WO2010021130A1 - 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品 - Google Patents

合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品 Download PDF

Info

Publication number
WO2010021130A1
WO2010021130A1 PCT/JP2009/003951 JP2009003951W WO2010021130A1 WO 2010021130 A1 WO2010021130 A1 WO 2010021130A1 JP 2009003951 W JP2009003951 W JP 2009003951W WO 2010021130 A1 WO2010021130 A1 WO 2010021130A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy composition
alloy
examples
based nanocrystalline
less
Prior art date
Application number
PCT/JP2009/003951
Other languages
English (en)
French (fr)
Inventor
牧野彰宏
Original Assignee
Makino Akihiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Akihiro filed Critical Makino Akihiro
Priority to BR122017017768-0A priority Critical patent/BR122017017768B1/pt
Priority to KR20157007809A priority patent/KR20150038751A/ko
Priority to KR1020147034295A priority patent/KR101516936B1/ko
Priority to KR1020107019224A priority patent/KR20110044832A/ko
Priority to KR1020177020539A priority patent/KR102007522B1/ko
Priority to EP09808066.6A priority patent/EP2243854B1/en
Priority to BRPI0906063-4 priority patent/BRPI0906063B1/pt
Priority to KR1020187011499A priority patent/KR102023313B1/ko
Priority to RU2010134877/02A priority patent/RU2509821C2/ru
Priority to CN200980100394.5A priority patent/CN102741437B/zh
Priority to KR1020147017228A priority patent/KR101534208B1/ko
Priority to KR1020147017226A priority patent/KR101534205B1/ko
Publication of WO2010021130A1 publication Critical patent/WO2010021130A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Definitions

  • the present invention relates to an Fe-based nanocrystalline alloy suitable for use in transformers, inductors, motor cores, and the like, and a method for producing the same.
  • the Fe-based nanocrystalline alloy of Patent Document 1 has a large magnetostriction of 14 ⁇ 10 ⁇ 6 and a low magnetic permeability. Further, since a large amount of crystals are precipitated in the rapidly cooled state, the Fe-based nanocrystalline alloy of Patent Document 1 has poor toughness.
  • an object of the present invention is to provide an Fe-based nanocrystalline alloy having a high saturation magnetic flux density and a high magnetic permeability, and a method for producing the same.
  • a specific alloy composition can be used as a starting material for obtaining an Fe-based nanocrystalline alloy having a high saturation magnetic flux density and a high magnetic permeability.
  • the specific alloy composition is represented by a predetermined composition formula, has an amorphous phase as a main phase, and has excellent toughness.
  • nanocrystals composed of a bccFe phase can be precipitated. This nanocrystal can significantly reduce the saturation magnetostriction of the Fe-based nanocrystal alloy. This reduced saturation magnetostriction results in high saturation flux density and high magnetic permeability.
  • the specific alloy composition is a useful material as a starting material for obtaining an Fe-based nanocrystalline alloy having a high saturation magnetic flux density and a high magnetic permeability.
  • beneficial starting material of the Fe-based nanocrystalline alloys an alloy composition of the formula Fe a B b Si c P x C y Cu z, 79 ⁇ a ⁇ 86at%, 5 ⁇ b ⁇ 13 at%, 0 ⁇ c ⁇ 8 at%, 1 ⁇ x ⁇ 8 at%, 0 ⁇ y ⁇ 5 at%, 0.4 ⁇ z ⁇ 1.4 at%, and 0.08 ⁇ z / x ⁇ 0.8
  • An alloy composition is provided.
  • beneficial starting material of the Fe-based nanocrystalline alloys an alloy composition of the formula Fe a B b Si c P x C y Cu z, 81 ⁇ a ⁇ 86at%, 6 ⁇ b ⁇ 10 at%, 2 ⁇ c ⁇ 8 at%, 2 ⁇ x ⁇ 5 at%, 0 ⁇ y ⁇ 4 at%, 0.4 ⁇ z ⁇ 1.4 at%, and 0.08 ⁇ z / x ⁇ 0.8
  • An alloy composition is provided.
  • An Fe-based nanocrystalline alloy produced using any of the above alloy compositions as a starting material has a low saturation magnetostriction, a high saturation magnetic flux density, and a high magnetic permeability.
  • the alloy composition according to the embodiment of the present invention is suitable as a starting material for an Fe-based nanocrystalline alloy and has a composition formula of Fe a B b Si C P x C y Cu z .
  • a composition formula of Fe a B b Si C P x C y Cu z where 79 ⁇ a ⁇ 86 at%, 5 ⁇ b ⁇ 13 at%, 0 ⁇ c ⁇ 8 at%, 1 ⁇ x ⁇ 8 at%, 0 ⁇ y ⁇ 5 at%, 0.4 ⁇ z ⁇ 1.4 at%, and 0.08 ⁇ z / x ⁇ 0.8.
  • the following conditions are satisfied for b, c, x: 6 ⁇ b ⁇ 10; 2 ⁇ c ⁇ 8; and 2 ⁇ x ⁇ 5.
  • the following conditions are preferably satisfied for y, z and z / x: 0 ⁇ y ⁇ 3 at%; 0.4 ⁇ z ⁇ 1.1 at%; and 0.08 ⁇ z / x ⁇ 0.55.
  • one or more elements may be substituted.
  • the Fe element is a main element and an essential element responsible for magnetism.
  • the ratio of Fe is large. If the Fe ratio is less than 79 at%, a desired saturation magnetic flux density cannot be obtained.
  • the proportion of Fe is more than 86 at%, formation of an amorphous phase under liquid quenching conditions becomes difficult, and the crystal grain size varies or becomes coarse. That is, when the proportion of Fe is more than 86 at%, a homogeneous nanocrystalline structure cannot be obtained, and the alloy composition has deteriorated soft magnetic properties.
  • the Fe ratio is desirably 79 at% or more and 86 at% or less. In particular, when a saturation magnetic flux density of 1.7 T or more is required, the proportion of Fe is preferably 81 at% or more.
  • the B element is an essential element for forming an amorphous phase.
  • the ratio of B is less than 5 at%, it becomes difficult to form an amorphous phase under liquid quenching conditions.
  • the proportion of B is more than 13 at%, ⁇ T decreases, a homogeneous nanocrystalline structure cannot be obtained, and the alloy composition has deteriorated soft magnetic properties. Therefore, the ratio of B is desirably 5 at% or more and 13 at% or less.
  • the ratio of B is preferably 10 at% or less.
  • Si element is an essential element responsible for amorphous formation, and contributes to the stabilization of the nanocrystal in the nanocrystallization. If Si is not contained, the ability to form an amorphous phase is lowered, and a more uniform nanocrystal structure cannot be obtained. As a result, soft magnetic properties are deteriorated.
  • the proportion of Si is more than 8 at%, the saturation magnetic flux density and the amorphous phase forming ability are lowered, and the soft magnetic characteristics are further deteriorated. Accordingly, the Si ratio is desirably 8 at% or less (not including 0). In particular, when the proportion of Si is 2 at% or more, the amorphous phase forming ability is improved, a continuous ribbon can be stably produced, and a homogeneous nanocrystal can be obtained by increasing ⁇ T.
  • the P element is an essential element responsible for amorphous formation.
  • the amorphous phase forming ability and the stability of nanocrystals are improved as compared with the case where only one of them is used.
  • the proportion of P is less than 1 at%, it becomes difficult to form an amorphous phase under liquid quenching conditions.
  • the ratio of P is more than 8 at%, the saturation magnetic flux density is lowered and the soft magnetic characteristics are deteriorated. Therefore, the ratio of P is desirably 1 at% or more and 8 at% or less. In particular, when the ratio of P is 2 at% or more and 5 at% or less, the amorphous phase forming ability is improved, and a continuous ribbon can be stably produced.
  • C element is an element responsible for amorphous formation.
  • the amorphous phase forming ability and the stability of nanocrystals are improved as compared with the case where only one of them is used. I am going to do that.
  • C since C is inexpensive, the amount of other metalloids is reduced by adding C, and the total material cost is reduced.
  • the proportion of C exceeds 5 at%, there is a problem that the alloy composition becomes brittle and soft magnetic properties are deteriorated. Therefore, the C ratio is desirably 5 at% or less. In particular, when the proportion of C is 3 at% or less, it is possible to suppress variation in composition due to evaporation of C during dissolution.
  • Cu element is an essential element contributing to nanocrystallization.
  • the combination of Si element, B element, P element and Cu element or the combination of Si element, B element, P element, C element and Cu element contributes to nanocrystallization before the present invention. It should be noted that it was not known. Also, it should be noted that Cu element is basically expensive, and when the proportion of Fe is 81 at% or more, the alloy composition is likely to be embrittled or oxidized. If the Cu content is less than 0.4 at%, nanocrystallization becomes difficult.
  • the Cu content is higher than 1.4 at%, the precursor composed of the amorphous phase becomes inhomogeneous, so that a homogeneous nanocrystalline structure cannot be obtained when forming the Fe-based nanocrystalline alloy, and the soft magnetic properties are deteriorated. To do. Therefore, it is desirable that the Cu ratio is 0.4 at% or more and 1.4 at% or less, and considering the embrittlement and oxidation of the alloy composition in particular, the Cu ratio is 1.1 at% or less. preferable.
  • the alloy composition contains a specific ratio of P element and Cu element, a cluster having a size of 10 nm or less is formed. Has a fine structure. More specifically, the Fe-based nanocrystalline alloy according to the present embodiment includes bccFe crystals having an average particle size of 25 nm or less.
  • the specific ratio (z / x) of the ratio (x) of P and the ratio (z) of Cu is 0.08 or more and 0.8 or less. Outside this range, a homogeneous nanocrystalline structure cannot be obtained, and thus the alloy composition cannot have excellent soft magnetic properties.
  • the specific ratio (z / x) is preferably 0.08 or more and 0.55 or less in consideration of embrittlement and oxidation of the alloy composition.
  • the alloy composition in the present embodiment can have various shapes.
  • the alloy composition may have a continuous ribbon shape or a powder shape.
  • the continuous ribbon-shaped alloy composition can be formed using a conventional apparatus such as a single roll manufacturing apparatus or a twin roll manufacturing apparatus used for manufacturing an Fe-based amorphous ribbon.
  • the alloy composition in powder form may be produced by a water atomizing method or a gas atomizing method, or may be produced by pulverizing a ribbon-like alloy composition.
  • the continuous ribbon-shaped alloy composition can be tightly bent in a 180 ° bending test in a state before heat treatment.
  • the 180 ° bending test is a test for evaluating toughness, and the sample is bent so that the bending angle is 180 ° and the inner radius is zero. That is, according to the 180 ° bending test, the sample is bent tightly ( ⁇ ) or broken ( ⁇ ). In the evaluation described later, it was checked whether a 3 cm long strip sample was bent at its center and bent tightly ( ⁇ ) or broken ( ⁇ ).
  • the alloy composition according to the present embodiment can be molded to form a magnetic core such as a wound magnetic core, a laminated magnetic core, or a dust core.
  • components such as a transformer, an inductor, a motor, and a generator, can be provided using the magnetic core.
  • the alloy composition according to the present embodiment has an amorphous phase as a main phase. Therefore, when the alloy composition according to the present embodiment is heat-treated in an inert atmosphere such as an Ar gas atmosphere, it is crystallized twice or more.
  • the temperature at which crystallization starts first is the first crystallization start temperature (T x1 )
  • the temperature at which the second crystallization starts is the second crystallization start temperature (T x2 ).
  • crystallization start temperature it means the first crystallization start temperature (T x1 ).
  • these crystallization temperatures can be evaluated by performing thermal analysis at a temperature increase rate of about 40 ° C./min using, for example, a differential scanning calorimetry (DSC) apparatus.
  • DSC differential scanning calorimetry
  • the Fe-based nanocrystalline alloy according to the present embodiment can be obtained.
  • the difference ⁇ T between the first crystallization start temperature (T x1 ) and the second crystallization start temperature (T x2 ) of the alloy composition is 100 It is preferable that it is 200 degreeC or more.
  • the Fe-based nanocrystalline alloy according to the present embodiment thus obtained has a high magnetic permeability of 10,000 or higher and a high saturation magnetic flux density of 1.65 T or higher.
  • the amount of nanocrystals can be controlled to reduce saturation magnetostriction.
  • the saturation magnetostriction is preferably 10 ⁇ 10 ⁇ 6 or less in order to avoid the deterioration of soft magnetic characteristics, and the saturation magnetostriction is 5 ⁇ 10 ⁇ 6 or less in order to obtain a high permeability of 20,000 or more. Is preferred.
  • a magnetic core can be formed using the Fe-based nanocrystalline alloy according to the present embodiment.
  • components such as a transformer, an inductor, a motor, and a generator, can be comprised using the magnetic core.
  • Examples 1 to 46 and Comparative Examples 1 to 22 The raw materials were weighed so as to have the alloy compositions of Examples 1 to 46 and Comparative Examples 1 to 22 of the present invention listed in Tables 1 to 7 below, and arc-melted. Thereafter, the melted alloy composition was processed in the atmosphere by a single roll liquid quenching method to produce continuous ribbons having various thicknesses of about 3 mm in width and about 5 to 15 m in length. The phase of the alloy composition of these continuous ribbons was identified by the X-ray diffraction method. The first crystallization start temperature and the second crystallization start temperature were evaluated using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • alloy compositions of Examples 1 to 46 and Comparative Examples 1 to 22 were heat-treated under the heat treatment conditions described in Tables 8 to 14.
  • the saturation magnetic flux density Bs of each heat-treated alloy composition was measured in a magnetic field of 800 kA / m using a vibrating sample magnetometer (VMS).
  • the coercive force Hc of each alloy composition was measured in a magnetic field of 2 kA / m using a direct current BH tracer.
  • the magnetic permeability ⁇ of each alloy composition was measured using an impedance analyzer under conditions of 0.4 A / m and 1 kHz. The measurement results are shown in Tables 1-14.
  • the alloy compositions of Examples 1 to 46 after the heat treatment were nanocrystallized, and the average particle size of the bccFe phase contained therein was 25 nm or less.
  • the alloy compositions of Comparative Examples 1 to 22 after the heat treatment had variations in crystal grain size or were not nanocrystallized (in Tables 8 to 14, alloys that were not nanocrystallized were x ). Similar results can be seen from FIG. In FIG. 1, the graphs of Comparative Example 7, Comparative Example 14, and Comparative Example 15 indicate that the coercive force Hc increases as the processing temperature increases.
  • the graphs of Examples 5 and 6 include a curve indicating that the coercive force Hc decreases as the processing temperature increases. This reduction in coercive force Hc is caused by nanocrystallization.
  • the alloy composition before heat treatment of Comparative Example 7 has initial microcrystals having a grain size of more than 10 nm. Therefore, the ribbon of the alloy composition is bent tightly during the 180 ° bending test. Damaged without being able to.
  • the alloy composition before heat treatment of Example 5 has initial crystallites having a grain size of 10 nm or less, and therefore the ribbon of the alloy composition is bent tightly during a 180 ° bending test. it can.
  • the heat-treated alloy composition of Example 5 ie, Fe-based nanocrystalline alloy
  • each alloy composition before heat treatment has initial crystallites having a grain size of 10 nm or less, and each alloy composition after heat treatment.
  • Fe-based nanocrystalline alloy has homogeneous Fe-based nanocrystals having an average particle size of 25 nm or less. Therefore, each alloy composition (Fe-based nanocrystalline alloy) after heat treatment in Examples 1 to 46 can have a good coercive force Hc.
  • the highest ultimate heat treatment temperature is between the first crystallization start temperature (T x1 ) and the second crystallization start temperature (T x2 )
  • Excellent soft magnetic properties coercivity Hc, permeability ⁇
  • FIG. 4 also shows that the crystallization start temperature difference ⁇ T of the alloy compositions of Examples 5, 6, 20, and 44 is 100 ° C. or more.
  • the alloy compositions of Examples 1 to 10 and Comparative Examples 9 and 10 listed in Tables 8 and 9 correspond to cases where the Fe amount is changed from 78 to 87 at%.
  • the alloy compositions of Examples 1 to 10 listed in Table 9 have a permeability ⁇ of 10,000 or more, a saturation magnetic flux density Bs of 1.65 T or more, and a coercive force Hc of 20 A / m or less. Accordingly, the range of 79 to 86 at% is a condition range of the Fe amount. When the Fe amount is 81 at% or more, a saturation magnetic flux density Bs of 1.7 T or more can be obtained.
  • the Fe amount is preferably 81 at% or more.
  • the Fe amount in Comparative Example 9 is 78 at%.
  • the main phase is an amorphous phase as shown in Table 2.
  • the crystal grains after the heat treatment are coarsened, and both the magnetic permeability ⁇ and the coercive force Hc are outside the range of the characteristics of Examples 1 to 10 described above.
  • the Fe amount in Comparative Example 10 is 87 at%. With the alloy composition of Comparative Example 10, a continuous ribbon cannot be produced.
  • the alloy composition of Comparative Example 10 has a main phase as a crystal phase.
  • the alloy compositions of Examples 11 to 17 and Comparative Examples 11 and 12 listed in Table 10 correspond to cases where the B amount is changed from 4 to 14 at%.
  • the alloy compositions of Examples 11 to 17 listed in Table 10 have a permeability ⁇ of 10,000 or more, a saturation magnetic flux density Bs of 1.65 T or more, and a coercive force Hc of 20 A / m or less. Accordingly, the range of 5 to 13 at% is the condition range for the B amount.
  • the B content is 10 at% or less because the alloy composition has a wide crystallization start temperature difference ⁇ T of 120 ° C. or more and the melting end temperature of the alloy composition is lower than that of the Fe amorphous.
  • the B amount in Comparative Example 11 is 4 at%, and the B amount in Comparative Example 12 is 14 at%.
  • Table 10 the alloy side organisms of Comparative Example 11 and Comparative Example 12 have coarsened crystal grains after the heat treatment, and both the magnetic permeability ⁇ and the coercive force Hc have been described in Examples 11 to 11 described above. It is outside the range of 17 characteristics.
  • the alloy compositions of Examples 18 to 25 and Comparative Example 13 listed in Table 11 correspond to cases where the Si amount is changed from 0.1 to 10 at%.
  • the alloy compositions of Examples 18 to 25 listed in Table 11 have a permeability ⁇ of 10,000 or more, a saturation magnetic flux density Bs of 1.65 T or more, and a coercive force Hc of 20 A / m or less. Accordingly, the range of 0 to 8 at% (excluding 0) is the condition range of the Si amount.
  • the Si amount in Comparative Example 13 is 10 at%.
  • the alloy composition of Comparative Example 13 has a low saturation magnetic flux density Bs, the crystal grains after heat treatment are coarsened, and both the permeability ⁇ and the coercive force Hc are the characteristics of Examples 18 to 25 described above. It is out of range.
  • the alloy compositions according to Examples 26 to 33 and Comparative Examples 14 to 17 listed in Table 12 correspond to cases where the P amount is changed from 0 to 10 at%.
  • the alloy compositions of Examples 26 to 33 listed in Table 12 have a permeability ⁇ of 10,000 or more, a saturation magnetic flux density Bs of 1.65 T or more, and a coercive force Hc of 20 A / m or less. Accordingly, the range of 1 to 8 at% is the condition range of the P amount.
  • the P content is preferably 5 at% or less because the alloy composition has a wide crystallization start temperature difference ⁇ T of 120 ° C. or more and a saturation magnetic flux density Bs exceeding 1.7 T.
  • the P amount in Comparative Examples 14 to 16 is 0 at%.
  • the crystal grains after the heat treatment are coarsened, and both the magnetic permeability ⁇ and the coercive force Hc are outside the range of the characteristics of Examples 26 to 33 described above.
  • the amount of P in Comparative Example 17 is 10 at%. Also in the alloy composition of Comparative Example 17, the crystal grains after the heat treatment are coarsened, and both the magnetic permeability ⁇ and the coercive force Hc are outside the range of the characteristics of Examples 26 to 33 described above.
  • the alloy compositions according to Examples 34 to 39 and Comparative Example 18 listed in Table 13 correspond to cases where the C content is changed from 0 to 6 at%.
  • the alloy compositions of Examples 34 to 39 listed in Table 13 have a permeability ⁇ of 10,000 or more, a saturation magnetic flux density Bs of 1.65 T or more, and a coercive force Hc of 20 A / m or less. Therefore, the range of 0 to 5 at% is the condition range for the C amount.
  • the amount of C is 4 at% or more, the thickness of the continuous ribbon exceeds 30 ⁇ m as in Examples 38 and 39, and adhesion bending becomes difficult during the 180-degree bending test. Therefore, the C amount is preferably 3 at% or less.
  • the C amount in Comparative Example 18 is 6 at%.
  • the crystal grains after the heat treatment are coarsened, and both the magnetic permeability ⁇ and the coercive force Hc are outside the range of the characteristics of Examples 34 to 39 described above.
  • the alloy compositions according to Examples 40 to 46 and Comparative Examples 19 to 22 listed in Table 14 correspond to the case where the amount of Cu is changed from 0 to 1.5 at%.
  • the alloy compositions of Examples 40 to 46 shown in Table 14 have a permeability ⁇ of 10,000 or more, a saturation magnetic flux density Bs of 1.65 T or more, and a coercive force Hc of 20 A / m or less. Therefore, 0.4 to 1.4 at% is a condition range for the amount of Cu.
  • the Cu amount of Comparative Example 19 is 0 at%
  • the Cu amount of Comparative Example 20 is 0.3 at%.
  • the crystal grains after the heat treatment are coarsened, and both the magnetic permeability ⁇ and the coercive force Hc are outside the above-described characteristics range of Examples 40-46.
  • the amount of Cu in Comparative Example 21 and Comparative Example 22 is 1.5 at%.
  • the alloy compositions of Comparative Example 21 and Comparative Example 22 also have coarsened crystal grains after the heat treatment, and both the magnetic permeability ⁇ and the coercive force Hc are outside the range of the characteristics of Examples 40 to 46 described above. is there.
  • the main phase is not an amorphous phase but a crystalline phase.
  • the saturation magnetostriction was measured using a strain gauge method.
  • the saturation magnetostrictions of the Fe-based nanocrystalline alloys of Example 1, Example 2, Example 5, Example 6 and Example 44 were 8.2 ⁇ 10 ⁇ 6 and 5.3 ⁇ 10 ⁇ 5, respectively. They were 3.8 ⁇ 10 ⁇ 6 , 3.1 ⁇ 10 ⁇ 6 and 2.3 ⁇ 10 ⁇ 6 .
  • the saturation magnetostriction of Fe amorphous is 27 ⁇ 10 ⁇ 6
  • Patent Document 1 2007-270271 (Patent Document 1) is 14 ⁇ 10 ⁇ 6 .
  • the saturation magnetostriction of the Fe-based nanocrystalline alloys of Example 1, Example 2, Example 5, Example 6 and Example 44 is very small. Therefore, Examples 1 and 2
  • the Fe-based nanocrystalline alloys of Example 5, Example 6, and Example 44 have high magnetic permeability, low coercivity, and low iron loss.
  • the reduced saturation magnetostriction improves soft magnetic characteristics and contributes to suppression of noise and vibration. Therefore, the saturation magnetostriction is desirably 10 ⁇ 10 ⁇ 6 or less.
  • the saturation magnetostriction is preferably 5 ⁇ 10 ⁇ 6 or less.
  • Example 47 to 55 and Comparative Examples 23 to 25 The raw materials were weighed so as to have the alloy compositions of Examples 47 to 55 and Comparative Examples 23 to 25 of the present invention listed in Table 15 below, and dissolved by high frequency induction dissolution treatment. Thereafter, the melted alloy composition was processed in the atmosphere by a single roll liquid quenching method to produce a continuous ribbon having a thickness of about 20 and about 30 ⁇ m, a width of about 15 mm, and a length of about 10 m. The phase of the alloy composition of these continuous ribbons was identified by the X-ray diffraction method. Their toughness was evaluated by a 180 ° bending test.
  • the first crystallization start temperature and the second crystallization start temperature were evaluated using a differential scanning calorimeter (DSC). Further, for Examples 47 to 55 and Comparative Examples 23 to 25, an alloy composition having a thickness of about 20 ⁇ m was heat-treated under the heat treatment conditions described in Table 16. The saturation magnetic flux density Bs of each heat-treated alloy composition was measured in a magnetic field of 800 kA / m using a vibrating sample magnetometer (VMS). The coercive force Hc of each alloy composition was measured in a magnetic field of 2 kA / m using a direct current BH tracer. The measurement results are shown in Table 15 and Table 16.
  • the alloy compositions of Examples 47 to 55 and Comparative Examples 23 and 24 listed in Table 16 correspond to the case where the specific ratio z / x is changed from 0.06 to 1.2.
  • the alloy compositions of Examples 47 to 55 listed in Table 16 have a permeability ⁇ of 10,000 or more, a saturation magnetic flux density Bs of 1.65 T or more, and a coercive force Hc of 20 A / m or less. Therefore, the range of 0.08 to 0.8 is the condition range of the specific ratio z / x.
  • the specific ratio z / x is larger than 0.55, the ribbon having a thickness of about 30 ⁇ m becomes brittle, and the ribbon is partially broken by the 180 ° bending test ( ⁇ ). Or it is completely damaged ( ⁇ ). Therefore, the specific range z / x is preferably 0.55 or less.
  • the Cu content exceeds 1.1 at%, the ribbon becomes brittle, so the Cu content is preferably 1.1 at% or less.
  • the alloy compositions of Examples 47 to 55 and Comparative Example 23 listed in Table 16 correspond to the case where the Si amount is changed from 0 to 4 at%.
  • the alloy compositions of Examples 47 to 55 listed in Table 16 have a permeability ⁇ of 10,000 or more, a saturation magnetic flux density Bs of 1.65 T or more, and a coercive force Hc of 20 A / m or less. Therefore, as described above, it is understood that a range larger than 0 at% is a condition range of the Si amount.
  • the Si amount is preferably 2 at% or more.
  • the alloy compositions of Examples 47 to 55 and Comparative Examples 23 to 25 listed in Table 16 correspond to cases where the P amount is changed from 0 to 4 at%.
  • the alloy compositions of Examples 47 to 55 listed in Table 16 have a permeability ⁇ of 10,000 or more, a saturation magnetic flux density Bs of 1.65 T or more, and a coercive force Hc of 20 A / m or less. Therefore, as described above, it is understood that a range larger than 1 at% is a condition range of the P amount.
  • the P content is preferably 2 at% or more.
  • Examples 56 to 64 and Comparative Example 26 The raw materials were weighed so as to have the alloy compositions of Examples 56 to 64 of the present invention listed in Table 17 below and Comparative Example 26, and arc-melted. Thereafter, the melted alloy composition was processed in the atmosphere by a single roll liquid quenching method to produce continuous ribbons having various thicknesses of about 3 mm in width and about 5 to 15 m in length. The phase of the alloy composition of these continuous ribbons was identified by the X-ray diffraction method. The first crystallization start temperature and the second crystallization start temperature were evaluated using a differential scanning calorimeter (DSC). Further, the alloy compositions of Examples 56 to 64 and Comparative Example 26 were heat-treated under the heat treatment conditions shown in Table 18.
  • DSC differential scanning calorimeter
  • the saturation magnetic flux density Bs of each heat-treated alloy composition was measured in a magnetic field of 800 kA / m using a vibrating sample magnetometer (VMS).
  • the coercive force Hc of each alloy composition was measured in a magnetic field of 2 kA / m using a direct current BH tracer.
  • the magnetic permeability ⁇ of each alloy composition was measured using an impedance analyzer under conditions of 0.4 A / m and 1 kHz. The measurement results are shown in Table 17 and Table 18.
  • the alloy compositions of Examples 56 to 64 and Comparative Example 26 listed in Table 18 correspond to the case where part of the Fe amount is replaced with Nb element, Cr element, and Co element.
  • the alloy compositions of Examples 56 to 64 listed in Table 18 have a permeability ⁇ of 10,000 or more, a saturation magnetic flux density Bs of 1.65 T or more, and a coercive force Hc of 20 A / m or less. Therefore, the range of 0 to 3 at% is a replaceable range of the Fe amount.
  • the amount of Fe substitution in Comparative Example 26 is 4 at%.
  • the alloy side organism of Comparative Example 26 has a low saturation magnetic flux density Bs, which is outside the range of the characteristics of Examples 56 to 64 described above.
  • Examples 65 to 69 and Comparative Examples 27 to 29 The raw materials were weighed so as to have the alloy compositions of Examples 65 to 69 and Comparative Examples 27 to 29 of the present invention listed in Table 19 below, and dissolved by high frequency induction dissolution treatment. Thereafter, the melted alloy composition was processed in the atmosphere by a single roll liquid quenching method to produce a continuous ribbon having a thickness of 25 ⁇ m, a width of 15 or 30 mm, and a length of about 10 to 30 m. The phase of the alloy composition of these continuous ribbons was identified by the X-ray diffraction method. Their toughness was evaluated by a 180 ° bending test.
  • the alloy compositions of Examples 65 and 66 were heat-treated under heat treatment conditions of 475 ° C. ⁇ 10 minutes.
  • the alloy compositions of Examples 67 to 69 and Comparative Example 27 were heat-treated under a heat treatment condition of 450 ° C. ⁇ 10 minutes, and the alloy composition of Comparative Example 28 was heat-treated under a heat treatment condition of 425 ° C. ⁇ 30 minutes.
  • the saturation magnetic flux density Bs of each heat-treated alloy composition was measured in a magnetic field of 800 kA / m using a vibrating sample magnetometer (VMS).
  • the coercive force Hc of each alloy composition was measured in a magnetic field of 2 kA / m using a direct current BH tracer.
  • the iron loss of each alloy composition was measured under an excitation condition of 50 Hz-1.7 T using an AC BH analyzer. The measurement results are shown in Table 19.
  • the continuous ribbon-shaped Fe-based nanocrystalline alloy obtained by heat-treating the alloy compositions of Examples 65 to 69 has a saturation magnetic flux density Bs of 1.65 T or more and a coercive force Hc of 20 A / m or less. ing. Further, the Fe-based nanocrystalline alloys of Examples 65 to 69 can be excited even under an excitation condition of 1.7 T, and have a lower iron loss than that of the electromagnetic steel sheet. Therefore, when this is used, a magnetic component with low energy loss can be provided.
  • Examples 70 to 74 and Comparative Examples 30 and 31 The raw materials of Fe, Si, B, P and Cu were weighed so as to have an alloy composition of Fe 84.8 B 10 Si 2 P 2 Cu 1.2 and dissolved by high-frequency induction melting treatment. Thereafter, the melted alloy composition was processed in the atmosphere by a single roll liquid quenching method to produce a plurality of continuous ribbons having a thickness of about 25 ⁇ m, a width of 15 mm, and a length of about 30 m. As a result of phase identification by the X-ray diffraction method, these continuous ribbon-shaped alloy compositions had an amorphous phase as a main phase. Further, these continuous ribbons could be bent tightly without breaking during the 180 ° bending test.
  • the Fe-based nanocrystalline alloy obtained by heat-treating the above-described alloy composition at a heating rate of 100 ° C./min or more has a saturation magnetic flux density Bs of 1.65 T or more and 20 A / m. It has the following coercive force Hc. Moreover, those Fe-based nanocrystalline alloys can be excited even under an excitation condition of 1.7 T, and have a lower iron loss than that of the electromagnetic steel sheet.
  • Examples 75 to 78 and Comparative Examples 32 and 33 The raw materials of Fe, Si, B, P, and Cu were weighed so as to have an alloy composition of Fe 83.3 B 8 Si 4 P 4 Cu 0.7, and melted by high-frequency induction melting treatment to produce a master alloy.
  • This mother alloy was processed by a single roll liquid quenching method to produce a continuous ribbon having a thickness of about 25 ⁇ m, a width of 15 mm, and a length of about 30 m.
  • This continuous ribbon was heat-treated in an Ar atmosphere at 300 ° C. for 10 minutes.
  • the continuous ribbon after the heat treatment was pulverized to obtain a powder of Example 75.
  • the powder of Example 75 had a particle size of 150 ⁇ m or less.
  • the raw materials of Fe, Si, B, P, and Cu were weighed so as to have an alloy composition of Fe 83.3 B 8 Si 4 P 4 Cu 0.7, and melted by high-frequency induction melting treatment to produce a master alloy.
  • This mother alloy was processed by the water atomization method to obtain a powder of Example 76.
  • the powder of Example 76 had an average particle size of 20 ⁇ m.
  • the powder of Example 76 was subjected to air classification to obtain powders of Example 77 and Example 78.
  • the powder of Example 77 had an average particle size of 10 ⁇ m
  • the powder of Example 78 had an average particle size of 3 ⁇ m.
  • the powder of each Example 76, 77 or 78 and the epoxy resin were mixed so that the epoxy resin would be 4.5% by weight.
  • the mixture was passed through a sieve having a mesh size of 500 ⁇ m to obtain a granulated powder having a particle size of 500 ⁇ m or less.
  • the granulated powder was molded using a mold having an outer diameter of 13 mm and an inner diameter of 8 mm under the condition of a surface pressure of 7,000 kgf / cm 2 to prepare a toroidal shaped molded body having a height of 5 mm.
  • the molded body thus produced was cured in a nitrogen atmosphere at 150 ° C. for 2 hours.
  • the compact and the powder were heat-treated in an Ar atmosphere at 450 ° C. for 10 minutes.
  • the Fe-based amorphous alloy and the Fe—Si—Cr alloy were processed by the water atomization method to obtain powders of Comparative Examples 32 and 33.
  • the powders of Comparative Examples 32 and 33 had an average particle size of 20 ⁇ m. These powders were treated as in Examples 75-78.
  • the amount of heat generated at the first crystallization peak of the obtained powder was measured and compared with that of an amorphous single-phase continuous ribbon.
  • the amorphization ratio (ratio of the contained amorphous phase) was calculated.
  • the saturation magnetic flux density Bs and coercive force Hc of the heat-treated powder were measured in a magnetic field of 800 kA / m using a vibrating sample magnetometer (VMS).
  • the iron loss of the heat-treated molded body was measured using an AC BH analyzer under excitation conditions of 300 kHz-50 mT. Table 21 shows the measurement results.
  • the alloy compositions of Examples 75 to 78 have nanocrystals having an average particle diameter of 25 nm or less after the heat treatment.
  • the alloy compositions of Examples 75 to 78 have a high saturation magnetic flux density Bs and a low coercive force Hc compared to Comparative Example 32 (Fe-based amorphous) and Comparative Example 33 (Fe—Si—Cr). ing.
  • the dust cores produced using the powders of Examples 75 to 78 also have a high saturation magnetic flux density Bs and a low coercive force Hc as compared with Comparative Example 33 (Fe—Si—Cr). Therefore, when this is used, a small and highly efficient magnetic component can be provided.
  • the alloy composition before heat treatment may be partially crystallized.
  • the amorphization rate is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 組成式FeSiCuの合金組成物。パラメータは、次の条件を満たす:79≦a≦86at%;5≦b≦13at%;0<c≦8at%;1≦x≦8at%;0≦y≦5at%;0.4≦z≦1.4at%及び0.08≦z/x≦0.8。又は、パラメータが次の条件を満たす:81≦a≦86at%;6≦b≦10at%;2≦c≦8at%;2≦x≦5at%;0≦y≦4at%;0.4≦z≦1.4at%及び0.08≦z/x≦0.8

Description

合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
 本発明は、トランスやインダクタ、モータの磁芯などの使用に好適である、Fe基ナノ結晶合金及びその製造方法に関する。
 ナノ結晶合金を得る際にNb等の非磁性金属元素を用いると飽和磁束密度が低下してしまうという問題が生じる。Fe量を増加させ、Nb等の非磁性金属元素の量を減らすこととすると、飽和磁束密度を増加させることはできるが、結晶粒は粗大となるという他の問題が生じる。かかる問題をクリアするFe基ナノ結晶合金としては、例えば特許文献1に開示されているものがある。
特開2007-270271号公報
 しかしながら、特許文献1のFe基ナノ結晶合金は14×10-6といった大きい磁歪を有し、且つ、低い透磁率を有している。また急冷状態で多量に結晶を析出させるため、特許文献1のFe基ナノ結晶合金は靭性に乏しい。
 そこで、本発明は高い飽和磁束密度を有し且つ高い透磁率を有するFe基ナノ結晶合金とそれを製造する方法とを提供することを目的とする。
 本発明の発明者は、鋭意検討の結果、特定の合金組成物を高い飽和磁束密度を有し且つ高い透磁率を有するFe基ナノ結晶合金を得るための出発原料として用いることができることを見出した。ここで特定の合金組成物は、所定の組成式で表され、主相としてアモルファス相を有しており、且つ、優れた靭性を有している。特定の合金組成物を熱処理すると、bccFe相からなるナノ結晶を析出させることができる。このナノ結晶は、Fe基ナノ結晶合金の飽和磁歪を大幅に低減することができる。この低減された飽和磁歪は、高い飽和磁束密度と高い透磁率をもたらす。このように、特定の合金組成物は、高い飽和磁束密度を有し且つ高い透磁率を有するFe基ナノ結晶合金を得るための出発原料として有益な材料である。
 本発明の一の側面は、Fe基ナノ結晶合金の有益な出発原料として、組成式FeSiCuの合金組成物であって、79≦a≦86at%、5≦b≦13at%、0<c≦8at%、1≦x≦8at%、0≦y≦5at%、0.4≦z≦1.4at%、及び0.08≦z/x≦0.8である合金組成物を提供する。
 本発明の他の側面は、Fe基ナノ結晶合金の有益な出発原料として、組成式FeSiCuの合金組成物であって、81≦a≦86at%、6≦b≦10at%、2≦c≦8at%、2≦x≦5at%、0≦y≦4at%、0.4≦z≦1.4at%、及び0.08≦z/x≦0.8である合金組成物を提供する。
 上記いずれかの合金組成物を出発原料として用いて製造されたFe基ナノ結晶合金は、飽和磁歪が低く、更に高い飽和磁束密度を有し且つ高い透磁率を有している。
本発明の実施例と比較例の熱処理温度と保磁力Hcとの関係を示す図である。 比較例の高分解能TEM像のコピーである。左は、熱処理前の状態の像を示し、右は、熱処理後の状態の像を示す。 本発明の実施例の高分解能TEM像のコピーである。左は、熱処理前の状態の像を示し、右は、熱処理後の状態の像を示す。 本発明の実施例のDSCプロファイルと比較例のDSCプロファイルを示す図である。
 本発明の実施の形態による合金組成物は、Fe基ナノ結晶合金の出発原料として好適であり、組成式FeSiCuのものである。ここで、79≦a≦86at%、5≦b≦13at%、0<c≦8at%、1≦x≦8at%、0≦y≦5at%、0.4≦z≦1.4at%、及び0.08≦z/x≦0.8。b、c、xについて次の条件を満たすことが好ましい:6≦b≦10;2≦c≦8;及び2≦x≦5。y、z、z/xについて次の条件を満たすことが好ましい:0≦y≦3at%;0.4≦z≦1.1at%;及び0.08≦z/x≦0.55。なお、Feの3at%以下を、Ti、Zr,Hf,Nb,Ta,Mo,W,Cr,Co,Ni,Al,Mn,Ag,Zn,Sn,As,Sb,Bi,Y,N,O及び希土類元素のうち、1種類以上の元素で置換しても良い。
 上記合金組成物において、Fe元素は主元素であり、磁性を担う必須元素である。飽和磁束密度の向上及び原料価格の低減のため、Feの割合が多いことが基本的には好ましい。Feの割合が79at%より少ないと、望ましい飽和磁束密度が得られない。Feの割合が86at%より多いと、液体急冷条件下におけるアモルファス相の形成が困難になり、結晶粒径がばらついたり、粗大化したりする。即ち、Feの割合が86at%より多いと、均質なナノ結晶組織が得られず、合金組成物は劣化した軟磁気特性を有することとなる。従って、Feの割合は、79at%以上、86at%以下であるのが望ましい。特に1.7T以上の飽和磁束密度が必要とされる場合、Feの割合が81at%以上であることが好ましい。
 上記合金組成物において、B元素はアモルファス相形成を担う必須元素である。Bの割合が5at%より少ないと、液体急冷条件下におけるアモルファス相の形成が困難になる。Bの割合が13at%より多いと、ΔTが減少し、均質なナノ結晶組織を得ることができず、合金組成物は劣化した軟磁気特性を有することとなる。従って、Bの割合は、5at%以上、13at%以下であることが望ましい。特に量産化のため合金組成物が低い融点を有する必要がある場合、Bの割合が10at%以下であることが好ましい。
 上記合金組成物において、Si元素はアモルファス形成を担う必須元素であり、ナノ結晶化にあたってはナノ結晶の安定化に寄与する。Siを含まないと、アモルファス相形成能が低下し、更に均質なナノ結晶組織が得られず、その結果、軟磁気特性が劣化する。Siの割合が8at%よりも多いと、飽和磁束密度とアモルファス相形成能が低下し、更に軟磁気特性が劣化する。従って、Siの割合は、8at%以下(0を含まない)であることが望ましい。特にSiの割合が2at%以上であると、アモルファス相形成能が改善され連続薄帯を安定して作製でき、また、ΔTが増加することで均質なナノ結晶を得ることができる。
 上記合金組成物において、P元素はアモルファス形成を担う必須元素である。本実施の形態においては、B元素、Si元素及びP元素の組み合わせを用いることで、いずれか一つしか用いない場合と比較して、アモルファス相形成能やナノ結晶の安定性を高めることとしている。Pの割合が1at%より少ないと、液体急冷条件下におけるアモルファス相の形成が困難になる。Pの割合が8at%より多いと、飽和磁束密度が低下し軟磁気特性が劣化する。従って、Pの割合は、1at%以上、8at%以下であることが望ましい。特にPの割合が2at%以上、5at%以下であると、アモルファス相形成能が向上し、連続薄帯を安定して作製することができる。
 上記合金組成物において、C元素はアモルファス形成を担う元素である。本実施の形態においては、B元素、Si元素、P元素、C元素の組み合わせを用いることで、いずれか一つしか用いない場合と比較して、アモルファス相形成能やナノ結晶の安定性を高めることとしている。また、Cは安価であるため、Cの添加により他の半金属量が低減され、総材料コストが低減される。但し、Cの割合が5at%を超えると、合金組成物が脆化し、軟磁気特性の劣化が生じるという問題がある。従って、Cの割合は、5at%以下が望ましい。特にCの割合が3at%以下であると、溶解時におけるCの蒸発に起因した組成のばらつきを抑えることができる。
 上記合金組成物において、Cu元素はナノ結晶化に寄与する必須元素である。ここで、Si元素、B元素及びP元素とCu元素との組み合わせ又はSi元素、B元素、P元素及びC元素とCu元素との組み合わせがナノ結晶化に寄与することは、本発明前には知られていなかった点に着目すべきである。また、Cu元素は基本的に高価であり、Feの割合が81at%以上である場合には、合金組成物の脆化や酸化を生じさせやすい点に注意すべきである。なお、Cuの割合が0.4at%より少ないと、ナノ結晶化が困難になる。Cuの割合が1.4at%より多いと、アモルファス相からなる前駆体が不均質になり、そのためFe基ナノ結晶合金の形成の際に均質なナノ結晶組織が得られず、軟磁気特性が劣化する。従って、Cuの割合は、0.4at%以上、1.4at%以下であることが望ましく、特に合金組成物の脆化及び酸化を考慮すると、Cuの割合は1.1at%以下であることが好ましい。
 P原子とCu原子との間には強い引力がある。従って、合金組成物が特定の比率のP元素とCu元素とを含んでいると、10nm以下のサイズのクラスターが形成され、このナノサイズのクラスターによってFe基ナノ結晶合金の形成の際にbccFe結晶は微細構造を有するようになる。より具体的には、本実施の形態によるFe基ナノ結晶合金は平均粒径が25nm以下であるbccFe結晶を含んでいる。本実施の形態において、Pの割合(x)とCuの割合(z)との特定の比率(z/x)は、0.08以上、0.8以下である。この範囲以外では、均質なナノ結晶組織が得られず、従って合金組成物は優れた軟磁気特性を有せない。なお、特定の比率(z/x)は、合金組成物の脆化及び酸化を考慮すると、0.08以上0.55以下であることが好ましい。
 本実施の形態における合金組成物は、様々な形状を有することができる。例えば、合金組成物は、連続薄帯形状を有していてもよいし、粉末形状を有していてよい。連続薄帯形状の合金組成物は、Fe基アモルファス薄帯などの製造に使用されている単ロール製造装置や双ロール製造装置のような従来の装置を使用して形成することができる。粉末形状の合金組成物は水アトマイズ法やガスアトマイズ法によって作製してもよいし、薄帯の合金組成物を粉砕することで作製してもよい。
 特に、高い靭性への要求を考慮すると、連続薄帯形状の合金組成物は熱処理前の状態において180°曲げ試験の際に密着曲げ可能であることが好ましい。ここで、180°曲げ試験とは、靭性を評価するための試験であり、曲げ角度が180°であり内側半径が零となるように試料を曲げるものである。即ち、180°曲げ試験によれば、試料は密着曲げされる(○)か破断される(×)。後述する評価においては、長さ3cmの薄帯試料をその中心において折り曲げて密着曲げできたか(○)破断したか(×)をチェックした。
 本実施の形態による合金組成物を成形して、巻磁芯、積層磁芯、圧粉磁芯などの磁気コアを形成することができる。また、その磁気コアを用いて、トランス、インダクタ、モータや発電機などの部品を提供することができる。
 本実施の形態による合金組成物は主相としてアモルファス相を有している。従って、本実施の形態による合金組成物をArガス雰囲気のような不活性雰囲気中で熱処理すると、2回以上結晶化される。最初に結晶化が開始した温度を第1結晶化開始温度(Tx1)とし、2回目の結晶化が開始した温度を第2結晶化開始温度(Tx2)とする。また、第1結晶化開始温度(Tx1)と第2結晶化開始温度(Tx2)の間の温度差をΔT=Tx2-Tx1とする。単に「結晶化開始温度」といった場合、第1結晶化開始温度(Tx1)を意味する。なお、これら結晶化温度は、例えば、示差走査熱量分析(DSC)装置を用い、40℃/分程度の昇温速度で熱分析を行うことで評価可能である。
 本実施の形態による合金組成物を毎分100℃以上の昇温速度で且つ結晶化開始温度(即ち、第1結晶化開始温度)以上で熱処理をすると、本実施の形態によるFe基ナノ結晶合金を得ることができる。Fe基ナノ結晶合金形成の際に均質なナノ結晶組織を得るためには、合金組成物の第1結晶化開始温度(Tx1)と第2結晶化開始温度(Tx2)の差ΔTが100℃以上200℃以下であることが好ましい。
 このようにして得られた本実施の形態によるFe基ナノ結晶合金は、10,000以上の高い透磁率と1.65T以上の高い飽和磁束密度を有する。特に、Pの割合(x)とCuの割合(z)並びに特定の比率(z/x)や熱処理条件を選択することにより、ナノ結晶の量を制御して飽和磁歪を低減することができる。軟磁気特性の劣化を避けるため、飽和磁歪は10×10-6以下であることが望ましく、更に、20,000以上の高透磁率を得るため、飽和磁歪は5×10-6以下であることが好ましい。
 本実施の形態によるFe基ナノ結晶合金を用いて磁気コアを形成することができる。また、その磁気コアを用いて、トランス、インダクタ、モータや発電機などの部品を構成することができる。
 以下、本発明の実施の形態について、複数の複数の実施例を参照しながら更に詳細に説明する。
 (実施例1~46及び比較例1~22)
 原料を下記の表1~7に掲げられた本発明の実施例1~46及び比較例1~22の合金組成となるように秤量し、アーク溶解した。その後、溶解した合金組成物を大気中において単ロール液体急冷法にて処理し、種々の厚さを持つ幅約3mm、長さ約5~15mの連続薄帯を作製した。これらの連続薄帯の合金組成物の相の同定はX線回折法にて行った。それらの第1結晶化開始温度及び第2結晶化開始温度は、示差走査型熱量分析計(DSC)を用いて評価した。更に、表8~14記載の熱処理条件の下で、実施例1~46及び比較例1~22の合金組成物を熱処理した。熱処理された合金組成物の夫々の飽和磁束密度Bsは振動試料型磁力計(VMS)を用いて800kA/mの磁場にて測定した。各合金組成物の保磁力Hcは直流BHトレーサーを用い2kA/mの磁場にて測定した。各合金組成物の透磁率μはインピーダンスアナライザーを用い0.4A/m且つ1kHzの条件下で測定した。測定結果を表1~14に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表1~7から理解されるように、実施例1~46の合金組成物はすべて急冷処理後の状態においてアモルファス相を主相とするものであった。
 また、表8~14から理解されるように、熱処理後の実施例1~46の合金組成物はナノ結晶化し、そこに含まれるbccFe相の平均粒径は25nm以下であった。一方、熱処理後の比較例1~22の合金組成物は、結晶粒のサイズにバラツキが生じているか、若しくは、ナノ結晶化していなかった(表8~14において、ナノ結晶化しなかった合金は×で示す)。同様の結果は、図1からも理解される。図1において、比較例7、比較例14及び比較例15のグラフは処理温度が高くなるに連れて保磁力Hcが大きくなっていることを示している。一方、実施例5及び実施例6のグラフには、処理温度の上昇に従って保磁力Hcが減少することを示すカーブが含まれている。この保磁力Hcの減少は、ナノ結晶化により生じている。
 図2を参照すると、比較例7の熱処理前の合金組成物は、10nmを超える粒径の初期微結晶を有しており、従って、その合金組成物の薄帯は180°曲げ試験時に密着曲げできずに破損する。図3を参照すると、実施例5の熱処理前の合金組成物は、10nm以下の粒径の初期微結晶を有しており、従って、その合金組成物の薄帯は180°曲げ試験時に密着曲げできる。加えて、図3に示されるように、実施例5の熱処理後の合金組成物(即ち、Fe基ナノ結晶合金)は平均粒径が25nmより小さい15nmであるの均質なFe基ナノ結晶を有しており、それが図1の優れた保磁力Hcをもたらしている。他の実施例1~4,6~46も実施例5と同様であり、熱処理前の各合金組成物は10nm以下の粒径の初期微結晶を有しており、熱処理後の各合金組成物(Fe基ナノ結晶合金)は平均粒径が25nm以下である均質なFe基ナノ結晶を有している。それ故、実施例1~46の熱処理後の各合金組成物(Fe基ナノ結晶合金)は、良好な保磁力Hcを有することができる。
 表1~7から理解されるように、実施例1~46の合金組成物の結晶化開始温度差ΔT(=Tx2-Tx1)は100℃以上ある。かかる合金組成物を最高到達熱処理温度が第1結晶化開始温度(Tx1)と第2結晶化開始温度(Tx2)の間になるような条件で熱処理すると、表1~14に示されるように良好な軟磁気特性(保磁力Hc、透磁率μ)を得ることができる。図4もまた、実施例5,6,20,44の合金組成物の結晶化開始温度差ΔTが100℃以上であることを示している。一方、図4のDSC曲線は、比較例7及び比較例19の合金組成物の結晶化開始温度差ΔTが狭いことを示している。狭い結晶化開始温度差ΔTのため、比較例7及び比較例19の熱処理後の合金組成物の軟磁気特性は悪い。図4において、比較例22の合金組成物は、一見すると、広い結晶化開始温度差ΔTを有している。しかしながら、この広い結晶化開始温度差ΔTは表7に示すように主相が結晶相であるためであり、そのため比較例22の熱処理後の合金組成物の軟磁気特性は悪い。
 表8及び9に掲げられた実施例1~10及び比較例9、10の合金組成物はFe量を78から87at%まで変化させた場合に相当する。表9に掲げられた実施例1~10の合金組成物は10,000以上の透磁率μ、1.65T以上の飽和磁束密度Bs、及び20A/m以下の保磁力Hcを有している。従って、79~86at%の範囲がFe量の条件範囲となる。Fe量が81at%以上であると、1.7T以上の飽和磁束密度Bsを得ることができる。従って、トランスやモータ等の高い飽和磁束密度Bsが必要である用途の場合、Fe量は81at%以上であることが好ましい。一方、比較例9のFe量は78at%である。比較例9の合金組成物は、表2に示されるように主相がアモルファス相である。しかしながら、表9に示されるように、熱処理後の結晶粒が粗大化してしまっており、透磁率μ及び保磁力Hcの双方が上述した実施例1~10の特性の範囲外にある。比較例10のFe量は87at%である。この比較例10の合金組成物では、連続薄帯を製造することができない。また、比較例10の合金組成物は、表2に示されるように、主相が結晶相となっている。
 表10に掲げられた実施例11~17及び比較例11、12の合金組成物はB量を4から14at%まで変化させた場合に相当する。表10に掲げられた実施例11~17の合金組成物は10,000以上の透磁率μ、1.65T以上の飽和磁束密度Bs、20A/m以下の保磁力Hcを有している。従って、5~13at%の範囲がB量の条件範囲となる。特に、B量が10at%以下であると、合金組成物が120℃以上の広い結晶化開始温度差ΔTを有し、且つ、合金組成物の溶け終り温度がFeアモルファスより低くなるので、好ましい。比較例11のB量は4at%であり、比較例12のB量は14at%である。比較例11及び比較例12の合金側生物は、表10に示されるように、熱処理後の結晶粒が粗大化してしまっており、透磁率μ及び保磁力Hcの双方が上述した実施例11~17の特性の範囲外にある。
 表11に掲げられた実施例18~25及び比較例13の合金組成物はSi量を0.1から10at%まで変化させた場合に相当する。表11に掲げられた実施例18~25の合金組成物は10,000以上の透磁率μ、1.65T以上の飽和磁束密度Bs、20A/m以下の保磁力Hcを有している。従って、0~8at%(0を含まず)の範囲がSi量の条件範囲となる。比較例13のSi量は10at%である。比較例13の合金組成物の飽和磁束密度Bsは低く、また、熱処理後の結晶粒が粗大化してしまっており、透磁率μ及び保磁力Hcの双方が上述した実施例18~25の特性の範囲外にある。
 表12に掲げられた実施例26~33及び比較例14~17にかかる合金組成物はP量が0から10at%まで変化させた場合に相当する。表12に掲げられた実施例26~33の合金組成物は10,000以上の透磁率μ、1.65T以上の飽和磁束密度Bs、20A/m以下の保磁力Hcを有している。従って、1~8at%の範囲がP量の条件範囲となる。特にP量においては5at%以下であると、合金組成物が120℃以上の広い結晶化開始温度差ΔTを有し、且つ、1.7Tを超える飽和磁束密度Bsを有するので、好ましい。比較例14~16のP量は0at%である。比較例14~16の合金組成物は、熱処理後の結晶粒が粗大化してしまっており、透磁率μ及び保磁力Hcの双方が上述した実施例26~33の特性の範囲外にある。比較例17のP量は10at%である。比較例17の合金組成物もまた、熱処理後の結晶粒が粗大化してしまっており、透磁率μ及び保磁力Hcの双方が上述した実施例26~33の特性の範囲外にある。
 表13に掲げられた実施例34~39及び比較例18にかかる合金組成物はC量を0から6at%まで変化させた場合に相当する。表13に掲げられた実施例34~39の合金組成物は10,000以上の透磁率μ、1.65T以上の飽和磁束密度Bs、20A/m以下の保磁力Hcを有している。従って、0~5at%の範囲がC量の条件範囲となる。ここで、C量が4at%以上であると、実施例38、39のように連続薄帯の厚みが30μmを越えることとなり、180度曲げ試験時に密着曲げが困難になる。従って、C量は3at%以下であることが好ましい。比較例18のC量は6at%である。比較例18の合金組成物は、熱処理後の結晶粒が粗大化してしまっており、透磁率μ及び保磁力Hcの双方が上述した実施例34~39の特性の範囲外にある。
 表14に掲げられた実施例40~46及び比較例19~22にかかる合金組成物はCu量を0から1.5at%まで変化させた場合に相当する。表14に示した実施例40~46の合金組成物は10,000以上の透磁率μ、1.65T以上の飽和磁束密度Bs、20A/m以下の保磁力Hcを有している。従って、0.4~1.4at%がCu量の条件範囲となる。比較例19のCu量は0at%であり、比較例20のCu量が0.3at%である。比較例19及び比較例20の合金組成物は、熱処理後の結晶粒が粗大化してしまっており、透磁率μ及び保磁力Hcの双方が上述した実施例40-46の特性の範囲外にある。比較例21及び比較例22のCu量は1.5at%である。比較例21及び比較例22の合金組成物もまた、熱処理後の結晶粒が粗大化してしまっており、透磁率μ及び保磁力Hcの双方が上述した実施例40-46の特性の範囲外にある。加えて、比較例22、23の合金組成物は、表7に示されるように、主相がアモルファス相ではなく結晶相である。
 実施例1、実施例2、実施例5、実施例6及び実施例44の合金組成物を熱処理して得られるFe基ナノ結晶合金について、飽和磁歪を歪みゲージ法を用いて測定した。その結果、実施例1、実施例2、実施例5、実施例6及び実施例44のFe基ナノ結晶合金の飽和磁歪は、夫々、8.2×10-6、5.3×10-5、3.8×10-6、3.1×10-6及び2.3×10-6であった。一方、Feアモルファスの飽和磁歪は27×10-6であり、特開2007-270271(特許文献1)のFe基ナノ結晶合金の飽和磁歪は14×10-6である。これらと比較しても、実施例1、実施例2、実施例5、実施例6及び実施例44のFe基ナノ結晶合金の飽和磁歪は、非常に小さく、そのため、実施例1、実施例2、実施例5、実施例6及び実施例44のFe基ナノ結晶合金は、高い透磁率、低い保磁力及び低い鉄損を有している。このように、低減された飽和磁歪は軟磁気特性を改善し、騒音や振動の抑制に寄与する。従って、飽和磁歪は10×10-6以下であることが望ましい。特に、20,000以上の透磁率を得るためには、飽和磁歪は5×10-6以下であることが好ましい。
 (実施例47~55及び比較例23~25)
 原料を下記の表15に掲げられた本発明の実施例47~55及び比較例23~25の合金組成となるように秤量し、高周波誘導溶解処理により溶解した。その後、溶解した合金組成物を大気中において単ロール液体急冷法にて処理し、厚さ約20及び約30μm、幅約15mm、長さ約10mの連続薄帯を作製した。これらの連続薄帯の合金組成物の相の同定はX線回折法にて行った。それらの靭性は、180°曲げ試験により評価した。厚さ約20μmの連続薄帯に関して、第1結晶化開始温度及び第2結晶化開始温度は、示差走査型熱量分析計(DSC)を用いて評価した。更に、実施例47~55及び比較例23~25に関し、厚さ約20μmの合金組成物を表16記載の熱処理条件の下で熱処理した。熱処理された合金組成物の夫々の飽和磁束密度Bsは振動試料型磁力計(VMS)を用いて800kA/mの磁場にて測定した。各合金組成物の保磁力Hcは直流BHトレーサーを用い2kA/mの磁場にて測定した。測定結果を表15及び表16に示す。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表15から理解されるように、実施例47~55の合金組成物からなる厚み約20μmの連続薄帯は、すべて急冷処理後の状態においてアモルファス相を主相とするものであり、且つ、180°曲げ試験の際に密着曲げ可能なものであった。
 表16に掲げられた実施例47~55及び比較例23,24の合金組成物は特定の比率z/xを0.06から1.2まで変化させた場合に相当する。表16に掲げられた実施例47~55の合金組成物は10,000以上の透磁率μ、1.65T以上の飽和磁束密度Bs、20A/m以下の保磁力Hcを有している。従って、0.08~0.8の範囲が特定の比率z/xの条件範囲となる。実施例52~54から理解されるように、特定の比率z/xが0.55より大きいと、厚み約30μmの薄帯は脆化し、180°曲げ試験により薄帯が一部破損(△)又は全破損(×)する。従って、特定の範囲z/xは0.55以下であることが好ましい。同様に、Cu量が1.1at%を超えると薄帯は脆化するため、Cu量は1.1at%以下であることが好ましい。
 表16に掲げられた実施例47~55及び比較例23の合金組成物はSi量を0から4at%まで変化させた場合に相当する。表16に掲げられた実施例47~55の合金組成物は10,000以上の透磁率μ、1.65T以上の飽和磁束密度Bs、20A/m以下の保磁力Hcを有している。従って、前述の通り、0at%より大きい範囲がSi量の条件範囲であることが理解される。実施例49~53から理解されるように、Si量が2at%より少なくなると結晶化すると共に脆化し、肉厚の連続薄帯を形成することが困難になる。従って、靭性を考慮すると、Si量は2at%以上であることが好ましい。
 表16に掲げられた実施例47~55及び比較例23~25の合金組成物はP量を0から4at%まで変化させた場合に相当する。表16に掲げられた実施例47~55の合金組成物は10,000以上の透磁率μ、1.65T以上の飽和磁束密度Bs、20A/m以下の保磁力Hcを有している。従って、前述の通り、1at%より大きい範囲がP量の条件範囲であることが理解される。実施例52~55から理解されるように、P量が2at%より少なくなると結晶化すると共に脆化し、肉厚の連続薄帯を形成することが困難になる。従って、靭性を考慮すると、P量は2at%以上であることが好ましい。
  (実施例56~64及び比較例26)
 原料を下記の表17に掲げられた本発明の実施例56~64及び比較例26の合金組成となるように秤量し、アーク溶解した。その後、溶解した合金組成物を大気中において単ロール液体急冷法にて処理し、種々の厚さを持つ幅約3mm、長さ約5~15mの連続薄帯を作製した。これらの連続薄帯の合金組成物の相の同定はX線回折法にて行った。それらの第1結晶化開始温度及び第2結晶化開始温度は、示差走査型熱量分析計(DSC)を用いて評価した。更に、表18記載の熱処理条件の下で、実施例56~64及び比較例26の合金組成物を熱処理した。熱処理された合金組成物の夫々の飽和磁束密度Bsは振動試料型磁力計(VMS)を用いて800kA/mの磁場にて測定した。各合金組成物の保磁力Hcは直流BHトレーサーを用い2kA/mの磁場にて測定した。各合金組成物の透磁率μはインピーダンスアナライザーを用い0.4A/m且つ1kHzの条件下で測定した。測定結果を表17及び表18に示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表17から理解されるように、実施例56~64の合金組成物はすべて急冷処理後の状態においてアモルファス相を主相とするものであった。
 表18に掲げられた実施例56~64及び比較例26の合金組成物はFe量の一部をNb元素、Cr元素、Co元素で置換した場合に相当する。表18に掲げられた実施例56~64の合金組成物は10,000以上の透磁率μ、1.65T以上の飽和磁束密度Bs、20A/m以下の保磁力Hcを有している。従って、0~3at%の範囲がFe量の置換可能範囲となる。比較例26のFe置換量は4at%である。比較例26の合金側生物は、飽和磁束密度Bsが低く、上述した実施例56~64の特性の範囲外にある。
 (実施例65~69及び比較例27~29)
 原料を下記の表19に掲げられた本発明の実施例65~69及び比較例27~29の合金組成となるように秤量し、高周波誘導溶解処理により溶解した。その後、溶解した合金組成物を大気中において単ロール液体急冷法にて処理し、厚さ25μm、幅15又は30mm、長さ約10~30mの連続薄帯を作製した。これらの連続薄帯の合金組成物の相の同定はX線回折法にて行った。それらの靭性は、180°曲げ試験により評価した。更に、実施例65及び66の合金組成物を475℃×10分の熱処理条件にて熱処理した。同様に、実施例67~69及び比較例27の合金組成物を450℃×10分の熱処理条件にて熱処理し、比較例28の合金組成物を425℃×30分の熱処理条件にて熱処理した。熱処理された合金組成物の夫々の飽和磁束密度Bsは振動試料型磁力計(VMS)を用いて800kA/mの磁場にて測定した。各合金組成物の保磁力Hcは直流BHトレーサーを用い2kA/mの磁場にて測定した。各合金組成物の鉄損は交流BHアナライザーを用いて50Hz-1.7Tの励磁条件で測定した。測定結果を表19に示す。
Figure JPOXMLDOC01-appb-T000019
 表19から理解されるように、実施例65~69の合金組成物は、すべて急冷処理後の状態においてアモルファス相を主相とするものであり、且つ、180°曲げ試験の際に密着曲げ可能なものであった。
 更に、実施例65~69の合金組成物を熱処理して得られる連続薄帯形状のFe基ナノ結晶合金は、1.65T以上の飽和磁束密度Bs及び20A/m以下の保磁力Hcを有している。また、実施例65~69のFe基ナノ結晶合金は、1.7Tの励磁条件でも励磁可能であり、且つ、電磁鋼板よりも低い鉄損を有している。従って、これを用いると、エネルギー損失の低い磁性部品を提供することができる。
 (実施例70~74及び比較例30、31)
 Fe,Si,B,P,Cuの原料を合金組成Fe84.810SiCu1.2となるように秤量し、高周波誘導溶解処理により溶解した。その後、溶解した合金組成物を大気中において単ロール液体急冷法にて処理し、厚さ約25μm、幅15mm、長さ約30mの連続薄帯を複数作製した。X線回折法による相同定の結果、これらの連続薄帯の合金組成物は主相としてアモルファス相を有していた。また、これらの連続薄帯は、180°曲げ試験時に破断することなく密着曲げ可能であった。その後、保持部を450℃×10分とし且つ昇温速度を60~1200℃/分の熱処理条件にて、これらの合金組成物を熱処理して、実施例70~74及び比較例30の試料合金を得た。また、方向性電磁鋼板を比較例31として用意した。熱処理された合金組成物の夫々の飽和磁束密度Bsは振動試料型磁力計(VMS)を用いて800kA/mの磁場にて測定した。各合金組成物の保磁力Hcは直流BHトレーサーを用い2kA/mの磁場にて測定した。各合金組成物の鉄損は交流BHアナライザーを用いて50Hz-1.7Tの励磁条件で測定した。測定結果を表20に示す。
Figure JPOXMLDOC01-appb-T000020
 表20から理解されるように、上述した合金組成物を100℃/分以上の昇温速度で熱処理して得られるFe基ナノ結晶合金は、1.65T以上の飽和磁束密度Bs及び20A/m以下の保磁力Hcを有している。また、それらのFe基ナノ結晶合金は、1.7Tの励磁条件でも励磁可能であり、且つ、電磁鋼板よりも低い鉄損を有している。
 (実施例75~78及び比較例32、33)
 Fe,Si,B,P,Cuの原料を合金組成Fe83.3SiCu0.7となるように秤量し、高周波誘導溶解処理により溶解して母合金を作製した。この母合金を単ロール液体急冷法にて処理し、厚さ約25μm、幅15mm、長さ約30mの連続薄帯を作製した。この連続薄帯をAr雰囲気中で300℃×10分の条件にて熱処理した。熱処理後の連続薄帯を粉砕して、実施例75の粉末を得た。実施例75の粉末は150μm以下の粒径を有していた。これら粉末とエポキシ樹脂をエポキシ樹脂が4.5重量%となるように混合した。混合物をメッシュサイズ500μmのふるいにかけ、粒径が500μm以下の造粒粉末を得た。次いで、外径13mm内径8mmの金型を用いて面圧7,000kgf/cmの条件下で造粒粉末を成形し、高さ5mmのトロイダル形状の成形体を作製した。このようにして作製された成形体を窒素雰囲気中で150℃×2時間の条件にて硬化処理した。更に、成形体及び粉末をAr雰囲気中で450℃×10分の条件にて熱処理した。
 Fe,Si,B,P,Cuの原料を合金組成Fe83.3SiCu0.7となるように秤量し、高周波誘導溶解処理により溶解して母合金を作製した。この母合金を水アトマイズ法にて処理し、実施例76の粉末を得た。実施例76の粉末は20μmの平均粒径を有していた。更に、実施例76の粉末を風力分級して、実施例77及び実施例78の粉末を得た。実施例77の粉末は10μmの平均粒径を有しており、実施例78の粉末は3μmの平均粒径を有していた。各実施例76,77又は78の粉末とエポキシ樹脂をエポキシ樹脂が4.5重量%となるように混合した。混合物をメッシュサイズ500μmのふるいにかけ、粒径が500μm以下の造粒粉末を得た。次いで、外径13mm内径8mmの金型を用いて面圧7,000kgf/cmの条件下で造粒粉末を成形し、高さ5mmのトロイダル形状の成形体を作製した。このようにして作製された成形体を窒素雰囲気中で150℃×2時間の条件にて硬化処理した。更に、成形体及び粉末をAr雰囲気中で450℃×10分の条件にて熱処理した。
 Fe基アモルファス合金及びFe-Si-Cr合金を水アトマイズ法にて処理し、比較例32及び33の粉末を得た。比較例32及び33の粉末は20μmの平均粒径を有していた。これらの粉末を実施例75~78と同様に処理した。
 示差走査型熱量分析計(DSC)を用いて、得られた粉末の第一結晶化ピーク時の発熱量を測定し、アモルファス単相の連続薄帯のものと比較することで、得られた粉末のアモルファス化率(含まれるアモルファス相の割合)を算出した。熱処理された粉末の飽和磁束密度Bs及び保磁力Hcは振動試料型磁力計(VMS)を用いて800kA/mの磁場にて測定した。熱処理された成形体の鉄損は交流BHアナライザーを用いて300kHz-50mTの励磁条件で測定した。測定結果を表21に示す。
Figure JPOXMLDOC01-appb-T000021
 表21から理解されるように、実施例75~78の合金組成物は、熱処理後において、25nm以下の平均粒径のナノ結晶を有している。また、実施例75~78の合金組成物は、比較例32(Fe基アモルファス)や比較例33(Fe-Si-Cr)と比較して、高い飽和磁束密度Bsと低い保磁力Hcを有している。実施例75~78の粉末を用いて作製された圧粉磁芯も、比較例33(Fe-Si-Cr)と比較して、高い飽和磁束密度Bsと低い保磁力Hcを有している。従って、これを用いると、小型且つ高効率の磁性部品を提供することができる。
 熱処理後のナノ結晶が平均粒径25nm以下である限り、熱処理前の合金組成物が部分的に結晶化していても良い。但し、実施例76~78から理解されるように、低保持力及び低鉄損を得るためには、アモルファス化率が高い方が好ましい。

Claims (15)

  1.  組成式FeSiCuの合金組成物であって、79≦a≦86at%、5≦b≦13at%、0<c≦8at%、1≦x≦8at%、0≦y≦5at%、0.4≦z≦1.4at%、及び0.08≦z/x≦0.8である合金組成物。
  2.  組成式FeSiCuの合金組成物であって、81≦a≦86at%、6≦b≦10at%、2≦c≦8at%、2≦x≦5at%、0≦y≦4at%、0.4≦z≦1.4at%、及び0.08≦z/x≦0.8である合金組成物。
  3.  請求項1又は請求項2記載の合金組成物であって、0≦y≦3at%、0.4≦z≦1.1at%及び0.08≦z/x≦0.55である合金組成物。
  4.  請求項1乃至請求項3のいずれかに記載の合金組成物であって、Feの3at%以下を、Ti、Zr,Hf,Nb,Ta,Mo,W,Cr,Co,Ni,Al,Mn,Ag,Zn,Sn,As,Sb,Bi,Y,N,O及び希土類元素のうち、1種類以上の元素で置換してなる合金組成物。
  5.  請求項1乃至請求項4のいずれかに記載の合金組成物であって、連続薄帯形状を有する合金組成物。
  6.  請求項5記載の合金組成物であって、180度曲げ試験時において密着曲げ可能である合金組成物。
  7.  請求項1乃至請求項4のいずれかに記載の合金組成物であって、粉末形状を有する合金組成物。
  8.  請求項1乃至請求項7のいずれかに記載の合金組成物であって、差(ΔT=Tx2-Tx1)が100℃~200℃である第1結晶化開始温度(Tx1)と第2結晶化開始温度(Tx2)を有する合金組成物。
  9.  請求項1乃至請求項8のいずれかに記載の合金組成物であって、非晶質と該非晶質中に存在する初期微結晶とからなるナノヘテロ構造であって前記初期微結晶の平均粒径が0.3~10nmであるナノヘテロ構造を有する合金組成物。
  10.  請求項1乃至請求項9のいずれかに記載の合金組成物を用いて構成された磁性部品。
  11.  請求項1乃至請求項9のいずれかに記載の合金組成物を用意するステップと、昇温速度が毎分100℃以上であり且つ処理温度が当該合金組成物の結晶化開始温度以上であるという条件の下で前記合金組成物を熱処理するステップを含む、Fe基ナノ結晶合金の製造方法。
  12.  請求項11記載の方法により製造された10,000以上の透磁率と1.65T以上の飽和磁束密度を有するFe基ナノ結晶合金。
  13.  請求項12記載のFe基ナノ結晶合金であって、平均粒径が10~25nmであるFe基ナノ結晶合金。
  14.  請求項12又は請求項13記載のFe基ナノ結晶合金であって、10×10-6以下の飽和磁歪を有するFe基ナノ結晶合金。
  15.  請求項12乃至請求項14のいずれかに記載のFe基ナノ結晶合金を用いて構成された磁性部品。
PCT/JP2009/003951 2008-08-22 2009-08-19 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品 WO2010021130A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
BR122017017768-0A BR122017017768B1 (pt) 2008-08-22 2009-08-19 composição de liga e método para formar uma liga nanocristalina baseada em ferro
KR20157007809A KR20150038751A (ko) 2008-08-22 2009-08-19 합금 조성물, Fe계 나노 결정 합금 및 그 제조 방법, 및 자성 부품
KR1020147034295A KR101516936B1 (ko) 2008-08-22 2009-08-19 합금 조성물, Fe계 나노 결정 합금 및 그 제조 방법, 및 자성 부품
KR1020107019224A KR20110044832A (ko) 2008-08-22 2009-08-19 합금 조성물, Fe계 나노 결정 합금 및 그 제조 방법, 및 자성 부품
KR1020177020539A KR102007522B1 (ko) 2008-08-22 2009-08-19 합금 조성물, Fe계 나노 결정 합금 및 그 제조 방법, 및 자성 부품
EP09808066.6A EP2243854B1 (en) 2008-08-22 2009-08-19 ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND MANUFACTURING METHOD THEREFOR, AND MAGNETIC COMPONENT
BRPI0906063-4 BRPI0906063B1 (pt) 2008-08-22 2009-08-19 composição de liga e método para formar uma liga nanocristalina baseada em ferro
KR1020187011499A KR102023313B1 (ko) 2008-08-22 2009-08-19 합금 조성물, Fe계 나노 결정 합금 및 그 제조 방법, 및 자성 부품
RU2010134877/02A RU2509821C2 (ru) 2008-08-22 2009-08-19 СОСТАВ СПЛАВА, НАНОКРИСТАЛЛИЧЕСКИЙ СПЛАВ НА ОСНОВЕ Fe И СПОСОБ ЕГО ФОРМОВАНИЯ И МАГНИТНЫЙ УЗЕЛ
CN200980100394.5A CN102741437B (zh) 2008-08-22 2009-08-19 合金组合物、Fe基纳米晶合金及其制造方法和磁性部件
KR1020147017228A KR101534208B1 (ko) 2008-08-22 2009-08-19 합금 조성물, Fe계 나노 결정 합금 및 그 제조 방법, 및 자성 부품
KR1020147017226A KR101534205B1 (ko) 2008-08-22 2009-08-19 합금 조성물, Fe계 나노 결정 합금 및 그 제조 방법, 및 자성 부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-214237 2008-08-22
JP2008214237 2008-08-22

Publications (1)

Publication Number Publication Date
WO2010021130A1 true WO2010021130A1 (ja) 2010-02-25

Family

ID=41695222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003951 WO2010021130A1 (ja) 2008-08-22 2009-08-19 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品

Country Status (9)

Country Link
US (2) US8491731B2 (ja)
EP (1) EP2243854B1 (ja)
JP (3) JP4514828B2 (ja)
KR (7) KR102023313B1 (ja)
CN (2) CN102741437B (ja)
BR (2) BRPI0906063B1 (ja)
RU (1) RU2509821C2 (ja)
TW (2) TWI535861B (ja)
WO (1) WO2010021130A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195936A (ja) * 2010-03-23 2011-10-06 Nec Tokin Corp 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP2012012699A (ja) * 2010-03-23 2012-01-19 Nec Tokin Corp 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP2012136770A (ja) * 2010-12-10 2012-07-19 Nec Tokin Corp Fe基ナノ結晶合金粉末及びその製造方法、並びに、圧粉磁心及びその製造方法
WO2013051729A1 (ja) * 2011-10-06 2013-04-11 日立金属株式会社 Fe基初期超微結晶合金薄帯及び磁性部品
JP2014005492A (ja) * 2012-06-22 2014-01-16 Daido Steel Co Ltd Fe基合金組成物
WO2016121951A1 (ja) * 2015-01-30 2016-08-04 株式会社村田製作所 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ
JPWO2017022594A1 (ja) * 2015-07-31 2018-06-28 株式会社村田製作所 軟磁性材料およびその製造方法
WO2021132272A1 (ja) 2019-12-25 2021-07-01 株式会社東北マグネットインスティテュート 合金
WO2021132254A1 (ja) 2019-12-25 2021-07-01 株式会社東北マグネットインスティテュート ナノ結晶軟磁性合金
WO2022209565A1 (ja) 2021-03-29 2022-10-06 Jx金属株式会社 積層体及びその製造方法

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277579B2 (en) 2006-12-04 2012-10-02 Tohoku Techno Arch Co., Ltd. Amorphous alloy composition
CN103540872B (zh) * 2007-03-20 2016-05-25 Nec东金株式会社 软磁性合金及使用该软磁性合金的磁气部件以及它们的制造方法
KR102023313B1 (ko) * 2008-08-22 2019-09-19 가부시키가이샤 토호쿠 마그네토 인스티튜트 합금 조성물, Fe계 나노 결정 합금 및 그 제조 방법, 및 자성 부품
JP5697131B2 (ja) * 2010-06-11 2015-04-08 Necトーキン株式会社 Fe基ナノ結晶合金の製造方法、Fe基ナノ結晶合金、磁性部品、Fe基ナノ結晶合金の製造装置
JP5912239B2 (ja) * 2010-10-12 2016-04-27 Necトーキン株式会社 Fe基合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP2013046032A (ja) * 2011-08-26 2013-03-04 Nec Tokin Corp 積層磁心
JP5912349B2 (ja) * 2011-09-02 2016-04-27 Necトーキン株式会社 軟磁性合金粉末、ナノ結晶軟磁性合金粉末、その製造方法、および圧粉磁心
EP2733230B1 (en) * 2011-10-03 2017-12-20 Hitachi Metals, Ltd. Thin strip of alloy containing initial ultrafine crystals and method for cutting same, and thin strip of nanocrystalline soft-magnetic alloy and magnetic part employing same
CN103060722A (zh) * 2011-10-21 2013-04-24 江苏奥玛德新材料科技有限公司 一种铁基非晶或纳米晶软磁合金及其制备方法
JP6195693B2 (ja) * 2011-11-02 2017-09-13 株式会社トーキン 軟磁性合金、軟磁性合金磁心およびその製造方法
JP6046357B2 (ja) * 2012-03-06 2016-12-14 Necトーキン株式会社 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP6088192B2 (ja) * 2012-10-05 2017-03-01 Necトーキン株式会社 圧粉磁芯の製造方法
JP6101034B2 (ja) * 2012-10-05 2017-03-22 Necトーキン株式会社 圧粉磁芯の製造方法
CN102899591B (zh) * 2012-10-24 2014-05-07 华南理工大学 一种高含氧量的铁基非晶复合粉末及其制备方法
JP6227336B2 (ja) * 2013-09-10 2017-11-08 株式会社トーキン 軟磁性コアの製造方法
JP6313956B2 (ja) * 2013-11-11 2018-04-18 株式会社トーキン ナノ結晶合金薄帯およびそれを用いた磁心
KR101555924B1 (ko) * 2013-11-18 2015-09-30 코닝정밀소재 주식회사 산화 촉매, 그 제조방법 및 이를 포함하는 배기가스 정화용 필터
JP6347606B2 (ja) * 2013-12-27 2018-06-27 井上 明久 高延性・高加工性を持つ高磁束密度軟磁性鉄基非晶質合金
JP5932861B2 (ja) * 2014-02-25 2016-06-08 国立大学法人東北大学 合金組成物、Fe基ナノ結晶合金薄帯、Fe基ナノ結晶合金粉末及び磁性部品
CN106170837B (zh) * 2014-06-10 2018-04-10 日立金属株式会社 Fe基纳米晶合金磁芯和Fe基纳米晶合金磁芯的制造方法
CN104073749B (zh) * 2014-06-18 2017-03-15 安泰科技股份有限公司 一种元素分布均匀的铁基非晶软磁合金及其制备方法
JP5932907B2 (ja) * 2014-07-18 2016-06-08 国立大学法人東北大学 合金粉末及び磁性部品
KR101646986B1 (ko) 2014-11-21 2016-08-09 공주대학교 산학협력단 비정질 합금 분말 제조 장치 및 그 방법
US11230754B2 (en) 2015-01-07 2022-01-25 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
US11264156B2 (en) * 2015-01-07 2022-03-01 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy
JPWO2016121950A1 (ja) * 2015-01-30 2017-12-21 株式会社村田製作所 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ
WO2016171232A1 (ja) * 2015-04-23 2016-10-27 国立大学法人東北大学 L10型FeNi規則相を含むFeNi合金組成物、L10型FeNi規則相を含むFeNi合金組成物の製造方法、アモルファスを主相とするFeNi合金組成物、アモルファス材の母合金、アモルファス材、磁性材料および磁性材料の製造方法
WO2016204008A1 (ja) * 2015-06-19 2016-12-22 株式会社村田製作所 磁性体粉末とその製造方法、磁心コアとその製造方法、及びコイル部品
JP6444504B2 (ja) * 2015-07-03 2018-12-26 株式会社東北マグネットインスティテュート 積層磁芯及びその製造方法
JP6372440B2 (ja) * 2015-07-31 2018-08-15 Jfeスチール株式会社 水アトマイズ金属粉末の製造方法
JP6372441B2 (ja) * 2015-07-31 2018-08-15 Jfeスチール株式会社 水アトマイズ金属粉末の製造方法
KR102486116B1 (ko) * 2015-10-20 2023-01-09 엘지이노텍 주식회사 연자성 합금
JP6707845B2 (ja) * 2015-11-25 2020-06-10 セイコーエプソン株式会社 軟磁性粉末、圧粉磁心、磁性素子および電子機器
CN106922111B (zh) * 2015-12-24 2023-08-18 无锡蓝沛新材料科技股份有限公司 无线充电用电磁屏蔽片的制备方法及电磁屏蔽片
CN105741998B (zh) * 2015-12-31 2018-01-05 安泰科技股份有限公司 一种韧性增强的铁基块体非晶软磁合金及其制备方法
EP3401416B1 (en) * 2016-01-06 2021-08-11 Amogreentech Co., Ltd. Fe-based soft magnetic alloy, manufacturing method therefor, and magnetic parts using fe-based soft magnetic alloy
JP6756179B2 (ja) * 2016-07-26 2020-09-16 大同特殊鋼株式会社 Fe基合金組成物
JP2018070935A (ja) * 2016-10-27 2018-05-10 株式会社東北マグネットインスティテュート ナノ結晶合金粉末及び磁性部品
KR102594635B1 (ko) 2016-11-01 2023-10-26 삼성전기주식회사 코일 부품용 자성 분말 및 이를 포함하는 코일 부품
TWI585218B (zh) * 2016-12-14 2017-06-01 中國鋼鐵股份有限公司 鐵基非晶質薄帶之非晶性的評估方法
US20180171444A1 (en) * 2016-12-15 2018-06-21 Samsung Electro-Mechanics Co., Ltd. Fe-based nanocrystalline alloy and electronic component using the same
CN106756643B (zh) * 2016-12-28 2019-05-10 广东工业大学 一种铁基非晶纳米晶软磁合金及其制备方法
CN106756644B (zh) * 2016-12-28 2019-03-12 广东工业大学 一种基于硅元素的铁基非晶纳米晶软磁合金及其制备方法
CN110225801B (zh) * 2017-01-27 2022-01-18 株式会社东金 软磁性粉末、Fe基纳米晶合金粉末、磁性部件及压粉磁芯
JP6245391B1 (ja) * 2017-01-30 2017-12-13 Tdk株式会社 軟磁性合金および磁性部品
JP6226093B1 (ja) * 2017-01-30 2017-11-08 Tdk株式会社 軟磁性合金および磁性部品
JP6309149B1 (ja) 2017-02-16 2018-04-11 株式会社トーキン 軟磁性粉末、圧粉磁芯、磁性部品及び圧粉磁芯の製造方法
JP6744238B2 (ja) * 2017-02-21 2020-08-19 株式会社トーキン 軟磁性粉末、磁性部品及び圧粉磁芯
CN106834930B (zh) * 2017-03-08 2018-10-19 中国科学院宁波材料技术与工程研究所 具有高磁感应强度高杂质兼容性的铁基纳米晶合金及利用工业原料制备该合金的方法
JP6337994B1 (ja) * 2017-06-26 2018-06-06 Tdk株式会社 軟磁性合金および磁性部品
WO2019031462A1 (ja) * 2017-08-07 2019-02-14 日立金属株式会社 Fe基ナノ結晶合金粉末及びその製造方法、Fe基アモルファス合金粉末、並びに、磁心
US20190055635A1 (en) * 2017-08-18 2019-02-21 Samsung Electro-Mechanics Co., Ltd. Fe-based nanocrystalline alloy and electronic component using the same
KR102465581B1 (ko) * 2017-08-18 2022-11-11 삼성전기주식회사 Fe계 나노결정립 합금 및 이를 이용한 전자부품
CN107686946A (zh) * 2017-08-23 2018-02-13 东莞市联洲知识产权运营管理有限公司 一种非晶纳米晶合金的制备及其应用
KR20190038014A (ko) * 2017-09-29 2019-04-08 삼성전기주식회사 Fe계 나노결정립 합금 및 이를 이용한 전자부품
JP6451877B1 (ja) * 2018-01-12 2019-01-16 Tdk株式会社 軟磁性合金および磁性部品
US11972884B2 (en) * 2018-01-12 2024-04-30 Tdk Corporation Soft magnetic alloy and magnetic device
KR102281002B1 (ko) * 2018-01-12 2021-07-23 티디케이 가부시기가이샤 연자성 합금 및 자성 부품
CN108428528B (zh) * 2018-03-16 2019-11-08 浙江恒基永昕新材料股份有限公司 一种超低矫顽力软磁铁芯及其制备方法
CN111886088B (zh) 2018-03-23 2023-01-17 株式会社村田制作所 铁合金粒子和铁合金粒子的制造方法
JP6981535B2 (ja) * 2018-03-23 2021-12-15 株式会社村田製作所 鉄合金粒子、及び、鉄合金粒子の製造方法
US11484942B2 (en) * 2018-04-27 2022-11-01 Hitachi Metals, Ltd. Alloy powder, fe-based nanocrystalline alloy powder and magnetic core
CA3106959C (en) * 2018-07-31 2023-01-24 Jfe Steel Corporation Soft magnetic powder, fe-based nanocrystalline alloy powder, magnetic component, and dust core
RU2703319C1 (ru) * 2018-12-21 2019-10-16 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Магнитомягкий нанокристаллический материал на основе железа
CN109778083B (zh) * 2019-02-02 2021-09-10 清华大学 高饱和磁感应强度铁基非晶合金及其制备方法
JP6741108B1 (ja) * 2019-03-26 2020-08-19 Tdk株式会社 軟磁性合金および磁性部品
CN110093565B (zh) * 2019-05-08 2022-02-15 东南大学 晶化窗口宽、软磁性能可控的铁基纳米晶合金及其制备方法
TWI817019B (zh) 2019-06-28 2023-10-01 日商博邁立鋮股份有限公司 鐵基非晶質合金薄帶及其製造方法、鐵芯和變壓器
JP7421742B2 (ja) * 2019-07-04 2024-01-25 大同特殊鋼株式会社 ナノ結晶軟磁性材料
CN110379581A (zh) * 2019-07-22 2019-10-25 广东工业大学 高饱和磁感应强度和高塑韧性铁基软磁合金及其制备方法
DE102019123500A1 (de) * 2019-09-03 2021-03-04 Vacuumschmelze Gmbh & Co. Kg Metallband, Verfahren zum Herstellen eines amorphen Metallbands und Verfahren zum Herstellen eines nanokristallinen Metallbands
CN111850431B (zh) * 2019-09-23 2022-02-22 宁波中科毕普拉斯新材料科技有限公司 一种含亚纳米尺度有序团簇的铁基非晶合金、制备方法及其纳米晶合金衍生物
CN110923586A (zh) * 2019-11-22 2020-03-27 河北锴盈新材料有限公司 一种微合金化超高导磁铁基纳米晶合金带材及其制备方法
EP4095270A4 (en) * 2020-01-23 2024-03-06 Murata Manufacturing Co., Ltd. ALLOY AND MOLDED BODY
CN111636039A (zh) * 2020-05-11 2020-09-08 北京科技大学 一种高饱和磁化强度Fe-B-P-C-Cu-M系非晶纳米晶软磁合金及制备方法
CN111910135A (zh) * 2020-08-13 2020-11-10 合肥工业大学 一种铁基软磁合金Fe-Co-Si-B-P-Ti及其制备方法
CN112048658B (zh) * 2020-08-17 2021-08-24 东南大学 一种高效率降解染料的铁基非晶合金的制备方法
WO2022050425A1 (ja) 2020-09-07 2022-03-10 デンカ株式会社 電磁波シールド性能を有する熱可塑性樹脂組成物ならびに成形部品
CN113046657B (zh) * 2021-03-01 2022-02-15 青岛云路先进材料技术股份有限公司 一种铁基非晶纳米晶合金及其制备方法
CN113337692B (zh) * 2021-05-27 2022-05-31 大连理工大学 一种提高Fe基纳米晶软磁合金高频磁导率的方法
JP2023008436A (ja) 2021-07-06 2023-01-19 株式会社トーキン 合金粉末の製造方法
KR20230007816A (ko) * 2021-07-06 2023-01-13 삼성전기주식회사 Fe계 합금 및 이를 포함하는 전자 부품
CA3223549A1 (en) 2021-07-26 2023-02-02 Jfe Steel Corporation Iron-based soft magnetic powder, magnetic component using same and dust core
JP2023045961A (ja) 2021-09-22 2023-04-03 株式会社トーキン 合金粉末

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270271A (ja) 2006-03-31 2007-10-18 Hitachi Metals Ltd 軟磁性合金、その製造方法ならびに磁性部品
WO2008068899A1 (ja) * 2006-12-04 2008-06-12 Tohoku Techno Arch Co., Ltd. アモルファス合金組成物
WO2008129803A1 (ja) * 2007-03-20 2008-10-30 Nec Tokin Corporation 軟磁性合金及びそれを用いた磁気部品並びにそれらの製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2009254C1 (ru) * 1952-04-01 1994-03-15 Научно-производственное объединение "Гамма" Аморфный сплав на основе железа с улучшенным состоянием поверхности
JPH0711396A (ja) 1986-12-15 1995-01-13 Hitachi Metals Ltd Fe基軟磁性合金
US4881989A (en) * 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
JP2573606B2 (ja) 1987-06-02 1997-01-22 日立金属 株式会社 磁心およびその製造方法
JP2812574B2 (ja) 1990-09-07 1998-10-22 アルプス電気株式会社 低周波トランス
UA19217A (uk) * 1991-02-20 1997-12-25 Інститут Металофізики Ан Урср Аморфhий сплав hа осhові заліза
JPH05263197A (ja) * 1992-03-17 1993-10-12 Alps Electric Co Ltd 高飽和磁束密度Fe系軟磁性合金
JP3710226B2 (ja) * 1996-03-25 2005-10-26 明久 井上 Fe基軟磁性金属ガラス合金よりなる急冷リボン
JPH1171647A (ja) 1997-08-29 1999-03-16 Alps Electric Co Ltd Fe基軟磁性金属ガラス合金
EP1045402B1 (en) * 1999-04-15 2011-08-31 Hitachi Metals, Ltd. Soft magnetic alloy strip, manufacturing method and use thereof
JP2006040906A (ja) 2001-03-21 2006-02-09 Teruhiro Makino 高透磁率かつ高飽和磁束密度の軟磁性成形体の製造方法
JP4217038B2 (ja) 2002-04-12 2009-01-28 アルプス電気株式会社 軟磁性合金
JP2004349585A (ja) 2003-05-23 2004-12-09 Hitachi Metals Ltd 圧粉磁心およびナノ結晶磁性粉末の製造方法
JP4392649B2 (ja) 2003-08-20 2010-01-06 日立金属株式会社 アモルファス合金部材及びその製造方法並びにそれを用いた部品
JP4358016B2 (ja) 2004-03-31 2009-11-04 明久 井上 鉄基金属ガラス合金
CN100545938C (zh) * 2005-08-26 2009-09-30 电子科技大学 一种基于纳米晶软磁薄膜的磁三明治材料及其制备方法
JP5288226B2 (ja) 2005-09-16 2013-09-11 日立金属株式会社 磁性合金、アモルファス合金薄帯、および磁性部品
EP2149616B1 (en) * 2007-04-25 2017-01-11 Hitachi Metals, Ltd. Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
KR102023313B1 (ko) * 2008-08-22 2019-09-19 가부시키가이샤 토호쿠 마그네토 인스티튜트 합금 조성물, Fe계 나노 결정 합금 및 그 제조 방법, 및 자성 부품

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270271A (ja) 2006-03-31 2007-10-18 Hitachi Metals Ltd 軟磁性合金、その製造方法ならびに磁性部品
WO2008068899A1 (ja) * 2006-12-04 2008-06-12 Tohoku Techno Arch Co., Ltd. アモルファス合金組成物
WO2008129803A1 (ja) * 2007-03-20 2008-10-30 Nec Tokin Corporation 軟磁性合金及びそれを用いた磁気部品並びにそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2243854A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012699A (ja) * 2010-03-23 2012-01-19 Nec Tokin Corp 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP2011195936A (ja) * 2010-03-23 2011-10-06 Nec Tokin Corp 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP2012136770A (ja) * 2010-12-10 2012-07-19 Nec Tokin Corp Fe基ナノ結晶合金粉末及びその製造方法、並びに、圧粉磁心及びその製造方法
WO2013051729A1 (ja) * 2011-10-06 2013-04-11 日立金属株式会社 Fe基初期超微結晶合金薄帯及び磁性部品
JPWO2013051729A1 (ja) * 2011-10-06 2015-03-30 日立金属株式会社 Fe基初期超微結晶合金薄帯及び磁性部品
JP2014005492A (ja) * 2012-06-22 2014-01-16 Daido Steel Co Ltd Fe基合金組成物
US10758982B2 (en) 2015-01-30 2020-09-01 Murata Manufacturing Co., Ltd. Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor
WO2016121951A1 (ja) * 2015-01-30 2016-08-04 株式会社村田製作所 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ
JPWO2016121951A1 (ja) * 2015-01-30 2017-12-07 株式会社村田製作所 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ
JPWO2017022594A1 (ja) * 2015-07-31 2018-06-28 株式会社村田製作所 軟磁性材料およびその製造方法
JP2019060020A (ja) * 2015-07-31 2019-04-18 株式会社村田製作所 軟磁性材料およびその製造方法
US11851738B2 (en) 2015-07-31 2023-12-26 Murata Manufacturing Co., Ltd. Soft magnetic material and method for manufacturing the same
WO2021132272A1 (ja) 2019-12-25 2021-07-01 株式会社東北マグネットインスティテュート 合金
WO2021132254A1 (ja) 2019-12-25 2021-07-01 株式会社東北マグネットインスティテュート ナノ結晶軟磁性合金
KR20220093218A (ko) 2019-12-25 2022-07-05 가부시키가이샤 토호쿠 마그네토 인스티튜트 나노 결정 연자성 합금
KR20220115577A (ko) 2019-12-25 2022-08-17 가부시키가이샤 무라타 세이사쿠쇼 합금
WO2022209565A1 (ja) 2021-03-29 2022-10-06 Jx金属株式会社 積層体及びその製造方法
JP2022153032A (ja) * 2021-03-29 2022-10-12 Jx金属株式会社 積層体及びその製造方法

Also Published As

Publication number Publication date
RU2010134877A (ru) 2012-09-27
TW201026861A (en) 2010-07-16
JP2010070852A (ja) 2010-04-02
JP2011026706A (ja) 2011-02-10
KR20180043859A (ko) 2018-04-30
RU2509821C2 (ru) 2014-03-20
JP4584350B2 (ja) 2010-11-17
JP4514828B2 (ja) 2010-07-28
CN102741437A (zh) 2012-10-17
TWI535861B (zh) 2016-06-01
KR20170087975A (ko) 2017-07-31
CN104532170A (zh) 2015-04-22
KR20150038751A (ko) 2015-04-08
BR122017017768B1 (pt) 2021-02-17
CN102741437B (zh) 2014-12-10
KR101534205B1 (ko) 2015-07-06
KR20110044832A (ko) 2011-05-02
US8491731B2 (en) 2013-07-23
JP4629807B1 (ja) 2011-02-09
BRPI0906063A2 (pt) 2015-06-30
KR102007522B1 (ko) 2019-08-05
EP2243854B1 (en) 2016-10-12
KR20150001858A (ko) 2015-01-06
EP2243854A4 (en) 2014-07-09
US20100043927A1 (en) 2010-02-25
KR102023313B1 (ko) 2019-09-19
BRPI0906063B1 (pt) 2019-12-10
TWI496898B (zh) 2015-08-21
US20130278366A1 (en) 2013-10-24
EP2243854A1 (en) 2010-10-27
TW201536932A (zh) 2015-10-01
JP2010150665A (ja) 2010-07-08
KR101534208B1 (ko) 2015-07-06
CN104532170B (zh) 2018-12-28
KR20140090694A (ko) 2014-07-17
KR20140099913A (ko) 2014-08-13
KR101516936B1 (ko) 2015-05-04

Similar Documents

Publication Publication Date Title
JP4584350B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP6181346B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP4815014B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法
JP6046357B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP5664935B2 (ja) 軟磁性合金粉末およびこれを用いた磁性部品
JP5912239B2 (ja) Fe基合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
WO2009123100A1 (ja) 非晶質合金薄帯、ナノ結晶軟磁性合金、並びに磁心
JP5429613B2 (ja) ナノ結晶軟磁性合金ならびに磁心
JP5916983B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP2009174034A (ja) アモルファス軟磁性合金、アモルファス軟磁性合金薄帯、アモルファス軟磁性合金粉末およびそれを用いた磁心並びに磁性部品
JP2016094651A (ja) 軟磁性合金および磁性部品
CN113053611A (zh) 软磁性合金、软磁性合金薄带及其制造方法、磁芯以及部件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100394.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808066

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009808066

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009808066

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107019224

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5400/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010134877

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0906063

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100831