WO2004106232A1 - 硫化リチウム粉体、その製造方法および無機固体電解質 - Google Patents

硫化リチウム粉体、その製造方法および無機固体電解質 Download PDF

Info

Publication number
WO2004106232A1
WO2004106232A1 PCT/JP2004/007177 JP2004007177W WO2004106232A1 WO 2004106232 A1 WO2004106232 A1 WO 2004106232A1 JP 2004007177 W JP2004007177 W JP 2004007177W WO 2004106232 A1 WO2004106232 A1 WO 2004106232A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium sulfide
reaction
sulfide
lithium hydroxide
Prior art date
Application number
PCT/JP2004/007177
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Kawai
Yutaka Kinose
Original Assignee
Nippon Chemical Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co., Ltd. filed Critical Nippon Chemical Industrial Co., Ltd.
Priority to JP2005506480A priority Critical patent/JP5495472B2/ja
Publication of WO2004106232A1 publication Critical patent/WO2004106232A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic

Definitions

  • Lithium sulfide powder method for producing the same, and inorganic solid electrolyte
  • the present invention relates to a lithium sulfide powder useful as a raw material for producing a polysulfide polymer, an electronic material, particularly a raw material for producing an inorganic solid electrolyte, a method for producing the same, and an inorganic solid electrolyte using the lithium sulfide powder. It is.
  • an organic electrolyte in which a lithium salt such as lithium hexafluoride is dissolved in an organic solvent is used as an electrolyte of a lithium ion battery which is widely used as a power source of a mobile phone or a notebook personal computer.
  • This organic electrolyte is flammable and has the danger of ignition or explosion due to temperature rise or impact due to any cause.
  • dendritic lithium metal grows on the surface of the lithium metal, causing an internal short circuit between the electrodes and causing an explosion. It has been pointed out that.
  • lithium hydroxide is reacted with hydrogen sulfide in an aprotic organic solvent to generate lithium hydrosulfide, and then the reaction solution is dehydrosulfided.
  • a method in which lithium sulfide is produced directly by reaction with lithium hydroxide and hydrogen sulfide in an aprotic organic solvent see Patent Document 1). Hydrogen sulfide gas is blown into a solution consisting of an organic solvent and, if necessary, an azeotropic compound, and dehydration and desulfurization are performed while heating.
  • lithium sulfide obtained from lithium hydroxide as a raw material according to Patent Documents 1 and 2 is mainly used for applications such as polysulfide polymers.
  • Section 3 the main focus is on the use of inorganic solid electrolytes, but this inorganic solid electrolyte using lithium sulfide also has problems with electrochemical characteristics such as insufficient ionic conductivity and reduced decomposition voltage. Is likely to occur.
  • Patent Document 1 JP-A-7-330312
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-247609
  • Patent Document 3 Japanese Patent Application Laid-Open No. 9-278423
  • lithium sulfide which can also be used for inorganic solid electrolytes.
  • lithium hydroxide obtained through a specific purification step was used as a raw material. Used to reduce the Si ⁇ content of the resulting lithium sulfide to a specific value.
  • the reaction between the lithium hydroxide and hydrogen sulfide in an aprotic solvent is carried out at 150-190 ° C. in an inert gas atmosphere while distilling off water.
  • the first reaction is carried out at 100-150 ° C while distilling off water that forms hydrogen sulfide and aprotic solvent in an aprotic solvent, and then the second reaction is carried out at 150-190 ° C in an inert gas atmosphere.
  • the lithium sulfide powder obtained by performing the washing and drying steps under an inert gas atmosphere or in a vacuum is then washed and washed with only unreacted raw material lithium hydroxide.
  • an object of the present invention is to provide a lithium sulfide powder which can be used for inorganic solid electrolyte applications, a method for producing the same, and excellent electrochemical properties such as ionic conductivity and decomposition voltage using the same. To provide an inorganic solid electrolyte.
  • the first invention provided by the present invention is that, when subjected to X-ray diffraction analysis, a diffraction peak (a) of lithium sulfide (111 plane) and a diffraction peak of lithium hydroxide (101 plane) (b) Is a lithium sulfide powder characterized by having a relative intensity ratio ⁇ (b / a) X 100 ⁇ of 3 or less and a content of Si ⁇ of 50 ppm or less.
  • the half width of the diffraction peak of the (111) plane determined by X-ray diffraction analysis should be 0.15 degrees or less, and the average particle size should be 1080 xm. It is particularly preferable that the total content of metal elements of A1 and Ca is 50 ppm or less.
  • a second invention provided by the present invention provides a first step in which an aqueous solution containing lithium hydroxide is subjected to microfiltration to obtain purified lithium hydroxide, and then the obtained purified lithium hydroxide and hydrogen sulfide are subjected to a first step.
  • This is a method for producing lithium sulfide powder.
  • a third invention provided by the present invention provides a first step in which an aqueous solution containing lithium hydroxide is subjected to microfiltration to obtain purified lithium hydroxide, and then the obtained purified lithium hydroxide and hydrogen sulfide are combined.
  • the method includes a third step of washing the lithium sulfide with an organic solvent, and then a fourth step of drying the washed lithium sulfide.
  • At least the second reaction of the step 2B is performed in an inert gas atmosphere.
  • a step of performing the third step to the fourth step in an inert gas atmosphere or in a vacuum.
  • the microfiltration in the first step is performed using a filtering material having a pore diameter of 1 zm or less. It is particularly preferable that the first step includes a step of performing crystallization after microfiltration.
  • a fourth invention provided by the present invention is an inorganic solid electrolyte comprising the lithium sulfide powder of the first invention.
  • Lithium hydroxide as an impurity contained in lithium sulfide lowers the ionic conductivity of the solid electrolyte, and further reduces the decomposition voltage of the solid electrolyte due to the hydroxyl group contained in the lithium hydroxide. Further, when such a solid electrolyte containing lithium hydroxide is used, an exchange reaction between lithium ions and protons occurs with the electrode active material, so that desired battery performance cannot be obtained.
  • SiO as an impurity contained in lithium sulfide is an inorganic solid.
  • the lithium sulfide powder according to the present invention contains lithium hydroxide and Si ⁇ as impurities as described above.
  • the range is within the range, and substantially does not contain these impurities. Therefore, the lithium sulfide powder is used to impart excellent ionic conductivity and decomposition voltage to the inorganic solid electrolyte, and furthermore, to the inorganic solid electrolyte. In this case, the electron conductivity is kept low, and excellent electrochemical characteristics can be imparted.
  • the SiO content in the lithium sulfide powder was determined by ICP emission spectrometry.
  • One of the features is that the half width of the diffraction peak is 0.15 degrees or less, preferably 0.05 to 0.15 degrees, and the crystallinity is superior to that of industrially available lithium sulfide.
  • the ionic conductivity of the inorganic solid electrolyte containing the lithium sulfide can be further improved.
  • the lithium sulfide powder of the present invention has an average particle size of 10 to 80 zm, preferably 20 to 60 zm obtained from scanning electron micrograph (SEM), and is industrially available.
  • SEM scanning electron micrograph
  • the raw material lithium hydroxide contains a large amount of oxides and hydroxides of A1 and Ca as described below, and these impurities are Since it remains as an electrically insulating impurity without reacting with hydrogen sulfide, in addition to the above characteristics, the electrically insulating compound of A1 and Ca as A1 and Ca metal is 50 ppm or less in total, preferably 30 PP or less. It is particularly preferable that the average molecular weight is not more than m, since the ionic conductivity of the inorganic solid electrolyte containing the lithium sulfide can be further improved.
  • the lithium sulfide powder of the present invention can be produced by the following two methods.
  • the obtained purified lithium hydroxide and hydrogen sulfide are reacted in an aprotic solvent at 150 to 190 ° C. while distilling off water to form lithium sulfide in step 2A to obtain lithium sulfide.
  • a third step of washing with a solvent, and a fourth step of drying the lithium sulfide washed in the next step, wherein the second step A is performed in an inert gas atmosphere, and the third step-the fourth step is performed. Under an inert gas atmosphere or in a vacuum.
  • the first step is below 50 PP m content primarily Si_ ⁇ performing microfiltration of an aqueous solution containing lithium hydroxide, a process preferably obtain purified lithium hydroxide is reduced to 30ppm or less.
  • lithium hydroxide (hereinafter referred to as "crude lithium hydroxide”) is mainly carbonated from a lithium-containing ore into crude lithium carbonate, and the reaction between the crude lithium carbonate and slaked lime.
  • such lithium hydroxide necessarily contains impurities such as SiO power ⁇ OO ppm or more and electrical insulating compounds such as oxides and hydroxides of A1 and Ca as impurities. Contains 100 ppm or more as A1 metal and 50 ppm or more as Ca metal.
  • the content of SiO can be set in the range
  • the content of electrically insulating A1 compounds such as oxides and hydroxides of A1 can be reduced to 50 ppm or less, preferably 30 ppm or less as A1 metal.
  • the operation of microfiltration is, first, to prepare a lithium hydroxide solution in which the crude lithium hydroxide is dissolved in water.
  • concentration of the crude lithium hydroxide in the aqueous solution is not particularly limited as long as it is equal to or lower than the saturation solubility.However, since the solubility of lithium hydroxide strongly depends on the dissolving temperature, for example, dissolving at 80 ° C 1 to 12 weight as LiOH
  • % Preferably 9 to 12% by weight.
  • the water that dissolves the crude lithium hydroxide is passed through at least a reverse osmosis membrane, an ultrafiltration membrane, an ion exchange membrane, and the like to remove ionic impurities such as Na, K, Ca, Cl, and SO. It is particularly preferable to use pure water from which water has been removed, since it is possible to prevent contamination of impurities derived from water that dissolves.
  • the water to be treated passed through the reverse osmosis membrane, ultrafiltration membrane or ion exchange resin is, for example, raw water such as industrial water, tap water, river water, etc. And those in which most of the suspended matter and organic substances in the raw water have been removed, and those that have been further treated with a pure water apparatus using an ion exchange resin are used.
  • the reverse osmosis membrane a commercially available membrane module can be used, and the operating conditions and the like are not particularly limited, and may be in accordance with a conventional method.
  • the molecular weight cut-off of the reverse osmosis membrane is 400 to 100,000, preferably 1,000 to 10,000.
  • the material include cellulose acetate, polyamide, crosslinked polyamine, crosslinked polyether, and polysulfone. , Sulfonated polysulfone, polyvinyl alcohol and the like are appropriately used.
  • the shape of the membrane may be any of a flat plate type, a spiral type, a hollow fiber type, a tubular type and a brief type.
  • the ultrafiltration membrane a commercially available membrane module can be used, and the operating conditions and the like are not particularly limited, and may be in accordance with a conventional method.
  • the molecular weight cut-off of the ultrafiltration membrane is 400-100,000, preferably 1000-10000, and the materials include regenerated cellulose, polyethersulfone, polysulfone, polyacrylonitrile, polyvinyl alcohol, and sintering. Metals, ceramics, carbon, and the like are appropriately used.
  • the shape of the membrane may be any of a flat plate type, a spiral type, a tubular type, a hollow fiber type, a pleated type and the like.
  • the aqueous solution containing the crude lithium hydroxide having a predetermined concentration prepared as described above is subjected to precision filtration to remove insoluble components containing impurity components of the A1 compound such as SiO and Al 2 O and Al (OH). Remove.
  • the microfiltration can be performed using a filtering material such as a microfiltration membrane.
  • a filtering material such as a microfiltration membrane.
  • the microfiltration membrane that can be used include a screen filter having a surface filtration action and a depth filter having an internal filtration action.
  • the screen filter having a surface filtration action in the present invention efficiently removes insoluble components. It is particularly preferable in that it can be used.
  • the nominal pore size of the microfiltration membrane is 1 / m or less, preferably 0.1-0.5 / im, and the material of the microfiltration membrane is not particularly limited.
  • organic films such as polyacrylonitrile, polysulfone, polyolefin, polyamide, polyimide, and polyvinylidene fluoride; and inorganic films such as graphite, ceramics, and porous glass.
  • a filter material such as a PTFE membrane filter can be used.
  • the type of the screen filter is not particularly limited, but a cartridge type is particularly preferable in that operability is easy.
  • These microfiltration can be carried out by using a commercially available microfiltration apparatus and introducing the crude lithium hydroxide aqueous solution having a predetermined concentration prepared as described above into the microfiltration apparatus. This precision The filtration operation can be performed under reduced pressure or increased pressure. There is no particular limitation.
  • the crude lithium hydroxide aqueous solution having a predetermined concentration prepared as described above is heated to a temperature of 0 to 100 using a liquid sending pump. C, preferably 20-80. C, it is introduced into the microfiltration device at a flow rate of 1 to 30 ml / min, preferably 5 to 15 mlZmin, and is treated at a pressure of 0.1 to 0.5 MPa, preferably 0.2 to 0.3 MPa.
  • the filtration operation by microfiltration is preferably performed at a temperature at which aqueous lithium hydroxide does not precipitate.
  • a specific crystallization operation is a method of precipitating lithium hydroxide by cooling the aqueous solution containing lithium hydroxide subjected to the above-mentioned microfiltration, or containing the above-mentioned lithium hydroxide subjected to the microfiltration. Force that can be performed by heating an aqueous solution to evaporate a certain amount of water to precipitate lithium hydroxide
  • the latter method of heating to precipitate lithium hydroxide is a method of purifying purified lithium hydroxide. It is particularly preferred because of its high collection efficiency.
  • the crystallization operation of heating to precipitate lithium hydroxide is carried out by heating an aqueous solution containing 112% by weight, preferably 9% to 12% by weight of lithium hydroxide subjected to the above-mentioned microfiltration as LiOH. It is carried out by heating to 80 ° C. or more, preferably 90-100 ° C., and evaporating off water by 10-70% by weight, preferably 30-60% by weight. In this crystallization operation, purified lithium hydroxide from which impurities are efficiently removed can be obtained by removing water within the range.
  • the crystallization operation by heating may be performed under reduced pressure.
  • reaction formulas (1) and (2) The reaction between lithium hydroxide and hydrogen sulfide is represented by the following reaction formulas (1) and (2)
  • step 2A the purified lithium hydroxide and hydrogen sulfide obtained in step 1 are reacted at 150-200 ° C. in an inert gas atmosphere while distilling off water produced in an aprotic solvent.
  • This is a step of producing lithium sulfide.
  • lithium sulfide can be produced at once from the purified lithium hydroxide and hydrogen sulfide obtained in the first step.
  • the purified lithium hydroxide and hydrogen sulfide obtained in the first step are subjected to the first reaction at 100-150 ° C. while distilling off water produced in the non-protonic solvent.
  • This is the step of performing the reaction, and then performing the second reaction at 150 200 ° C under an inert gas atmosphere to generate lithium sulfide.
  • lithium hydrogen sulfide is obtained from the purified lithium hydroxide and hydrogen sulfide obtained in the step 1 according to the reaction formula (1), and then desulfurization is performed according to the reaction formula (2).
  • Lithium sulfide can be obtained in stages by hydrogenation
  • the produced lithium sulfide itself is a very unstable compound. When it comes into contact with air, it reacts with water in the air to be hydrolyzed to produce lithium hydroxide and hydrogen sulfide, and this hydroxyl sulfide is produced.
  • dani lithium is one factor in lowering ionic conductivity when using the lithium sulfide as a raw material for producing an inorganic solid electrolyte. Therefore, in the present invention, One important requirement is that the second reaction in the step 2A and the second reaction in the step 2B be performed at least in an inert gas atmosphere.
  • Examples of the inert gas that can be used include an argon gas, a helium gas, and a nitrogen gas. It is preferable to use high purity products for these inert gases to prevent impurities from being mixed into the product.Also, to avoid contact with moisture, use a dew point of _50 ° C or less, preferably _60 ° C or less. It is particularly preferred to use.
  • the reaction is performed while at least water produced as a by-product is distilled out of the reaction system.
  • the reaction may be carried out at a reaction temperature described later using a reaction apparatus having a condenser provided above the reaction vessel.
  • the inside of the reaction system is always kept under an inert gas atmosphere by always supplying the inert gas to the reaction vessel even during the reaction.
  • Step 2A and Step 2B first, a predetermined amount of purified lithium hydroxide is added to an aprotic solvent to prepare a suspension of an aprotic solvent containing purified lithium hydroxide. Next, hydrogen sulfide is introduced into the reaction system.
  • aprotic solvent for example, an amide compound, a ratatum compound, a urea compound, an organic compound, a cyclic organic phosphorus compound, or the like can be used as a single solvent or as a mixed solvent. it can.
  • Examples of the amide compound include N, N-dimethylformamide, N, N-getyl honolemamide, N, N-dimethylacetamide, N, N-getylacetamide, and N, N-diamine.
  • Examples of the ratatam compound include kyprolatatam, N-methylcaprolatatam, and N-e
  • N-alkyl-powered prolatatams such as silcaprolatatam, N-methyl-2-pyrrolidone (NM p), N-ethyl-2-pyrrolidone, N-isopropynole-1-pyrrolidone, N-isobutyl-1-pirididone, N-Normalpropyl-2-pyrrolidone, N-Normalbutyl-2-pyrrolidone, N-Cyclohexyl-2-pyrrolidone, N-Methyl_3_Methyl-2-pyrrolidone, N-Ethyl_3-methyl-2-pyrrolidone, N-methyl-34,5_trimethyl_2_pyrrolidone, N-methyl_2-pi Ridone, N-ethyl-2-piridone, N-isopropyl-2-piridone, N-methyl-6-methyl-2-piperidone, N-methyl-3-ethyl-2-piperidone, etc.
  • urea compound examples include tetramethyl urea, N, N'-dimethylethylene urea, N, N, -dimethylpropylene urea and the like.
  • organic thio compound examples include, for example, dimethyl sulfoxide, getyl sulfoxide, dipheninolesulfone, 1-methinole-1-oxosulfolane, 1-ethinole-11-oxosulfolane, and 1-fluoro-1-oxosulfolane.
  • Sulfolane and the like examples include 1-methyl_1-oxophosphorane, 1-normalpropinole_1-oxophosphorane, 1-phenyl-1-oxophosphorane and the like.
  • NMP N-methyl-2-pyrrolidone
  • the blending amount of the purified lithium hydroxide with respect to the aprotic solvent is not particularly limited. However, if the amount exceeds 10 moles per 1 L of the aprotic solvent, a uniform reaction cannot be performed, so that the reactivity with hydrogen sulfide decreases. Since the amount of hydrogen sulfide decreases and a considerable amount of hydrogen sulfide is required, the amount is preferably 10 mol or less per 1 L of the aprotic solvent.
  • a high-purity hydrogen sulfide having a low impurity content particularly a purity of 99.9Vol% or more and a water content of 2mg / L or less. Is preferred.
  • hydrogen sulfide itself is not corrosive to metals, but hydrogen sulfide containing water is corrosive to metals, and the resulting corrosives may enter the reaction system. .
  • the hydrogen sulfide used has a low water content, and the reaction liquid due to corrosion using a material other than metal such as glass as the piping material for supplying hydrogen sulfide to the reaction system, or a metal material with a mirror-polished inner surface of the piping It is preferable to prevent the contamination of the water.
  • reaction conditions in the step 2A are carried out at a reaction temperature of 150 to 200 ° C, preferably 150 to 190 ° C.
  • the reason is that at temperatures below 150 ° C, lithium hydrosulfide is formed and lithium sulfide cannot be obtained directly, while at temperatures above 200 ° C, the boiling point of the solvent decreases. This is because there is a case where it exceeds.
  • the amount of hydrogen sulfide introduced in the step 2A may be at least 1 in molar ratio to lithium hydroxide (LiOH), but if it is 1.5-4, the residual amount of the raw material lithium hydroxide is reduced. Especially preferred, because it can be significantly reduced.
  • the rate of addition of hydrogen sulfide is not particularly limited, but it is preferable to gradually introduce hydrogen sulfide into the reaction system at a constant rate in order to obtain stable quality.
  • the temperature at which hydrogen sulfide is introduced into the reaction system may be at room temperature. However, it is necessary to introduce hydrogen sulfide into the reaction system while being heated to the above reaction temperature by hydrating lithium hydroxide. This is preferred because the water present and the water generated by the reaction can be quickly distilled out of the system.
  • the reaction in step 2A must be carried out sufficiently long so that unreacted lithium hydroxide does not remain.
  • the reaction time varies depending on the reaction conditions such as the amount of raw materials charged and the concentration. In many cases, it is desirable that the time be 1 hour or more, preferably 2 hours or more.
  • the first reaction is carried out at 100 150 ° C, preferably 110 150 ° C
  • the second reaction is carried out at 150-200 ° C, preferably 150-190 ° C.
  • the reason for setting the reaction temperature in the above-mentioned range in the first reaction is that if the temperature is lower than 100 ° C, the reaction rate is remarkably reduced, and it is difficult to distill off the generated water from the reaction system. This is because lithium sulfide is generated.
  • the reason why the reaction temperature is set in the above range in the second reaction is that lithium sulfide is not generated at a temperature lower than 150 ° C, while the temperature exceeds 200 ° C, sometimes exceeding the boiling point of the solvent.
  • the amount of hydrogen sulfide introduced in step 2B may be at least 1 in molar ratio to lithium hydroxide (LiOH), but if it is 1.5 to 14, the residual amount of lithium hydroxide as a raw material is significantly reduced. It is particularly preferable because it can be performed.
  • the rate of addition of hydrogen sulfide is not particularly limited, but it is preferable to gradually introduce hydrogen sulfide into the reaction system at a constant rate in order to obtain stable quality.
  • the temperature at which hydrogen sulfide is introduced into the reaction system may be room temperature, but it is preferable that hydrogen sulfide be introduced into the reaction system while being heated to the reaction temperature of the first reaction.
  • the first reaction and the second reaction need to be carried out for a sufficient time so that unreacted lithium hydroxide or lithium hydrosulfide does not remain.
  • the reaction time depends on the amount of raw materials charged, concentration, etc. It depends on the reaction conditions, but in many cases it is desirable to set it to 1 hour or more, preferably 2 hours or more. Good.
  • the atmosphere in the first reaction of Step 2B is not particularly limited because lithium hydrosulfide is a relatively stable compound, but after the completion of the first reaction, the atmosphere in the first reaction continues.
  • the reaction is preferably performed in an inert gas atmosphere because the reaction of Step 2 can be performed.
  • unreacted lithium hydroxide may be separated from the reaction system by solid-liquid separation, and then the second reaction may be continued.
  • the filtrate after the solid-liquid separation can be reused as an aprotic solvent for the reaction solvent used in Step 2A or Step 2B by performing purification means such as distillation.
  • the lithium sulfide obtained in the second step A or the second step B is washed with an organic solvent to remove impurities such as lithium hydrosulfide, and then dried in the fourth step to obtain a product. I do.
  • the third and fourth steps be performed in an inert gas atmosphere or in a vacuum to suppress the decomposition of lithium sulfide due to contact with moisture in the air. It becomes. Therefore, in the third step and the fourth step, the inside of the container used for the operation is sufficiently replaced with an inert gas, or the container is washed and dried with a vacuum.
  • Examples of the inert gas used in the third step and the fourth step include argon gas, helium gas, and nitrogen gas. It is preferable to use high-purity inert gases to prevent impurities from being mixed into the product, and to use a dew point of -50 ° C or less, preferably -60 ° C or less to avoid contact with moisture. It is particularly preferred to use
  • washing method in the third step it is particularly preferable to use the repulping method because the washing efficiency is high and the washing can be performed effectively.
  • an organic solvent which has an affinity for the solvent used during the reaction and is inactive against lithium sulfide can be used.
  • One or more of acetone and the like can be used.
  • such an organic solvent is In order to avoid decomposition of lithium sulfide by water, dehydration is performed until the water content is 100 ppm or less, preferably 100 ppm or less, particularly preferably 50 ppm or less, or a commercially available water content is 100 ppm or less, preferably 100 ppm or less, particularly preferably 100 ppm or less. It is particularly preferable to use those having a concentration of 50 ppm or less.
  • the method for dehydrating the organic solvent is not particularly limited. However, for example, according to JP-A-07-235309 or JP-A-07-235310, the organic solvent is brought into contact with the zeolite layer. By doing so, it can easily dehydrate.
  • drying is performed to obtain a product.
  • the drying method is a method capable of removing the solvent, and is not particularly limited as long as the method is performed in an inert gas atmosphere or in a vacuum. Good.
  • pulverization, classification, packaging and the like are performed as required to obtain a product.
  • the pulverization if necessary, is carried out, for example, when the lithium sulfide powder obtained by drying is in the form of a brittle bonded fragile substance. It has a particle size. That is, the obtained lithium sulfide powder has an average particle diameter determined by scanning electron microscope (SEM) force of 10 to 80 ⁇ m, preferably 20 to 60 ⁇ m.
  • SEM scanning electron microscope
  • the series of steps from Step 2A to Step 4 or Step 2B to Step 4 and the operations of pulverization, classification, and packaging performed as necessary are inert. It is particularly preferable to carry out the operation in a glove box or the like in which the gas has been replaced or evacuated, since the contact with moisture in the air can be effectively blocked and a series of operations can be easily performed.
  • the lithium sulfide powder according to the present invention shows a single phase of lithium sulfide in X-ray diffraction, and does not substantially contain lithium hydroxide and SiO as impurities. Further, the lithium sulfide powder obtained according to the preferred embodiment of the present invention is, in addition to the above properties, fine and excellent in crystallinity, and substantially does not contain an electrically insulating impurity composed of A1 and Ca. It is.
  • Such lithium sulfide powder can be suitably used not only as a raw material for producing a polysulfide polymer or the like, but also as an electronic material, particularly as a raw material for producing an inorganic solid electrolyte.
  • an inorganic solid electrolyte of the present invention will be described.
  • the inorganic solid electrolyte of the present invention contains at least the lithium sulfide powder.
  • the content of the lithium sulfide powder in the inorganic solid electrolyte is not particularly limited, but is preferably 20 mol% or more, preferably 40 mol% or more. It may be crystalline or amorphous.
  • P s phosphorus sulfide
  • Lithium iodide Lithium iodide (Lil), boron sulfide (B S), silicon sulfide (SiS), germanium sulfide (G
  • eS gallium sulfide
  • Ga S gallium sulfide
  • Al S aluminum sulfide
  • Li P ⁇ lithium phosphate
  • Li BO N (x is 0 x 3) force at least one or more
  • examples of particularly preferred inorganic solid electrolytes in the present invention include, for example, Li S, Li SP S, Li S_P S I X (where X is Lil, B
  • Li S or at least one selected from Al S force Li S-PS, Li S-SiS, Li S—Ge
  • the inorganic solid electrolyte of the present invention is amorphous (glass), lithium phosphate (Li P
  • Li O lithium oxide
  • Li SO lithium sulfate
  • P O phosphorus oxide
  • Li borate lithium borate
  • the compound to be contained can be contained in the inorganic solid electrolyte.
  • the gap of the formed amorphous skeleton can be widened, the movement of lithium ions can be made smooth, and the ionic conductivity can be further improved.
  • the inorganic solid electrolyte according to the present invention can be produced by a widely known method.
  • a lithium sulfide powder and another compound constituting the inorganic solid electrolyte are mixed, and argon or the like is mixed. It can be manufactured by heating, melting and quenching in an inert gas atmosphere.
  • the inorganic solid electrolyte according to the present invention is pulverized or formed into a sheet.
  • the solid electrolyte of an all-solid lithium battery including at least a positive electrode, a negative electrode, and a solid electrolyte, or a positive electrode
  • the lithium secondary battery can be used as a coating material for lithium metal or a lithium alloy used for the negative electrode.
  • lithium hydroxide monohydrate was used as crude lithium hydroxide.
  • Table 1 shows the content of impurities in the lithium hydroxide sample.
  • this impurity amount is a value determined by ICP emission spectrometry, ICP mass spectrometry, and turbidimetry.
  • the aqueous solution prepared by dissolving the crude lithium hydroxide prepared above was filtered at 40 ° C. using a PTFE membrane filter having a pore size of 0.5 ⁇ m.
  • Table 2 shows the content of impurities in the lithium hydroxide sample obtained by collecting a part of the filtrate after filtration and drying under reduced pressure.
  • the ND of Mn, Ni, Cu, Y, Ce, and Yb in Table 2 indicates a detection limit of 0.04 ppm or less.
  • the mixture was heated to 95 ° C., and crystallization was performed for 4 hours while keeping the water content under reduced pressure.
  • the collected water was 3,300 g.
  • the hydroxides precipitated by solid-liquid separation in the usual manner The lithium was recovered and dried under reduced pressure to obtain purified lithium hydroxide.
  • Table 3 shows the impurity content in the obtained purified lithium hydroxide sample and the average particle diameter determined by a laser diffraction method.
  • the ND of Fe, Mn, Ni, Cu, Y, Ce, and Yb in Table 3 indicates a detection limit of 0.04 ppm or less.
  • NMP N-methyl_2_pyrrolidone
  • the temperature of the flask was raised to 175 ° C under a stream of argon gas.
  • 239 g (7 mol) of hydrogen sulfide gas was blown into the reaction solution at a supply rate of 4 OO mlZmin over 7 hours using a stainless steel pipe having a mirror-polished inner surface over 7 hours.
  • the reaction was performed at 175 ° C for 2 hours.
  • water produced as a by-product And was discharged to the outside of the system.
  • argon gas was continuously supplied to the flask of the reaction vessel.
  • the argon gas used was a gas manufactured by Nippon Sanso Corporation with a purity of 99.998% or more and the dew point was ⁇ 60 ° C or less
  • the hydrogen sulfide gas used was a gas manufactured by Japan Fine Products with a purity of 99.99%. .
  • the first step was performed under the same operating conditions as in Example 1.
  • a flask equipped with a stirrer and a condenser was set up, and 210 g (5 mol) of the purified lithium hydroxide monohydrate obtained in the first step and N-methyl-2-pyrrolidone (NMP) IL were charged.
  • NMP N-methyl-2-pyrrolidone
  • the flask was replaced with argon gas, and the temperature was raised to 180 ° C.
  • 273 g (8 mol) of hydrogen sulfide gas was blown into the reaction solution under stirring at a supply rate of 4 OOL / min for 8 hours.
  • the reaction was further performed at 180 ° C for 2 hours.
  • water was by-produced during the reaction it was condensed by the condenser and extracted out of the system, and argon gas was continuously supplied to the flask of the reaction vessel during the reaction.
  • the argon gas used was Nippon Sanso Corporation with a purity of 99.998% and a dew point of -60 ° C or less.
  • the hydrogen sulfide gas used was a product manufactured by Japan Fine Products with a purity of 99.99%.
  • the first step was performed under the same operating conditions as in Example 1.
  • NMP N_methyl_2_pyrrolidone
  • the flask was then purged with argon gas, 110. The temperature was raised to C. Next, 103 g (3 mol) of hydrogen sulfide gas was blown into the reaction solution at a supply rate of 300 L / min over 4 hours using a stainless steel pipe while stirring. The generated water was condensed by the condenser and extracted out of the system. After the completion of the blowing, the temperature was raised to 170 ° C, and the reaction was performed for 6 hours. Argon gas with a purity of 99.998% and a dew point of _60 ° C or less manufactured by Nippon Oxygen Co., Ltd., and hydrogen sulfide gas with a purity of 99.99%, manufactured by Japan Fine Products Co., Ltd. Was used.
  • the washing was performed by the repulping method using 400 ml of acetone, and the drying was performed at 110 ° C for 2 hours.
  • the first step and the second step were performed in the same manner as in Example 1, the glove box was set to the atmosphere (52% humidity), and the washing and drying in the third step were performed in the same manner as in Example 1. 82 g (89% yield) was synthesized.
  • the molar ratio of Li to S was determined from the value of Li measured by atomic absorption spectrometry and S was measured by iodometric titration.
  • the impurity content was determined by ICP emission spectrometry, ICP mass spectrometry, and turbidimetry. It is.
  • the average particle size was determined by a scanning electron micrograph (SEM).
  • the X-ray diffraction diagram of the lithium sulfide powder obtained in Example 1 is shown in FIG. 1, the X-ray diffraction diagram of a commercially available lithium sulfide powder is shown in FIG. 2, and the lithium sulfide powder obtained in Example 1 is shown in FIG.
  • the scanning electron micrograph (SEM) of the body is shown in FIG.
  • the X-ray diffraction was measured in an argon atmosphere.
  • ⁇ ⁇ D Of Mn, Ni, Cu, Y, Ce, and Yb in Table 4 indicates the detection limit of 0 lppm or less.
  • Example 13 and Comparative Example 13 The lithium sulfide powder and silicon sulfide (manufactured by ABCR GmbH KG) were weighed and mixed in a molar ratio of 60:40. The mixture was filled into a glass crucible made of Ichibon and melted at 1000 ° C. for 2 hours in a stream of argon gas. Thereafter, the melt was dropped into liquid nitrogen to obtain a solid electrolyte.
  • the argon gas used had a purity of 99.998% or more and a dew point of -60 ° C or less manufactured by Nippon Sanso Corporation.
  • the following ionic conductivity measurements and potential-current characteristics measurements for examining electrochemical stability were performed.
  • the ionic conductivity of the solid electrolyte was measured by an alternating current impedance method by applying a carbon paste as an electrode to both ends of the obtained solid electrolyte having a ribbon shape.
  • the measuring cell for measuring the potential first current characteristics the powder obtained by pulverizing the solid electrolyte glass was pressed at 3 tons / cm 2, diameter 10 mm, and a thickness of 3mm pellets, to one end surface of the pellets A metal lithium foil was pressed as a reversible electrode, and a platinum plate was pressed against the opposite end face as an ion blocking electrode.
  • the potential was swept to 8 V (vs. Li + / Li) at a sweep rate of 5 mV / sec , and the potential-current behavior was recorded.
  • Table 5 shows the resulting ionic conductivity (25 ° C) and the value of the oxidation current that flowed when the potential was swept to 8V.
  • Example 13 and Comparative Example 13 The lithium sulfide powder, silicon sulfide (manufactured by ABCR GmbH KG) and lithium phosphate (manufactured by Nippon Chemical Industry Co., Ltd.) in molar ratio of 63: 36: 1 were used. Weighed and mixed. The mixture was filled in a glassy carbon crucible and melted at 1000 ° C. for 2 hours in an argon gas stream. Next, the melt was ultra-quenched with a twin roller to obtain a solid electrolyte.
  • Table 6 shows the resulting ionic conductivity (25 ° C) and the value of the oxidation current that flowed when the potential was swept to 8V.
  • the lithium sulfide powder of the present invention is a raw material for producing a polysulfide polymer, an electronic material, and particularly an inorganic solid electrolyte using the lithium sulfide powder of the present invention exhibits high ionic conductivity.
  • the lithium sulfide powder of the present invention can be used as a raw material for producing an inorganic solid electrolyte, because it exhibits excellent electrochemical properties that make it difficult for the oxidative decomposition reaction to occur.
  • FIG. 1 is an X-ray diffraction diagram of the lithium sulfide powder obtained in Example 1.
  • FIG. 2 is an X-ray diffraction diagram of a commercially available lithium sulfide powder (Comparative Example 3).
  • FIG. 3 is a scanning electron micrograph (SEM) of lithium sulfide obtained in Example 1 (magnification: X300)
  • (A) is a diffraction peak of (111) plane of lithium sulfide.
  • (b) is the diffraction peak of the (101) plane of lithium hydroxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、無機固体電解質の用途にも使用することができる硫化リチウム粉体、その製造方法及びこれを用いたイオン伝導度及び分解電圧等の電気化学的特性に優れた無機固体電解質を提供する。  本発明に係る硫化リチウム粉体は、X線回折分析したときに、硫化リチウムの(111面)の回折ピーク(a)と水酸化リチウムの(101面)の回折ピーク(b)の相対強度比{(b/a)×100}が3以下で、且つSiO2の含有量が50ppm以下ある特性を有することを特徴とする硫化リチウム粉体である。

Description

明 細 書
硫化リチウム粉体、その製造方法および無機固体電解質
技術分野
[0001] 本発明は、ポリスルフイドポリマーの製造原料、電子材料、特に無機固体電解質の 製造原料として有用な硫化リチウム粉体、その製造方法、該硫化リチウム粉体を用い た無機固体電解質に関するものである。
背景技術
[0002] 現在、携帯電話やノートパソコンの電源として大量に使用されているリチウムイオン 電池の電解質として、有機溶媒に六フッ化リチウムなどのリチウム塩を溶解した有機 電解液が使用されている。この有機電解液は可燃性であり、何らかの原因による昇 温、衝撃により発火、爆発等の危険性を有している。また、有機電解液を含むリチウ ムイオン二次電池では、充放電を繰り返すうちに、リチウム金属表面にデンドライト状 リチウム金属が成長して、これが電極間の内部短絡の原因となり、爆発等を引き起こ すことが指摘されている。
[0003] このような有機電解液を使用したリチウムイオン電池の安全性の向上は積年の願い であり、この問題を解決する手段として、無機固体電解質を使用した全固体型のリチ ゥムイオン電池が提案されている。現在提案されている無機固体電解質としては、例 えば: Li S-P S系、 Li S-P S系、 Li S-SiS系、 Li S_Ga S系、 Li S_GeS系な どが提案されている。
これらの無機固体電解質にとって、最も重要な品質特性は、固体電解質としてのィ オン伝導度が 5 X 10— 4S/cmよりも大きいことが求められる。
[0004] 従来の硫化リチウムの製造方法としては、例えば、非プロトン性有機溶媒中で水酸 化リチウムと硫化水素とを反応させて水硫化リチウムを生成させ、次いでこの反応液 を脱硫化水素化して硫化リチウムを生成させる方法、或いは、非プロトン性有機溶媒 中で水酸化リチウムと硫化水素とを反応させ、直接硫化リチウムを生成させる方法( 特許文献 1参照。)、水酸化リチウム、非プロトン性有機溶媒および必要に応じて共沸 化合物からなる溶液中に、硫化水素ガスを吹き込み、加熱しながら脱水および脱硫 化水素し、系内の残留水分が実質なくなった後、硫化水素ガスの吹き込みを中止し 、加熱しながらさらに不活性ガスを吹き込み、脱硫化水素化する硫化リチウムの製造 方法 (特許文献 2参照。)、水酸化リチウムと、硫化水素や水素を含む硫黄蒸気との 反応によって硫化リチウムを合成するときに、水酸化リチウムとして粒子の直径が 0. 1 mmから 1. 5mmの粉体を用い、反応時の加熱温度を水酸化リチウムの融点以下で ある 130° C以上、 445° C以下として硫化リチウムを製造する方法(特許文献 3参 照。)等が提案されている。
[0005] し力、しながら、特許文献 1及び特許文献 2により水酸化リチウムを原料として得られ る硫化リチウムは、その使用用途としてポリスルフイドポリマー等の用途を主眼にし、ま た、特許文献 3では、無機固体電解質での使用を主眼としているが、この硫化リチウ ムを用いた無機固体電解質においてもイオン伝導度が不足し、また、分解電圧が低 下する等の電気化学的特性に問題が生じやすレ、。
特許文献 1 :特開平 7 - 330312号公報
特許文献 2:特開 2000 - 247609号公報
特許文献 3:特開平 9 - 278423号公報
発明の開示
[0006] 本発明者らは、上記実情に鑑み、無機固体電解質の用途にも使用することができ る硫化リチウムについて鋭意研究を重ねた結果、特定の精製工程を経た水酸化リチ ゥムを原料として用いると、得られる硫化リチウムの Si〇含有量を特定値まで低減で
2
き、更に、該水酸化リチウムと硫化水素の反応を非プロトン性溶媒中で生成する水を 留去しながら不活性ガス雰囲気下で 150— 190°Cで反応を行うか、或いは該水酸化 リチウムと硫化水素を非プロトン性溶媒中で生成する水を留去しながら 100— 150°C で第 1の反応を行い、次いで 150— 190°Cで不活性ガス雰囲気中で第 2の反応を行 う力、して硫化リチウムを得た後、次いで、洗浄、乾燥工程を不活性ガス雰囲気下又は 真空中で行って得られる硫化リチウム粉体は、未反応原料の水酸化リチウムだけで なぐ洗浄及び乾燥で副生する水酸化リチウムが特定値以下まで低減されたものとな り、更に、該硫化リチウムを用いた無機固体電解質はイオン伝導度及び分解電圧等 の電気化学的特性が優れたものとなることを見出し本発明を完成するに至った。 即ち、本発明の目的は、無機固体電解質の用途にも使用することができる硫化リチ ゥム粉体、その製造方法及びこれを用いたイオン伝導度及び分解電圧等の電気化 学的特性に優れた無機固体電解質を提供することにある。
[0007] 本発明が提供する第 1の発明は、 X線回折分析したときに、硫化リチウムの(111面 )の回折ピーク(a)と水酸化リチウムの(101面)の回折ピーク (b)の相対強度比 { (b/ a) X 100}が 3以下で、且つ Si〇の含有量が 50ppm以下ある特性を有することを特 徴とする硫化リチウム粉体である。
力、かる硫化リチウム粉体は、 X線回折分析法により求められる(111)面の回折ピー クの半値幅が 0. 15度以下であること、また、平均粒径が 10 80 x mであることが好 ましぐまた、 A1と Caの金属元素の含有量が総量で 50ppm以下であることが特に好 ましい。
[0008] また、本発明が提供する第 2の発明は、水酸化リチウムを含む水溶液を精密濾過し て精製水酸化リチウムを得る第 1工程、次いで得られた精製水酸化リチウムと硫化水 素を非プロトン性溶媒中で生成する水を留去しながら 150— 200°Cで反応させて硫 ィ匕リチウムを得る第 2A工程、次いで該硫化リチウムを有機溶媒で洗浄する第 3工程 、次いで洗浄を行った硫化リチウムを乾燥する第 4工程を含み、前記第 2A工程を不 活性ガス雰囲気下で行い、前記第 3工程一第 4工程を不活性ガス雰囲気下又は真 空中で行うことを特徴とする硫化リチウム粉体の製造方法である。
[0009] また、本発明が提供する第 3の発明は、水酸化リチウムを含む水溶液を精密濾過し て精製水酸化リチウムを得る第 1工程、次いで得られた精製水酸化リチウムと硫化水 素を非プロトン性溶媒中で生成する水を留去しながら 100— 150°Cで第 1の反応を 行レ、、次いで 150 200°Cで第 2の反応を行って硫化リチウムを得る第 2B工程、次 いで該硫化リチウムを有機溶媒で洗浄する第 3工程、次いで洗浄を行った硫化リチウ ムを乾燥する第 4工程を含み、少なくとも前記第 2B工程の第 2の反応を不活性ガス 雰囲気下で行い、前記第 3工程一第 4工程を不活性ガス雰囲気下又は真空中で行う ことを特徴とする硫化リチウム粉体の製造方法である。
力、かる第 2の発明と第 3の発明の硫化リチウム粉体の製造方法において前記第 1ェ 程の精密濾過は、孔径 1 z m以下の濾過材により行うことが好ましい。 また、前記第 1工程は、精密濾過後、更に晶析を行う工程を含むことが特に好まし レ、。
[0010] また、本発明が提供する第 4の発明は、前記第 1の発明の硫化リチウム粉体を含む ことを特徴とする無機固体電解質である。
発明を実施するための最良の形態
[0011] 以下、本発明をその好ましい実施形態に基づき詳細に説明する。
本発明の硫化リチウム粉体は、該硫化リチウム粉体を線源として Cu— K a線を用 いて X線回折分析したときに、硫化リチウムの 2 Θ = 26. 98° 付近(111面)の回折 ピーク(a)と水酸化リチウムに由来する 2 Θ = 32· 48° 付近の(101面)の回折ピーク (b)の相対強度比 { (b/a) X 100}が 3以下、好ましくは 2以下であり、更に、本発明 に係る硫化リチウム粉体は、前記特性に加えて Si〇の含有量が 50ppm以下、好まし
2
くは 30ppm以下であることにその大きな特徴がある。
[0012] 硫化リチウムに含まれる不純物としての水酸化リチウムは固体電解質のイオン伝導 性を低下させ、更に水酸化リチウムに含まれる水酸基により固体電解質の分解電圧 を低下させる。また、このような水酸化リチウムを含有した固体電解質を用いると電極 活物質との間でリチウムイオンとプロトンの交換反応が生じてしまうため、所望の電池 性能が得られなくなる。一方、硫化リチウムに含まれる不純物としての SiOは無機固
2 体電解質のガラス状組成物の主骨格に入り込み、その結果イオン伝導性を低下させ 、また、無機固体電解質に不要な電子伝導性を生じさせる。
[0013] 本発明に係る硫化リチウム粉体は不純物としての水酸化リチウム及び Si〇が上記
2 範囲内であり、実質的にこれらの不純物を含有しないため、該硫化リチウム粉体を用 レ、た無機固体電解質に、優れたイオン伝導性と分解電圧を付与し、更に無機固体電 解質とした場合に電子伝導性が低く抑えられ、優れた電気化学的特性を付与するこ とができる。
なお、本発明において、硫化リチウム粉体中の SiO含有量は ICP発光分析法によ
2
り求められるものである。
[0014] また、本発明に力かる硫化リチウム粉体は上記特性に加えて線源として Cu— K a線 を用いて X線回折分析したときに、硫化リチウムの 2 Θ = 26. 98° 付近の(111面)の 回折ピークの半値幅が 0. 15度以下、好ましくは 0. 05-0. 15度であり、工業的に 入手可能な硫化リチウムに比べて結晶性が優れていることも特徴の一つであり、この ような結晶性の優れた硫化リチウムを用いることで、該硫化リチウムを含む無機固体 電解質のイオン伝導性を更に向上させることができる。
[0015] 更に、本発明の硫化リチウム粉体は走查型電子顕微鏡写真(SEM)から求められ る平均粒径が 10— 80 z m、好ましくは 20— 60 z mであり、工業的に入手可能な硫 ィ匕リチウムに比べて微細な結晶であり反応性に優れていることも特徴の一つである。
[0016] また、本発明に係る硫化リチウム粉体は、例えば、原料の水酸化リチウムには後述 するように A1及び Caの酸化物、水酸化物等が多く含まれており、これらの不純物は 硫化水素と反応せずに電気絶縁性の不純物として残存することから、上記特性に加 えて、電気絶縁性の A1及び Caの化合物を A1と Ca金属として総量で 50ppm以下、好 ましくは 30PPm以下であると、該硫化リチウムを含む無機固体電解質のイオン伝導 性を更に向上させることができることから特に好ましい。
[0017] 次いで、本発明の硫化リチウム粉体の製造方法について説明する。
本発明の硫化リチウム粉体は、以下の 2つの方法により製造することができる。
1.水酸化リチウムを含む水溶液を精密濾過して精製水酸化リチウムを得る第 1工程
、次いで得られた精製水酸化リチウムと硫化水素を非プロトン性溶媒中で生成する水 を留去しながら 150— 190°Cで反応させて硫化リチウムを得る第 2A工程、次いで該 硫化リチウムを有機溶媒で洗浄する第 3工程、次レ、で洗浄を行った硫化リチウムを乾 燥する第 4工程を含み、前記第 2A工程を不活性ガス雰囲気下で行い、前記第 3ェ 程一第 4工程を不活性ガス雰囲気下又は真空中で行う方法。
2.水酸化リチウムを含む水溶液を精密濾過して精製水酸化リチウムを得る 1工程、 次いで得られた精製水酸化リチウムと硫化水素を非プロトン性溶媒中で生成する水 を留去しながら 100 150°Cで第 1の反応を行レ、、次いで 150 190°Cで第 2の反 応を行って硫化リチウムを得る第 2B工程、次いで該硫化リチウムを有機溶媒で洗浄 する第 3工程、次いで洗浄を行った硫化リチウムを乾燥する第 4工程を含み、少なくと も前記第 2B工程の第 2の反応を不活性ガス雰囲気下で行い、前記第 3工程一第 4 工程を不活性ガス雰囲気下又は真空中で行う方法。 [0018] なお、前記の 2つの製法では、第 1工程及び第 3工程一第 4工程は同じ条件下に行 う工程である関係上、第 1工程、第 3工程及び第 4工程は 2つの製法間で区別せず以 下に説明する。
[0019] (第 1工程)
第 1工程は、水酸化リチウムを含む水溶液を精密濾過を行って主として Si〇の含有 量を 50PPm以下、好ましくは 30ppm以下まで低減させた精製水酸化リチウムを得る 工程である。
[0020] 工業的に入手可能な水酸化リチウム(以下、「粗製水酸化リチウム」と呼ぶ。 )は、主 としてリチウム含有鉱石を炭酸化して粗製炭酸リチウムとし、この粗製炭酸リチウムと 消石灰との反応により得られているため、このような水酸化リチウムには、必然的に不 純物として SiO力 ^OOppm以上、更には A1及び Caの酸化物、水酸化物等の電気絶 縁性の化合物が A1金属として lOOppm以上及び Ca金属として 50ppm以上含有され ている。
[0021] 従って、第 1工程を実施することで SiOの含有量を当該範囲とすることができる他、
A1の酸化物、水酸化物等の電気絶縁性の A1化合物の含有量を A1金属として 50pp m以下、好ましくは 30ppm以下まで低減させることができる。
[0022] 精密濾過の操作は具体的には、まず、前記粗製水酸化リチウムを水に溶解した水 酸化リチウム溶液を調製する。水溶液中の粗製水酸化リチウムの濃度は、飽和溶解 度以下であれば特に制限はないが、水酸化リチウムの溶解度は溶解させる温度に強 く依存することから、例えば、 80°Cの温度で溶解させるには LiOHとして 1一 12重量
%、好ましくは 9一 12重量%とすることが好ましレ、。
[0023] なお、粗製水酸化リチウムを溶解する水は、少なくとも逆浸透膜、限外ろ過膜、ィォ ン交換膜等を通過させて、 Na、 K、 Ca、 Cl、 SO等のイオン性不純物を除去した純 水を用いることが、溶解する水に由来する不純物の混入を防止できる点で特に好ま しい。なお、逆浸透膜、限外ろ過膜又はイオン交換樹脂に通水される被処理水として は、例えば、工業用水、巿水、河川水などの原水を凝集ろ過装置及び活性炭等から なる前処理装置で処理し、原水中の懸濁物及び有機物の大半を除去したもの、ある レ、は、更に、イオン交換樹脂を用いる純水装置で処理されたものなどが用いられる。 [0024] 逆浸透膜は、市販の膜モジュールを用いることができ、操作条件等は特に制限は なく常法に従えばよい。具体的には、逆浸透膜の分画分子量は 400— 100000、好 ましくは 1000— 10000であり、材質としては、例えば、酢酸セルロース系、ポリアミド 系、架橋ポリアミン系、架橋ポリエーテル系、ポリスルホン、スルホン化ポリスルホン、 ポリビニールアルコール等が適宜使用される。膜の形状は平板型、スパイラル型、中 空糸型、チューブラー、ブリーフ型など何れであってもよい。
[0025] 限外濾過膜は、市販の膜モジュールを用レ、ることができ、操作条件等は特に制限 はなく常法に従えばよい。具体的には、限外濾過膜の分画分子量は 400— 100000 、好ましくは 1000— 10000であり、材質としては、再生セルロース、ポリエーテルスル ホン、ポリスルホン、ポリアクリノレニトリル、ポリビニールアルコール、燒結金属、セラミツ ク、カーボン等が適宜使用される。膜の形状は平板型、スパイラル型、チューブラー 型、中空糸型、ブリーツ型などの何れであってもよい。
[0026] 次いで、前記で調製した所定の濃度の粗製水酸化リチウムを含む水溶液を精密濾 過し、 SiO、更には Al O、 Al (OH)等の A1化合物の不純物成分を含有する不溶 分を除去する。
[0027] 前記精密濾過は精密濾過膜等の濾過材を用いて実施することができる。用いること ができる精密濾過膜は、表面濾過作用を有するスクリーンフィルター、内部濾過作用 を有するデプスフィルタ一等が挙げられるが、本発明において表面濾過作用を有す るスクリーンフィルターが効率よく不溶分を除去することができる点で特に好ましい。 精密濾過膜の公称孔径は 1 / m以下、好ましくは 0. 1— 0. 5 /i mであり、精密濾過 膜の材質は、特に制限されるものではないが、例えばコロジオン、セロファン、ァセチ ルセルロース、ポリアクリロニトリル、ポリスルホン、ポリオレフイン、ポリアミド、ポリイミド 、ポリビニリデンフロライド等の有機系の膜、あるいは黒鉛、セラミックス、多孔質ガラス 等の無機系の膜が挙げられる。また、実験室規模であれば PTFEメンブランフィルタ 一等の濾過材が使用できる。スクリーンフィルターの形式は特に制限されるものでは ないが、カートリッジ式が操作性が容易である点で特に好ましい。これらの精密濾過 は、市販の精密濾過装置を用いて、この精密濾過装置に前記で調製した所定の濃 度の粗製水酸化リチウム水溶液を導入することにより実施することができる。この精密 濾過操作は、減圧または加圧下でおこなうこともできる力 特に制限されるものではな ぐ通常は、前記で調製した所定の濃度の粗製水酸化リチウム水溶液を送液ポンプ にて、温度 0— 100。C、好ましくは 20— 80。Cで、 1一 30ml/min、好ましくは 5— 15 mlZminの流速で精密濾過装置に導入し 0. 1 0. 5MPa、好ましくは 0. 2-0. 3 MPaの圧力で処理することが好ましい。なお、精密濾過による濾過操作は、水溶液 力 水酸化リチウムが析出しない温度で濾過操作を行うことが好ましい。
[0028] 上記した精密濾過処理により、多くの場合、 SiOの含有量を 50ppm以下、好ましく は 30ppm以下、更には A1の含有量を 50ppm以下、好ましくは 30ppm以下まで低減 された精製水酸化リチウムが得られるが、本発明では、更に A1含有量、特に Caの酸 化物、水酸化物等の電気絶縁性の不純物の含有量を低減させるため、晶析操作を 行うことが好ましい。
[0029] 具体的な晶析操作は、前記の精密濾過を行った水酸化リチウムを含有する水溶液 力 冷却により水酸化リチウムを析出させる方法又は前記の精密濾過を行った水酸 化リチウムを含有する水溶液を加熱して一定量の水分を蒸発させて水酸化リチウム を析出させる方法により行うことができる力 本発明において、後者の加熱して水酸 ィ匕リチウムを析出させる方法が精製水酸化リチウムの回収効率が良い点で特に好ま しい。
[0030] 加熱して水酸化リチウムを析出させる晶析操作は、前記の精密濾過を行った水酸 化リチウムを LiOHとして 1一 12重量%、好ましくは 9一 12重量%を含有する水溶液 を温度 80°C以上、好ましくは 90— 100°Cに加温し、水を 10— 70重量%、好ましくは 30— 60重量%蒸発除去することにより実施する。この晶析操作において、当該範囲 内で水を除去することにより不純物を効率的に除去した精製水酸化リチウムを得るこ とができる。なお、この加熱による晶析操作は、減圧下に行ってもよい。
[0031] 力べして晶析を行った精製水酸化リチウムは、 SiOの含有量が 50PPm以下、好まし くは 30PPm以下で、電気絶縁性の A1の酸化物、水酸化物等の A1化合物の含有量 が A1金属として 25ppm以下、好ましくは 15ppm以下、電気絶縁性の Caの酸化物、 水酸化物等の Caィ匕合物の含有量が Ca金属として 25ppm以下、好ましくは 15ppm 以下で、尚且つ、 A1金属と Ca金属を総量で 50ppm以下、好ましくは 30ppm以下ま で低減された水酸化リチウムである。
[0032] (第 2A工程.第 2B工程)
水酸化リチウムと硫化水素との反応は、下記反応式(1)及び(2)
[化 1]
UDH ÷ H2S ^ UHS + H20 ( i )
2LHS , L¾S + H2S ( 2 ) に従って、硫化リチウムの他、水および硫化水素を副生する。副生する水は生成する 硫化リチウムを分解する一つの要因となり、また、上記した反応は平衡反応であること 力 本発明において水を反応系から除去することで、硫化リチウムの分解を抑制し、 また、効率よく反応を行うことができる。
[0033] 第 2A工程は前記第 1工程で得られた精製水酸化リチウムと硫化水素を非プロトン 性溶媒中で生成する水を留去しながら不活性ガス雰囲気下で 150— 200°Cで反応 させ硫化リチウムを生成させる工程である。本発明においてこの第 2A工程を選択す ることにより前記第 1工程で得られた精製水酸化リチウムと硫化水素から硫化リチウム を一気に製造することができる。
[0034] 一方、第 2B工程は前記第 1工程で得られた精製水酸化リチウムと硫化水素を非プ 口トン性溶媒中で生成する水を留去しながら 100— 150°Cで第 1の反応を行レ、、次い で不活性ガス雰囲気下 150 200°Cで第 2の反応を行って硫化リチウムを生成させ る工程である。この第 2B工程を選択することにより前記第 1工程で得られた精製水酸 化リチウムと硫化水素から前記反応式(1)に従って水硫化リチウムを得た後、次いで 前記反応式(2)に従って脱硫化水素化して硫化リチウムを段階的に得ることができる
[0035] なお、生成する硫化リチウム自体は非常に不安定な化合物であり、空気に接触する と空気中の水分と反応し加水分解して水酸化リチウムと硫化水素が生成し、この水酸 ィ匕リチウムは、上記したとおり、該硫化リチウムを無機固体電解質の製造原料として 用いる上でイオン伝導性を低下させる一つの要因となる。従って、本発明において前 記第 2A工程と、前記第 2B工程での第 2の反応は、少なくとも不活性ガス雰囲気下で 行うことが 1つの重要な要件となる。
[0036] 用いることができる不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス、窒素 ガス等が挙げられる。これらの不活性ガスは製品への不純物の混入を防止するため 高純度品を用いることが好ましぐまた、水分との接触をさけるため露点 _50°C以下、 好ましくは _60°C以下のものを用いることが特に好ましい。
[0037] 第 2A工程及び第 2B工程の第 1の反応では少なくとも副生する水を反応系外に留 去しながら反応を行う。副生する水を反応系外に留去する方法としては、反応容器上 部にコンデンサーを設置した反応装置を用い後述する反応温度で反応を行えばよ レ、。この場合、前記不活性ガスは、反応中も常に反応容器に不活性ガスを供給する ことにより反応系内を常に不活性ガス雰囲気下とすることが好ましい。
[0038] 第 2A工程及び第 2B工程の操作は、まず、非プロトン性溶媒に所定量の精製水酸 化リチウムを添加し精製水酸化リチウムを含む非プロトン性溶媒の懸濁液を調製し、 次レ、で硫化水素を反応系内に導入する。
[0039] 用いることができる非プロトン性溶媒としては、例えばアミド化合物,ラタタム化合物 ,尿素化合物,有機ィォゥ化合物,環式有機リン化合物等を、単独溶媒として、また は、混合溶媒として使用することができる。
[0040] 前記アミド化合物としては、例えば、 N, N-ジメチルホルムアミド, N, N—ジェチル ホノレムアミド, N, N—ジメチルァセトアミド, N, N—ジェチルァセトアミド, N, N—ジプ 口ピルァセトアミド, N, N-ジメチル安息香酸アミドなとを挙げることができる。また、前 記ラタタム化合物としては、例えば、力プロラタタム, N-メチルカプロラタタム, N-ェ
シルカプロラタタム等の N—アルキル力プロラタタム類, N—メチルー 2_ピロリドン(NM p) , N—ェチル一2—ピロリドン, N—イソプロピノレ一2—ピロリドン, N—イソブチル一2—ピ 口リドン, N—ノルマルプロピル— 2—ピロリドン, N—ノルマルブチル—2—ピロリドン, N— シクロへキシル—2—ピロリドン, N—メチル _3_メチル 2—ピロリドン, N—ェチル _3—メ チル— 2_ピロリドン, N—メチル—34, 5_トリメチル _2_ピロリドン, N—メチル _2—ピぺ リドン, N—ェチル -2—ピぺリドン, N—イソプロピル- 2—ピぺリドン, N-メチル -6—メチ ノレ- 2—ピペリドン, N-メチル -3—ェチル -2—ピペリドンなどを挙げることができる。ま た、前記尿素化合物としては、例えば、テトラメチル尿素, N, N'—ジメチルエチレン 尿素, N, N,-ジメチルプロピレン尿素などを挙げることができる。また、前記有機ィ ォゥ化合物としては、例えば、ジメチルスルホキシド,ジェチルスルホキシド,ジフエ二 ノレスルホン, 1—メチノレ一 1—ォキソスルホラン, 1—ェチノレ一 1—ォキソスルホラン, 1—フ ヱ二ルー 1ーォキソスルホランなどを、また、前記環式有機リン化合物としては、例えば 、 1—メチル _1—ォキソホスホラン, 1—ノルマルプロピノレ _1—ォキソホスホラン, 1—フエ 二ルー 1一ォキソホスホランなどを挙げることができる。
[0041] これら各種の非プロトン性溶媒は、 1種又は 2種以上で用いることができ、これらの 中、 N—メチルー 2_ピロリドン (NMP)が沸点が高ぐまた、中間生成物の水硫化リチ ゥムを溶解する一方で硫化リチウムを溶解しないことから目的生成物に水硫化リチウ ムの混入がなく硫化リチウムを容易に回収することができる点で特に好ましい。
[0042] 非プロトン性溶媒に対する精製水酸化リチウムの配合量は、特に制限はないが非 プロトン性溶媒 1Lに対して 10モルを越えると、均一な反応が行えないため硫化水素 との反応性が低下し、また、相当量の硫化水素が必要となることから非プロトン性溶 媒 1Lに対して 10モル以下とすることが好ましい。
[0043] もう一方の原料の硫化水素は、不純物含有量が少ない高純度のものを用いること が好ましぐ特に純度 99. 9Vol%以上で、水分含有量が 2mg/L以下のものを使用 することが好ましい。通常、硫化水素そのものは金属に対して腐食性は無いが、水分 を含んだ硫化水素は金属に対して腐食性を示し、また、この生成される腐食物は反 応系に混入する恐れがある。従って、使用する硫化水素は水分含有量が少なぐま た、硫化水素を反応系に供給する配管材料としてガラス等の金属以外の材質、又は 配管内面を鏡面研磨した金属材料を用いて腐食による反応液の汚染を防止すること が好ましい。
[0044] 前記第 2A工程での反応条件は反応温度を 150— 200°C、好ましくは 150— 190 °Cで行うことが 1つの重要な要件となる。この理由は、 150°C未満では水硫化リチウム が生成し直接硫化リチウムが得られなくなり、一方、 200°Cを越えると溶媒の沸点を 超える場合があるからである。第 2A工程での硫化水素の導入量は、水酸化リチウム( LiOH)に対するモル比で 1以上であればよいが、 1. 5— 4であると原料である水酸 ィ匕リチウムの残存量を著しく減少させることができることから特に好ましレ、。硫化水素 の添加速度は特に制限はなレ、が、安定した品質のものを得る上で除々に一定速度 で反応系内に導入することが好ましい。なお、硫化水素の反応系内への導入のとき の温度は、室温下でもよレ、が上記反応温度まで加温した状態で反応系内に導入す ることが水酸化リチウムに水和している水分と、反応で生成する水分を速やかに系外 に留去することができる点で好ましい。第 2A工程での反応は、未反応の水酸化リチ ゥムが残存しないように十分に時間をかけて行う必要があり、また、反応時間は原料 仕込み量や濃度等の反応条件により異なるが、多くの場合 1時間以上、好ましくは 2 時間以上とすることが望ましい。
一方、前記第 2B工程では 100 150°C、好ましくは 110 150°Cで第 1の反応を 行レ、、次いで 150— 200°C、好ましくは 150— 190°Cで第 2の反応を行うことが 1つの 重要な要件となる。第 1の反応で反応温度を上記範囲とする理由は 100°C未満では 反応速度が著しく低下し、生成する水を反応系から留去することが困難になり、一方 、 150°Cを越えると硫化リチウムが生成されるためである。また、第 2の反応で反応温 度を上記範囲とする理由は 150°C未満では硫化リチウムが生成されなくなり、一方 2 00°Cを越えると溶媒の沸点を越える場合があるからである。第 2B工程での硫化水素 の導入量は、水酸化リチウム(LiOH)に対するモル比で 1以上であればよいが、 1. 5 一 4であると原料である水酸化リチウムの残存量を著しく減少させることができることか ら特に好ましい。硫化水素の添加速度は特に制限はなレ、が、安定した品質のものを 得る上で除々に一定速度で反応系内に導入することが好ましい。なお、硫化水素の 反応系内への導入のときの温度は、室温下でもよいが上記第 1の反応の反応温度ま で加温した状態で反応系内に導入することが水酸化リチウムに水和している水分と、 反応で生成する水分を速やかに系外に留去することができる点で好ましい。第 1の反 応及び第 2の反応は、未反応の水酸化リチウムや水硫化リチウムが残存しないように 十分に時間をかけて反応を行う必要があり、反応時間は原料仕込み量や濃度等の 反応条件により異なるが多くの場合 1時間以上、好ましくは 2時間以上とすることが望 ましい。
[0046] なお、第 2B工程の第 1の反応での雰囲気は、水硫化リチウムが比較的安定な化合 物であることから、特に制限されるものではないが第 1の反応終了後、引き続き第 2の 反応を行うことができることから不活性ガス雰囲気下とすることが好ましい。また、第 1 の反応終了後、未反応の水酸化リチウムを固液分離して反応系から除去した後、第 2の反応を引続き行ってもよい。
[0047] 前記第 2A工程又は第 2B工程の反応終了後、前記の不活性ガスを用いて、不活 性ガス雰囲気下として常法により固液分離し、次いで、後述する第 3工程で洗浄、次 レ、で第 4工程で乾燥を行って製品とする。
[0048] なお、固液分離後の濾過液は、蒸留等の精製手段を施すことにより第 2A工程又は 第 2B工程で用いる反応溶媒の非プロトン性溶媒として再使用することができる。
[0049] (第 3工程'第 4工程)
第 3工程は、前記第第 2A工程又は第 2B工程で得られた硫化リチウムを有機溶媒 で洗浄し、水硫化リチウム等の不純物を除去し、次いで、第 4工程で乾燥を行って製 品とする。
[0050] 本発明において、かかる第 3工程及び第 4工程は不活性ガス雰囲気下又は真空中 で行って、空気中の水分との接触による硫化リチウムの分解を抑制することが一つの 重要な要件となる。従って、第 3工程及び第 4工程では操作に用いる容器内を十分 に不活性ガスで置換するか又は真空として洗浄及び乾燥を行う。
[0051] 第 3工程及び第 4工程で用いる不活性ガスとして例えば、アルゴンガス、ヘリウムガ ス、窒素ガス等が挙げられる。これらの不活性ガスは製品への不純物の混入を防止 するため高純度品を用いることが好ましぐまた、水分の接触をさけるため露点—50 °C以下、好ましくは- 60°C以下のものを用いることが特に好ましい。
[0052] 第 3工程での洗浄方法としては、リパルプ法で行うことが洗浄効率が高く効果的に 洗浄を行うことができることから特に好ましレ、。
[0053] 洗浄に用いる有機溶媒としては、反応時に使用した溶媒に親和性を示し、硫化リチ ゥムに対して不活性な有機溶媒を用いればよぐ上記した非プロトン性溶媒の他、例 えばアセトン等の 1種又は 2種以上で用いることができる。また、かかる有機溶媒は、 硫化リチウムの水による分解を避けるため水分含有量が lOOOppm以下、好ましくは lOOppm以下、特に好ましくは 50ppm以下となるまで脱水を行うか又は市販の水分 含有量が lOOOppm以下、好ましくは lOOppm以下、特に好ましくは 50ppm以下の ものを用いることが特に好ましい。なお、有機溶媒を脱水する方法としては、特に制 限されるものではなレ、が、例えば、特開平 07—235309号公報或いは特開平 07—23 5310号公報に従って、有機溶媒をゼオライト層に接触させることにより容易に脱水 すること力 Sできる。
[0054] 洗浄終了後、第 4工程で、乾燥を行って製品とする。乾燥方法は溶媒が除去できる 方法で、尚且つ不活性ガス雰囲気下または真空中で行う方法であれば特に制限さ れるものではなぐまた、乾燥温度は洗浄時に用いた溶媒の揮発温度以上であれば よい。
[0055] 乾燥終了後、所望により粉砕、分級、包装等を行って製品とする。なお、必要に応 じて行われる粉碎は、乾燥して得られる硫化リチウム粉体がもろく結合したブロック状 のものである場合等に適宜行うが、硫化リチウム粉体の粒子自体は上記特定の平均 粒径を有するものである。即ち、得られる硫化リチウム粉体は、走査型電子顕微鏡写 真(SEM)力ら求められる平均粒径が 10— 80 μ m、好ましくは 20— 60 μ mである。
[0056] なお、本発明の硫化リチウム粉体における前記第 2A工程一第 4工程又は第 2Bェ 程一第 4工程の一連の工程、及び必要により行われる粉砕、分級及び包装の操作は 不活性ガスで置換した或いは真空としたグローブボックス中等で行えば、空気中の 水分との接触を効果的に遮断して一連の操作を容易に行うことができることから特に 好ましい。
[0057] 本発明にかかる硫化リチウム粉体は、 X線回折的には硫化リチウムの単相を示し、 不純物としての水酸化リチウム及び SiOを実質的に含有しないものである。更に、本 発明の好ましい実施形態により得られる硫化リチウム粉体は、上記特性に加え、微細 で、結晶性に優れ、また、 A1及び Caからなる電気絶縁性の不純物も実質的に含有し ないものである。
[0058] このような硫化リチウム粉体はポリスルフイドポリマー等の製造原料は勿論、電子材 料、特に無機固体電解質の製造原料として好適に用レ、ることができる。 [0059] 次いで、本発明の無機固体電解質について説明する。
本発明の無機固体電解質は少なくとも前記硫化リチウム粉体を含有するものである 。無機固体電解質中の硫化リチウム粉体の含有量は特に制限されるものでないが、 20モル%以上、好ましくは 40モル%以上含有することが好ましぐまた、本発明の無 機固体電解質は結晶質又は非晶質であってもよい。
[0060] 本発明の無機固体電解質を構成する他の化合物としては、例えば、硫化リン (P s
2 5
)、ヨウ化リチウム (Lil)、硫化硼素(B S )、硫化ケィ素 (SiS )、硫化ゲルマニウム (G
2 3 2
eS )、硫化ガリウム (Ga S )、硫化アルミニウム (Al S )、リン酸リチウム (Li P〇)、酸
2 2 3 2 3 3 4 化リチウム (Li〇)、硫酸リチウム (Li SO )、酸化リン (P O )、硼酸リチウム (Li BO )
2 2 4 2 5 3 3
、Li P〇 N (xは 0く xく 4)、 Li Si〇 N (xは 0く xく 4)、 Li Ge〇 N (xは
3 4-x 2x/3 4 4-x 2x/3 4 4- x 2x/3
0く xく 4)、 Li BO N (xは 0く xく 3)力、ら選ばれる少なくとも 1種又は 2種以上が
3 3-x 2x/3
挙げられるが、特にこれらに制限されず、本発明において、特に好ましい無機固体電 解質の一例を示すと、例えば、 Li S、 Li S-P S、 Li S_P S 一 X (式中、 Xは Lil、 B
2 2 2 5 2 2 5 2
S、又は Al S力ら選ばれる z少なくとも 1種以上)、 Li S-P S、 Li S-SiS、 Li S— Ge
3 2 3 2 2 3 2 2 2
S、 Li S-Ga S、 Li S_B S等が挙げられる。
2 2 2 3 2 2 3
[0061] 更に、本発明の無機固体電解質が非晶質 (ガラス)の場合は、リン酸リチウム (Li P
3
O )、酸化リチウム(Li O)、硫酸リチウム(Li SO )、酸化リン(P O )、硼酸リチウム(L
4 2 2 4 2 5
i BO )等の酸素を含む化合物、 Li PO N (xは 0く xく 4)、 Li Si〇 N (xは 0
3 3 3 4-x 2x/3 4 4-x 2x/3 く xく 4)、Li GeO N (xは 0く xく 4)、 Li BO N (xは 0く xく 3)等の窒素を
4 4-x 2x/3 3 3-x 2x/3
含む化合物を無機固体電解質に含有させることができる。この酸素を含む化合物又 は窒素を含む化合物の添カ卩により、形成される非晶質骨格の隙間を広げ、リチウムィ オンの移動をスムーズにし、更にイオン伝導性を向上させることができる。
[0062] 本発明に係る無機固体電解質は、広く公知の方法により製造することができ、その 一例を示せば、硫化リチウム粉体と無機固体電解質を構成する他の化合物を混合し 、アルゴン等の不活性ガス雰囲気中で、加熱、溶融した後、急冷することによって製 造すること力 sできる。
[0063] 急冷する方法としては、例えば、水冷、液体窒素急冷、双ローラー急冷、スプラット 急冷方法等の常用の方法を用レ、ることができる。 [0064] 本発明に係る無機固体電解質は、粉碎して、或いはシート状に成形し、例えば、少 なくとも正極と負極と固体電解質から構成される全固体リチウム電池の固体電解質、 あるいは、正極、負極、セパレータ、及びリチウム塩を含有する非水の有機電解液か らなるリチウム二次電池において、負極に使用するリチウム金属又はリチウム合金の 被覆材として使用することができる。
実施例
[0065] 以下、本発明を実施例により詳細に説明するが本発明はこれらに限定されるもので はない。
なお、本発明の実施例において、粗製水酸化リチウムとして市販の水酸化リチウム 1水塩を使用した。
この水酸化リチウム試料中の不純物含有量を表 1に示す。
なお、この不純物量は、 ICP発光分析法、 ICP質量分析法及び比濁法によって求め た値である。
[0066] [表 1] 表 1
粗製水酸化リチウムの純度 (%) 99. 9 %
S i 02含有量 (p pm) 1 10
C a含有量 (p pm) 60
A l含有量 (ppm) 120
その他の特性
N a含有量 (p pm) 22
K含有量 (p pm) 20
Mg含有量 (p pm) 18
S r含有量 (p pm) 14
F e含有量 (p pm) 14
Z n含有量 (p pm) 19
Mn含有量 (p pm) N. D.
N i含有量 (p m) N. D.
C u含有量 (p pm) N. D.
Y含有量 (p pm) N. D.
C e含有量 (p pm) N. D.
Yb含有量 (p pm) N. D. 注)表 1中の Mn、 Ni、 Cu、 Y、 Ce、 Ybの Ν· D.は検出限界 0· 04ppm以下を示す。
[0067] 実施例 1
(第 1工程)
上記した粗製水酸化リチウム 1水塩 1062gを純水 5000gに 50°Cで溶解し水溶液を 調製した。なお、純水はイオン交換樹脂を備えた純水製造装置で処理した水を限外 濾過モジュール (旭化学工業社製、分画分子量 6000)で処理したものであり、以下 の実施例で使用した純水も当該純水と同じ処理をしたものである。
次いで、上記で調製した粗製水酸化リチウムを溶解した水溶液を 40°Cで孔径 0. 5 μ mの PTFE製メンブランフィルターを使用して濾過を行った。
濾過後の濾過液を一部採取し、減圧下に乾燥を行って得られた水酸化リチウム試 料中の不純物含有量を表 2に示す。
[0068] [表 2] 表 2
Figure imgf000019_0001
注)表 2中の Mn、 Ni、 Cu、 Y、 Ce、 Ybの N. D.は検出限界 0. 04ppm以下を示す。 次いで、 95°Cに加温し、減圧下に水分を抑留しながら 4時間晶析を行った。なお、 回収した水分は 3300gであった。冷却後、常法により固液分離して析出した水酸化リ チウムを回収し、減圧下に乾燥を行って精製水酸化リチウムを得た。
得られた精製水酸化リチウム試料中の不純物含有量及びレーザー回折法により求 めた平均粒径を表 3に示す。
[0070] [表 3]
表 3
Figure imgf000020_0001
注)表 3中の Fe、 Mn、 Ni、 Cu、 Y、 Ce、 Ybの N. D.は検出限界 0· 04ppm以下を 示す。
[0071] <第 2工程.第 3工程.第 4工程 >
攪拌機及びコンデンサーを備えたフラスコを設置し、第 1工程で得られた精製水酸 ィ匕リチウム 17 塩 167. 9g (4モル)及び N—メチル _2_ピロリドン(NMP) 1Lを仕込ん だ。
次いで、前記フラスコをアルゴンガス気流下で 175°Cまで昇温した。次に、配管内 面を鏡面研磨したステンレス製の配管を用いて反応液に硫化水素ガスを攪拌下に4 OOmlZminの供給速度で 7時間かけて 239g (7モル)を吹き込み、吹き込み終了後 、更に 175°Cで 2時間反応を行った。なお、反応中は水が副生した力 コンデンサー により凝縮し系外に抜きだし、また、反応中もアルゴンガスを反応容器のフラスコに供 給し続けた。
また、アルゴンガスは純度 99. 998%以上、露点— 60°C以下の日本酸素社製のも のを用い、硫化水素ガスは純度 99. 99%,のジャパンファインプロダクツ社製のもの を用いた。
反応終了後、前記のアルゴンガスを用いてアルゴンガスで置換したグローブボック ス中で濾過、洗浄及び乾燥を行って硫化リチウム粉体 83. 6g (収率 91 %)を得た。 なお、洗浄はアセトン (水分含有量 50ppm以下、関東化学社製) 500mlを用いてリ パルプ法で 3回行い、乾燥は、ヒーターをグローブボックス中に設置し 110°Cで 2時 間行った。
実施例 2
<第 1工程 >
第 1工程は実施例 1と同じ操作条件で実施した。
<第 2工程 >
攪拌機及びコンデンサーを備えたフラスコを設置し、第 1工程で得られた精製水酸 化リチウム 1水塩 210g (5モル)及び N—メチルー 2_ピロリドン(NMP) ILを仕込んだ。 次いで、前記フラスコをアルゴンガスで置換し、 180°Cまで昇温した。次に、配管内 面を鏡面研磨したステンレス製の配管を用いて反応液に硫化水素ガスを攪拌下に 4 OOL/minの供給速度で 8時間かけて 273g (8モル)を吹き込み、吹き込み終了後、 更に 180°Cで 2時間反応を行った。なお、反応中は水が副生したが、コンデンサーに より凝縮し系外に抜きだし、また、反応中もアルゴンガスを反応容器のフラスコに供給 し続けた。
また、アルゴンガスは純度 99. 998%、露点 _60°C以下の日本酸素社製のものを 用レ、、硫化水素ガスは純度 99. 99%、のジャパンファインプロダクツ社製のものを用 いた。
反応終了後、前記のアルゴンガスを用い、このアルゴンガスで置換したグローブボ ックス中で濾過、洗浄及び乾燥を行って硫化リチウム粉体 102g (収率 89%)を得た。 なお、洗浄はアセトン (水分含有量 50ppm以下、関東化学社製) 500mlを用いてリ パルプ法で 3回行い、乾燥は、ヒーターをグローブボックス中に設置し 110°Cで 2時 間行った。
[0073] 実施例 3
<第 1工程 >
第 1工程は実施例 1と同じ操作条件で実施した。
<第 2工程 >
攪拌機及びコンデンサーを備えたフラスコを設置し、第 1工程で得られた精製水酸 化リチウム一水和物 84g (2モル)及び N_メチル _2_ピロリドン (NMP) 0. 5Lを仕込 んだ。
次いで、前記フラスコをアルゴンガスで置換し、 110。Cまで昇温した。次に、ステン レス製の配管を用いて反応液に硫化水素ガスを攪拌下に 300L/minの供給速度 で 4時間かけて 103g (3モル)を吹き込んだ。生成した水はコンデンサ一により凝縮し 系外に抜き出した。吹き込み終了後、 170°Cまで昇温し、 6時間反応を行った。また、 アルゴンガスは純度 99. 998%、露点 _60°C以下の日本酸素(株)社製のものを用 レ、、硫化水素ガスは純度 99· 99%、のジャパンファインプロダクツ(株)社製のものを 用いた。
反応終了後、アルゴンガスで置換したグローブボックス中で濾過、洗浄及び乾燥を 行って硫化リチウム 40g (収率 87%)を得た。
なお、洗浄はアセトン 400mlを用いてリパルプ法で行レ、、乾燥は、 110°Cで 2時間 行った。
[0074] 比較例 1
水酸化リチウムとして前記第 1工程を行う前の粗製水酸化リチウムを用いて、実施例 1と同様な操作で硫化リチウム粉体 82. 7g (収率 90%)を合成した。
[0075] 比較例 2
前記第 1工程一第 2工程を実施例 1と同様に実施し、グローブボックスを大気雰囲 気 (湿度 52%)とし第 3工程の洗浄及び乾燥を実施例 1と同様に実施し硫化リチウム 粉体 82g (収率 89%)を合成した。
[0076] <硫化リチウムの物性評価 > 実施例 1一 3及び比較例 1一 2で得られた硫化リチウム粉体及び市販の硫化リチウ ム粉体 (比較例 3)について、硫化リチウム粉体中の Liと Sのモル比、不純物含有量、 平均粒径及び X線回折分析を行い、その結果を表 4に示した。
なお、 Liと Sのモル比は、 Liを原子吸光法、 Sをヨウ素滴定法で測定した値より求め 、不純物含有量は、 ICP発光分析法、 ICP質量分析法及び比濁法によって求めた値 である。また、平均粒径は走査型電子顕微鏡写真(SEM)により求めた。
X線回折分析は、線源として Cu— Kひ線を用いて、硫化リチウム粉体の 2 Θ = 26. 9 8° 付近(111面)の回折ピーク(a)に対する水酸化リチウムに由来する 2 Θ = 32. 4 8° 付近(101面)の回折ピーク(b)の相対強度比 { (b/a) X 100}及び硫化リチウム 粉体の(111)面の回折ピークの半値幅をシヱラーの式から求めた。
実施例 1で得られた硫化リチウム粉体の X線回折図を図 1に、市販の硫化リチウム 粉体の X線回折図を図 2に示し、また、実施例 1で得られた硫化リチウム粉体の走查 型電子顕微鏡写真 (SEM)を図 3に示した。
なお、 X線回折はアルゴン雰囲気中で測定した。
[表 4]
表 4
実施例 1 実施例 2 実施例 3 比較例 1 比較例 2 比較例 3
Li/Sのモル比 2. 00 1. 99 2. 00 2. 01 2. 01 2. 01
Si02含有量 (ppm) 3 3 3 150 4 94
C a含有量 (ppm) 10 11 10 70 9 20
A 1含有量 (p pm) 6 5 6 150 4 105 相対強度比 {(b/a)X100} 0. 8 0. 9 0. 5 0. 9 4 9
( 111面) の半値幅 (° ) 0. 118 0. 120 0. 119 0. 120 0. 15 0. 20 平均粒径 ( m) 40 40 40 40 40 500 その他の特性
N a含有量 t p p πυ 17 20 18 80 13 20
Κ含有量 (ppm) 15 18 17 60 16 51
Mg含有量 (ppm) 1 1 1 20 1 15
S r 有量 (ppm) 0. 2 0. 2 0. 2 15 0. 2 10
F e含有量 (ppm) 0. 5 0. 8 0. 6 20 0. 5 0. 8
Z n含有量 ( m) 0. 8 0. 8 0. 8 20 0. 6 0. 5
M n含有量 (ppm) N. D. N. D. N. D. N. D. N. D. N. D.
N i含有量 (ppm) N. D. N. D. N. D. N. D. N. D. N. D.
C u含有量 (ppm) N. D. N. D. N. D. N. D. N. D. N. D.
Y含有量 (p pm) N. D. N. D. N. D. N. D. N. D. N. D.
Ce含有量 (ppm) N. D. N. D. N. D. N. D. N. D. N. D.
Y b含有量 (ppm) N. D. N. D. N. D. N. D. N. D. N. D.
注)表 4中の Mn、 Ni、 Cu、 Y、 Ce、 Ybの Ν· D.は検出限界 0· lppm以下を示す。
[0078] (無機固体電解質)
実施例 4一 6及び比較例 4一 6
実施例 1一 3および比較例 1一 3の硫化リチウム粉体及び硫化ケィ素(ABCR GmbH KG社製)をモル比で 60: 40となるように秤量し混合した。この混合物をグラッシ一力 一ボン製坩堝に充填し、アルゴンガス気流中で 1000°Cで 2時間溶融した。その後、 融液を液体窒素中に滴下することにより固体電解質を得た。
なお、アルゴンガスは純度 99. 998%以上、露点 _60°C以下の日本酸素社製のも のを用いた。
このようにして得た固体電解質の電気化学特性を評価するため、下記のイオン伝導 度の測定ならびに電気化学的安定性を調べるための電位一電流特性の測定を行つ た。固体電解質のイオン伝導度は、得られたリボン状の形態を有する固体電解質の 両端に電極としてカーボンペーストを塗布し、交流インピーダンス法により測定した。 また、電位一電流特性を測定するための測定セルは、固体電解質ガラスを粉砕した 粉末を 3トン/ cm2でプレスして、直径 10mm、厚さ 3mmのペレットとし、このペレット の一方の端面に可逆電極として金属リチウム箔を、反対側の端面にイオンブロッキン グ電極として白金板をそれぞれ圧接して構成した。この測定セルを用レ、、 8V (vs. Li+ /Li)まで掃引速度 5mV/secで電位掃引し、電位一電流挙動を記録した。
その結果、得られたイオン伝導度(25°C)と 8Vまで電位掃引した際に流れた酸化 電流値を表 5に示す。
[0079] [表 5] 表 5
実施例 実施例 実施例 比較例 比較例 比較例 4 5 6 4 5 6 硫化リチウムの種類 実施例 実施例 実施例 比較例 比較例 比較例
1 2 3 1 2 3 イオン伝導度 1.11 1.02 1.09 0.39 0.41 0.44
(x iO'3S /c m)
酸化電流値 0.20 0.22 0.21 1.01 0.77 0.83 [0080] 表 5の結果より、本発明の硫化リチウムを用いて作成された無機固体電解質は、比 較例のものと比べて高いイオン伝導度を示し、また、比較例のものは本発明の無機 固体電解質と比べて高い酸化電流値を示しており、電子伝導性あるいは固体電解 質の酸化物分解反応が生じてレ、ることを示唆した。
[0081] 実施例 7— 9及び比較例 7— 9
実施例 1一 3および比較例 1一 3の硫化リチウム粉体、硫化ケィ素 (ABCR GmbH KG社製)及びリン酸リチウム(日本化学工業社製)をモル比で 63: 36: 1となるように 秤量し混合した。この混合物をグラッシ一カーボン製坩堝に充填し、アルゴンガス気 流中で 1000°Cで 2時間溶融した。次いで、この溶融物を双ローラーで超急冷するこ とにより固体電解質を得た。
このようにして得た固体電解質の電気化学特性を評価するため、実施例 3— 4と同 様にイオン伝導度及び電位 -電流特性の測定を行った。
その結果、得られたイオン伝導度(25°C)と 8Vまで電位掃引した際に流れた酸化 電流値を表 6に示す。
[0082] [表 6]
表 6
Figure imgf000026_0001
産業上の利用可能性
[0083] 本発明の硫化リチウム粉体は、ポリスルフイドポリマーの製造原料、電子材料、特に 本発明の硫化リチウム粉体を用いた無機固体電解質は高いイオン伝導性を示し、ま た、固体電解質の酸化分解反応が生じにくぐ優れた電気化学特性を示すことから、 本発明の硫化リチウム粉体は無機固体電解質の製造原料として利用できる。
図面の簡単な説明 [0084] [図 1]実施例 1で得られた硫化リチウム粉体の X線回折図。
[図 2]市販品(比較例 3)の硫化リチウム粉体の X線回折図。
[図 3]実施例 1で得られた硫化リチウムの走査型電子顕微鏡写真(SEM) (倍率; X 3 00)
符号の説明
[0085] (a)は硫化リチウムの(111)面の回折ピーク。
(b)は水酸化リチウムの(101)面の回折ピーク。

Claims

請求の範囲
[1] X線回折分析したときに、硫化リチウムの(111面)の回折ピーク(a)と水酸化リチウ ムの(101面)の回折ピーク(b)の相対強度比 { (bZa) X 100}が 3以下で、且つ Si〇 の含有量が 50ppm以下ある特性を有することを特徴とする硫化リチウム粉体。
[2] X線回折分析法により求められる(111面)の回折ピークの半値幅が 0. 15度以下 である請求項 1記載の硫化リチウム粉体。
[3] 平均粒径が 10— 80 μ mである請求項 1又は 2記載の硫化リチウム粉体。
[4] A1と Caの金属元素の含有量が総量で 50ppm以下である請求項 1乃至 3記載の硫 ィ匕リチウム粉体。
[5] 水酸化リチウムを含む水溶液を精密濾過して精製水酸化リチウムを得る第 1工程、 次いで得られた精製水酸化リチウムと硫化水素を非プロトン性溶媒中で生成する水 を留去しながら 150— 200°Cで反応を行って硫化リチウムを得る第 2A工程、次いで 該硫化リチウムを有機溶媒で洗浄する第 3工程、次レ、で洗浄を行った硫化リチウムを 乾燥する第 4工程を含み、前記第 2A工程を不活性ガス雰囲気下で行い、前記第 3 工程一第 4工程を不活性ガス雰囲気下又は真空中で行うことを特徴とする硫化リチウ ム粉体の製造方法。
[6] 水酸化リチウムを含む水溶液を精密濾過して精製水酸化リチウムを得る第 1工程、 次いで得られた精製水酸化リチウムと硫化水素を非プロトン性溶媒中で生成する水 を留去しながら 100 150°Cで第 1の反応を行レ、、次いで 150 200°Cで第 2の反 応を行って硫化リチウムを得る第 2B工程、次いで該硫化リチウムを有機溶媒で洗浄 する第 3工程、次いで洗浄を行った硫化リチウムを乾燥する第 4工程を含み、少なくと も前記第 2B工程の第 2の反応を不活性ガス雰囲気下で行い、前記第 3工程一第 4 工程を不活性ガス雰囲気下又は真空中で行うことを特徴とする硫化リチウム粉体の 製造方法。
[7] 前記第 1工程の精密濾過は、孔径 1 μ m以下の濾過材により行う請求項 5又は 6記 載の硫化リチウム粉体の製造方法。
[8] 前記 1工程は、精密濾過後、更に晶析を行う工程を含む請求項 5又は 6記載の硫 化リチウム粉体の製造方法。 請求項 1乃至 4記載の何れか 1項に記載の硫化リチウム粉体を含むことを特徴とす る無機固体電解質。
PCT/JP2004/007177 2003-05-30 2004-05-26 硫化リチウム粉体、その製造方法および無機固体電解質 WO2004106232A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506480A JP5495472B2 (ja) 2003-05-30 2004-05-26 硫化リチウム粉体および無機固体電解質

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-154071 2003-05-30
JP2003154071 2003-05-30

Publications (1)

Publication Number Publication Date
WO2004106232A1 true WO2004106232A1 (ja) 2004-12-09

Family

ID=33487311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007177 WO2004106232A1 (ja) 2003-05-30 2004-05-26 硫化リチウム粉体、その製造方法および無機固体電解質

Country Status (2)

Country Link
JP (2) JP5495472B2 (ja)
WO (1) WO2004106232A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151725A (ja) * 2004-11-26 2006-06-15 Nippon Chem Ind Co Ltd 硫化リチウム粒子粉末、その製造方法および無機固体電解質
WO2010038313A1 (ja) * 2008-10-03 2010-04-08 トヨタ自動車株式会社 全固体型リチウム電池の製造方法
JP2011084438A (ja) * 2009-10-16 2011-04-28 Idemitsu Kosan Co Ltd 硫化リチウム及びその製造方法
JP2013075816A (ja) * 2011-09-13 2013-04-25 Nippon Chem Ind Co Ltd 硫化リチウム、その製造方法及び無機固体電解質の製造方法
JP2013103851A (ja) * 2011-11-11 2013-05-30 Nippon Chem Ind Co Ltd ヨウ化リチウム無水塩、ヨウ化リチウム無水塩の製造方法、固体電解質、及びリチウムイオン電池
JP2014221714A (ja) * 2006-10-19 2014-11-27 出光興産株式会社 リチウムイオン伝導性固体電解質シート及びその製造方法
JP2015024953A (ja) * 2009-12-04 2015-02-05 出光興産株式会社 アルカリ金属硫化物及びその製造方法
JP2015137183A (ja) * 2014-01-20 2015-07-30 東レ・ファインケミカル株式会社 硫化リチウムの製造方法
JP2016207354A (ja) * 2015-04-17 2016-12-08 出光興産株式会社 硫化物固体電解質の製造方法
JP2019031437A (ja) * 2013-11-22 2019-02-28 出光興産株式会社 金属水硫化物の製造方法
JP2019057400A (ja) * 2017-09-20 2019-04-11 出光興産株式会社 固体電解質の製造方法及び製造設備
JP2019091566A (ja) * 2017-11-13 2019-06-13 トヨタ自動車株式会社 非水系二次電池用のリン酸三リチウムの製造方法
CN110526219A (zh) * 2019-08-26 2019-12-03 浙江工业大学 一种硫化锂粉体的合成方法
JP2020053218A (ja) * 2018-09-26 2020-04-02 古河機械金属株式会社 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2021514107A (ja) * 2018-04-05 2021-06-03 セブン キング エナージー カンパニー リミテッドSeven King Energy Co.,Ltd. リチウム二次電池のためのセラミックス固体電解質の製造方法
EP3886209A4 (en) * 2018-11-19 2022-01-12 Mitsui Mining & Smelting Co., Ltd. SOLID ELECTROLYTE, MIXED ELECTRODES, SOLID ELECTROLYTE LAYER AND ALL SOLID BATTERY
CN118307056A (zh) * 2024-06-07 2024-07-09 赣州诺威科技有限公司 改性富锂锰基材料及其制备方法、电池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508672B2 (ja) * 2015-02-16 2019-05-08 古河機械金属株式会社 硫化リチウム粒子および硫化物系無機固体電解質材料の製造方法
JP6676204B2 (ja) * 2019-03-27 2020-04-08 古河機械金属株式会社 硫化リチウム粒子、硫化物系無機固体電解質材料の製造方法および硫化物系正極活物質の製造方法
KR102495178B1 (ko) * 2022-05-25 2023-02-06 주식회사 정석케미칼 습식 및 건식 공정을 통한 고순도 황화리튬의 제조방법
KR20240094751A (ko) * 2022-12-16 2024-06-25 포스코홀딩스 주식회사 황화 리튬 제조용 전구체 및 황화 리튬 분말
KR102562588B1 (ko) * 2023-01-19 2023-08-02 주식회사 정석케미칼 혼합 유기용매를 이용한 고순도 황화리튬의 제조방법
KR102562589B1 (ko) * 2023-01-20 2023-08-02 주식회사 정석케미칼 습식 및 건식 순환 공정을 통한 고순도 황화리튬의 제조방법
WO2024181099A1 (ja) * 2023-03-01 2024-09-06 Agc株式会社 水酸化リチウムの製造方法、リチウムを含む硫化物固体電解質原料の製造方法、及び硫化物固体電解質の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278423A (ja) * 1996-04-16 1997-10-28 Furukawa Co Ltd 硫化リチウムの製造方法
JPH10130005A (ja) * 1996-10-28 1998-05-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法及びポリアリーレンスルフィドの製造方法
JP2002109955A (ja) * 2000-10-02 2002-04-12 Osaka Prefecture 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2994405B2 (ja) * 1989-08-11 1999-12-27 関東化学株式会社 水酸化アルカリの精製法
JP3163741B2 (ja) * 1992-05-08 2001-05-08 松下電器産業株式会社 非晶質リチウムイオン導電性固体電解質およびその製造方法
JP3528866B2 (ja) * 1994-06-03 2004-05-24 出光石油化学株式会社 硫化リチウムの製造方法
JP3528402B2 (ja) * 1996-03-13 2004-05-17 松下電器産業株式会社 リチウムイオン導電性固体電解質およびそれを用いた全固体リチウム二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278423A (ja) * 1996-04-16 1997-10-28 Furukawa Co Ltd 硫化リチウムの製造方法
JPH10130005A (ja) * 1996-10-28 1998-05-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法及びポリアリーレンスルフィドの製造方法
JP2002109955A (ja) * 2000-10-02 2002-04-12 Osaka Prefecture 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151725A (ja) * 2004-11-26 2006-06-15 Nippon Chem Ind Co Ltd 硫化リチウム粒子粉末、その製造方法および無機固体電解質
JP2014221714A (ja) * 2006-10-19 2014-11-27 出光興産株式会社 リチウムイオン伝導性固体電解質シート及びその製造方法
WO2010038313A1 (ja) * 2008-10-03 2010-04-08 トヨタ自動車株式会社 全固体型リチウム電池の製造方法
JP5278437B2 (ja) * 2008-10-03 2013-09-04 トヨタ自動車株式会社 全固体型リチウム電池の製造方法
US8591603B2 (en) 2008-10-03 2013-11-26 Toyota Jidosha Kabushiki Kaisha Method for producing all solid lithium battery
JP2011084438A (ja) * 2009-10-16 2011-04-28 Idemitsu Kosan Co Ltd 硫化リチウム及びその製造方法
JP2015024953A (ja) * 2009-12-04 2015-02-05 出光興産株式会社 アルカリ金属硫化物及びその製造方法
JP2013075816A (ja) * 2011-09-13 2013-04-25 Nippon Chem Ind Co Ltd 硫化リチウム、その製造方法及び無機固体電解質の製造方法
JP2013103851A (ja) * 2011-11-11 2013-05-30 Nippon Chem Ind Co Ltd ヨウ化リチウム無水塩、ヨウ化リチウム無水塩の製造方法、固体電解質、及びリチウムイオン電池
JP2019031437A (ja) * 2013-11-22 2019-02-28 出光興産株式会社 金属水硫化物の製造方法
JP2015137183A (ja) * 2014-01-20 2015-07-30 東レ・ファインケミカル株式会社 硫化リチウムの製造方法
JP2016207354A (ja) * 2015-04-17 2016-12-08 出光興産株式会社 硫化物固体電解質の製造方法
JP2019057400A (ja) * 2017-09-20 2019-04-11 出光興産株式会社 固体電解質の製造方法及び製造設備
JP7154743B2 (ja) 2017-09-20 2022-10-18 出光興産株式会社 固体電解質の製造方法及び製造設備
JP2022188180A (ja) * 2017-09-20 2022-12-20 出光興産株式会社 固体電解質の製造方法及び製造設備
JP2019091566A (ja) * 2017-11-13 2019-06-13 トヨタ自動車株式会社 非水系二次電池用のリン酸三リチウムの製造方法
JP2021514107A (ja) * 2018-04-05 2021-06-03 セブン キング エナージー カンパニー リミテッドSeven King Energy Co.,Ltd. リチウム二次電池のためのセラミックス固体電解質の製造方法
JP7030207B2 (ja) 2018-04-05 2022-03-04 セブン キング エナージー カンパニー リミテッド リチウム二次電池のためのセラミックス固体電解質の製造方法
JP2020053218A (ja) * 2018-09-26 2020-04-02 古河機械金属株式会社 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP7235463B2 (ja) 2018-09-26 2023-03-08 古河機械金属株式会社 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
EP3886209A4 (en) * 2018-11-19 2022-01-12 Mitsui Mining & Smelting Co., Ltd. SOLID ELECTROLYTE, MIXED ELECTRODES, SOLID ELECTROLYTE LAYER AND ALL SOLID BATTERY
US12100799B2 (en) 2018-11-19 2024-09-24 Mitsui Mining & Smelting Co., Ltd. Solid electrolyte, electrode mixture, solid electrolyte layer, and all-solid-state battery
CN110526219A (zh) * 2019-08-26 2019-12-03 浙江工业大学 一种硫化锂粉体的合成方法
CN118307056A (zh) * 2024-06-07 2024-07-09 赣州诺威科技有限公司 改性富锂锰基材料及其制备方法、电池

Also Published As

Publication number Publication date
JP2013189370A (ja) 2013-09-26
JP5495472B2 (ja) 2014-05-21
JP5690365B2 (ja) 2015-03-25
JPWO2004106232A1 (ja) 2006-07-20

Similar Documents

Publication Publication Date Title
JP5690365B2 (ja) 硫化リチウム粉体の製造方法
CN111466051B (zh) 通过用金属镍处理浸提液的电池组再循环
JP5303428B2 (ja) 硫化リチウム及びその製造方法
KR101181148B1 (ko) 리튬 이온 전도성 황화물계 결정화 유리 및 그의 제조방법
JP4896108B2 (ja) 高純度炭酸リチウムの製造方法
JP4620378B2 (ja) リン酸リチウム凝集体、その製造方法及びリチウム鉄リン系複合酸化物の製造方法
EP0713257B1 (en) Method for producing high purity vanadium electrolytic solution
TWI427036B (zh) 用於從含K2B12FxH12-x 材料中去除其中羥基雜質K2B12Fx(OH)12-x的方法
JP7022135B2 (ja) ナトリウム鉄(ii)‐ヘキサシアノ鉄(ii)酸塩材料の製造方法
JP2010163356A (ja) 硫化リチウムの製造方法
US9680180B2 (en) Solid-state electrolytes based on fluorine-doped oxides
JP7420799B2 (ja) 銅不純物を除去するための浸出液の電気分解による電池リサイクル
JP2005285572A (ja) リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
JP2013166680A (ja) ヘキサフルオロリン酸リチウム濃縮液の製造方法
JP2013014494A (ja) ヘキサフルオロリン酸リチウム濃縮液の製造方法
JP4833539B2 (ja) 硫化リチウム粒子粉末、その製造方法および無機固体電解質
JP2008156190A (ja) フッ化リチウムの製造方法
WO2017175518A1 (ja) シリコン材料の製造方法
KR20240040096A (ko) 리튬 이온 배터리 재료 재활용 방법
JP2004196607A (ja) 高純度炭酸リチウムの製造方法
JP2004196606A (ja) 高純度炭酸リチウムの製造方法
KR20230011200A (ko) 디니트릴 용제 중의 비스(플루오로설포닐)이미드 알칼리금속염의 제조방법
WO2024203897A1 (ja) 水酸化リチウムの製造方法
US20240182316A1 (en) Method for producing lithium compound and apparatus for producing lithium compound
JP2009215138A (ja) 金属フッ化物の精製方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506480

Country of ref document: JP

122 Ep: pct application non-entry in european phase