WO2022209565A1 - 積層体及びその製造方法 - Google Patents

積層体及びその製造方法 Download PDF

Info

Publication number
WO2022209565A1
WO2022209565A1 PCT/JP2022/009221 JP2022009221W WO2022209565A1 WO 2022209565 A1 WO2022209565 A1 WO 2022209565A1 JP 2022009221 W JP2022009221 W JP 2022009221W WO 2022209565 A1 WO2022209565 A1 WO 2022209565A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
magnetic metal
metal layer
laminate
amount
Prior art date
Application number
PCT/JP2022/009221
Other languages
English (en)
French (fr)
Inventor
悠貴友 山本
和幸 佐藤
康之介 澤
三津雄 尾藤
Original Assignee
Jx金属株式会社
株式会社東北マグネットインスティテュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社, 株式会社東北マグネットインスティテュート filed Critical Jx金属株式会社
Priority to CN202280007539.2A priority Critical patent/CN116568834A/zh
Priority to KR1020237015818A priority patent/KR20230163346A/ko
Priority to EP22779790.9A priority patent/EP4317494A1/en
Priority to US18/284,238 priority patent/US20240153685A1/en
Publication of WO2022209565A1 publication Critical patent/WO2022209565A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/008Amorphous alloys with Fe, Co or Ni as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to laminates.
  • the present invention relates to a laminate that can constitute an electromagnetic wave shielding material used as a covering material or an exterior material for electric/electronic equipment.
  • electromagnetic waves are emitted not only from automobiles but also from many electrical and electronic devices, including communication devices, displays, and medical devices. Electromagnetic waves may cause malfunction of precision equipment, and there is also concern about the effects on the human body. For this reason, various techniques have been developed to reduce the influence of electromagnetic waves using electromagnetic wave shielding materials.
  • a copper foil composite laminate obtained by laminating a copper foil and a resin film is used as an electromagnetic shielding material (Patent Document 2: Japanese Patent Application Laid-Open No. 7-290449).
  • a copper foil has an electromagnetic wave shielding effect, and a resin film is laminated on the copper foil to reinforce the copper foil.
  • Patent Document 3 Japanese Patent No. 4602680
  • an optical member for shielding electromagnetic waves comprising a base substrate and a laminated member formed on one surface of the base substrate and composed of a plurality of repeating unit films including a metal layer and a high refractive index layer (niobium pentoxide). It is known (Patent Document 4: JP-A-2008-21979).
  • Patent Document 5 proposes an electromagnetic shielding material having a structure in which at least three metal foils are laminated via an insulating layer.
  • this electromagnetic shielding material by laminating three or more metal foils, even if the total thickness of the metal foils is the same, the shielding effect is greater than when the metal foil is a single layer or when two metal foils are laminated. It has been shown to improve significantly.
  • Patent Document 5 Although the overall electromagnetic wave shielding effect is improved, the improvement of the shielding effect against magnetic field noise in the low frequency region is limited.
  • the inventors of the present invention searched for the cause, they found that the metal foil material itself, which has been conventionally used as an electromagnetic wave shielding material, has a low shielding effect against magnetic field noise in a low frequency region. Therefore, it is desired to develop a new material that can reduce magnetic field noise not only in the medium to high frequency range but also in the low frequency range.
  • electromagnetic wave shielding materials may need to be subjected to forming processes such as drawing and bending in order to conform to the shape of the electrical and electronic equipment to which they are applied.
  • the thickness of the metal foil used for the electromagnetic wave shielding material is several micrometers to several tens of micrometers, so cracks are likely to occur during molding. Therefore, when molding is required, it is important to prevent the electromagnetic shielding material from cracking during molding. Therefore, if we can provide a new material with improved moldability so that it can be used in various molding processes, by processing the new material into an appropriate shape, the new material can be used in more electric and electronic devices.
  • An electromagnetic wave shielding effect (especially reduction of magnetic field noise in a low frequency region) can be imparted.
  • the present invention has been made in view of the above circumstances, and in one embodiment, a laminated layer that improves the electromagnetic shielding effect in the low frequency range while maintaining the electromagnetic shielding effect against magnetic field noise in the range from medium to high frequencies
  • the task is to provide the body.
  • this invention makes it a subject to provide the manufacturing method of such a laminated body in another embodiment.
  • a laminate produced by laminating a non-magnetic metal and an amorphous magnetic metal with a low degree of crystallinity has a high electromagnetic shielding effect in a wide range from low frequency regions to high frequency regions. found to have Further, the inventors tried molding this laminate into a predetermined shape, and found that cracks occurring in the laminate can be effectively reduced. Further, the present inventors have found that by partially or wholly crystallizing the magnetic metal layer containing an amorphous magnetic metal, the electromagnetic wave shielding effect in the low frequency region can be further enhanced.
  • a laminate comprising at least one nonmagnetic metal layer and at least one magnetic metal layer, wherein at least one of the magnetic metal layers contains an amorphous phase.
  • the magnetic metal layer has a thickness of 4 to 100 ⁇ m.
  • the total amount of Fe, Ni and Co is 65.0 to 90.0 atomic %
  • the amount of Cu is 0 to 2.0 atomic %
  • Ti, Zr The total amount of Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ag, Zn, Al, Sn, As, Sb, Bi and REM is 0 to 8.0 atomic %
  • the balance is B and Si , at least one selected from the group consisting of P and C and impurities, which are Fe, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Co, Ni, Ag, Zn, Al, Sn , As, Sb, Bi and REM in a total amount of 65.0 to 90.0 atomic %.
  • the total amount of Fe, Ni and Co is 65.0 to 92.0 atomic %
  • the amount of Cu is 0 to 2.0 atomic %
  • Ti, V The total amount of Ta, Cr, Mo, W, Mn, Ag, Zn, Al, Sn, As, Sb, Bi and REM is 0 to 8.0 atomic %
  • the total amount of B, Si, P and C is The laminate according to any one of [1] to [7], wherein the content is 0 to 10.0 atomic % and the balance is at least one selected from the group consisting of Zr, Hf and Nb and impurities.
  • the amount of Fe is 79.0 to 88.0 atomic %
  • the amount of B is 5.0 to 15.0 atomic %
  • the amount of Si is 0 to 8 .0 atomic %
  • the amount of P is 1.0 to 8.0 atomic %
  • the amount of C is 0 to 5.0 atomic %
  • the amount of Cu is 0 to 1.4 atomic %.
  • the present invention it is possible to provide a laminate that improves the electromagnetic shielding effect in the low frequency range while maintaining the electromagnetic shielding effect against electromagnetic noise in the medium to high frequency range. As a result, it is possible to greatly reduce the noise mixed in the electrical/electronic equipment. In addition, it is possible to reduce the weight and size of electric/electronic equipment. Further, according to another embodiment of the present invention, a method for manufacturing such laminates can be provided.
  • 1 is an example of a laminate according to an embodiment of the present invention
  • 1 is an example of a laminate according to an embodiment of the present invention
  • 1 is an example of a laminate according to an embodiment of the present invention
  • 1 is an example of a laminate according to an embodiment of the present invention
  • 1 is an example of a laminate according to an embodiment of the present invention
  • 1 is an example of a laminate according to an embodiment of the present invention
  • 1 is an example of a laminate according to an embodiment of the present invention
  • 1 is an example of a laminate according to an embodiment of the present invention
  • 1 is an example of the relationship between crystallinity and saturation magnetic flux density.
  • 4 is a flow chart of a method for manufacturing a laminate according to another embodiment of the present invention
  • FIG. 10 is a view showing a laminate (defective result) in which cracks have occurred after molding
  • FIG. 10 shows a laminate (good result) in which no cracks occurred after molding.
  • a laminate 1 according to an embodiment of the present invention includes a non-magnetic metal layer 2 and a magnetic metal layer 3, and the magnetic metal layer 3 includes an amorphous phase, as shown in FIG. 1A.
  • This laminate 1 can sufficiently shield electromagnetic waves in a wide frequency band from low frequencies to high frequencies.
  • the non-magnetic metal layer 2 may be a single metal layer as shown in FIG. 1A, or may be a plurality of metal layers as shown in FIG. 1B.
  • the magnetic metal layer 3 may also be a single metal layer, as shown in FIG. 1A, or multiple metal layers, as shown in FIG. 1C. At least one nonmagnetic metal layer 2 is sufficient, and as shown in FIGS.
  • each nonmagnetic metal layer 2 may have the same configuration or may have a different configuration.
  • at least one magnetic metal layer 3 is sufficient, and as shown in FIG. 1E, a plurality of layers may be provided according to the number of other layers.
  • each magnetic metal layer 3 may have the same configuration or may have a different configuration.
  • the laminate 1 may include a non-metal layer 4 as shown in FIG. 1F. This non-metal layer 4 may be a single non-metal layer or, as shown in FIG.
  • each nonmetallic layer 4 may have the same configuration or may have a different configuration.
  • the total thickness of the non-magnetic metal layer 2 and the magnetic metal layer 3 is preferably 15 ⁇ m or more. In order to improve formability, the total sum is preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less, even more preferably 80 ⁇ m or less, and most preferably 60 ⁇ m or less. Therefore, the thickness of the laminate 1 may be 15 to 150 ⁇ m.
  • the number of non-magnetic metal layers 2 may be one.
  • the laminate 1 has a structure in which the magnetic metal layer 3 exists between the non-magnetic metal layers 2, the two layers contribute to the electromagnetic wave shielding effect.
  • a synergistic effect for example, when the magnetic flux density fluctuates in the magnetic material, eddy currents are formed outside the magnetic flux concentration area to capture the magnetic flux more reliably, and the generated electric field fluctuation does not leak outside the shield
  • the electromagnetic wave shielding effect of the laminate 1 is enhanced.
  • the number of surfaces (surfaces in contact with different materials in the layer) on which electromagnetic waves are reflected can be increased, the number of times the electromagnetic waves are reflected increases, and the electromagnetic waves can be attenuated. Therefore, for the same electromagnetic wave shielding effect, the thickness of the laminate 1 can be reduced. Therefore, it is preferable that there are two or more non-magnetic metal layers 2 . From the viewpoint of cost, the number of non-magnetic metal layers 2 is preferably 5 or less, more preferably 4 or less, and most preferably 3 or less.
  • the number of magnetic metal layers 3 may be one.
  • the two layers have a synergistic effect on the electromagnetic wave shielding effect.
  • the electromagnetic wave shielding effect of the laminate 1 is enhanced.
  • the number of surfaces (surfaces in contact with different materials in the layer) on which electromagnetic waves are reflected can be increased, the number of times the electromagnetic waves are reflected increases, and the electromagnetic waves can be attenuated. Therefore, for the same electromagnetic wave shielding effect, the thickness of the laminate 1 can be reduced. Therefore, it is preferable that there are two or more magnetic metal layers 3 . From the viewpoint of cost, the number of magnetic metal layers 3 is preferably 5 or less, more preferably 4 or less, and most preferably 3 or less.
  • the non-magnetic metal layer 2 and the magnetic metal layer 3 containing an amorphous phase are in contact, and the non-magnetic metal layer 2 and the magnetic metal layer 3 are all in contact. is more preferable. That is, it is preferable that the non-magnetic metal layers 2 and the magnetic metal layers 3 are laminated so as to be alternately arranged. In particular, it is preferable that the nonmagnetic metal layer 2 containing a metal having a conductivity of 30.0 ⁇ 10 6 S/m or more and the magnetic metal layer 3 containing an amorphous phase are in contact with each other.
  • the non-magnetic metal layer 2 is defined as a metal layer having a volume magnetic susceptibility of -1.0 to 1.0 in SI units at 20°C. It can be confirmed by not being attracted to a magnet.
  • such metals include copper (Cu), aluminum (Al), silver (Ag), gold (Au), tin (Sn), zinc (Zn), and alloys containing these enumerated elements as main components (e.g., copper alloy). These materials also typically have a relative permeability of around 1 (0.9-1.1).
  • the metal contained in the non-magnetic metal layer 2 has high conductivity.
  • the electrical conductivity at 20° C. is preferably 1.0 ⁇ 10 6 S/m or more, more preferably 10.0 ⁇ 10 6 S/m or more, and 30.0 ⁇ 10 6 S/m or more. It is more preferably 10 6 S/m or more, most preferably 50.0 ⁇ 10 6 S/m or more.
  • such metals include aluminum with a conductivity of about 33.0 ⁇ 10 6 S/m, copper with a conductivity of about 58.0 ⁇ 10 6 S/m, and copper with a conductivity of about 61.4 ⁇ 10 6 S/m. S/m silver is mentioned.
  • the nonmagnetic metal layer 2 various forms such as metal foil, plating, paste, and sputtering can be applied, but metal foil is practically easy to use. Considering both conductivity and cost, it is practically preferred that the laminate contains aluminum or copper (eg, aluminum foil, aluminum alloy foil, copper foil and copper alloy foil). In particular, it is preferable for the non-magnetic metal layer 2 to contain copper.
  • the upper limit of conductivity may be 200 ⁇ 10 6 S/m. The conductivity is determined by the four-probe method defined in JIS H0505 (1975).
  • the non-magnetic metal layer 2 contains copper foil
  • the electromagnetic wave shielding effect of the laminate 1 improves as the purity of copper increases. Therefore, the purity of copper is preferably 99.5% by mass or more, more preferably 99.8% by mass or more.
  • the purity of copper may be 100% by mass or less.
  • the copper foil may contain phosphorus (P), Sn, manganese (Mn), chromium (Cr), Zn, zirconium (Zr), magnesium (Mg), and nickel (Ni) as optional elements. , silicon (Si) and Ag.
  • P phosphorus
  • Sn manganese
  • Cr chromium
  • Zr zirconium
  • Mg zirconium
  • Ni nickel
  • silicon (Si) and Ag the amount of P is preferably 50 mass ppm, more preferably 10 to 50 mass ppm.
  • the copper foil contains at least one element selected from the group consisting of Sn, Mn, Cr, Zn, Zr, Mg, Ni, Si and Ag
  • the total amount of these elements is 2000 ppm by mass or less. preferably 200 to 2000 ppm by mass.
  • a copper foil consists of 99.5% by weight or 99.8% by weight of copper, with the remainder consisting of the above optional elements and impurities.
  • the copper foil may be rolled copper foil, electrolytic copper foil, or metallized copper foil.
  • the rolled copper foil is preferably a rolled copper foil because it has excellent formability (in particular, bendability and drawability).
  • the thickness of the non-magnetic metal layer 2 is 4 ⁇ m or more. Further, when the thickness of the non-magnetic metal layer 2 is large, the electromagnetic wave shielding effect of the non-magnetic metal layer 2 increases. Therefore, the thickness of the nonmagnetic metal layer 2 is preferably 6 ⁇ m or more, more preferably 8 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the thickness of the nonmagnetic metal layer 2 is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 45 ⁇ m or less, and most preferably 40 ⁇ m or less.
  • the laminate 1 includes a plurality of non-magnetic metal layers 2, one non-magnetic metal layer 2 may have a thickness within the above thickness range, and a part of the non-magnetic metal layers 2 may have a thickness within the above thickness range. or the entire non-magnetic metal layer 2 may be within the thickness range described above.
  • the non-magnetic metal layer 2 is made of Au, Ag, Sn, Zn, or an alloy containing these listed elements as main components (for example, Sn-Ag alloy, Sn-Ag alloy, Sn- Ni alloys and Sn—Cu alloys) may be included.
  • the elements listed above and their alloys are preferably present on the outermost surface of the laminate 1 .
  • the non-magnetic metal layer 2 preferably contains Sn or a Sn alloy.
  • the non-magnetic metal layer 2 may have unevenness in order to improve adhesion between layers. The unevenness can be formed by, for example, a roughening treatment to be described later.
  • the laminate 1 may include a non-magnetic metal layer 2 made of only the elements listed above and their alloys, and the thickness of this non-magnetic metal layer 2 is preferably 0.001 to 10 ⁇ m.
  • the magnetic metal layer 3 is defined as a metal layer having a volume magnetic susceptibility of 10 or more in SI units at 20° C., and can be confirmed by being attracted to a ferrite magnet when a general ferrite magnet is brought close to it.
  • metals include iron (Fe), nickel (Ni), cobalt (Co), and alloys containing these enumerated elements as major components (eg, iron alloys such as Fe—Ni). These materials usually have a relative permeability well above 1 (eg, 5-10 6 ).
  • At least one of the magnetic metal layers 3 contains an amorphous phase.
  • An amorphous phase is a phase that does not have a clear crystal structure, and when a broad annular electron diffraction pattern can be obtained as an electron diffraction pattern in a transmission electron microscope, it is determined that the magnetic metal layer 3 contains an amorphous phase. .
  • it can be easily identified as a broad peak by the X-ray diffraction method described below in addition to the acquisition of the electron diffraction pattern described above, so it is possible to replace the acquisition of the diffraction pattern with a transmission electron microscope. can.
  • the magnetic metal layer 3 containing an amorphous phase includes, for example, an amorphous metal containing an amorphous phase alone or a nanocrystalline metal in which a crystal phase is dispersed in an amorphous phase.
  • a magnetic metal layer 3 can control the magnetic anisotropy to be very small in the region corresponding to the width of the magnetic domain wall, and by effectively scattering the magnetic lines of force in the plane of the magnetic metal layer 3, the entire magnetic metal layer 3 can be reduced. It can be used for shielding against magnetic fields. Therefore, low-frequency magnetic field noise can be efficiently reduced, which is effective in reducing the weight of the laminate 1 .
  • a general thin magnetic metal has a macroscopic directivity, there is a possibility that the magnetic permeability of the magnetic metal cannot be fully utilized.
  • the metal has a high saturation magnetic flux density and a high relative permeability.
  • the saturation magnetic flux density at 20° C. is more preferably 0.50 T or more, preferably 1.00 T or more, more preferably 1.50 T or more, and 1.60 T or more. is more preferable, and 1.70 T or more is most preferable.
  • the upper limit of saturation magnetic flux density may be 2.50T. This saturation magnetic flux density is measured by a vibrating sample magnetometer (VSM).
  • the maximum value of the differential magnetic permeability at 20° C. of the metal contained in the laminate 1 and the magnetic metal layer 3 is preferably 1000 or more, more preferably 2000 or more, and 5000 or more. is most preferred.
  • the upper limit of this differential permeability may be 1.0 ⁇ 10 6 .
  • the differential magnetic permeability is obtained by dividing the change in the magnetic flux density by the change in the magnetic field (14.4 A/m) and converting this value into the relative magnetic permeability (10 7 /4 ⁇ value). This differential permeability is measured by a BH tracer.
  • the maximum value of the differential permeability is the maximum value of the differential permeability in a predetermined direction (first differential permeability) and the differential permeability in a direction perpendicular to the predetermined direction (second It is defined as the average value of the differential permeability). Furthermore, in standard applications, it is important that the magnetic properties are non-directional (anisotropic), so that the product does not need to be designed for the electromagnetic environment. Therefore, it is desirable that the maximum value of the first differential permeability and the maximum value of the second differential permeability be equal. For example, the value obtained by dividing the maximum value of the first differential permeability by the maximum value of the second differential permeability is preferably 0.90 to 1.10, more preferably 0.95 to 1.05.
  • the value obtained by dividing the difference between the maximum value of the first differential permeability and the maximum value of the second differential permeability by the maximum value of the differential permeability is 0.10 or less. It is preferably 0.08 or less, and most preferably 0.05 or less.
  • the saturation magnetic flux density can be increased without increasing the above-mentioned magnetic anisotropy and coercive force.
  • the average crystal grain size of the crystal grains is preferably 60 nm or less, more preferably 30 nm or less, even more preferably 25 nm or less, even more preferably 20 nm or less, and 15 nm or less. Most preferably there is. This average crystal grain size may be 3 nm or more. This average crystal grain size is obtained by analyzing the main peak of the metal crystal in the spectrum obtained by the X-ray diffraction (XRD) method by the Scherrer method. 0.90 is used as Scherrer's constant in this Scherrer method.
  • XRD X-ray diffraction
  • the degree of crystallinity is defined as the amount of the crystalline phase of the metal with respect to the maximum amount of the crystalline phase of the metal that can be used, the degree of crystallinity is preferably 10% or more, more preferably 20% or more. Preferably, it is 30% or more, more preferably 40% or more, more preferably 50% or more, even more preferably 60% or more, and 80% or more.
  • the degree of crystallinity before molding is preferably 75% or less, more preferably 60% or less.
  • the degree of crystallinity is preferably 10 to 75%, most preferably 40 to 60%.
  • General thin magnetic metals are fragile, so cracks are likely to occur during molding. When cracks occur, the effect of the laminate 1 in reducing magnetic field noise is also reduced. At this time, magnetic field noise may leak from the crack.
  • the degree of crystallinity is determined by a Differential Scanning Calorimeter (DSC).
  • DSC Differential Scanning Calorimeter
  • the metal crystalline phase of the DSC curve obtained from a material having a metal crystalline phase ratio of 1% or less on both sides of the material for example, a material after liquid quenching and before crystallization.
  • the resulting calorific value (calculated from the peak area) is defined as the total calorific value ⁇ H(all) (ie 100%).
  • the calorific value (calculated from the peak area) due to the formation of the metallic crystal phase on the DSC curve obtained from the material to be measured is defined as the residual calorific value ⁇ H (bal).
  • the degree of crystallinity is obtained by dividing the value obtained by subtracting the residual calorific value ⁇ H (bal) from the total calorific value ⁇ H (all) by the total calorific value ⁇ H (all) and multiplying by 100 (that is, crystallization The degree is calculated by ( ⁇ H(all) ⁇ H(bal))/ ⁇ H(all) ⁇ 100).
  • the peak due to the formation of the metal crystal phase overlaps with the peak due to the phase other than the metal phase such as the compound phase, the peak due to the formation of the metal crystal phase is specified by performing peak separation.
  • the metallic crystalline phase ratio is defined as the ratio of the metallic crystalline phase to all phases at the key positions where the broad peak due to the amorphous phase is obtained.
  • This metal crystal phase ratio is determined by the crystallinity determination method disclosed in WO 2017/022594 using the spectrum obtained by XRD (that is, the value of X in this international publication is the metal crystal phase ratio ).
  • XRD the value of X in this international publication is the metal crystal phase ratio .
  • the metal crystal phase ratio is preferably 10% or more, more preferably 20% or more, and most preferably 40% or more. This metal crystal phase rate may be 99% or less, or may be 70% or less.
  • the coercive force at 20° C. is preferably 50 A/m or less, more preferably 20 A/m or less, and 10 A/m or less. It is even more preferred to be 5 A/m or less, most preferably 5 A/m or less. This coercivity is measured by a BH tracer.
  • the amount of the compound phase for example, Fe 2 B or Fe 3 P.
  • the amount of this compound phase is reduced to such an extent that it is not detected in the spectrum obtained by XRD.
  • the method disclosed in WO2017/022594 is used. That is, the compound crystalline fraction is defined as the ratio of the compound phase to all phases at the above principal positions (ie, the value of Y in this international publication is defined as the compound crystalline fraction).
  • the compound crystal phase rate is preferably 2% or less, more preferably 1% or less.
  • the compound crystal phase ratio may be 0% or more.
  • the magnetic metal layer 3 may contain a ribbon, or may contain a material formed by molding powder into a layer. If the magnetic metal layer 3 is continuous, the leakage of magnetic flux is reduced, so the shielding ability of the laminate 1 is improved. Therefore, the magnetic metal layer 3 preferably contains a ribbon. Moreover, it is preferable that the ribbon is less likely to crack. In particular, it is preferable that there is no crack penetrating the magnetic metal layer 3 .
  • the chemical composition of the metal contained in the magnetic metal layer 3 is not particularly limited, for example, the following chemical composition can be selected.
  • the total amount of Fe, Ni and Co is preferably 65.0 to 100 atomic %.
  • the total amount of Fe, Ni and Co is preferably 65.0 to 92.0 atomic % from the viewpoint of the stability of the amorphous phase.
  • such metals include at least one element selected from the group consisting of boron (B), Si, P and carbon (C), and at least one element selected from the group consisting of Fe, Ni and Co. and at least one element selected from the group consisting of Zr, hafnium (Hf), and niobium (Nb), and at least one element selected from the group consisting of Fe, Ni, and Co.
  • the total amount of B, Si, P, C, Zr, Hf, and Nb is preferably 8.0 atomic % or more.
  • the total amount is preferably 35.0 atomic % or less.
  • the total amount is preferably 35.0 atomic % or less, more preferably 20.0 atomic % or less, and 16.0 atomic % or less is even more preferable, and it is most preferably 15.0 atomic % or less.
  • B, Si, P, and C each greatly increase the activity in the amorphous phase and greatly improve the stability of the amorphous phase, so two or more elements selected from the group consisting of B, Si, P, and C are used. is preferred, three or more are more preferred, and four are most preferred.
  • the total amount of Zr, Hf, and Nb is 5.0 atomic % or more. is preferred, and 8.0 atomic % or more is more preferred.
  • the total amount is preferably 15.0 atomic % or less, more preferably 10.0 atomic % or less.
  • Fe is superior in terms of cost. Also, an element with a smaller atomic radius is more advantageous than an element with a larger atomic radius in obtaining a high saturation magnetic flux density while maintaining the stability of the amorphous phase. Therefore, in the following, as an example, a chemical composition containing Fe as a main component of the magnetic metal layer 3 and at least one element selected from the group consisting of B, Si, P and C will be described.
  • Fe, B, Si, P, C and arbitrary elements Cu, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Co, Ni, Cu, Ag,
  • the total amount of Zn, Al, Sn, As, Sb, Bi and rare earth elements (REM)) and impurities is 100 atomic %.
  • the amount of Fe is preferably 65.0 atomic % or more, more preferably 70.0 atomic % or more, more preferably 75.0 atomic % or more, and 79.0 atomic % It is more preferably 81.0 atomic % or more, and most preferably 83.0 atomic % or more.
  • the amount of Fe is preferably 92.0 atomic % or less, more preferably 88.0 atomic % or less, and 86.0 atomic % or less. is more preferable, and 85.0 atomic % or less is most preferable.
  • the amount of B is preferably 0.1 atomic % or more, more preferably 1.0 atomic % or more, more preferably 5.0 atomic % or more, and 7.5 atomic % More preferably, it is 8.0 atomic % or more, and most preferably 8.0 atomic % or more.
  • the amount of B is preferably 16.0 atomic % or less, more preferably 13.0 atomic % or less, and 11.0 atomic % or less. is still more preferable, 10.0 atomic % or less is even more preferable, and 9.4 atomic % or less is most preferable.
  • the amount of B may be 0 atomic %.
  • the amount of Si is preferably 0.1 atomic % or more, more preferably 0.2 atomic % or more, more preferably 0.5 atomic % or more, and 1.0 atomic % More preferably, it is 2.0 atomic % or more, and most preferably 2.0 atomic % or more.
  • Si can form a silica surface film by oxidation, and imparts insulating properties and corrosion resistance to the magnetic metal layer.
  • the amount of Si is preferably 8.0 atomic % or more, more preferably 10.0 atomic % or more.
  • the amount of Si is preferably 15.0 atomic % or less, more preferably 10.0 atomic % or less, and 8.0 atomic % or less. is more preferable, 5.0 atomic % or less is even more preferable, and 4.0 atomic % or less is most preferable.
  • the amount of Si may be 0 atomic %.
  • the amount of P is preferably 0.1 atomic % or more, more preferably 1.0 atomic % or more, even more preferably 2.0 atomic % or more, and 3.0 atomic % or more. % or more is most preferable.
  • the amount of P is preferably 15.0 atomic % or less, more preferably 10.0 atomic % or less, and 8.0 atomic % or less. is even more preferable, and it is most preferably 5.0 atomic % or less.
  • the amount of P may be 0 atomic %.
  • the amount of C is preferably 0.1 atomic % or more, more preferably 0.5 atomic % or more, and most preferably 1.0 atomic % or more.
  • the amount of C is preferably 10.0 atomic % or less, more preferably 8.0 atomic % or less, and 5.0 atomic % or less. is even more preferable, and it is most preferably 3.0 atomic % or less.
  • the amount of C may be 0 atomic %.
  • the magnetic metal layer 3 may contain Cu as an optional element in order to stably disperse the crystal grains in the amorphous phase by an easily available heat treatment method and stably increase the saturation magnetic flux density.
  • the amount of Cu is preferably 0.1 atomic % or more, more preferably 0.4 atomic % or more, even more preferably 0.5 atomic % or more, and 0.6 atomic % or more. is most preferred.
  • the amount of Cu is preferably 2.0 atomic % or less, more preferably 1.5 atomic % or less, and 1.1 atomic % or less. It is even more preferably at most atomic %, even more preferably at most 1.0 atomic %, and most preferably at most 0.9 atomic %.
  • the amount of Cu may be 0 atomic %.
  • the magnetic metal layer 3 may include titanium (Ti), Zr, Hf, vanadium (V), Nb, tantalum ( Ta), Cr, molybdenum (Mo), tungsten (W), manganese (Mn), Co, Ni, Ag, Zn, Al, Sn, arsenic (As), antimony (Sb), bismuth (Bi) and REM At least one selected from the group may be included.
  • Co is expensive, but its combination with Fe greatly improves the saturation magnetic flux density.
  • the amount of Co is preferably 0.1 atomic % or more, more preferably 1.0 atomic % or more, and most preferably 3.0 atomic %.
  • the amount of Co may be half the amount of Fe or less than 30.0 atomic %.
  • Ni can improve corrosion resistance without significantly lowering the saturation magnetic flux density. Therefore, the amount of Ni is preferably 0.1 atomic % or more, more preferably 1.0 atomic % or more, and most preferably 3.0 atomic %.
  • the amount of Ni may be 15.0 atomic % or less.
  • the total amount of Fe, Ni and Co is preferably 65.0 to 90.0 atomic %.
  • Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ag , Zn, Al, Sn, As, Sb, Bi and REM are preferably 8.0 atomic % or less, more preferably 5.0 atomic % or less, and 3.0 atomic % or less. and most preferably 1.0 atomic % or less.
  • the total amount of Fe, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Co, Ni, Ag, Zn, Al, Sn, As, Sb, Bi and REM is from 65.0 to It is preferably 90.0 atomic %.
  • REM is scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb) and Lutetium (Lu).
  • the magnetic metal layer 3 may inevitably contain impurities.
  • the amount of impurities is preferably 0.5 atomic percent or less, more preferably 0.1 atomic percent or less, even more preferably 0.05 atomic percent or less, and 0.01 atomic percent. % or less.
  • impurities include, but are not limited to, O, N, S, Pb and Cd. Impurities may be 0 atomic percent.
  • the total amount of Fe, Ni and Co is 65.0 to 90.0 atomic %, and the amount of Cu is 0 to 2.0 atomic %. atomic %, and the total amount of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ag, Zn, Al, Sn, As, Sb, Bi and REM is 0 to 8.0 atoms %, the balance being at least one selected from the group consisting of B, Si, P and C and impurities, Fe, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Co, The total amount of Ni, Ag, Zn, Al, Sn, As, Sb, Bi and REM is 65.0-90.0 atomic %.
  • the total amount of Fe, Ni, and Co is 65.0 to 92.0 atomic %
  • the amount of Cu is 0 to 2 .0 atomic %
  • the total amount of Ti, V, Ta, Cr, Mo, W, Mn, Ag, Zn, Al, Sn, As, Sb, Bi and REM is 0 to 8.0 atomic %
  • the total amount of B, Si, P and C is 0 to 10.0 atomic %
  • the balance is at least one selected from the group consisting of Zr, Hf and Nb and impurities.
  • the magnetic metal layer containing an amorphous phase has an Fe content of 79.0 to 88.0 atomic percent and a B content of 5.0 to 15.0 atomic percent. %, the amount of Si is 0 to 8.0 atomic %, the amount of P is 1.0 to 8.0 atomic %, the amount of C is 0 to 5.0 atomic %, and the amount of Cu
  • the alloy composition disclosed in International Publication No. 2010/021130 can be suitably used as the magnetic metal layer 3 containing an amorphous phase. Accordingly, the disclosure of WO2010/021130 is hereby incorporated by reference in its entirety to the extent it does not contradict the content of this specification.
  • the amount of Cu with respect to the amount of P is preferably 0.08 to 0.80, more preferably 0.08 to 0.55.
  • the amount of Fe (a) is 79.0 to 88.0 atomic %
  • the amount of B ( b) is 5.0 to 15.0 atomic %
  • the amount of Si (c) is 0 to 8.0 atomic %
  • the amount of P (x) is 1.0 to 8.0 atomic %
  • the amount of C (y) is 0 to 5.0 atomic %
  • the amount of Cu (z) is preferably 0 to 1.4 atomic %.
  • the thickness of the magnetic metal layer 3 is 4 ⁇ m or more. Further, when the thickness of the magnetic metal layer 3 is large, the electromagnetic wave shielding effect of the magnetic metal layer 3 increases. Therefore, the thickness of the magnetic metal layer 3 is more preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and even more preferably 20 ⁇ m or more. When the thickness of the magnetic metal layer 3 is sufficiently small, the strength of the magnetic metal layer 3 is sufficiently small, so that the formability of the laminate 1 can be sufficiently improved.
  • the thickness of the magnetic metal layer 3 is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 45 ⁇ m or less, and most preferably 40 ⁇ m or less.
  • one magnetic metal layer 3 may have a thickness within the above range, and some of the magnetic metal layers 3 may have a thickness within the above range. Alternatively, the entire magnetic metal layer 3 may be within the above thickness range.
  • the laminate 1 may optionally include a magnetic metal layer 3 that does not contain an amorphous phase.
  • the magnetic metal layer 3 is made of Fe, Ni, and Co in order to improve environmental resistance such as heat resistance and corrosion resistance, to improve adhesion between layers, and to improve the shielding ability of the laminate against a DC magnetic field. At least one selected from the group may be included.
  • the magnetic metal layer 3 exists on the outermost surface of the laminate. Examples of such a magnetic metal layer 3 include Ni and Fe--Ni. These Ni and Fe--Ni can be formed not only by stacking foils but also by plating or vapor deposition.
  • the laminate 1 may optionally include a non-metal layer 4.
  • the nonmetallic layer 4 may contain a chromium compound in order to improve environmental resistance such as heat resistance and corrosion resistance, or to improve adhesion between layers.
  • the non-metallic layer 4 may contain a polymer in order to enhance adhesion between layers.
  • the polymer may be at least one selected from acrylic resin, epoxy resin, urethane resin, polyester, silicone resin, polyvinyl acetate, styrene-butadiene rubber, nitrile rubber, phenol resin, and cyanoacrylate.
  • the polymer is preferably urethane resin, polyester resin, or polyvinyl acetate.
  • the non-metal layer 4 may include an insulating layer in order to impart insulation between layers or on the surface.
  • the nonmetallic layer 4 is preferably present on the outermost surface of the laminate 1 in order to improve environmental resistance such as heat resistance and corrosion resistance.
  • the thickness of the nonmetallic layer 4 is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 10 ⁇ m or less. , 5 ⁇ m or less.
  • the thickness of the nonmetallic layer 4 may be 0.1, 1.0, 1.5 or 2.0 ⁇ m or more.
  • Laminate manufacturing method In a method for manufacturing a laminate according to another embodiment of the present invention, as shown in the flowchart of FIG. A lamination step of forming a laminate is included. By this stacking process, the non-magnetic metal layer and the magnetic metal layer described above are formed. Since the materials used for these layers and the structure of the layers are as described above, they are omitted here.
  • a molding process according to the application may include a molding process for molding the unfired laminate into a predetermined shape.
  • This forming process may include, for example, cutting, punching, deep drawing, bulging, bending, and the like.
  • the present manufacturing method includes a firing process.
  • a fired layered body is formed from an unfired layered body or a pre-fired layered body described later.
  • the amorphous magnetic metal becomes brittle as the degree of crystallinity increases, it is preferable to include a firing step after the molding step.
  • the crystallinity of the amorphous magnetic metal obtained by the firing step is preferably 10% or more, more preferably 20% or more, more preferably 30% or more, and more preferably 40% or more.
  • the heat treatment temperature may be 350 to 650° C., and is preferably higher than the temperature at which the metal crystal phase precipitates and lower than the temperature at which the compound crystal phase does not precipitate.
  • the heat treatment time may be, for example, 1 to 3600 seconds.
  • a preliminary baking step may be included between the lamination step and the molding process in order to stably perform crystallization after the molding process and to adjust the moldability in the molding process.
  • a pre-baked laminate is formed from an unbaked laminate.
  • the crystallinity of the amorphous magnetic metal obtained in the preliminary firing step is preferably 75% or less, more preferably 60% or less, and 50% or less. more preferably 40% or less, more preferably 30% or less, even more preferably 20% or less, and most preferably 10% or less. This crystallinity may be 0% or more, or 5% or more.
  • the crystallinity of the amorphous magnetic metal obtained in the preliminary firing process is preferably 10% or more, more preferably 20% or more. 50% or more is most preferred.
  • the manufacturing method of non-magnetic metals and amorphous magnetic metals is not limited.
  • the non-magnetic metal is copper foil
  • the copper foil may be rolled copper foil, electrolytic copper foil, or metallized copper foil.
  • the magnetic metal containing the amorphous phase may be produced by either gas phase or liquid phase quenching method.
  • such manufacturing methods include a single roll method, a twin roll method, a thermal spraying method, a plating method, and a vapor deposition method.
  • a water atomization method and a gas atomization method can be used in addition to the method of pulverizing a ribbon.
  • Non-magnetic metals and amorphous magnetic metals with additional treatments may be used.
  • the amorphous magnetic metal may be preheat-treated in order to adjust the amount of pre-existing strain in the amorphous magnetic metal and reduce warpage due to dimensional changes in the material after heat treatment.
  • the degree of crystallinity is not limited. However, if sufficient moldability is required, the degree of crystallinity is preferably 0 to 5%.
  • various plating Au, Ag, Sn, Ni, Fe-Ni alloy, Zn, Sn alloy [Sn-Ag , Sn—Ni, Sn—Cu]
  • various chemical conversion treatments chromate treatments
  • roughening treatments may be used as the non-magnetic metal and the amorphous magnetic metal.
  • the material includes Sn plating or Sn alloy plating. From the viewpoint of adhesion, it is preferable to use a roughened material. A plurality of these additional treatments may be performed on the material.
  • a surface activation bonding method may be used.
  • the surface of a non-magnetic metal and the surface of an amorphous magnetic metal are activated, and the activated surfaces of both metals are brought into contact and bonded.
  • crimping by overlapping rolls can be used.
  • Methods for activating the surfaces of both metals include, for example, an ion etching method and a dry film forming method in vacuum.
  • the surface activation method of each metal may be the same or different.
  • an adhesive for example, an adhesive compatible with the polymer described above (for example, polyol and isocyanate in the case of urethane resin) can be used.
  • an adhesive compatible with the polymer described above for example, polyol and isocyanate in the case of urethane resin
  • the surface of the laminate may be surface-treated in the final step in order to impart aesthetics, environmental resistance, and other characteristics to the laminate.
  • an additional lamination step may be applied if adhesive lamination is required.
  • a heat treatment may be performed after this additional lamination step.
  • the heat treatment temperature is preferably lower than the heat resistance temperature of the adhesive or polymer.
  • a laminate as a product may be an unfired laminate, a pre-fired laminate, or a fired laminate, regardless of the presence or absence of molding. Even an unfired laminate or a pre-fired laminate can be used as it is if it has a sufficient shielding effect against electromagnetic waves. It is preferable to adjust the degree of crystallization of the amorphous magnetic metal according to the purpose.
  • the laminate and laminate manufacturing method according to the above-described embodiments are particularly applicable to electric and electronic devices (for example, inverters, communication devices, resonators, electron tubes and discharge lamps, electric heating devices, motors, generators, electronic components, (printed circuits, medical equipment, etc.), covering materials for harnesses and communication cables connected to electrical and electronic equipment, electromagnetic shielding sheets, electromagnetic shielding panels, electromagnetic shielding bags, electromagnetic shielding boxes, electromagnetic shielding rooms, etc. It can be used for various electromagnetic wave shielding applications.
  • electric and electronic devices for example, inverters, communication devices, resonators, electron tubes and discharge lamps, electric heating devices, motors, generators, electronic components, (printed circuits, medical equipment, etc.
  • covering materials for harnesses and communication cables connected to electrical and electronic equipment electromagnetic shielding sheets, electromagnetic shielding panels, electromagnetic shielding bags, electromagnetic shielding boxes, electromagnetic shielding rooms, etc. It can be used for various electromagnetic wave shielding applications.
  • a rolled copper foil was used as the non-magnetic metal.
  • This rolled copper foil was pure copper [nonmagnetic (diamagnetic)] with a thickness of 12 ⁇ m, and had an electrical conductivity of 58.0 ⁇ 10 6 S/m at 20°C.
  • an amorphous metal ribbon produced by a single roll method was used as the amorphous magnetic metal.
  • the metal crystalline phase ratio is 0% (MiniFlex 600 manufactured by Rigaku Corporation). Both sides of the band were measured [ ⁇ -2 ⁇ method]), the degree of crystallinity was 0% (definition), the thickness was 25 ⁇ m, and the saturation magnetic flux density was 1.57 T (VSM manufactured by Toei Kogyo Co., Ltd.
  • the saturation mass magnetization of an 8 x 8 mm sample was measured by P7-15, and the saturation magnetic flux density was obtained by multiplying this saturation mass magnetization by 4 ⁇ and the density obtained by the Archimedes method), and the coercive force (RIKEN A sample of 10 ⁇ 70 mm was measured by Model BHS-40 manufactured by Denshi Co., Ltd.) was 16.5 A/m.
  • the chemical composition is Fe 84.8 B 9.4 Si 0.5 P 3.5 Cu 0.8 C 1.0 (atomic %) [magnetic (ferromagnetic)], and the amount of impurities (the total amount of elements excluding the six elements described above) is 0.1 atomic % It was below.
  • the copper foil and the amorphous metal ribbon were cut so that the length and width were approximately the same.
  • Example 1 the surface of the rolled copper foil and the surface of the amorphous metal ribbon were activated by ion etching (plasma) and joined by roll rolling (surface activation joining). By this bonding, an unfired laminate was formed, and the copper foil constituted the non-magnetic metal layer, and the amorphous metal ribbon constituted the magnetic metal layer having an amorphous phase. A part of the unfired laminate of these examples was passed through a furnace having a furnace length of 0.75 m set at 455° C. at a speed of 1.5 m/min to crystallize a part of the magnetic metal layer before pre-firing.
  • a completed laminate was formed (preliminary firing step) [crystallinity 53%] (20 mg sample was measured at a heating rate of 40°C/min with a PerkinElmer DSC8500).
  • part of the unfired laminate and the pre-fired laminate of the example is heated to 425° C. at a heating rate of 1° C./min in a furnace while being kept flat, held for 10 minutes, and then cooled in the furnace.
  • the magnetic metal layer was sufficiently crystallized to form a fired laminate (firing step) [crystallinity of 99% or more].
  • the maximum value of the differential permeability (measured by Model BHS-40 manufactured by Riken Denshi Co., Ltd.) was 1.5 ⁇ 10 4 , 1.2 ⁇ 10 3 and 1.2 ⁇ 10 3 for Examples 1, 4 and 5, respectively. It was 6.9 ⁇ 10 3 .
  • the value obtained by dividing the maximum value of the first differential permeability (longitudinal direction) by the maximum value of the second differential permeability (width direction) was 0.94, 0.97 and 1.01.
  • the value obtained by dividing the difference between the maximum value of the first differential permeability and the maximum value of the second differential permeability by the maximum value of the differential permeability was were 6.3 ⁇ 10 ⁇ 2 , 2.6 ⁇ 10 ⁇ 2 and 9.9 ⁇ 10 ⁇ 3 respectively.
  • Example 6 the amorphous metal ribbon was passed through a furnace with a furnace length of 0.75 m set at 490° C. at a rate of 1.0 m/min to partially crystallize the amorphous metal ribbon [crystallinity 60%, saturation flux density 1.75 T].
  • This crystallized amorphous ribbon was adhered to a copper foil (thickness: 12 ⁇ m) with an adhesive to form a laminate.
  • the non-magnetic layer resin film [derived from the adhesive]
  • the magnetic metal layer (amorphous metal ribbon) having an amorphous phase is attached to the non-magnetic layer.
  • the non-magnetic layer was a urethane resin layer.
  • each layer was laminated so that the end faces of each layer were aligned.
  • Comparative Example 1 copper foil (thickness 12 ⁇ m) was used as it was (corresponding only to the non-magnetic metal layer). In Comparative Example 2, an amorphous metal ribbon (thickness: 25 ⁇ m) was used as it was (corresponding to only the magnetic metal layer).
  • Laminates of each example and each comparative example are placed in an electromagnetic shielding effect evaluation device (Techno Science Japan, model TSES-KEC), and electromagnetic waves are measured by the KEC method under the conditions of a frequency of 500 kHz and 1 MHz and a temperature of 20 ° C. Shielding effect was evaluated. Evaluation criteria are as follows.
  • a 125 mm ⁇ 125 mm test piece is cut out from the laminate of each example and each comparative example, and the test piece is wound around a ⁇ 18 mm round bar so that the copper foil is on the outside. has occurred. If a crack penetrating the nonmagnetic metal layer or the magnetic metal layer is observed, it is evaluated as "B" (defective), and if no crack penetrating through both the nonmagnetic metal layer and the magnetic metal layer is observed, it is evaluated as "B”. A” (good) (see FIGS. 4A and 4B). Moreover, even when the molding process was not applied, it was evaluated as "A" (good).
  • the laminate including the non-magnetic metal layer and the magnetic metal layer containing the amorphous phase had a higher electromagnetic wave shielding effect than the non-magnetic metal layer alone or the magnetic metal layer alone. Also, by appropriately adjusting the degree of crystallinity of the magnetic metal layer containing the amorphous phase, it was possible to enhance the electromagnetic wave shielding effect in the low frequency region while ensuring sufficient formability. By providing the non-magnetic metal layer, a high electromagnetic wave shielding effect was exhibited even in the medium to high frequency range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

低周波領域における電磁波シールド効果を向上させる積層体を提供すること。少なくとも1つの非磁性金属層と、少なくとも1つの磁性金属層とを含み、当該磁性金属層の少なくとも1つがアモルファス相を含む、積層体。

Description

積層体及びその製造方法
 本発明は、積層体に関する。とりわけ、本発明は、電気・電子機器の被覆材又は外装材として使用される電磁波シールド材を構成できる積層体に関する。
 近年、地球環境問題に対する関心が全世界的に高まっており、電気自動車やハイブリッド自動車といった二次電池を搭載した環境配慮型自動車の普及が進展している。これらの自動車においては、搭載した二次電池から発生する直流電流をインバータを介して交流電流に変換した後、必要な電力を交流モーターに供給し、駆動力を得る方式を採用するものが多い。インバータのスイッチング動作等に起因して電磁波が発生する。電磁波は車載の音響機器や無線機器等の受信に障害となることから、インバータ或いはインバータと共にバッテリーやモーター等を金属製ケース内に収容して、電磁波をシールドするという対策が行われてきた(特許文献1:特開2003-285002号公報)。
 また、自動車に限らず、通信機器、ディスプレイ及び医療機器を含め多くの電気・電子機器から電磁波が放射される。電磁波は精密機器の誤作動を引き起こす可能性があり、更には、人体に対する影響も懸念される。このため、電磁波シールド材を用いて電磁波の影響を軽減する各種の技術が開発されてきた。例えば、銅箔と樹脂フィルムとを積層してなる銅箔複合体(積層体)が電磁波シールド材として用いられている(特許文献2:特開平7-290449号公報)。銅箔は電磁波シールド効果を有し、樹脂フィルムは銅箔の補強のために銅箔上に積層される。また、絶縁材料からなる中間層の内側と外側とにそれぞれ金属層を積層した電磁波シールド構造も知られている(特許文献3:特許第4602680号公報)。また、ベース基板と、前記ベース基板の一面に形成されて金属層および高屈折率層(五酸化ニオブ)を含む複数の反復単位膜で構成された積層部材とを具備する電磁波遮断用光学部材も知られている(特許文献4:特開2008-21979号公報)。
 さらに、近年、電気・電子機器の小型化や高能率化により、電磁波シールド効果に対する要求がますます高まっている。特に、例えば電気自動車のモーター周辺のインバータなど、電源・駆動に関連する電気・電子機器からは、低周波領域(典型的には、周波数1MHz以下の領域)で強い磁界ノイズが発生する場合が多い。そのため、より高い電磁波シールド効果をもたらす電磁波シールド材が必要とされる。
 電磁波シールド効果を大きく向上する方法として、特許第6278922号公報(特許文献5)のような技術もある。当該文献では、少なくとも3枚の金属箔が絶縁層を介して積層された構造を有する電磁波シールド材が提案されている。この電磁波シールド材では、金属箔を3枚以上積層することで、金属箔の合計厚みが同じだとしても金属箔が単層の場合や金属箔を2枚積層する場合に比べて、シールド効果が顕著に向上することが示されている。
特開2003-285002号公報 特開平7-290449号公報 特許第4602680号公報 特開2008-21979号公報 特許第6278922号公報
 特許文献5に開示される方法では、全体的に電磁波シールド効果が向上したものの、低周波領域における磁界ノイズに対するシールド効果の向上は限られている。本発明者らが原因を探索したところ、従来から電磁波シールド材に使用する金属箔の材料自体が、低周波領域における磁界ノイズに対して、シールド効果が低いことが分かった。そのため、中周波から高周波までの領域の磁界ノイズのみならず、低周波領域においても磁界ノイズを低減できる新規材料の開発が望まれている。
 また、電磁波シールド材は、それが適用される電気・電子機器の形状等に適合するために、絞り加工や曲げ加工などの成形加工を行うことが必要となることがある。一般的に、電磁波シールド材に使用される金属箔の厚みは、数μmから数十μmであるため、成形加工時に割れが発生しやすい。そのため、成形加工が必要である場合には、成形加工時に電磁波シールド材が割れるのを防止することが重要である。そのため、種々の成形加工に対応できるように、成形性を向上させた新規材料を提供できれば、新規材料を適切な形状に加工することによって、新規材料は、より多くの電気・電子機器に対して電磁波シールド効果(特に、低周波領域における磁界ノイズの低減)を付与することができる。
 本発明は、上記事情に鑑みてなされたものであり、一実施形態において、中周波から高周波までの領域の磁界ノイズに対する電磁波シールド効果を維持したまま低周波領域における電磁波シールド効果を向上させた積層体を提供することを課題とする。また、本発明は、別の一実施形態において、そのような積層体の製造方法を提供することを課題とする。
 上述の通り、本発明者らは、従来の材料では、低周波領域における磁界ノイズに対するシールド効果が不足していることを発見した。そこで、本発明者らが鋭意検討した結果、非磁性金属と結晶化度の低いアモルファス磁性金属とを積層して作製した積層体は、低周波領域から高周波領域までの幅広い帯域で高い電磁波シールド効果を有していることを見出した。また、発明者らは、この積層体を所定の形状に成形加工してみたところ、積層体に生じる割れを効果的に低減することができることを見出した。さらに、アモルファス磁性金属を含む磁性金属層を一部又は全部結晶化させることにより、低周波領域における電磁波シールド効果をさらに高めることができることを見出した。
また、本発明は、上記知見に基づき完成したものであり、以下に例示される。
[1]
 少なくとも1つの非磁性金属層と、少なくとも1つの磁性金属層とを含み、前記磁性金属層の少なくとも1つがアモルファス相を含む積層体。
[2]
 前記アモルファス相を含む前記磁性金属層の結晶化度が10%以上である、[1]に記載の積層体。
[3]
 前記積層体の少なくとも一部が成形加工されている、[1]又は[2]に記載の積層体。
[4]
 前記非磁性金属層の厚みが4~100μmである、[1]~[3]のいずれか1項に記載の積層体。
[5]
 前記磁性金属層の厚みが4~100μmである、[1]~[4]のいずれか1項に記載の積層体。
[6]
 前記非磁性金属層と前記磁性金属層との合計厚みが15~150μmである、[1]~[5]のいずれか1項に記載の積層体。
[7]
 前記非磁性金属層は、アルミニウム箔、アルミニウム合金箔、銅箔及び銅合金箔からなる群から選択される、[1]~[6]のいずれか1項に記載の積層体。
[8]
 前記アモルファス相を含む前記磁性金属層では、Fe、Ni、Coの合計量が65.0~90.0原子%であり、Cuの量が0~2.0原子%であり、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が0~8.0原子%であり、残部がB、Si、P及びCからなる群からなる少なくとも1種及び不純物であり、Fe、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Co、Ni、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が65.0~90.0原子%である、[1]~[7]のいずれか1項に記載の積層体。
[9]
 前記アモルファス相を含む前記磁性金属層では、Fe、Ni、Coの合計量が65.0~92.0原子%であり、Cuの量が0~2.0原子%であり、Ti、V、Ta、Cr、Mo、W、Mn、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が0~8.0原子%であり、B、Si、P及びCの合計量が0~10.0原子%であり、残部がZr、Hf及びNbからなる群から選択される少なくとも1種及び不純物である[1]~[7]のいずれか1項に記載の積層体。
[10]
 前記アモルファス相を含む前記磁性金属層では、Feの量が79.0~88.0原子%であり、Bの量が5.0~15.0原子%であり、Siの量が0~8.0原子%であり、Pの量が1.0~8.0原子%であり、Cの量が0~5.0原子%であり、Cuの量が0~1.4原子%であり、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が0~8.0原子%であり、Fe、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Co、Ni、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が79.0~88.0原子%であり、Fe、B、Si、P、C、Cu、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Co、Ni、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が100%である、[1]~[7]のいずれか1項に記載の積層体。
[11]
 前記非磁性金属層の導電率が30.0×106S/m以上であり、前記アモルファス相を含む前記磁性金属層の飽和磁束密度が1.50T以上である、[1]~[10]のいずれか1項に記載の積層体。
[12]
 少なくとも1つの前記非磁性金属層と、少なくとも1つの前記アモルファス相を含む前記磁性金属層とが接触している、[1]~[11]のいずれか1項に記載の積層体。
[13]
 非磁性金属と、アモルファス磁性金属とを含む材料を積層して未焼成積層体を形成する積層工程を含む積層体の製造方法。
[14]
 さらに、前記未焼成積層体の前記アモルファス磁性金属の結晶化度が10%以上になるように、前記未焼成積層体を焼成する焼成工程を含む、[13]に記載の積層体の製造方法。
[15]
 さらに、前記焼成工程の前に、前記未焼成積層体を所定の形状に加工する成形加工工程を含む、[14]に記載の積層体の製造方法。
[16]
 さらに、前記成形加工工程の前に、前記未焼成積層体の前記アモルファス磁性金属の結晶化度が10~75%になるように、前記未焼成積層体を予備焼成する予備焼成工程を含む、[15]に記載の積層体の製造方法。
[17]
 前記積層工程では、前記非磁性金属と前記アモルファス磁性金属とが表面活性化接合法によって接合される、[13]~[16]のいずれか1項に記載の積層体の製造方法。
 本発明の一実施形態によれば、中周波から高周波までの領域の電磁波ノイズに対する電磁波シールド効果を維持したまま低周波領域における電磁波シールド効果を向上させた積層体を提供することができる。結果として、電気・電子機器に混入するノイズを大きく低減することができる。また、電気・電子機器を軽量化及び小型化することができる。さらに、本発明の別の実施形態によれば、そのような積層体の製造方法を提供することができる。
本発明の一実施形態に係る積層体の一例である。 本発明の一実施形態に係る積層体の一例である。 本発明の一実施形態に係る積層体の一例である。 本発明の一実施形態に係る積層体の一例である。 本発明の一実施形態に係る積層体の一例である。 本発明の一実施形態に係る積層体の一例である。 本発明の一実施形態に係る積層体の一例である。 本発明の一実施形態に係る積層体の一例である。 結晶化度と飽和磁束密度との間の関係の一例である。 本発明の別の実施形態に係る積層体の製造方法のフローチャートである。 成形後に割れが発生した積層体(不良の結果)を示す図である。 成形後に割れが発生しなかった積層体(良の結果)を示す図である。
 次に、本発明の実施形態を詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
(1.積層体)
 本発明の一実施形態に係る積層体1は、図1Aに示すように、非磁性金属層2と磁性金属層3とを含み、この磁性金属層3は、アモルファス相を含む。この積層体1は、低周波から高周波までの広い周波数帯域の電磁波を十分に遮蔽することができる。この非磁性金属層2は、図1Aに示すように、1つの金属の層であってもよく、図1Bに示すように、複数の金属の層であってもよい。同様に、磁性金属層3も、図1Aに示すように、1つの金属の層であってもよく、図1Cに示すように、複数の金属の層であってもよい。また、非磁性金属層2は、少なくとも1つあればよく、図1D及び図1Eに示すように、他の層の数に応じて複数であってもよい。積層体1が複数の非磁性金属層2を含む場合、各非磁性金属層2が同じ構成であってもよく、異なる構成であってもよい。同様に、磁性金属層3も、少なくとも1つあればよく、図1Eに示すように、他の層の数に応じて複数であってもよい。積層体1が複数の磁性金属層3を含む場合、各磁性金属層3が同じ構成であってもよく、異なる構成であってもよい。なお、図1Fに示すように、積層体1が非金属層4を含んでもよい。この非金属層4は、1つの非金属の層であってもよく、図1Gに示すように、複数の非金属の層であってもよい。また、非金属層4は、図1Fに示すように、1つであっても、図1Hに示すように、他の層の数に応じて複数であってもよい。積層体1が複数の非金属層4を含む場合、各非金属層4が同じ構成であってもよく、異なる構成であってもよい。
 電磁波シールド効果を高めるために、非磁性金属層2の厚みと磁性金属層3の厚みとの総合計が、15μm以上であることが好ましい。また、成形性を高めるために、この総合計が、150μm以下であることが好ましく、120μm以下であることがより好ましく、80μm以下であることが更により好ましく、60μm以下であることが最も好ましい。このため、積層体1の厚みは、15~150μmであってもよい。
 コストの観点からは、非磁性金属層2は1つであってもよい。一方、非磁性金属層2の合計厚みが同一であっても、積層体1が非磁性金属層2の間に磁性金属層3が存在する構造を有すると、2つの層が電磁波シールド効果に与える相乗効果(例えば、磁性体中の磁束密度の変動時に、磁束の集中域の外側に渦電流を形成してより確実に磁束を捉えたり、発生する電界変動をシールド外へ漏らしたりしない効果)により積層体1の電磁波シールド効果が高まる。また、電磁波が反射する面(層内の異質材接触面)の数を増加させることができるため、電磁波の反射回数が増加し、電磁波を減衰させることができる。そのため、同一の電磁波シールド効果の場合、積層体1の厚みを低減することもできる。したがって、非磁性金属層2が2つ以上あることが好ましい。また、コストの観点から、非磁性金属層2が、5つ以下であることが好ましく、4つ以下であることがより好ましく、3つ以下であることが最も好ましい。
 同様に、コストの観点から、磁性金属層3は1つであってもよい。一方、磁性金属層3の合計厚みが同一であっても、積層体1が磁性金属層3の間に非磁性金属層2が存在する構造を有すると、2つの層が電磁波シールド効果に与える相乗効果により積層体1の電磁波シールド効果が高まる。また、電磁波が反射する面(層内の異質材接触面)の数を増加させることができるため、電磁波の反射回数が増加し、電磁波を減衰させることができる。そのため、同一の電磁波シールド効果の場合、積層体1の厚みを低減することもできる。したがって、磁性金属層3が2つ以上あることが好ましい。また、コストとの観点から、磁性金属層3が、5つ以下であることが好ましく、4つ以下であることがより好ましく、3つ以下であることが最も好ましい。
 アース接続を容易にするために、非磁性金属層2とアモルファス相を含む磁性金属層3とが接触していることが好ましく、非磁性金属層2と磁性金属層3とが全て接触していることがより好ましい。すなわち、非磁性金属層2と磁性金属層3とが交互に配列するように積層されていることが好ましい。特に、30.0×106S/m以上の導電率を有する金属を含む非磁性金属層2とアモルファス相を含む磁性金属層3とが接触していることが好ましい。
 本明細書では、非磁性金属層2は、20℃でのSI単位での体積磁化率が-1.0~1.0の金属の層と定義され、一般的なフェライト磁石を近づけてもフェライト磁石に吸い寄せられないことで確認できる。例えば、このような金属として、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)、錫(Sn)、亜鉛(Zn)及びこれら列挙元素を主成分として含む合金(例えば、銅合金)が挙げられる。これらの材料は、通常比透磁率が1前後(0.9~1.1)でもある。
 交流磁界や交流電界に対する積層体1のシールド効果を高める観点から、非磁性金属層2に含まれる金属が高い導電性を有することが好ましい。具体的には、20℃での導電率が、1.0×106S/m以上であることが好ましく、10.0×106S/m以上であることがより好ましく、30.0×106S/m以上であることが更に好ましく、50.0×106S/m以上であることが最も好ましい。例えば、このような金属として、導電率が約33.0×106S/mのアルミニウム、導電率が約58.0×106S/mの銅、導電率が約61.4×106S/mの銀が挙げられる。非磁性金属層2としては金属箔、メッキ、ペースト、スパッタなど種々の形態を適用しうるが、実用上、金属箔が使用しやすい。導電率とコストとの双方を考慮すると、積層体がアルミニウム又は銅(例えば、アルミニウム箔、アルミニウム合金箔、銅箔及び銅合金箔)を含むことが実用上好ましい。特に、非磁性金属層2が銅を含むと好適である。導電率の上限は、200×106S/mであってもよい。なお、導電性は、JIS H0505(1975)に規定される四端子法により決定される。
 非磁性金属層2が銅箔を含む場合、銅の純度が高いほど、積層体1の電磁波シールド効果が向上する。そのため、銅の純度が、99.5質量%以上であることが好ましく、99.8質量%以上であることがより好ましい。銅の純度が100質量%以下であってもよい。また、銅箔の伸びを高めるために、銅箔が任意元素としてリン(P)、Sn、マンガン(Mn)、クロム(Cr)、Zn、ジルコニウム(Zr)、マグネシウム(Mg)、ニッケル(Ni)、珪素(Si)及びAgからなる群から選択される少なくとも1種の元素を含んでもよい。銅箔がPを含む場合、Pの量が、50質量ppmであることが好ましく、10~50質量ppmであることがより好ましい。また、銅箔がSn、Mn、Cr、Zn、Zr、Mg、Ni、Si及びAgからなる群から選択される少なくとも1種の元素を含む場合、これら元素の合計量が、2000質量ppm以下であることが好ましく、200~2000質量ppmであることがより好ましい。例えば、銅箔は、99.5質量%又は99.8質量%の銅と、上記任意元素及び不純物からなる残部とからなる。銅箔は、圧延銅箔、電解銅箔、メタライズによる銅箔のいずれであってもよい。圧延銅箔は成形性(特に、屈曲性及び絞り加工性)に優れるため、銅箔が圧延銅箔であることが好ましい。
 非磁性金属層2として銅箔を用いる場合、銅箔の厚みが十分に大きいと、非磁性金属層2の強度及び延性が十分に高いため、積層体1の成形性を高めることができる。そのため、非磁性金属層2の厚みが4μm以上であることが好ましい。また、非磁性金属層2の厚みが大きいと、非磁性金属層2による電磁波シールド効果が増加する。そのため、非磁性金属層2の厚みが、6μm以上であることがより好ましく、8μm以上であることがより好ましく、10μm以上であることがより好ましい。非磁性金属層2の厚みが十分に小さいと、非磁性金属層2の強度が十分に小さいため、積層体1の成形性を十分に高めることができる。そのため、非磁性金属層2の厚みが、100μm以下であることが好ましく、50μm以下であることがより好ましく、45μm以下であることが更により好ましく、40μm以下であることが最も好ましい。積層体1が複数の非磁性金属層2を含む場合、1つの非磁性金属層2が上述の厚みの範囲内であってもよく、一部の非磁性金属層2が上述の厚みの範囲内であってもよく、全部の非磁性金属層2が上述の厚みの範囲内であってもよい。
 耐熱性や耐食性といった耐環境性を高めるために、非磁性金属層2がAu、Ag、Sn、Zn又はこれら列挙元素を主成分として含む合金(例えば、Sn合金として、Sn-Ag合金、Sn-Ni合金、Sn-Cu合金が挙げられる)を1種以上含んでもよい。先述の列挙元素及びそれらの合金は、積層体1の最表面に存在することが好ましい。コスト低減の観点から、非磁性金属層2がSn又はSn合金を含むことが好ましい。また、層間の密着性を高めるために、非磁性金属層2が凹凸を有してもよい。この凹凸は、例えば、後述の粗化処理によって形成することができる。積層体1は、先述の列挙元素及びそれらの合金のみからなる非磁性金属層2を含んでもよく、この非磁性金属層2の厚みは、0.001~10μmであると好ましい。
 本明細書では、磁性金属層3は、20℃でのSI単位での体積磁化率が10以上の金属の層と定義され、一般的なフェライト磁石を近づけるとフェライト磁石に吸い寄せられることで確認できる。例えば、このような金属として、鉄(Fe)、ニッケル(Ni)、コバルト(Co)及びこれら列挙元素を主成分として含む合金(例えば、Fe-Niのような鉄合金)が挙げられる。これらの材料は、通常比透磁率が1よりも十分に大きい(例えば、5~106)。
 また、この磁性金属層3のうち少なくとも1つは、アモルファス相を含む。アモルファス相は、明確な結晶構造を持たない相であり、透過電子顕微鏡における電子回折パターンとしてブロードな円環状の電子回折図形が取得できた場合に、磁性金属層3がアモルファス相を含むと判断する。特に、アモルファス相が多い場合には、前述の電子回折図形の取得に加え、後述のX線回折法によりブロードなピークとして容易に特定できるので、透過電子顕微鏡での回折パターンの取得に代えることができる。アモルファス相を含む磁性金属層3としては、例えば、アモルファス相を単独で含むアモルファス金属もしくはアモルファス相中に結晶相が分散したナノ結晶金属が挙げられる。このような磁性金属層3は、磁壁の幅に相当する領域において磁気異方性を非常に小さく制御でき、磁力線を効果的に磁性金属層3の面内に散らすことで磁性金属層3全体を磁界に対する遮蔽に利用することができる。そのため、低周波の磁界ノイズを効率よく低減することができ、積層体1の軽量化に有効である。なお、一般的な薄手の磁性金属は、マクロな方向性を有するため、磁性金属が有する透磁率を十全に利用できていない可能性がある。
 積層体1の寸法を増大させることなく直流磁界や低周波の磁界ノイズに対する積層体1の電磁波シールド効果を高める観点(最適動作点近傍で製品を利用する観点)から、磁性金属層3に含まれる金属が高い飽和磁束密度や高い比透磁率を有することが好ましい。具体的には、20℃での飽和磁束密度が、0.50T以上であることがより好ましく、1.00T以上であることが好ましく、1.50T以上であることがより好ましく、1.60T以上であることがより好ましく、1.70T以上であることが最も好ましい。飽和磁束密度の上限は、2.50Tであってもよい。この飽和磁束密度は、振動試料型磁力計(Vibrating Sample Magnetometer、VSM)によって測定される。また、積層体1や磁性金属層3に含まれる金属について、20℃での微分比透磁率の最大値が、1000以上であることが好ましく、2000以上であることがより好ましく、5000以上であることが最も好ましい。この微分比透磁率の上限は、1.0×106であってもよい。なお、本明細書では、微分比透磁率は、磁束密度の変化を磁界の変化(14.4A/m)で除し、この値を比透磁率に変換した値(107/4πを乗じた値)と定義される。この微分比透磁率は、BHトレーサにより測定される。また、微分比透磁率の最大値は、所定方向での微分比透磁率(第1の微分比透磁率)の最大値とこの所定方向に対して垂直な方向の微分比透磁率(第2の微分比透磁率)との平均値で定義される。さらに、標準的な用途では、磁気特性が方向性(異方性)を有さないことが電磁波環境に応じた設計を製品に対して適用する必要がないため重要である。そのため、第1の微分比透磁率の最大値と第2の微分比透磁率の最大値とが同等であることが望ましい。例えば、第1の微分比透磁率の最大値を第2の微分比透磁率の最大値で除した値が0.90~1.10であることが好ましく、0.95~1.05であることがより好ましく、0.98~1.02であることが最も好ましい。また、例えば、第1の微分比透磁率の最大値と第2の微分比透磁率の最大値との差を微分比透磁率の最大値で除した値が、0.10以下であることが好ましく、0.08以下であることがより好ましく、0.05以下であることが最も好ましい。
 磁性金属層3がアモルファス相に加え小さなサイズの金属の結晶相(結晶粒)を含むと、上述の磁気異方性や保磁力を大きくすることなく、飽和磁束密度を高めることができる。この結晶粒の平均結晶粒径は、60nm以下であることが好ましく、30nm以下であることがより好ましく、25nm以下であることが更により好ましく、20nm以下であることが更により好ましく、15nm以下であることが最も好ましい。この平均結晶粒径は、3nm以上であってもよい。この平均結晶粒径は、X線回折法(X-ray Diffraction、XRD)によって得られるスペクトル中の金属結晶のメインピークをシェラー法によって解析することによって求められる。このシェラー法におけるシェラーの定数として0.90を用いる。
 また、図2に特定の化学組成(実施例の化学組成)及び10A/m以下の保磁力を有する材料における一例として示すように、金属の結晶相の量が多くなるほど、飽和磁束密度が増加する。そのため、金属の結晶相の量を利用可能な金属の結晶相の量の最大値まで高めることが望ましい。結晶化度を利用可能な金属の結晶相の量の最大値に対する金属の結晶相の量と定義すると、この結晶化度が、10%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがより好ましく、40%以上であることがより好ましく、50%以上であることがより好ましく、60%以上であることが更により好ましく、80%以上であることがより好ましく、90%以上であることが最も好ましい。この結晶化度は、100%以下であってもよい。一方で、結晶化度が高くなると、磁性金属層3が脆くなり、積層体1の成形性が低下する。そのため、成形加工が必要とされる場合には、成形加工前の結晶化度が、75%以下であることが好ましく、60%以下であることがより好ましい。飽和磁束密度と成形性との両者のバランスを鑑みると、結晶化度が、10~75%であることが好ましく、40~60%であると最も好ましい。一般的な薄手の磁性金属は脆いため、成形加工する際に割れが発生しやすい。割れが発生した場合、積層体1が磁界ノイズを低減する効果も低下する。この際、割れから磁界ノイズが漏れている可能性がある。なお、結晶化度は、示差走査熱量計(Differential Scanning Calorimeter、DSC)により決定される。このDSCによる測定では、材料の両面における後述の金属結晶相率がともに1%以下の材料(例えば、液体急冷後でかつ結晶化前の材料)から得られたDSCカーブの金属結晶相の生成に起因する発熱量(ピーク面積から算出)を全発熱量ΔH(all)(すなわち100%)と定義する。同様に、測定対象の材料から得られたDSCカーブの金属結晶相の生成に起因する発熱量(ピーク面積から算出)を残発熱量ΔH(bal)と定義する。また、結晶化度は、全発熱量ΔH(all)から残発熱量ΔH(bal)を差し引いた値を全発熱量ΔH(all)で除し、100を乗ずることにより得られる(すなわち、結晶化度は、(ΔH(all)-ΔH(bal))/ΔH(all)×100により算出される)。なお、金属結晶相の生成に起因するピークが化合物相等の金属相以外の相に起因するピークと重なる場合には、ピーク分離を行い、金属結晶相の生成に起因するピークを特定する。金属結晶相率は、アモルファス相起因のブロードなピークが得られる主要位置における全ての相に対する金属の結晶相の割合と定義される。この金属結晶相率は、XRDによって得られるスペクトルを用いて国際公開第2017/022594号に開示された結晶化度の決定方法により決定する(すなわち、この国際公開におけるXの値を金属結晶相率と定義する)。このXRDでは、両面を測定できる場合、その両面の平均値で定義され、片面のみ測定できる場合、その片面において定義され、表面を測定できない場合、中央(厚さの半分の位置)において定義される。金属結晶相率は、10%以上であることが好ましく、20%以上であることがより好ましく、40%以上であることが最も好ましい。この金属結晶相率は、99%以下であってもよく、70%以下であってもよい。
 さらに、磁性金属層3に残留する磁化を低減するために、20℃での保磁力が、50A/m以下であることが好ましく、20A/m以下であることがより好ましく、10A/m以下であることが更により好ましく、5A/m以下であることが最も好ましい。この保磁力は、BHトレーサにより測定される。
 例えば、磁性金属層3に残留する磁化を低減するために、化合物相(例えば、Fe2BやFe3P)の量を十分に低減することが望ましい。この化合物相の量は、XRDによって得られるスペクトル中に検出されない程度低減することが好ましい。例えば、国際公開第2017/022594号に開示された方法を利用する。すなわち、化合物結晶相率を、上記の主要位置における全ての相に対する化合物相の割合と定義する(すなわち、この国際公開におけるYの値を化合物結晶相率と定義する)。化合物結晶相率は、2%以下であると好ましく、1%以下であるとより好ましい。この化合物結晶相率は、0%以上であってもよい。この化合物相が多くなると、磁性金属層3中のアモルファス相の量が低下する。
 磁性金属層3は、薄帯を含んでもよく、粉体を層状に成形した材料を含んでもよい。磁性金属層3が連続していると、磁束の漏れが少なくなるため、積層体1の遮蔽能力が向上する。そのため、磁性金属層3は、薄帯を含むことが好ましい。また、薄帯の割れが少ないことが好ましい。特に、磁性金属層3を貫通する割れがないことが好ましい。
 また、磁性金属層3に含まれる金属の化学組成は、特に限定されないが、例えば、以下の化学組成を選択できる。
 Fe、Ni、Coは、強磁性を有し、飽和磁束密度を高める。そのため、Fe、Ni、Coの合計量が65.0~100原子%であることが好ましい。この金属がアモルファス相を含む場合、アモルファス相の安定性の観点から、Fe、Ni、Coの合計量が65.0~92.0原子%であることが好ましい。例えば、このような金属として、硼素(B)、Si、P及び炭素(C)からなる群から選択される少なくとも1種の元素と、Fe、Ni及びCoからなる群から選択される少なくとも1種の元素とを含む合金やZr、ハフニウム(Hf)、ニオブ(Nb)からなる群から選択される少なくとも1種の元素と、Fe、Ni及びCoからなる群から選択される少なくとも1種の元素とを含む合金が挙げられる。
 B、Si、P、C、Zr、Hf、Nbは、アモルファス相の熱安定性を高める。そのため、B、Si、P、C、Zr、Hf、Nbの合計量が8.0原子%以上であることが好ましい。一方、高い飽和磁束密度を得るために、この合計量が、35.0原子%以下であることが好ましい。主にFe、Ni、Coよりも原子半径が小さいB、Si、P、Cによりアモルファス相に熱安定性を付与する場合には、B、Si、P、Cの合計量が、10.0原子%以上であることが好ましく、12.0原子%以上であることがより好ましく、14.0原子%以上であることが最も好ましい。一方、高い飽和磁束密度を得るために、この合計量が、35.0原子%以下であることが好ましく、20.0原子%以下であることがより好ましく、16.0原子%以下であることが更により好ましく、15.0原子%以下であることが最も好ましい。B、Si、P、Cは、互いにアモルファス相中における活量を大きく増加させてアモルファス相の安定度を大きく高めるため、B、Si、P、Cからなる群から選択される元素が2種以上であることが好ましく、3種以上であることがより好ましく、4種であることが最も好ましい。主にFe、Ni、Coよりも原子半径が大きいZr、Hf、Nbによりアモルファス相に熱安定性を付与する場合には、Zr、Hf、Nbの合計量が、5.0原子%以上であることが好ましく、8.0原子%以上であることがより好ましい。一方、高い飽和磁束密度を得るために、この合計量が、15.0原子%以下であることが好ましく、10.0原子%以下であることがより好ましい。
 Fe、Ni、Coの中でもFeがコストの面で優位である。また、原子半径が大きい元素よりも原子半径が小さい元素がアモルファス相の安定性を保ちながら高い飽和磁束密度を得るのに有利である。そこで、以下では、一例として、Feが磁性金属層3の主成分であり、B、Si、P及びCからなる群から選択される少なくとも1種の元素を含む化学組成について説明する。なお、本例の場合、FeとBとSiとPとCと任意元素(Cu、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Co、Ni、Cu、Ag、Zn、Al、Sn、As、Sb、Bi及び希土類元素(REM))と不純物との合計量は、100原子%である。
 Feは、強磁性を有し、飽和磁束密度を高める。そのため、Feの量が、65.0原子%以上であることが好ましく、70.0原子%以上であることがより好ましく、75.0原子%以上であることがより好ましく、79.0原子%以上であることがより好ましく、81.0原子%以上であることが更により好ましく、83.0原子%以上であることが最も好ましい。一方、アモルファス相の安定性を高めるために、Feの量が、92.0原子%以下であることが好ましく、88.0原子%以下であることがより好ましく、86.0原子%以下であることがより好ましく、85.0原子%以下であることが最も好ましい。
 Bは、アモルファス相の熱安定性を特に高める。そのため、Bの量は、0.1原子%以上であることが好ましく、1.0原子%以上であることがより好ましく、5.0原子%以上であることがより好ましく、7.5原子%以上であることが更により好ましく、8.0原子%以上であることが最も好ましい。一方、高い飽和磁束密度を得るために、Bの量が、16.0原子%以下であることが好ましく、13.0原子%以下であることがより好ましく、11.0原子%以下であることが更により好ましく、10.0原子%以下であることが更により好ましく、9.4原子%以下であることが最も好ましい。Si、P及びCの量に応じてBの量は0原子%であってもよい。
 Siは、アモルファス相の熱安定性を高め、熱処理時の化合物相の生成温度を高くする。そのため、Siの量は、0.1原子%以上であることが好ましく、0.2原子%以上であることがより好ましく、0.5原子%以上であることがより好ましく、1.0原子%以上であることが更により好ましく、2.0原子%以上であることが最も好ましい。また、Siは、酸化によりシリカの表面被膜を形成でき、磁性金属層に絶縁性や耐食性を付与する。この場合、Siの量は、8.0原子%以上であることが好ましく、10.0原子%以上であることがより好ましい。一方、高い飽和磁束密度を得るために、Siの量が、15.0原子%以下であることが好ましく、10.0原子%以下であることがより好ましく、8.0原子%以下であることがより好ましく、5.0原子%以下であることが更により好ましく、4.0原子%以下であることが最も好ましい。B、P及びCの量に応じてSiの量は0原子%であってもよい。
 Pは、アモルファス相の熱安定性を高め、熱処理時に結晶粒を微細に維持する。そのため、Pの量は、0.1原子%以上であることが好ましく、1.0原子%以上であることがより好ましく、2.0原子%以上であることが更により好ましく、3.0原子%以上であることが最も好ましい。一方、高い飽和磁束密度を得るために、Pの量が、15.0原子%以下であることが好ましく、10.0原子%以下であることがより好ましく、8.0原子%以下であることが更により好ましく、5.0原子%以下であることが最も好ましい。B、Si及びCの量に応じてPの量は0原子%であってもよい。
 Cは、アモルファス相の熱安定性を高める。そのため、Cの量は、0.1原子%以上であることが好ましく、0.5原子%以上であることがより好ましく、1.0原子%以上であることが最も好ましい。一方、高い飽和磁束密度を得るために、Cの量が、10.0原子%以下であることが好ましく、8.0原子%以下であることがより好ましく、5.0原子%以下であることが更により好ましく、3.0原子%以下であることが最も好ましい。B、Si及びPの量に応じてCの量は0原子%であってもよい。
 また、入手容易な熱処理方法でアモルファス相中に安定的に結晶粒を分散させて飽和磁束密度を安定的に高めるために、例えば、磁性金属層3が任意元素としてCuを含んでもよい。Cuの量は、0.1原子%以上であることが好ましく、0.4原子%以上であることがより好ましく、0.5原子%以上であることが更により好ましく、0.6原子%以上であることが最も好ましい。アモルファス相の熱安定性及び高い飽和磁束密度を維持する観点から、Cuの量は、2.0原子%以下であることが好ましく、1.5原子%以下であることがより好ましく、1.1原子%以下であることが更により好ましく、1.0原子%以下であることが更により好ましく、0.9原子%以下であることが最も好ましい。Cuの量は、0原子%であってもよい。
 上記に加え、上記特性に関する追加の効果やその他の特性を付与するために、例えば、磁性金属層3が、任意元素として、チタン(Ti)、Zr、Hf、バナジウム(V)、Nb、タンタル(Ta)、Cr、モリブデン(Mo)、タングステン(W)、マンガン(Mn)、Co、Ni、Ag、Zn、Al、Sn、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)及びREMからなる群から選択される少なくとも1種を含んでもよい。これら元素のうち、Coは、高価であるが、Feとの組み合わせで飽和磁束密度を大きく向上する。そのため、Coの量が、0.1原子%以上であることが好ましく、1.0原子%以上であることがより好ましく、3.0原子%であることが最も好ましい。Feを主成分とするコスト上の利点を考慮すると、Coの量は、Feの量の半分もしくは30.0原子%以下であってもよい。また、Niは、飽和磁束密度をそれほど低下させることなく、耐食性を向上させることができる。そのため、Niの量が、0.1原子%以上であることが好ましく、1.0原子%以上であることがより好ましく、3.0原子%であることが最も好ましい。Feを主成分とするコスト上の利点を考慮すると、Niの量は、15.0原子%以下であってもよい。FeとNiとCoとの合計量は、65.0~90.0原子%であることが好ましい。上記特性に関する追加の効果やその他の特性を付与する場合であっても、飽和磁束密度を高く維持する観点から、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量は、8.0原子%以下であることが好ましく、5.0原子%以下であることがより好ましく、3.0原子%以下であることが更により好ましく、1.0原子%以下であることが最も好ましい。Fe、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Co、Ni、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量は、65.0~90.0原子%であることが好ましい。これら任意元素は、0原子%であってもよい。なお、REMは、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)である。
 上記に加え、磁性金属層3は、不可避的に不純物を含んでもよい。但し、不純物の量は、0.5原子%以下であることが好ましく、0.1原子%以下であることがより好ましく、0.05原子%以下であることが更により好ましく、0.01原子%以下であることが最も好ましい。例えば、不純物として、O、N、S、Pb及びCdが挙げられるが、これらに限られない。不純物は、0原子%であってもよい。
 したがって、本発明の一実施形態では、アモルファス相を含む前記磁性金属層では、Fe、Ni、Coの合計量が65.0~90.0原子%であり、Cuの量が0~2.0原子%であり、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が0~8.0原子%であり、残部がB、Si、P及びCからなる群からなる少なくとも1種及び不純物であり、Fe、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Co、Ni、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が65.0~90.0原子%である。
 また、本発明の別の一実施形態では、アモルファス相を含む前記磁性金属層では、Fe、Ni、Coの合計量が65.0~92.0原子%であり、Cuの量が0~2.0原子%であり、Ti、V、Ta、Cr、Mo、W、Mn、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が0~8.0原子%であり、B、Si、P及びCの合計量が0~10.0原子%であり、残部がZr、Hf及びNbからなる群から選択される少なくとも1種及び不純物である。
 また、本発明の別の一実施形態では、アモルファス相を含む前記磁性金属層では、Feの量が79.0~88.0原子%であり、Bの量が5.0~15.0原子%であり、Siの量が0~8.0原子%であり、Pの量が1.0~8.0原子%であり、Cの量が0~5.0原子%であり、Cuの量が0~1.4原子%であり、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が0~8.0原子%であり、Fe、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Co、Ni、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が79.0~88.0原子%であり、Fe、B、Si、P、C、Cu、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Co、Ni、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が100%である。
 本例において、アモルファス相を含む磁性金属層3として、国際公開第2010/021130号に開示される合金組成物を好適に用いることができる。したがって、国際公開第2010/021130号の開示内容が本明細書の内容に矛盾しない限りにおいて全て引用により本明細書に取り込まれる。
 例えば、アモルファス相中に安定的に結晶粒を分散させる場合であって、PとCuとの相乗効果(結晶粒微細化)を重視する場合には、Pの量(原子%)に対するCuの量(原子%)の割合が、0.08~0.80であることが好ましく、0.08~0.55であることがより好ましい。
 また、例えば、不純物を除き、組成式がFeabSicxyCuzである場合、Feの量(a)が79.0~88.0原子%であり、Bの量(b)が5.0~15.0原子%であり、Siの量(c)が0~8.0原子%であり、Pの量(x)が1.0~8.0原子%であり、Cの量(y)が0~5.0原子%であり、Cuの量(z)が0~1.4原子%であることが好ましい。
 磁性金属層3の厚みが十分に大きいと、磁性金属層3の強度が十分に高いため、積層体1の加工性を高めることができる。そのため、磁性金属層3の厚みが4μm以上であることが好ましい。また、磁性金属層3の厚みが大きいと、磁性金属層3による電磁波シールド効果が増加する。そのため、磁性金属層3の厚みが、10μm以上であることがより好ましく、15μm以上であることがより好ましく、20μm以上であることが更により好ましい。磁性金属層3の厚みが十分に小さいと、磁性金属層3の強度が十分に小さいため、積層体1の成形性を十分に高めることができる。そのため、磁性金属層3の厚みが、100μm以下であることが好ましく、50μm以下であることがより好ましく、45μm以下であることが更により好ましく、40μm以下であることが最も好ましい。積層体1が複数の磁性金属層3を含む場合、1つの磁性金属層3が上述の厚みの範囲内であってもよく、一部の磁性金属層3が上述の厚みの範囲内であってもよく、全部の磁性金属層3が上述の厚みの範囲内であってもよい。
 また、積層体1が任意で非晶質相を含まない磁性金属層3を含んでもよい。例えば、耐熱性や耐食性といった耐環境性を高めたり、層間の密着性を高めたり、直流磁界に対する積層体の遮蔽能力を高めたりするために、この磁性金属層3がFe、Ni、Coからなる群から選択される少なくとも1種を含んでもよい。特に、耐熱性や耐食性といった耐環境性を高める場合には、磁性金属層3が積層体の最表面に存在することが好ましい。このような磁性金属層3として、NiやFe-Niが挙げられる。これらNi及びFe-Niは、箔の積層だけでなくめっきや蒸着によっても形成できる。
 非磁性金属層2及び磁性金属層3の他、積層体1が任意で非金属層4を含んでもよい。例えば、耐熱性や耐食性といった耐環境性を高めたり、層間の密着性を高めたりするために、非金属層4がクロム化合物を含んでもよい。また、層間の密着性を高めるために、非金属層4がポリマーを含んでもよい。例えば、ポリマーが、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル、シリコン樹脂、ポリ酢酸ビニル、スチレンブタジエンゴム、ニトリルゴム、フェノール樹脂、シアノアクリレートから選択される少なくとも1種であってもよい。コスト面からは、ポリマーが、ウレタン樹脂、ポリエステル樹脂、ポリ酢酸ビニルであることが好ましい。また、例えば、層間や表面に絶縁性を付与するために、非金属層4が絶縁層を含んでもよい。特に、耐熱性や耐食性といった耐環境性を高める場合には、非金属層4が積層体1の最表面に存在することが好ましい。単位厚み当たりの積層体1の電磁波シールド効果を高めるために、非金属層4の厚みは、20μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることが更により好ましく、5μm以下であることが最も好ましい。また、非金属層4の厚みは、0.1、1.0、1.5又は2.0μm以上であってもよい。
(2.積層体の製造方法)
 本発明の別の実施形態に係る積層体の製造方法は、図3のフローチャートに示すように、非磁性金属とアモルファス相を含む磁性金属(アモルファス磁性金属)とを含む材料を積層して未焼成積層体を形成する積層工程を含む。この積層工程により前述の非磁性金属層と磁性金属層とを形成する。これら層に使用する材料及び層の構成については、前述の通りであるので、割愛する。
 用途に応じた成形加工が必要な場合、未焼成積層体を所定の形状に成形加工する成形加工工程を含んでもよい。この成形加工工程は、例えば、切断、打ち抜き、深絞り、張り出し、曲げ等の加工を含んでもよい。
 アモルファス磁性金属の結晶化度を高めて積層体の電磁波シールド効果を高める場合や成形加工工程によって生じた歪を低減する場合には、本製造方法が、焼成工程を含むと好ましい。この焼成工程では、未焼成積層体又は後述の前焼成済積層体から焼成済積層体を形成する。但し、結晶化度の増加と共にアモルファス磁性金属は脆化するため、成形加工工程後に焼成工程を含むと好ましい。焼成工程によって得られるアモルファス磁性金属の結晶化度が、10%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがより好ましく、40%以上であることがより好ましく、50%以上であることが更により好ましく、60%以上であることが更により好ましく、70%以上であることが更により好ましく、80%以上であることが更により好ましく、90%以上であることが最も好ましい。この結晶化度は、100%以下であってもよく、100%未満であってもよい。熱処理条件は、材料に応じて変化させることが好ましい。例えば、熱処理温度は、350~650℃であってもよく、金属結晶相が析出する温度よりも高く化合物結晶相が析出しない温度よりも低い温度で行うことが好ましい。熱処理時間は、例えば、1~3600秒であってもよい。
 また、成形加工工程後の結晶化を安定的に行ったり成形加工工程における成形性を調整したりするために、積層工程と成形加工工程との間に予備焼成工程を含んでもよい。この予備焼成工程では、未焼成積層体から前焼成済積層体を形成する。成形加工工程における成形性を維持するために、予備焼成工程によって得られるアモルファス磁性金属の結晶化度が、75%以下であることが好ましく、60%以下であることがより好ましく、50%以下であることがより好ましく、40%以下であることがより好ましく、30%以下であることがより好ましく、20%以下であることが更により好ましく、10%以下であることが最も好ましい。この結晶化度は、0%以上であってもよく、5%以上であってもよい。また、焼成工程における結晶化の安定性を確保するために、予備焼成工程によって得られるアモルファス磁性金属の結晶化度が、10%以上であることが好ましく、20%以上であることがより好ましく、50%以上であることが最も好ましい。
 非磁性金属及びアモルファス磁性金属の製法は、限定されない。例えば、非磁性金属が銅箔である場合、銅箔が、圧延銅箔、電解銅箔、メタライズによる銅箔のどれであってもよい。また、アモルファス相を含む磁性金属は、気相、液相のどちらの急冷法で製造されていてもよい。例えば、このような製造方法として、薄帯の場合、単ロール法、双ロール法、溶射法、めっき法及び蒸着法が挙げられる。粉体の場合、薄帯を粉砕する方法の他、水アトマイズ法やガスアトマイズ法が挙げられる。非磁性金属及びアモルファス磁性金属に追加の処理がなされた材料を用いてもよい。例えば、アモルファス磁性金属中に予め含まれる歪の量を調整して熱処理後の材料の寸法変化による反りを軽減するために、アモルファス磁性金属に予め熱処理をした材料を使用してもよい。この場合であっても、結晶化度は、限定されない。但し、十分な成形性が必要な場合には、結晶化度が0~5%であると好ましい。また、例えば、追加の電磁波シールド効果、耐環境性や密着性の積層体への付与を目的として、各種めっき(Au、Ag、Sn、Ni、Fe-Ni合金、Zn、Sn合金[Sn-Ag、Sn-Ni、Sn-Cu])、各種化成処理(クロメート処理)、粗化処理がなされた材料を非磁性金属及びアモルファス磁性金属として使用してもよい。耐環境性とコストとの両面からは、材料がSnめっき又はSn合金めっきを含むことが好ましい。密着性の観点からは、粗化処理がなされた材料を使用することが好ましい。これらの追加の処理が材料に対して複数なされていてもよい。
 積層工程において、接着剤を介することなく層間を密着させる場合には、例えば、表面活性化接合法を使用してもよい。この表面活性化接合法では、非磁性金属の表面とアモルファス磁性金属の表面とを活性化させ、活性化した両金属の表面を接触させて接合する。接触には、重ね合わせロールによる圧着を用いることができる。両金属の表面の活性化方法として、例えば、イオンエッチング法、真空中での乾式成膜法が挙げられる。各金属の表面の活性化方法は、互いに同じでもよく、互いに異なってもよい。また、接着剤を用いる場合には、例えば、前述のポリマーに対応した接着剤(例えば、ウレタン樹脂の場合には、ポリオール及びイソシアネート)を使用することができる。この場合、接着剤の耐熱条件とアモルファス磁性金属の熱処理条件とを比較して接着剤が劣化しないようにアモルファス磁性金属の熱処理を調整することが好ましい。
 また、積層体に美観や耐環境性、その他の特性を付与するために、最終工程で積層体の表面に対して表面処理がなされてもよい。接着剤を付与した積層が必要な場合は、この表面処理の一環として、例えば、追加の積層工程を付与してもよい。この追加の積層工程の後に熱処理を行ってもよい。この場合において、接着剤やポリマーを使用する場合には、熱処理温度が、接着剤やポリマーの耐熱温度よりも低い温度であることが好ましい。
 製品としての積層体は、未焼成積層体、前焼成済積層体、焼成済積層体のいずれであってもよく、成形加工の有無を問わない。未焼成積層体や前焼成済積層体であっても、電磁波に対する十分なシールド効果を有する場合には、そのまま使用することもできる。目的に応じて、アモルファス磁性金属の結晶化の程度を調整するとよい。
 上述の実施形態に係る積層体及び積層体の製造方法は、特に、電気・電子機器(例えば、インバータ、通信機、共振器、電子管・放電ランプ、電気加熱機器、電動機、発電機、電子部品、印刷回路、医療機器等)の被覆材又は外装材、電気・電子機器に接続されたハーネスや通信ケーブルの被覆材、電磁波シールドシート、電磁波シールドパネル、電磁波シールド袋、電磁波シールド箱、電磁波シールド室など各種の電磁波シールド用途に利用することが可能である。
 以下に、本発明の実施例を比較例と共に示すが、これらは本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
 非磁性金属として圧延銅箔を使用した。この圧延銅箔は、厚さ12μmの純銅[非磁性(反磁性)]であり、20℃での導電率が58.0×106S/mであった。また、アモルファス磁性金属として単ロール法により製造したアモルファス金属薄帯を使用した。このアモルファス金属薄帯では、金属結晶相率が0%(株式会社リガク製MiniFlex600にてCuターゲット、管電圧40kV、管電流15mA、ステップサイズ0.01°、スキャン速度10°/分の条件で薄帯の両面を測定した[θ-2θ法])であり、結晶化度が0%(定義)であり、厚さが25μmであり、飽和磁束密度が1.57T(東英工業株式会社製VSM-P7-15により8×8mmのサンプルの飽和質量磁化を測定し、この飽和質量磁化に4πとアルキメデス法で求めた密度とを乗ずることにより飽和磁束密度を求めた)であり、保磁力(理研電子株式会社製Model BHS-40により10×70mmのサンプルを測定した)が16.5A/mであった。化学組成がFe84.89.4Si0.53.5Cu0.81.0(原子%)[磁性(強磁性)]であり、不純物の量(前述の6元素を除く元素の合計量)が0.1原子%以下であった。長さと幅とがほぼ同じになるように銅箔とアモルファス金属薄帯とを切断した。
 実施例1~5では、圧延銅箔の表面とアモルファス金属薄帯の表面とをイオンエッチング(プラズマ)により活性化させ、ロールで圧延することにより接合した(表面活性化接合)。この接合により、未焼成積層体を形成し、銅箔によって非磁性金属層を、アモルファス金属薄帯によってアモルファス相を有する磁性金属層を構成した。これら実施例の未焼成積層体の一部を455℃に設定した炉長0.75mの炉内に1.5m/分の速度で通過させ、磁性金属層の一部を結晶化させて前焼成済積層体を形成した(予備焼成工程)[結晶化度53%](パーキンエルマー製DSC8500にて20mgのサンプルを40℃/分の加熱速度で測定した)。また、実施例の未焼成積層体及び前焼成済積層体の一部を、平坦に保ちながら炉内で1℃/分の加熱速度で425℃まで加熱し、10分保持した後、炉冷することにより、磁性金属層を十分に結晶化させて焼成済積層体を形成した(焼成工程)[結晶化度99%以上]。また、微分比透磁率の最大値(理研電子株式会社製Model BHS-40により測定)は、実施例1、4及び5に対して、それぞれ1.5×104、1.2×103及び6.9×103であった。同様に、第1の微分比透磁率(長手方向)の最大値を第2の微分比透磁率(幅方向)の最大値で除した値は、実施例1、4及び5に対して、それぞれ0.94、0.97及び1.01であった。加えて、第1の微分比透磁率の最大値と第2の微分比透磁率の最大値との差を微分比透磁率の最大値で除した値は、実施例1、4及び5に対して、それぞれ6.3×10-2、2.6×10-2及び9.9×10-3であった。
 実施例6では、アモルファス金属薄帯を490℃に設定した炉長0.75mの炉内に1.0m/分の速度で通過させ、アモルファス金属薄帯を一部結晶化させた[結晶化度60%、飽和磁束密度1.75T]。この結晶化させたアモルファス薄帯を接着剤により銅箔(厚み12μm)と接着し、積層体を形成した。この接着により、非磁性金属層(銅箔)に対して非磁性層(樹脂フィルム[接着剤由来])が接し、この非磁性層に対してアモルファス相を有する磁性金属層(アモルファス金属薄帯)が接していた。接着剤としてウレタン系接着剤を使用したため、非磁性層はウレタン樹脂の層であった。なお、実施例1~6では、各層の端面が一致するように各層が積層されていた。
 比較例1では、銅箔(厚み12μm)をそのまま用いた(非磁性金属層のみに対応する)。比較例2では、アモルファス金属薄帯(厚み25μm)をそのまま用いた(磁性金属層のみに対応する)。
 表1には、実際の積層体の層構成の他、焼成の構成及び磁性金属層の結晶化度及び平均結晶粒径を記載した。
(電磁波シールド効果の評価)
 各実施例及び各比較例の積層体を電磁波シールド効果評価装置(テクノサイエンスジャパン社  型式TSES-KEC)に設置して、500kHz及び1MHzの周波数、20℃の温度の条件下で、KEC法により電磁波シールド効果を評価した。評価基準は以下のとおりである。
[周波数500kHzにおけるシールド効果の評価]
A:磁界シールド効果が35.0dB以上
B:磁界シールド効果が25.0dB以上35.0dB未満
C:磁界シールド効果が25.0dB未満 
[周波数1MHzにおけるシールド効果の評価]
A:磁界シールド効果が40.0dB以上
B:磁界シールド効果が30.0dB以上40.0dB未満
C:磁界シールド効果が30.0dB未満
[磁界シールド効果の総合評価]
A:500kHz、1MHzにおける評価がともにA
B:500kHz、1MHzにおける評価のうちどちらかでB評価あり
C:500kHz、1MHzにおける評価のうちどちらかでC評価あり
(成形性)
 各実施例及び各比較例の積層体から、125mm×125mmの試験片を切り出し、銅箔が外側になるようにΦ18mmの丸棒に試験片を巻き付けた後に展開し、試験片の表裏面に割れが発生しているかを判定した。非磁性金属層又は磁性金属層を貫通する割れが観察される場合には「B」(不良)と評価し、非磁性金属層及び磁性金属層の両方に貫通する割れが観察されない場合には「A」(良)と評価した(図4A及び図4B参照)。また、成形加工工程を適用しない場合にも、「A」(良)と評価した。
Figure JPOXMLDOC01-appb-T000001
(表1)
 表1によると、非磁性金属層とアモルファス相を含む磁性金属層とを含む積層体は、非磁性金属層のみや磁性金属層のみよりも電磁波シールド効果が高かった。また、アモルファス相を含む磁性金属層の結晶化度を適切に調整することにより、十分な成形性を確保したまま低周波領域での電磁波シールド効果を高めることができた。なお、非磁性金属層を設けていることにより、中~高周波領域でも高い電磁波シールド効果を発揮していた。

Claims (17)

  1.  少なくとも1つの非磁性金属層と、少なくとも1つの磁性金属層とを含み、前記磁性金属層の少なくとも1つがアモルファス相を含む積層体。
  2.  前記アモルファス相を含む前記磁性金属層の結晶化度が10%以上である、請求項1に記載の積層体。
  3.  前記積層体の少なくとも一部が成形加工されている、請求項1又は2に記載の積層体。
  4.  前記非磁性金属層の厚みが4~100μmである、請求項1~3のいずれか1項に記載の積層体。
  5.  前記磁性金属層の厚みが4~100μmである、請求項1~4のいずれか1項に記載の積層体。
  6.  前記非磁性金属層と前記磁性金属層との合計厚みが15~150μmである、請求項1~5のいずれか1項に記載の積層体。
  7.  前記非磁性金属層は、アルミニウム箔、アルミニウム合金箔、銅箔及び銅合金箔からなる群から選択される、請求項1~6のいずれか1項に記載の積層体。
  8.  前記アモルファス相を含む前記磁性金属層では、Fe、Ni、Coの合計量が65.0~90.0原子%であり、Cuの量が0~2.0原子%であり、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が0~8.0原子%であり、残部がB、Si、P及びCからなる群からなる少なくとも1種及び不純物であり、Fe、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Co、Ni、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が65.0~90.0原子%である、請求項1~7のいずれか1項に記載の積層体。
  9.  前記アモルファス相を含む前記磁性金属層では、Fe、Ni、Coの合計量が65.0~92.0原子%であり、Cuの量が0~2.0原子%であり、Ti、V、Ta、Cr、Mo、W、Mn、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が0~8.0原子%であり、B、Si、P及びCの合計量が0~10.0原子%であり、残部がZr、Hf及びNbからなる群から選択される少なくとも1種及び不純物である請求項1~7のいずれか1項に記載の積層体。
  10.  前記アモルファス相を含む前記磁性金属層では、Feの量が79.0~88.0原子%であり、Bの量が5.0~15.0原子%であり、Siの量が0~8.0原子%であり、Pの量が1.0~8.0原子%であり、Cの量が0~5.0原子%であり、Cuの量が0~1.4原子%であり、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が0~8.0原子%であり、Fe、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Co、Ni、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が79.0~88.0原子%であり、Fe、B、Si、P、C、Cu、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Co、Ni、Ag、Zn、Al、Sn、As、Sb、Bi及びREMの合計量が100%である、請求項1~7のいずれか1項に記載の積層体。
  11.  前記非磁性金属層の導電率が30.0×106S/m以上であり、前記アモルファス相を含む前記磁性金属層の飽和磁束密度が1.50T以上である、請求項1~10のいずれか1項に記載の積層体。
  12.  少なくとも1つの前記非磁性金属層と、少なくとも1つの前記アモルファス相を含む前記磁性金属層とが接触している、請求項1~11のいずれか1項に記載の積層体。
  13.  非磁性金属と、アモルファス磁性金属とを含む材料を積層して未焼成積層体を形成する積層工程を含む積層体の製造方法。
  14.  さらに、前記未焼成積層体の前記アモルファス磁性金属の結晶化度が10%以上になるように、前記未焼成積層体を焼成する焼成工程を含む、請求項13に記載の積層体の製造方法。
  15.  さらに、前記焼成工程の前に、前記未焼成積層体を所定の形状に加工する成形加工工程を含む、請求項14に記載の積層体の製造方法。
  16.  さらに、前記成形加工工程の前に、前記未焼成積層体の前記アモルファス磁性金属の結晶化度が10~75%になるように、前記未焼成積層体を予備焼成する予備焼成工程を含む、請求項15に記載の積層体の製造方法。
  17.  前記積層工程では、前記非磁性金属と前記アモルファス磁性金属とが表面活性化接合法によって接合される、請求項13~16のいずれか1項に記載の積層体の製造方法。
PCT/JP2022/009221 2021-03-29 2022-03-03 積層体及びその製造方法 WO2022209565A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280007539.2A CN116568834A (zh) 2021-03-29 2022-03-03 层叠体及其制造方法
KR1020237015818A KR20230163346A (ko) 2021-03-29 2022-03-03 적층체 및 그 제조 방법
EP22779790.9A EP4317494A1 (en) 2021-03-29 2022-03-03 Laminate and method for manufacturing same
US18/284,238 US20240153685A1 (en) 2021-03-29 2022-03-03 Laminate and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021056051A JP2022153032A (ja) 2021-03-29 2021-03-29 積層体及びその製造方法
JP2021-056051 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209565A1 true WO2022209565A1 (ja) 2022-10-06

Family

ID=83458581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009221 WO2022209565A1 (ja) 2021-03-29 2022-03-03 積層体及びその製造方法

Country Status (7)

Country Link
US (1) US20240153685A1 (ja)
EP (1) EP4317494A1 (ja)
JP (2) JP2022153032A (ja)
KR (1) KR20230163346A (ja)
CN (1) CN116568834A (ja)
TW (2) TW202330260A (ja)
WO (1) WO2022209565A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290449A (ja) 1994-04-27 1995-11-07 Matsushita Electric Works Ltd シート状の電磁波シールド成形材料及びその製造方法
JP2003285002A (ja) 2002-03-29 2003-10-07 Shinwa Kogyo Kk インバータカバー
JP2008021979A (ja) 2006-07-14 2008-01-31 Samsung Corning Co Ltd 電磁波遮断用光学部材、これを含んだ光学フィルタおよび表示装置
WO2010021130A1 (ja) 2008-08-22 2010-02-25 Makino Akihiro 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP4602680B2 (ja) 2004-03-22 2010-12-22 株式会社オーツカ 電磁波シールド構造
WO2016068046A1 (ja) * 2014-10-27 2016-05-06 東洋鋼鈑株式会社 超電導線材用基板及びその製造方法、並びに超電導線材
WO2017022594A1 (ja) 2015-07-31 2017-02-09 株式会社村田製作所 軟磁性材料およびその製造方法
JP6278922B2 (ja) 2015-03-30 2018-02-14 Jx金属株式会社 電磁波シールド材
JP2018113313A (ja) * 2017-01-11 2018-07-19 株式会社オータマ 磁気シールド部材、磁気シールド部材の製造方法及び磁気シールドパネル
WO2020105543A1 (ja) * 2018-11-19 2020-05-28 北川工業株式会社 磁気シールド材

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124654A (ja) * 1998-10-15 2000-04-28 Kitagawa Ind Co Ltd 電磁波シールド用ガスケット
JP4029697B2 (ja) * 2002-08-30 2008-01-09 王子製紙株式会社 Icチップ実装体
JP4288687B2 (ja) * 2006-12-04 2009-07-01 株式会社 東北テクノアーチ アモルファス合金組成物
CN101231707A (zh) * 2007-01-25 2008-07-30 3M创新有限公司 电磁屏蔽装置
JP5632608B2 (ja) * 2007-03-20 2014-11-26 Necトーキン株式会社 軟磁性合金及びそれを用いた磁気部品並びにそれらの製造方法
JP5581163B2 (ja) * 2010-09-30 2014-08-27 日東電工株式会社 ワイヤレス電力伝送用電磁波シールドシート
JP6949453B2 (ja) * 2015-07-24 2021-10-13 大日本印刷株式会社 電磁波シールド積層材および電磁波シールド回路基板
JP2017212239A (ja) * 2016-05-23 2017-11-30 株式会社豊田中央研究所 電磁シールド材および電磁シールド材の製造方法
JP6942343B2 (ja) * 2017-11-08 2021-09-29 国立研究開発法人産業技術総合研究所 磁性材料およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290449A (ja) 1994-04-27 1995-11-07 Matsushita Electric Works Ltd シート状の電磁波シールド成形材料及びその製造方法
JP2003285002A (ja) 2002-03-29 2003-10-07 Shinwa Kogyo Kk インバータカバー
JP4602680B2 (ja) 2004-03-22 2010-12-22 株式会社オーツカ 電磁波シールド構造
JP2008021979A (ja) 2006-07-14 2008-01-31 Samsung Corning Co Ltd 電磁波遮断用光学部材、これを含んだ光学フィルタおよび表示装置
WO2010021130A1 (ja) 2008-08-22 2010-02-25 Makino Akihiro 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
WO2016068046A1 (ja) * 2014-10-27 2016-05-06 東洋鋼鈑株式会社 超電導線材用基板及びその製造方法、並びに超電導線材
JP6278922B2 (ja) 2015-03-30 2018-02-14 Jx金属株式会社 電磁波シールド材
WO2017022594A1 (ja) 2015-07-31 2017-02-09 株式会社村田製作所 軟磁性材料およびその製造方法
JP2018113313A (ja) * 2017-01-11 2018-07-19 株式会社オータマ 磁気シールド部材、磁気シールド部材の製造方法及び磁気シールドパネル
WO2020105543A1 (ja) * 2018-11-19 2020-05-28 北川工業株式会社 磁気シールド材

Also Published As

Publication number Publication date
TW202237394A (zh) 2022-10-01
JP2023085266A (ja) 2023-06-20
KR20230163346A (ko) 2023-11-30
EP4317494A1 (en) 2024-02-07
JP2022153032A (ja) 2022-10-12
US20240153685A1 (en) 2024-05-09
TW202330260A (zh) 2023-08-01
CN116568834A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
US9832917B2 (en) Electromagnetic wave absorbing sheet and method of manufacturing the same and electronic device using the same
US10010018B2 (en) Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
JP5231993B2 (ja) 非接触充電装置用受電装置
JP6151185B2 (ja) 非接触受電装置用磁性シートとそれを用いた非接触受電装置、電子機器、並びに非接触充電装置
JP5613646B2 (ja) 電子機器および非接触充電装置
US8283888B2 (en) Power receiver, and electronic apparatus and non-contact charger using same
JP2008270368A (ja) 圧粉磁心およびその製造方法
TWI679106B (zh) 電磁波屏蔽材
KR102183923B1 (ko) 자심
KR102315813B1 (ko) 무선충전 수신장치 모듈용 방열부재, 이를 포함하는 무선충전 수신장치 모듈 및 무선충전 수신장치
WO2022209565A1 (ja) 積層体及びその製造方法
CN108076619A (zh) 无线充电用电磁波屏蔽片
US10944301B2 (en) Laminate for use in core
JP7181064B2 (ja) 強磁性積層膜およびその製造方法ならびに電磁誘導性電子部品
WO2024018752A1 (ja) 電磁波遮蔽材料、被覆材又は外装材及び電気・電子機器
JP2009253543A (ja) 積層アンテナ
JP2021136399A (ja) シールド部材及びその製造方法
JP2006269536A (ja) 磁気シールド装置の製造方法および磁気シールドシート
JP2009017395A (ja) 積層体およびアンテナ用磁心
JP2009016550A (ja) 積層体およびアンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007539.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18284238

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022779790

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022779790

Country of ref document: EP

Effective date: 20231030