WO2010038313A1 - 全固体型リチウム電池の製造方法 - Google Patents

全固体型リチウム電池の製造方法 Download PDF

Info

Publication number
WO2010038313A1
WO2010038313A1 PCT/JP2008/068071 JP2008068071W WO2010038313A1 WO 2010038313 A1 WO2010038313 A1 WO 2010038313A1 JP 2008068071 W JP2008068071 W JP 2008068071W WO 2010038313 A1 WO2010038313 A1 WO 2010038313A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide
dew point
lithium battery
atmosphere
Prior art date
Application number
PCT/JP2008/068071
Other languages
English (en)
French (fr)
Inventor
重規 濱
幸義 上野
靖 土田
博文 中本
神谷 正人
長瀬 浩
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/059,844 priority Critical patent/US8591603B2/en
Priority to PCT/JP2008/068071 priority patent/WO2010038313A1/ja
Priority to CN200880131152.8A priority patent/CN102160232B/zh
Priority to KR1020117005892A priority patent/KR20110055635A/ko
Priority to JP2010531699A priority patent/JP5278437B2/ja
Publication of WO2010038313A1 publication Critical patent/WO2010038313A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a method for manufacturing an all-solid-state lithium battery capable of easily performing dew point management in a battery assembly process.
  • the lithium battery currently on the market uses an organic electrolyte that uses a flammable organic solvent as a solvent. Improvement is required.
  • an all-solid-state lithium battery in which the liquid electrolyte is changed to a solid electrolyte to make the battery all solid does not use a flammable organic solvent in the battery, so that the safety device can be simplified, and the manufacturing cost and It has the advantage of excellent productivity.
  • sulfide solid electrolytes are known as solid electrolytes used in such all solid-state lithium batteries.
  • Patent Document 1 discloses a method for synthesizing a sulfide solid electrolyte that is heated and melted in an inert gas flow having a water content of 100 ppm or less.
  • Non-Patent Document 1 discloses a crystal structure of Li 7 P 3 S 11 , specifically, a P 2 S 7 unit (unit represented by structural formula B described later) containing bridging sulfur, A crystal structure is disclosed in which PS 4 units (units represented by structural formula C described later) having no bridging sulfur are arranged at a ratio of 1: 1.
  • Li 7 P 3 S 11 is on a molar basis
  • the present invention has been made in view of the above problems, and a main object of the present invention is to provide a method for producing an all-solid-state lithium battery capable of easily performing dew point management in a battery assembly process.
  • Li 2 S, P 2 S 5 and P 2 O 5 are converted into (Li 2 S) / (P 2 S 5 ) on a molar basis. + P 2 O 5 ) ⁇ 3
  • the sulfide solid electrolyte using a raw material composition obtained by adding so as to satisfy the relationship of 3 has a low lithium ion conductivity even in an atmosphere with a high dew point temperature. I found.
  • the present invention has been made based on such knowledge.
  • Li 2 S, P 2 S 5 and P 2 O 5 are made to satisfy the relationship of (Li 2 S) / (P 2 S 5 + P 2 O 5 ) ⁇ 3 on a molar basis.
  • a preparation step of preparing a raw material composition a synthesis step of synthesizing a sulfide solid electrolyte from the raw material composition by vitrification means, and a dew point temperature of ⁇ 60 ° C. or higher using the sulfide solid electrolyte.
  • a battery assembly process for assembling an all-solid-state lithium battery in an atmosphere.
  • a sulfide solid electrolyte having a P 2 S 6 O unit is synthesized by using a raw material composition to which P 2 O 5 is further added in addition to Li 2 S and P 2 S 5.
  • P 2 S 6 O unit is more stable to moisture than the P 2 S 7 unit, the lithium ion conductivity of the sulfide solid electrolyte is reduced even in an atmosphere with a high dew point temperature. Can be suppressed. Therefore, the dew point management can be facilitated.
  • the battery assembly step is preferably performed in an atmosphere having a dew point temperature of ⁇ 30 ° C. or lower. This is because a decrease in lithium ion conductivity due to moisture can be sufficiently suppressed.
  • the sulfide solid electrolyte is preferably used as a solid electrolyte membrane disposed between a positive electrode active material layer and a negative electrode active material layer. This is because an all solid-state lithium battery having excellent lithium ion conductivity can be obtained.
  • the vitrification means is preferably mechanical milling. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • the material composition is, on a molar basis, preferably satisfy the relation (P 2 O 5) / ( Li 2 S + P 2 S 5 + P 2 O 5) ⁇ 10. This is because the stability to moisture can be improved while maintaining high lithium ion conductivity.
  • the dew point can be easily managed in the battery assembly process.
  • Method for manufacturing an all-solid-state lithium battery of the present invention Li 2 S, P 2 S 5 and P 2 O 5, on a molar basis, (Li 2 S) / ( P 2 S 5 + P 2 O 5) ⁇ 3
  • the dew point temperature, the preparation step of preparing the raw material composition, the synthesis step of synthesizing the sulfide solid electrolyte from the raw material composition by vitrification means Has a battery assembly step of assembling an all-solid-state lithium battery in an atmosphere of ⁇ 60 ° C. or higher.
  • FIG. 1 is an explanatory diagram for explaining an example of the manufacturing method of the manufacturing method of the all-solid-state lithium battery of the present invention.
  • Li 2 S, P 2 S 5 and P 2 O 5 are first prepared as starting materials. Further, this starting material is added at a predetermined ratio to prepare a raw material composition (preparation step).
  • a sulfide solid electrolyte made of sulfide glass is synthesized from the raw material composition by vitrification means (for example, mechanical milling) (synthesis step).
  • sulfide glass may be fired to form sulfide glass ceramic, and the sulfide glass ceramic may be used as a sulfide solid electrolyte.
  • an all solid-state lithium battery is assembled in an atmosphere of a predetermined dew point temperature (battery assembly process).
  • a sulfide solid electrolyte having units represented by the following structural formulas A to C can be obtained by the above synthesis step.
  • a P 2 S 6 O unit represented by Structural Formula A (sometimes simply referred to as “P 2 S 6 O unit”) and a P 2 S 7 unit represented by Structural Formula B ( it may be simply referred to as “P 2 S 7 unit”. and)
  • PS 4 units represented by the structural formula C (simply referred to as "PS 4 unit”.)
  • the sulfide solid electrolyte usually has Li ions as a counter for each unit.
  • a sulfide solid electrolyte having a P 2 S 6 O unit is synthesized by using a raw material composition to which P 2 O 5 is further added in addition to Li 2 S and P 2 S 5.
  • P 2 S 6 O unit is more stable to moisture than the P 2 S 7 unit, the lithium ion conductivity of the sulfide solid electrolyte is reduced even in an atmosphere with a high dew point temperature. Can be suppressed. Therefore, the dew point management can be facilitated.
  • the battery can be assembled in an atmosphere having a high dew point temperature, the cost for maintaining the dew point temperature can be reduced. In particular, when a battery assembly process is performed, a large work space is usually required. Therefore, it is important to facilitate dew point management and to reduce the cost for maintaining the dew point temperature.
  • Non-Patent Document 1 In the above-mentioned Non-Patent Document 1 and Non-Patent Document 2, there is no description or suggestion about the stability of the sulfide solid electrolyte with respect to moisture. Hereafter, the manufacturing method of the all-solid-state lithium battery of this invention is demonstrated for every process.
  • Preparation Step The preparation step in the present invention satisfies the relationship of (Li 2 S) / (P 2 S 5 + P 2 O 5 ) ⁇ 3 on a molar basis with Li 2 S, P 2 S 5 and P 2 O 5. It is the process of adding so that a raw material composition may be prepared.
  • Li 2 S, P 2 S 5 and P 2 O 5 are used as starting materials for the sulfide solid electrolyte.
  • Li 2 S, P 2 S 5 and P 2 O 5 each preferably have few impurities. This is because side reactions can be suppressed.
  • Examples of the method for synthesizing Li 2 S used in the present invention include the method described in JP-A-7-330312.
  • Li 2 S is preferably purified using the method described in WO2005 / 040039.
  • P 2 S 5 and P 2 O 5 used in the present invention may be used those commercially available.
  • Li 2 S, P 2 S 5 and P 2 O 5 are added on a molar basis so as to satisfy the relationship of (Li 2 S) / (P 2 S 5 + P 2 O 5 ) ⁇ 3.
  • the raw material composition preferably satisfies the relationship 1 ⁇ (Li 2 S) / (P 2 S 5 + P 2 O 5 ) ⁇ 3 on a molar basis, and 1.5 ⁇ (Li 2 S) / (P 2 S 5 + P 2 O 5 ) ⁇ 3 is more preferable.
  • the addition amount of P 2 O 5 with respect to the sum of the addition amounts of Li 2 S, P 2 S 5 and P 2 O 5 is (Li 2 S) / (Li 2 S + P 2 S 5 + P 2 O 5 ).
  • the raw material composition preferably satisfies the relationship of (P 2 O 5 ) / (Li 2 S + P 2 S 5 + P 2 O 5 ) ⁇ 10 on a molar basis, and (P 2 O 5 ) / More preferably, the relationship (Li 2 S + P 2 S 5 + P 2 O 5 ) ⁇ 8 is satisfied, and the relationship (P 2 O 5 ) / (Li 2 S + P 2 S 5 + P 2 O 5 ) ⁇ 6 is satisfied.
  • the raw material composition preferably satisfies the relationship of 0.5 ⁇ (P 2 O 5 ) / (Li 2 S + P 2 S 5 + P 2 O 5 ) on a molar basis, and 1.0 ⁇ (P 2 O 5 ) / (Li 2 S + P 2 S 5 + P 2 O 5 ) is more preferable, and the relationship of 1.5 ⁇ (P 2 O 5 ) / (Li 2 S + P 2 S 5 + P 2 O 5 ) is satisfied. It is more preferable to satisfy. This is because if the addition ratio of P 2 O 5 is too small, stability against moisture may not be improved.
  • x is preferably 10 or less, more preferably 8 or less, and even more preferably 6 or less.
  • x is preferably 0.5 or more, more preferably 1 or more, and further preferably 1.5 or more.
  • the ratio of Li 2 S, P 2 S 5 and P 2 O 5 in the raw material composition is not particularly limited as long as the above relationship is satisfied.
  • the content of Li 2 S contained in the raw material composition is preferably in the range of 68 mol% to 74 mol%, for example.
  • the content of P 2 S 5 contained in the raw material composition is preferably in the range of 16 mol% to 31.5 mol%, for example.
  • the content of P 2 O 5 contained in the raw material composition is, for example, preferably 0.5 mol% or more, more preferably 1 mol% or more, and further preferably 1.5 mol% or more.
  • the content of P 2 O 5 is preferably 10 mol% or less, more preferably 8 mol% or less, and still more preferably 6 mol% or less.
  • Li 2 S may be one containing only P 2 S 5 and P 2 O 5, Li 2 S , in addition to P 2 S 5 and P 2 O 5, it added It may contain an agent.
  • An example of the additive includes at least one sulfide selected from the group consisting of Al 2 S 3 , B 2 S 3, GeS 2 and SiS 2 . By adding such a sulfide, a more stable sulfide glass can be obtained.
  • Another example of the additive is at least one lithium orthooxoate selected from the group consisting of Li 3 PO 4 , Li 4 SiO 4 , Li 4 GeO 4 , Li 3 BO 3 and Li 3 AlO 3. Can be mentioned.
  • the raw material composition in the present invention may contain both the sulfide and the lithium orthooxo acid. Moreover, it is preferable to set the addition amount of an additive suitably according to a use.
  • the synthesis step in the present invention is a step of synthesizing a sulfide solid electrolyte from the raw material composition by vitrification means.
  • a sulfide solid electrolyte made of sulfide glass is obtained by vitrification means.
  • sulfide glass may be fired to form sulfide glass ceramic, and the sulfide glass ceramic may be used as a sulfide solid electrolyte.
  • the vitrification means in the present invention is not particularly limited as long as it is a means capable of synthesizing a sulfide glass from a raw material composition, and examples thereof include mechanical milling and a melt quenching method. Milling is preferred. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • the present invention it is preferable to synthesize sulfide glass from the raw material composition in an inert gas atmosphere. This is because moisture, oxygen and the like easily react with the starting material.
  • the inert gas include argon and nitrogen.
  • the mechanical milling is not particularly limited as long as mechanical energy can be imparted to the raw material composition, and examples thereof include a ball mill, a turbo mill, a mechano-fusion, a disk mill, and the like. And a planetary ball mill is particularly preferable. This is because it is general-purpose and the sulfide glass can be obtained efficiently.
  • the various conditions of the mechanical milling are preferably set to such an extent that a desired sulfide glass can be obtained, and are preferably selected as appropriate according to the type of mechanical milling.
  • a sulfide glass is synthesized by a planetary ball mill, usually, the raw material composition and grinding balls are added to the pot, and the treatment is performed at a predetermined number of revolutions and time.
  • the higher the number of rotations the faster the generation rate of sulfide glass, and the longer the treatment time, the higher the conversion rate of the raw material to sulfide glass.
  • the rotation speed when performing the planetary ball mill is preferably in the range of 200 rpm to 500 rpm, and more preferably in the range of 300 rpm to 400 rpm.
  • the processing time when performing the planetary ball mill is preferably in the range of 0.5 to 100 hours, and more preferably in the range of 10 to 40 hours.
  • sulfide glass may be fired to obtain sulfide glass ceramic, and the sulfide glass ceramic may be used as a sulfide solid electrolyte.
  • the temperature of the firing treatment is not particularly limited as long as the desired sulfide glass ceramic can be obtained. For example, it is in the range of 150 ° C. to 360 ° C., and in particular in the range of 200 ° C. to 350 ° C. It is preferable that If the firing temperature is too low, the glass transition temperature of the sulfide glass may not be reached and crystallization may not proceed. If the firing temperature is too high, the desired crystal structure may not be formed. Because. Further, the firing time is preferably in the range of 1 minute to 2 hours, and more preferably in the range of 10 minutes to 1 hour.
  • the firing of sulfide glass in an inert gas atmosphere is preferable to perform the firing of sulfide glass in an inert gas atmosphere.
  • the inert gas include argon and nitrogen.
  • a general baking furnace and the like can be exemplified as a device for performing the baking treatment.
  • the battery assembling step in the present invention is a step of assembling an all-solid-state lithium battery using the sulfide solid electrolyte in an atmosphere having a dew point temperature of ⁇ 60 ° C. or higher.
  • the atmosphere in the battery assembly process has a dew point temperature of preferably ⁇ 55 ° C. or higher, more preferably ⁇ 50 ° C. or higher. This is because, even in an atmosphere with a high dew point temperature, a decrease in lithium ion conductivity due to moisture can be sufficiently suppressed.
  • the atmosphere in the battery assembly process has a dew point temperature of preferably ⁇ 20 ° C. or lower, more preferably ⁇ 30 ° C. or lower, still more preferably ⁇ 35 ° C. or lower, and ⁇ 40 ° C. or lower. It is particularly preferred. This is because a decrease in lithium ion conductivity due to moisture can be sufficiently suppressed.
  • the dew point temperature can be determined by a dew point meter (for example, an optional dew point meter of a vacuum glove box (MDB-2B) manufactured by Miwa Seisakusho Co., Ltd.).
  • the moisture concentration of the atmosphere in the battery assembly process is preferably a concentration range corresponding to the above dew point temperature range.
  • the upper limit of the dew point temperature of the atmosphere in the battery assembly process may be determined by a 10-hour storage test described in the examples described later. Preliminary tests were performed at various dew point temperatures, and a dew point temperature at which the lithium ion conductivity after the 10-hour storage test was 1 ⁇ 10 ⁇ 3 (S ⁇ cm ⁇ 1 ) was obtained, and this dew point temperature was determined as an atmosphere in the battery assembly process. It may be the upper limit of the dew point temperature.
  • the atmosphere in the battery assembly process is usually an inert gas atmosphere.
  • the inert gas used include argon and nitrogen.
  • an all solid-state lithium battery is assembled using a sulfide solid electrolyte.
  • the sulfide solid electrolyte may be used as a solid electrolyte film disposed between the positive electrode active material layer and the negative electrode active material layer, and used as a solid electrolyte material added to the positive electrode active material layer and / or the negative electrode active material layer. Also good.
  • the power generation element is usually formed using a positive electrode current collector, a positive electrode active material layer, a negative electrode current collector, and a negative electrode active material layer.
  • the method for forming the power generation element is the same as the general method and is not particularly limited.
  • the negative electrode current collector / negative electrode active material layer / solid electrolyte membrane / positive electrode active material layer / positive electrode current collector In order to obtain the configuration, a method of sequentially performing compression molding can be exemplified.
  • the power generation element may be formed by forming the negative electrode active material layer, the solid electrolyte membrane, and the positive electrode active material layer into pellets and compressing them.
  • FIG. 2 is a schematic cross-sectional view showing an example of a power generation element of an all solid-state lithium battery obtained by the present invention.
  • a power generation element 10 shown in FIG. 2 includes a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte film 3 using a sulfide solid electrolyte, a positive electrode active material layer 4, and a positive electrode current collector 5.
  • the solid electrolyte membrane is preferably formed using the above-mentioned sulfide solid electrolyte.
  • the thickness of the solid electrolyte membrane is, for example, in the range of 0.1 ⁇ m to 1000 ⁇ m, and preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the positive electrode active material layer used in the present invention has at least a positive electrode active material.
  • the positive electrode active material include LiCoO 2 , LiMnO 2 , Li 2 NiMn 3 O 8 , LiVO 2 , LiCrO 2 , LiFePO 4 , LiCoPO 4 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2, and the like. Can be mentioned.
  • the positive electrode active material layer may contain a conductive material in order to improve conductivity. Examples of the conductive material include acetylene black and carbon fiber.
  • the positive electrode active material layer may contain a solid electrolyte in order to improve lithium ion conductivity.
  • the thickness of the positive electrode active material layer is, for example, in the range of 1 ⁇ m to 100 ⁇ m.
  • the positive electrode current collector used in the present invention is not particularly limited as long as it has a function of collecting current of the positive electrode active material layer.
  • Examples of the material for the positive electrode current collector include SUS.
  • Examples of the shape of the positive electrode current collector include a foil shape and a mesh shape.
  • the negative electrode active material layer used in the present invention has at least a negative electrode active material.
  • the negative electrode active material include a metal active material and a carbon active material.
  • the metal active material include In, Al, Si, Sn, and alloys thereof.
  • examples of the carbon active material include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon.
  • the negative electrode active material layer may contain the above-described conductive material, solid electrolyte, and the like.
  • the negative electrode active material layer used in the present invention may be a metal film of a metal active material, or may be a compression-molded powder of a negative electrode active material.
  • the thickness of the negative electrode active material layer is, for example, in the range of 1 ⁇ m to 100 ⁇ m.
  • the negative electrode current collector used in the present invention is not particularly limited as long as it has a function of collecting current of the negative electrode active material layer.
  • Examples of the material for the negative electrode current collector include SUS.
  • Examples of the shape of the negative electrode current collector include a foil shape and a mesh shape.
  • an all-solid-state lithium battery is usually assembled by storing the above-described power generation element in a battery case.
  • the material and shape of the battery case is the same as that of a general all solid-state lithium battery.
  • the above power generation element may be formed in a hollow portion of the insulating ring.
  • the all solid-state lithium battery obtained by the present invention may be a primary battery or a secondary battery.
  • a vehicle-mounted battery can be exemplified.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • a pot made of zirconia was attached to a planetary ball mill and mechanical milling was performed at a rotational speed of 370 rpm for 20 hours to obtain powdered sulfide glass.
  • XRD X-ray diffraction
  • peaks of Li 2 S is disappeared, it was confirmed that vitrification is in progress.
  • the obtained sulfide glass was baked under conditions of 280 ° C. for 1 hour while flowing Ar gas to obtain a sulfide solid electrolyte made of sulfide glass ceramics.
  • Example 1-1 A test was performed in which the sulfide solid electrolyte obtained in Synthesis Example 1 was stored for 10 hours in a glove box in an Ar atmosphere having a dew point temperature of ⁇ 20 ° C.
  • Example 1-2 A test was conducted in which the sulfide solid electrolyte obtained in Synthesis Example 1 was stored for 10 hours in a glove box in an Ar atmosphere having a dew point temperature of ⁇ 30 ° C.
  • Example 1-3 A test was conducted in which the sulfide solid electrolyte obtained in Synthesis Example 1 was stored for 10 hours in a glove box in an Ar atmosphere having a dew point temperature of ⁇ 40 ° C.
  • Example 1-4 A test was performed in which the sulfide solid electrolyte obtained in Synthesis Example 1 was stored for 10 hours in a glove box in an Ar atmosphere having a dew point temperature of ⁇ 60 ° C.
  • Example 1-1 the lithium ion conductivity could be kept high as compared with Comparative Example 1-3. This is also considered to be due to the influence of the P 2 S 6 O unit.
  • Example 2 An evaluation cell was produced using the sulfide solid electrolyte obtained in Example 1-3.
  • the evaluation cell was produced in a glove box in an Ar atmosphere with a dew point temperature of ⁇ 40 ° C., as in the synthesis of the sulfide solid electrolyte.
  • a negative electrode active material graphite
  • a press machine to form a negative electrode active material layer.
  • the sulfide solid electrolyte obtained in Example 1-2 was added to the surface of the negative electrode active material layer and pressed to form a solid electrolyte membrane.
  • a positive electrode active material LiCoO 2
  • SiCoO 2 a positive electrode active material
  • SUS electrical power collector

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

 本発明は、電池組立工程での露点管理を容易に行うことができる全固体型リチウム電池の製造方法を提供することを主目的とする。  本発明においては、LiS、PおよびPを、モル基準で、(LiS)/(P+P)<3の関係を満たすように添加し、原料組成物を調製する調製工程と、ガラス化手段により、上記原料組成物から硫化物固体電解質を合成する合成工程と、上記硫化物固体電解質を用い、露点温度が-60°C以上の雰囲気中で、全固体型リチウム電池を組立てる電池組立工程と、を有することを特徴とする全固体型リチウム電池の製造方法を提供することにより、上記課題を解決する。

Description

全固体型リチウム電池の製造方法
 本発明は、電池組立工程での露点管理を容易に行うことができる全固体型リチウム電池の製造方法に関する。
 近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を集めている。
 現在市販されているリチウム電池は、可燃性の有機溶剤を溶媒とする有機電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。
 これに対し、液体電解質を固体電解質に変えて、電池を全固体化した全固体型リチウム電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れるという利点を有する。このような全固体型リチウム電池に用いられる固体電解質として、従来から硫化物固体電解質が知られている。
 ところが、硫化物固体電解質は、水分に対する安定性が低いという問題がある。そのため、従来から、より水分の少ない条件で硫化物固体電解質を合成する方法が知られている。例えば、特許文献1においては、水分量が100ppm以下の不活性ガス流中で加熱・溶融を行う硫化物固体電解質の合成方法が開示されている。
 また、硫化物固体電解質の中でも、Li11は、リチウムイオン伝導性が高く、全固体型リチウム電池の有用な材料として期待されている。非特許文献1においては、Li11の結晶構造が開示されており、具体的には、架橋硫黄を含むPユニット(後述する構造式Bで表されるユニット)と、架橋硫黄を有しないPSユニット(後述する構造式Cで表されるユニット)とが1:1の割合で配列した結晶構造が開示されている。なお、Li11は、モル基準で、LiS:P=70:30の関係を満たすように調製した原料組成物を用いることで合成することができる。
 また、非特許文献2においては、モル基準で、LiS:P:P=70:30-x:xの関係を満たすように調製した原料組成物を用いて、硫化物固体電解質を合成することが開示されている。この技術においては、電気的な安定性が向上した硫化物固体電解質を得ることができる。
特開平6-279050号公報 H.Yamane et al., "Crystal structure of a superionic conductor Li7P3S11", Solid State Ionics 178 (2007) 1163-1167 K. Minami et al., "Structure and poperties of the 70Li2S-(30-x)P2S5-xP2O5 oxysulfide glasses and glass-ceramics", Journal of Non-Crystalline Solids 354(2008) 370-373
 従来、硫化物固体電解質を用いた全固体型リチウム電池を製造する場合、水分によって硫化物固体電解質のリチウムイオン伝導性が低下することを防止するために、電池組立工程での露点管理を極めて厳密に行う必要があった。具体的には、通常、露点温度が-70℃以下(水分濃度2.58ppm(容量)以下)の雰囲気中で電池の組立を行う必要があり、露点管理が難しいという問題があった。
 本発明は、上記問題点に鑑みてなされたものであり、電池組立工程での露点管理を容易に行うことができる全固体型リチウム電池の製造方法を提供することを主目的とする。
 上記課題を解決するために、本発明者等が鋭意検討を重ねた結果、LiS、PおよびPを、モル基準で、(LiS)/(P+P)<3の関係を満たすように添加して得られる原料組成物を用いた硫化物固体電解質は、露点温度が高い雰囲気中であっても、リチウムイオン伝導性が低下しにくいことを見出した。本発明は、このような知見に基づいてなされたものである。
 すなわち、本発明においては、LiS、PおよびPを、モル基準で、(LiS)/(P+P)<3の関係を満たすように添加し、原料組成物を調製する調製工程と、ガラス化手段により、上記原料組成物から硫化物固体電解質を合成する合成工程と、上記硫化物固体電解質を用い、露点温度が-60℃以上の雰囲気中で、全固体型リチウム電池を組立てる電池組立工程と、を有することを特徴とする全固体型リチウム電池の製造方法を提供する。
 本発明によれば、LiSおよびPに加えて、さらにPを添加した原料組成物を用いることにより、POユニットを有する硫化物固体電解質を合成することができる。POユニットは、Pユニットに比べて、水分に対する安定性が高いため、露点温度が高い雰囲気中であっても、硫化物固体電解質のリチウムイオン伝導性が低下することを抑制できる。そのため、露点管理の容易化を図ることができる。
 上記発明においては、上記電池組立工程を、露点温度が-30℃以下の雰囲気中で行うことが好ましい。水分によるリチウムイオン伝導性の低下を充分に抑制することができるからである。
 上記発明においては、上記硫化物固体電解質を、正極活物質層および負極活物質層の間に配置される固体電解質膜として用いることが好ましい。リチウムイオン伝導性に優れた全固体型リチウム電池を得ることができるからである。
 上記発明においては、上記ガラス化手段が、メカニカルミリングであることが好ましい。常温での処理が可能であり、製造工程の簡略化を図ることができるからである。
 上記発明においては、上記原料組成物が、モル基準で、(LiS)/(P+P)=7/3の関係を満たすことが好ましい。リチウムイオン伝導性に優れた硫化物固体電解質を得ることができるからである。
 上記発明においては、上記原料組成物が、モル基準で、(P)/(LiS+P+P)≦10の関係を満たすことが好ましい。高いリチウムイオン伝導性を維持しつつ、水分に対する安定性を向上させることができるからである。
 本発明においては、電池組立工程での露点管理を容易に行うことができるという効果を奏する。
本発明の全固体型リチウム電池の製造方法の製造方法の一例を説明する説明図である。 本発明により得られる全固体型リチウム電池の発電要素の一例を示す概略断面図である。 リチウムイオン伝導度の測定結果である。 実施例2で作製した評価用セルの充放電曲線である。 大気フローによるラマン分光スペクトルの変動を示すグラフである。
符号の説明
 1 … 負極集電体
 2 … 負極活物質層
 3 … 固体電解質膜
 4 … 正極活物質層
 5 … 正極集電体
 10 … 全固体型リチウム電池の発電要素
 以下、本発明の全固体型リチウム電池の製造方法について、詳細に説明する。
 本発明の全固体型リチウム電池の製造方法は、LiS、PおよびPを、モル基準で、(LiS)/(P+P)<3の関係を満たすように添加し、原料組成物を調製する調製工程と、ガラス化手段により、上記原料組成物から硫化物固体電解質を合成する合成工程と、上記硫化物固体電解質を用い、露点温度が-60℃以上の雰囲気中で、全固体型リチウム電池を組立てる電池組立工程と、を有することを特徴とするものである。
 図1は、本発明の全固体型リチウム電池の製造方法の製造方法の一例を説明する説明図である。図1においては、まず、出発原料として、LiS、PおよびPを用意する。さらに、この出発原料を、所定の割合で添加し、原料組成物を調製する(調製工程)。次に、ガラス化手段(例えばメカニカルミリング)により、原料組成物から、硫化物ガラスからなる硫化物固体電解質を合成する(合成工程)。なお、本発明においては、硫化物ガラスを焼成して硫化物ガラスセラミックスとし、その硫化物ガラスセラミックスを硫化物固体電解質として用いても良い。次に、得られた硫化物固体電解質を用いて、所定の露点温度の雰囲気中で、全固体型リチウム電池を組立てる(電池組立工程)。
 また、本発明においては、上記の合成工程により、下記の構造式A~構造式Cで示されるユニットを有する硫化物固体電解質が得られる。具体的には、構造式Aで表されるPOユニット(単に「POユニット」と称する場合がある。)と、構造式Bで表されるPユニット(単に「Pユニット」と称する場合がある。)と、構造式Cで表されるPSユニット(単に「PSユニット」と称する場合がある。)と、を有する硫化物固体電解質が得られる。なお、この硫化物固体電解質は、通常、各ユニットのカウンターとして、Liイオンを有している。
Figure JPOXMLDOC01-appb-C000001
 本発明によれば、LiSおよびPに加えて、さらにPを添加した原料組成物を用いることにより、POユニットを有する硫化物固体電解質を合成することができる。POユニットは、Pユニットに比べて、水分に対する安定性が高いため、露点温度が高い雰囲気中であっても、硫化物固体電解質のリチウムイオン伝導性が低下することを抑制できる。そのため、露点管理の容易化を図ることができる。さらに、露点温度が高い雰囲気中で電池を組立てることができるため、露点温度を維持するためのコストを低減することもできる。特に、電池組立工程を行う際には、通常、大きな作業空間を必要とするため、露点管理の容易化および露点温度を維持するためのコストの低減は重要である。
 また、従来のLi11(PユニットおよびPSユニットを1:1で含む化合物)は、水分に対する安定性が低いことは知られていたが、その原理は明らかにされていなかった。本発明者等が鋭意検討を重ねた結果、後述する参考例に記載するように、Pユニットが、PSユニットに比べて、優先的に水分と反応することが確認された。さらに、Pユニットの構造を考慮すると、架橋部分に位置する硫黄が大気中の水分と反応し、硫化水素を発生させているものと考えられる。これらの知見から、Pユニットの架橋硫黄を酸素に置換したPOユニットは、水分に対する安定性が高いと考え、本発明を完成させるに至ったのである。上述した非特許文献1および非特許文献2において、水分に対する硫化物固体電解質の安定性については記載も示唆もされていない。
 以下、本発明の全固体型リチウム電池の製造方法について、工程ごとに説明する。
1.調製工程
 本発明における調製工程は、LiS、PおよびPを、モル基準で、(LiS)/(P+P)<3の関係を満たすように添加し、原料組成物を調製する工程である。
 本発明においては、LiS、PおよびPを、硫化物固体電解質の出発原料として用いる。LiS、PおよびPは、それぞれ不純物が少ないことが好ましい。副反応を抑制することができるからである。本発明に用いられるLiSの合成方法としては、例えば特開平7-330312号公報に記載された方法等を挙げることができる。さらに、LiSは、WO2005/040039に記載された方法等を用いて精製されていることが好ましい。なお、本発明に用いられるPおよびPは、市販で入手可能なものを使用することができる。
 本発明においては、LiS、PおよびPを、モル基準で、(LiS)/(P+P)<3の関係を満たすように添加する。この関係は、以下の考察より導き出されるものである。すなわち、LiS-P硫化物固体電解質を製造する場合において、LiSおよびPを、モル基準で、LiS:P=75:25(=3:1)の関係を満たすように添加すると、架橋硫黄を有しないPSユニットのみが生成し、架橋硫黄を有するPユニットは生成しない。そのため、Pユニットを作製するためには、(LiS)/(P)<3の関係を満たすことが必要である。一方、本発明においては、使用するPの一部を、POに置き換えることにより、Pユニットの架橋硫黄を酸素に置き換えた構造を有するPOユニットを作製する。これらを考慮し、POユニットを作製するために、(LiS)/(P+P)<3の関係を設定した。
 また、本発明においては、原料組成物が、モル基準で、1≦(LiS)/(P+P)<3の関係を満たすことが好ましく、1.5≦(LiS)/(P+P)<3の関係を満たすことがより好ましい。特に、本発明においては、原料組成物が、モル基準で、(LiS)/(P+P)=7/3の関係を満たすことが好ましい。リチウムイオン伝導性に優れた硫化物固体電解質を得ることができるからである。
 本発明においては、LiS、PおよびPの添加量の総和に対する、Pの添加量を、(LiS)/(LiS+P+P)で表すことができる。本発明においては、原料組成物が、モル基準で、(P)/(LiS+P+P)≦10の関係を満たすことが好ましく、(P)/(LiS+P+P)≦8の関係を満たすことがより好ましく、(P)/(LiS+P+P)≦6の関係を満たすことがさらに好ましい。Pの添加割合が多すぎると、リチウムイオン伝導性が低下する可能性があるからである。一方、原料組成物は、モル基準で、0.5≦(P)/(LiS+P+P)の関係を満たすことが好ましく、1.0≦(P)/(LiS+P+P)の関係を満たすことがより好ましく、1.5≦(P)/(LiS+P+P)の関係を満たすことがさらに好ましい。Pの添加割合が少なすぎると、水分に対する安定性を向上できない可能性があるからである。
 上述したように、原料組成物は、モル基準で、(LiS)/(P+P)=7/3の関係を満たすことが好ましい。この場合、各原料の組成は、モル基準で、LiS:P:P=70:30-x:xと記載することができる。上述したように、xは、10以下が好ましく、8以下がより好ましく、6以下がさらに好ましい。同様に、xは、0.5以上が好ましく、1以上がより好ましく、1.5以上がさらに好ましい。
 原料組成物における、LiS、PおよびPの割合は、上記の関係を満たすものであれば特に限定されるものではない。原料組成物に含まれるLiSの含有率は、例えば68mol%~74mol%の範囲内であることが好ましい。原料組成物に含まれるPの含有率は、例えば16mol%~31.5mol%の範囲内であることが好ましい。原料組成物に含まれるPの含有率は、例えば0.5mol%以上が好ましく、1mol%以上がより好ましく、1.5mol%以上がさらに好ましい。同様に、Pの含有率は、例えば10mol%以下が好ましく、8mol%以下がより好ましく、6mol%以下がさらに好ましい。
 本発明における原料組成物は、LiS、PおよびPのみを含有するものであっても良く、LiS、PおよびPの他に、添加剤を含有するものであっても良い。添加物の一例としては、Al、B3、GeSおよびSiSからなる群から選択される少なくとも1種の硫化物を挙げることができる。このような硫化物を加えることで、より安定な硫化物ガラスを得ることができる。また、上記添加物の他の例としては、LiPO、LiSiO、LiGeO、LiBOおよびLiAlOからなる群から選択される少なくとも1種のオルトオキソ酸リチウムを挙げることができる。このようなオルトオキソ酸リチウムを加えることで、より安定な硫化物ガラスを得ることができる。本発明における原料組成物は、上記硫化物および上記オルトオキソ酸リチウムの両方を含有していても良い。また、添加剤の添加量は、用途に応じて適宜設定することが好ましい。
2.合成工程
 次に、本発明における合成工程について説明する。本発明における合成工程は、ガラス化手段により、前記原料組成物から硫化物固体電解質を合成する工程である。通常は、ガラス化手段により、硫化物ガラスからなる硫化物固体電解質が得られる。なお、本発明においては、硫化物ガラスを焼成して硫化物ガラスセラミックスとし、その硫化物ガラスセラミックスを硫化物固体電解質として用いても良い。
 本発明におけるガラス化手段は、原料組成物から硫化物ガラスを合成することができる手段であれば特に限定されるものではないが、例えばメカニカルミリングおよび溶融急冷法等を挙げることができ、中でもメカニカルミリングが好ましい。常温での処理が可能であり、製造工程の簡略化を図ることができるからである。
 本発明においては、不活性ガス雰囲気中で原料組成物から硫化物ガラスを合成することが好ましい。水分や酸素等は、出発原料と反応し易いからである。不活性ガスとしては、例えばアルゴンおよび窒素等を挙げることができる。
 上記メカニカルミリングとしては、原料組成物に対して機械的エネルギーを付与できるものであれば特に限定されるものではないが、例えばボールミル、ターボミル、メカノフュージョン、ディスクミル等を挙げることができ、中でもボールミルが好ましく、特に遊星型ボールミルが好ましい。汎用的であり、効率良く硫化物ガラスを得ることができるからである。
 上記メカニカルミリングの各種条件は、所望の硫化物ガラスを得ることができる程度に設定することが好ましく、メカニカルミリングの種類に応じて適宜選択することが好ましい。例えば、遊星型ボールミルにより硫化物ガラスを合成する場合、通常、ポット内に、原料組成物および粉砕用ボールを加え、所定の回転数および時間で処理を行う。一般的に、回転数が大きいほど、硫化物ガラスの生成速度は速くなり、処理時間が長いほど硫化物ガラスヘの原材の転化率は高くなる。遊星型ボールミルを行う際の回転数としては、例えば200rpm~500rpmの範囲内、中でも300rpm~400rpmの範囲内であることが好ましい。また、遊星型ボールミルを行う際の処理時間としては、例えば0.5時間~100時間の範囲内、中でも10時間~40時間の範囲内であることが好ましい。
 また、上述したように、本発明においては、硫化物ガラスを焼成して硫化物ガラスセラミックスとし、その硫化物ガラスセラミックスを硫化物固体電解質として用いても良い。焼成処理の温度としては、所望の硫化物ガラスセラミックスを得ることができる温度であれば特に限定されるものではないが、例えば150℃~360℃の範囲内、中でも200℃~350℃の範囲内であることが好ましい。焼成処理の温度が低すぎると、硫化物ガラスのガラス転移温度に届かず、結晶化が進行しない可能性があり、焼成処理の温度が高すぎると、所望の結晶構造が形成されない可能性があるからである。また、焼成処理の時間としては、例えば1分~2時間の範囲内、中でも10分~1時間の範囲内であることが好ましい。
 本発明においては、不活性ガス雰囲気中で硫化物ガラスの焼成を行うことが好ましい。硫化物ガラスセラミックスの酸化等を防止するためである。不活性ガスとしては、例えばアルゴンおよび窒素等を挙げることができる。また、焼成処理を行う装置としては、一般的な焼成炉等を挙げることができる。
3.電池組立工程
 次に、本発明における電池組立工程について説明する。本発明における電池組立工程は、上記硫化物固体電解質を用い、露点温度が-60℃以上の雰囲気中で、全固体型リチウム電池を組立てる工程である。
 電池組立工程における雰囲気は、露点温度が-55℃以上であることが好ましく、-50℃以上であることがより好ましい。露点温度が高い雰囲気であっても、水分によるリチウムイオン伝導性の低下を充分に抑制することができるからである。一方、電池組立工程における雰囲気は、露点温度が-20℃以下であることが好ましく、-30℃以下であることがより好ましく、-35℃以下であることがさらに好ましく、-40℃以下であることが特に好ましい。水分によるリチウムイオン伝導性の低下を充分に抑制することができるからである。本発明において、露点温度は、露点計(例えば、株式会社美和製作所社製、真空グローブボックス(MDB-2B)のオプションの露点計)により求めることができる。
 また、露点温度と、気相(空気中)の水分濃度との関係を下記に示す。電池組立工程における雰囲気の水分濃度は、上記の露点温度の範囲に対応する濃度範囲であることが好ましい。
Figure JPOXMLDOC01-appb-T000002
 また、電池組立工程における雰囲気の露点温度の上限は、後述する実施例に記載する10時間保存試験によって決定しても良い。種々の露点温度で予備試験を行い、10時間保存試験後のリチウムイオン伝導度が1×10-3(S・cm-1)となる露点温度を求め、この露点温度を、電池組立工程における雰囲気の露点温度の上限としても良い。
 電池組立工程における雰囲気は、通常、不活性ガス雰囲気である。用いられる不活性ガスとしては、例えばアルゴンおよび窒素等を挙げることができる。
 また、本発明においては、硫化物固体電解質を用いて、全固体型リチウム電池を組立てる。硫化物固体電解質は、正極活物質層および負極活物質層の間に配置される固体電解質膜として用いても良く、正極活物質層および/または負極活物質層に添加する固体電解質材料として用いても良い。中でも、本発明においては、硫化物固体電解質を固体電解質膜として用いることが好ましい。リチウムイオン伝導性に優れた全固体型リチウム電池を得ることができるからである。
 また、電池組立工程では、上述した硫化物固体電解質に加えて、通常、正極集電体、正極活物質層、負極集電体、負極活物質層を用いて発電要素を形成する。発電要素の形成方法は、一般的な方法と同様であり特に限定されるものではないが、例えば、負極集電体/負極活物質層/固体電解質膜/正極活物質層/正極集電体の構成が得られるように、順次圧縮成形を行う方法等を挙げることができる。なお、負極活物質層、固体電解質膜および正極活物質層を、それぞれペレット状に成形し、それらを圧縮することで、上記の発電要素を形成しても良い。
 図2は、本発明により得られる全固体型リチウム電池の発電要素の一例を示す概略断面図である。図2に示される発電要素10は、負極集電体1と、負極活物質層2と、硫化物固体電解質を用いた固体電解質膜3と、正極活物質層4と、正極集電体5とを有する。
 本発明において、固体電解質膜は、上記の硫化物固体電解質を用いて形成されたものであることが好ましい。固体電解質膜の厚さは、例えば0.1μm~1000μmの範囲内であり、中でも0.1μm~300μmの範囲内であることが好ましい。
 本発明に用いられる正極活物質層は、少なくとも正極活物質を有する。正極活物質としては、例えばLiCoO、LiMnO、LiNiMn、LiVO、LiCrO、LiFePO、LiCoPO、LiNiO、LiNi1/3Co1/3Mn1/3等を挙げることができる。また、正極活物質層は、導電性を向上させるために、導電化材を含有していても良い。導電化材としては、例えばアセチレンブラック、カーボンファイバー等を挙げることができる。さらに、正極活物質層は、リチウムイオン伝導性を向上させるために、固体電解質を含有していていも良い。正極活物質層の厚さは、例えば1μm~100μmの範囲内である。
 本発明に用いられる正極集電体は、正極活物質層の集電を行う機能を有するものであれば特に限定されるものではない。上記正極集電体の材料としては、例えばSUS等を挙げることができる。また、上記正極集電体の形状としては、例えば箔状およびメッシュ状等を挙げることができる。
 本発明に用いられる負極活物質層は、少なくとも負極活物質を有する。負極活物質としては、例えば金属活物質およびカーボン活物質を挙げることができる。金属活物質としては、例えばIn、Al、Si、Snおよびその合金等を挙げることができる。一方、カーボン活物質としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。また、負極活物質層は、上述した導電化材および固体電解質等を含有していても良い。なお、本発明に用いられる負極活物質層は、金属活物質の金属膜であっても良く、負極活物質の粉体を圧縮成形したものであっても良い。負極活物質層の厚さは、例えば1μm~100μmの範囲内である。
 本発明に用いられる負極集電体は、負極活物質層の集電を行う機能を有するものであれば特に限定されるものではない。上記負極集電体の材料としては、例えばSUS等を挙げることができる。また、上記負極集電体の形状としては、例えば箔状およびメッシュ状等を挙げることができる。
 また、本発明においては、通常、上記の発電要素を電池ケースに収納することで、全固体型リチウム電池を組立てる。電池ケースの材料および形状については、一般的な全固体型リチウム電池と同様である。また、本発明においては、上記の発電要素が、絶縁リングの中空部分に形成されていても良い。また、本発明により得られる全固体型リチウム電池は、一次電池であっても良く、二次電池であっても良い。本発明により得られる全固体型リチウム電池の用途としては、例えば車載用電池等を挙げることができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例を示して本発明をさらに具体的に説明する。
[合成例1]
 出発原料として、硫化リチウム結晶(LiS)、五硫化二リン(P)および五酸化二リン(P)を用意した。これらの粉末をアルゴン雰囲気のグローブボックス内で、LiS:P:P=70:26:4(モル基準)の割合で秤量し、ジルコニア製ポットに投入した。さらに、φ=15mmのジルコニア製粉砕用ボール6個を、容積45ccのジルコニア製ポットに投入し、完全密封した。次に、ジルコニア製ポットを遊星型ボールミル機に取り付け、370rpmの回転速度で20時間メカニカルミリングを行い、粉末状の硫化物ガラスを得た。なお、得られた硫化物ガラスをX線回折(XRD)法で測定した結果、LiSのピークは消失しており、ガラス化が進行していることが確認できた。次に、得られた硫化物ガラスを、Arガスをフローしながら、280℃、1時間の条件で焼成処理し、硫化物ガラスセラミックスからなる硫化物固体電解質を得た。
[合成例2]
 LiS:P:P=70:28:2(モル基準)としたこと以外は、合成例1と同様にして、硫化物系固体電解質材料を得た。なお、合成途中で得られた硫化物ガラスをX線回折(XRD)法で測定した結果、LiSのピークは消失しており、ガラス化が進行していることが確認できた。
[合成例3]
 LiS:P:P=70:24:6(モル基準)としたこと以外は、合成例1と同様にして、硫化物系固体電解質材料を得た。なお、合成途中で得られた硫化物ガラスをX線回折(XRD)法で測定した結果、LiSのピークは消失しており、ガラス化が進行していることが確認できた。
[合成例4]
 LiS:P:P=70:20:10(モル基準)としたこと以外は、合成例1と同様にして、硫化物系固体電解質材料を得た。なお、合成途中で得られた硫化物ガラスをX線回折(XRD)法で測定した結果、LiSのピークは消失しており、ガラス化が進行していることが確認できた。
[比較合成例]
 Pを用いず、LiS:P=70:30(モル基準)としたこと以外は、合成例1と同様にして、硫化物固体電解質を得た。
[実施例1-1]
 合成例1で得られた硫化物固体電解質を、露点温度が-20℃であるAr雰囲気のグローブボックス内で10時間保存する試験を行った。
[実施例1-2]
 合成例1で得られた硫化物固体電解質を、露点温度が-30℃であるAr雰囲気のグローブボックス内で10時間保存する試験を行った。
[実施例1-3]
 合成例1で得られた硫化物固体電解質を、露点温度が-40℃であるAr雰囲気のグローブボックス内で10時間保存する試験を行った。
[実施例1-4]
 合成例1で得られた硫化物固体電解質を、露点温度が-60℃であるAr雰囲気のグローブボックス内で10時間保存する試験を行った。
[比較例1-1]
 合成例1で得られた硫化物固体電解質を、露点温度が-70℃であるAr雰囲気のグローブボックス内で10時間保存する試験を行った。
[比較例1-2]
 合成例1で得られた硫化物固体電解質を、露点温度が-80℃であるAr雰囲気のグローブボックス内で10時間保存する試験を行った。
[比較例1-3]
 比較合成例で得られた硫化物固体電解質を、露点温度が-20℃であるAr雰囲気のグローブボックス内で10時間保存する試験を行った。
[比較例1-4]
 比較合成例で得られた硫化物固体電解質を、露点温度が-30℃であるAr雰囲気のグローブボックス内で10時間保存する試験を行った。
[比較例1-5]
 比較合成例で得られた硫化物固体電解質を、露点温度が-40℃であるAr雰囲気のグローブボックス内で10時間保存する試験を行った。
[比較例1-6]
 比較合成例で得られた硫化物固体電解質を、露点温度が-60℃であるAr雰囲気のグローブボックス内で10時間保存する試験を行った。
[比較例1-7]
 比較合成例で得られた硫化物固体電解質を、露点温度が-70℃であるAr雰囲気のグローブボックス内で10時間保存する試験を行った。
[比較例1-8]
 比較合成例で得られた硫化物固体電解質を、露点温度が-80℃であるAr雰囲気のグローブボックス内で10時間保存する試験を行った。
[評価1]
 実施例1-1~実施例1-4および比較例1-1~比較例1-8で得られた硫化物固体電解質のリチウムイオン伝導度を評価した。まず試験終了後に、そのグローブボックス内で、硫化物固体電解質を5.1mg秤量した。次に、その硫化物固体電解質を、5.1t/cmの圧力で圧縮成形することで、φ10mmのペレットを得た。次に、このペレットを用いて、交流インピーダンス法によりリチウムイオン伝導度を測定した。その測定条件を以下に示す。
(測定条件)
 電極:SUS304
 インピーダンス測定システム:ソーラートロン1260(ソーラートロン社製)
 印加電圧:5mV
 測定周波数:0.01MHz~10MHz
 得られた結果を図3に示す。図3に示されるように、Pを用いない比較例(比較例1-3~比較例1-8)において、露点温度が-70℃以下の場合(比較例1-7および比較例1-8)は、リチウムイオン伝導度がほぼ同一であった。しかし、比較例1-3~比較例1-6に示されるように、露点温度が-70℃より大きくなると、リチウムイオン伝導度が急激に減少することが確認された。これは、グローブボックス内の水分によって、硫化物固体電解質が劣化したためである。そのため、従来は、露点温度が-70℃以下の雰囲気中で、電池を組立てる必要があった。
 これに対して、Pを用いた系(実施例1-1~実施例1-4、比較例1-1および比較例1-2)において、露点温度が-70℃以下の場合(比較例1-1および比較例1-2)は、リチウムイオン伝導度がほぼ同一であった。しかし、実施例1-1~実施例1-4に示されるように、露点温度が-70℃より大きくなった場合であっても、リチウムイオン伝導度の減少は緩やかであった。これは、実施例で用いた硫化物固体電解質が、Pユニットだけではなく、水分に対する安定性の高いPOユニットを有するためであると考えられる。そのため、露点温度が高い雰囲気であっても、リチウムイオン伝導度の低下を抑制することができる。その結果、露点管理の容易化を図ったり、所望の露点温度を維持するためのコストを低減したりすることができる。なお、実施例1-1では、比較例1-3と比べて、リチウムイオン伝導度を高く保つことができた。これもPOユニットの影響によるものであると考えられる。
[実施例2]
 実施例1-3で得られた硫化物固体電解質を用いて、評価用セルを作製した。なお、評価用セルの作製は、硫化物固体電解質の合成と同様に、露点温度が-40℃のAr雰囲気のグローブボックス内で行った。まず、プレス機を用いて、負極活物質(グラファイト)をプレスし、負極活物質層を形成した。次に、負極活物質層の表面上に、実施例1-2で得られた硫化物固体電解質を添加し、プレスすることで、固体電解質膜を形成した。次に、固体電解質膜の表面上に、正極活物質(LiCoO)を添加し、プレスすることで、正極活物質層を形成した。これにより、負極活物質層/固体電解質膜/正極活物質層の積層体を得た。さらに、この積層体の両面を、集電体(SUS)で挟持し、評価用セルを得た。
[評価2]
 実施例2で得られた評価用セルを用いて、127mA/cmの電流で、充電4.08Vの電圧規制、放電3Vの電圧規制の条件で、充放電試験を行った。その結果を図4に示す。図4に示されるように、評価用セルは充放電可能であり、二次電池として機能することが確認できた。
[参考例]
 比較例1-7で得られた硫化物固体電解質を用いて、大気フローによるラマン分光スペクトルの変動を評価した。大気フローの条件は、温度24℃、湿度37%RH、流速1L/min.とした。また、0分、0.5分、1分、5.5分および15分のタイミングでラマン分光スペクトルを測定した。その結果を図5に示す。図5において、402cm-1のピークはPユニットのピークであり、417cm-1のピークはPSユニットのピークである。図5に示されるように、大気フローの時間が長くなると、Pユニットのピーク(402cm-1)が、PSユニットのピーク(417cm-1)に比べて、急速に減少していることが確認できた。これは、Pユニットが優先的に大気中の水分と反応し、硫化水素を発生させているためであると考えられる。さらに、Pユニットの構造を考慮すると、架橋部分に位置する硫黄が大気中の水分と反応していることが示唆される。これに対して、本発明に用いられる硫化物固体電解質は、Pユニットの架橋硫黄を酸素に置換したPOユニットを有するため、水分に対する安定性が向上すると考えられる。その結果、露点温度が高い雰囲気で電池の組立を行った場合であっても、リチウムイオン伝導度の低下を抑制できる。

Claims (6)

  1.  LiS、PおよびPを、モル基準で、(LiS)/(P+P)<3の関係を満たすように添加し、原料組成物を調製する調製工程と、
     ガラス化手段により、前記原料組成物から硫化物固体電解質を合成する合成工程と、
     前記硫化物固体電解質を用い、露点温度が-60℃以上の雰囲気中で、全固体型リチウム電池を組立てる電池組立工程と、
     を有することを特徴とする全固体型リチウム電池の製造方法。
  2.  前記電池組立工程を、露点温度が-30℃以下の雰囲気中で行うことを特徴とする請求の範囲第1項に記載の全固体型リチウム電池の製造方法。
  3.  前記硫化物固体電解質を、正極活物質層および負極活物質層の間に配置される固体電解質膜として用いることを特徴とする請求の範囲第1項または第2項に記載の全固体型リチウム電池の製造方法。
  4.  前記ガラス化手段が、メカニカルミリングであることを特徴とする請求の範囲第1項から第3項までのいずれかに記載の全固体型リチウム電池の製造方法。
  5.  前記原料組成物が、モル基準で、(LiS)/(P+P)=7/3の関係を満たすことを特徴とする請求の範囲第1項から第4項までのいずれかに記載の全固体型リチウム電池の製造方法。
  6.  前記原料組成物が、モル基準で、(P)/(LiS+P+P)≦10の関係を満たすことを特徴とする請求の範囲第1項から第5項までのいずれかに記載の全固体型リチウム電池の製造方法。
PCT/JP2008/068071 2008-10-03 2008-10-03 全固体型リチウム電池の製造方法 WO2010038313A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/059,844 US8591603B2 (en) 2008-10-03 2008-10-03 Method for producing all solid lithium battery
PCT/JP2008/068071 WO2010038313A1 (ja) 2008-10-03 2008-10-03 全固体型リチウム電池の製造方法
CN200880131152.8A CN102160232B (zh) 2008-10-03 2008-10-03 全固体型锂电池的制造方法
KR1020117005892A KR20110055635A (ko) 2008-10-03 2008-10-03 전고체형 리튬 전지의 제조 방법
JP2010531699A JP5278437B2 (ja) 2008-10-03 2008-10-03 全固体型リチウム電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068071 WO2010038313A1 (ja) 2008-10-03 2008-10-03 全固体型リチウム電池の製造方法

Publications (1)

Publication Number Publication Date
WO2010038313A1 true WO2010038313A1 (ja) 2010-04-08

Family

ID=42073105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068071 WO2010038313A1 (ja) 2008-10-03 2008-10-03 全固体型リチウム電池の製造方法

Country Status (5)

Country Link
US (1) US8591603B2 (ja)
JP (1) JP5278437B2 (ja)
KR (1) KR20110055635A (ja)
CN (1) CN102160232B (ja)
WO (1) WO2010038313A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199033A (ja) * 2009-02-27 2010-09-09 Osaka Prefecture Univ 硫化物固体電解質材料
WO2011030696A1 (ja) * 2009-09-09 2011-03-17 公立大学法人大阪府立大学 硫化物固体電解質
JP2011086556A (ja) * 2009-10-16 2011-04-28 Sumitomo Electric Ind Ltd 硫化物固体電解質の製造方法、および複合体
WO2012026238A1 (en) * 2010-08-26 2012-03-01 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material and lithium solid state battery
JP2012048971A (ja) * 2010-08-26 2012-03-08 Toyota Motor Corp 硫化物固体電解質材料、正極体およびリチウム固体電池
CN102959646A (zh) * 2010-06-29 2013-03-06 丰田自动车株式会社 硫化物固体电解质材料的制造方法、锂固体电池的制造方法
WO2013094757A1 (ja) * 2011-12-22 2013-06-27 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2014056818A (ja) * 2013-08-16 2014-03-27 Toyota Motor Corp 硫化物固体電解質材料、正極体およびリチウム固体電池
JP2014091664A (ja) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd 固体電解質ガラス粒子及びリチウムイオン電池
US8968939B2 (en) 2009-05-01 2015-03-03 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material
JPWO2013042371A1 (ja) * 2011-09-22 2015-03-26 出光興産株式会社 ガラス粒子
JP2015153466A (ja) * 2014-02-10 2015-08-24 古河機械金属株式会社 固体電解質シートおよび全固体型リチウムイオン電池
US10008735B2 (en) 2009-12-16 2018-06-26 Toyota Jidosha Kabushiki Kaisha Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
JP2018129307A (ja) * 2018-03-19 2018-08-16 古河機械金属株式会社 固体電解質シートおよび全固体型リチウムイオン電池
JP2019192490A (ja) * 2018-04-25 2019-10-31 国立大学法人東京工業大学 硫化物固体電解質および全固体電池
JP2021510905A (ja) * 2018-01-12 2021-04-30 ユニバーシティー オブ ヒューストン システム ナトリウム電池のための固体電解質

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093263A (ja) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd 固体電解質及びリチウム電池
KR101646416B1 (ko) * 2014-12-18 2016-08-05 현대자동차주식회사 붕산염이 첨가된 전고체 이차전지용 황화물계 결정화 유리 및 이의 제조방법
KR101684130B1 (ko) * 2015-06-16 2016-12-07 현대자동차주식회사 리튬 이온 전도성 황화물의 제조방법, 이에 의하여 제조된 리튬 이온 전도성 황화물, 및 이를 포함하는 고체전해질, 전고체 배터리
KR101930992B1 (ko) 2016-02-15 2018-12-19 한양대학교 산학협력단 황화물계 고체 전해질의 제조방법, 이로부터 제조된 황화물계 고체 전해질 및 이를 포함하는 전고체 리튬 이차전지
KR102484902B1 (ko) 2017-12-27 2023-01-04 현대자동차주식회사 전고체 전지
CN111029662A (zh) * 2019-12-30 2020-04-17 江苏智泰新能源科技有限公司 一种硫化物电解质材料制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109955A (ja) * 2000-10-02 2002-04-12 Osaka Prefecture 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池
WO2004106232A1 (ja) * 2003-05-30 2004-12-09 Nippon Chemical Industrial Co., Ltd. 硫化リチウム粉体、その製造方法および無機固体電解質
JP2006151725A (ja) * 2004-11-26 2006-06-15 Nippon Chem Ind Co Ltd 硫化リチウム粒子粉末、その製造方法および無機固体電解質
JP2007005279A (ja) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd 活物質層と固体電解質層とを含む積層体およびこれを用いた全固体リチウム二次電池
JP2007227362A (ja) * 2006-01-27 2007-09-06 Matsushita Electric Ind Co Ltd 固体電池の製造方法
JP2007273214A (ja) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd 固体電解質、その製造方法及び全固体二次電池
JP2008287970A (ja) * 2007-05-16 2008-11-27 Toyota Motor Corp 全固体リチウム二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3125507B2 (ja) 1993-03-26 2001-01-22 松下電器産業株式会社 硫化物系リチウムイオン導電性固体電解質及びその合成法
CA2305837C (en) * 1999-04-14 2011-05-31 Sony Corporation Material for negative electrode and nonaqueous-electrolyte battery incorporating the same
CN100495801C (zh) * 2004-12-13 2009-06-03 松下电器产业株式会社 包含活性材料层和固体电解质层的叠层体及使用这种叠层体的全固态锂二次电池
US20070259271A1 (en) 2004-12-13 2007-11-08 Tetsuo Nanno Laminate Including Active Material Layer and Solid Electrolyte Layer, and All Solid Lithium Secondary Battery Using the Same
US20070175020A1 (en) * 2006-01-27 2007-08-02 Matsushita Electric Industrial Co., Ltd. Method for producing solid state battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109955A (ja) * 2000-10-02 2002-04-12 Osaka Prefecture 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池
WO2004106232A1 (ja) * 2003-05-30 2004-12-09 Nippon Chemical Industrial Co., Ltd. 硫化リチウム粉体、その製造方法および無機固体電解質
JP2006151725A (ja) * 2004-11-26 2006-06-15 Nippon Chem Ind Co Ltd 硫化リチウム粒子粉末、その製造方法および無機固体電解質
JP2007005279A (ja) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd 活物質層と固体電解質層とを含む積層体およびこれを用いた全固体リチウム二次電池
JP2007227362A (ja) * 2006-01-27 2007-09-06 Matsushita Electric Ind Co Ltd 固体電池の製造方法
JP2007273214A (ja) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd 固体電解質、その製造方法及び全固体二次電池
JP2008287970A (ja) * 2007-05-16 2008-11-27 Toyota Motor Corp 全固体リチウム二次電池

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199033A (ja) * 2009-02-27 2010-09-09 Osaka Prefecture Univ 硫化物固体電解質材料
US9064615B2 (en) 2009-02-27 2015-06-23 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material
US8968939B2 (en) 2009-05-01 2015-03-03 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material
WO2011030696A1 (ja) * 2009-09-09 2011-03-17 公立大学法人大阪府立大学 硫化物固体電解質
JP2011057500A (ja) * 2009-09-09 2011-03-24 Osaka Prefecture Univ 硫化物固体電解質
US9537174B2 (en) 2009-09-09 2017-01-03 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte
CN102574728A (zh) * 2009-09-09 2012-07-11 丰田自动车株式会社 硫化物固体电解质
JP2011086556A (ja) * 2009-10-16 2011-04-28 Sumitomo Electric Ind Ltd 硫化物固体電解質の製造方法、および複合体
US10008735B2 (en) 2009-12-16 2018-06-26 Toyota Jidosha Kabushiki Kaisha Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
US10707518B2 (en) 2009-12-16 2020-07-07 Toyota Jidosha Kabushiki Kaisha Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
CN102959646B (zh) * 2010-06-29 2016-02-24 丰田自动车株式会社 硫化物固体电解质材料的制造方法、锂固体电池的制造方法
CN102959646A (zh) * 2010-06-29 2013-03-06 丰田自动车株式会社 硫化物固体电解质材料的制造方法、锂固体电池的制造方法
US10193185B2 (en) 2010-08-26 2019-01-29 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material and lithium solid state battery
WO2012026238A1 (en) * 2010-08-26 2012-03-01 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material and lithium solid state battery
KR101484424B1 (ko) * 2010-08-26 2015-01-19 도요타 지도샤(주) 황화물 고체 전해질 재료, 정극체 및 리튬 고상 전지
US9680179B2 (en) 2010-08-26 2017-06-13 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, cathode body and lithium solid state battery
EP2609652A2 (en) 2010-08-26 2013-07-03 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, cathode body and lithium solid state battery
JP2012048971A (ja) * 2010-08-26 2012-03-08 Toyota Motor Corp 硫化物固体電解質材料、正極体およびリチウム固体電池
US9356315B2 (en) 2010-08-26 2016-05-31 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material and lithium solid state battery
EP2988360A1 (en) * 2010-08-26 2016-02-24 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material material and lithium solid state battery
JPWO2013042371A1 (ja) * 2011-09-22 2015-03-26 出光興産株式会社 ガラス粒子
WO2013094757A1 (ja) * 2011-12-22 2013-06-27 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US9263763B2 (en) 2011-12-22 2016-02-16 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
JP2013149599A (ja) * 2011-12-22 2013-08-01 Tokyo Institute Of Technology 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2014091664A (ja) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd 固体電解質ガラス粒子及びリチウムイオン電池
JP2014056818A (ja) * 2013-08-16 2014-03-27 Toyota Motor Corp 硫化物固体電解質材料、正極体およびリチウム固体電池
JP2015153466A (ja) * 2014-02-10 2015-08-24 古河機械金属株式会社 固体電解質シートおよび全固体型リチウムイオン電池
JP2021510905A (ja) * 2018-01-12 2021-04-30 ユニバーシティー オブ ヒューストン システム ナトリウム電池のための固体電解質
JP7301272B2 (ja) 2018-01-12 2023-07-03 ユニバーシティー オブ ヒューストン システム ナトリウム電池のための固体電解質
JP2018129307A (ja) * 2018-03-19 2018-08-16 古河機械金属株式会社 固体電解質シートおよび全固体型リチウムイオン電池
JP2019192490A (ja) * 2018-04-25 2019-10-31 国立大学法人東京工業大学 硫化物固体電解質および全固体電池
CN112020787A (zh) * 2018-04-25 2020-12-01 国立大学法人东京工业大学 硫化物固体电解质和全固体电池
WO2019207956A1 (ja) * 2018-04-25 2019-10-31 国立大学法人東京工業大学 硫化物固体電解質および全固体電池
JP7332275B2 (ja) 2018-04-25 2023-08-23 国立大学法人東京工業大学 硫化物固体電解質および全固体電池

Also Published As

Publication number Publication date
CN102160232A (zh) 2011-08-17
JPWO2010038313A1 (ja) 2012-02-23
CN102160232B (zh) 2014-07-02
US8591603B2 (en) 2013-11-26
KR20110055635A (ko) 2011-05-25
JP5278437B2 (ja) 2013-09-04
US20110167625A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP5278437B2 (ja) 全固体型リチウム電池の製造方法
CN110498611B (zh) 硫化物系固体电解质、该硫化物系固体电解质的制造方法和全固体电池的制造方法
JP5158008B2 (ja) 全固体電池
JP5358522B2 (ja) 固体電解質材料およびリチウム電池
US20180269521A1 (en) Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
JP5521899B2 (ja) 硫化物固体電解質材料およびリチウム固体電池
JP5594364B2 (ja) 硫化物固体電解質材料の製造方法、リチウム固体電池の製造方法
US9172112B2 (en) Sulfide solid electrolyte glass, lithium solid state battery and producing method of sulfide solid electrolyte glass
JP5660210B2 (ja) 固体電解質材料、固体電池、固体電解質材料の製造方法
JP5368711B2 (ja) 全固体リチウム二次電池用の固体電解質膜、正極膜、又は負極膜、及びそれらの製造方法並びに全固体リチウム二次電池
JP4989183B2 (ja) 極材及びそれを用いた固体二次電池
JP5552974B2 (ja) 硫化物固体電解質材料、硫化物固体電解質材料の製造方法およびリチウム固体電池
JP5458740B2 (ja) 硫化物固体電解質材料
JP5110093B2 (ja) 硫化物固体電解質材料
KR20160048894A (ko) 전고체 전지 및 전극 활물질의 제조 방법
KR20160048892A (ko) 전고체 전지
JP5472237B2 (ja) 電池用活物質、電池用活物質の製造方法、および電池
JP2008103204A (ja) 正極活物質及びそれを用いた二次電池
JP2011159534A (ja) リチウム電池
JP5001621B2 (ja) 固体電解質及びそれを用いた固体二次電池
US9640835B2 (en) Ion conducting glass-ceramics, method for manufacturing same and all-solid-state secondary battery including same
JP2019053850A (ja) 硫化物固体電解質

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131152.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877168

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010531699

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13059844

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117005892

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877168

Country of ref document: EP

Kind code of ref document: A1