to the pyridine ring is a carbon atom. That is, in any group, the carbon atom bonded to the pyridine ring is sp 2 carbon or sp carbon.
  • the sp 2 carbon, carbon formed of hybrid orbital of the electron atomic orbital 2s and 2p orbitals of carbon nucleus. That is, one 2s orbital and three 2p orbitals (2p x, 2p y, 2p z) of the one 2s and two 2p orbitals (2p x, 2p y) by superposition of the three sp 2 hybrid An orbit is formed, which becomes a bonding electron that bonds with another atom.
  • carbon -A double bond is formed between the carbons.
  • sp carbon is carbon composed of two sp orbits by superimposing one 2s orbital and one 2p orbital (2p x ), and this is a bonding electron that bonds to another atom.
  • bond and 2p y orbital and 2p z orbital did not participate in the hybridization, and electron 2p y orbital and 2p z orbital on carbon nucleus adjacent, and mutual sp hybrid
  • a triple bond is formed between carbon and carbon by bonding between orbitals.
  • the number of carbon atoms of the alkenyl group in which the carbon atom bonded to the pyridine ring is sp 2 carbon is preferably 2 to 24, more preferably 2 to 18, and still more preferably 4 to 14.
  • a typical example of such an alkenyl group is a 1-alkenyl group.
  • the alkenyl group may have a substituent, and examples thereof include a substituent T described later.
  • an alkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heteroaryl group in particular, a 5- or 6-membered aromatic ring group is preferable, a 5-membered ring is preferable, and a thiophene ring is more preferable.
  • Examples include 3,3,3-tetrafluoro-1-propenyl, 2-phenyl-ethenyl, 2- (thiophen-2-yl) -ethenyl, and none having an aromatic ring at the 2-position of the ethenyl group. However, it is preferable.
  • the number of carbon atoms of the alkynyl group in which the carbon atom bonded to the pyridine ring is sp carbon is preferably 2 to 24, more preferably 2 to 18, and still more preferably 4 to 14.
  • a typical example of such an alkynyl group is a 1-alkynyl group.
  • ethynyl, 1-propynyl, 1-butynyl, 1-pentynyl, 1,2-dimethyl-1-propenyl, 1-hexynyl, 1-heptynyl, 1-octynyl, 1-decynyl, 1-hexadecynyl, 1-octadecynyl Can be mentioned.
  • the alkynyl group may have a substituent, and examples thereof include a substituent T described later.
  • an alkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heteroaryl group in particular, a 5- or 6-membered aromatic ring group is preferable, a 5-membered ring is preferable, and a thiophene ring is more preferable.
  • Examples thereof include 2-phenyl-ethynyl and 2- (thiophen-2-yl) -ethynyl, and those having an aromatic ring at the 2-position of the ethynyl group are preferred.
  • the aryl group preferably has 6 to 24 carbon atoms, more preferably 6 to 20 carbon atoms, still more preferably 6 to 16 carbon atoms, and most preferably 6 to 12 carbon atoms.
  • Examples of the aryl group include phenyl and naphthyl, and a phenyl group which may have a substituent is preferable.
  • the aryl group may have a substituent, and examples thereof include a substituent T described later.
  • the heteroaryl group preferably has 0 to 24 carbon atoms, more preferably 1 to 20 carbon atoms, further preferably 2 to 16 carbon atoms, and most preferably 2 to 12 carbon atoms.
  • the heteroaryl ring of the heteroaryl group is preferably a 5- or 6-membered ring, and the hetero atom constituting the heteroaryl ring is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • Examples of the 5-membered heteroaryl ring include a furan ring, a thiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, an oxazole ring, and a thiazole ring.
  • Examples of a 6-membered heteroaryl ring include a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, and a triazine ring.
  • the heteroaryl ring may be condensed with an aryl ring, a heterocycle containing a heteroaryl ring, an alicyclic ring, etc., for example, a benzofuran ring, a benzothiophene ring, an indole ring, a benzoxazole ring, a benzothiazole ring, a quinoline ring, An isoquinoline ring, a quinazoline ring, etc. are mentioned.
  • a furan ring and a thiophene ring are preferable, thienyl and furan-1-yl are preferable, and thienyl is particularly preferable.
  • Rp 1 and Rp 2 are an alkenyl group in which the carbon atom bonded to the pyridine ring is the sp 2 carbon, an alkynyl group, an aryl group and a heteroaryl group in which the carbon atom bonded to the pyridine ring is the sp carbon.
  • An alkenyl group in which the carbon atom to be bonded is sp 2 carbon
  • an alkynyl group in which the carbon atom to be bonded to the pyridine ring is sp carbon is preferable
  • an alkenyl group in which the carbon atom to be bonded to the pyridine ring is sp 2 carbon is more preferable.
  • an ethenyl group substituted with an aromatic ring at the 2-position is preferred.
  • an aromatic ring substituted at the 2-position a heteroaryl ring is preferable, and a benzene ring and a thiophene ring are particularly preferable.
  • Anc 1 to Anc 3 each independently represents an acidic group. These may be the same as or different from each other. It is preferable that they are the same as each other.
  • the acidic group is a substituent having a dissociative proton, and pKa is 11 or less.
  • an acid group that is an acid group such as a carboxy group, a phosphonyl group, a phosphoryl group, a sulfo group, or a boric acid group, or a group having any of these, preferably a carboxy group or It is a group having this.
  • the acidic group may take a form of releasing a proton and dissociating, or may be a salt.
  • the counter ion when the salt is converted is not particularly limited.
  • the example of the positive ion shown with the counter ion Y in below-mentioned formula (I) is mentioned.
  • a carboxy group is particularly preferable from the viewpoint of electron transfer.
  • R 1 to R 3 each independently represents a substituent having no Anc 1 to Anc 3 , Rp 1 , or Rp 2 .
  • substituents include substituents that do not correspond to the aforementioned Anc 1 to Anc 3 , Rp 1 , and Rp 2 among the substituents T described later.
  • M1 and m2 each independently represents an integer of 0 to 3, and at least one of m1 and m2 is an integer of 1 to 3. Both m1 and m2 are preferably 1.
  • N1 to n3 each independently represents an integer of 0 to 2.
  • the two groups may be the same or different, and they may be bonded to each other to form a ring.
  • n1 to n3 are preferably 0 or 1, and all of them are particularly preferably 0.
  • a preferable ligand can be represented by the following formula (AL-1).
  • Rp 1, Rp 2 and Anc 1 ⁇ Anc 3 has the same meaning as Rp 1, Rp 2 and Anc 1 ⁇ Anc 3 in Formula (AL), and the preferred range is also the same.
  • the metal complex dye having a ligand represented by the formula (AL) of the present invention has a ligand other than the ligand represented by the formula (AL) in order to exhibit the effects of the present invention. Is at least one of the coordination atoms is an anionic ligand.
  • Examples of the central metal ion (corresponding to M in the following formula (I)) of the metal complex of the present invention include elements in groups 6 to 12 on the long periodic table. Examples of such elements include Ru, Fe, Os, Cu, W, Cr, Mo, Ni, Pd, Pt, Co, Ir, Rh, Re, Mn, and Zn.
  • the metal ion [M in the following formula (I)] M is preferably Os 2+ , Ru 2+ or Fe 2+ , more preferably Os 2+ or Ru 2+ , and particularly preferably Ru 2+ . Note that in the state of being incorporated in the photoelectric conversion element, the valence of the metal ion [M in the following formula (I)] may change due to an oxidation-reduction reaction with the surrounding material.
  • the metal complex dye having a ligand represented by the formula (AL) of the present invention is preferably a metal complex dye represented by the following formula (I).
  • Rp 1, Rp 2, Anc 1 ⁇ Anc 3, R 1 ⁇ R 3, m1, m2 and n1 ⁇ n3 is, Rp 1, Rp 2, Anc 1 ⁇ Anc 3 in Formula (AL), R 1 ⁇ It is synonymous with R 3 , m1, m2 and n1 to n3.
  • M represents a metal ion.
  • L 1 to L 3 each independently represents a ligand.
  • L 1 and L 2 may be bonded to each other to form a bidentate ligand, or L 1 , L 2 and L 3 may be bonded to each other to form a tridentate ligand.
  • one or two of L 1 to L 3 are ligands whose coordination atoms are anionic.
  • Y represents a counter ion necessary for neutralizing the charge
  • n represents an integer of 0 to 2.
  • M is the metal ion described above, and the preferred range is also the same.
  • L 1 to L 3 each independently represents a ligand.
  • L 1 and L 2 may be bonded to each other to form a bidentate ligand, or L 1 , L 2 and L 3 may be bonded to each other to form a tridentate ligand.
  • one or two of L 1 to L 3 are ligands whose coordination atoms are anionic.
  • a monodentate ligand is coordinated to the metal ion as the remaining ligand.
  • L 1 and L 2 both have an aromatic ring and are bidentate ligands bonded to each other, or L 1 , L 2 and L 3 are all Tridentate ligands having aromatic rings and bonded to each other are preferred.
  • L 1 to L 3 are monodentate ligands
  • L 1 and L 2 are bidentate ligands bonded to each other
  • L 1 , L 2 and L 3 are bonded to each other.
  • the case of a scale will be described in order.
  • a monodentate ligand is a ligand with one atom coordinated to a metal ion, and is an acyloxy anion, acylthioanion, thioacyloxyanion, thioacylthioanion, acylaminooxyanion, thiocarbamate anion, dithiocarbamate Anion, thiocarbonate anion, dithiocarbonate anion, trithiocarbonate anion, acyl anion, thiocyanate anion, isothiocyanate anion, cyanate anion, isocyanate anion, cyano anion, alkylthio anion, arylthio anion, alkoxy anion and aryloxy anion An anion selected from the group consisting of: a monodentate ligand coordinated by these groups, or a halogen atom, cyano, carbonyl, dialkylketo , Carbonamido, anions consisting of thion, thioanion,
  • the monodentate ligand contains an alkyl group, alkenyl group, alkynyl group, alkylene group or the like, these may be linear or branched, and may be substituted or unsubstituted. Moreover, when an aryl group, a heterocyclic group, a cycloalkyl group, etc. are included, they may be substituted or unsubstituted, and may be monocyclic or condensed.
  • the monodentate ligand is preferably a cyanate anion, an isocyanate anion, a thiocyanate anion, an isothiocyanate anion, a selenocyanate anion, an isoselenocyanate anion, more preferably an isocyanate anion, an isothiocyanate anion, an isoselenocyanate anion, An isothiocyanate anion is particularly preferred.
  • a bidentate ligand has two coordinating atoms in the ligand.
  • at least one of the coordination atoms is preferably an anionic atom, more preferably a carbon atom anion or a nitrogen atom anion.
  • the bidentate ligand is preferably a ligand represented by any of the following formulas (2L-1) to (2L-5).
  • ring D represents an aromatic ring.
  • a 111 to A 141 each independently represents a nitrogen atom anion or a carbon atom anion
  • a 151 represents a nitrogen atom anion, an oxygen atom anion or a sulfur atom anion.
  • R 111 to R 154 each independently represents a hydrogen atom or a substituent having no Anc 1 , Anc 2, and Anc 3 .
  • R 111 to R 154 each independently represent a hydrogen atom or a substituent that may have a substituent other than Anc 1 , Anc 2, and Anc 3 .
  • * represents a bonding position to the metal ion M.
  • a 111 to A 141 are a carbon atom anion or a nitrogen atom anion from which a hydrogen atom bonded to the nitrogen atom or carbon atom constituting the ring D is eliminated.
  • a 151 is particularly preferably a residue obtained by removing active hydrogen from a (substituted) amino group, a hydroxyl group or a thiol group among the functional groups in the aromatic carbocyclic ring and the nitrogen-containing heteroaromatic ring.
  • examples of ring D include aromatic carbocycles and nitrogen-containing aromatic heterocycles. Examples of the aromatic carbocycle include a benzene ring and a naphthalene ring.
  • nitrogen-containing aromatic heterocycle examples include heteroaryl rings containing a nitrogen atom as a ring constituent atom among the heteroaryl rings in Rp 1 and Rp 2 , and among them, a 5-membered nitrogen-containing aromatic heterocycle is preferable.
  • Ring D before A 111 to A 141 are anionized and Ring D substituted by A 151 in Formula (2L-5) are, for example, a benzene ring, m, Examples include m-difluorobenzene ring, o, p-difluorobenzene ring, p-fluorobenzene ring, p-cyanobenzene ring, p-nitrobenzene ring, thiophene ring, furan ring and the like.
  • the ring D in the formulas (2L-1) to (2L-4) includes the following formulas (a-1) to (a-5), (a-1a), (a-2a), (a-1b) And a ring composed of a group represented by (a-4a).
  • Rd represents a substituent.
  • b1 represents an integer of 0 to 2
  • b2 represents an integer of 0 to 3
  • b3 represents 0 or 1.
  • Rd include substituents that do not correspond to the aforementioned Anc 1 to Anc 3 among the substituents T described later.
  • Rd and b1 to b3 have the same meanings as Rd and b1 to b3 in the above formulas (a-1) to (a-5), and preferred ranges are also the same.
  • b4 represents an integer of 0 to 4
  • b5 represents an integer of 0 to 5.
  • Rd represents not only a benzene ring but also a pyrrole ring.
  • Rd is preferably a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, a fluoroalkyl group, an aryl group, a halogen atom, an alkoxycarbonyl group, a cycloalkoxycarbonyl group, or a group formed by combining these. More preferred are linear or branched alkyl groups, cycloalkyl groups, alkenyl groups, fluoroalkyl groups, aryl groups, and groups formed by combining these, and particularly preferred are linear or branched alkyl groups, cycloalkyl groups, alkenyl groups. A group, a fluoroalkyl group, and a combination thereof.
  • Examples of the substituents of R 111 to R 154 include substituents that do not correspond to the aforementioned Anc 1 to Anc 3 among the substituents T described later.
  • substituents of R 111 to R 154 include substituents that do not correspond to the aforementioned Anc 1 to Anc 3 among the substituents T described later.
  • an alkyl group, an alkenyl group, an aryl group, and a heteroaryl group are particularly preferable.
  • a tridentate ligand is a ligand having three coordination atoms coordinated to a metal ion.
  • at least one of the coordination atoms is preferably an anionic atom, and a carbon atom anion and a nitrogen atom anion are preferred.
  • the tridentate ligand is preferably a ligand represented by any of the following formulas (3L-1) to (3L-5).
  • ring D and ring D ′ each independently represent an aromatic ring.
  • a 211 to A 242 each independently represents a nitrogen atom or a carbon atom
  • a 251 and A 252 each independently represent a nitrogen atom, an oxygen atom, or a sulfur atom.
  • R 211 to R 253 each independently represents a hydrogen atom or a substituent having no Anc 1 , Anc 2, or Anc 3 .
  • * represents a bonding position to the metal ion M.
  • an anion is the same as A 111 to A 141 in the formulas (2L-1) to (2L-5).
  • those having no anion are carbon atoms or nitrogen atoms not having a hydrogen atom.
  • a 251 and A 252 have the same meanings as A 151 in the formula (2L-5).
  • ring D and ring D ′ may be the same as or different from each other. Ring D and ring D ′ have the same meaning as ring D in formulas (2L-1) to (2L-5).
  • ring D and ring D ′ are aromatic carbocycles, nitrogen-containing aromatics.
  • a heterocycle is mentioned.
  • the aromatic carbocycle include a benzene ring and a naphthalene ring.
  • the nitrogen-containing aromatic heterocycle include heteroaryl rings containing a nitrogen atom as a ring constituent atom among the heteroaryl rings in Rp 1 and Rp 2 , and among them, a 5-membered nitrogen-containing aromatic heterocycle is preferable.
  • the substituents R 211 to R 253 are synonymous with the substituents R 111 to R 154 in the formulas (2L-1) to (2L-5), and preferred ones are also the same.
  • the ligands represented by L 1 to L 3 are classified as donor ligands in the present invention.
  • a ligand that does not have an acidic group that is an adsorbing group that is adsorbed on the surface of the semiconductor fine particles is preferable.
  • the aromatic ring constituting the ligand has an alkenyl group in which the carbon atom at the bonding position is sp 2 carbon, and an alkynyl group in which the carbon atom at the bonding position is sp carbon.
  • a ligand to which a group selected from an aryl group and a heteroaryl group is bonded is particularly preferred.
  • -Charge neutralization counter ion Y- Y represents a counter ion when a counter ion is required to neutralize the charge.
  • a dye is a cation or an anion or has a net ionic charge depends on the metal, ligand and substituent in the metal complex dye.
  • the metal complex dye may be dissociated and have a negative charge, for example, because the substituent has a dissociable group. In this case, the charge of the entire metal complex dye is electrically neutralized by Y.
  • the counter ion Y is a positive counter ion
  • the counter ion Y is an inorganic or organic ammonium ion (eg, tetraalkylammonium ion, pyridinium ion, etc.), phosphonium ion (eg, tetraalkylphosphonium ion, alkyltriphenylphosphonium ion). Etc.), alkali metal ions, metal complex ions or protons.
  • the positive counter ion is preferably an inorganic or organic ammonium ion (such as triethylammonium or tetrabutylammonium ion) or a proton.
  • the counter ion Y may be an inorganic anion or an organic anion.
  • the counter ion Y may be an inorganic anion or an organic anion.
  • hydroxide ion, halogen anion eg fluoride ion, chloride ion, bromide ion, iodide ion etc.
  • substituted or unsubstituted alkylcarboxylate ion acetate ion, trifluoroacetate ion etc.
  • Substituted or unsubstituted arylcarboxylate ions (benzoate ions, etc.)
  • substituted or unsubstituted alkylsulfonate ions methanesulfonate ions, trifluoromethanesulfonate ions, etc.
  • substituted or unsubstituted arylsulfonate ions eg p-toluenesulfonate ion, p
  • charge balance counter ion an ionic polymer or another dye having a charge opposite to that of the dye may be used, and a metal complex ion (for example, bis (1,2-benzenedithiolato) nickel (III) ion) is also used. Is possible.
  • Negative counter ions include halogen anions, substituted or unsubstituted alkyl carboxylate ions, substituted or unsubstituted alkyl sulfonate ions, substituted or unsubstituted aryl sulfonate ions, aryl disulfonate ions, perchlorate ions , Hexafluorophosphate ions are preferred, and halogen anions and hexafluorophosphate ions are more preferred.
  • N represents an integer of 0-2.
  • n is the number of counter ions necessary to neutralize the charge, and this neutralizes the charge of the metal complex dye.
  • the metal complex dye having a ligand represented by the formula (AL) of the present invention and the metal complex dye represented by the formula (I) are more preferably a metal complex dye represented by the following formula (II).
  • Rp 1 , Rp 2 , Anc 1 to Anc 3 , M, L 1 to L 3 , Y and n are Rp 1 , Rp 2 , Anc 1 to Anc 3 , M, L 1 to It is synonymous with L ⁇ 3 >, Y and n, and its preferable range is also the same.
  • metal complex dyes having a ligand represented by the formula (AL) of the present invention are shown below.
  • the present invention is not limited to these.
  • these metal complex dyes may be any of these isomers or a mixture of these isomers.
  • the metal complex dye having a ligand represented by the formula (AL) of the present invention is disclosed in US Patent Application Publication No. 2010 / 0258175A1, Japanese Patent No. 4298799, Angew. Chem. Int. Ed. , 2011, 50, 2054-2058, the methods described in the references cited in these documents, or a method analogous thereto.
  • the maximum absorption wavelength in the solution of the metal complex dye of the present invention is preferably in the range of 300 to 1000 nm, more preferably in the range of 350 to 950 nm, and particularly preferably in the range of 370 to 900 nm.
  • the photoelectric conversion element of the present invention uses semiconductor fine particles carrying a metal complex dye having a ligand represented by the general formula (AL) (hereinafter referred to as the metal complex dye of the present invention).
  • the dye-sensitized solar cell of the present invention uses the photoelectric conversion element of the present invention, and has a conductive support and a photosensitive fine particle having semiconductor fine particles carrying the metal complex dye of the present invention on the conductive support. It has a body layer, a charge transfer body layer containing an electrolyte, and a counter electrode in this order. Each layer may be a single layer or a plurality of layers, and may have layers other than the above-described layers as necessary.
  • the photoelectric conversion element or the dye-sensitized solar cell of the present invention has, for example, as shown in FIG. 1, semiconductor fine particles 22 sensitized by supporting a conductive support 1 and a dye (metal complex dye) 21.
  • the photosensitive member layer 2 includes a charge transfer layer 3 as a hole transport layer and a counter electrode 4.
  • the co-adsorbent is adsorbed on the semiconductor fine particles 22 together with the dye (metal complex dye) 21.
  • the conductive support 1 provided with the photoreceptor layer 2 functions as a working electrode in the photoelectric conversion element 10.
  • the photoelectric conversion element 10 is shown as a system 100 using a dye-sensitized solar cell that can be used for a battery for causing the operating means M (electric motor) to work with the external circuit 6. .
  • the light receiving electrode 5 includes a conductive support 1 and a photoreceptor layer 2 including semiconductor fine particles 22 on which a dye (metal complex dye) 21 is adsorbed.
  • the photoreceptor layer 2 is designed according to the purpose, and may be a single layer structure or a multilayer structure.
  • the dye (metal complex dye) 21 in one photosensitive layer may be one kind or a mixture of many kinds. However, at least one of them uses the above-described metal complex dye of the present invention.
  • the light incident on the photoreceptor layer 2 excites the dye (metal complex dye) 21.
  • the excited dye has high energy electrons, and the electrons are transferred from the dye (metal complex dye) 21 to the conduction band of the semiconductor fine particles 22 and reach the conductive support 1 by diffusion. At this time, the dye (metal complex dye) 21 is an oxidant. Electrons on the electrodes return to the photoreceptor layer 2 where the oxidant and electrolyte of the dye (metal complex dye) 21 exist via the counter electrode 4 while working in the external circuit 6, thereby functioning as a solar cell.
  • the material used for the photoelectric conversion element or the dye-sensitized solar cell and the method for producing each member may be the usual ones of this type, for example, US Pat. No. 4,927,721.
  • U.S. Pat.No. 4,684,537, U.S. Pat.No. 5,0843,65, U.S. Pat.No. 5,350,644, U.S. Pat.No. 5,463,057 Reference can be made to US Pat. No. 5,525,440, JP-A-7-249790, JP-A-2004-220974, and JP-A-2008-135197.
  • JP-A-7-249790 JP-A-2004-220974
  • JP-A-2008-135197 JP-A-2008-135197
  • the conductive support is preferably a support made of glass or plastic having a conductive film layer on the surface, such as a metal having a conductive nature in the support itself.
  • the plastic support include a transparent polymer film described in paragraph No. 0153 of JP-A No. 2001-291534.
  • the support in addition to glass and plastic, ceramic (Japanese Patent Laid-Open No. 2005-135902) or conductive resin (Japanese Patent Laid-Open No. 2001-160425) may be used.
  • the surface On the conductive support, the surface may be provided with a light management function. Examples thereof include an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated, and a light guide function described in JP-A-2002-260746.
  • the thickness of the conductive film layer is preferably 0.01 to 30 ⁇ m, more preferably 0.03 to 25 ⁇ m, and particularly preferably 0.05 to 20 ⁇ m.
  • the conductive support is substantially transparent.
  • substantially transparent means that the light transmittance is 10% or more, preferably 50% or more, particularly preferably 80% or more.
  • a glass or plastic coated with a conductive metal oxide is preferable.
  • the metal oxide tin oxide is preferable, and indium-tin oxide and fluorine-doped oxide are particularly preferable.
  • the coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the glass or plastic support. When a transparent conductive support is used, light is preferably incident from the support side.
  • the semiconductor fine particles are preferably metal chalcogenide (for example, oxide, sulfide, selenide, etc.) or perovskite fine particles.
  • metal chalcogenide for example, oxide, sulfide, selenide, etc.
  • perovskite fine particles Preferred examples of the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, tantalum oxide, cadmium sulfide, cadmium selenide, and the like.
  • Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide (titania), zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
  • titania examples include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, nanowires, and nanorods may be mixed with titania fine particles or used as semiconductor electrodes.
  • the particle diameters of the semiconductor fine particles are 0.001 to 1 ⁇ m as primary particles and 0.01 to 100 ⁇ m as the average particle diameter of the dispersion as the average particle diameter using the diameter when the projected area is converted into a circle. preferable.
  • a method of coating the semiconductor fine particles on the conductive support there are a dry method and other methods in addition to a wet method.
  • the semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed.
  • the surface area is preferably 10 times or more, more preferably 100 times or more the projected area. This upper limit is not particularly limited, and is usually about 5000 times.
  • the preferred thickness of the photoreceptor layer which is a semiconductor layer, varies depending on the use of the device. It is typically 0.1 to 100 ⁇ m. When used as a dye-sensitized solar cell, the thickness is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m.
  • the semiconductor fine particles are preferably subjected to a baking treatment in order to adhere the particles to each other after being applied to the support.
  • the firing conditions can be, for example, 100 to 800 ° C. and 10 minutes to 10 hours.
  • the film forming temperature of the semiconductor fine particle layer is not particularly limited. For example, if the conductive support is glass, the film is preferably formed at 60 to 400 ° C.
  • the coating amount of semiconductor fine particles per 1 m 2 of support is preferably 0.5 to 500 g, more preferably 5 to 100 g.
  • the total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, and particularly preferably 0.1 to 10 mmol per 1 m 2 of the support.
  • the amount of the metal complex dye of the present invention is preferably 5 mol% or more, more preferably 60 to 100 mol%, and more preferably 85 to 100 mol% with respect to the entire dye. Further preferred.
  • the dye other than the metal complex dye of the present invention one that functions alone as a sensitizing dye of a dye-sensitized solar cell is preferable.
  • the adsorption amount of the dye to the semiconductor fine particles is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles.
  • the sensitizing effect in the semiconductor fine particles can be sufficiently obtained.
  • the dye such as a metal complex dye is a salt
  • the counter ion of the metal complex dye of the present invention is not particularly limited, and examples thereof include alkali metal ions or quaternary ammonium ions.
  • the adsorption of the dye to the semiconductor fine particles is preferably performed using a dye solution containing the dye, as will be described later.
  • a dye solution containing the dye for example, it can be carried out by immersing a semiconductor electrode in which a semiconductor layer (photoreceptor layer) is formed on a support in a dye solution obtained by dissolving a dye.
  • the surface of the semiconductor fine particles may be treated with amines.
  • amines include pyridines (for example, 4-tert-butylpyridine, polyvinylpyridine) and the like. In the case of a liquid, these may be used as they are, or may be used after being dissolved in an organic solvent.
  • the photoelectric conversion element for example, the photoelectric conversion element 10
  • the dye-sensitized solar cell for example, the dye-sensitized solar cell 20
  • at least the metal complex dye of the present invention is used.
  • the metal complex dye of the present invention may be used in combination with another dye.
  • the dye used in combination include Ru complex dyes described in JP-A-7-500630 (particularly the dyes synthesized in Examples 1 to 19 on page 5, lower left column, line 5 to page 7, upper right column, line 7). ), Ru complex dyes described in JP-T-2002-512729 (especially dyes synthesized in Examples 1 to 16 from the third line to the 29th page and the 23rd line from the bottom of page 20), JP-A-2001- Ru complex dyes described in Japanese Patent No. 59062 (particularly dyes described in paragraphs 0087 to 0104), Ru complex dyes described in Japanese Patent Application Laid-Open No.
  • Ru complex dyes described in JP2012-012570A particularly dyes described in paragraphs 0095 to 0103
  • Ru complex dyes described in JP2013-084594A particularly paragraph numbers
  • Dyes described in JP-A-11-214730 squarylium cyanine dyes described in JP-A-11-214730 (particularly dyes described in paragraphs 0036-0047)
  • squarylium-cyanine dyes described in JP2012-144688A In particular, in paragraph numbers 0039 to 0046 and paragraph numbers 0054 to 0060 Dyes
  • squarylium cyanine dyes described in JP 2012-84503 A particularly dyes described in paragraph Nos.
  • the dye used in combination is preferably a Ru complex dye, a squarylium cyanine dye, or an organic dye.
  • the ratio of the mass of the metal complex dye of the present invention to the mass of the other dye is preferably 95/5 to 10/90, and 95/5 to 50/50. Is more preferable, 95/5 to 60/40 is further preferable, 95/5 to 65/35 is particularly preferable, and 95/5 to 70/30 is most preferable.
  • the charge transfer layer used in the photoelectric conversion element of the present invention is a layer having a function of replenishing electrons to the oxidant of the dye, and is provided between the light receiving electrode (photoelectrode) and the counter electrode (counter electrode).
  • the charge transfer layer includes an electrolyte.
  • the electrolyte include a liquid electrolyte obtained by dissolving a redox couple in an organic solvent, a so-called gel electrolyte obtained by impregnating a polymer matrix obtained by dissolving a redox couple in an organic solvent, and a molten salt containing the redox couple. .
  • a liquid electrolyte is preferable. Nitrile compounds, ether compounds, ester compounds and the like are used as the organic solvent for the liquid electrolyte, nitrile compounds are preferred, and acetonitrile and methoxypropionitrile are particularly preferred.
  • iodine and iodide for example, iodine and iodide (iodide salt, ionic liquid is preferred, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, methylpropylimidazolium iodide are preferred) and A combination of alkyl viologen (for example, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate) and its reduced form, a combination of polyhydroxybenzenes (for example, hydroquinone, naphthohydroquinone, etc.) and its oxidant, 2 Combinations of valent and trivalent iron complexes (for example, combinations of red blood salt and yellow blood salt), and combinations of divalent and trivalent cobalt complexes.
  • alkyl viologen for example, methyl viologen chloride, hexy
  • the cobalt complex is preferably a complex represented by the formula (A) described in paragraph numbers 0060 to 0063 of JP2013-077449A, and the description of paragraph numbers 0060 to 0077 of JP2013-077449A is unchanged. Preferably incorporated herein.
  • iodine and iodide When a combination of iodine and iodide is used as the electrolyte, it is preferable to further use an iodine salt of a 5-membered or 6-membered nitrogen-containing aromatic cation.
  • an aprotic polar solvent for example, acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone
  • the polymer (polymer matrix) used for the matrix of the gel electrolyte include polyacrylonitrile and polyvinylidene fluoride.
  • the molten salt include those imparted with fluidity at room temperature by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (for example, lithium acetate or lithium perchlorate). In this case, the amount of the polymer added is 1 to 50% by mass.
  • ⁇ -butyrolactone may be included in the electrolytic solution, thereby increasing the diffusion efficiency of iodide ions and improving the photoelectric conversion efficiency.
  • aminopyridine compounds As an additive to the electrolyte, in addition to the aforementioned 4-tert-butylpyridine, aminopyridine compounds, benzimidazole compounds, aminotriazole compounds and aminothiazole compounds, imidazole compounds, aminotriazine compounds, urea derivatives, Amide compounds, pyrimidine compounds or nitrogen-free heterocycles can be added.
  • Preferred methods for controlling moisture include a method for controlling the concentration and a method in which a dehydrating agent is allowed to coexist.
  • Iodine may be used as an inclusion compound of iodine and cyclodextrin, and conversely, a method of constantly replenishing the water in the electrolyte may be used.
  • Cyclic amidine may be used, and an antioxidant, hydrolysis inhibitor, decomposition inhibitor, and zinc iodide may be added.
  • Molten salt may be used as the electrolyte.
  • Preferred molten salts include ionic liquids containing imidazolium or triazolium type cations, oxazolium-based, pyridinium-based, guanidinium-based, and combinations thereof. Combinations of these cationic systems and specific anions may be used. Additives may be added to these molten salts. You may have a liquid crystalline substituent. Further, a quaternary ammonium salt-based molten salt may be used.
  • lithium iodide and at least one other lithium salt are mixed with polyethylene oxide to impart fluidity at room temperature. Etc.
  • the electrolyte may be made pseudo-solid by adding a gelling agent to an electrolyte solution composed of an electrolyte and a solvent to cause gelation (the pseudo-solid electrolyte is also referred to as “pseudo-solid electrolyte” hereinafter).
  • the gelling agent include organic compounds having a molecular weight of 1000 or less, Si-containing compounds having a molecular weight in the range of 500 to 5000, organic salts composed of a specific acidic compound and a basic compound, sorbitol derivatives, and polyvinylpyridine.
  • the matrix polymer is preferably a polymer having a nitrogen-containing heterocycle in the repeating unit of the main chain or side chain, a crosslinked product obtained by reacting these with an electrophilic compound, a polymer having a triazine structure, or a ureido structure.
  • Polymers liquid crystalline compounds, ether-bonded polymers, polyvinylidene fluoride, methacrylate, acrylate, thermosetting resins, cross-linked polysiloxane, polyvinyl alcohol (PVA), polyalkylene glycol and dextrin, etc. And the inclusion of oxygen-containing or sulfur-containing polymers, natural polymers, and the like.
  • An alkali swelling polymer, a polymer having a compound capable of forming a charge transfer complex between a cation moiety and iodine in one polymer, and the like may be added thereto.
  • a crosslinking method in which polysulfonic acid or polycarboxylic acid is reacted (or chelated) with a divalent or higher valent metal ion compound may be used.
  • Examples of the solvent that can be preferably used in combination with the quasi-solid electrolyte include a specific phosphate ester, a mixed solvent containing ethylene carbonate, and a solvent having a specific dielectric constant.
  • the liquid electrolyte solution may be held in the solid electrolyte membrane or the pores.
  • Examples of the method for holding the liquid electrolyte solution include a method using a cloth-like solid such as a conductive polymer film, a fibrous solid, or a filter.
  • a solid charge transport layer such as a p-type semiconductor or a hole transport material, for example, CuI, CuNCS, or the like can be used. Also, Nature, vol. 486, p. The electrolyte described in 487, 2012, or the like may be used.
  • An organic hole transport material may be used as the solid charge transport layer.
  • the organic hole transport material is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole and polysilane, a spiro compound in which two rings share a tetrahedral structure such as C or Si, and an aromatic such as triarylamine. Group amine derivatives, triphenylene derivatives, nitrogen-containing heterocyclic derivatives, and liquid crystalline cyano derivatives.
  • a preferable concentration is 0.01 mol / L or more in total, more preferably 0.1 mol / L or more, and particularly preferably 0.3 mol / L or more.
  • the upper limit in this case is not particularly limited, and is usually about 5 mol / L.
  • a coadsorbent In the photoelectric conversion element of this invention, it is preferable to use a coadsorbent with the metal complex dye of this invention or the pigment
  • a co-adsorbent a co-adsorbent having at least one acidic group (preferably a carboxy group or a salt group thereof) is preferable, and examples thereof include compounds having a fatty acid or a steroid skeleton.
  • the fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and examples thereof include butanoic acid, hexanoic acid, octanoic acid, decanoic acid, hexadecanoic acid, dodecanoic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid.
  • Examples of the compound having a steroid skeleton include cholic acid, glycocholic acid, chenodeoxycholic acid, hyocholic acid, deoxycholic acid, lithocholic acid, ursodeoxycholic acid and the like. Preferred are cholic acid, deoxycholic acid and chenodeoxycholic acid, and more preferred are chenodeoxycholic acid.
  • a preferred co-adsorbent is a compound represented by the following formula (CA).
  • R A1 represents a substituent having an acidic group.
  • R A2 represents a substituent.
  • nA represents an integer of 0 or more.
  • the acidic group is synonymous with Anc 1 to Anc 3 in the above-described formula (AL), and the preferred range is also the same.
  • nA is preferably 2 to 4.
  • R A1 is preferably a carboxy group or an alkyl group substituted with a sulfo group or a salt thereof, —CH (CH 3 ) CH 2 CH 2 CO 2 H, —CH (CH 3 ) CH 2 CH 2 CONHCH 2 CH 2 SO 3 H is more preferred.
  • R A2 is preferably an alkyl group, a hydroxy group, an acyloxy group, an alkylaminocarbonyloxy group, or an arylaminocarbonyloxy group, and more preferably an alkyl group, a hydroxy group, or an acyloxy group.
  • These specific compounds include the compounds exemplified as the compounds having the steroid skeleton described above.
  • the co-adsorbent used in the present invention has an effect of suppressing inefficient association of dyes by adsorbing to semiconductor fine particles and an effect of preventing reverse electron transfer from the surface of the semiconductor fine particles to the redox system in the electrolyte.
  • the amount of coadsorbent used is not particularly limited. From the viewpoint of effectively expressing the above action, the amount is preferably 1 to 200 mol, more preferably 10 to 150 mol, and particularly preferably 20 to 50 mol with respect to 1 mol of the dye.
  • ⁇ Substituent T> In this specification, about the display of a compound (a complex and a pigment
  • a substituent that does not specify substitution or non-substitution means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substituted or unsubstituted.
  • Preferred substituents include the following substituent T. Further, in this specification, when only described as a substituent, this substituent T is referred to. Moreover, when only each group, for example, an alkyl group, is described, preferred ranges and specific examples of the corresponding group of the substituent T are applied.
  • substituent T examples include the following groups.
  • An alkyl group preferably having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, tert-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, trifluoromethyl, etc.
  • Alkenyl groups preferably having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.
  • alkynyl groups preferably having 2 to 20 carbon atoms, such as ethynyl, butadiynyl, phenylethynyl, etc.
  • cycloalkyl groups preferably Has 3 to 20 carbon atoms, for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl and the like, cycloalkenyl group (preferably having 5 to
  • alkoxycarbonyl group preferably having 2 to 20 carbon atoms such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.
  • a cycloalkoxycarbonyl group preferably having 4 to 20 carbon atoms such as cyclopropyloxycarbonyl, cyclopentyloxycarbonyl, etc.
  • Cyclohexyloxycarbonyl, etc. aryloxycarbonyl groups (preferably having 6 to 20 carbon atoms, such as phenyloxycarbonyl, naphthyloxycarbonyl, etc.)
  • amino groups preferably having 0 to 20 carbon atoms, alkylamino groups, alkenyls
  • An acyl group preferably having 1 to 20 carbon atoms such as acetyl, cyclohexylcarbonyl, benzoyl, etc.
  • an acyloxy group preferably having 1 to 20 carbon atoms such as acetyloxy, cyclohexylcarbonyloxy).
  • Benzoyloxy, etc. carbamoyl group (preferably an carbamoyl group having 1 to 20 carbon atoms, alkyl, cycloalkyl or aryl, such as N, N-dimethylcarbamoyl, N-cyclohexylcarbamoyl, N-phenylcarbamoyl, etc.)
  • N, N-dimethylcarbamoyl, N-cyclohexylcarbamoyl, N-phenylcarbamoyl, etc.
  • An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, cyclohexylcarbonylamino, benzoylamino, etc.), a sulfonamide group (preferably an alkyl, cycloalkyl or aryl sulfonamide having 0 to 20 carbon atoms) Groups such as methanesulfonamide, benzenesulfonamide, N-methylmethanesulfonamide, N-cyclohexylsulfonamide, N-ethylbenzenesulfonamide, etc., alkylthio groups (preferably having 1 to 20 carbon atoms, eg, methylthio , Ethylthio, isopropylthio, benzylthio, etc.), cycloalkylthio groups (preferably having 3 to 20 carbon atoms, such as cyclopropylthio, cyclopent
  • a silyl group (preferably a silyl group having 1 to 20 carbon atoms and substituted by alkyl, aryl, alkoxy and aryloxy, such as triethylsilyl, triphenylsilyl, diethylbenzylsilyl, dimethylphenylsilyl, etc.), silyloxy group ( Preferably, it is a silyloxy group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy and aryloxy, such as triethylsilyloxy, triphenylsilyloxy, diethylbenzylsilyloxy, dimethylphenylsilyloxy, etc.), hydroxy group , A cyano group, a nitro group, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), a carboxy group, a sulfo group, a
  • the compound or the substituent includes an alkyl group, an alkenyl group, etc.
  • these may be linear or branched, and may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group, etc. may be monocyclic or condensed, and may be substituted or unsubstituted.
  • the counter electrode preferably functions as a positive electrode of a dye-sensitized solar cell (photoelectric conversion element).
  • the counter electrode is generally synonymous with the conductive support described above. However, the support is not necessarily required in a configuration in which the strength is sufficiently maintained.
  • As the structure of the counter electrode a structure having a high current collecting effect is preferable.
  • At least one of the conductive support and the counter electrode must be substantially transparent.
  • the conductive support is transparent and sunlight is incident from the conductive support side. In this case, it is more preferable that the counter electrode has a property of reflecting light.
  • the counter electrode of the dye-sensitized solar cell glass or plastic on which metal or conductive oxide is vapor-deposited is preferable, and glass on which platinum is vapor-deposited is particularly preferable.
  • the dye-sensitized solar cell it is preferable to seal the side surface of the battery with a polymer, an adhesive or the like in order to prevent the constituents from evaporating.
  • the present invention is disclosed in Japanese Patent No. 4260494, Japanese Patent Application Laid-Open No. 2004-146425, Japanese Patent Application Laid-Open No. 2000-340269, Japanese Patent Application Laid-Open No. 2002-289274, Japanese Patent Application Laid-Open No. 2004-152613, and Japanese Patent Application Laid-Open No. 9-27352. It can apply to the described photoelectric conversion element and a dye-sensitized solar cell.
  • dye adsorption electrode is the photoelectrode 40 in FIG.
  • the metal complex dye of the present invention is dissolved in a solvent and may contain a co-adsorbent and other components as necessary.
  • the solvent to be used include, but are not particularly limited to, the solvents described in JP-A No. 2001-291534.
  • an organic solvent is preferable, and alcohols, amides, nitriles, hydrocarbons, and a mixed solvent of two or more of these are preferable.
  • a mixed solvent of an alcohol and a solvent selected from amides, nitriles or hydrocarbons is preferable.
  • alcohols and amides, mixed solvents of alcohols and hydrocarbons are particularly preferred.
  • methanol, ethanol, propanol, butanol, dimethylformamide, and dimethylacetamide are preferable.
  • the dye solution preferably contains a co-adsorbent.
  • the co-adsorbent the above-mentioned co-adsorbent is preferable, and a compound represented by the formula (CA) is particularly preferable.
  • the dye solution of the present invention is a dye solution in which the concentration of the metal complex dye or coadsorbent is adjusted so that the solution can be used as it is when a dye-adsorbing electrode or dye-sensitized solar cell is prepared. Is preferred.
  • the metal complex dye of the present invention is preferably contained in an amount of 0.001 to 0.1% by mass.
  • the water content of the dye solution is preferably adjusted. Therefore, in the present invention, the water content (content ratio) is preferably adjusted to 0 to 0.1% by mass. Similarly, adjustment of the water content of the electrolytic solution in the photoelectric conversion element or the dye-sensitized solar cell is also preferable for effectively achieving the effects of the present invention. For this reason, the water content (content rate) of the electrolytic solution is preferable. Is preferably adjusted to 0 to 0.1% by mass.
  • a dye-adsorbing electrode for a dye-sensitized solar cell produced by supporting the metal complex dye on the surface of the semiconductor fine particles using the dye solution is preferable. Moreover, it is preferable to manufacture a dye-sensitized solar cell using the dye adsorption electrode for dye-sensitized solar batteries manufactured using the said dye solution.
  • Example 1 Synthesis of metal complex dyes
  • dye of this invention is demonstrated in detail.
  • the starting material, the dye intermediate and the synthesis route are not limited thereby.
  • FIG. 3 shows a 1 H-NMR spectrum (solvent: DMSO-d 6 ) of the metal complex dye Dye-3.
  • FIG. 4 shows a visible absorption spectrum of the metal complex dye Dye-3. The measurement was performed using a UV-3600 manufactured by Shimadzu Corporation with an N, N-dimethylformamide solution having a concentration of 17 ⁇ mol / L.
  • the metal complex dyes Dye-1, Dye-2, Dye-4 and Dye-5 were synthesized in the same manner as the metal complex dye Dye-3.
  • the metal complex dye was identified by Matrix Assisted Laser Desorption / Ionization-Mass Spectrometry (MALDI-MS). The results are shown in Table 1 below.
  • Example 2 [Dye-sensitized solar cell] A dye-sensitized solar cell was produced as described below, and the open-circuit voltage and photoelectric conversion efficiency were measured and the durability was evaluated.
  • a photoelectrode having the same configuration as the photoelectrode 12 shown in FIG. 5 described in JP-A No. 2002-289274 was produced by the following procedure. Further, in place of the photoelectrode in FIG. 3 of JP-A-2002-289274, a 5 mm ⁇ 5 mm scale having the same configuration as that of the dye-sensitized solar cell 20 in FIG. 3 except that the produced photoelectrode is used. A dye-sensitized solar cell 20 was produced. A specific configuration is shown in FIG. 2 of the present invention. In FIG.
  • 41 is a transparent electrode
  • 42 is a semiconductor electrode
  • 43 is a transparent conductive film
  • 44 is a substrate
  • 45 is a semiconductor layer
  • 46 is a light scattering layer
  • 40 is a photoelectrode
  • 20 is a dye-sensitized solar cell.
  • CE is a counter electrode
  • E is an electrolyte
  • S is a spacer.
  • Paste A A titania slurry was prepared by placing spherical TiO 2 particles (anatase, average particle size; 25 nm, hereinafter referred to as spherical TiO 2 particles A) in a nitric acid solution and stirring. Next, a cellulosic binder was added to the titania slurry as a thickener and kneaded to prepare paste A.
  • a titania slurry is prepared by stirring spherical TiO 2 particles A and spherical TiO 2 particles (anatase, average particle size: 200 nm, hereinafter referred to as spherical TiO 2 particles B) in a nitric acid solution. did.
  • a transparent electrode 41 (conductive support) in which a fluorine-doped SnO 2 conductive film (transparent conductive film 43, film thickness: 500 nm) was formed on a glass substrate (substrate 44) was prepared. Then, the SnO 2 conductive film, a paste 1 of the above screen printing and then dried. Then, it baked on the conditions of 450 degreeC in the air. Furthermore, by repeating screen printing and baking using the paste 2, a semiconductor electrode having the same configuration as the semiconductor electrode 42 shown in FIG. 2 (light receiving surface area; 5 mm ⁇ 5 mm, layer thickness) is formed on the SnO 2 conductive film.
  • a platinum electrode thinness of Pt thin film; 100 nm
  • an iodine redox solution containing iodine and lithium iodide as the electrolyte E were prepared.
  • a DuPont spacer S (trade name: “Surlin”) having a shape corresponding to the size of the semiconductor electrode 42 was prepared.
  • the prepared photoelectrode 40, counter electrode CE, and spacer S are opposed to each other through the spacer S with the photoelectrode 40 and counter electrode CE facing each other as shown in FIG. 3 described in JP-A-2002-289274. Filling the electrolyte E (forming a charge transfer layer), the dye-sensitized solar cell 20 using the photoelectrode 40 was completed.
  • Voc open circuit voltage measured in the evaluation of the photoelectric conversion efficiency was read, and the obtained Voc was converted into the magnification of the following comparative compound (2) with respect to Voc, and evaluated according to the following criteria. Ranks A and B are practically acceptable ranges.
  • the prepared dye-sensitized solar cell was put in a constant temperature bath at 40 ° C. and a heat resistance test was performed.
  • the electric current value about the dye-sensitized solar cell before a heat test and the dye-sensitized solar cell 12 hours after a heat test was evaluated.
  • the value obtained by dividing the decrease in the current value after the heat test relative to the current value before the heat test by the current value before the heat test was defined as the thermal deterioration rate.
  • the thermal deterioration rate thus obtained was converted into a magnification with respect to the thermal deterioration rate of the following comparative compound (2), and evaluated according to the following criteria. Ranks A and B are practically acceptable ranges.
  • Comparative compound (1) is compound (A-1) described in US Patent Application Publication No. 2012/0247561, and Comparative Compound (2) is a compound described in US Patent Application Publication No. 2012/0247561 (A -10). Comparative compound (3) is Black Dye.
  • the metal complex dyes of the present invention are excellent in photoelectric conversion efficiency and have a high open circuit voltage (Voc).
  • the metal complex dye of the present invention has little thermal deterioration, is excellent in durability, and achieves both improvement in photoelectric conversion efficiency and improvement in durability.

Abstract

配位子は下記式(AL)で表され、金属錯体色素は、該配位子を有し、色素溶液は、該金属錯体色素を含み、色素吸着電極は、該色素溶液を用いて得られ、色素増感太陽電池の製造方法は、該色素吸着電極が用いられ、光電変換素子は、導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層及び対極を有し、感光体層が、下記式(AL)で表される配位子を有する金属錯体色素が担持された半導体微粒子を有する。Rp及びRpはピリジン環に結合する炭素原子がsp炭素であるアルケニル基、ピリジン環に結合する炭素原子がsp炭素であるアルキニル基、アリール基及びヘテロアリール基から選ばれる基を表す。Anc~Ancは酸性基を表す。R1~R3はAnc~Anc、Rp、Rpを有しない置換基を表す。m1及びm2は0~3の整数を表し、m1とm2の少なくとも一方は1~3の整数である。n1~n3は0~2の整数を表す。

Description

光電変換素子、色素増感太陽電池、金属錯体色素、配位子、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
 本発明は、光電変換素子、色素増感太陽電池、金属錯体色素、配位子、色素溶液、色素吸着電極および色素増感太陽電池の製造方法に関する。
 光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いた方式、半導体を用いた方式、有機顔料や色素を用いた方式、あるいはこれらを組み合わせた方式などの様々な方式が実用化されている。特に、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要である。このため、無尽蔵のクリーンエネルギーを利用するものとして、その本格的な実用化が大いに期待されている。その中でも、シリコン系太陽電池は古くから研究開発が進められ、各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループットおよびコスト等の改良には自ずと限界がある。
 そこで色素増感太陽電池の研究が精力的に行われている。特にその契機となったのは、スイス ローザンヌ工科大学のGraetzel等の研究成果である。彼らは、ポーラス酸化チタン薄膜の表面にルテニウム錯体からなる色素を固定した構造を採用し、アモルファスシリコン並の光電変換効率を実現した。これにより、高価な真空装置を使用しなくても製造できる色素増感太陽電池が、一躍世界の研究者から注目を集めるようになった。
 現在までに、光電変換素子に使用される金属錯体色素として、一般的にN3、N719、N749(Black Dyeともいう)、Z907、J2と呼ばれる色素等が開発されている。
 一方、3つのピリジン環上の窒素原子に対してp位にそれぞれカルボキシ基を有するターピリジン配位子において、両端のピリジン環の一方を、カルボキシ基が置換していない、n電子ドナー性の高い芳香族環(ヘテロ芳香族環やジフェニルアミノ基が置換したベンゼン環)に置き換えた色素(特許文献1参照)が提案されている。この色素は、長波長領域においてN749より吸光係数εが大きい。しかも、この色素は350~400nmの吸光度も高く、550nm近くまで吸収の裾が伸びている。これによって光電変換効率を高めている。なお、両側のピリジン環とは、中央のピリジン環に対して、左右にあるピリジン環を意味する。
米国特許出願公開第2012/0247561号明細書
 本発明者らの検討の結果、上記特許文献1に記載の金属錯体色素は、光電変換効率が向上したとはいえ、その改良の程度はまだ十分ではなく、また耐久性については、さらに改善する必要があることもわかった。
 本発明は、上記状況を鑑み、光電変換効率が高く、しかも熱劣化が少なく、耐久性に優れた光電変換素子、色素増感太陽電池、これに使用する金属錯体色素、配位子、色素溶液、色素吸着電極および色素増感太陽電池の製造方法を提供することを課題とする。
 本発明者らの検討の結果、上記特許文献1に記載のような配位子を有する金属錯体色素の使用に関して、以下のことがわかった。すなわち、光電変換素子を製造してから短期間に使用する場合には問題ない。これに対して、長期経時の場合には、色素の半導体微粒子からの脱着が起こるために耐久性が十分とは言えず、色素の吸着安定性の改善が重要である。
 さらに、吸収波長の長波長化を維持もしくは向上させて、開放電圧の観点からも光電変換効率を改善するため、各種配位子の置換基の種類や数を種々検討した結果、本発明に至った。
 すなわち、本発明の課題は、以下の手段によって達成された。
(1)導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層および対極を有する光電変換素子であって、感光体層が、下記式(AL)で表される配位子を有する金属錯体色素が担持された半導体微粒子を有する光電変換素子。
Figure JPOXMLDOC01-appb-C000015
 式中、RpおよびRpは各々独立に、ピリジン環に結合する炭素原子がsp炭素であるアルケニル基、ピリジン環に結合する炭素原子がsp炭素であるアルキニル基、アリール基およびヘテロアリール基から選ばれる基を表す。Anc~Ancは各々独立に酸性基を表す。R~Rは各々独立にAnc~Anc、Rp、Rpを有しない置換基を表す。m1およびm2は各々独立に、0~3の整数を表し、m1とm2の少なくとも一方は1~3の整数である。n1~n3は各々独立に0~2の整数を表す。n1~n3の各々において2であるとき、2つの基は同じであっても異なっていてもよく、これらが互いに結合して環を形成してもよい。
(2)金属錯体色素が、下記式(I)で表される(1)に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000016
 式中、Rp、Rp、Anc~Anc、R~R、m1、m2およびn1~n3は、式(AL)におけるRp、Rp、Anc~Anc、R~R、m1、m2およびn1~n3と同義である。Mは金属イオンを表す。L~Lは各々独立に配位子を表す。ここで、LとLが互いに結合して2座の配位子となってもよく、L、LおよびLが互いに結合して3座の配位子となってもよい。ただし、L~Lのうち1つまたは2つは、配位原子がアニオン性の配位子である。Yは電荷を中和させるのに必要な対イオンを表し、nは0~2の整数を表す。
(3)L~Lにおいて、LとLが、ともに芳香族環を有し、かつ互いに結合した2座の配位子であるか、またはL、LおよびLが、いずれも芳香族環を有し、かつ互いに結合した3座の配位子である(2)に記載の光電変換素子。
(4)LとLにおいて、LとLが、互いに結合した2座の配位子であって、かつ下記式(2L-1)~(2L-5)のいずれかで表される(2)または(3)に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000017
 式中、環Dは芳香族環を表す。A111~A141は各々独立に、窒素原子アニオンまたは炭素原子アニオンを表し、A151は窒素原子アニオン、酸素原子アニオンまたは硫黄原子アニオンを表す。R111~R154は各々独立に、水素原子、または、Anc、AncおよびAncを有しない置換基を表す。ここで、*は金属イオンMへの結合位置を表す。
(5)L、LおよびLにおいて、L、LおよびLが、互いに結合した3座の配位子であって、かつ下記式(3L-1)~(3L-5)のいずれかで表される(2)または(3)に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000018
 式中、環Dおよび環D’は各々独立に芳香族環を表す。A211~A242は各々独立に、窒素原子または炭素原子を表し、A251およびA252は各々独立に窒素原子、酸素原子または硫黄原子を表す。ただし、A211とA212、A221とA222、A231とA232、A241とA242、A251とA252のそれぞれにおいて、少なくとも1つはアニオンである。R211~R253は各々独立に、水素原子、または、Anc、AncおよびAncを有しない置換基を表す。ここで、*は金属イオンMへの結合位置を表す。
(6)環Dが、5員環の含窒素芳香族ヘテロ環である(4)または(5)に記載の光電変換素子。
(7)2座または3座の配位子の芳香族環に、結合位置の炭素原子がsp炭素であるアルケニル基、結合位置の炭素原子がsp炭素であるアルキニル基、アリール基およびヘテロアリール基から選択される基が結合している(3)~(6)のいずれかに記載の光電変換素子。
(8)RpおよびRpの1つまたは2つが、結合するピリジン環の窒素原子に対してオルト位の炭素原子と結合している(1)~(7)のいずれかに記載の光電変換素子。
(9)式(I)で表される金属錯体色素が、下記式(II)で表される(2)~(8)のいずれかに記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000019
 式中、Rp、Rp、Anc~Anc、M、L~L、Yおよびnは、式(I)におけるRp、Rp、Anc~Anc、M、L~L、Yおよびnと同義である。
(10)半導体微粒子に、さらに、酸性基を1つ以上有する共吸着剤が担持されている(1)~(9)のいずれかに記載の光電変換素子。
(11)共吸着剤が、下記式(CA)で表される(10)に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000020
 式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
(12) (1)~(11)のいずれかに記載の光電変換素子を具備する色素増感太陽電池。
(13)下記式(AL)で表される配位子を有する金属錯体色素。
Figure JPOXMLDOC01-appb-C000021
 式中、RpおよびRpは各々独立に、ピリジン環に結合する炭素原子がsp炭素であるアルケニル基、ピリジン環に結合する炭素原子がsp炭素であるアルキニル基、アリール基およびヘテロアリール基から選ばれる基を表す。Anc~Ancは各々独立に酸性基を表す。R~Rは各々独立にAnc~Anc、Rp、Rpを有しない置換基を表す。m1およびm2は各々独立に、0~3の整数を表し、m1とm2の少なくとも一方は1~3の整数である。n1~n3は各々独立に0~2の整数を表す。n1~n3の各々において2であるとき、2つの基は同じであっても異なっていてもよく、これらが互いに結合して環を形成してもよい。
(14)金属錯体色素が、下記式(I)で表される(13)に記載の金属錯体色素。
Figure JPOXMLDOC01-appb-C000022
 式中、Rp、Rp、Anc~Anc、R~R、m1、m2およびn1~n3は、式(AL)におけるRp、Rp、Anc~Anc、R~R、m1、m2およびn1~n3と同義である。Mは金属イオンを表す。L~Lは各々独立に配位子を表す。ここで、LとLが互いに結合して2座の配位子となってもよく、L、LおよびLが互いに結合して3座の配位子となってもよい。ただし、L~Lのうち1つまたは2つは、配位原子がアニオン性の配位子である。Yは電荷を中和させるのに必要な対イオンを表し、nは0~2の整数を表す。
(15)L~Lにおいて、LとLが、ともに芳香族環を有し、かつ互いに結合した2座の配位子であるか、またはL、LおよびLが、いずれも芳香族環を有し、かつ互いに結合した3座の配位子である(14)に記載の金属錯体色素。
(16)LとLにおいて、LとLが、互いに結合した2座の配位子であって、かつ下記式(2L-1)~(2L-5)のいずれかで表される(14)または(15)に記載の金属錯体色素。
Figure JPOXMLDOC01-appb-C000023
 式中、環Dは芳香族環を表す。A111~A141は各々独立に、窒素原子アニオンまたは炭素原子アニオンを表し、A151は窒素原子アニオン、酸素原子アニオンまたは硫黄原子アニオンを表す。R111~R154は各々独立に、水素原子、または、Anc、AncおよびAncを有しない置換基を表す。ここで、*は金属イオンMへの結合位置を表す。
(17)L、LおよびLにおいて、L、LおよびLが、互いに結合した3座の配位子であって、かつ下記式(3L-1)~(3L-5)のいずれかで表される(14)または(15)に記載の金属錯体色素。
Figure JPOXMLDOC01-appb-C000024
 式中、環Dおよび環D’は各々独立に芳香族環を表す。A211~A242は各々独立に、窒素原子または炭素原子を表し、A251およびA252は各々独立に窒素原子、酸素原子または硫黄原子を表す。ただし、A211とA212、A221とA222、A231とA232、A241とA242、A251とA252のそれぞれにおいて、少なくとも1つはアニオンである。R211~R253は各々独立に、水素原子、または、Anc、AncおよびAncを有しない置換基を表す。ここで、*は金属イオンMへの結合位置を表す。
(18)式(I)で表される金属錯体色素が、下記式(II)で表される(14)~(17)のいずれかに記載の金属錯体色素。
Figure JPOXMLDOC01-appb-C000025
 式中、Rp、Rp、Anc~Anc、M、L~L、Yおよびnは、式(I)におけるRp、Rp、Anc~Anc、M、L~L、Yおよびnと同義である。
(19) (13)~(18)のいずれかに記載の金属錯体色素を溶解してなる色素溶液。
(20)有機溶媒中に、金属錯体色素を0.001~0.1質量%含有させてなる(19)に記載の色素溶液。
(21)色素溶液が、さらに共吸着剤を含有する(19)または(20)に記載の色素溶液。
(22)共吸着剤が、下記式(CA)で表される(21)に記載の色素溶液。
Figure JPOXMLDOC01-appb-C000026
 式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
(23)半導体微粒子を付与した導電性支持体に、(19)~(22)のいずれかに記載の色素溶液から得られてなる組成物を塗布し、塗布後の組成物を硬化させて感光体層としてなる色素増感太陽電池用の色素吸着電極。
(24) (23)に記載の色素増感太陽電池用の色素吸着電極、電解質、および対極を用いて組み立てる色素増感太陽電池の製造方法。
(25)下記式(AL)で表される配位子。
Figure JPOXMLDOC01-appb-C000027
 式中、RpおよびRpは各々独立に、ピリジン環に結合する炭素原子がsp炭素であるアルケニル基、ピリジン環に結合する炭素原子がsp炭素であるアルキニル基、アリール基およびヘテロアリール基から選ばれる基を表す。Anc~Ancは各々独立に酸性基を表す。R~Rは各々独立にAnc~Anc、Rp、Rpを有しない置換基を表す。m1およびm2は各々独立に、0~3の整数を表し、m1とm2の少なくとも一方は1~3の整数である。n1~n3は各々独立に0~2の整数を表す。n1~n3の各々において2であるとき、2つの基は同じであっても異なっていてもよく、これらが互いに結合して環を形成してもよい。
(26)式(AL)で表される配位子が、下記式(AL-1)で表される(25)に記載の配位子。
Figure JPOXMLDOC01-appb-C000028
 式中、Rp、RpおよびAnc~Ancは、式(AL)におけるRp、RpおよびAnc~Ancと同義である。
 本明細書において、特に断りがない限り、炭素-炭素二重結合については、分子内にE型およびZ型が存在する場合、そのいずれであっても、またこれらの混合物であってもよい。特定の符号で表示された置換基や連結基、配位子等(以下、置換基等という)が複数ある場合、あるいは複数の置換基等を同時もしくは択一的に規定する場合には、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接するとき(特に、隣接するとき)には特段の断りがない限り、それらが互いに連結して環を形成してもよい。また、環、例えば脂環、芳香族環、ヘテロ環、はさらに縮環して縮合環を形成していてもよい。
 本発明においては、各置換基は、特に断らない限り、さらに置換基で置換されていてもよい。
 本発明により、光電変換効率が高く、しかも熱劣化が少なく、耐久性に優れた光電変換素子、色素増感太陽電池、これに使用する金属錯体色素、配位子、色素溶液、色素吸着電極および色素増感太陽電池の製造方法を提供することが可能となった。
 しかも、開放電圧(Voc)が高く、従来困難であった耐久性の向上と光電変換効率の向上を共に達成することができた。
本発明の光電変換素子の一実施態様について、層中の円部分の拡大図も含めて模式的に示した断面図である。 本発明の光電変換素子の第2の態様の色素増感太陽電池を模式的に示す断面図である。 本発明の実施例で合成した例示金属錯体色素Dye-3のH-NMRスペクトル図である。 本発明の実施例で合成した例示金属錯体色素Dye-3のN,N-ジメチルホルムアミド溶液での可視吸収スペクトル図である。
 本発明の光電変換素子は、導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層および対極を有する。
<<金属錯体色素>>
 本発明の金属錯体色素は、下記式(AL)で表される配位子を有する金属錯体色素である。
<式(AL)で表される配位子>
Figure JPOXMLDOC01-appb-C000029
 式中、RpおよびRpは各々独立に、ピリジン環に結合する炭素原子がsp炭素であるアルケニル基、ピリジン環に結合する炭素原子がsp炭素であるアルキニル基、アリール基およびヘテロアリール基から選ばれる基を表す。Anc~Ancは各々独立に酸性基を表す。R~Rは、各々独立に、Anc~Anc、Rp、Rpを有しない置換基を表す。換言すれば、R~Rは、各々独立に、Anc~Anc、Rp、Rp以外の置換基を有してもよい置換基を表す。m1およびm2は各々独立に、0~3の整数を表し、m1とm2の少なくとも一方は1~3の整数である。n1~n3は各々独立に0~2の整数を表す。n1~n3の各々において2であるとき、2つの基は同じであっても異なっていてもよく、これらが互いに結合して環を形成してもよい。
 上記式(AL)で表される配位子は、半導体微粒子表面に吸着する酸性基を有する配位子である。
 本発明の式(AL)で表される配位子は、ターピリジン骨格の配位子である。具体的には、3個のピリジン環は、いずれもピリジン環上の窒素原子に対してp(パラ)位に酸性基であるAnc~Ancのいずれかを有する。さらに、両端のピリジン環の少なくとも一方、好ましくは両方にピリジン環上のπ電子とπ共役する置換基Rp、Rpを有する。
 一方、特許文献1に記載の金属錯体色素は、同じターピリジン骨格の3座の配位子である。しかし、電子供与性の芳香族環を3座配位子に導入するためもあり、両端のピリジン環の一方の環の代わりに、カルボキシ基が置換していないヘテロ芳香族環を選択している。ここで、両側の環とは、中央の環に対して、左右に位置する環を意味する。
 本発明は、カルボキシ基のような酸性基がターピリジン構造のそれぞれのピリジン環に含まれ、さらに配位子の共役系を広げる置換基を組み込んだものである。そのため、特許文献1とは設計思想が異なる。
 RpおよびRpは各々独立に、ピリジン環に結合する炭素原子がsp炭素であるアルケニル基、ピリジン環に結合する炭素原子がsp炭素であるアルキニル基、アリール基およびヘテロアリール基から選ばれる基を表す。
 RpおよびRpの上記の各基はいずれも、ピリジン環に結合する炭素原子がsp炭素またはsp炭素である。
 例えば、アリール基は、ピリジン環に結合する原子はsp炭素であり、ヘテロアリール基も、ピリジン環に結合する原子が炭素原子の場合、sp炭素である。すなわち、いずれの基も、ピリジン環に結合する炭素原子はsp炭素またはsp炭素である。
 ここで、sp炭素とは、炭素原子核の電子の原子軌道2sと2p軌道との混成軌道からなる炭素である。すなわち、1つの2s軌道と3つの2p軌道(2p、2p、2p)のうち、1つの2s軌道と2つの2p軌道(2p、2p)の重ね合わせにより、3つのsp混成軌道ができ、これが他の原子と結合する結合電子となるものである。
 例えば、他の原子が炭素原子であれば、混成に加わらなかった2p軌道と隣接する炭素原子核上の電子の2p軌道との結合、および互いのsp混成軌道同士での結合により、炭素-炭素間に二重結合が形成される。
 一方、sp炭素とは、1つの2s軌道と1つの2p軌道(2p)の重ね合わせによる2つのsp軌道からなる炭素で、これが他の原子と結合する結合電子となるものである。
 例えば、他の原子が炭素原子であれば、混成に加わらなかった2p軌道および2p軌道と、隣接する炭素原子核上の電子の2p軌道および2p軌道との結合、ならびに互いのsp混成軌道同士での結合により、炭素-炭素間に三重結合が形成される。
 ピリジン環に結合する炭素原子がsp炭素であるアルケニル基の炭素数は2~24が好ましく、2~18がより好ましく、4~14がさらに好ましい。
 このようなアルケニル基としては、1-アルケニル基が代表的に挙げられる。例えば、ビニル、1-プロペニル、イソプロペニル、2-メチル-1-プロペニル、1-ブテニル、1,3-ブタジエニル、1-ペンテニル、1-ヘキセニル、1-ヘプテニル、1-オクテニル、1-デセニル、1-ヘキサデセニル、1-オクタデセニルが挙げられる。
 アルケニル基は置換基を有してもよく、例えば、後述の置換基Tが挙げられる。この中でも、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基(特に、5または6員の芳香族環基が好ましく、5員環が好ましく、チオフェン環がより好ましい)が好ましい。
 例えば、3,3,3-テトラフルオロ-1-プロペニル、2-フェニル-エテニル、2-(チオフェン-2-イル)-エテニルが挙げられ、エテニル基の2位に芳香族環を有するものがなかでも好ましい。
 ピリジン環に結合する炭素原子がsp炭素であるアルキニル基の炭素数は2~24が好ましく、2~18がより好ましく、4~14がさらに好ましい。
 このようなアルキニル基としては、1-アルキニル基が代表的に挙げられる。例えば、エチニル、1-プロピニル、1-ブチニル、1-ペンチニル、1,2-ジメチル-1-プロペニル、1-ヘキシニル、1-ヘプチニル、1-オクチニル、1-デシニル、1-ヘキサデシニル、1-オクタデシニルが挙げられる。
 アルキニル基は置換基を有してもよく、例えば、後述の置換基Tが挙げられる。この中でも、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基(特に、5または6員の芳香族環基が好ましく、5員環が好ましく、チオフェン環がより好ましい)が好ましい。
 例えば、2-フェニル-エチニル、2-(チオフェン-2-イル)-エチニルが挙げられ、エチニル基の2位に芳香族環を有するものがなかでも好ましい。
 アリール基は、炭素数6~24が好ましく、6~20がより好ましく、6~16がさらに好ましく、6~12がなかでも好ましい。
 アリール基としては、例えば、フェニル、ナフチルが挙げられ、置換基を有してもよいフェニル基がなかでも好ましい。
 アリール基は置換基を有していてもよく、後述の置換基Tが挙げられる。
 ヘテロアリール基の炭素数は0~24が好ましく、1~20がより好ましく、2~16がさらに好ましく、2~12がなかでも好ましい。
 ヘテロアリール基のヘテロアリール環としては、5または6員環が好ましく、ヘテロアリール環を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。
 5員環のヘテロアリール環としては、フラン環、チオフェン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、テトラゾール環、オキサゾール環、チアゾール環が挙げられ、6員環のヘテロアリール環としては、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環が挙げられる。
 ヘテロアリール環はアリール環、ヘテロアリール環を含むヘテロ環、脂環などで縮環されていてもよく、例えば、ベンゾフラン環、ベンゾチオフェン環、インドール環、ベンゾオキサゾール環、ベンゾチアゾール環、キノリン環、イソキノリン環、キナゾリン環などが挙げられる。
 なかでも、フラン環、チオフェン環が好ましく、チエニル、フラン-1-イルが好ましく、チエニルがなかでも好ましい。
 RpおよびRpは、ピリジン環に結合する炭素原子がsp炭素であるアルケニル基、ピリジン環に結合する炭素原子がsp炭素であるアルキニル基、アリール基およびヘテロアリール基のうち、ピリジン環に結合する炭素原子がsp炭素であるアルケニル基、ピリジン環に結合する炭素原子がsp炭素であるアルキニル基が好ましく、ピリジン環に結合する炭素原子がsp炭素であるアルケニル基がより好ましく、なかでも2位に芳香族環が置換したエテニル基が好ましい。2位に置換する芳香族環としてはヘテロアリール環が好ましく、ベンゼン環、チオフェン環がなかでも好ましい。
 RpおよびRpの1つまたは2つが、結合するピリジン環の窒素原子に対してオルト位の炭素原子と結合していることが好ましく、RpおよびRpが2つともオルト位の炭素原子と結合していることがより好ましい。
 Anc~Ancは各々独立に酸性基を表す。これらは、互いに同じでも異なってもよい。なお、互いに同じであることが好ましい。
 ここで、酸性基とは、解離性のプロトンを有する置換基であり、pKaが11以下である。例えば、カルボキシ基、ホスホニル基、ホスホリル基、スルホ基、ホウ酸基等の酸性を示す基である酸基、あるいはこれらのいずれかを有する基が挙げられ、好ましくは電子注入の観点からカルボキシ基あるいはこれを有する基である。また酸性基はプロトンを放出して解離した形をとっていてもよく、塩であってもよい。
 酸性基が塩の場合、その塩となるときの対イオンは特に限定されない。例えば、後述の式(I)における対イオンYで示す正のイオンの例が挙げられる。
 本発明においては、電子移動の観点から、特に好ましくはカルボキシ基である。
 R~Rは各々独立にAnc~Anc、Rp、Rpを有しない置換基を表す。置換基としては、後述の置換基Tのうち、前述のAnc~Anc、Rp、Rpに該当しない置換基が挙げられる。
 m1およびm2は各々独立に、0~3の整数を表し、m1とm2の少なくとも一方は1~3の整数である。m1およびm2はともに1が好ましい。
 n1~n3は各々独立に0~2の整数を表す。n1~n3の各々において2であるとき、2つの基は同じであっても異なっていてもよく、これらが互いに結合して環を形成してもよい。n1~n3は0または1が好ましく、いずれも0が特に好ましい。
 上記式(AL)で表される配位子のうち好ましい配位子は、下記式(AL-1)で表すことができる。
Figure JPOXMLDOC01-appb-C000030
 式中、Rp、RpおよびAnc~Ancは、式(AL)におけるRp、RpおよびAnc~Ancと同義であり、好ましい範囲も同じである。
 以下に、本発明の式(AL)で表される配位子の具体例を示す。なお、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 これらの配位子は、特開2012-508227号公報、特開2011-502965号公報、特開2011-502187号公報、Angew.Chem.Int.Ed.,2011,50,1-6に記載の方法、これらの文献で挙げられている参照文献に記載されている方法、もしくはこれらの方法に準じた方法で合成することができる。
<式(AL)で表される配位子を有する金属錯体色素>
 本発明の式(AL)で表される配位子を有する金属錯体色素は、本発明の効果を発現するには、式(AL)で表される配位子以外の配位子を有する場合は、その配位原子の少なくとも1つはアニオン性の配位子である。
 本発明の金属錯体の中心金属イオン〔下記式(I)におけるMに相当〕としては、長周期律表上の6~12族の元素が挙げられる。
 このような元素としては、Ru、Fe、Os、Cu、W、Cr、Mo、Ni、Pd、Pt、Co、Ir、Rh、Re、MnおよびZnが挙げられる。
 本発明においては、金属イオン〔下記式(I)におけるM〕MはOs2+、Ru2+またはFe2+が好ましく、Os2+またはRu2+がより好ましく、なかでもRu2+が好ましい。
 なお、光電変換素子中に組み込まれた状態においては、金属イオン〔下記式(I)におけるM〕の価数は、周囲の材料との酸化還元反応により変化することがある。
 本発明の式(AL)で表される配位子を有する金属錯体色素は、下記式(I)で表される金属錯体色素が好ましい。
Figure JPOXMLDOC01-appb-C000034
 式中、Rp、Rp、Anc~Anc、R~R、m1、m2およびn1~n3は、式(AL)におけるRp、Rp、Anc~Anc、R~R、m1、m2およびn1~n3と同義である。Mは金属イオンを表す。L~Lは各々独立に配位子を表す。ここで、LとLが互いに結合して2座の配位子となってもよく、L、LおよびLが互いに結合して3座の配位子となってもよい。ただし、L~Lのうち1つまたは2つは、配位原子がアニオン性の配位子である。Yは電荷を中和させるのに必要な対イオンを表し、nは0~2の整数を表す。
 Mは上記で説明した金属イオンであり、好ましい範囲も同じである。
 L~Lは各々独立に配位子を表す。ここで、LとLが、互いに結合して2座の配位子となってもよく、L、LおよびLが、互いに結合して3座の配位子となってもよい。ただし、L~Lのうち1つまたは2つは、配位原子がアニオン性の配位子である。
 なお、LとLが互いに結合した2座の配位子の場合、残りの配位子として、金属イオンには単座の配位子が配位する。
 ここで、L~Lにおいては、LとLが、ともに芳香族環を有し、かつ互いに結合した2座の配位子、またはL、LおよびLが、いずれも芳香族環を有し、かつ互いに結合した3座の配位子が好ましい。
 以下に、L~Lが単座配位子の場合、LとLが互いに結合した2座の配位子の場合、L、LおよびLが互いに結合した3座の配位子の場合を順に説明する。
- 単座の配位子 -
 単座の配位子は、金属イオンに配位する原子が1つの配位子であり、アシルオキシアニオン、アシルチオアニオン、チオアシルオキシアニオン、チオアシルチオアニオン、アシルアミノオキシアニオン、チオカルバメートアニオン、ジチオカルバメートアニオン、チオカルボネートアニオン、ジチオカルボネートアニオン、トリチオカルボネートアニオン、アシルアニオン、チオシアネートアニオン、イソチオシアネートアニオン、シアネートアニオン、イソシアネートアニオン、シアノアニオン、アルキルチオアニオン、アリールチオアニオン、アルコキシアニオンおよびアリールオキシアニオンからなる群から選択されるアニオンもしくはこれらの基で配位する単座の配位子、またはハロゲン原子、シアノ、カルボニル、ジアルキルケトン、カルボンアミド、チオカルボンアミド及びチオ尿素からなるアニオン、原子もしくは化合物(アニオンに水素原子が置換された化合物を含む)の群より選ばれる単座の配位子が挙げられる。なお、単座の配位子がアルキル基、アルケニル基、アルキニル基、アルキレン基等を含む場合、それらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基、シクロアルキル基等を含む場合、それらは置換されていても無置換でもよく、単環でも縮環していてもよい。
 本発明においては、単座の配位子はシアネートアニオン、イソシアネートアニオン、チオシアネートアニオン、イソチオシアネートアニオン、セレノシアネートアニオン、イソセレノシアネートアニオンが好ましく、イソシアネートアニオン、イソチオシアネートアニオン、イソセレノシアネートアニオンがより好ましく、イソチオシアネートアニオンが特に好ましい。
- 2座の配位子 -
 2座の配位子は、配位子中に2つの配位原子を有する。本発明においては、この配位原子の少なくとも1つがアニオン性の原子であることが好ましく、炭素原子アニオン、窒素原子アニオンがより好ましい。
 本発明では、2座の配位子は、下記式(2L-1)~(2L-5)のいずれかで表される配位子が好ましい。
Figure JPOXMLDOC01-appb-C000035
 式中、環Dは芳香族環を表す。A111~A141は各々独立に、窒素原子アニオンまたは炭素原子アニオンを表し、A151は窒素原子アニオン、酸素原子アニオンまたは硫黄原子アニオンを表す。R111~R154は、各々独立に、水素原子、または、Anc、AncおよびAncを有しない置換基を表す。換言すれば、R111~R154は、各々独立に、水素原子を表すか、または、Anc、AncおよびAnc以外の置換基を有してもよい置換基を表す。ここで、*は金属イオンMへの結合位置を表す。
 ここで、A111~A141は、環Dを構成する窒素原子または炭素原子に結合した水素原子が脱離した炭素原子アニオンまたは窒素原子アニオンである。A151は、芳香族炭素環および含窒素ヘテロ芳香環における官能基のうち、(置換)アミノ基、水酸基またはチオール基から活性水素を除去した残基である場合が特に好ましい。
 式(2L-1)~(2L-5)において、環Dは、芳香族炭素環、含窒素芳香族ヘテロ環が挙げられる。芳香族炭素環としては、ベンゼン環、ナフタレン環が挙げられる。含窒素芳香族ヘテロ環としては、Rp、Rpにおけるヘテロアリール環のうち環構成原子に窒素原子を含むヘテロアリール環が挙げられ、なかでも5員環の含窒素芳香族ヘテロ環が好ましい。
 式(2L-1)~(2L-4)においてA111~A141がアニオン化する前の環Dおよび式(2L-5)においてA151が置換する環Dは、例えば、ベンゼン環、m,m-ジフルオロベンゼン環、o,p-ジフルオロベンゼン環、p-フルオロベンゼン環、p-シアノベンゼン環、p-ニトロベンゼン環、チオフェン環、フラン環等が挙げられる。
 また式(2L-1)~(2L-4)の環Dとしては、下記式(a-1)~(a-5)、(a-1a)、(a-2a)、(a-1b)および(a-4a)で表される基からなる環等が挙げられる。
Figure JPOXMLDOC01-appb-C000036
 式中、Rdは置換基を表す。b1は0~2の整数、b2は0~3の整数、b3は0または1をそれぞれ表す。b1が2のとき、またはb2が2以上のとき、複数のRd同士が互いに結合して環を形成してもよい。Rdとしては、例えば、後述の置換基Tのうち、前述のAnc~Ancに該当しない置換基が挙げられる。
 ここで、式(a-1)~(a-5)において、隣接するRd同士が環を形成した場合も含めると下記構造の基が挙げられる。
Figure JPOXMLDOC01-appb-C000037
 式中、Rdおよびb1~b3は前述の式(a-1)~(a-5)におけるRdおよびb1~b3と同義であり、好ましい範囲も同じである。b4は0~4、b5は0~5の各整数を表す。なお、式(a-1a)、(a-1b)において、Rdはベンゼン環だけでなく、ピロール環にも有してもよいことを示すものである。
 Rdとして好ましくは直鎖または分岐のアルキル基、シクロアルキル基、アルケニル基、フルオロアルキル基、アリール基、ハロゲン原子、アルコキシカルボニル基、シクロアルコキシカルボニル基およびこれらを組み合わせてなる基である。さらに好ましくは直鎖または分岐のアルキル基、シクロアルキル基、アルケニル基、フルオロアルキル基、アリール基およびこれらを組み合わせてなる基であり、特に好ましくは直鎖または分岐のアルキル基、シクロアルキル基、アルケニル基、フルオロアルキル基およびこれらを組み合わせてなる基である。
 R111~R154の置換基としては例えば、後述の置換基Tのうち、前述のAnc~Ancに該当しない置換基が挙げられる。その中でも特に好ましいものはアルキル基、アルケニル基、アリール基、ヘテロアリール基である。
- 3座の配位子 -
 3座の配位子は、金属イオンに配位する配位原子を3つ有する配位子である。本発明においては、この配位原子の少なくとも1つがアニオン性の原子であることが好ましく、炭素原子アニオン、窒素原子アニオンが好ましい。
 本発明において、3座の配位子は、下記式(3L-1)~(3L-5)のいずれかで表される配位子が好ましい。
Figure JPOXMLDOC01-appb-C000038
 式中、環Dおよび環D’は各々独立に芳香族環を表す。A211~A242は各々独立に、窒素原子または炭素原子を表し、A251およびA252は各々独立に窒素原子、酸素原子または硫黄原子を表す。ただし、A211とA212、A221とA222、A231とA232、A241とA242、A251とA252のそれぞれにおいて、少なくとも1つはアニオンである。R211~R253は各々独立に、水素原子、または、Anc、AncおよびAncを有しない置換基を表す。ここで、*は金属イオンMへの結合位置を表す。
 A211~A242のうちアニオンであるものは、式(2L-1)~(2L-5)のA111~A141と同義である。A211~A242のうちアニオンを有しないものは、水素原子を有しない炭素原子または窒素原子である。A251およびA252は、式(2L-5)のA151と同義である。
 式(3L-1)~(3L-5)における環Dと環D’は互いに同一であっても異なってもよい。
 環Dおよび環D’は、式(2L―1)~(2L-5)の環Dと同義であり、具体的には、環Dおよび環D’は、芳香族炭素環、含窒素芳香族ヘテロ環が挙げられる。芳香族炭素環としては、ベンゼン環、ナフタレン環が挙げられる。含窒素芳香族ヘテロ環としては、Rp、Rpにおけるヘテロアリール環のうち環構成原子に窒素原子を含むヘテロアリール環が挙げられ、なかでも5員環の含窒素芳香族ヘテロ環が好ましい。
 置換基R211~R253は、式(2L-1)~(2L-5)の置換基R111~R154と同義であり、好ましいものも同じである。
 なお、L~Lで表される配位子は、本発明において、ドナー配位子に分類されるものである。特に2座または3座の配位子の場合、半導体微粒子表面に吸着する吸着基である酸性基を有さない配位子が好ましい。
 上記の2座または3座の配位子は、配位子を構成する芳香族環に、結合位置の炭素原子がsp炭素であるアルケニル基、結合位置の炭素原子がsp炭素であるアルキニル基、アリール基およびヘテロアリール基から選択される基が結合している配位子が特に好ましい。
 以下に、LとLが結合した本発明の2座の配位子、L~Lが結合した本発明の3座の配位子の具体例を示す。なお、本発明はこれらに限定されるものではない。ここで、具体例中のMeはメチルを示す。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 これらの配位子は、米国特許出願公開第2010/0258175A1号明細書、特許第4298799号公報、Angew.Chem.Int.Ed.,2011,50,2054-2058に記載の方法、これらの文献で挙げられている参照文献に記載されている方法、もしくはこれらの方法に準じた方法で合成することができる。
- 電荷中和対イオンY -
 Yは、電荷を中和させるのに対イオンが必要な場合の対イオンを表す。一般に、色素が陽イオンまたは陰イオンであるか、あるいは正味のイオン電荷を有するかどうかは、金属錯体色素中の金属、配位子および置換基に依存する。
 置換基が解離性基を有することなどにより、金属錯体色素は解離して負電荷を持ってもよい。この場合、金属錯体色素全体の電荷はYにより電気的に中性とされる。
 対イオンYが正の対イオンの場合、例えば、対イオンYは、無機もしくは有機のアンモニウムイオン(例えばテトラアルキルアンモニウムイオン、ピリジニウムイオン等)、ホスホニウムイオン(例えばテトラアルキルホスホニウムイオン、アルキルトリフェニルホスホニウムイオン等)、アルカリ金属イオン、金属錯体イオンまたはプロトンである。正の対イオンとしては、無機もしくは有機のアンモニウムイオン(トリエチルアンモニウム、テトラブチルアンモニウムイオン等)、プロトンが好ましい。
 対イオンYが負の対イオンの場合、例えば、対イオンYは、無機陰イオンでも有機陰イオンでもよい。例えば、水酸化物イオン、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換または無置換のアルキルカルボン酸イオン(酢酸イオン、トリフルオロ酢酸イオン等)、置換または無置換のアリールカルボン酸イオン(安息香酸イオン等)、置換もしくは無置換のアルキルスルホン酸イオン(メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等)、置換もしくは無置換のアリールスルホン酸イオン(例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロホスフェートイオン、ピクリン酸イオンが挙げられる。さらに電荷均衡対イオンとして、イオン性ポリマーあるいは色素と逆電荷を有する他の色素を用いてもよく、金属錯イオン(例えばビス(1,2-ベンゼンジチオラト)ニッケル(III)イオン等)も使用可能である。負の対イオンとしては、ハロゲン陰イオン、置換もしくは無置換のアルキルカルボン酸イオン、置換もしくは無置換のアルキルスルホン酸イオン、置換もしくは無置換のアリールスルホン酸イオン、アリールジスルホン酸イオン、過塩素酸イオン、ヘキサフルオロホスフェートイオンが好ましく、ハロゲン陰イオン、ヘキサフルオロホスフェートイオンがより好ましい。
 nは0~2の整数を表す。nは電荷を中和させるのに必要な対イオンの数であって、これによって、金属錯体色素の電荷が中和される。
 本発明の式(AL)で表される配位子を有する金属錯体色素、式(I)で表される金属錯体色素は、下記式(II)で表される金属錯体色素がさらに好ましい。
Figure JPOXMLDOC01-appb-C000043
 式中、Rp、Rp、Anc~Anc、M、L~L、Yおよびnは、式(I)におけるRp、Rp、Anc~Anc、M、L~L、Yおよびnと同義であり、好ましい範囲も同じである。
 以下に、本発明の式(AL)で表される配位子を有する金属錯体色素の具体例を示す。なお、本発明はこれらに限定されるものではない。これらの金属錯体色素は光学異性体、幾何異性体が存在する場合、これらの異性体のいずれであってもよく、またこれらの異性体の混合物であっても構わない。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 本発明の式(AL)で表される配位子を有する金属錯体色素は、米国特許出願公開第2010/0258175A1号明細書、特許第4298799号公報、Angew.Chem.Int.Ed.,2011,50,2054-2058に記載の方法、これらの文献で挙げられている参照文献に記載の方法、またはこれらに準じた方法で合成することができる。
 本発明の金属錯体色素の溶液における極大吸収波長は、好ましくは300~1000nmの範囲であり、より好ましくは350~950nmの範囲であり、特に好ましくは370~900nmの範囲である。
<<光電変換素子および色素増感太陽電池>>
 本発明の光電変換素子は、一般式(AL)で表される配位子を有する金属錯体色素(以下、本発明の金属錯体色素と称す。)が担持された半導体微粒子を用いる。本発明の色素増感太陽電池は、本発明の光電変換素子を用いてなり、導電性支持体と、この導電性支持体上に、本発明の金属錯体色素が担持された半導体微粒子を有する感光体層と、電解質を含む電荷移動体層と、対極とをこの順で有する。各層は単層であっても複層であってもよく、必要により上記各層以外の層を有してもよい。
 本発明の光電変換素子ないし色素増感太陽電池は、例えば、図1に示すように、導電性支持体1、色素(金属錯体色素)21が担持されることにより増感された半導体微粒子22を含む感光体層2、正孔輸送層である電荷移動体層3および対極4からなる。ここで本発明においては、半導体微粒子22に、色素(金属錯体色素)21とともに、共吸着剤が吸着されていることが好ましい。感光体層2を設置した導電性支持体1は、光電変換素子10において作用電極として機能する。本実施形態においては、この光電変換素子10を外部回路6で動作手段M(電動モーター)に仕事をさせる電池用途に使用できるようにした、色素増感太陽電池を利用したシステム100として示している。
< 受光電極 >
 本実施形態において受光電極5は、導電性支持体1、および色素(金属錯体色素)21が吸着した半導体微粒子22を含む感光体層2よりなる。
 感光体層2は目的に応じて設計され、単層構成でも多層構成でもよい。一層の感光体層中の色素(金属錯体色素)21は一種類でも多種の混合でもよい。ただし、そのうちの少なくとも1種は、上述した本発明の金属錯体色素を用いる。感光体層2に入射した光は色素(金属錯体色素)21を励起する。励起された色素はエネルギーの高い電子を有しており、この電子が色素(金属錯体色素)21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき色素(金属錯体色素)21は酸化体となっている。電極上の電子が外部回路6で仕事をしながら、対極4を経由して、色素(金属錯体色素)21の酸化体および電解質が存在する感光体層2に戻ることで、太陽電池として働く。
 本発明において光電変換素子もしくは色素増感太陽電池に用いられる材料および各部材の作成方法については、この種のものにおける通常のものを採用すればよく、例えば米国特許第4,927,721号明細書、米国特許第4,684,537号明細書、米国特許第5,0843,65号明細書、米国特許第5,350,644号明細書、米国特許第5,463,057号明細書、米国特許第5,525,440号明細書、特開平7-249790号公報、特開2004-220974号公報、特開2008-135197号公報を参照することができる。以下、主たる部材について概略を説明する。
- 導電性支持体 -
 導電性支持体は、金属のように支持体そのものに導電性があるもの、または表面に導電膜層を有するガラスもしくはプラスチックの支持体が好ましい。プラスチックの支持体としては、例えば、特開2001-291534号公報の段落番号0153に記載の透明ポリマーフィルムが挙げられる。支持体としては、ガラスおよびプラスチックの他、セラミック(特開2005-135902号公報)、導電性樹脂(特開2001-160425号公報)を用いてもよい。導電性支持体上には、表面に光マネージメント機能を施してもよい。例えば、特開2003-123859号公報に記載の高屈折膜および低屈性率の酸化物膜を交互に積層した反射防止膜、特開2002-260746号公報に記載のライトガイド機能が挙げられる。
 導電膜層の厚さは0.01~30μmであることが好ましく、0.03~25μmであることがさらに好ましく、特に好ましくは0.05~20μmである。
 導電性支持体は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上が好ましく、80%以上が特に好ましい。透明導電性支持体としては、ガラスもしくはプラスチックに導電性の金属酸化物を塗設したものが好ましい。金属酸化物としてはスズ酸化物が好ましく、インジウム-スズ酸化物、フッ素ドープド酸化物が特に好ましい。このときの導電性の金属酸化物の塗布量は、ガラスもしくはプラスチックの支持体1m当たり0.1~100gが好ましい。透明導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。
- 半導体微粒子 -
 半導体微粒子は、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイトの微粒子である。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、もしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイトとしては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン(チタニア)、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
 チタニアの結晶構造としては、アナターゼ型、ブルッカイト型、または、ルチル型があげられ、アナターゼ型、ブルッカイト型が好ましい。チタニアナノチューブ、ナノワイヤー、ナノロッドをチタニア微粒子に混合するか、または半導体電極として用いてもよい。
 半導体微粒子の粒径は、投影面積を円に換算したときの直径を用いた平均粒径で1次粒子として0.001~1μm、分散物の平均粒径として0.01~100μmであることが好ましい。半導体微粒子を導電性支持体上に塗設する方法として、湿式法の他、乾式法、その他の方法が挙げられる。
 透明導電膜と半導体層(感光体層)の間には、電解質と電極が直接接触することによる逆電流を防止するため、短絡防止層を形成することが好ましい。また、光散乱層を設けてもよい。光電極と対極の接触を防ぐために、スペーサーやセパレータを用いることが好ましい。半導体微粒子は多くの色素を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子を支持体上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はなく、通常5000倍程度である。一般に、半導体微粒子の層の厚みが大きいほど単位面積当たりに担持できる色素の量が増えるため光の吸収効率が高くなる一方、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。半導体層である感光体層の好ましい厚みは素子の用途によって異なる。なお、典型的には0.1~100μmである。色素増感太陽電池として用いる場合は1~50μmであることが好ましく、3~30μmであることがより好ましい。半導体微粒子は、支持体に塗布した後に粒子同士を密着させるために、焼成処理に付すことが好ましい。焼成条件は、例えば100~800℃で10分~10時間とすることができる。半導体微粒子層の成膜温度に特に制限はなく、例えば、導電性支持体がガラスであれば、60~400℃で成膜することが好ましい。
 なお、半導体微粒子の支持体1m当たりの塗布量は0.5~500g、さらには5~100gが好ましい。色素の使用量は、全体で、支持体1m当たり0.01~100ミリモルが好ましく、より好ましくは0.1~50ミリモル、特に好ましくは0.1~10ミリモルである。この場合、本発明の金属錯体色素の使用量は、色素全体に対して5モル%以上とすることが好ましく、60~100モル%とすることがより好ましく、85~100モル%とすることがさらに好ましい。本発明の金属錯体色素以外の色素としては、単独で色素増感太陽電池の増感色素として機能するものが好ましい。また、色素の半導体微粒子に対する吸着量は半導体微粒子1gに対して0.001~1ミリモルが好ましく、より好ましくは0.1~0.5ミリモルである。このような色素量とすることによって、半導体微粒子における増感効果が十分に得られる。
 金属錯体色素などの色素が塩である場合、本発明の金属錯体色素の対イオンは特に限定されず、例えば、アルカリ金属イオンまたは4級アンモニウムイオン等が挙げられる。
 本発明において、半導体微粒子への色素の吸着は、後述するように、色素を含有する色素溶液を用いて行うことが好ましい。例えば、支持体上に半導体層(感光体層)を形成させた半導体電極を、色素を溶解してなる色素溶液に浸漬するなどして行うことができる。
 色素を吸着した後に、アミン類を用いて半導体微粒子の表面を処理してもよい。好ましいアミン類としてピリジン類(例えば4-tert-ブチルピリジン、ポリビニルピリジン)等が挙げられる。これらは、液体の場合はそのまま用いてもよいし、有機溶媒に溶解して用いてもよい。
 本発明の光電変換素子(例えば光電変換素子10)および色素増感太陽電池(例えば色素増感太陽電池20)においては、少なくとも上記の本発明の金属錯体色素を使用する。
 本発明においては、本発明の金属錯体色素と他の色素を併用してもよい。
 併用する色素としては、特表平7-500630号公報に記載のRu錯体色素(特に第5頁左下欄5行目~第7頁右上欄7行目に例1~例19で合成された色素)、特表2002-512729号公報に記載のRu錯体色素(特に第20頁の下から3行目~第29頁23行目に例1~例16で合成された色素)、特開2001-59062号公報に記載のRu錯体色素(特に、段落番号0087~0104に記載の色素)、特開2001-6760号公報に記載のRu錯体色素(特に、段落番号0093~0102に記載の色素)、特開2001-253894号公報に記載のRu錯体色素(特に、段落番号0009~0010に記載の色素)、特開2003-212851号公報に記載のRu錯体色素(特に、段落番号0005に記載の色素)、国際公開第2007/91525号パンフレットに記載のRu錯体色素(特に、[0067]に記載の色素)、特開2001-291534号公報に記載のRu錯体色素(特に、段落番号0120~0144に記載の色素)、特開2012-012570号公報に記載のRu錯体色素(特に、段落番号0095~0103に記載の色素)、特開2013-084594号公報に記載のRu錯体色素(特に、段落番号0072~0081などに記載の色素)、特開平11-214730号公報に記載のスクアリリウムシアニン色素(特に、段落番号0036~0047に記載の色素)、特開2012-144688号公報に記載のスクアリリウムシアニン色素(特に、段落番号0039~0046および段落番号0054~0060に記載の色素)、特開2012-84503号公報に記載のスクアリリウムシアニン色素(特に、段落番号0066~0076などに記載の色素)、特開2004-063274号公報に記載の有機色素(特に、段落番号0017~0021に記載の色素)、特開2005-123033号公報に記載の有機色素(特に、段落番号0021~0028に記載の色素)、特開2007-287694号公報に記載の有機色素(特に、段落番号0091~0096に記載の色素)、特開2008-71648号公報に記載の有機色素(特に、段落番号0030~0034に記載の色素)、国際公開第2007/119525号パンフレットに記載の有機色素(特に、[0024]に記載の色素)、Angew.Chem.Int.Ed.,49,1~5(2010)などに記載のポルフィリン色素、Angew.Chem.Int.Ed.,46,8358(2007)などに記載のフタロシアニン色素が挙げられる。
 併用する色素として好ましくは、Ru錯体色素、スクアリリウムシアニン色素、または有機色素が挙げられる。
 本発明の金属錯体色素と他の色素を併用する場合、本発明の金属錯体色素の質量/他の色素の質量の比は、95/5~10/90が好ましく、95/5~50/50がより好ましく、95/5~60/40がさらに好ましく、95/5~65/35が特に好ましく、95/5~70/30が最も好ましい。
- 電荷移動体層 -
 本発明の光電変換素子に用いられる電荷移動体層は、色素の酸化体に電子を補充する機能を有する層であり、受光電極(光電極)と対極(対向電極)との間に設けられる。電荷移動体層は電解質を含む。電解質の例としては、酸化還元対を有機溶媒に溶解した液体電解質、酸化還元対を有機溶媒に溶解した液体をポリマーマトリックスに含浸したいわゆるゲル電解質、酸化還元対を含有する溶融塩などが挙げられる。光電変換効率を高めるためには液体電解質が好ましい。液体電解質の有機溶媒はニトリル化合物、エーテル化合物、エステル化合物等が用いられ、ニトリル化合物が好ましく、アセトニトリル、メトキシプロピオニトリルが特に好ましい。
 酸化還元対として、例えば、ヨウ素とヨウ化物(ヨウ化物塩、ヨウ化イオン性液体が好ましく、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化メチルプロピルイミダゾリウムが好ましい)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン類(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体の組み合せ(例えば赤血塩と黄血塩の組み合せ)、2価と3価のコバルト錯体の組み合わせが挙げられる。これらのうち、ヨウ素とヨウ化物との組み合わせ、2価と3価のコバルト錯体の組み合わせが好ましい。
 コバルト錯体は、特開2013-077449号公報の段落番号0060~0063に記載の式(A)で表される錯体が好ましく、特開2013-077449号公報の段落番号0060~0077の記載が、そのまま本願明細書に好ましく取り込まれる。
 電解質として、ヨウ素とヨウ化物との組み合せを用いる場合、5員環または6員環の含窒素芳香族カチオンのヨウ素塩をさらに併用することが好ましい。
 酸化還元対等を溶かす有機溶媒としては、非プロトン性の極性溶媒(例えばアセトニトリル、炭酸プロピレン、炭酸エチレン、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、1,3-ジメチルイミダゾリノン、3-メチルオキサゾリジノン)が好ましい。ゲル電解質のマトリクスに使用されるポリマー(ポリマーマトリックス)としては、例えばポリアクリロニトリル、ポリビニリデンフルオリドが挙げられる。溶融塩としては、例えばヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム)にポリエチレンオキシドを混合することにより、室温における流動性を付与したもの等が挙げられる。この場合のポリマーの添加量は1~50質量%である。また、γ-ブチロラクトンを電解液に含んでいてもよく、これによりヨウ化物イオンの拡散効率が高くなり光電変換効率が向上する。
 電解質への添加物として、前述の4-tert-ブチルピリジンのほか、アミノピリジン系化合物、ベンズイミダゾール系化合物、アミノトリアゾール系化合物およびアミノチアゾール系化合物、イミダゾール系化合物、アミノトリアジン系化合物、尿素誘導体、アミド化合物、ピリミジン系化合物または窒素を含まない複素環を加えることができる。
 また、光電変換効率を向上させるために、電解液の水分を制御することが好ましい。水分を制御する好ましい方法としては、濃度を制御する方法や脱水剤を共存させる方法を挙げることができる。ヨウ素は、ヨウ素とシクロデキストリンとの包接化合物として使用してもよく、逆に電解液の水分を常時補給する方法を用いてもよい。また環状アミジンを用いてもよく、酸化防止剤、加水分解防止剤、分解防止剤、ヨウ化亜鉛を加えてもよい。
 電解質として溶融塩を用いてもよい。好ましい溶融塩としては、イミダゾリウムまたはトリアゾリウム型陽イオンを含むイオン性液体、オキサゾリウム系、ピリジニウム系、グアニジウム系およびこれらの組み合わせが挙げられる。これらカチオン系と特定のアニオンとの組み合わせでもよい。これらの溶融塩に対しては添加物を加えてもよい。液晶性の置換基を持っていてもよい。また、四級アンモニウム塩系の溶融塩を用いてもよい。
 これら以外の溶融塩としては、例えば、ヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム)にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。
 電解質と溶媒からなる電解液にゲル化剤を添加してゲル化させることにより、電解質を擬固体化してもよい(擬固体化された電解質を、以下、「擬固体電解質」ともいう。)。ゲル化剤としては、分子量1000以下の有機化合物、分子量500~5000の範囲のSi含有化合物、特定の酸性化合物と塩基性化合物からなる有機塩、ソルビトール誘導体、ポリビニルピリジンが挙げられる。
 また、マトリックス高分子、架橋型高分子化合物またはモノマー、架橋剤、電解質および溶媒を高分子中に閉じ込める方法を用いてもよい。
 マトリックス高分子として好ましくは、含窒素複素環を主鎖あるいは側鎖の繰り返し単位中に持つ高分子およびこれらを求電子性化合物と反応させた架橋体、トリアジン構造を持つ高分子、ウレイド構造を持つ高分子、液晶性化合物を含むもの、エーテル結合を有する高分子、ポリフッ化ビニリデン系、メタクリレート系、アクリレート系、熱硬化性樹脂、架橋ポリシロキサン、ポリビニルアルコール(PVA)、ポリアルキレングリールとデキストリンなどの包接化合物、含酸素または含硫黄高分子を添加した系、天然高分子などが挙げられる。これらにアルカリ膨潤型高分子、一つの高分子内にカチオン部位とヨウ素との電荷移動錯体を形成できる化合物を持った高分子などを添加してもよい。
 ポリマーマトリックスとして、2官能以上のイソシアネート基を一方の成分として有し、このイソシアネート基と反応するヒドロキシ基、アミノ基、カルボキシ基などの官能基を有する他方の成分とを反応させた架橋ポリマー、または、ヒドロシリル基を有する化合物と二重結合性化合物との反応による架橋高分子が挙げられる。また、ポリマーマトリックス化するのに、ポリスルホン酸またはポリカルボン酸などを2価以上の金属イオン化合物と反応(もしくはキレート化)させる架橋方法などを用いてもよい。
 上記擬固体電解質との組み合わせで好ましく用いることができる溶媒としては、特定のリン酸エステル、エチレンカーボネートを含む混合溶媒、特定の比誘電率を持つ溶媒などが挙げられる。固体電解質膜あるいは細孔に液体電解質溶液を保持させてもよい。液体電解質溶液を保持する方法としては、導電性高分子膜、繊維状固体、フィルタなどの布状固体を使用する方法が挙げられる。
 以上の液体電解質および擬固体電解質の代わりに、p型半導体あるいはホール輸送材料などの固体電荷輸送層、例えば、CuI、CuNCSなどを用いることができる。また、Nature,vol.486,p.487,2012等に記載の電解質を用いてもよい。固体電荷輸送層として有機ホール輸送材料を用いてもよい。有機ホール輸送材料として好ましくは、ポリチオフェン、ポリアニリン、ポリピロールおよびポリシランなどの導電性高分子、2個の環がC、Siなど四面体構造をとる中心元素を共有するスピロ化合物、トリアリールアミンなどの芳香族アミン誘導体、トリフェニレン誘導体、含窒素複素環誘導体、液晶性シアノ誘導体が挙げられる。
 酸化還元対は、電子のキャリアになるので、ある程度の濃度が必要である。好ましい濃度としては合計で0.01モル/L以上であり、より好ましくは0.1モル/L以上であり、特に好ましくは0.3モル/L以上である。この場合の上限には特に制限はなく、通常5モル/L程度である。
- 共吸着剤 -
 本発明の光電変換素子においては、本発明の金属錯体色素または必要により併用する色素とともに共吸着剤を使用することが好ましい。このような共吸着剤としては酸性基(好ましくは、カルボキシ基もしくはその塩の基)を1つ以上有する共吸着剤が好ましく、脂肪酸やステロイド骨格を有する化合物が挙げられる。脂肪酸は、飽和脂肪酸でも不飽和脂肪酸でもよく、例えばブタン酸、ヘキサン酸、オクタン酸、デカン酸、ヘキサデカン酸、ドデカン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸が挙げられる。
 ステロイド骨格を有する化合物としては、コール酸、グリココール酸、ケノデオキシコール酸、ヒオコール酸、デオキシコール酸、リトコール酸、ウルソデオキシコール酸等が挙げられる。好ましくはコール酸、デオキシコール酸、ケノデオキシコール酸であり、さらに好ましくはケノデオキシコール酸である。
 好ましい共吸着剤は、下記式(CA)で表される化合物である。
Figure JPOXMLDOC01-appb-C000048
 式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
 酸性基は、先に示した式(AL)中のAnc~Ancと同義であり、好ましい範囲も同じである。
 nAは2~4であることが好ましい。
 RA1は、カルボキシ基またはスルホ基もしくはそれらの塩が置換したアルキル基が好ましく、-CH(CH)CHCHCOH、-CH(CH)CHCHCONHCHCHSOHがさらに好ましい。
 RA2は、アルキル基、ヒドロキシ基、アシルオキシ基、アルキルアミノカルボニルオキシ基、アリールアミノカルボニルオキシ基が好ましく、アルキル基、ヒドロキシ基、アシルオキシ基がより好ましい。
 これらの具体的化合物としては、上述のステロイド骨格を有する化合物として例示した化合物が挙げられる。
 本発明で用いられる共吸着剤は、半導体微粒子に吸着させることにより、色素の非効率な会合を抑制する効果および半導体微粒子表面から電解質中のレドックス系への逆電子移動を防止する効果がある。共吸着剤の使用量は特に限定されない。なお、上記の作用を効果的に発現させられる観点からは、色素1モルに対して、好ましくは1~200モル、さらに好ましくは10~150モル、特に好ましくは20~50モルである。
<置換基T>
 本明細書において化合物(錯体、色素を含む)の表示については、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、本明細書において置換または無置換を明記していない置換基(連結基および配位子についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換または無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 また、本明細書において、単に置換基としてしか記載されていない場合は、この置換基Tを参照するものである。また、各々の基、例えば、アルキル基、が記載されているのみの場合は、この置換基Tの対応する基における好ましい範囲、具体例が適用される。
 置換基Tとしては、下記の基が挙げられる。
 アルキル基(好ましくは炭素数1~20で、例えばメチル、エチル、イソプロピル、tert-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル、トリフルオロメチル等)、アルケニル基(好ましくは炭素数2~20で、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20で、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20で、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、シクロアルケニル基(好ましくは炭素数5~20で、例えばシクロペンテニル、シクロヘキセニル等)、アリール基(好ましくは炭素数6~26で、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数2~20で、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基がより好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素数1~20で、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アルケニルオキシ基(好ましくは炭素数2~20で、例えば、ビニルオキシ、アリルオキシ等)、アルキニルオキシ基(好ましくは炭素数2~20で、例えば、2-プロペニルオキシ、4-ブチニルオキシ等)、シクロアルキルオキシ基(好ましくは炭素数3~20で、例えば、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ、4-メチルシクロヘキシルオキシ等)、アリールオキシ基(好ましくは炭素数6~26で、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、ヘテロ環オキシ基(例えば、イミダゾリルオキシ、ベンゾイミダゾリルオキシ、チアゾリルオキシ、ベンゾチアゾリルオキシ、トリアジニルオキシ、プリニルオキシ)、
アルコキシカルボニル基(好ましくは炭素数2~20で、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、シクロアルコキシカルボニル基(好ましくは炭素数4~20で、例えば、シクロプロピルオキシカルボニル、シクロペンチルオキシカルボニル、シクロヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~20で、例えば、フェニルオキシカルボニル、ナフチルオキシカルボニル等)、アミノ基(好ましくは炭素数0~20で、アルキルアミノ基、アルケニルアミノ基、アルキニルアミノ基、シクロアルキルアミノ基、シクロアルケニルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、N-アリルアミノ、N-(2-プロピニル)アミノ、N-シクロヘキシルアミノ、N-シクロヘキセニルアミノ、アニリノ、ピリジルアミノ、イミダゾリルアミノ、ベンゾイミダゾリルアミノ、チアゾリルアミノ、ベンゾチアゾリルアミノ、トリアジニルアミノ等)、スルファモイル基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルファモイル基が好ましく、例えば、N,N-ジメチルスルファモイル、N-シクロヘキシルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素数1~20で、例えば、アセチル、シクロヘキシルカルボニル、ベンゾイル等)、アシルオキシ基(好ましくは炭素数1~20で、例えば、アセチルオキシ、シクロヘキシルカルボニルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20で、アルキル、シクロアルキルもしくはアリールのカルバモイル基が好ましく、例えば、N,N-ジメチルカルバモイル、N-シクロヘキシルカルバモイル、N-フェニルカルバモイル等)、
アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、シクロヘキシルカルボニルアミノ、ベンゾイルアミノ等)、スルホンアミド基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルホンアミド基が好ましく、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-シクロヘキシルスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素数1~20で、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、シクロアルキルチオ基(好ましくは炭素数3~20で、例えば、シクロプロピルチオ、シクロペンチルチオ、シクロヘキシルチオ、4-メチルシクロヘキシルチオ等)、アリールチオ基(好ましくは炭素数6~26で、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキル、シクロアルキルもしくはアリールスルホニル基(好ましくは炭素数1~20で、例えば、メチルスルホニル、エチルスルホニル、シクロヘキシルスルホニル、ベンゼンスルホニル等)、
シリル基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリル基が好ましく、例えば、トリエチルシリル、トリフェニルシリル、ジエチルベンジルシリル、ジメチルフェニルシリル等)、シリルオキシ基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリルオキシ基が好ましく、例えば、トリエチルシリルオキシ、トリフェニルシリルオキシ、ジエチルベンジルシリルオキシ、ジメチルフェニルシリルオキシ等)、ヒドロキシ基、シアノ基、ニトロ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)、カルボキシ基、スルホ基、ホスホニル基、ホスホリル基、ホウ酸基が挙げられる。
 化合物または置換基等がアルキル基、アルケニル基等を含む場合、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。また、アリール基、ヘテロ環基等を含むと場合、それらは単環でも縮環でもよく、置換されていても無置換でもよい。
< 対極(対向電極) >
 対極(対向電極)は、色素増感太陽電池(光電変換素子)の正極として働くものであることが好ましい。対向電極は、通常前述の導電性支持体と同義である。ただし、強度が十分に保たれるような構成では支持体は必ずしも必要でない。対極の構造としては、集電効果が高い構造が好ましい。感光体層に光が到達するためには、前述の導電性支持体と対向電極との少なくとも一方は実質的に透明でなければならない。本発明の色素増感太陽電池においては、導電性支持体が透明であって太陽光を導電性支持体側から入射させるのが好ましい。この場合、対向電極は光を反射する性質を有することがさらに好ましい。色素増感太陽電池の対向電極としては、金属もしくは導電性の酸化物を蒸着したガラス、またはプラスチックが好ましく、白金を蒸着したガラスが特に好ましい。色素増感太陽電池では、構成物の蒸散を防止するために、電池の側面をポリマーや接着剤等で密封することが好ましい。
 本発明は、特許第4260494号公報、特開2004-146425号公報、特開2000-340269号公報、特開2002-289274号公報、特開2004-152613号公報、特開平9-27352号公報に記載の光電変換素子、色素増感太陽電池に適用することができる。また、特開2004-152613号公報、特開2000-90989号公報、特開2003-217688号公報、特開2002-367686号公報、特開2003-323818号公報、特開2001-43907号公報、特開2000-340269号公報、特開2005-85500号公報、特開2004-273272号公報、特開2000-323190号公報、特開2000-228234号公報、特開2001-266963号公報、特開2001-185244号公報、特表2001-525108号公報、特開2001-203377号公報、特開2000-100483号公報、特開2001-210390号公報、特開2002-280587号公報、特開2001-273937号公報、特開2000-285977号公報、特開2001-320068号公報等に記載の光電変換素子、色素増感太陽電池に適用することができる。
<<色素溶液、それを用いた色素吸着電極および色素増感太陽電池の製造方法>>
 本発明においては、本発明の金属錯体色素を含有する色素溶液を使用して色素吸着電極を製造することが好ましい。なお、好ましくは、色素吸着電極とは図2における光電極40である。
 このような色素溶液には、本発明の金属錯体色素が溶媒に溶解されてなり、必要により共吸着剤や他の成分を含んでもよい。
 使用する溶媒としては、特開2001-291534号公報に記載の溶媒が挙げられるが特に限定されない。本発明においては有機溶媒が好ましく、さらにアルコール類、アミド類、ニトリル類、炭化水素類、および、これらの2種以上の混合溶媒が好ましい。混合溶媒としては、アルコール類と、アミド類、ニトリル類または炭化水素類から選択される溶媒との混合溶媒が好ましい。さらに好ましくはアルコール類とアミド類、アルコール類と炭化水素類の混合溶媒、特に好ましくはアルコール類とアミド類の混合溶媒である。具体的にはメタノール、エタノール、プロパノール、ブタノール、ジメチルホルムアミド、ジメチルアセトアミドが好ましい。
 色素溶液は共吸着剤を含有することが好ましく、共吸着剤としては、前述の共吸着剤が好ましく、なかでも式(CA)で表される化合物が好ましい。
 ここで、本発明の色素溶液は、色素吸着電極や色素増感太陽電池を作成する際に、この溶液をこのまま使用できるように、金属錯体色素や共吸着剤の濃度が調整されている色素溶液が好ましい。本発明においては、本発明の金属錯体色素を0.001~0.1質量%含有することが好ましい。
 色素溶液は、水分含有量を調整することが好ましく、従って、本発明においては水分含有量(含有率)を0~0.1質量%に調整することが好ましい。
 同様に、光電変換素子や色素増感太陽電池における電解液の水分含有量の調整も、本発明の効果を効果的に奏するために好ましく、このため、この電解液の水分含有量(含有率)を0~0.1質量%に調整することが好ましい。
 本発明においては、上記色素溶液を用いて、半導体微粒子表面に金属錯体色素を担持させて製造された色素増感太陽電池用の色素吸着電極が好ましい。
 また、上記色素溶液を用いて製造された色素増感太陽電池用の色素吸着電極を使用して色素増感太陽電池を製造することが好ましい。
 以下に実施例に基づき、本発明について更に詳細に説明する。なお、本発明はこれに限定して解釈されない。
実施例1
〔金属錯体色素の合成〕
 以下に、本発明の金属錯体色素の合成方法を詳しく説明する。なお、出発物質、色素中間体および合成ルートについてはこれにより限定されない。
(金属錯体色素Dye-3の合成)
 以下のスキームに従って金属錯体色素Dye-3を合成した。
Figure JPOXMLDOC01-appb-C000049
(i)化合物(4)の合成
 三つ口フラスコに、化合物(1)13.3g、化合物(2)17.0g、テトラヒドロフラン(THF)40mLを加え、2時間加熱還流させた。反応終了後、THFを減圧留去し、68mLの蒸留水を加え、沈殿物を濾過した。得られた化合物(3)を三つ口フラスコへ移し、蒸留水420mLを加え、130℃のオイルバスで加熱還流させた。その後、得られた溶液を室温に戻し、ろ過、水洗、乾燥を施すことで、化合物(4)6.69gを得た。
(ii)化合物(6)の合成
 三つ口フラスコに化合物(5)30g、エタノール300mL、少量の硫酸を加え、加熱還流させた。得られた溶液を室温に戻し、そこへ重曹水を加えて中和した。反応生成物を酢酸エチルで抽出し、溶媒を減圧留去することで、化合物(6)34gを得た。
(iii)化合物(7)の合成
 三つ口フラスコに化合物(4)5.5g、化合物(6)10.5g、1,2-ジメトキシエタン210mL、2Mの炭酸カリウム水溶液95.5mL、テトラキス(トリフェニルホスフィン)パラジウム(0)2.75gを加え、窒素雰囲気下60℃で加熱還流させた。反応生成物を酢酸エチルで抽出し、有機層をシリカゲルカラムクロマトグラフィーで精製することにより、化合物(7)3.0gを得た。
(iv)化合物(8)の合成
 三つ口フラスコに化合物(7)、ヘキサメチルジチン、テトラキス(トリフェニルホスフィン)パラジウム(0)、トルエンを加え、窒素雰囲気下100℃で加熱還流させた。還流後の溶液に、化合物(6)、トリフリルホスフィン、酢酸パラジウム(II)を加え、加熱還流させた。反応終了後、溶媒を減圧留去し、残渣をアルミナカラムクロマトグラフィーで精製することにより、化合物(8)を得た。得られた化合物の同定はH-NMRにより行った。
(v)化合物(12)の合成
 三つ口フラスコに化合物(9)、化合物(10)、エタノールを加え、加熱還流させた。その後、溶媒を減圧留去し、残渣をアセトニトリルで再結晶することにより、化合物(11)を得た。
 三つ口フラスコに化合物(8)336mg、化合物(11)305mg、N,N-ジメチルホルムアミド10mLを加え、130℃で加熱撹拌させた。反応後、溶媒を減圧留去し、残渣をアルミナカラムクロマトグラフィーで精製することにより、化合物(12)360mgを得た。
(vi)化合物(13)の合成
 三つ口フラスコに化合物(12)260mg、チオシアン酸アンモニウム171.4mg、N,N-ジメチルホルムアミド10mLを加え、130℃で加熱撹拌させた。反応後、溶媒を減圧留去し、残渣をアルミナカラムクロマトグラフィーで精製することにより、化合物(13)130mgを得た。
(vii)金属錯体色素Dye-3の合成
 三つ口フラスコに化合物(13)130mg、N,N-ジメチルホルムアミド1mL、3Nの水酸化ナトリウム水溶液170μLを加え、30℃で加熱撹拌させた。反応後、溶媒を減圧留去し、メタノール3mLを加え、撹拌した。撹拌溶液中へ、1Nのトリフルオロメタンスルホン酸/メタノール溶液を加えて、反応液をpH3に調整し、ろ過、水洗、乾燥を施すことにより、金属錯体色素Dye-3を128mg得た。得られた化合物の同定はH-NMR、MALDI-MSにより行った。
 図3に、金属錯体色素Dye-3のH-NMRスペクトル(溶媒:DMSO-d)を示す。
 また、図4に、金属錯体色素Dye-3の可視吸収スペクトルを示す。
 測定は、株式会社島津製作所製のUV-3600を使用し、17μモル/Lの濃度のN,N-ジメチルホルムアミド溶液で測定した。
 金属錯体色素Dye-1、Dye-2、Dye-4およびDye-5は、上記金属錯体色素Dye-3と同様にして合成した。
Figure JPOXMLDOC01-appb-C000050
 金属錯体色素の同定は、Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry(MALDI-MS)により行った。この結果を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000051
(化合物(8’)の合成)
 Dye-3と同様にして、化合物(8)から化合物(8’)を合成した。得られた化合物の同定はMALDI-MSにより行った。[M-H]:m/z=530
Figure JPOXMLDOC01-appb-C000052
実施例2
〔色素増感太陽電池〕
 下記のようにして、色素増感太陽電池を作製し、開放電圧および光電変換効率の測定ならびに耐久性の評価を行った。
 以下に示す手順により、特開2002-289274号公報に記載の図5に示されている光電極12と同様の構成を有する光電極を作製した。さらに、特開2002-289274号公報の図3における光電極に代えて、作製した光電極を用いた以外は図3の色素増感太陽電池20と同様の構成を有する、5mm×5mmのスケールの色素増感太陽電池20を作製した。具体的な構成は本発明の図2に示した。
 本発明の図2では、41が透明電極、42が半導体電極、43が透明導電膜、44が基板、45が半導体層、46が光散乱層、40が光電極,20が色素増感太陽電池、CEが対極、Eが電解質、Sがスペーサーである。
(ペーストの調製)
(ペーストA)球形のTiO粒子(アナターゼ、平均粒径;25nm、以下、球形TiO粒子Aという。)を硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペーストAを調製した。
(ペースト1)球形TiO粒子Aと、球形のTiO粒子(アナターゼ、平均粒径;200nm、以下、球形TiO粒子Bという。)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペースト1(球形TiO粒子Aの質量:球形TiO粒子Bの質量=30:70)を調製した。
(ペースト2)ペーストAに、棒状TiO粒子(アナターゼ、直径;100nm、アスペクト比;5、以下、棒状TiO粒子Cという。)を混合し、棒状TiO粒子Cの質量:ペーストAの質量=30:70のペースト2を調製した。
(光電極の作製)
 ガラス基板(基板44)上にフッ素ドープされたSnO導電膜(透明導電膜43、膜厚;500nm)を形成した透明電極41(導電性支持体)を準備した。そして、このSnO導電膜上に、上述のペースト1をスクリーン印刷し、次いで乾燥させた。その後、空気中、450℃の条件のもとで焼成した。更に、ペースト2を用いてスクリーン印刷と焼成とを繰り返すことにより、SnO導電膜上に、図2に示す半導体電極42と同様の構成の半導体電極(受光面の面積;5mm×5mm、層厚;15μm、半導体層の層厚;10μm、光散乱層の層厚;5μm、光散乱層に含有される棒状TiO粒子Cの含有率;30質量%)(感光体層)を形成し、金属錯体色素を含有していない光電極を作製した。
(色素吸着)
 次に、上記のようにして作製した光電極に金属錯体色素を以下のようにして吸着させた。
 先ず、N,N-ジメチルホルムアミド/tert-BuOH=1/1を溶媒として、これに下記表2に記載の金属錯体色素を、濃度が3×10-4mol/Lとなるように溶解した。さらに共吸着剤として、ケノデオキシコール酸とコール酸の等モル混合物を金属錯体色素1モルに対して20モル加え、各色素溶液を調製した。次に、この溶液に、上記で作製した半導体電極を浸漬し、これにより、半導体電極42に金属錯体色素が吸着した光電極40である、色素吸着電極を完成させた。
 次に、対極CEとして上記の光電極40と同様の形状と大きさを有する白金電極(Pt薄膜の厚さ;100nm)、電解質Eとして、ヨウ素およびヨウ化リチウムを含むヨウ素系レドックス溶液を調製した。更に、半導体電極42の大きさに合わせた形状を有するデュポン社製のスペーサーS(商品名:「サーリン」)を準備した。準備した光電極40、対極CEおよびスペーサーSを、特開2002-289274号公報に記載の図3に示されているように、光電極40と対極CEをスペーサーSを介して対向させ、内部に上記の電解質Eを充填して(電荷移動体層を形成して)、光電極40を使用した色素増感太陽電池20を完成させた。
<光電変換効率の評価>
 作製した色素増感太陽電池に、ソーラーシミュレーター(WACOM製、WXS-85H)を用い、AM1.5条件下、1000W/mのエネルギーを照射し、電池特性試験を行った。I-Vテスターを用いて電流-電圧特性を測定し、光電変換効率を求めた。得られた光電変換効率を、下記の比較化合物(2)の光電変換効率に対する倍率に換算し、以下の基準で評価した。なお、ランクAおよびBが実用上許容される範囲である。
 A:1.10倍以上
 B:1.00倍より大きく1.10倍未満
 C:1.00倍以下
 下記表2においては、変換効率として示す。
<開放電圧の評価>
 上記光電変換効率の評価において測定された開放電圧(Voc)を読み取り、得られたVocを、下記の比較化合物(2)のVocに対する倍率に換算し、以下の基準で評価した。なお、ランクAおよびBが実用上許容される範囲である。
 A:1.10倍以上
 B:1.00倍より大きく1.10倍未満
 C:1.00倍以下
<耐久性(熱劣化)の評価>
 作製した色素増感太陽電池を40℃の恒温槽に入れて耐熱試験を行った。耐熱試験前の色素増感太陽電池および耐熱試験12時間後の色素増感太陽電池についての電流値を評価した。耐熱試験前の電流値に対する耐熱試験後の電流値の減少分を、耐熱試験前の電流値で割った値を熱劣化率とした。このようにして得られた熱劣化率を、下記の比較化合物(2)の熱劣化率に対する倍率に換算し、以下の基準で評価した。なお、ランクAおよびBが実用上許容される範囲である。
 A:0.9倍未満
 B:0.9倍以上1.0倍未満
 C:1.0倍以上
 下記表2においては、耐久性として示す。
 光電変換効率、開放電圧および耐久性の評価結果を、下記表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-C000054
 比較化合物(1)は米国特許出願公開第2012/0247561号明細書に記載の化合物(A-1)、比較化合物(2)は米国特許出願公開第2012/0247561号明細書に記載の化合物(A-10)である。
 比較化合物(3)はBlack Dyeである。
 上記表2から明らかなように、本発明の金属錯体色素は、いずれも光電変換効率に優れ、開放電圧(Voc)が高い。しかも、本発明の金属錯体色素は、熱劣化が少なく、耐久性にも優れ、光電変換効率の向上と耐久性の向上を両立していることがわかる。
1 導電性支持体
2 感光体層
 21 色素
 22 半導体微粒子
3 電荷移動体層
4 対極
5 受光電極
6 外部回路
10 光電変換素子
100 色素増感太陽電池を利用したシステム
M 電動モーター
20 色素増感太陽電池
40 光電極
41 透明電極
42 半導体電極
43 透明導電膜
44 基板
45 半導体層
46 光散乱層
CE 対極
E 電解質
S スペーサー

Claims (26)

  1.  導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層および対極を有する光電変換素子であって、該感光体層が、下記式(AL)で表される配位子を有する金属錯体色素が担持された半導体微粒子を有する光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
     式中、RpおよびRpは各々独立に、ピリジン環に結合する炭素原子がsp炭素であるアルケニル基、ピリジン環に結合する炭素原子がsp炭素であるアルキニル基、アリール基およびヘテロアリール基から選ばれる基を表す。Anc~Ancは各々独立に酸性基を表す。R~Rは各々独立にAnc~Anc、Rp、Rpを有しない置換基を表す。m1およびm2は各々独立に、0~3の整数を表し、m1とm2の少なくとも一方は1~3の整数である。n1~n3は各々独立に0~2の整数を表す。n1~n3の各々において2であるとき、2つの基は同じであっても異なっていてもよく、これらが互いに結合して環を形成してもよい。
  2.  前記金属錯体色素が、下記式(I)で表される請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
     式中、Rp、Rp、Anc~Anc、R~R、m1、m2およびn1~n3は、前記式(AL)におけるRp、Rp、Anc~Anc、R~R、m1、m2およびn1~n3と同義である。Mは金属イオンを表す。L~Lは各々独立に配位子を表す。ここで、LとLが、互いに結合して2座の配位子となってもよく、L、LおよびLが、互いに結合して3座の配位子となってもよい。ただし、L~Lのうち1つまたは2つは、配位原子がアニオン性の配位子である。Yは電荷を中和させるのに必要な対イオンを表し、nは0~2の整数を表す。
  3.  前記LとLが、ともに芳香族環を有し、かつ互いに結合した2座の配位子であるか、または前記L、LおよびLが、いずれも芳香族環を有し、かつ互いに結合した3座の配位子である請求項2に記載の光電変換素子。
  4.  前記LとLが、互いに結合した2座の配位子であって、かつ下記式(2L-1)~(2L-5)のいずれかで表される請求項2または3に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
     式中、環Dは芳香族環を表す。A111~A141は各々独立に、窒素原子アニオンまたは炭素原子アニオンを表し、A151は窒素原子アニオン、酸素原子アニオンまたは硫黄原子アニオンを表す。R111~R154は各々独立に、水素原子、または、Anc、AncおよびAncを有しない置換基を表す。ここで、*は前記金属イオンMへの結合位置を表す。
  5.  前記L、LおよびLが、互いに結合した3座の配位子であって、かつ下記式(3L-1)~(3L-5)のいずれかで表される請求項2または3に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000004
     式中、環Dおよび環D’は各々独立に芳香族環を表す。A211~A242は各々独立に、窒素原子または炭素原子を表し、A251およびA252は各々独立に窒素原子、酸素原子または硫黄原子を表す。ただし、A211とA212、A221とA222、A231とA232、A241とA242、A251とA252のそれぞれにおいて、少なくとも1つはアニオンである。R211~R253は各々独立に、水素原子、または、Anc、AncおよびAncを有しない置換基を表す。ここで、*は前記金属イオンMへの結合位置を表す。
  6.  前記環Dが、5員環の含窒素芳香族ヘテロ環である請求項4または5に記載の光電変換素子。
  7.  前記2座または3座の配位子の芳香族環に、結合位置の炭素原子がsp炭素であるアルケニル基、結合位置の炭素原子がsp炭素であるアルキニル基、アリール基およびヘテロアリール基から選択される基が結合している請求項3~6のいずれか1項に記載の光電変換素子。
  8.  前記RpおよびRpの1つまたは2つが、結合するピリジン環の窒素原子に対してオルト位の炭素原子と結合している請求項1~7のいずれか1項に記載の光電変換素子。
  9.  前記式(I)で表される金属錯体色素が、下記式(II)で表される請求項2~8のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000005
     式中、Rp、Rp、Anc~Anc、M、L~L、Yおよびnは、前記式(I)におけるRp、Rp、Anc~Anc、M、L~L、Yおよびnと同義である。
  10.  前記半導体微粒子に、さらに、酸性基を1つ以上有する共吸着剤が担持されている請求項1~9のいずれか1項に記載の光電変換素子。
  11.  前記共吸着剤が、下記式(CA)で表される請求項10に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000006
     式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
  12.  請求項1~11のいずれか1項に記載の光電変換素子を具備する色素増感太陽電池。
  13.  下記式(AL)で表される配位子を有する金属錯体色素。
    Figure JPOXMLDOC01-appb-C000007
     式中、RpおよびRpは各々独立に、ピリジン環に結合する炭素原子がsp炭素であるアルケニル基、ピリジン環に結合する炭素原子がsp炭素であるアルキニル基、アリール基およびヘテロアリール基から選ばれる基を表す。Anc~Ancは各々独立に酸性基を表す。R~Rは各々独立にAnc~Anc、Rp、Rpを有しない置換基を表す。m1およびm2は各々独立に、0~3の整数を表し、m1とm2の少なくとも一方は1~3の整数である。n1~n3は各々独立に0~2の整数を表す。n1~n3の各々において2であるとき、2つの基は同じであっても異なっていてもよく、これらが互いに結合して環を形成してもよい。
  14.  前記金属錯体色素が、下記式(I)で表される請求項13に記載の金属錯体色素。
    Figure JPOXMLDOC01-appb-C000008
     式中、Rp、Rp、Anc~Anc、R~R、m1、m2およびn1~n3は、前記式(AL)におけるRp、Rp、Anc~Anc、R~R、m1、m2およびn1~n3と同義である。Mは金属イオンを表す。L~Lは各々独立に配位子を表す。ここで、LとLが互いに結合して2座の配位子となってもよく、L、LおよびLが互いに結合して3座の配位子となってもよい。ただし、L~Lのうち1つまたは2つは、配位原子がアニオン性の配位子である。Yは電荷を中和させるのに必要な対イオンを表し、nは0~2の整数を表す。
  15.  前記LとLが、ともに芳香族環を有し、かつ互いに結合した2座の配位子であるか、または前記L、LおよびLが、いずれも芳香族環を有し、かつ互いに結合した3座の配位子である請求項14に記載の金属錯体色素。
  16.  前記LとLが、互いに結合した2座の配位子であって、かつ下記式(2L-1)~(2L-5)のいずれかで表される請求項14または15に記載の金属錯体色素。
    Figure JPOXMLDOC01-appb-C000009
     式中、環Dは芳香族環を表す。A111~A141は各々独立に、窒素原子アニオンまたは炭素原子アニオンを表し、A151は窒素原子アニオン、酸素原子アニオンまたは硫黄原子アニオンを表す。R111~R154は各々独立に、水素原子、または、Anc、AncおよびAncを有しない置換基を表す。ここで、*は前記金属イオンMへの結合位置を表す。
  17.  前記L、LおよびLが、互いに結合した3座の配位子であって、かつ下記式(3L-1)~(3L-5)のいずれかで表される請求項14または15に記載の金属錯体色素。
    Figure JPOXMLDOC01-appb-C000010
     式中、環Dおよび環D’は各々独立に芳香族環を表す。A211~A242は各々独立に、窒素原子または炭素原子を表し、A251およびA252は各々独立に窒素原子、酸素原子または硫黄原子を表す。ただし、A211とA212、A221とA222、A231とA232、A241とA242、A251とA252のそれぞれにおいて、少なくとも1つはアニオンである。R211~R253は各々独立に、水素原子、または、Anc、AncおよびAncを有しない置換基を表す。ここで、*は前記金属イオンMへの結合位置を表す。
  18.  前記式(I)で表される金属錯体色素が、下記式(II)で表される請求項14~17のいずれか1項に記載の金属錯体色素。
    Figure JPOXMLDOC01-appb-C000011
     式中、Rp、Rp、Anc~Anc、M、L~L、Yおよびnは、前記式(I)におけるRp、Rp、Anc~Anc、M、L~L、Yおよびnと同義である。
  19.  請求項13~18のいずれか1項に記載の金属錯体色素を溶解してなる色素溶液。
  20.  有機溶媒中に、前記金属錯体色素を0.001~0.1質量%含有させてなる請求項19に記載の色素溶液。
  21.  前記色素溶液が、さらに共吸着剤を含有する請求項19または20に記載の色素溶液。
  22.  前記共吸着剤が、下記式(CA)で表される請求項21に記載の色素溶液。
    Figure JPOXMLDOC01-appb-C000012
     式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
  23.  半導体微粒子を付与した導電性支持体に、請求項19~22のいずれか1項に記載の色素溶液から得られてなる組成物を塗布し、塗布後の該組成物を硬化させて感光体層としてなる色素増感太陽電池用の色素吸着電極。
  24.  請求項23に記載の色素増感太陽電池用の色素吸着電極、電解質、および対極を用いて組み立てる色素増感太陽電池の製造方法。
  25.  下記式(AL)で表される配位子。
    Figure JPOXMLDOC01-appb-C000013
     式中、RpおよびRpは各々独立に、ピリジン環に結合する炭素原子がsp炭素であるアルケニル基、ピリジン環に結合する炭素原子がsp炭素であるアルキニル基、アリール基およびヘテロアリール基から選ばれる基を表す。Anc~Ancは各々独立に酸性基を表す。R~Rは各々独立にAnc~Anc、Rp、Rpを有しない置換基を表す。m1およびm2は各々独立に、0~3の整数を表し、m1とm2の少なくとも一方は1~3の整数である。n1~n3は各々独立に0~2の整数を表す。n1~n3の各々において2であるとき、2つの基は同じであっても異なっていてもよく、これらが互いに結合して環を形成してもよい。
  26.  前記式(AL)で表される配位子が、下記式(AL-1)で表される請求項25に記載の配位子。
    Figure JPOXMLDOC01-appb-C000014
     式中、Rp、RpおよびAnc~Ancは、前記式(AL)におけるRp、RpおよびAnc~Ancと同義である。
PCT/JP2014/067138 2013-07-05 2014-06-27 光電変換素子、色素増感太陽電池、金属錯体色素、配位子、色素溶液、色素吸着電極および色素増感太陽電池の製造方法 WO2015002081A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-142175 2013-07-05
JP2013142175 2013-07-05
JP2014122901A JP2015029074A (ja) 2013-07-05 2014-06-13 光電変換素子、色素増感太陽電池、金属錯体色素、配位子、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP2014-122901 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015002081A1 true WO2015002081A1 (ja) 2015-01-08

Family

ID=52143659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067138 WO2015002081A1 (ja) 2013-07-05 2014-06-27 光電変換素子、色素増感太陽電池、金属錯体色素、配位子、色素溶液、色素吸着電極および色素増感太陽電池の製造方法

Country Status (3)

Country Link
JP (1) JP2015029074A (ja)
TW (1) TW201509919A (ja)
WO (1) WO2015002081A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143507A1 (ja) * 2015-03-09 2016-09-15 富士フイルム株式会社 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193935A (ja) * 2000-12-21 2002-07-10 Aisin Seiki Co Ltd ピリジン誘導体およびその錯体
JP2007277166A (ja) * 2006-04-07 2007-10-25 Ube Ind Ltd ターピリジル配位子を含む金属錯体原料およびその製造方法
JP2009051999A (ja) * 2007-08-29 2009-03-12 National Institute Of Advanced Industrial & Technology 色素及びそれを用いた色素増感太陽電池
JP2011502965A (ja) * 2007-10-26 2011-01-27 コナルカ テクノロジーズ インコーポレイテッド 新規色素
JP2012209171A (ja) * 2011-03-30 2012-10-25 Fujifilm Corp 光電変換素子、光電気化学電池及びこれに用いられる酸化チタン粒子
WO2013047615A1 (ja) * 2011-09-29 2013-04-04 富士フイルム株式会社 光電変換素子、光電気化学電池およびこれに用いる金属錯体色素
WO2013047614A1 (ja) * 2011-09-26 2013-04-04 富士フイルム株式会社 光電変換素子、光電気化学電池およびこれに用いられる金属錯体色素
WO2013088898A1 (ja) * 2011-12-15 2013-06-20 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および化合物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193935A (ja) * 2000-12-21 2002-07-10 Aisin Seiki Co Ltd ピリジン誘導体およびその錯体
JP2007277166A (ja) * 2006-04-07 2007-10-25 Ube Ind Ltd ターピリジル配位子を含む金属錯体原料およびその製造方法
JP2009051999A (ja) * 2007-08-29 2009-03-12 National Institute Of Advanced Industrial & Technology 色素及びそれを用いた色素増感太陽電池
JP2011502965A (ja) * 2007-10-26 2011-01-27 コナルカ テクノロジーズ インコーポレイテッド 新規色素
JP2012209171A (ja) * 2011-03-30 2012-10-25 Fujifilm Corp 光電変換素子、光電気化学電池及びこれに用いられる酸化チタン粒子
WO2013047614A1 (ja) * 2011-09-26 2013-04-04 富士フイルム株式会社 光電変換素子、光電気化学電池およびこれに用いられる金属錯体色素
WO2013047615A1 (ja) * 2011-09-29 2013-04-04 富士フイルム株式会社 光電変換素子、光電気化学電池およびこれに用いる金属錯体色素
WO2013088898A1 (ja) * 2011-12-15 2013-06-20 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および化合物

Also Published As

Publication number Publication date
TW201509919A (zh) 2015-03-16
JP2015029074A (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5925541B2 (ja) 光電変換素子用金属錯体色素、光電変換素子、色素増感太陽電池、色素増感太陽電池用色素吸着組成液、色素増感太陽電池用半導体電極および色素増感太陽電池の製造方法
JP6047513B2 (ja) 金属錯体色素、光電変換素子、色素増感太陽電池および金属錯体色素を含有する色素溶液
JP5972849B2 (ja) 金属錯体、金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP6005678B2 (ja) 金属錯体色素、光電変換素子、色素増感太陽電池および金属錯体色素を含有する色素溶液
WO2014050527A1 (ja) 光電変換素子および色素増感太陽電池
JP2014209606A (ja) 光電変換素子、色素増感太陽電池、金属錯体色素を含有する色素吸着液および光電変換素子の製造方法
JP5913223B2 (ja) 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および色素吸着電極
JP6026236B2 (ja) 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液、色素吸着電極及び色素増感太陽電池の製造方法
JP5913222B2 (ja) 光電変換素子および色素増感太陽電池
WO2014168163A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
WO2014098045A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP6253167B2 (ja) 光電変換素子、色素増感太陽電池、ルテニウム錯体色素および色素溶液
JP2014186976A (ja) 光電変換素子、色素増感太陽電池、金属錯体、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
WO2015002081A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、配位子、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP6005682B2 (ja) 光電変換素子、色素増感太陽電池およびこれに用いる金属錯体色素
JP6144618B2 (ja) 光電変換素子、色素増感太陽電池およびこれに用いる金属錯体色素
WO2016047344A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
JP6063361B2 (ja) 光電変換素子、色素増感太陽電池および光電変換素子用電子移動促進剤
WO2016052196A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物
WO2015033698A1 (ja) 光電変換素子、色素増感太陽電池および光電変換素子用逆電子移動防止剤
JP2015053150A (ja) 光電変換素子および色素増感太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820293

Country of ref document: EP

Kind code of ref document: A1