WO2011030696A1 - 硫化物固体電解質 - Google Patents

硫化物固体電解質 Download PDF

Info

Publication number
WO2011030696A1
WO2011030696A1 PCT/JP2010/064837 JP2010064837W WO2011030696A1 WO 2011030696 A1 WO2011030696 A1 WO 2011030696A1 JP 2010064837 W JP2010064837 W JP 2010064837W WO 2011030696 A1 WO2011030696 A1 WO 2011030696A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide solid
glass
crystallized glass
sulfide
Prior art date
Application number
PCT/JP2010/064837
Other languages
English (en)
French (fr)
Inventor
辰巳砂 昌弘
晃敏 林
重規 濱
浩二 川本
崇督 大友
Original Assignee
公立大学法人大阪府立大学
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪府立大学, トヨタ自動車株式会社 filed Critical 公立大学法人大阪府立大学
Priority to EP10815293.5A priority Critical patent/EP2476655B1/en
Priority to US13/389,129 priority patent/US9537174B2/en
Priority to KR1020127003451A priority patent/KR101361352B1/ko
Priority to CN201080039975.5A priority patent/CN102574728B/zh
Publication of WO2011030696A1 publication Critical patent/WO2011030696A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a sulfide solid electrolyte having excellent ionic conductivity, and a method for producing crystallized glass contained in the sulfide solid electrolyte.
  • the secondary battery can convert the decrease in chemical energy associated with the chemical reaction into electrical energy and perform discharge.
  • the secondary battery converts electrical energy into chemical energy by flowing current in the opposite direction to that during discharge. It is a battery that can be stored (charged).
  • lithium secondary batteries are widely used as power sources for notebook personal computers, mobile phones, and the like because of their high energy density.
  • lithium cobaltate Li 0.4 CoO 2
  • the reaction of formula (II) proceeds at the positive electrode during discharge.
  • reverse reactions of the above formulas (I) and (II) proceed in the negative electrode and the positive electrode, respectively, and in the negative electrode, graphite (C 6 Li) into which lithium has entered by graphite intercalation is present in the positive electrode. Since lithium cobaltate (Li 0.4 CoO 2 ) is regenerated, re-discharge is possible.
  • lithium batteries with solid electrolytes and solidified batteries do not use flammable organic solvents in the batteries, so they can be safely and simplified, and can be manufactured at low cost. It is considered excellent.
  • sulfide solid electrolytes are known as solid electrolyte materials used for such solid electrolytes.
  • Non-Patent Document 1 discloses an amorphous material represented by the chemical formula of 75 ⁇ (1-x) Li 2 O ⁇ xLi 2 S ⁇ ⁇ 25P 2 S 5.
  • a technique related to a sulfide solid electrolyte having a structure is disclosed.
  • the change of the ionic conductivity which the chemical structure in an electrolyte brings about is not considered at all.
  • the present invention has been accomplished in view of the above-described circumstances, and provides a sulfide solid electrolyte having excellent ionic conductivity, and a method for producing crystallized glass contained in the sulfide solid electrolyte. Objective.
  • the sulfide solid electrolyte of the present invention includes a crystallized glass represented by the chemical formula shown in the following formula (1).
  • yLi 2 S ⁇ (100-xy) P 2 S 5 ⁇ xP 2 O 5 Formula (1) (In the above formula (1), 0 ⁇ x ⁇ 25 and 67 ⁇ y ⁇ 80.)
  • the sulfide solid electrolyte having such a configuration includes crystallized glass having the composition represented by the above formula (1), it is compared with a sulfide solid electrolyte comprising only amorphous glass having the composition represented by the above formula (1).
  • the lithium ion conduction path is formed in a more orderly manner, and therefore, lithium ion conductivity higher than that of the sulfide solid electrolyte composed of only the amorphous glass can be exhibited.
  • the sulfide solid electrolyte of such a structure contains the crystallized glass of the ortho composition which does not contain bridge
  • the crystallinity of the crystallized glass is preferably 50 to 100%.
  • the sulfide solid electrolyte having such a configuration can sufficiently exhibit lithium ion conductivity by appropriately having an ordered lithium ion conduction path.
  • the sulfide solid electrolyte of the present invention preferably has an ortho composition.
  • the sulfide solid electrolyte of the present invention preferably contains PS 4 3- ions.
  • Method for producing a crystallized glass of the present invention includes Li 2 S, a P 2 S 5 and P 2 O 5, and, 100 mol of the total content of the Li 2 S, P 2 S 5 and P 2 O 5 %,
  • the raw material composition preparation step for preparing the raw material composition so that the content ratio of Li 2 S is in the range of 67 mol% to 80 mol%, and non-amorphization treatment of the raw material composition It has a crystallization process, and a crystallization process for crystallizing the glass obtained by the amorphization process by heating.
  • the crystallized glass used for the sulfide solid electrolyte according to the present invention can be produced by the method for producing crystallized glass having such a configuration.
  • the method for producing crystallized glass having such a configuration is such that, in the raw material composition preparation step, the content ratio of Li 2 S in the raw material composition is in the range of 67 mol% to 80 mol%, thereby producing an ortho composition. A crystallized glass is obtained.
  • the crystallized glass having the composition represented by the formula (1) since the crystallized glass having the composition represented by the formula (1) is included, the lithium ion conduction path is compared with the sulfide solid electrolyte composed of only the amorphous glass having the composition represented by the formula (1). Therefore, the lithium ion conductivity higher than that of the sulfide solid electrolyte composed only of the amorphous glass can be exhibited. Moreover, according to this invention, since the crystallized glass of the ortho composition which does not contain bridge
  • FIG. 4 shows Raman spectrum spectra of the sulfide solid electrolyte of the example before exposure to the atmosphere (before), 10 minutes after exposure (10 min), 90 minutes after exposure (90 min), and 21 hours after exposure (21 h). It is the figure which showed the Arrhenius plot about the sulfide solid electrolyte of an Example (black circle) and a reference example (white circle).
  • the sulfide solid electrolyte of the present invention is characterized by containing crystallized glass represented by the chemical formula shown in the following formula (1). yLi 2 S ⁇ (100-xy) P 2 S 5 ⁇ xP 2 O 5 Formula (1) (In the above formula (1), 0 ⁇ x ⁇ 25 and 67 ⁇ y ⁇ 80.)
  • the molar fraction of Li 2 S in the sulfide solid electrolyte having an ortho composition is 67 to 80%, preferably 75%.
  • the crystallized glass used for the sulfide solid electrolyte of the present invention has an ortho composition because the total molar fraction of Li 2 S is 67 to 80% of the whole, as shown in the above formula (1). As a result, it contains substantially no cross-linking sulfur. Therefore, the sulfide solid electrolyte according to the present invention including the crystallized glass has a small amount of hydrogen sulfide generated.
  • the “bridged sulfur” is sulfur that bridges two phosphorus atoms in S 3 PS—PS 3 formed by reaction of Li 2 S and P 2 S 5 .
  • Such bridging sulfur easily reacts with water and easily generates hydrogen sulfide.
  • the fact that the sulfide solid electrolyte according to the present invention does not substantially contain bridging sulfur can be confirmed by measurement of a Raman spectrum as shown in Examples described later.
  • the peak of S 3 P—S—PS 3 usually appears at 402 cm ⁇ 1 .
  • no peak at 402 cm ⁇ 1 was detected in the Raman spectroscopic spectrum of the sulfide solid electrolyte according to the present invention.
  • a peak (417 cm ⁇ 1 ) indicating PS 4 3 ⁇ was also confirmed.
  • the glass contained in the sulfide solid electrolyte according to the present invention is a crystallized glass in which both the composition of the crystalline part and the composition of the amorphous part are represented by the formula (1). Since the sulfide solid electrolyte according to the present invention includes crystallized glass having such a composition, the lithium ion conduction path is compared with a sulfide solid electrolyte composed only of amorphous glass having the composition represented by the above formula (1). Can be formed in a more orderly manner, and thus can exhibit higher lithium ion conductivity than a sulfide solid electrolyte composed of only the amorphous glass.
  • the crystallinity of the crystallized glass used in the present invention is preferably 50 to 100%. If the crystallinity is less than 50%, the order of the lithium ion conduction path is disturbed, and the desired lithium ion conductivity may not be obtained. Note that the crystallinity of the crystallized glass used in the present invention is more preferably 70 to 100%, and particularly preferably 90 to 100%.
  • the value of x in the above formula (1) preferably satisfies 3 ⁇ x ⁇ 20. If x ⁇ 3, since the content ratio of P 2 O 5 in the crystallized glass structure is too low, there is a possibility that reduction in the amount of hydrogen sulfide generated cannot be realized sufficiently. Moreover, if x> 20, the content ratio of P 2 S 5 in the crystallized glass structure is too low, so that sufficient lithium ion conductivity may not be obtained. Note that 5 ⁇ x ⁇ 20 is particularly preferable, and 5 ⁇ x ⁇ 15 is most preferable.
  • the amount of hydrogen sulfide generated in 6000 seconds from the start of measurement is preferably 0.5 cc / g or less, preferably 0.45 cc / g or less. More preferably, it is more preferably 0.4 cc / g or less, and particularly preferably 0.35 cc / g or less. It is because it can be set as a safer sulfide solid electrolyte material because there is little hydrogen sulfide generation amount.
  • the hydrogen sulfide amount measurement test refers to the following test.
  • a sulfide solid electrolyte material 100 mg was weighed in an argon atmosphere, and the sample was pressed at a pressure of 5.1 ton / cm 2 using a pellet molding machine having a molding part with an area of 1 cm 2 to produce pellets. Form. Then, the obtained pellet is arrange
  • the sulfide solid electrolyte according to the present invention preferably has a Li ion conductivity value of 10 ⁇ 5 S / cm or more, more preferably 10 ⁇ 4 S / cm or more.
  • the sulfide solid electrolyte according to the present invention is usually in the form of powder, and the average diameter thereof is, for example, in the range of 0.1 to 100 ⁇ m.
  • a lithium battery use can be mentioned, for example.
  • the present invention crystallized glass, Li 2 S comprises P 2 S 5 and P 2 O 5, and the Li 2 S, the P 2 S 5 and P 2 O 5
  • a crystallizing step of crystallizing the glass obtained by the amorphization processing step by heating is demonstrated for every process.
  • Feed composition preparation step in the raw material composition preparation step the invention Li 2 S, comprises P 2 S 5 and P 2 O 5, and the Li 2 S, a total of P 2 S 5 and P 2 O 5
  • the raw material composition is prepared so that the content ratio of Li 2 S is in the range of 67 mol% to 80 mol% when the content is 100 mol%.
  • the content ratio of Li 2 S in the raw material composition is set to 67 mol% to 80 mol%, preferably 75 mol%, after passing through an amorphization treatment step and a crystallization step, which will be described later, a crystal having an ortho composition is obtained.
  • a vitrified glass is obtained.
  • the raw material composition used in the production method according to the present invention contains Li 2 S, P 2 S 5 and P 2 O 5 . Furthermore, the raw material composition may contain other compounds. Li 2 S contained in the raw material composition preferably has few impurities from the viewpoint of suppressing side reactions. Examples of the method for synthesizing Li 2 S include the method described in JP-A-7-330312. Furthermore, Li 2 S is preferably purified using the method described in WO2005 / 040039. The P 2 S 5 and P 2 O 5, can either be used a commercially available, can also be used as synthesized and purified by a conventional method.
  • the raw material composition may contain lithium orthooxo acid such as Li 3 PO 4 in addition to Li 2 S, P 2 S 5 and P 2 O 5 .
  • lithium orthooxo acid such as Li 3 PO 4
  • Li 3 PO 4 lithium orthooxo acid
  • the amorphization treatment step in the present invention is a step of amorphizing the raw material composition. Thereby, a sulfide glass is usually obtained.
  • Examples of the amorphization treatment include a mechanical milling method and a melt quenching method. Among them, a mechanical milling method is used from the viewpoint that processing at room temperature is possible and the manufacturing process can be simplified. preferable.
  • Mechanical milling is not particularly limited as long as the raw material composition is mixed while applying mechanical energy, and examples thereof include a ball mill, a turbo mill, a mechano-fusion, a disk mill, and the like.
  • a planetary ball mill is preferable from the viewpoint that a glass having an ortho composition can be efficiently obtained.
  • a glass having an ortho composition substantially free of crosslinking sulfur can be obtained.
  • the raw material composition and grinding balls are added to the pot, and the treatment is performed at a predetermined rotation speed and time.
  • the number of rotations when performing the planetary ball mill is preferably in the range of 200 rpm to 500 rpm, and more preferably in the range of 250 rpm to 400 rpm.
  • the processing time when performing the planetary ball mill is preferably in the range of 1 hour to 100 hours, and more preferably in the range of 1 hour to 50 hours.
  • the crystallization step in the present invention is a step of crystallizing the glass obtained in the above-described amorphization treatment step by heating. Through this step, a crystallized sulfide glass is obtained. Depending on the conditions of the heat treatment, there is a possibility that a bridging sulfur or a metastable phase may be produced. Therefore, in the present invention, under the heat treatment temperature of 180 to 400 ° C., so that these are not produced, Heat treatment is preferably performed for 30 seconds to 10 hours.
  • the sulfide according to the present invention is mixed with the crystallized glass with an additive having lithium ion conductivity.
  • a solid electrolyte can be obtained.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has the same configuration as the technical idea described in the claims of the present invention. It is included in the technical scope of the invention.
  • sulfide solid electrolyte As starting materials, lithium sulfide (Li 2 S), diphosphorus pentasulfide (P 2 S 5 ) and diphosphorus pentoxide (P 2 O 5 ) were used. These powders were weighed in a glove box under an argon atmosphere so as to have a molar ratio of 75Li 2 S ⁇ 15P 2 S 5 ⁇ 10P 2 O 5 and mixed in an agate mortar to obtain a raw material composition. Next, 1 g of the obtained raw material composition was put into a 45 ml zirconia pot, and further zirconia balls ( ⁇ 4 mm, 500 pieces) were put in, and the pot was completely sealed.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • P 2 O 5 diphosphorus pentoxide
  • the pot was attached to a planetary ball mill and mechanical milling was performed at a rotation speed of 510 rpm for 20 hours to obtain a glass having an ortho composition. Then, when the obtained glass was heat-processed on condition of 290 degreeC and 2 hours by argon atmosphere, the sulfide solid electrolyte (crystallized glass) of the Example was obtained.
  • lithium sulfide (Li 2 S) and diphosphorus pentasulfide (P 2 S 5 ) were used as starting materials. These powders were weighed in a glove box under an argon atmosphere so as to have a molar ratio of 75Li 2 S ⁇ 25P 2 S 5 and mixed in an agate mortar to obtain a raw material composition. Next, 1 g of the obtained raw material composition was put into a 45 ml zirconia pot, and further zirconia balls ( ⁇ 4 mm, 500 pieces) were put in, and the pot was completely sealed. The pot was attached to a planetary ball mill and mechanical milling was performed at a rotation speed of 510 rpm for 20 hours to obtain a sulfide solid electrolyte (amorphous glass) of a comparative example.
  • a sulfide solid electrolyte amorphous glass
  • lithium sulfide (Li 2 S), diphosphorus pentasulfide (P 2 S 5 ) and diphosphorus pentoxide (P 2 O 5 ) were used as starting materials. These powders were weighed in a glove box under an argon atmosphere so as to have a molar ratio of 75Li 2 S ⁇ 15P 2 S 5 ⁇ 10P 2 O 5 and mixed in an agate mortar to obtain a raw material composition. Next, 1 g of the obtained raw material composition was put into a 45 ml zirconia pot, and further zirconia balls ( ⁇ 4 mm, 500 pieces) were put in, and the pot was completely sealed. The pot was attached to a planetary ball mill and mechanical milling was performed at a rotation speed of 510 rpm for 20 hours to obtain a sulfide solid electrolyte (amorphous glass) of a reference example.
  • the sulfide solid electrolytes of the example (black triangle) and the reference example (black square) have a lower hydrogen sulfide generation amount than the sulfide solid electrolyte of the comparative example (black rhombus). confirmed.
  • the amount of hydrogen sulfide generated increased with time
  • the amount of hydrogen sulfide generated within the measurement time.
  • the amount of hydrogen sulfide generated decreased with time.
  • the amount of hydrogen sulfide generated after 6000 seconds was the smallest when the sulfide solid electrolyte of the example was used.
  • FIG. 2 shows Raman spectroscopy spectra of the sulfide solid electrolytes of the examples before exposure to the atmosphere (before), 10 minutes after exposure (10 min), 90 minutes after exposure (90 min), and 21 hours (21 h) after exposure. It is.
  • scattering (470 cm ⁇ 1 ) related to the SS structure and scatter (417 cm ⁇ 1 ) related to the PS 4 3 ⁇ structure can be seen in both spectra, but the P 2 S 7 4 ⁇ Scattering (402 cm ⁇ 1 ) related to the crosslinked sulfur structure is not included in any spectrum.
  • the sulfide solid electrolyte of the example does not substantially contain bridging sulfur. Therefore, as described in the above-mentioned “2. Measurement of hydrogen sulfide generation amount”, the reduction of hydrogen sulfide generation amount is reduced. It is thought that it was realized.
  • FIG. 3 is a diagram showing an Arrhenius plot for the sulfide solid electrolyte of the example (black circle) and the reference example (white circle). As can be seen from FIG.
  • the sulfide solid electrolyte of the example has a Li + conductivity improved by an order of magnitude up to an order of 2 ⁇ 10 ⁇ 4 S / s at 25 ° C. compared to the sulfide solid electrolyte of the reference example. It became a high value of cm. From this, the glass of 75Li 2 S ⁇ 15P 2 S 5 ⁇ 10P 2 O 5 is based on the PS 4 3 ⁇ structure, and thus can be crystallized without containing bridging sulfur, and the oxide (P 2 It was suggested that the Li + conductivity decreased by the addition of O 5 ) was crystallized to align non-bridging sulfur in the PS 4 3 ⁇ structure and form a Li + conduction path.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

 優れたイオン伝導度を有する硫化物固体電解質、及び、当該硫化物固体電解質中に含まれる結晶化ガラスの製造方法を提供する。 下記式(1)に示す化学式で表される結晶化ガラスを含むことを特徴とする、硫化物固体電解質。 yLiS・(100-x-y)P・xP 式(1) (上記式(1)中、0<x<25、67<y<80である。)

Description

硫化物固体電解質
 本発明は、優れたイオン伝導度を有する硫化物固体電解質、及び、当該硫化物固体電解質中に含まれる結晶化ガラスの製造方法に関する。
 二次電池は、化学反応に伴う化学エネルギーの減少分を電気エネルギーに変換し、放電を行うことができる他に、放電時と逆方向に電流を流すことにより、電気エネルギーを化学エネルギーに変換して蓄積(充電)することが可能な電池のことである。二次電池の中でも、リチウム二次電池は、エネルギー密度が高いため、ノート型のパーソナルコンピューターや、携帯電話機等の電源として幅広く応用されている。
 リチウム二次電池においては、負極活物質としてグラファイト(Cと表現する)を用いた場合、放電時において、負極では(I)式の反応が進行する。
 CLi→C+Li+e   (I)
 (I)式で生じる電子は、外部回路を経由し、外部の負荷で仕事をした後、正極に到達する。そして、(I)式で生じたリチウムイオン(Li)は、負極と正極に挟持された電解質内を、負極側から正極側に電気浸透により移動する。
 また、正極活物質としてコバルト酸リチウム(Li0.4CoO)を用いた場合、放電時において、正極では(II)式の反応が進行する。
 Li0.4CoO+0.6Li+0.6e→LiCoO   (II)
 充電時においては、負極及び正極において、それぞれ上記式(I)及び式(II)の逆反応が進行し、負極においてはグラファイトインターカレーションによりリチウムが入り込んだグラファイト(CLi)が、正極においてはコバルト酸リチウム(Li0.4CoO)が再生するため、再放電が可能となる。
 リチウム二次電池の中でも、電解質を固体電解質とし、電池を全固体化したリチウム電池は、電池内に可燃性の有機溶媒を用いないので、安全かつ装置の簡素化が図れ、製造コストや生産性に優れると考えられている。さらに、このような固体電解質に用いられる固体電解質材料として、硫化物固体電解質が知られている。
 硫化物固体電解質に関する技術は、従来から多数開発されており、非特許文献1には、75{(1-x)LiO・xLiS}・25Pの化学式で表されるアモルファス構造の硫化物固体電解質に関する技術が開示されている。
J.Jpn.Soc.Powder and Powder Metallurgy,51(2004)91-97
 上記非特許文献1においては、電解質内の化学構造がもたらすイオン伝導度の変化については、全く考察がされていない。
 本発明は、上記実状を鑑みて成し遂げられたものであり、優れたイオン伝導度を有する硫化物固体電解質、及び、当該硫化物固体電解質中に含まれる結晶化ガラスの製造方法を提供することを目的とする。
 本発明の硫化物固体電解質は、下記式(1)に示す化学式で表される結晶化ガラスを含むことを特徴とする。
 yLiS・(100-x-y)P・xP  式(1)
(上記式(1)中、0<x<25、67<y<80である。)
 このような構成の硫化物固体電解質は、上記式(1)に示す組成の結晶化ガラスを含むため、上記式(1)に示す組成のアモルファスガラスのみで構成される硫化物固体電解質と比較してリチウムイオン伝導パスがより秩序立って形成されており、したがって、当該アモルファスガラスのみで構成される硫化物固体電解質よりも高いリチウムイオン伝導能を発揮することができる。また、このような構成の硫化物固体電解質は、架橋硫黄を含まないオルト組成の結晶化ガラスを含むため、硫化水素の発生を低減させることができる。
 本発明の硫化物固体電解質は、前記結晶化ガラスの結晶化度が50~100%であることが好ましい。
 このような構成の硫化物固体電解質は、秩序立ったリチウムイオン伝導パスを適度に有することにより、リチウムイオン伝導能を十分に発揮することができる。
 本発明の硫化物固体電解質は、オルト組成を有することが好ましい。
 本発明の硫化物固体電解質は、PS 3-イオンを含有することが好ましい。
 本発明の結晶化ガラスの製造方法は、LiS、P及びPを含み、且つ、前記LiS、P及びPの合計の含有量を100mol%とした時の、前記LiSの含有割合が67mol%~80mol%の範囲内となるように原料組成物を調製する原料組成物調製工程、前記原料組成物を非晶質化処理する非晶質化処理工程、及び、前記非晶質化処理工程により得られたガラスを加熱により結晶化させる結晶化工程、を有することを特徴とする。
 このような構成の結晶化ガラスの製造方法により、本発明に係る硫化物固体電解質に用いる結晶化ガラスを製造できる。また、このような構成の結晶化ガラスの製造方法は、前記原料組成物調製工程において、原料組成物内のLiSの含有割合を67mol%~80mol%の範囲内とすることにより、オルト組成の結晶化ガラスが得られる。
 本発明によれば、上記式(1)に示す組成の結晶化ガラスを含むため、上記式(1)に示す組成のアモルファスガラスのみで構成される硫化物固体電解質と比較してリチウムイオン伝導パスがより秩序立って形成されており、したがって、当該アモルファスガラスのみで構成される硫化物固体電解質よりも高いリチウムイオン伝導能を発揮することができる。また、本発明によれば、架橋硫黄を含まないオルト組成の結晶化ガラスを含むため、硫化水素の発生を低減させることができる。
実施例、比較例及び参考例の硫化物固体電解質の硫化水素発生量を示したグラフである。 実施例の硫化物固体電解質を大気中に暴露する前(before)、暴露後10分(10min)、暴露後90分(90min)、暴露後21時間(21h)の各ラマン分光スペクトルである。 実施例(黒丸)及び参考例(白丸)の硫化物固体電解質についてのアレニウスプロットを示した図である。
 1.硫化物固体電解質
 本発明の硫化物固体電解質は、下記式(1)に示す化学式で表される結晶化ガラスを含むことを特徴とする。
 yLiS・(100-x-y)P・xP  式(1)
(上記式(1)中、0<x<25、67<y<80である。)
 yLiS・(100-y)P(ただし、67<y<80)の組成中のPの一部をPに置換したガラス、すなわち上記式(1)で示されるガラスは、オルト組成を有しているため、水に対する安定性が高く、硫化水素発生量が低いと考えられる。
 ここで、オルトとは、一般的に、同じ酸化物を水和して得られるオキソ酸の中で、最も水和度の高いものをいう。本発明のようなLiS-P系の硫化物固体電解質においては、Pに最もLiSが付加している結晶組成、すなわちLiPSがオルト組成に該当する。LiS-P系の硫化物固体電解質の場合、オルト組成の硫化物固体電解質中のLiSのモル分率は67~80%、好ましくは75%となる。
 本発明の硫化物固体電解質に用いられる結晶化ガラスは、上記式(1)に示すように、LiSの合計のモル分率が全体の67~80%であるためオルト組成を有し、その結果架橋硫黄を実質的に含有しない。したがって、当該結晶化ガラスを含む本発明に係る硫化物固体電解質は、硫化水素発生量が少ない。
 ここで、「架橋硫黄」とは、LiSおよびPが反応してなるSP-S-PS中の2つのリン原子を架橋する硫黄のことである。このような架橋硫黄は、水と反応しやすく、硫化水素が発生しやすい。
 本発明に係る硫化物固体電解質が架橋硫黄を実質的に含有しないことは、後述する実施例において示すように、ラマン分光スペクトルの測定により確認できた。ラマン分光スペクトルにおいて、SP-S-PSのピークは、通常402cm-1に表れる。後述するように、本発明に係る硫化物固体電解質のラマン分光スペクトルにおいては、402cm-1のピークは全く検出されなかった。また、本発明に係る硫化物固体電解質のラマン分光スペクトルにおいては、PS 3-を示すピーク(417cm-1)も確認できた。
 本発明に係る硫化物固体電解質に含まれるガラスは、結晶質部の組成、及び、アモルファス質部の組成のいずれもが式(1)によって表される結晶化ガラスである。本発明に係る硫化物固体電解質は、このような組成の結晶化ガラスを含むため、上記式(1)に示す組成のアモルファスガラスのみで構成される硫化物固体電解質と比較してリチウムイオン伝導パスがより秩序立って形成され、したがって、当該アモルファスガラスのみで構成される硫化物固体電解質よりも高いリチウムイオン伝導能を発揮することができる。
 本願発明に用いられる結晶化ガラスの結晶化度は、50~100%であることが好ましい。仮に結晶化度が50%未満であるとすると、リチウムイオン伝導パスの秩序が乱れ、望みのリチウムイオン伝導度が得られないおそれがある。なお、本願発明に用いられる結晶化ガラスの結晶化度は、70~100%であることがより好ましく、90~100%であることが特に好ましい。
 上記式(1)のxの値は、3≦x≦20であるのが好ましい。仮にx<3であるとすると、結晶化ガラス構造中のPの含有割合が低すぎるため、硫化水素発生量の低減が十分に実現できないおそれがある。また、仮にx>20であるとすると、結晶化ガラス構造中のPの含有割合が低すぎるため、十分なリチウムイオン伝導度が得られないおそれがある。
 なお、5≦x≦20であるのが特に好ましく、5≦x≦15であるのが最も好ましい。
 本発明に係る硫化物固体電解質は、所定の硫化水素量測定試験において、測定開始から6000秒間における硫化水素発生量が、0.5cc/g以下であることが好ましく、0.45cc/g以下であることがより好ましく、0.4cc/g以下であることがさらに好ましく、0.35cc/g以下であることが特に好ましい。硫化水素発生量が少ないことで、より安全性の高い硫化物固体電解質材料とすることができるからである。
 ここで、硫化水素量測定試験とは、以下の試験をいう。すなわち、アルゴン雰囲気中で、硫化物固体電解質材料を100mg秤量し、その試料を、面積1cmの成形部を有するペレット成形機を用いて、5.1ton/cmの圧力でプレスし、ペレットを形成する。その後、得られたペレットをデシケータ内(1950cc)に配置する。ペレットを収容したデシケータ内は、一度真空に引いた後、温度25℃、湿度58%の大気を導入する。最初の6000秒間で発生した硫化水素の発生量を、硫化水素センサーを用いて測定する。
 本発明に係る硫化物固体電解質は、Liイオン伝導度の値が10-5S/cm以上であることが好ましく、10-4S/cm以上であることがより好ましい。また、本発明に係る硫化物固体電解質は、通常粉末状であり、その平均径は例えば0.1~100μmの範囲内である。また、本発明に係る硫化物固体電解質の用途としては、例えば、リチウム電池用途を挙げることができる。
 2.結晶化ガラスの製造方法
 本発明の結晶化ガラスの製造方法は、LiS、P及びPを含み、且つ、前記LiS、P及びPの合計の含有量を100mol%とした時の、前記LiSの含有割合が67mol%~80mol%の範囲内となるように原料組成物を調製する原料組成物調製工程、前記原料組成物を非晶質化処理する非晶質化処理工程、及び、前記非晶質化処理工程により得られたガラスを加熱により結晶化させる結晶化工程、を有することを特徴とする。
 以下、本発明の硫化物固体電解質材料の製造方法について、工程ごとに説明する。なお、本発明においては、後述する各工程を不活性ガス雰囲気下(例えばArガス雰囲気下)で行うことが好ましい。
 2-1.原料組成物調製工程
 本発明における原料組成物調製工程は、LiS、P及びPを含み、且つ、前記LiS、P及びPの合計の含有量を100mol%とした時の、前記LiSの含有割合が67mol%~80mol%の範囲内となるように原料組成物を調製する工程である。このように原料組成物内のLiSの含有割合を67mol%~80mol%、好ましくは75mol%とすることにより、後述する非晶質化処理工程、結晶化工程を経た後、オルト組成の結晶化ガラスが得られる。
 本発明に係る製造方法に用いられる原料組成物は、LiS、P及びPを含有するものである。さらに、原料組成物はその他の化合物を含有していても良い。
 原料組成物に含まれるLiSは、副反応抑制の観点から、不純物が少ないことが好ましい。LiSの合成方法としては、例えば特開平7-330312号公報に記載された方法等を挙げることができる。さらに、LiSは、WO2005/040039に記載された方法等を用いて精製されていることが好ましい。
 P及びPについては、市販のものを用いることもできるし、また、常法により合成・精製したものを用いることもできる。
 また、原料組成物は、LiS、P及びPの他に、LiPO等のオルトオキソ酸リチウムを含有していても良い。このようなオルトオキソ酸リチウムを加えることで、より安定な硫化物固体電解質を得ることができる。
 2-2.非晶質化処理工程
 本発明における非晶質化処理工程は、上記原料組成物を非晶質化処理する工程である。これにより、通常、硫化物ガラスが得られる。非晶質化処理としては、例えばメカニカルミリング法および溶融急冷法を挙げることができ、中でも常温での処理が可能になり、製造工程の簡略化を図ることができるという観点から、メカニカルミリング法が好ましい。
 メカニカルミリングは、原料組成物を、機械的エネルギーを付与しながら混合する方法であれば特に限定されるものではないが、例えばボールミル、ターボミル、メカノフュージョン、ディスクミル等を挙げることができ、中でもボールミルが好ましく、特にオルト組成を有するガラスを効率良く得ることができるという観点から、遊星型ボールミルが好ましい。
 また、メカニカルミリングの各種条件は、架橋硫黄を実質的に含有しないオルト組成を有するガラスを得ることができる程度に設定することが好ましい。例えば、遊星型ボールミルによりオルト組成を有するガラスを合成する場合、ポット内に、原料組成物および粉砕用ボールを加え、所定の回転数および時間で処理を行う。一般的に、回転数が大きいほど、オルト組成を有するガラスの生成速度は速くなり、処理時間が長いほど、原料組成物からオルト組成を有するガラスへの転化率は高くなる。遊星型ボールミルを行う際の回転数としては、例えば200rpm~500rpmの範囲内、中でも250rpm~400rpmの範囲内であることが好ましい。また、遊星型ボールミルを行う際の処理時間は、例えば1時間~100時間の範囲内、中でも1時間~50時間の範囲内であることが好ましい。
 2-3.結晶化工程
 本発明における結晶化工程は、上述した非晶質化処理工程において得られたガラスを、加熱により結晶化させる工程である。この工程を経ることにより、結晶化した硫化物ガラスが得られる。なお、熱処理の条件によっては、架橋硫黄が生成する可能性や準安定相が生成する可能性があるため、本発明においては、これらが生成しないように、180~400℃の熱処理温度下で、30秒~10時間熱処理を行うことが好ましい。
 上記結晶化ガラスの製造方法によって得られた結晶化ガラスを用いて、例えば必要に応じて、当該結晶化ガラスにリチウムイオン伝導性を有する添加剤等を混合することにより、本発明に係る硫化物固体電解質を得ることができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 1.硫化物固体電解質の製造
 [実施例]
 出発原料として、硫化リチウム(LiS)、五硫化二リン(P)及び五酸化二リン(P)を用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、75LiS・15P・10Pのモル比となるように秤量し、メノウ乳鉢で混合し、原料組成物を得た。
 次に、得られた原料組成物1gを45mlのジルコニアポットに投入し、さらにジルコニアボール(Φ4mm、500個)を投入し、ポットを完全に密閉した。このポットを遊星型ボールミル機に取り付け、回転数510rpmで20時間メカニカルミリングを行い、オルト組成を有するガラスを得た。
 その後、得られたガラスに対して、アルゴン雰囲気化で290℃、2時間の条件で熱処理を行ったところ、実施例の硫化物固体電解質(結晶化ガラス)を得た。
 [比較例]
 出発原料として、硫化リチウム(LiS)及び五硫化二リン(P)を用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、75LiS・25Pのモル比となるように秤量し、メノウ乳鉢で混合し、原料組成物を得た。
 次に、得られた原料組成物1gを45mlのジルコニアポットに投入し、さらにジルコニアボール(Φ4mm、500個)を投入し、ポットを完全に密閉した。このポットを遊星型ボールミル機に取り付け、回転数510rpmで20時間メカニカルミリングを行い、比較例の硫化物固体電解質(アモルファスガラス)を得た。
 [参考例]
 出発原料として、硫化リチウム(LiS)、五硫化二リン(P)及び五酸化二リン(P)を用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、75LiS・15P・10Pのモル比となるように秤量し、メノウ乳鉢で混合し、原料組成物を得た。
 次に、得られた原料組成物1gを45mlのジルコニアポットに投入し、さらにジルコニアボール(Φ4mm、500個)を投入し、ポットを完全に密閉した。このポットを遊星型ボールミル機に取り付け、回転数510rpmで20時間メカニカルミリングを行い、参考例の硫化物固体電解質(アモルファスガラス)を得た。
 2.硫化水素発生量の測定
 実施例、比較例及び参考例の硫化物固体電解質をそれぞれ100mg秤量し、これらの試料を、面積1cmの成形部を有するペレット成形機を用いて、5.1ton/cmの圧力でプレスし、ペレットを得た。その後、得られたペレットをデシケータ内(1950cc)に配置した。ペレットを収容したデシケータ内は、一度真空に引いた後、温度25℃、湿度58%の大気を導入した。最初の6000秒間でペレットから発生した硫化水素の発生量を、硫化水素センサーを用いて測定した。これらの結果を図1に示す。
 図1に示すように、実施例(黒三角)及び参考例(黒四角)の硫化物固体電解質は、比較例(黒菱形)の硫化物固体電解質と比較して硫化水素発生量が低いことが確認された。また、比較例の硫化物固体電解質の場合には、時間経過とともに硫化水素発生量が急激に増加したのに対し、参考例の硫化物固体電解質の場合には、測定時間内では硫化水素発生量がほとんど変化せず、実施例の硫化物固体電解質の場合には、時間経過とともに硫化水素発生量が減少した。その結果、6000秒後の硫化水素発生量は、実施例の硫化物固体電解質を用いた場合が最も少ない結果となった。
 3.ラマン分光測定
 実施例の硫化物固体電解質(結晶化ガラス)を用いて、ラマン分光測定を行った。
 図2は、実施例の硫化物固体電解質を大気中に暴露する前(before)、暴露後10分(10min)、暴露後90分(90min)、暴露後21時間(21h)の各ラマン分光スペクトルである。
 図2から分かるように、S-S構造に係る散乱(470cm-1)、PS 3-構造に係る散乱(417cm-1)はいずれのスペクトルにも見られるが、P 4-の架橋硫黄構造に係る散乱(402cm-1)は、いずれのスペクトルにも含まれていない。このことから、実施例の硫化物固体電解質は架橋硫黄を実質的に有しておらず、したがって、上記「2.硫化水素発生量の測定」に述べたような、硫化水素発生量の低減が実現できたと考えられる。
 4.インピーダンス測定
 実施例及び参考例の硫化物固体電解質について、交流インピーダンス測定を行った。交流インピーダンス測定は、乾燥アルゴン雰囲気下において、インピーダンスアナライザー(Solartron社製、1260型)を用いて、10Hz~8MHzの周波数領域について行った。なお、測定温度は23℃~280℃とした。
 図3は、実施例(黒丸)及び参考例(白丸)の硫化物固体電解質についてのアレニウスプロットを示した図である。図3から分かるように、実施例の硫化物固体電解質は、参考例の硫化物固体電解質と比較して、Li伝導度が最大で1桁向上し、25℃において2×10-4S/cmの高い値となった。
 このことから、75LiS・15P・10Pのガラスは、PS 3-構造を母体とするため、架橋硫黄を含まない状態で結晶化でき、且つ、酸化物(P)を添加することで低下したLi伝導度が、結晶化することによってPS 3-構造中の非架橋硫黄が整列しLi伝導パスが形成されることが示唆された。

Claims (5)

  1.  下記式(1)に示す化学式で表される結晶化ガラスを含むことを特徴とする、硫化物固体電解質。
     yLiS・(100-x-y)P・xP  式(1)
    (上記式(1)中、0<x<25、67<y<80である。)
  2.  前記結晶化ガラスの結晶化度が50~100%である、請求の範囲第1項に記載の硫化物固体電解質。
  3.  オルト組成を有する、請求の範囲第1項又は第2項に記載の硫化物固体電解質。
  4.  PS 3-イオンを含有する、請求の範囲第1項乃至第3項のいずれか一項に記載の硫化物固体電解質。
  5.  LiS、P及びPを含み、且つ、前記LiS、P及びPの合計の含有量を100mol%とした時の、前記LiSの含有割合が67mol%~80mol%の範囲内となるように原料組成物を調製する原料組成物調製工程、
     前記原料組成物を非晶質化処理する非晶質化処理工程、及び、
     前記非晶質化処理工程により得られたガラスを加熱により結晶化させる結晶化工程、
    を有することを特徴とする、結晶化ガラスの製造方法。
PCT/JP2010/064837 2009-09-09 2010-08-31 硫化物固体電解質 WO2011030696A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10815293.5A EP2476655B1 (en) 2009-09-09 2010-08-31 Sulfide solid electrolyte
US13/389,129 US9537174B2 (en) 2009-09-09 2010-08-31 Sulfide solid electrolyte
KR1020127003451A KR101361352B1 (ko) 2009-09-09 2010-08-31 황화물 고체 전해질
CN201080039975.5A CN102574728B (zh) 2009-09-09 2010-08-31 硫化物固体电解质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-208227 2009-09-09
JP2009208227A JP5590836B2 (ja) 2009-09-09 2009-09-09 硫化物固体電解質

Publications (1)

Publication Number Publication Date
WO2011030696A1 true WO2011030696A1 (ja) 2011-03-17

Family

ID=43732370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064837 WO2011030696A1 (ja) 2009-09-09 2010-08-31 硫化物固体電解質

Country Status (6)

Country Link
US (1) US9537174B2 (ja)
EP (1) EP2476655B1 (ja)
JP (1) JP5590836B2 (ja)
KR (1) KR101361352B1 (ja)
CN (1) CN102574728B (ja)
WO (1) WO2011030696A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086556A (ja) * 2009-10-16 2011-04-28 Sumitomo Electric Ind Ltd 硫化物固体電解質の製造方法、および複合体
JP2013030440A (ja) * 2011-07-29 2013-02-07 Tokyo Institute Of Technology 固体電解質およびリチウム電池

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849382B2 (ja) * 2010-07-12 2016-01-27 トヨタ自動車株式会社 硫化物固体電解質材料
US9196925B2 (en) * 2011-09-22 2015-11-24 Idemitsu Kosan Co., Ltd. Glass particles
JP5888610B2 (ja) * 2011-12-22 2016-03-22 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2014091664A (ja) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd 固体電解質ガラス粒子及びリチウムイオン電池
US9166253B2 (en) * 2012-12-06 2015-10-20 Samsung Electronics Co., Ltd. Solid-state battery
JP6260807B2 (ja) * 2012-12-06 2018-01-17 三星電子株式会社Samsung Electronics Co.,Ltd. 固体電池
US9269958B2 (en) * 2012-12-07 2016-02-23 Samsung Electronics Co., Ltd. Cathode and all-solid battery including the same
CN102969516B (zh) * 2012-12-14 2017-03-08 中国电子科技集团公司第十八研究所 薄型微晶玻璃陶瓷片金属锂电池的制备方法
CN103500853B (zh) * 2013-10-08 2016-03-30 中国科学院宁波材料技术与工程研究所 硫化物电解质材料及其制备方法
CN103531841B (zh) * 2013-11-01 2016-03-02 中国科学院宁波材料技术与工程研究所 硫化物固体电解质及其制备方法与全固态锂二次电池
CN103560267B (zh) * 2013-11-01 2016-05-11 国家电网公司 全固态锂二次电池电解质材料、其制备方法及全固态锂二次电池
US10147968B2 (en) 2014-12-02 2018-12-04 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
US10601071B2 (en) 2014-12-02 2020-03-24 Polyplus Battery Company Methods of making and inspecting a web of vitreous lithium sulfide separator sheet and lithium electrode assemblies
US10164289B2 (en) 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US11984553B2 (en) 2014-12-02 2024-05-14 Polyplus Battery Company Lithium ion conducting sulfide glass fabrication
WO2017197039A1 (en) 2016-05-10 2017-11-16 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
JP6477672B2 (ja) * 2016-11-18 2019-03-06 トヨタ自動車株式会社 硫化物固体電解質の製造方法
KR102359583B1 (ko) * 2017-05-08 2022-02-07 현대자동차주식회사 고체전해질 및 이를 포함하는 전고체 전지의 제조방법
JP7369988B2 (ja) * 2017-06-14 2023-10-27 パナソニックIpマネジメント株式会社 硫化物固体電解質材料を用いた電池
US10629950B2 (en) 2017-07-07 2020-04-21 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US10862171B2 (en) 2017-07-19 2020-12-08 Polyplus Battery Company Solid-state laminate electrode assembly fabrication and making thin extruded lithium metal foils
US11387486B2 (en) * 2017-08-10 2022-07-12 Idemitsu Kosan Co., Ltd. Sulfide solid electrolyte
CN108054426A (zh) * 2017-11-24 2018-05-18 中国航发北京航空材料研究院 一种被氧化物改性的硫化物固态电解质及其制备方法
JP7332275B2 (ja) * 2018-04-25 2023-08-23 国立大学法人東京工業大学 硫化物固体電解質および全固体電池
JP7077766B2 (ja) * 2018-05-18 2022-05-31 トヨタ自動車株式会社 硫化物系固体電解質、当該硫化物系固体電解質の製造方法、及び、全固体電池の製造方法
CN111029662A (zh) * 2019-12-30 2020-04-17 江苏智泰新能源科技有限公司 一种硫化物电解质材料制备方法
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
EP4332058A1 (en) * 2021-04-26 2024-03-06 Idemitsu Kosan Co.,Ltd. Compound and battery containing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271332A (ja) * 1993-03-22 1994-09-27 Matsushita Electric Ind Co Ltd リチウムイオン導電性固体電解質およびその合成法
WO2010038313A1 (ja) * 2008-10-03 2010-04-08 トヨタ自動車株式会社 全固体型リチウム電池の製造方法
WO2010098177A1 (ja) * 2009-02-27 2010-09-02 トヨタ自動車株式会社 硫化物固体電解質材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084772A (ja) 1983-10-14 1985-05-14 Sanyo Electric Co Ltd 固体電解質電池
US5500291A (en) 1993-03-22 1996-03-19 Matsushita Electric Industrial Co., Ltd. Lithium ion conductive solid electrolyte and process for synthesizing the same
JP3125506B2 (ja) * 1993-03-26 2001-01-22 松下電器産業株式会社 硫化物系リチウムイオン導電性固体電解質及びその合成法
JP3528866B2 (ja) 1994-06-03 2004-05-24 出光石油化学株式会社 硫化リチウムの製造方法
JP4174816B2 (ja) * 2001-02-28 2008-11-05 住友電気工業株式会社 無機固体電解質およびリチウム電池部材
KR100623476B1 (ko) 2003-07-11 2006-09-19 주식회사 엘지화학 박막 코팅을 이용한 리튬 이온 전지
KR101109821B1 (ko) 2003-10-23 2012-03-13 이데미쓰 고산 가부시키가이샤 황화리튬의 정제 방법
JP4813767B2 (ja) 2004-02-12 2011-11-09 出光興産株式会社 リチウムイオン伝導性硫化物系結晶化ガラス及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271332A (ja) * 1993-03-22 1994-09-27 Matsushita Electric Ind Co Ltd リチウムイオン導電性固体電解質およびその合成法
WO2010038313A1 (ja) * 2008-10-03 2010-04-08 トヨタ自動車株式会社 全固体型リチウム電池の製造方法
WO2010098177A1 (ja) * 2009-02-27 2010-09-02 トヨタ自動車株式会社 硫化物固体電解質材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2476655A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086556A (ja) * 2009-10-16 2011-04-28 Sumitomo Electric Ind Ltd 硫化物固体電解質の製造方法、および複合体
JP2013030440A (ja) * 2011-07-29 2013-02-07 Tokyo Institute Of Technology 固体電解質およびリチウム電池

Also Published As

Publication number Publication date
CN102574728A (zh) 2012-07-11
EP2476655A1 (en) 2012-07-18
EP2476655A4 (en) 2013-03-06
EP2476655B1 (en) 2015-02-25
KR101361352B1 (ko) 2014-02-10
CN102574728B (zh) 2014-10-15
JP2011057500A (ja) 2011-03-24
JP5590836B2 (ja) 2014-09-17
US20120189918A1 (en) 2012-07-26
US9537174B2 (en) 2017-01-03
KR20120040236A (ko) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5590836B2 (ja) 硫化物固体電解質
JP5448038B2 (ja) 硫化物固体電解質材料
JP5716261B2 (ja) 結晶化硫化物固体電解質材料の製造方法
KR101367787B1 (ko) 황화물 고체 전해질 재료의 제조방법, 황화물 고체 전해질 재료, 및 리튬 전지
JP5278437B2 (ja) 全固体型リチウム電池の製造方法
JP5158008B2 (ja) 全固体電池
KR101936490B1 (ko) 황화물 고체 전해질 재료, 리튬 고체 전지 및 황화물 고체 전해질 재료의 제조 방법
JP5458740B2 (ja) 硫化物固体電解質材料
JP5552974B2 (ja) 硫化物固体電解質材料、硫化物固体電解質材料の製造方法およびリチウム固体電池
WO2012011179A1 (ja) 硫化物固体電解質ガラス、硫化物固体電解質ガラスの製造方法およびリチウム固体電池
JP2012104279A (ja) 硫化物固体電解質材料、リチウム固体電池、および硫化物固体電解質材料の製造方法
JP5594253B2 (ja) 硫化物固体電解質材料、リチウム固体電池、および、硫化物固体電解質材料の製造方法
JP5877401B2 (ja) 硫化物固体電解質材料の製造方法、及び当該方法により製造された硫化物固体電解質材料を含むリチウム固体電池
JP2008243646A (ja) フッ化物正極作製法
JP2017091810A (ja) 正極合材の製造方法
JP5685814B2 (ja) 硫化物固体電解質材料の製造方法
JP6783731B2 (ja) 硫化物固体電解質
JP6208570B2 (ja) 硫化物固体電解質材料
JP6783736B2 (ja) 硫化物固体電解質
JP2023057065A (ja) 硫化物固体電解質の製造方法並びにその製造に用いる原料組成物及びその製造方法
JP2014127387A (ja) 硫化物固体電解質材料の製造方法およびリチウム固体電池
JP2014127389A (ja) 硫化物固体電解質材料の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039975.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815293

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010815293

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127003451

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13389129

Country of ref document: US