WO2010098177A1 - 硫化物固体電解質材料 - Google Patents

硫化物固体電解質材料 Download PDF

Info

Publication number
WO2010098177A1
WO2010098177A1 PCT/JP2010/051407 JP2010051407W WO2010098177A1 WO 2010098177 A1 WO2010098177 A1 WO 2010098177A1 JP 2010051407 W JP2010051407 W JP 2010051407W WO 2010098177 A1 WO2010098177 A1 WO 2010098177A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide
sulfide solid
electrolyte material
raw material
Prior art date
Application number
PCT/JP2010/051407
Other languages
English (en)
French (fr)
Inventor
昌弘 辰己砂
晃敏 林
重規 濱
浩二 川本
靖 土田
長瀬 浩
幸義 上野
神谷 正人
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020137020323A priority Critical patent/KR101718187B1/ko
Priority to AU2010218963A priority patent/AU2010218963B2/en
Priority to US13/203,379 priority patent/US9064615B2/en
Priority to EP10746058.6A priority patent/EP2403046B1/en
Priority to CN201080009590.4A priority patent/CN102334225B/zh
Publication of WO2010098177A1 publication Critical patent/WO2010098177A1/ja
Priority to US14/709,943 priority patent/US20150249266A1/en
Priority to US14/710,013 priority patent/US20150244024A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • C01G17/006Compounds containing, besides germanium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a sulfide solid electrolyte material with a low hydrogen sulfide generation amount.
  • lithium batteries currently on the market use an electrolyte containing a flammable organic solvent, it is possible to install safety devices that suppress the temperature rise during short circuits and to improve the structure and materials to prevent short circuits. Necessary.
  • a lithium battery in which the electrolyte is changed to a solid electrolyte layer to make the battery completely solid does not use a flammable organic solvent in the battery, so the safety device can be simplified, and manufacturing costs and productivity can be reduced. It is considered excellent.
  • a sulfide solid electrolyte material is known as a solid electrolyte material used for such a solid electrolyte layer.
  • the sulfide solid electrolyte material Since the sulfide solid electrolyte material has high Li ion conductivity, it is useful for increasing the output of the battery, and various studies have been made heretofore.
  • Patent Document 1 a glassy sulfide solid electrolyte material whose main component is Li 2 S—X (X is SiS 2 , GeS 2 , P 2 S 5 , B 2 S 3 ) and a melt quenching method are disclosed. And a method for producing a sulfide solid electrolyte material.
  • Patent Document 1 examples include a 0.6 L 2 S-0.4 SiS 2 -based sulfide solid electrolyte material manufactured by a melt quenching method, and a 0.6 L 2 S-0.4 GeS 2 -based sulfide solid. Electrolyte materials and the like are disclosed.
  • Patent Document 2 discloses a Li 2 S—SiS 2 -based glassy solid electrolyte material using Li 2 S synthesized under specific conditions as a raw material.
  • Patent Document 2 examples include 60Li 2 S-40SiS 2 -based sulfide solid electrolyte material and 63Li 2 S-36SiS 2 -1Li 3 PO 4 -based sulfide solid electrolyte material manufactured by a melt quench method. Etc. are disclosed.
  • Patent Document 3 discloses sulfide-based crystallized glass in which a glass phase mainly composed of Li 2 S and P 2 S 5 and a crystal phase are present.
  • Patent Document 4 discloses a Li 2 S—P 2 S 5 crystallized glass having a specific diffraction peak by X-ray diffraction.
  • JP-A-6-279050 Japanese Patent No. 3510420 JP 2002-109955 A JP 2005-228570 A
  • the conventional sulfide solid electrolyte material has a problem that a lot of hydrogen sulfide is generated when it comes into contact with water (including moisture, the same applies hereinafter).
  • the present invention has been made in view of the above problems, and a main object of the present invention is to provide a sulfide solid electrolyte material with a small amount of hydrogen sulfide generation.
  • a sulfide solid electrolyte material using a raw material composition containing Li 2 S and a sulfide of an element of Group 14 or Group 15 Provided is a sulfide solid electrolyte material characterized by being substantially free of bridging sulfur and Li 2 S.
  • the sulfide solid electrolyte material does not substantially contain bridging sulfur and Li 2 S, a sulfide solid electrolyte material with a small hydrogen sulfide generation amount can be obtained.
  • the sulfide solid electrolyte material is preferably sulfide glass. This is because sulfide glass is softer than crystallized sulfide glass, and therefore, when a solid battery is manufactured, for example, it can absorb expansion and contraction of the active material and is considered to have excellent cycle characteristics.
  • the peak of the cross-linking sulfur is not detected by Raman spectroscopy, it is preferable that the peak of the Li 2 S is not detected by X-ray diffraction measurement.
  • the Group 14 or Group 15 element is preferably P, Si or Ge. This is because a sulfide solid electrolyte material having a lower hydrogen sulfide generation amount can be obtained.
  • the raw material composition contains only Li 2 S and P 2 S 5, and the molar fraction of Li 2 S contained in the raw material composition is in the range of 70% to 85%. Is preferred. This is because the amount of hydrogen sulfide generated can be further reduced by setting the range of the molar fraction of Li 2 S to a value that includes the ortho composition (75%) and the vicinity thereof.
  • the raw material composition is, only Li 2 S and SiS 2, or contain only Li 2 S and GeS 2, the mole fraction of Li 2 S contained in the raw material composition is 50% It is preferably in the range of ⁇ 80%. This is because the amount of hydrogen sulfide generated can be further reduced by setting the range of the molar fraction of Li 2 S to the value (66.7%) for obtaining the ortho composition and the vicinity thereof.
  • a raw material composition containing only Li 2 S and P 2 S 5 a sulfide solid electrolyte material obtained by amorphization, Li 2 in the raw material composition
  • a sulfide solid electrolyte material with a small amount of hydrogen sulfide generated can be obtained.
  • a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, and an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer The lithium battery is characterized in that at least one of the positive electrode active material layer, the negative electrode active material layer, and the electrolyte layer contains the sulfide solid electrolyte material described above.
  • An amorphization step of making the material amorphous, and the raw material composition comprises a sulfide containing Li 2 S and the Group 14 or Group 15 element as a bridging sulfur and Li 2 S.
  • the present invention provides a method for producing a sulfide solid electrolyte material, characterized in that the sulfide solid electrolyte material is contained in such a ratio that it can be obtained.
  • the raw material composition contains Li 2 S and a sulfide containing a Group 14 or Group 15 element in a predetermined ratio, the sulfide with a small amount of hydrogen sulfide generated.
  • a solid electrolyte material can be obtained.
  • the raw material composition contains only Li 2 S and P 2 S 5, and the molar fraction of Li 2 S contained in the raw material composition is in the range of 70% to 85%. Is preferred. This is because the amount of hydrogen sulfide generated can be further reduced by setting the range of the molar fraction of Li 2 S to a value that includes the ortho composition (75%) and the vicinity thereof.
  • the amorphization treatment is preferably mechanical milling. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • FIG. 6 shows the results of Raman spectroscopic measurement of the sulfide solid electrolyte materials obtained in Examples 1-1 to 1-3 and Comparative Examples 1-2 and 1-3.
  • 3 is a result of X-ray diffraction measurement of the sulfide solid electrolyte materials obtained in Examples 1-1 and 1-2 and Comparative Examples 1-2 and 1-4.
  • FIG. 6 shows the results of Raman spectroscopic measurement of the sulfide solid electrolyte materials obtained in Examples 1-1 to 1-3 and Comparative Examples 1-2 and 1-3.
  • 3 is a result of X-ray diffraction measurement of the sulfide solid electrolyte materials obtained in Examples 1-1 and 1-2 and Comparative Examples 1-2 and 1-4.
  • FIG. 5 shows the results of measurement of hydrogen sulfide generation (pellet) in the sulfide solid electrolyte materials obtained in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-4.
  • FIG. 6 shows the results of hydrogen sulfide generation amount measurement (battery) of the sulfide solid electrolyte material obtained in Example 1-2 and Comparative Example 1-5.
  • 3 is a result of measurement of hydrogen sulfide generation amount (pellet) of sulfide solid electrolyte materials obtained in Examples 2-1 and 2-2 and Comparative Examples 2-1 and 2-2.
  • the sulfide solid electrolyte material of the present invention will be described.
  • the sulfide solid electrolyte material of the present invention can be roughly divided into two embodiments. Hereinafter, the sulfide solid electrolyte material of the present invention will be described separately for the first embodiment and the second embodiment.
  • the sulfide solid electrolyte material according to the first embodiment is a sulfide solid electrolyte material using a raw material composition containing Li 2 S and a sulfide of an element belonging to Group 14 or Group 15, wherein It is characterized by substantially not containing sulfur and Li 2 S.
  • the sulfide solid electrolyte material does not substantially contain bridging sulfur and Li 2 S, a sulfide solid electrolyte material with a small amount of hydrogen sulfide generated can be obtained. Since such a sulfide solid electrolyte material has an ortho composition or a composition in the vicinity thereof, it is considered that the stability to water is high and the amount of hydrogen sulfide generated is low.
  • ortho generally refers to one having the highest degree of hydration among oxo acids obtained by hydrating the same oxide.
  • the crystal composition in which Li 2 S is added most in the sulfide is called the ortho composition.
  • Li 3 PS 4 corresponds to the ortho composition
  • Li 4 SiS 4 corresponds to the ortho composition
  • Li 4 GeS 4 corresponds to the ortho composition.
  • the molar fraction of Li 2 S to obtain the ortho composition is 75%.
  • the molar fraction of Li 2 S to obtain the ortho composition is 66.7%.
  • Patent Document 1 a 0.6 L 2 S-0.4 SiS 2 -based sulfide solid electrolyte material manufactured by a melt quenching method, a 0.6 L 2 S-0.4 GeS 2 -based sulfide. Solid electrolyte materials and the like are disclosed.
  • Patent Document 2 discloses a 60Li 2 S-40SiS 2 -based sulfide solid electrolyte material, a 63Li 2 S-36SiS 2 -1Li 3 PO 4 -based sulfide solid electrolyte material manufactured by a melt quenching method, and the like. ing.
  • sulfide solid electrolyte material of the first embodiment is “substantially free of bridging sulfur and Li 2 S”.
  • bridged sulfur refers to bridged sulfur in a compound obtained by reacting Li 2 S with a sulfide of an element belonging to Group 14 or Group 15.
  • S 3 P—S—PS 3 bridging sulfur obtained by reaction of Li 2 S and P 2 S 5 is applicable.
  • Such bridging sulfur easily reacts with water and easily generates hydrogen sulfide.
  • the sulfide solid electrolyte material contains cross-linked sulfur.
  • “substantially free of bridging sulfur” can be confirmed by measurement of a Raman spectrum.
  • the peak of S 3 P—S—PS 3 does not exist.
  • the peak of S 3 P—S—PS 3 usually appears at 402 cm ⁇ 1 . Therefore, in the present invention, it is preferable that this peak is not detected.
  • the peak of PS 4 usually appears at 417 cm ⁇ 1 .
  • the intensity I 402 at 402 cm -1 is preferably smaller than the intensity I 417 at 417 cm -1. More specifically, the strength I 402 is preferably 70% or less, more preferably 50% or less, and even more preferably 35% or less with respect to the strength I 417 .
  • the raw material composition in the first embodiment contains Li 2 S and a sulfide of an element belonging to Group 14 or Group 15. Furthermore, the raw material composition may contain other compounds.
  • Li 2 S contained in the raw material composition preferably has few impurities. This is because side reactions can be suppressed. Examples of the method for synthesizing Li 2 S include the method described in JP-A-7-330312. Furthermore, Li 2 S is preferably purified using the method described in WO2005 / 040039.
  • the raw material composition contains a sulfide of an element belonging to Group 14 or Group 15.
  • the group 14 or group 15 element is not particularly limited, and examples thereof include Si, P, and Ge. Among them, P is preferable. This is because a sulfide solid electrolyte material having a low hydrogen sulfide generation amount and high Li ion conductivity can be obtained.
  • Specific examples of group 14 or group 15 element sulfides include P 2 S 3 , P 2 S 5 , SiS 2 , GeS 2 , As 2 S 3 , and Sb 2 S 3. it can.
  • the raw material composition may contain a plurality of the sulfides.
  • the raw material composition includes Li 3 PO 4 , Li 4 SiO 4 , Li 4 GeO 4 , Li 3 BO 3, and Li 3. It may contain at least one lithium orthooxoate selected from the group consisting of AlO 3 . By adding such a lithium orthooxo acid, a more stable sulfide solid electrolyte material can be obtained.
  • the raw material composition preferably contains at least Li 2 S and P 2 S 5 , and more preferably contains only Li 2 S and P 2 S 5 .
  • the molar fraction of Li 2 S contained in the raw material composition is not particularly limited as long as it is a ratio capable of obtaining a sulfide solid electrolyte material substantially free of cross-linking sulfur and Li 2 S.
  • it is preferably in the range of 70% to 85%, more preferably in the range of 70% to 80%, and particularly preferably in the range of 72% to 78%. This is because the amount of hydrogen sulfide generated can be further reduced by setting the range of the molar fraction of Li 2 S to a value that includes the ortho composition (75%) and the vicinity thereof.
  • the raw material composition preferably contains at least Li 2 S and SiS 2 , and more preferably contains only Li 2 S and SiS 2 .
  • the raw material composition preferably contains at least Li 2 S and GeS 2 , and more preferably contains only Li 2 S and GeS 2 .
  • the molar fraction of Li 2 S contained in the raw material composition is particularly limited as long as it is a ratio capable of obtaining a sulfide solid electrolyte material substantially free of cross-linking sulfur and Li 2 S.
  • the amount of hydrogen sulfide generated can be further reduced by setting the range of the molar fraction of Li 2 S to the value (66.7%) for obtaining the ortho composition and the vicinity thereof.
  • the sulfide solid electrolyte material according to the first embodiment is formed by using a raw material composition containing Li 2 S and a sulfide of an element belonging to Group 14 or Group 15. is there. Especially, it is preferable that the sulfide solid electrolyte material of the first embodiment is obtained by an amorphization process using the raw material composition. This is because a sulfide solid electrolyte material substantially free of bridging sulfur and Li 2 S can be obtained efficiently.
  • the amorphization treatment include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • the sulfide solid electrolyte material of the first embodiment may be sulfide glass as long as it does not substantially contain bridging sulfur and Li 2 S, and crystallization obtained by heat-treating the sulfide glass.
  • Sulfide glass may be used.
  • the sulfide solid electrolyte material of the first embodiment is preferably sulfide glass. This is because sulfide glass is softer than crystallized sulfide glass, and therefore, when a solid battery is manufactured, for example, it can absorb expansion and contraction of the active material and is considered to have excellent cycle characteristics.
  • sulfide glass can be obtained by performing the amorphization process mentioned above with respect to a raw material composition, for example.
  • crystallized sulfide glass can be obtained, for example, by heat-treating sulfide glass. That is, crystallized sulfide glass can be obtained by sequentially performing an amorphization process and a heat treatment on the raw material composition. Note that, depending on the heat treatment conditions, there is a possibility that bridging sulfur and Li 2 S may be generated or a metastable phase may be generated. It is preferable to adjust. In particular, the crystallized sulfide glass in the present invention preferably has no metastable phase.
  • the sulfide solid electrolyte material of the first embodiment is a predetermined hydrogen sulfide amount measurement test
  • the amount of hydrogen sulfide generated in 300 seconds from the start of measurement is preferably 10 cc / g or less, more preferably 5 cc / g or less, further preferably 3 cc / g or less, and more preferably 1 cc / g or less. It is particularly preferred. It is because it can be set as a safer sulfide solid electrolyte material because there is little hydrogen sulfide generation amount.
  • the hydrogen sulfide amount measurement test refers to the following test.
  • a sulfide solid electrolyte material 100 mg was weighed in an argon atmosphere, and the sample was pressed at a pressure of 5.1 ton / cm 2 using a pellet molding machine having a molding part with an area of 1 cm 2 to produce pellets. Form. Thereafter, the obtained pellets were placed inside a sealed desiccator (1755 cc, atmospheric atmosphere, temperature 25 ° C., humidity 40%), and the amount of hydrogen sulfide generated in the first 300 seconds was measured using a hydrogen sulfide sensor. To measure.
  • the sulfide solid electrolyte material of the first embodiment preferably has a high Li ion conductivity value.
  • the Li ion conductivity at room temperature is, for example, preferably 10 ⁇ 5 S / cm or more, and more preferably 10 ⁇ 4 S / cm or more.
  • the sulfide solid electrolyte material of the first embodiment is usually in a powder form, and the average diameter thereof is, for example, in the range of 0.1 ⁇ m to 50 ⁇ m.
  • a lithium battery use can be mentioned, for example.
  • the lithium battery may be an all-solid lithium battery having a solid electrolyte layer or a lithium battery having an electrolyte solution.
  • the sulfide solid electrolyte material of the second embodiment is a sulfide solid electrolyte material obtained by amorphizing a raw material composition containing only Li 2 S and P 2 S 5 , and the above raw material composition
  • the molar fraction of Li 2 S in the product is in the range of 70% to 85%.
  • a sulfide solid electrolyte material with a small amount of hydrogen sulfide generated can be obtained. Since such a sulfide solid electrolyte material has an ortho composition or a composition in the vicinity thereof, it is considered that the stability to water is high and the amount of hydrogen sulfide generated is low.
  • the preferred range of the molar fraction of Li 2 S in the raw material composition, the amorphization treatment for amorphization, and other matters are the contents described in “1. First embodiment” above. It is the same.
  • a sulfide solid electrolyte material obtained by amorphizing a raw material composition containing only Li 2 S and SiS 2 , wherein the mole of Li 2 S in the raw material composition It is also possible to provide a sulfide solid electrolyte material characterized in that the fraction is in the range of 50% to 80%.
  • a raw material composition containing only Li 2 S and GeS 2 a sulfide solid electrolyte material obtained by amorphization of Li 2 S in the raw material composition
  • sulfide solid electrolyte materials are also considered to have a low hydrogen sulfide generation amount for the same reason as described above.
  • the preferred range of the molar fraction of Li 2 S in the raw material composition, the amorphization treatment for amorphization, and other matters are the contents described in “1. First embodiment” above. It is the same.
  • the lithium battery of the present invention includes a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, and an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer In which at least one of the positive electrode active material layer, the negative electrode active material layer, and the electrolyte layer contains the sulfide solid electrolyte material described above.
  • FIG. 1 is a schematic cross-sectional view showing an example of a power generation element of the lithium battery of the present invention.
  • a power generation element 10 shown in FIG. 1 includes a positive electrode active material layer 1 containing a positive electrode active material, a negative electrode active material layer 2 containing a negative electrode active material, and a positive electrode active material layer 1 and a negative electrode active material layer 2. And the formed electrolyte layer 3.
  • the present invention is characterized in that at least one of the positive electrode active material layer 1, the negative electrode active material layer 2, and the electrolyte layer 3 contains the sulfide solid electrolyte material described above.
  • the lithium battery of the present invention will be described for each configuration.
  • the electrolyte layer in the present invention is a layer formed between the positive electrode active material layer and the negative electrode active material layer.
  • the electrolyte layer is not particularly limited as long as it is a layer capable of conducting Li ions, but is preferably a solid electrolyte layer made of a solid electrolyte material. This is because a highly safe lithium battery (all solid battery) can be obtained.
  • a solid electrolyte layer contains the sulfide solid electrolyte material mentioned above.
  • the ratio of the sulfide solid electrolyte material contained in the solid electrolyte layer is, for example, preferably in the range of 10% to 100% by volume, and more preferably in the range of 50% to 100% by volume.
  • the solid electrolyte layer is composed only of the sulfide solid electrolyte material. This is because a lithium battery with less hydrogen sulfide generation can be obtained.
  • the thickness of the solid electrolyte layer is, for example, preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and more preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the method of compression-molding a solid electrolyte material etc. can be mentioned, for example.
  • the electrolyte layer in the present invention may be a layer composed of an electrolytic solution.
  • electrolytic solution By using the electrolytic solution, a high output lithium battery can be obtained.
  • at least one of the positive electrode active material layer and the negative electrode active material layer contains the sulfide solid electrolyte material described above.
  • electrolyte solution contains a lithium salt and an organic solvent (nonaqueous solvent) normally.
  • lithium salt examples include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC An organic lithium salt such as (CF 3 SO 2 ) 3 can be used.
  • organic solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate, and the like.
  • the positive electrode active material layer in the present invention is a layer containing at least a positive electrode active material, and may contain at least one of a solid electrolyte material, a conductive material, and a binder as necessary.
  • the solid electrolyte material contained in the positive electrode active material layer is preferably the sulfide solid electrolyte material described above. This is because a lithium battery with less hydrogen sulfide generation can be obtained.
  • the ratio of the sulfide solid electrolyte material contained in the positive electrode active material layer varies depending on the type of the lithium battery.
  • the positive electrode active material for example, LiCoO 2 , LiMnO 2 , Li 2 NiMn 3 O 8 , LiVO 2 , LiCrO 2 , LiFePO 4 , LiCoPO 4 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 etc. can be mentioned.
  • the positive electrode active material layer in the present invention may further contain a conductive material.
  • a conductive material By adding a conductive material, the conductivity of the positive electrode active material layer can be improved.
  • the conductive material include acetylene black, ketjen black, and carbon fiber.
  • the positive electrode active material layer may contain a binder. As a kind of binder, a fluorine-containing binder etc. can be mentioned, for example.
  • the thickness of the positive electrode active material layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the negative electrode active material layer in the present invention is a layer containing at least a negative electrode active material, and may contain at least one of a solid electrolyte material, a conductive material and a binder as necessary.
  • the solid electrolyte material contained in the negative electrode active material layer is preferably the sulfide solid electrolyte material described above. This is because a lithium battery with less hydrogen sulfide generation can be obtained.
  • the ratio of the sulfide solid electrolyte material contained in the negative electrode active material layer varies depending on the type of the lithium battery.
  • the negative electrode active material examples include a metal active material and a carbon active material.
  • the metal active material examples include In, Al, Si, and Sn.
  • examples of the carbon active material include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon.
  • MCMB mesocarbon microbeads
  • HOPG highly oriented graphite
  • hard carbon examples of the solid electrolyte material and electroconductive material used for a negative electrode active material layer, it is the same as that of the case in the positive electrode active material layer mentioned above.
  • the thickness of the negative electrode active material layer is, for example, in the range of 0.1 ⁇ m to 1000 ⁇ m.
  • the lithium battery of the present invention has at least the positive electrode active material layer, the electrolyte layer, and the negative electrode active material layer described above. Furthermore, it usually has a positive electrode current collector for collecting current of the positive electrode active material layer and a negative electrode current collector for collecting current of the negative electrode active material.
  • Examples of the material for the positive electrode current collector include SUS, aluminum, nickel, iron, titanium, and carbon. Among them, SUS is preferable.
  • examples of the material for the negative electrode current collector include SUS, copper, nickel, and carbon. Of these, SUS is preferable.
  • the thickness and shape of the positive electrode current collector and the negative electrode current collector are preferably appropriately selected according to the use of the lithium battery.
  • the battery case of a general lithium battery can be used for the battery case used for this invention.
  • the battery case include a SUS battery case.
  • the power generation element may be formed inside the insulating ring.
  • the lithium battery of the present invention may be a primary battery or a secondary battery, but among them, a secondary battery is preferable. This is because it can be repeatedly charged and discharged and is useful, for example, as an in-vehicle battery.
  • Examples of the shape of the lithium battery of the present invention include a coin type, a laminate type, a cylindrical type, and a square type.
  • the manufacturing method of the lithium battery of this invention will not be specifically limited if it is a method which can obtain the lithium battery mentioned above, The method similar to the manufacturing method of a general lithium battery can be used.
  • the lithium battery of the present invention is an all-solid battery
  • examples of the production method include a material constituting the positive electrode active material layer, a material constituting the solid electrolyte layer, and a material constituting the negative electrode active material layer.
  • a method of producing a power generation element by sequentially pressing, housing the power generation element in the battery case, and caulking the battery case can be exemplified.
  • the positive electrode active material layer, negative electrode active material layer, and solid electrolyte layer which contain the sulfide solid electrolyte mentioned above can also be provided, respectively.
  • the method for producing a sulfide solid electrolyte material of the present invention includes a preparation step of preparing a raw material composition containing Li 2 S and a sulfide containing an element of Group 14 or Group 15, and the above raw material composition.
  • the raw material composition contains Li 2 S and a sulfide containing a Group 14 or Group 15 element in a predetermined ratio, the sulfide with a small amount of hydrogen sulfide generated.
  • a solid electrolyte material can be obtained.
  • FIG. 2 is an explanatory view for explaining an example of the method for producing a sulfide solid electrolyte material of the present invention.
  • Li 2 S lithium sulfide
  • P 2 S 5 phosphorus pentasulfide
  • these starting materials are mixed so that the molar fraction of Li 2 S is 75% to prepare a raw material composition (preparation step).
  • the raw material composition and the balls for grinding are put into the pot, and the pot is sealed.
  • this pot is attached to a planetary ball mill to amorphize the raw material composition (amorphization step).
  • the raw material composition to obtain a substantially free sulfide solid electrolyte material of bridging sulfur and Li 2 S.
  • the method for producing the sulfide solid electrolyte material of the present invention will be described step by step.
  • the preparation step in the present invention is a step of preparing a raw material composition containing Li 2 S and a sulfide containing a Group 14 or Group 15 element. Further, the raw material composition, the proportion that can be a sulfide containing Li 2 S and Group 14 or Group 15 element to obtain a substantially free sulfide solid electrolyte material of bridging sulfur and Li 2 S Contains. In addition, about the raw material composition used for this invention, since it is the same as that of the content described in said "A. sulfide solid electrolyte material", description here is abbreviate
  • the amorphization step in the present invention is a step of amorphizing the raw material composition by an amorphization process. Thereby, a sulfide glass is usually obtained.
  • Examples of the amorphization treatment include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • Mechanical milling is not particularly limited as long as the raw material composition is mixed while applying mechanical energy, and examples thereof include a ball mill, a turbo mill, a mechano-fusion, a disk mill, and the like. And a planetary ball mill is particularly preferable. This is because a desired sulfide solid electrolyte material can be obtained efficiently.
  • a sulfide solid electrolyte material substantially free of bridging sulfur and Li 2 S can be obtained.
  • a sulfide solid electrolyte material is synthesized by a planetary ball mill, the raw material composition and grinding balls are added to the pot, and the treatment is performed at a predetermined rotation speed and time.
  • the higher the number of rotations the faster the production rate of the sulfide solid electrolyte material, and the longer the treatment time, the higher the conversion rate from the raw material composition to the sulfide solid electrolyte material.
  • the number of rotations when performing the planetary ball mill is preferably in the range of 200 rpm to 500 rpm, and more preferably in the range of 250 rpm to 400 rpm. Further, the processing time when performing the planetary ball mill is preferably in the range of 1 hour to 100 hours, and more preferably in the range of 1 hour to 50 hours.
  • Heat treatment step In the present invention, a heat treatment step of heat treating the sulfide glass obtained in the amorphization step may be performed. Thereby, a crystallized sulfide glass is usually obtained. Note that, depending on the heat treatment conditions, there is a possibility that bridging sulfur and Li 2 S may be generated or a metastable phase may be generated. It is preferable to adjust.
  • the sulfide solid electrolyte material obtained by the present invention is the same as the contents described in the above-mentioned “A. Sulfide solid electrolyte material”, description thereof is omitted here.
  • the sulfide solid electrolyte material characterized by obtained by the preparation process mentioned above and an amorphization process can be provided.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • Li 2 S lithium sulfide
  • P 2 S 5 phosphorus pentasulfide
  • Examples 1-1 to 1-3 had a lower hydrogen sulfide generation amount than Comparative Examples 1-1 to 1-4.
  • the hydrogen sulfide generation amount showed a minimum value (0.2 cc / g).
  • All-solid lithium batteries were produced using the sulfide solid electrolyte materials obtained in Example 1-2 and Comparative Example 1-5, respectively. Note that the batteries were all manufactured in an argon atmosphere.
  • a sulfide solid electrolyte material 51 mg was pressed at a pressure of 1 ton / cm 2 using a pellet molding machine to form a solid electrolyte layer.
  • a positive electrode mixture composed of LiCoO 2 (8.9 mg) and the above sulfide solid electrolyte material (3.8 mg) is added onto the surface of the solid electrolyte layer, and 1 ton / cm using a pellet molding machine. Pressed at a pressure of 2 to form a positive electrode active material layer.
  • a negative electrode mixture composed of graphite (4.71 mg) and the above-mentioned sulfide solid electrolyte material (4.71 mg) is added onto the surface of the solid electrolyte layer where the positive electrode active material layer is not formed, and pellet molding is performed.
  • the negative electrode active material layer was formed by pressing at a pressure of 4.3 ton / cm 2 using a machine. As a result, a power generation element was obtained.
  • the power generation element was sandwiched between SUS, which is a current collector, to produce an all-solid lithium battery.
  • the obtained all-solid-state lithium battery was placed inside a sealed desiccator (1755 cc, air atmosphere, temperature 25 ° C., humidity 40%), and the change in the amount of hydrogen sulfide generated with respect to the air exposure time was measured using a hydrogen sulfide sensor. It was measured.
  • a hydrogen sulfide sensor a hydrogen sulfide sensor. It was measured.
  • FIG. 6 As shown in FIG. 6, in Comparative Example 1-5, the amount of hydrogen sulfide generated increased with time, and the amount of hydrogen sulfide generated after 150 seconds was 0.056 cc. On the other hand, in Example 1-2, the hydrogen sulfide generation amount did not increase with time, and the hydrogen sulfide generation amount after 150 seconds was 0.001 cc or less.
  • Example 3-3 A solid electrolyte material was obtained (Examples 3-2 and 3-3).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

 本発明は、硫化水素発生量の少ない硫化物固体電解質材料を提供することを主目的とする。 本発明は、LiSと、第14族または第15族の元素の硫化物とを含有する原料組成物を用いてなる硫化物固体電解質材料であって、架橋硫黄およびLiSを実質的に含有しないことを特徴とする硫化物固体電解質材料を提供することにより、上記課題を解決する。

Description

硫化物固体電解質材料
 本発明は、硫化水素発生量の少ない硫化物固体電解質材料に関する。
 近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。
 現在市販されているリチウム電池は、可燃性の有機溶媒を含む電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。
 これに対し、電解液を固体電解質層に変えて、電池を全固体化したリチウム電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。さらに、このような固体電解質層に用いられる固体電解質材料として、硫化物固体電解質材料が知られている。
 硫化物固体電解質材料は、Liイオン伝導性が高いため、電池の高出力化を図る上で有用であり、従来から種々の研究がなされている。例えば、特許文献1においては、主成分がLiS-X(XはSiS、GeS、P、B)からなるガラス状の硫化物固体電解質材料と、溶融急冷法による硫化物固体電解質材料の製造方法とが開示されている。さらに、特許文献1の実施例には、溶融急冷法で製造した0.6LS-0.4SiS系の硫化物固体電解質材料、0.6LS-0.4GeS系の硫化物固体電解質材料等が開示されている。また、特許文献2においては、特定の条件にて合成したLiSを原料として用いたLiS-SiS系のガラス状固体電解質材料が開示されている。さらに、特許文献2の実施例には、溶融急冷法にて製造した60LiS-40SiS系の硫化物固体電解質材料、63LiS-36SiS-1LiPO系の硫化物固体電解質材料等が開示されている。
 一方、特許文献3においては、LiSおよびPを主成分とするガラス相と結晶相とが存在する硫化物系結晶化ガラスが開示されている。また、特許文献4においては、X線回折にて特定の回折ピークを有するLiS-P系結晶化ガラスが開示されている。
特開平6-279050号公報 特許第3510420号 特開2002-109955号公報 特開2005-228570号公報
 従来の硫化物固体電解質材料は、水(水分を含む。以下同じ)と接触した場合に多くの硫化水素が発生するという問題があった。本発明は、上記問題点に鑑みてなされたものであり、硫化水素発生量の少ない硫化物固体電解質材料を提供することを主目的とする。
 上記課題を解決するために、本発明においては、LiSと、第14族または第15族の元素の硫化物とを含有する原料組成物を用いてなる硫化物固体電解質材料であって、架橋硫黄およびLiSを実質的に含有しないことを特徴とする硫化物固体電解質材料を提供する。
 本発明によれば、硫化物固体電解質材料が、架橋硫黄およびLiSを実質的に含有しないため、硫化水素発生量の少ない硫化物固体電解質材料とすることができる。
 上記発明においては、上記硫化物固体電解質材料が、硫化物ガラスであることが好ましい。硫化物ガラスは、結晶化硫化物ガラスに比べて柔らかいため、例えば固体電池を作製した際に、活物質の膨張収縮を吸収でき、サイクル特性が優れると考えられるからである。
 上記発明においては、上記架橋硫黄のピークがラマン分光測定により検出されず、上記LiSのピークがX線回折測定により検出されないことが好ましい。
 上記発明においては、上記第14族または第15族の元素が、P、SiまたはGeであることが好ましい。硫化水素発生量がより低い硫化物固体電解質材料を得ることができるからである。
 上記発明においては、上記原料組成物がLiSおよびPのみを含有し、上記原料組成物に含まれるLiSのモル分率が、70%~85%の範囲内であることが好ましい。LiSのモル分率の範囲を、オルト組成を得る値(75%)およびその近傍を含む範囲とすることで、より硫化水素発生量を低くすることができるからである。
 上記発明においては、上記原料組成物が、LiSおよびSiSのみ、または、LiSおよびGeSのみを含有し、上記原料組成物に含まれるLiSのモル分率が、50%~80%の範囲内であることが好ましい。LiSのモル分率の範囲を、オルト組成を得る値(66.7%)およびその近傍とすることで、より硫化水素発生量を低くすることができるからである。
 また、本発明においては、LiSおよびPのみを含有する原料組成物を、非晶質化することによって得られた硫化物固体電解質材料であって、上記原料組成物におけるLiSのモル分率が、70%~85%の範囲内であることを特徴とする硫化物固体電解質材料を提供する。
 本発明によれば、原料組成物におけるLiSのモル分率が所定の範囲にあることにより、硫化水素発生量の少ない硫化物固体電解質材料とすることができる。
 また、本発明においては、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有するリチウム電池であって、上記正極活物質層、上記負極活物質層および上記電解質層の少なくとも一つが、上述した硫化物固体電解質材料を含有することを特徴とするリチウム電池を提供する。
 本発明によれば、上述した硫化物固体電解質材料を用いることで、硫化水素発生量の少ないリチウム電池とすることができる。
 また、本発明においては、LiSと、第14族または第15族の元素を含む硫化物とを含有する原料組成物を調製する調製工程と、上記原料組成物を、非晶質化処理により非晶質化する非晶質化工程とを有し、上記原料組成物が、上記LiS、および上記第14族または第15族の元素を含む硫化物を、架橋硫黄およびLiSを実質的に含有しない硫化物固体電解質材料を得ることができる割合で含有していることを特徴とする硫化物固体電解質材料の製造方法を提供する。
 本発明によれば、原料組成物が、LiSと、第14族または第15族の元素を含む硫化物とを、所定の割合で含有しているため、硫化水素発生量の少ない硫化物固体電解質材料を得ることができる。
 上記発明においては、上記原料組成物がLiSおよびPのみを含有し、上記原料組成物に含まれるLiSのモル分率が、70%~85%の範囲内であることが好ましい。LiSのモル分率の範囲を、オルト組成を得る値(75%)およびその近傍を含む範囲とすることで、より硫化水素発生量を低くすることができるからである。
 上記発明においては、上記非晶質化処理が、メカニカルミリングであることが好ましい。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
 本発明においては、硫化物固体電解質材料が水と接触した場合でも、硫化水素の発生を抑制できるという効果を奏する。
本発明のリチウム電池の発電要素の一例を示す概略断面図である。 本発明の硫化物固体電解質材料の製造方法の一例を説明する説明図である。 実施例1-1~1-3、比較例1-2、1-3で得られた硫化物固体電解質材料のラマン分光測定の結果である。 実施例1-1、1-2、比較例1-2、1-4で得られた硫化物固体電解質材料のX線回折測定の結果である。 実施例1-1~1-3、比較例1-1~1-4で得られた硫化物固体電解質材料の硫化水素発生量測定(ペレット)の結果である。 実施例1-2、比較例1-5で得られた硫化物固体電解質材料の硫化水素発生量測定(電池)の結果である。 実施例2-1、2-2、比較例2-1、2-2で得られた硫化物固体電解質材料の硫化水素発生量測定(ペレット)の結果である。 実施例3-1~3-3、比較例3-1、3-2で得られた硫化物固体電解質材料の硫化水素発生量測定(ペレット)の結果である。 比較例4-1~4-4で得られた硫化物固体電解質材料の硫化水素発生量測定(ペレット)の結果である。
 以下、本発明の硫化物固体電解質材料、リチウム電池および硫化物固体電解質材料の製造方法について、詳細に説明する。
A.硫化物固体電解質材料
 まず、本発明の硫化物固体電解質材料について説明する。本発明の硫化物固体電解質材料は、2つの実施態様に大別することができる。以下、本発明の硫化物固体電解質材料について、第一実施態様および第二実施態様に分けて説明する。
1.第一実施態様
 まず、本発明の硫化物固体電解質材料の第一実施態様について説明する。第一実施態様の硫化物固体電解質材料は、LiSと、第14族または第15族の元素の硫化物とを含有する原料組成物を用いてなる硫化物固体電解質材料であって、架橋硫黄およびLiSを実質的に含有しないことを特徴とするものである。
 本実施態様によれば、硫化物固体電解質材料が、架橋硫黄およびLiSを実質的に含有しないため、硫化水素発生量の少ない硫化物固体電解質材料とすることができる。このような硫化物固体電解質材料は、オルト組成またはその近傍の組成を有しているため、水に対する安定性が高く、硫化水素発生量が低いと考えられる。ここで、オルトとは、一般的に、同じ酸化物を水和して得られるオキソ酸の中で、最も水和度の高いものをいう。本発明においては、硫化物で最もLiSが付加している結晶組成をオルト組成という。例えば、LiS-P系ではLiPSがオルト組成に該当し、LiS-SiS系ではLiSiSがオルト組成に該当し、LiS-GeS系ではLiGeSがオルト組成に該当する。例えば、LiS-P系の硫化物固体電解質材料の場合、オルト組成を得るLiSのモル分率は75%になる。一方、LiS-SiS系またはLiS-GeS系の硫化物固体電解質材料の場合、オルト組成を得るLiSのモル分率は66.7%になる。
 また、上述したように、特許文献1では、溶融急冷法で製造した0.6LS-0.4SiS系の硫化物固体電解質材料、0.6LS-0.4GeS系の硫化物固体電解質材料等が開示されている。また、特許文献2では、溶融急冷法にて製造した60LiS-40SiS系の硫化物固体電解質材料、63LiS-36SiS-1LiPO系の硫化物固体電解質材料等が開示されている。しかしながら、これらの硫化物固体電解質材料は、架橋硫黄を有するため、水と反応しやすく、硫化水素が発生しやすいという問題があった。これに対して、第一実施態様の硫化物固体電解質材料は、架橋硫黄を実質的に有しないため、硫化水素発生量を低くすることができる。
 また、第一実施態様の硫化物固体電解質材料は、「架橋硫黄およびLiSを実質的に含有しない」ことを特徴の一つとする。ここで、「架橋硫黄」とは、LiSと第14族または第15族の元素の硫化物とが反応してなる化合物における架橋硫黄をいう。例えば、LiSおよびPが反応してなるSP-S-PSの架橋硫黄が該当する。このような架橋硫黄は、水と反応しやすく、硫化水素が発生しやすい。本発明においては、原料組成物におけるLiSの割合が小さすぎると、硫化物固体電解質材料が架橋硫黄を含むことになる。さらに、「架橋硫黄を実質的に含有しない」ことは、ラマン分光スペクトルの測定により、確認することができる。
 例えば、LiS-P系の硫化物固体電解質材料の場合、SP-S-PSのピークが存在しないことが好ましい。SP-S-PSのピークは、通常402cm-1に表れる。そのため、本発明においては、このピークが検出されないことが好ましい。また、PSのピークは、通常417cm-1に表れる。本発明においては、402cm-1における強度I402が、417cm-1における強度I417よりも小さいことが好ましい。より具体的には、強度I417に対して、強度I402は、例えば70%以下であることが好ましく、50%以下であることがより好ましく、35%以下であることがさらに好ましい。
 一方、「LiSを実質的に含有しない」とは、出発原料に由来するLiSを実質的に含有しないことをいう。LiSは水と反応しやすく、硫化水素が発生しやすい。本発明においては、原料組成物におけるLiSの割合が大きすぎると、硫化物固体電解質材料がLiSを含むことになる。さらに、「LiSを実質的に含有しない」ことは、X線回折により、確認することができる。具体的には、LiSのピーク(2θ=27.0°、31.2°、44.8°、53.1°)を有しない場合は、LiSを実質的に含有しないと判断することができる。
(1)原料組成物
 まず、第一実施態様の硫化物固体電解質材料に用いられる原料組成物について説明する。第一実施態様における原料組成物は、LiSと、第14族または第15族の元素の硫化物とを含有するものである。さらに、原料組成物はその他の化合物を含有していても良い。
 原料組成物に含まれるLiSは、不純物が少ないことが好ましい。副反応を抑制することができるからである。LiSの合成方法としては、例えば特開平7-330312号公報に記載された方法等を挙げることができる。さらに、LiSは、WO2005/040039に記載された方法等を用いて精製されていることが好ましい。
 また、原料組成物は、第14族または第15族の元素の硫化物を含有する。第14族または第15族の元素としては、特に限定されるものではないが、例えばSi、PおよびGe等を挙げることができ、中でもPが好ましい。硫化水素発生量が低く、Liイオン伝導性の高い硫化物固体電解質材料を得ることができるからである。第14族または第15族の元素の硫化物としては、具体的には、P、P、SiS、GeS、As、Sb等を挙げることができる。なお、原料組成物は、複数の上記硫化物を含有するものであっても良い。
 また、原料組成物は、LiS、および第14族または第15族の元素の硫化物の他に、LiPO、LiSiO、LiGeO、LiBOおよびLiAlOからなる群から選択される少なくとも一種のオルトオキソ酸リチウムを含有していても良い。このようなオルトオキソ酸リチウムを加えることで、より安定な硫化物固体電解質材料を得ることができる。
 また、第一実施態様において、原料組成物は、少なくともLiSおよびPを含有することが好ましく、LiSおよびPのみを含有することがより好ましい。硫化水素発生量が低く、Liイオン伝導性の高い硫化物固体電解質材料を得ることができるからである。この場合、原料組成物に含まれるLiSのモル分率は、架橋硫黄およびLiSを実質的に含有しない硫化物固体電解質材料を得ることができる割合であれば特に限定されるものではないが、例えば70%~85%の範囲内、中でも70%~80%の範囲内、特に72%~78%の範囲内であることが好ましい。LiSのモル分率の範囲を、オルト組成を得る値(75%)およびその近傍を含む範囲とすることで、より硫化水素発生量を低くすることができるからである。
 また、第一実施態様において、原料組成物は、少なくともLiSおよびSiSを含有することが好ましく、LiSおよびSiSのみを含有することがより好ましい。同様に、原料組成物は、少なくともLiSおよびGeSを含有することが好ましく、LiSおよびGeSのみを含有することがより好ましい。硫化水素発生量が低く、Liイオン伝導性の高い硫化物固体電解質材料を得ることができるからである。これらの場合、原料組成物に含まれるLiSのモル分率は、架橋硫黄およびLiSを実質的に含有しない硫化物固体電解質材料を得ることができる割合であれば特に限定されるものではないが、例えば50%~80%の範囲内、中でも55%~75%の範囲内、特に60%~70%の範囲内であることが好ましい。LiSのモル分率の範囲を、オルト組成を得る値(66.7%)およびその近傍とすることで、より硫化水素発生量を低くすることができるからである。
(2)硫化物固体電解質材料
 第一実施態様の硫化物固体電解質材料は、LiSと、第14族または第15族の元素の硫化物とを含有する原料組成物を用いてなるものである。中でも、第一実施態様の硫化物固体電解質材料は、上記原料組成物を用いて、非晶質化処理により得られたものであることが好ましい。架橋硫黄およびLiSを実質的に含有しない硫化物固体電解質材料を効率良く得ることができるからである。また、非晶質化処理としては、例えば、メカニカルミリング法および溶融急冷法を挙げることができ、中でもメカニカルミリング法が好ましい。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
 第一実施態様の硫化物固体電解質材料は、架橋硫黄およびLiSを実質的に含有しないものであれば、硫化物ガラスであっても良く、その硫化物ガラスを熱処理して得られる結晶化硫化物ガラスであっても良い。中でも、第一実施態様の硫化物固体電解質材料は、硫化物ガラスであることが好ましい。硫化物ガラスは、結晶化硫化物ガラスに比べて柔らかいため、例えば固体電池を作製した際に、活物質の膨張収縮を吸収でき、サイクル特性が優れると考えられるからである。なお、硫化物ガラスは、例えば、原料組成物に対して、上述した非晶質化処理を行うことで得ることができる。一方、結晶化硫化物ガラスは、例えば、硫化物ガラスを熱処理することで得ることができる。すなわち、原料組成物に対して、非晶質化処理および熱処理を順次行うことにより、結晶化硫化物ガラスを得ることができる。なお、熱処理の条件によっては、架橋硫黄およびLiSが生成する可能性や準安定相が生成する可能性があるため、本発明においては、これらが生成しないように、熱処理温度および熱処理時間を調整することが好ましい。特に、本発明における結晶化硫化物ガラスは、準安定相を有しないことが好ましい。
 また、第一実施態様の硫化物固体電解質材料は、所定の硫化水素量測定試験において、
測定開始から300秒間における硫化水素発生量が、10cc/g以下であることが好ましく、5cc/g以下であることがより好ましく、3cc/g以下であることがさらに好ましく、1cc/g以下であることが特に好ましい。硫化水素発生量が少ないことで、より安全性の高い硫化物固体電解質材料とすることができるからである。ここで、硫化水素量測定試験とは、以下の試験をいう。すなわち、アルゴン雰囲気中で、硫化物固体電解質材料を100mg秤量し、その試料を、面積1cmの成形部を有するペレット成形機を用いて、5.1ton/cmの圧力でプレスし、ペレットを形成する。その後、得られたペレットを密閉されたデシケータ(1755cc、大気雰囲気、温度25℃、湿度40%)の内部に配置し、最初の300秒間で発生した硫化水素の発生量を、硫化水素センサーを用いて測定する。
 また、第一実施態様の硫化物固体電解質材料は、Liイオン伝導度の値が高いことが好ましい。常温でのLiイオン伝導度は、例えば10-5S/cm以上であることが好ましく、10-4S/cm以上であることがより好ましい。また、第一実施態様の硫化物固体電解質材料は、通常粉末状であり、その平均径は例えば0.1μm~50μmの範囲内である。また、硫化物固体電解質材料の用途としては、例えば、リチウム電池用途を挙げることができる。上記リチウム電池は、固体電解質層を有する全固体リチウム電池であっても良く、電解液を有するリチウム電池であっても良い。
2.第二実施態様
 次に、本発明の硫化物固体電解質材料の第二実施態様について説明する。第二実施態様の硫化物固体電解質材料は、LiSおよびPのみを含有する原料組成物を非晶質化することによって得られた硫化物固体電解質材料であって、上記原料組成物におけるLiSのモル分率が、70%~85%の範囲内であることを特徴とするものである。
 本実施態様によれば、原料組成物におけるLiSのモル分率が所定の範囲にあることにより、硫化水素発生量の少ない硫化物固体電解質材料とすることができる。このような硫化物固体電解質材料は、オルト組成またはその近傍の組成を有しているため、水に対する安定性が高く、硫化水素発生量が低いと考えられる。なお、原料組成物におけるLiSのモル分率の好ましい範囲、非晶質化のための非晶質化処理、およびその他の事項については、上記「1.第一実施態様」に記載した内容と同様である。
 また、本発明においては、LiSおよびSiSのみを含有する原料組成物を非晶質化することによって得られた硫化物固体電解質材料であって、上記原料組成物におけるLiSのモル分率が、50%~80%の範囲内であることを特徴とする硫化物固体電解質材料を提供することもできる。同様に、本発明においては、LiSおよびGeSのみを含有する原料組成物を非晶質化することによって得られた硫化物固体電解質材料であって、上記原料組成物におけるLiSのモル分率が、50%~80%の範囲内であることを特徴とする硫化物固体電解質材料を提供することもできる。これらの硫化物固体電解質材料も、上記と同様の理由により、硫化水素発生量が低いと考えられる。なお、原料組成物におけるLiSのモル分率の好ましい範囲、非晶質化のための非晶質化処理、およびその他の事項については、上記「1.第一実施態様」に記載した内容と同様である。
B.リチウム電池
 次に、本発明のリチウム電池について説明する。本発明のリチウム電池は、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有するリチウム電池であって、上記正極活物質層、上記負極活物質層および上記電解質層の少なくとも一つが、上述した硫化物固体電解質材料を含有することを特徴とするものである。
 本発明によれば、上述した硫化物固体電解質材料を用いることで、硫化水素発生量の少ないリチウム電池とすることができる。
 図1は、本発明のリチウム電池の発電要素の一例を示す概略断面図である。図1に示される発電要素10は、正極活物質を含有する正極活物質層1と、負極活物質を含有する負極活物質層2と、正極活物質層1および負極活物質層2の間に形成された電解質層3とを有するものである。さらに、本発明においては、正極活物質層1、負極活物質層2および電解質層3の少なくとも一つが、上述した硫化物固体電解質材料を含有することを大きな特徴とする。
 以下、本発明のリチウム電池について、構成ごとに説明する。
1.電解質層
 まず、本発明における電解質層について説明する。本発明における電解質層は、正極活物質層および負極活物質層の間に形成される層である。電解質層は、Liイオンの伝導を行うことができる層であれば特に限定されるものではないが、固体電解質材料から構成される固体電解質層であることが好ましい。安全性の高いリチウム電池(全固体電池)を得ることができるからである。さらに、本発明においては、固体電解質層が、上述した硫化物固体電解質材料を含有することが好ましい。固体電解質層に含まれる上記硫化物固体電解質材料の割合は、例えば10体積%~100体積%の範囲内、中でも50体積%~100体積%の範囲内であることが好ましい。特に、本発明においては、固体電解質層が上記硫化物固体電解質材料のみから構成されていることが好ましい。硫化水素発生量の少ないリチウム電池を得ることができるからである。固体電解質層の厚さは、例えば0.1μm~1000μmの範囲内、中でも0.1μm~300μmの範囲内であることが好ましい。また、固体電解質層の形成方法としては、例えば、固体電解質材料を圧縮成形する方法等を挙げることができる。
 また、本発明における電解質層は、電解液から構成される層であっても良い。電解液を用いることで、高出力なリチウム電池を得ることができる。この場合は、通常、正極活物質層および負極活物質層の少なくとも一方が、上述した硫化物固体電解質材料を含有することになる。また、電解液は、通常、リチウム塩および有機溶媒(非水溶媒)を含有する。リチウム塩としては、例えばLiPF、LiBF、LiClO、LiAsF等の無機リチウム塩、およびLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機リチウム塩等を挙げることができる。上記有機溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート等を挙げることができる。
2.正極活物質層
 次に、本発明における正極活物質層について説明する。本発明における正極活物質層は、少なくとも正極活物質を含有する層であり、必要に応じて、固体電解質材料および導電化材および結着材の少なくとも一つを含有していても良い。特に、本発明においては、正極活物質層に含まれる固体電解質材料が、上述した硫化物固体電解質材料であることが好ましい。硫化水素発生量の少ないリチウム電池を得ることができるからである。正極活物質層に含まれる硫化物固体電解質材料の割合は、リチウム電池の種類によって異なるものであるが、例えば0.1体積%~80体積%の範囲内、中でも1体積%~60体積%の範囲内、特に10体積%~50体積%の範囲内であることが好ましい。また、正極活物質としては、例えばLiCoO、LiMnO、LiNiMn、LiVO、LiCrO、LiFePO、LiCoPO、LiNiO、LiNi1/3Co1/3Mn1/3等を挙げることができる。
 本発明における正極活物質層は、さらに導電化材を含有していても良い。導電化材の添加により、正極活物質層の導電性を向上させることができる。導電化材としては、例えばアセチレンブラック、ケッチェンブラック、カーボンファイバー等を挙げることができる。また、正極活物質層は、結着材を含有していても良い。結着材の種類としては、例えば、フッ素含有結着材等を挙げることができる。また、正極活物質層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
3.負極活物質層
 次に、本発明における負極活物質層について説明する。本発明における負極活物層は、少なくとも負極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つを含有していても良い。特に、本発明においては、負極活物質層に含まれる固体電解質材料が、上述した硫化物固体電解質材料であることが好ましい。硫化水素発生量の少ないリチウム電池を得ることができるからである。負極活物質層に含まれる硫化物固体電解質材料の割合は、リチウム電池の種類によって異なるものであるが、例えば0.1体積%~80体積%の範囲内、中でも1体積%~60体積%の範囲内、特に10体積%~50体積%の範囲内であることが好ましい。また、負極活物質としては、例えば金属活物質およびカーボン活物質を挙げることができる。金属活物質としては、例えばIn、Al、SiおよびSn等を挙げることができる。一方、カーボン活物質としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。なお、負極活物質層に用いられる固体電解質材料および導電化材については、上述した正極活物質層における場合と同様である。また、負極活物質層の厚さは、例えば0.1μm~1000μmの範囲内である。
4.その他の構成
 本発明のリチウム電池は、上述した正極活物質層、電解質層および負極活物質層を少なくとも有するものである。さらに通常は、正極活物質層の集電を行う正極集電体、および負極活物質の集電を行う負極集電体を有する。正極集電体の材料としては、例えばSUS、アルミニウム、ニッケル、鉄、チタンおよびカーボン等を挙げることができ、中でもSUSが好ましい。一方、負極集電体の材料としては、例えばSUS、銅、ニッケルおよびカーボン等を挙げることができ、中でもSUSが好ましい。また、正極集電体および負極集電体の厚さや形状等については、リチウム電池の用途等に応じて適宜選択することが好ましい。また、本発明に用いられる電池ケースには、一般的なリチウム電池の電池ケースを用いることができる。電池ケースとしては、例えばSUS製電池ケース等を挙げることができる。また、本発明のリチウム電池が全固体電池である場合、発電要素を絶縁リングの内部に形成しても良い。
5.リチウム電池
 本発明のリチウム電池は、一次電池であっても良く、二次電池であっても良いが、中でも二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。本発明のリチウム電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。
 また、本発明のリチウム電池の製造方法は、上述したリチウム電池を得ることができる方法であれば特に限定されるものではなく、一般的なリチウム電池の製造方法と同様の方法を用いることができる。例えば、本発明のリチウム電池が全固体電池である場合、その製造方法の一例としては、正極活物質層を構成する材料、固体電解質層を構成する材料、および負極活物質層を構成する材料を順次プレスすることにより、発電要素を作製し、この発電要素を電池ケースの内部に収納し、電池ケースをかしめる方法等を挙げることができる。また、本発明においては、上述した硫化物固体電解質を含有することを特徴とする、正極活物質層、負極活物質層および固体電解質層をそれぞれ提供することもできる。
C.硫化物固体電解質材料の製造方法
 次に、本発明の硫化物固体電解質材料の製造方法について説明する。本発明の硫化物固体電解質材料の製造方法は、LiSと、第14族または第15族の元素を含む硫化物とを含有する原料組成物を調製する調製工程と、上記原料組成物を、非晶質化処理により非晶質化する非晶質化工程とを有し、上記原料組成物が、上記LiS、および上記第14族または第15族の元素を含む硫化物を、架橋硫黄およびLiSを実質的に含有しない硫化物固体電解質材料を得ることができる割合で含有していることを特徴とするものである。
 本発明によれば、原料組成物が、LiSと、第14族または第15族の元素を含む硫化物とを、所定の割合で含有しているため、硫化水素発生量の少ない硫化物固体電解質材料を得ることができる。
 図2は、本発明の硫化物固体電解質材料の製造方法の一例を説明する説明図である。図2に示される製造方法においては、まず、出発原料として、硫化リチウム(LiS)および五硫化リン(P)を用意する。次に、これらの出発原料を、LiSのモル分率が75%となるように混合し、原料組成物を調製する(調製工程)。その後、原料組成物および粉砕用ボールをポットに投入し、ポットを密閉する。次に、このポットを、遊星型ボールミル機に取り付けて、原料組成物を非晶質化する(非晶質化工程)。これにより、原料組成物から、架橋硫黄およびLiSを実質的に含有しない硫化物固体電解質材料を得る。
 以下、本発明の硫化物固体電解質材料の製造方法について、工程ごとに説明する。なお、本発明においては、後述する各工程を不活性ガス雰囲気下(例えばArガス雰囲気下)で行うことが好ましい。
1.調製工程
 本発明における調製工程は、LiSと、第14族または第15族の元素を含む硫化物とを含有する原料組成物を調製する工程である。さらに、原料組成物は、LiSと第14族または第15族の元素を含む硫化物とを、架橋硫黄およびLiSを実質的に含有しない硫化物固体電解質材料を得ることができる割合で含有する。なお、本発明に用いられる原料組成物については、上記「A.硫化物固体電解質材料」に記載した内容と同様であるので、ここでの記載は省略する。また、原料組成物は、各成分が均一に分散していることが好ましい。
2.非晶質化工程
 本発明における非晶質化工程は、上記原料組成物を、非晶質化処理により非晶質化する工程である。これにより、通常、硫化物ガラスが得られる。非晶質化処理としては、例えばメカニカルミリング法および溶融急冷法を挙げることができ、中でもメカニカルミリング法が好ましい。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
 メカニカルミリングは、原料組成物を、機械的エネルギーを付与しながら混合する方法であれば特に限定されるものではないが、例えばボールミル、ターボミル、メカノフュージョン、ディスクミル等を挙げることができ、中でもボールミルが好ましく、特に遊星型ボールミルが好ましい。所望の硫化物固体電解質材料を効率良く得ることができるからである。
 また、メカニカルミリングの各種条件は、架橋硫黄およびLiSを実質的に含有しない硫化物固体電解質材料を得ることができる程度に設定することが好ましい。例えば、遊星型ボールミルにより硫化物固体電解質材料を合成する場合、ポット内に、原料組成物および粉砕用ボールを加え、所定の回転数および時間で処理を行う。一般的に、回転数が大きいほど、硫化物固体電解質材料の生成速度は速くなり、処理時間が長いほど、原料組成物から硫化物固体電解質材料への転化率は高くなる。遊星型ボールミルを行う際の回転数としては、例えば200rpm~500rpmの範囲内、中でも250rpm~400rpmの範囲内であることが好ましい。また、遊星型ボールミルを行う際の処理時間は、例えば1時間~100時間の範囲内、中でも1時間~50時間の範囲内であることが好ましい。
3.熱処理工程
 本発明においては、非晶質化工程で得られた硫化物ガラスを熱処理する熱処理工程を行っても良い。これにより、通常、結晶化硫化物ガラスが得られる。なお、熱処理の条件によっては、架橋硫黄およびLiSが生成する可能性や準安定相が生成する可能性があるため、本発明においては、これらが生成しないように、熱処理温度および熱処理時間を調整することが好ましい。
4.その他
 本発明により得られる硫化物固体電解質材料については、上記「A.硫化物固体電解質材料」に記載した内容と同様であるので、ここでの記載は省略する。また、本発明においては、上述した調製工程および非晶質化工程により得られたことを特徴とする硫化物固体電解質材料を提供することができる。同様に、本発明においては、上述した調製工程、非晶質化工程および熱処理工程により得られたことを特徴とする硫化物固体電解質材料を提供することができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例を示して本発明をさらに具体的に説明する。
[実施例1-1~1-3]
 出発原料として、硫化リチウム(LiS)と五硫化リン(P)とを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、xLiS・(100-x)Pの組成において、x=70のモル比となるように秤量し、メノウ乳鉢で混合し、原料組成物を得た。次に、得られた原料組成物1gを45mlのジルコニアポットに投入し、さらにジルコニアボール(Φ10mm、10個)を投入し、ポットを完全に密閉した。このポットを遊星型ボールミル機に取り付け、回転数370rpmで40時間メカニカルミリングを行い、硫化物固体電解質材料を得た(実施例1-1)。また、xLiS・(100-x)Pの組成において、xの値を、それぞれx=75,80に変化させたこと以外は、実施例1-1と同様にして、硫化物固体電解質材料を得た(実施例1-2、1-3)。
[比較例1-1~1-4]
 xLiS・(100-x)Pの組成において、xの値を、それぞれx=0,50,66.7,100に変化させたこと以外は、実施例1-1と同様にして、硫化物固体電解質材料を得た。
[比較例1-5]
 実施例1-1で得られた硫化物固体電解質材料(x=70)を、さらに、アルゴン雰囲気中、290℃、2時間熱の条件で処理することで、結晶化硫化物ガラスからなる硫化物固体電解質材料を得た。
[評価1]
(ラマン分光測定)
 実施例1-1~1-3、比較例1-2、1-3で得られた硫化物固体電解質材料を用いて、ラマン分光測定を行った。その結果を図3に示す。図3に示されるように、比較例1-2(x=50)および比較例1-3(x=66.7)では、417cm-1付近に架橋硫黄を有するP(SP-S-PS)のピークが確認された。一方、実施例1-1(x=70)、実施例1-2(x=75)および実施例1-3(x=80)では、強度I402/強度I417が、それぞれ、65%、30%および14%となった。これにより、実施例1-1~1-3で得られた硫化物固体電解質材料は、架橋硫黄を実質的に有していないことが確認された。
(X線回折測定)
 実施例1-1、1-2、比較例1-2、1-4で得られた硫化物固体電解質材料を用いて、X線回折測定を行った。その結果を図4に示す。図4に示されるように、比較例1-4(x=100)では、LiSのピークが確認されたが、実施例1-1、1-2、比較例1-2では、LiSのピークが確認されなかった。これにより、実施例1-1、1-2、比較例1-2で得られた硫化物固体電解質材料は、LiSを実質的に有していないことが確認された。
(ペレットとしての硫化物発生量の測定)
 実施例1-1~1-3、比較例1-1~1-4で得られた硫化物固体電解質材料をそれぞれ100mg秤量し、これらの試料を、面積1cmの成形部を有するペレット成形機を用いて、5.1ton/cmの圧力でプレスし、ペレットを得た。その後、得られたペレットを密閉されたデシケータ(1755cc、大気雰囲気、温度25℃、湿度40%)の内部に配置し、最初の300秒間で発生した硫化水素の発生量を、硫化水素センサーを用いて測定した。これらの結果を図5に示す。
 図5に示すように、実施例1-1~1-3は、比較例1-1~1-4に比べて、硫化水素発生量が低いことが確認された。特に、オルト組成を得る値(x=75)において、硫化水素発生量が最小値(0.2cc/g)を示した。
(電池としての硫化物発生量の測定)
 実施例1-2および比較例1-5で得られた硫化物固体電解質材料を用いて、それぞれ全固体リチウム電池を作製した。なお、電池の作製は、全てアルゴン雰囲気中で行った。まず、硫化物固体電解質材料(51mg)を、ペレット成形機を用いて、1ton/cmの圧力でプレスし、固体電解質層を形成した。次に、固体電解質層の表面上に、LiCoO(8.9mg)および上記の硫化物固体電解質材料(3.8mg)からなる正極合剤を添加し、ペレット成形機を用いて、1ton/cmの圧力でプレスし、正極活物質層を形成した。次に、正極活物質層が形成されていない固体電解質層の表面上に、グラファイト(4.71mg)および上記の硫化物固体電解質材料(4.71mg)からなる負極合剤を添加し、ペレット成形機を用いて、4.3ton/cmの圧力でプレスし、負極活物質層を形成した。これにより発電要素を得た。その発電要素を、集電体であるSUSで挟み、全固体リチウム電池を作製した。
 得られた全固体リチウム電池を密閉されたデシケータ(1755cc、大気雰囲気、温度25℃、湿度40%)の内部に配置し、大気暴露時間に対する硫化水素発生量の変化を、硫化水素センサーを用いて測定した。これらの結果を図6に示す。図6に示されるように、比較例1-5では、硫化水素発生量が経時的に増加し、150秒経過時における硫化水素発生量は0.056ccであった。これに対して、実施例1-2では、硫化水素発生量の経時的な増加は見られず、150秒経過時における硫化水素発生量は、0.001cc以下であった。
[実施例2-1、2-2]
 出発原料として、硫化リチウム(LiS)と硫化珪素(SiS)とを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、xLiS・(100-x)SiSの組成において、x=50のモル比となるように秤量し、メノウ乳鉢で混合し、原料組成物を得た。この原料組成物を用いたこと以外は、実施例1-1と同様にして、硫化物固体電解質材料を得た(実施例2-1)。また、xLiS・(100-x)SiSの組成において、xの値を、x=66.7に変化させたこと以外は、実施例2-1と同様にして、硫化物固体電解質材料を得た(実施例2-2)。
[比較例2-1、2-2]
 xLiS・(100-x)SiSの組成において、xの値を、それぞれx=0,100に変化させたこと以外は、実施例2-1と同様にして、硫化物固体電解質材料を得た。
[実施例3-1~3-3]
 出発原料として、硫化リチウム(LiS)と硫化ゲルマニウム(GeS)とを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、xLiS・(100-x)GeSの組成において、x=50のモル比となるように秤量し、メノウ乳鉢で混合し、原料組成物を得た。この原料組成物を用いたこと以外は、実施例1-1と同様にして、硫化物固体電解質材料を得た(実施例3-1)。また、xLiS・(100-x)GeSの組成において、xの値を、それぞれx=66.7,75に変化させたこと以外は、実施例3-1と同様にして、硫化物固体電解質材料を得た(実施例3-2、3-3)。
[比較例3-1、3-2]
 xLiS・(100-x)GeSの組成において、xの値を、それぞれx=0,100に変化させたこと以外は、実施例3-1と同様にして、硫化物固体電解質材料を得た。
[比較例4-1~4-4]
 出発原料として、硫化リチウム(LiS)と硫化アルミニウム(Al)とを用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、xLiS・(100-x)Alの組成において、x=0,50,75,100のモル比となるように秤量し、メノウ乳鉢で混合し、原料組成物を得た。これらの原料組成物を用いたこと以外は、実施例1-1と同様にして、硫化物固体電解質材料を得た。
[評価2]
(ペレットとしての硫化物発生量の測定)
 実施例2-1、2-2、比較例2-1、2-2と、実施例3-1~3-3、比較例3-1、3-2と、比較例4-1~4-4とで得られた硫化物固体電解質材料を用いて、ペレットとしての硫化物発生量の測定を行った。なお、ペレットの作製方法および硫化水素発生量の測定方法は、上記と同様である。それらの結果を図7~図9に示す。図7に示されるように、実施例2-1、2-2は、比較例2-1、2-2に比べて、硫化水素発生量が低いことが確認された。特に、オルト組成を得る値(x=66.7)において、硫化水素発生量が最小値を示した。同様に、図8に示されるように、実施例3-1~3-3は、比較例3-2に比べて、硫化水素発生量が低いことが確認された。特に、オルト組成を得る値(x=66.7)において、硫化水素発生量が最小値を示した。なお、比較例3-1は、Liを含まないため、Liイオン伝導性を示さなかった。一方、図9に示されるように、比較例4-1~4-4では、いずれも硫化水素発生量は高くなった。このように、第13族の元素であるAlを用いた硫化物固体電解質材料の場合、第14族の元素であるSiおよびSi、第15族の元素であるPを用いた硫化物固体電解質材料のように、オルトの組成において極小値を示さないことが確認された。また、実施例2-1、2-2、3-1~3-3で得られた硫化物固体電解質材料を用いて、電池としての硫化物発生量の測定を測定した結果、いずれも硫化水素発生量を低くすることができた。
 1 … 正極活物質層
 2 … 負極活物質層
 3 … 電解質層
 10 … 発電要素

Claims (11)

  1.  LiSと、第14族または第15族の元素の硫化物とを含有する原料組成物を用いてなる硫化物固体電解質材料であって、
     架橋硫黄およびLiSを実質的に含有しないことを特徴とする硫化物固体電解質材料。
  2.  前記架橋硫黄のピークがラマン分光測定により検出されず、前記LiSのピークがX線回折測定により検出されないことを特徴とする請求の範囲第1項に記載の硫化物固体電解質材料。
  3.  前記硫化物固体電解質材料が、硫化物ガラスであることを特徴とする請求の範囲第1項または第2項に記載の硫化物固体電解質材料。
  4.  前記第14族または第15族の元素が、P、SiまたはGeであることを特徴とする請求の範囲第1項から第3項までのいずれかに記載の硫化物固体電解質材料。
  5.  前記原料組成物がLiSおよびPのみを含有し、前記原料組成物に含まれるLiSのモル分率が、70%~85%の範囲内であることを特徴とする請求の範囲第1項から第4項までのいずれかに記載の硫化物固体電解質材料。
  6.  前記原料組成物が、LiSおよびSiSのみ、または、LiSおよびGeSのみを含有し、前記原料組成物に含まれるLiSのモル分率が、50%~80%の範囲内であることを特徴とする請求の範囲第1項から第4項までのいずれかに記載の硫化物固体電解質材料。
  7.  LiSおよびPのみを含有する原料組成物を、非晶質化することによって得られた硫化物固体電解質材料であって、
     前記原料組成物におけるLiSのモル分率が、70%~85%の範囲内であることを特徴とする硫化物固体電解質材料。
  8.  正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、前記正極活物質層および前記負極活物質層の間に形成された電解質層とを有するリチウム電池であって、
     前記正極活物質層、前記負極活物質層および前記電解質層の少なくとも一つが、請求の範囲第1項から第7項までのいずれかに記載の硫化物固体電解質材料を含有することを特徴とするリチウム電池。
  9.  LiSと、第14族または第15族の元素を含む硫化物とを含有する原料組成物を調製する調製工程と、
     前記原料組成物を、非晶質化処理により非晶質化する非晶質化工程とを有し、
     前記原料組成物が、前記LiS、および前記第14族または第15族の元素を含む硫化物を、架橋硫黄およびLiSを実質的に含有しない硫化物固体電解質材料を得ることができる割合で含有していることを特徴とする硫化物固体電解質材料の製造方法。
  10.  前記原料組成物がLiSおよびPのみを含有し、前記原料組成物に含まれるLiSのモル分率が、70%~85%の範囲内であることを特徴とする請求の範囲第9項に記載の硫化物固体電解質材料の製造方法。
  11.  前記非晶質化処理が、メカニカルミリングであることを特徴とする請求の範囲第9項または第10項に記載の硫化物固体電解質材料の製造方法。
PCT/JP2010/051407 2009-02-27 2010-02-02 硫化物固体電解質材料 WO2010098177A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020137020323A KR101718187B1 (ko) 2009-02-27 2010-02-02 황화물 고체 전해질 재료
AU2010218963A AU2010218963B2 (en) 2009-02-27 2010-02-02 Sulfide solid electrolyte material
US13/203,379 US9064615B2 (en) 2009-02-27 2010-02-02 Sulfide solid electrolyte material
EP10746058.6A EP2403046B1 (en) 2009-02-27 2010-02-02 Solid sulfide electrolyte material
CN201080009590.4A CN102334225B (zh) 2009-02-27 2010-02-02 硫化物固体电解质材料
US14/709,943 US20150249266A1 (en) 2009-02-27 2015-05-12 Sulfide solid electrolyte material
US14/710,013 US20150244024A1 (en) 2009-02-27 2015-05-12 Sulfide solid electrolyte material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009045784A JP5448038B2 (ja) 2009-02-27 2009-02-27 硫化物固体電解質材料
JP2009-045784 2009-02-27

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/203,379 A-371-Of-International US9064615B2 (en) 2009-02-27 2010-02-02 Sulfide solid electrolyte material
US14/709,943 Division US20150249266A1 (en) 2009-02-27 2015-05-12 Sulfide solid electrolyte material
US14/710,013 Division US20150244024A1 (en) 2009-02-27 2015-05-12 Sulfide solid electrolyte material

Publications (1)

Publication Number Publication Date
WO2010098177A1 true WO2010098177A1 (ja) 2010-09-02

Family

ID=42665387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051407 WO2010098177A1 (ja) 2009-02-27 2010-02-02 硫化物固体電解質材料

Country Status (7)

Country Link
US (3) US9064615B2 (ja)
EP (2) EP2916381B1 (ja)
JP (1) JP5448038B2 (ja)
KR (2) KR101718187B1 (ja)
CN (2) CN104659411B (ja)
AU (1) AU2010218963B2 (ja)
WO (1) WO2010098177A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257878A (ja) * 2009-04-28 2010-11-11 Toyota Motor Corp 全固体電池
WO2011030696A1 (ja) * 2009-09-09 2011-03-17 公立大学法人大阪府立大学 硫化物固体電解質
JP2011060649A (ja) * 2009-09-11 2011-03-24 Toyota Motor Corp 電極活物質層、全固体電池、電極活物質層の製造方法および全固体電池の製造方法
JP2011076792A (ja) * 2009-09-29 2011-04-14 Toyota Motor Corp 固体電解質層、電極活物質層、全固体リチウム電池、固体電解質層の製造方法、および電極活物質層の製造方法
JP2012054212A (ja) * 2010-09-03 2012-03-15 Toyota Motor Corp 硫化物固体電解質材料、硫化物固体電解質材料の製造方法およびリチウム固体電池
JP2013030440A (ja) * 2011-07-29 2013-02-07 Tokyo Institute Of Technology 固体電解質およびリチウム電池
WO2013099834A1 (ja) * 2011-12-28 2013-07-04 三井金属鉱業株式会社 硫化物系固体電解質
US8993176B2 (en) 2010-07-22 2015-03-31 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte glass, method for producing sulfide solid electrolyte glass, and lithium solid state battery

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5448038B2 (ja) 2009-02-27 2014-03-19 公立大学法人大阪府立大学 硫化物固体電解質材料
JP5716261B2 (ja) * 2009-03-16 2015-05-13 トヨタ自動車株式会社 結晶化硫化物固体電解質材料の製造方法
US9160034B2 (en) 2010-06-29 2015-10-13 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid electrolyte material and method for producing lithium solid state battery
JP5833834B2 (ja) * 2010-10-01 2015-12-16 出光興産株式会社 硫化物固体電解質、硫化物固体電解質シート及び全固体リチウム電池
JP5652132B2 (ja) * 2010-10-29 2015-01-14 トヨタ自動車株式会社 無機固体電解質及びリチウム二次電池
JP5522086B2 (ja) * 2011-02-25 2014-06-18 トヨタ自動車株式会社 イオン伝導体材料、固体電解質層、電極活物質層および全固体電池
JP5731278B2 (ja) * 2011-05-24 2015-06-10 株式会社オハラ 全固体リチウムイオン電池
JP5747985B2 (ja) * 2011-06-29 2015-07-15 トヨタ自動車株式会社 固体電解質層、二次電池用電極層および全固体二次電池
CN103688401A (zh) * 2011-07-26 2014-03-26 丰田自动车株式会社 锂固体二次电池系统
KR101449390B1 (ko) * 2011-09-22 2014-10-08 이데미쓰 고산 가부시키가이샤 유리 입자
JP6234665B2 (ja) 2011-11-07 2017-11-22 出光興産株式会社 固体電解質
JP6077740B2 (ja) * 2011-12-02 2017-02-08 出光興産株式会社 固体電解質
WO2014073197A1 (ja) 2012-11-06 2014-05-15 出光興産株式会社 固体電解質
JP6107192B2 (ja) 2013-02-08 2017-04-05 Tdk株式会社 硫化物固体電解質材料および電気化学素子
JP5720753B2 (ja) 2013-10-02 2015-05-20 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US9853323B2 (en) 2013-10-31 2017-12-26 Samsung Electronics Co., Ltd. Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2015225776A (ja) * 2014-05-28 2015-12-14 トヨタ自動車株式会社 全固体電池の製造方法
US10147968B2 (en) 2014-12-02 2018-12-04 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US11984553B2 (en) 2014-12-02 2024-05-14 Polyplus Battery Company Lithium ion conducting sulfide glass fabrication
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
US10164289B2 (en) 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US10601071B2 (en) 2014-12-02 2020-03-24 Polyplus Battery Company Methods of making and inspecting a web of vitreous lithium sulfide separator sheet and lithium electrode assemblies
KR101646416B1 (ko) * 2014-12-18 2016-08-05 현대자동차주식회사 붕산염이 첨가된 전고체 이차전지용 황화물계 결정화 유리 및 이의 제조방법
CN104752759B (zh) * 2015-04-23 2017-02-01 中南大学 结晶态Li‑Sn‑S系无机锂离子固体电解质的制备方法
JP6678405B2 (ja) * 2015-07-09 2020-04-08 国立大学法人東京工業大学 リチウム固体電解質
JP6554978B2 (ja) * 2015-07-30 2019-08-07 株式会社村田製作所 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR102126144B1 (ko) 2016-02-19 2020-06-23 후지필름 가부시키가이샤 고체 전해질 조성물, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지의 제조 방법
US10707536B2 (en) 2016-05-10 2020-07-07 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
CN107394120B (zh) * 2016-05-16 2022-03-29 松下知识产权经营株式会社 硫化物固体电解质材料、正极材料以及电池
JP6780479B2 (ja) * 2016-12-09 2020-11-04 トヨタ自動車株式会社 硫化物固体電解質の製造方法
CN106505247A (zh) * 2016-12-26 2017-03-15 中国科学院宁波材料技术与工程研究所 全固态钠电池电解质、其制备方法以及全固态钠二次电池
JP6558357B2 (ja) * 2016-12-27 2019-08-14 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法
CN106785019B (zh) * 2017-02-13 2019-04-12 桂林电器科学研究院有限公司 一种含溴化银和氯化银的硫化锂系固体电解质材料及其制备方法
CN106785001B (zh) * 2017-02-13 2018-08-21 桂林电器科学研究院有限公司 一种含氯化银的硫化锂系固体电解质材料及其制备方法
CN106611872A (zh) * 2017-02-13 2017-05-03 桂林电器科学研究院有限公司 一种含银卤族化合物复合粉末的硫化锂系固体电解质材料及其制备方法
CN106785002A (zh) * 2017-02-13 2017-05-31 桂林电器科学研究院有限公司 一种含碘化银的硫化锂系固体电解质材料及其制备方法
CN106684461A (zh) * 2017-02-13 2017-05-17 桂林电器科学研究院有限公司 一种含碘化银和溴化银的硫化锂系固体电解质材料及其制备方法
CN106785005A (zh) * 2017-02-13 2017-05-31 桂林电器科学研究院有限公司 一种含碘化银和氯化银的硫化锂系固体电解质材料及其制备方法
CN106785020A (zh) * 2017-02-13 2017-05-31 桂林电器科学研究院有限公司 一种含溴化银的硫化锂系固体电解质材料及其制备方法
CN106785022A (zh) * 2017-02-13 2017-05-31 桂林电器科学研究院有限公司 一种添加锂硅合金、碘化银和溴化银的硫化锂系固体电解质材料及其制备方法
JP6683165B2 (ja) * 2017-04-05 2020-04-15 トヨタ自動車株式会社 全固体電池の製造方法
JP7369988B2 (ja) * 2017-06-14 2023-10-27 パナソニックIpマネジメント株式会社 硫化物固体電解質材料を用いた電池
US11370670B2 (en) 2017-07-05 2022-06-28 Toyota Motor Europe Lithium mixed metal sulfide with high ionic conductivity
US10629950B2 (en) 2017-07-07 2020-04-21 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US10862171B2 (en) 2017-07-19 2020-12-08 Polyplus Battery Company Solid-state laminate electrode assembly fabrication and making thin extruded lithium metal foils
JP6978887B2 (ja) * 2017-10-10 2021-12-08 古河機械金属株式会社 無機材料の製造方法
EP3736834A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL, AND BATTERY
JPWO2019135348A1 (ja) 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JP7417925B2 (ja) 2018-01-05 2024-01-19 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
CN111492443B (zh) 2018-01-05 2022-04-29 松下知识产权经营株式会社 固体电解质材料和电池
CN111480258B (zh) 2018-01-05 2024-05-24 松下知识产权经营株式会社 电池
EP3736826A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE AND BATTERY
CN111316485B (zh) 2018-01-05 2023-10-20 松下知识产权经营株式会社 正极材料及电池
CN111295720B (zh) 2018-01-05 2022-05-10 松下知识产权经营株式会社 固体电解质材料及电池
JP7182114B2 (ja) 2018-01-05 2022-12-02 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
EP3736827A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL AND BATTERY
CN111587508A (zh) 2018-01-26 2020-08-25 松下知识产权经营株式会社 电池
WO2019146292A1 (ja) 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 正極材料およびそれを用いた電池
CN111566853B (zh) 2018-01-26 2024-04-19 松下知识产权经营株式会社 正极材料和使用该正极材料的电池
JP7075006B2 (ja) * 2018-04-27 2022-05-25 富士通株式会社 固体電解質、及びその製造方法、並びに電池、及びその製造方法
EP3890063A4 (en) 2018-11-29 2022-01-19 Panasonic Intellectual Property Management Co., Ltd. NEGATIVE ELECTRODE MATERIAL AND BATTERY
JP7429870B2 (ja) 2018-11-29 2024-02-09 パナソニックIpマネジメント株式会社 負極材料、および電池
CN112242557B (zh) * 2019-07-19 2022-03-18 比亚迪股份有限公司 一种锂离子电池固态电解质及其制备方法和固态锂离子电池
CN110526219A (zh) * 2019-08-26 2019-12-03 浙江工业大学 一种硫化锂粉体的合成方法
CN110526247A (zh) * 2019-08-26 2019-12-03 浙江工业大学 一种硫化硅粉体的机械球磨合成方法
CN110578173B (zh) * 2019-10-25 2020-10-02 河北大学 一种非线性光学晶体锶锂硅硫及其制备方法与应用
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
US12021187B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Surface treatment of a sulfide glass solid electrolyte layer
US12021238B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Glassy embedded solid-state electrode assemblies, solid-state batteries and methods of making electrode assemblies and solid-state batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275322A (ja) * 1993-03-22 1994-09-30 Matsushita Electric Ind Co Ltd リチウム電池
JP2008004334A (ja) * 2006-06-21 2008-01-10 Idemitsu Kosan Co Ltd 硫化物系固体電解質の製造方法
JP2008103287A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 無機固体電解質層の形成方法
JP2009110920A (ja) * 2007-10-11 2009-05-21 Idemitsu Kosan Co Ltd 硫化物系固体電解質の製造方法、全固体リチウム二次電池、全固体リチウム一次電池及びこれらを備えた装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3125507B2 (ja) 1993-03-26 2001-01-22 松下電器産業株式会社 硫化物系リチウムイオン導電性固体電解質及びその合成法
JP3528866B2 (ja) 1994-06-03 2004-05-24 出光石油化学株式会社 硫化リチウムの製造方法
JP3510420B2 (ja) 1996-04-16 2004-03-29 松下電器産業株式会社 リチウムイオン伝導性固体電解質およびその製造方法
JP3433173B2 (ja) 2000-10-02 2003-08-04 大阪府 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池
JP2003208919A (ja) * 2002-01-15 2003-07-25 Idemitsu Petrochem Co Ltd リチウムイオン伝導性硫化物ガラス及びガラスセラミックスの製造方法並びに該ガラスセラミックスを用いた全固体型電池
EP1681263B1 (en) 2003-10-23 2011-06-22 Idemitsu Kosan Co., Ltd. Method for purifying lithium sulfide
JP4813767B2 (ja) * 2004-02-12 2011-11-09 出光興産株式会社 リチウムイオン伝導性硫化物系結晶化ガラス及びその製造方法
JPWO2007066539A1 (ja) 2005-12-09 2009-05-14 出光興産株式会社 リチウムイオン伝導性硫化物系固体電解質及びそれを用いた全固体リチウム電池
JP5270825B2 (ja) * 2006-10-17 2013-08-21 出光興産株式会社 ガラス組成物及びガラスセラミックの製造方法
US20100047691A1 (en) 2006-10-25 2010-02-25 Sumitomo Chemical Company, Limited Lithium secondary battery
CN102160232B (zh) * 2008-10-03 2014-07-02 丰田自动车株式会社 全固体型锂电池的制造方法
RU2010106606A (ru) * 2009-01-21 2013-03-10 Тойота Дзидося Кабусики Кайся Сульфидный твердый электролитный материал
JP5448038B2 (ja) 2009-02-27 2014-03-19 公立大学法人大阪府立大学 硫化物固体電解質材料
JP5158008B2 (ja) * 2009-04-28 2013-03-06 トヨタ自動車株式会社 全固体電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275322A (ja) * 1993-03-22 1994-09-30 Matsushita Electric Ind Co Ltd リチウム電池
JP2008004334A (ja) * 2006-06-21 2008-01-10 Idemitsu Kosan Co Ltd 硫化物系固体電解質の製造方法
JP2008103287A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 無機固体電解質層の形成方法
JP2009110920A (ja) * 2007-10-11 2009-05-21 Idemitsu Kosan Co Ltd 硫化物系固体電解質の製造方法、全固体リチウム二次電池、全固体リチウム一次電池及びこれらを備えた装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASAHIRO TATSUMISAGO ET AL.: "Lithium Ion Dendosei Kesshoka Glass", CERAMICS, THE CERAMIC SOCIETY OF JAPAN, vol. 43, no. 12, 2008, pages 1051 - 1054 *
See also references of EP2403046A1 *
SHO NAKAGAWA ET AL.: "Li2S-P2S5-kei Glass Oyobi Glass Ceramics no Kotai 31PNMR-ho ni yoru Kozo Kaiseki", KOTAI NMR?ZAIRYO FORUM HOKOKU, no. 44/9, 2008, pages 27 - 30 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257878A (ja) * 2009-04-28 2010-11-11 Toyota Motor Corp 全固体電池
US8557445B2 (en) 2009-04-28 2013-10-15 Toyota Jidosha Kabushiki Kaisha All solid state battery containing an electrolyte comprising chalcogens
WO2011030696A1 (ja) * 2009-09-09 2011-03-17 公立大学法人大阪府立大学 硫化物固体電解質
JP2011057500A (ja) * 2009-09-09 2011-03-24 Osaka Prefecture Univ 硫化物固体電解質
US9537174B2 (en) 2009-09-09 2017-01-03 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte
JP2011060649A (ja) * 2009-09-11 2011-03-24 Toyota Motor Corp 電極活物質層、全固体電池、電極活物質層の製造方法および全固体電池の製造方法
JP2011076792A (ja) * 2009-09-29 2011-04-14 Toyota Motor Corp 固体電解質層、電極活物質層、全固体リチウム電池、固体電解質層の製造方法、および電極活物質層の製造方法
US8993176B2 (en) 2010-07-22 2015-03-31 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte glass, method for producing sulfide solid electrolyte glass, and lithium solid state battery
JP2012054212A (ja) * 2010-09-03 2012-03-15 Toyota Motor Corp 硫化物固体電解質材料、硫化物固体電解質材料の製造方法およびリチウム固体電池
JP2013030440A (ja) * 2011-07-29 2013-02-07 Tokyo Institute Of Technology 固体電解質およびリチウム電池
WO2013099834A1 (ja) * 2011-12-28 2013-07-04 三井金属鉱業株式会社 硫化物系固体電解質

Also Published As

Publication number Publication date
US20150249266A1 (en) 2015-09-03
CN104659411A (zh) 2015-05-27
CN102334225B (zh) 2015-03-04
CN104659411B (zh) 2017-06-13
KR20130105724A (ko) 2013-09-25
EP2916381A1 (en) 2015-09-09
JP5448038B2 (ja) 2014-03-19
EP2403046B1 (en) 2015-05-06
KR20110120916A (ko) 2011-11-04
EP2403046A4 (en) 2013-01-02
EP2403046A1 (en) 2012-01-04
AU2010218963B2 (en) 2014-05-29
AU2010218963A1 (en) 2011-09-29
JP2010199033A (ja) 2010-09-09
US20120034529A1 (en) 2012-02-09
US9064615B2 (en) 2015-06-23
EP2916381B1 (en) 2016-06-15
CN102334225A (zh) 2012-01-25
KR101718187B1 (ko) 2017-03-20
US20150244024A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP5448038B2 (ja) 硫化物固体電解質材料
US10707518B2 (en) Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
JP5458740B2 (ja) 硫化物固体電解質材料
JP5158008B2 (ja) 全固体電池
JP5594364B2 (ja) 硫化物固体電解質材料の製造方法、リチウム固体電池の製造方法
JP5110093B2 (ja) 硫化物固体電解質材料
JP5552974B2 (ja) 硫化物固体電解質材料、硫化物固体電解質材料の製造方法およびリチウム固体電池
JP5594253B2 (ja) 硫化物固体電解質材料、リチウム固体電池、および、硫化物固体電解質材料の製造方法
JP5471409B2 (ja) 硫化物固体電解質材料、リチウム電池および硫化物固体電解質材料の製造方法
JP6256980B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6208570B2 (ja) 硫化物固体電解質材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009590.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746058

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20117019806

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010746058

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010218963

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010218963

Country of ref document: AU

Date of ref document: 20100202

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13203379

Country of ref document: US