WO2016068046A1 - 超電導線材用基板及びその製造方法、並びに超電導線材 - Google Patents

超電導線材用基板及びその製造方法、並びに超電導線材 Download PDF

Info

Publication number
WO2016068046A1
WO2016068046A1 PCT/JP2015/079999 JP2015079999W WO2016068046A1 WO 2016068046 A1 WO2016068046 A1 WO 2016068046A1 JP 2015079999 W JP2015079999 W JP 2015079999W WO 2016068046 A1 WO2016068046 A1 WO 2016068046A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
superconducting wire
layer
less
crystal orientation
Prior art date
Application number
PCT/JP2015/079999
Other languages
English (en)
French (fr)
Inventor
哲平 黒川
橋本 裕介
岡山 浩直
永石 竜起
康太郎 大木
元気 本田
Original Assignee
東洋鋼鈑株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社, 住友電気工業株式会社 filed Critical 東洋鋼鈑株式会社
Priority to EP15856116.7A priority Critical patent/EP3214627B1/en
Priority to US15/522,378 priority patent/US10748678B2/en
Priority to KR1020177008923A priority patent/KR102403087B1/ko
Priority to CN201580052715.4A priority patent/CN106716559B/zh
Priority to JP2016556541A priority patent/JP6539673B2/ja
Publication of WO2016068046A1 publication Critical patent/WO2016068046A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate

Definitions

  • the present invention relates to a substrate for a superconducting wire and a method for manufacturing the same.
  • the present invention also relates to a superconducting wire using a substrate for a superconducting wire.
  • the superconducting wire is a single layer or multiple layers of cerium oxide (CeO 2 ), zirconia-added yttrium oxide (YSZ), yttrium oxide (Y 2 O 3 ) or other oxide layer on the metal substrate.
  • a superconducting layer (RE123 film, RE: Y, Gd, Ho, etc.) is laminated on a base material on which an intermediate layer made of is laminated.
  • an ion-assisted beam film-forming method in which a superconducting layer inherits crystal orientation by forming an oriented intermediate layer on a non-oriented metal substrate such as Hastelloy.
  • a method for forming a film by taking over the crystal orientation with the intermediate layer and the superconducting layer by using a metal substrate with biaxial crystal orientation.
  • the latter method is advantageous in consideration of future production efficiency such as film formation speed, but in order to improve the superconducting characteristics, it is necessary to highly orient the metal substrate in biaxial crystal orientation.
  • the crystal orientation of the metal substrate is evaluated by, for example, the c-axis orientation ratio of the outermost layer of the substrate, ⁇ (index of out-of-plane orientation) and ⁇ (index of in-plane orientation).
  • a metal substrate (superconducting wire substrate)
  • Patent Document 1 in an oriented substrate for epitaxial film formation in which an oriented metal layer made of oriented copper is clad with a metal substrate as a reinforcing material, the oriented metal layer has an orientation degree ⁇ .
  • are all metals having an orientation of 5 to 9 °
  • an orientation improving layer made of a nickel plating film and having a thickness of 100 to 5000 nm is provided on the surface of the oriented metal layer, and the orientation
  • the difference between the degree of orientation ( ⁇ and ⁇ ) on the surface of the metallized metal layer and the degree of orientation ( ⁇ and ⁇ ) on the surface of the orientation improving layer is 0.1 to 3.0 °.
  • the conventional superconducting wire substrate is manufactured with specific values of the c-axis orientation ratio, ⁇ and ⁇ of the outermost layer of the biaxial crystal-oriented metal substrate, and the c-axis orientation ratio is It is known that a higher superconducting property can be obtained as the height is higher, as ⁇ is smaller, and as ⁇ is smaller.
  • an object of the present invention is to provide a substrate for a superconducting wire for producing a superconducting wire having excellent superconducting properties and a method for producing the same.
  • the present inventors have found that the crystal orientation of the outermost layer metal of the superconducting wire substrate has a specific c-axis orientation ratio and ⁇ , and the outermost layer crystal It has been found that a superconducting wire material with improved superconducting characteristics can be obtained by controlling the ratio of the area whose orientation is deviated by more than a specific angle from (001) [100] within a predetermined range. completed. That is, the gist of the present invention is as follows.
  • Percentage of area where the crystal orientation of the outermost layer metal is c-axis orientation ratio of 99% or more, ⁇ is 6 ° or less, and the crystal orientation is shifted from (001) [100] by 6 ° or more Is a substrate for superconducting wire having 6% or less per unit area.
  • a superconducting wire comprising the superconducting wire substrate according to any one of (1) to (6), an intermediate layer laminated on the substrate, and a superconducting layer laminated on the intermediate layer.
  • the c-axis orientation rate is specified to be 99% or more, ⁇ is set to 6 ° or less, and the crystal orientation is from (001) [100].
  • FIG. 1 is a graph showing the relationship between ⁇ and ⁇ and the critical current density in the example.
  • FIG. 2 is a diagram showing the relationship between the ratio of the area where the crystal orientation is shifted by 6 ° or more from (001) [100] and the critical current density in the example.
  • FIG. 3 is a graph showing changes in the surface roughness of the copper layer accompanying polishing.
  • FIG. 4 is a graph showing changes in the surface roughness of the copper layer accompanying polishing.
  • the superconducting wire substrate of the present invention has a c-axis orientation ratio of 99% or more, ⁇ of 6 ° or less, and a crystal orientation of (001) [100].
  • the ratio of the area displaced by 6 ° or more from the area is 6% or less per unit area (1 mm 2 ).
  • indicates the degree of out-of-plane orientation.
  • is the average value of the rotation angles around the RD [100] and TD [010] of the crystal grains, and it is unclear how many individual crystal grains are present, so the crystal orientation is (001) [100 ] Is not an indicator of the proportion of the area that is deviated by a certain angle or more.
  • the ratio of the area where the crystal orientation is shifted from the (001) [100] by OO ° or more means that the angle difference from the (001) [100] is XX when observed by the EBSD method.
  • the ratio of the area of the crystal that is at least °.
  • EBSD Electron Back Scatter Diffraction: Electron Back Scattering Diffraction
  • Kikuchi line diffraction Kikuchi pattern
  • the surface of the outermost layer is irradiated with an electron beam, and the information obtained at this time is azimuth information up to a depth of several tens of nm into which the electron beam penetrates, that is, azimuth information of the outermost layer.
  • the ratio of the area where the crystal orientation of the outermost layer metal is shifted by 6 ° or more from (001) [100] is 6% or less per unit area and less than 5%. More preferred.
  • the ratio of the area where the crystal orientation of the outermost layer of the metal is shifted by 10 ° or more from (001) [100] is less than 1% per unit area, and is 15 ° or more.
  • the ratio of the displaced area is less than 0.3% per unit area.
  • the crystal orientation of the outermost metal is such that ⁇ is 6 ° or less, and more preferably ⁇ is less than 5 °.
  • the crystal orientation of the outermost metal layer is preferably ⁇ of 6 ° or less, and more preferably ⁇ is less than 5 °.
  • indicates the degree of in-plane orientation.
  • is an average value of the rotation angles around ND [001] of the crystal grains.
  • indicates the degree of out-of-plane orientation, and is an average value of the rotation angles around the RD [100] and TD [010] of the crystal grains, so there is no correlation between ⁇ and ⁇ . That is, ⁇ and ⁇ are not in a directly corresponding relationship such as a proportional relationship.
  • ⁇ and ⁇ are average values, and it is unclear how much each crystal grain is, and therefore, an index of the ratio of the area where the crystal orientation deviates by more than a specific angle from (001) [100]. It will not be.
  • the crystal orientation of the outermost metal is ⁇ is 6 ° or less, ⁇ is 6 ° or less, and the crystal orientation is from (001) [100] to 6 °.
  • the ratio of the area that has been shifted is 6% or less per unit area, and more preferably, the crystal orientation of the outermost metal is ⁇ is less than 5 °, ⁇ is less than 5 °, and the crystal orientation is The ratio of the area that is shifted by 6 ° or more from (001) [100] is less than 5% per unit area.
  • the measurement area per EBSD is 1 mm 2 of the substrate.
  • the average value and the standard deviation of ⁇ , ⁇ , and the ratio of the area where the crystal orientation is shifted from (001) [100] by 6 ° or more obtained by measuring the crystal orientation by EBSD at any 30 points. It is only necessary that the average value within the range of 2 ⁇ calculated from ⁇ falls within a predetermined value.
  • the outermost layer of the substrate for a superconducting wire of the present invention is preferably a face-centered cubic lattice metal, for example, one or more selected from the group consisting of nickel, copper, silver, aluminum and palladium, or an alloy thereof.
  • a face-centered cubic lattice metal for example, one or more selected from the group consisting of nickel, copper, silver, aluminum and palladium, or an alloy thereof.
  • it is made of copper, nickel, or an alloy thereof because of easy axial crystal orientation and good lattice matching with the intermediate layer.
  • the outermost layer only needs to have the crystal orientation and crystal orientation of the metal, and another non-oriented metal layer may be present under the layer.
  • the thickness of the superconducting wire substrate of the present invention is not particularly limited, but is preferably 50 ⁇ m to 200 ⁇ m. This is because if the thickness is less than 50 ⁇ m, the mechanical strength of the substrate cannot be ensured, and if the thickness is greater than 200 ⁇ m, the workability when processing the superconducting wire cannot be ensured.
  • a substrate for a superconducting wire according to the present invention includes a nonmagnetic metal plate and a crystallized metal layer (hereinafter also referred to as a crystallized metal layer) laminated on the nonmagnetic metal plate. .).
  • a metal layer may be laminated
  • non-magnetic means a state that is not ferromagnetic at 77 K or higher, that is, a Curie point or Neel point is present at 77 K or lower, and becomes a paramagnetic or antiferromagnetic material at a temperature of 77 K or higher.
  • a nickel alloy or an austenitic stainless steel plate is preferably used because it has a role as a reinforcing material having excellent strength.
  • austenitic stainless steel is non-magnetic at room temperature, that is, the metal structure is 100% austenite ( ⁇ ) phase, but the martensite ( ⁇ ′) phase transformation point (Ms point) which is a ferromagnetic material is 77K.
  • the ⁇ ′ phase which is a ferromagnetic substance, may develop at the liquid nitrogen temperature. Therefore, as a substrate for a superconducting wire used at a liquid nitrogen temperature (77K), a substrate whose Ms point is designed to be 77K or less is preferably used.
  • SUS316, SUS316L, SUS310, and SUS305 have a stable ⁇ phase designed with a Ms point sufficiently lower than 77K, and are generally popular and available at a relatively low price. Etc. is preferably used.
  • the thickness of these metal plates is usually applicable as long as it is 20 ⁇ m or more, and considering the thinning and strength of the superconducting wire, it is preferably 50 ⁇ m to 100 ⁇ m, but is not limited to this range. .
  • the metal layer used for the substrate for a superconducting wire of the present invention is preferably cold-rolled at a rolling reduction of 90% or more, more preferably 95% to less than 99% at the time of final rolling, and its cold It does not undergo heat treatment for recrystallization after rolling, and retains the rolling texture developed by cold rolling. If the rolling reduction is less than 90%, the metal may not be oriented in the subsequent heat treatment, and if the rolling reduction is 99% or more, ⁇ of the outermost layer of the superconducting wire substrate cannot be made 6 ° or less. This is because excellent superconducting characteristics cannot be achieved in the obtained superconducting wire.
  • the metal layer can be selected from one or more metals selected from the group consisting of metals, such as nickel, copper, silver, and aluminum, or alloys thereof, which are crystallized by heat treatment after rolling, but biaxial crystal orientation It is preferably made of copper or a copper alloy because it is easy to handle and has good lattice matching with the intermediate layer.
  • the metal layer may contain a trace amount of elements of about 1% or less in order to further improve the biaxial crystal orientation by heat treatment described later.
  • an additive element include one or more elements selected from Ag, Sn, Zn, Zr, O, N, and the like. These additive elements and the metal contained in the metal layer form a solid solution, but if the added amount exceeds 1%, impurities such as oxides other than the solid solution increase, which may adversely affect the crystal orientation. is there.
  • a metal foil is preferably used as the metal layer.
  • the metal foil that can be used is also generally available.
  • copper foil high-rolled copper foil (HA foil) manufactured by JX Nippon Mining & Metals, or SH Copper Products Co., Ltd. High rolled copper foil (HX foil).
  • the thickness of the metal layer is usually in the range of 7 ⁇ m to 70 ⁇ m, preferably 15 ⁇ m to 70 ⁇ m in order to ensure the strength of the metal layer itself and to improve the workability when processing the superconducting wire later.
  • ⁇ of the outermost layer of the substrate is 6 ° or less, and the ratio of the area where the metal crystal orientation is shifted by 6 ° or more from (001) [100] is 6% or less per unit area.
  • a metal layer such as a copper foil having a glossiness of, for example, less than 50, preferably in the range of 30 to 45 can be used.
  • the glossiness is measured before L * , a * , and b * are measured with a color difference meter on the metal layer after rolling before being laminated on the nonmagnetic metal plate in the substrate manufacturing method described later. L value obtained in this way.
  • the superconducting wire substrate of the present invention may include a protective layer formed on the crystallographic metal layer.
  • the protective layer used for the superconducting wire substrate of the present invention is preferably a face-centered cubic lattice metal, for example, made of nickel, palladium, silver or an alloy thereof, preferably made of nickel or a nickel alloy.
  • the protective layer containing nickel is excellent in oxidation resistance, and the presence of the protective layer produces a metal oxide film contained in the crystal orientation metal layer when an intermediate layer such as CeO 2 is formed thereon. This is because the crystal orientation can be prevented from being lost.
  • an element contained in an alloy of nickel, palladium, or silver those having reduced magnetic properties are preferable, and examples thereof include elements such as Cu, Sn, W, and Cr. Further, impurities may be included as long as the crystal orientation is not adversely affected.
  • the thickness of the protective layer is too thin, the surface of the superconducting wire is oxidized when the intermediate layer and the superconducting layer are laminated thereon, and the metal in the crystal orientation metal layer diffuses to the surface of the protective layer. There is a possibility, and if it is too thick, the crystal orientation of the protective layer is lost, and the plating strain is also increased. Specifically, it is preferably in the range of 1 ⁇ m to 5 ⁇ m.
  • the superconducting wire substrate of the present invention has a c-axis orientation ratio of 99% or more, ⁇ of 6 ° or less, and a crystal orientation of (001) [100] to 6 by heat treatment. It can be produced by a method including a step of forming a layer in which the ratio of the area shifted by more than 0 ° is 6% or less per unit area.
  • the c-axis orientation ratio formed by heat treatment is 99% or more, ⁇ is 6 ° or less, and the crystal orientation is shifted by 6 ° or more from (001) [100].
  • a layer having an area ratio of 6% or less per unit area is a crystallographic metal layer.
  • the heat treatment is performed at a temperature of 150 ° C. or higher, for example.
  • the heat treatment time varies depending on the temperature.
  • the heat treatment time is preferably 1 to 10 hours at 400 ° C. and several seconds to 5 minutes at a high temperature of 700 ° C. or higher. If the heat treatment temperature is too high, the metal layer tends to cause secondary recrystallization and the crystal orientation deteriorates.
  • heat treatment at 600 ° C. to 900 ° C. is preferable.
  • stepwise heat treatment is performed stepwise, followed by heat treatment at high temperature, whereby the crystal orientation and surface roughness of the crystal orientation metal layer and the protective layer formed thereafter are improved.
  • a heat treatment at 850 ° C. to 900 ° C. is performed after the heat treatment at 275 ° C. to 325 ° C.
  • a substrate for a superconducting wire includes a step of laminating a nonmagnetic metal plate and a metal layer by surface activation bonding, and a laminate of the nonmagnetic metal plate and the metal layer.
  • the step of heat-treating the metal layer so that the ratio of the area where the crystal orientation is shifted by 6 ° or more from (001) [100] is 6% or less per unit area.
  • the ratio of the area where ⁇ of the outermost layer of the obtained substrate is 6 ° or less and the crystal orientation is shifted by 6 ° or more from (001) [100] is per unit area.
  • the method of adjusting the glossiness of metal layers, such as copper foil used, is mentioned, for example.
  • the glossiness of the metal layer is, for example, less than 50, preferably in the range of 30 to 45.
  • the glossiness is an L value obtained by measuring L * , a * , b * with a color difference meter for a rolled metal layer before being laminated on a non-magnetic substrate.
  • the method of adjusting the reduction rate of the metal layer also allows ⁇ of the outermost layer of the obtained substrate to be 6 ° or less and the crystal orientation is (001).
  • the ratio of the area which is shifted by 6 ° or more from [100] can be 6% or less per unit area.
  • the rolling reduction during the final rolling of the metal layer is preferably 90% or more, more preferably 95% to less than 99%.
  • the ratio of the copper orientation (Copper orientation) in the rolled texture of the metal layer is increased and the proportion of the brass orientation (Bras orientation) is set.
  • ⁇ of the outermost layer of the substrate after heat treatment is set to 6 ° or less, and the ratio of the area where the crystal orientation of the outermost layer is shifted by 6 ° or more from (001) [100] is set to 6% or less per unit area. can do.
  • each of the nonmagnetic metal plate and the metal layer in surface activated bonding, each of the nonmagnetic metal plate and the metal layer
  • the surface adsorption layer and the surface oxide film are removed and activated by performing a sputter etching process on the surface, and then the non-magnetic metal plate and the rolling texture are formed by cold-welding the two activated surfaces.
  • the metal layer that maintains the state is joined.
  • a nonmagnetic metal plate and a metal layer are prepared as a long coil having a width of 150 mm to 600 mm, the two surfaces to be bonded are activated in advance, and then cold-welded. .
  • a non-magnetic metal plate having a joint surface and a metal layer are each grounded as one electrode, and an alternating current of 1 MHz to 50 MHz is applied between the other insulated and supported electrodes and glow discharge And the area of the electrode exposed in the plasma generated by the glow discharge is 1/3 or less of the area of the other electrode.
  • the inert gas argon, neon, xenon, krypton, or a mixed gas containing at least one of these can be used.
  • the surface adsorbing layer may be removed by sputtering the surface where the nonmagnetic metal plate and the metal layer are bonded with an inert gas, and the surface oxide film may be further removed. Activate the surface to be.
  • the grounded electrode is in the form of a cooling roll to prevent the temperature of each conveying material from rising.
  • the press-contact roll process continuously conveys to the press-contact roll process, and presses the activated surfaces.
  • the surface subjected to the activation treatment is re-oxidized during the transfer and affects the adhesion.
  • the laminated body brought into close contact through the pressure contact process is conveyed to the winding process, and is wound there.
  • the adsorbate on the bonding surface is completely removed, but the surface oxide layer need not be completely removed. Even if an oxide layer remains on the entire surface, it is possible to ensure the bondability between the nonmagnetic metal plate and the metal layer by exposing the substrate by friction at the bonding surface in the cold welding process. It is.
  • the oxide layer is completely removed by dry etching, high plasma output or long-time etching is required, and the temperature of the material increases.
  • the metal layer is recrystallized and the metal layer is crystallized before bonding.
  • strain is introduced into the metal layer, and the biaxial crystal orientation of the metal layer is deteriorated.
  • the temperature of the metal layer is kept below 150 ° C.
  • the metal structure of the metal layer is maintained at a temperature of 100 ° C. or lower and the rolled texture is maintained.
  • the metal plate is processed at a high plasma output or the temperature of the metal plate is made higher than the recrystallization start temperature of the metal in the metal layer, The temperature of the metal layer rises due to contact with the metal, and the metal layer is recrystallized simultaneously with rolling, which may deteriorate the biaxial crystal orientation.
  • the temperature of the metal plate below the recrystallization start temperature of the metal in the metal layer also in the sputter etching process of the nonmagnetic metal plate.
  • copper foil is hold
  • the metal layer is kept at room temperature to 100 ° C.
  • the degree of vacuum at this time is preferably higher in order to prevent re-adsorbed substances on the surface, but may be in the range of 10 ⁇ 5 Pa to 10 ⁇ 2 Pa.
  • the rolling roll bonding is performed in a non-oxidizing atmosphere, for example, an inert gas atmosphere such as Ar. It is also preferable.
  • the pressing by the rolling roll is performed in order to ensure the adhesion area of the bonding interface, and to partially peel the surface oxide film layer by friction occurring at the bonding interface at the time of rolling down, to expose the substrate, and it is preferable to add 300 MPa or more, In particular, since the nonmagnetic metal plate and the metal layer are both hard materials, pressurization at 600 MPa to 1.5 GPa is preferable.
  • the pressure may be higher than this, and it has been confirmed that the crystal orientation does not deteriorate after the subsequent heat treatment up to a reduction rate of 30%, but the pressure is preferably reduced to a reduction rate of less than 5%. When a pressure exceeding 30% is applied at the rolling reduction, cracks are generated on the surface of the metal layer, and the crystal orientation of the crystal orientation metal layer after rolling and heat treatment is deteriorated.
  • Surface roughness per unit area 10 ⁇ 10 ⁇ m 2 of the metal layer side surface is a laminate of nonmagnetic metal plates and metal layers (hereinafter also simply referred to as laminate) laminated by surface activated bonding as described above.
  • Ra (hereinafter also referred to as surface roughness Ra) is processed to 15 nm or less (surface roughness adjusting step).
  • the surface roughness of the laminate can be measured by an atomic force microscope (AFM).
  • AFM atomic force microscope
  • the substrate of the present invention having a specific crystal orientation can be obtained, and the crystal orientation of the intermediate layer and the superconducting compound layer laminated on the protective layer by further epitaxial growth can be favorably maintained. it can.
  • the rolling reduction of the laminate after treatment is usually less than 5%.
  • the method for treating the surface roughness Ra on the metal layer side of the laminate to 15 nm or less is not particularly limited.
  • rolling with a rolling roll such as a mirror roll, buffing, electropolishing or electroabrasive
  • polishing Two or more of these methods may be combined.
  • buffing and light rolling with a mirror roll it is preferable to use buffing and light rolling with a mirror roll in combination from the viewpoint of superconducting properties and surface roughness of the obtained superconducting wire and productivity.
  • the mirror surface roll refers to a rolling roll whose surface is mirror-finished.
  • the surface roughness adjusting step when buffing and light rolling with a mirror roll are used in combination, it is preferable to perform buffing and light rolling with a roll reduction of 0 to 1% in this order, specifically buff polishing.
  • the surface roughness Ra is preferably 25 nm or less, and then the surface roughness Ra is preferably 15 nm or less by light rolling at a rolling reduction of 0 to 1% using a mirror roll.
  • the type of abrasive grains used for buffing can be selected as appropriate.
  • the surface roughening is performed by buffing using Al 2 O 3 abrasive grains after buffing using abrasive grains made of SiC.
  • the degree Ra can be reduced to 25 nm or less.
  • the buffing process may be performed a plurality of times, for example, in multiple stages.
  • the light rolling with the mirror roll is preferably performed with a mirror roll having a surface roughness Ra of 0.01 ⁇ m or less.
  • Light rolling with a mirror roll is usually performed at a pressure of 500 MPa to 900 MPa. This treatment may be repeated until a predetermined surface roughness is obtained. In order to reduce the surface roughness Ra to 15 nm or less, it is preferable to perform light rolling with a mirror surface roll twice or more.
  • the surface roughness adjusting step after buffing using SiC abrasive grains, buffing using Al 2 O 3 abrasive grains is performed to obtain a surface roughness Ra of 25 nm. Thereafter, the surface roughness Ra is reduced to 15 nm or less by light rolling with a rolling reduction of 0 to 1% using a mirror roll.
  • the surface roughness Ra1 (hereinafter also referred to as surface roughness Ra1) per unit length of 10 ⁇ m in the rolling direction (longitudinal direction) of the metal layer side surface of the laminate is preferably less than 5 nm. Further, it is more preferable that the thickness is less than 3 nm. Thereby, in the obtained superconducting wire, it is possible to prevent the superconducting characteristics from being significantly lowered by inhibiting the superconducting current, and the superconducting wire can have higher superconducting characteristics.
  • the surface roughness Ra1 can be preferably less than 5 nm by performing buffing using Al 2 O 3 abrasive grains after buffing using SiC abrasive grains.
  • the surface roughness Ra2 per unit length of 10 ⁇ m along the direction perpendicular to the rolling direction on the metal layer side surface of the laminate (hereinafter also referred to as surface roughness Ra2) is less than 21 nm. It is preferable that the thickness is less than 15 nm. Only by the buffing described above, the surface roughness Ra2 along the direction perpendicular to the rolling direction is not easily reduced, and Ra2 may be rather increased due to the marks of polishing called buffing. An increase in Ra2 is not as high as Ra1, but may lead to a decrease in superconducting characteristics. Further, even if Ra1 is small, Ra2 is large or Rzjis (ten-point average roughness.
  • the surface roughness Ra2 can be reduced to less than 21 nm by carrying out light rolling with a rolling reduction of 0 to 1% with a mirror roll after buffing.
  • a laminate obtained by processing the surface roughness Ra per unit area 10 ⁇ 10 ⁇ m 2 on the metal layer side surface as described above to 15 nm or less has a c-axis orientation ratio of 99% or more, ⁇ is 6 ° or less, and The metal layer is heat-treated so that the ratio of the area where the crystal orientation is shifted by 6 ° or more from (001) [100] is 6% or less per unit area.
  • the heat treatment is performed at a temperature of 150 ° C. or higher, for example.
  • the heat treatment time varies depending on the temperature.
  • the heat treatment time is preferably 1 to 10 hours at 400 ° C. and several seconds to 5 minutes at a high temperature of 700 ° C. or higher.
  • heat treatment temperature is too high, the metal layer is liable to cause secondary recrystallization and the crystal orientation is deteriorated.
  • heat treatment at 600 ° C. to 900 ° C. is preferable. More preferably, stepwise heat treatment is performed stepwise, followed by heat treatment at high temperature, whereby the crystal orientation and surface roughness of the crystal orientation metal layer and the protective layer formed thereafter are improved.
  • the substrate for a superconducting wire of the present invention can include a protective layer formed on the crystal orientation metal layer.
  • the crystal orientation of the crystal orientation metal layer is inherited on the crystal orientation metal layer by plating the biaxial crystal orientation crystal orientation metal layer obtained by heat treatment of the metal layer and the nonmagnetic metal plate.
  • a protective layer can be formed.
  • the plating treatment can be performed by appropriately adopting conditions that reduce the plating strain of the protective layer.
  • the plating strain refers to the degree of strain (strain) generated in the plating film when plating is applied to a base such as a metal plate.
  • a layer made of nickel is formed as the protective layer, it can be performed using a Watt bath or a sulfamic acid bath known conventionally as a plating bath.
  • the sulfamic acid bath is preferably used because it easily reduces the plating strain of the protective layer.
  • the preferable range of a plating bath composition is as follows, it is not limited to this.
  • the current density at the time of performing the plating process is not particularly limited, and is appropriately set in consideration of the balance with the time required for the plating process. Specifically, for example, when a plating film of 2 ⁇ m or more is formed as a protective layer, the time required for the plating process becomes long if the current density is low, and the line speed is slowed down in order to secure the time.
  • the current density is preferably set to 10 A / dm 2 or more because the properties may be lowered or the control of the plating may be difficult.
  • the upper limit of the current density varies depending on the type of plating bath and is not particularly limited.
  • it is 25 A / dm 2 or less for a watt bath and 35 A / dm 2 or less for a sulfamic acid bath. Is preferred. Generally, when the current density exceeds 35 A / dm 2 , good crystal orientation may not be obtained due to so-called plating burn.
  • the formed protective layer may generate micropits on the surface depending on plating conditions. In that case, if necessary, the surface can be smoothed by further averaging after the plating.
  • the heat treatment temperature at that time is preferably 700 ° C. to 1000 ° C., for example.
  • the surface roughness of the protective layer after plating is often larger than the surface roughness of the copper layer before plating, but since the crystal orientation of the protective layer may be lost, polishing can be performed after the protective layer is formed. Absent. Therefore, the surface roughness Ra (Ni) per unit area 10 ⁇ 10 ⁇ m 2 is preferably 20 nm or less, more preferably 16 nm or less, by controlling the plating conditions.
  • Superconducting wire can be produced by sequentially laminating an intermediate layer and a superconducting layer on a superconducting wire substrate as described above according to a conventional method. Specifically, an intermediate layer such as CeO 2 , YSZ, SrTiO 3 , MgO, Y 2 O 3 is epitaxially formed on the outermost layer of the superconducting wire substrate by means of a sputtering method or the like, and further thereon A superconducting compound layer such as Y123 is applied to the PLD (Pulse Laser Deposition) method, MOD (Metal Organic Deposition) method, MOCVD (Metal Organic Chemical Vapor Deposition) method, etc. A superconducting wire can be obtained by forming a film by this method.
  • the intermediate layer may be a plurality of layers. If necessary, a protective film made of Ag, Cu or the like may be further provided on the superconducting compound layer.
  • sputter etching was performed under 0.1 Pa, with a plasma output of 200 W and a sputter irradiation time of 20 seconds on the bonding surface, and the SUS316L and the copper foil adsorbate layer were completely removed.
  • the pressurization with the rolling roll was 600 MPa.
  • the laminate was used with a mirror roll having a surface roughness Ra ⁇ 0.01 ⁇ m.
  • the surface roughness Ra of the copper foil side surface of the laminate was adjusted to 15 nm or less by rolling 3 times at a pressure of 600 MPa.
  • the laminate was heat-treated at 300 ° C. for 5 minutes and then heat treated in a continuous heat treatment furnace at 875 ° C. for 5 minutes so that the copper foil was biaxially crystallized. .
  • the ratio of the area where the crystal orientation was shifted by 6 ° or more from (001) [100] was 5.2%.
  • nickel plating was performed on the copper foil to form a nickel layer as a protective layer to obtain a substrate.
  • the composition of the plating bath is as follows.
  • the nickel plating thickness was 2.5 ⁇ m
  • the plating bath temperature was set to 60 ° C.
  • the pH of the plating bath was set to pH 4.
  • Example 2 As a metal layer, it carried out similarly to Example 1 except using the copper foil (thickness 48 micrometers) whose glossiness is 34.2 rolled by the reduction rate of 96.8%. The ratio of the area where the crystal orientation on the surface of the copper foil after the heat treatment before the formation of the protective layer was shifted by 6 ° or more from (001) [100] was 2.2%.
  • Example 3 As a metal layer, it carried out similarly to Example 1 except using the copper foil (thickness 48 micrometers) whose glossiness is 39.4 rolled by the reduction rate of 96.8%. The ratio of the area where the crystal orientation on the surface of the copper foil after the heat treatment before the formation of the protective layer was shifted by 6 ° or more from (001) [100] was 3.2%.
  • Comparative Example 1 As a metal layer, it carried out similarly to Example 1 except using the copper foil (thickness of 18 micrometers) whose glossiness is 55.3 rolled by the reduction rate of 98.6%. The ratio of the area where the crystal orientation on the surface of the copper foil after the heat treatment before forming the protective layer was shifted by 6 ° or more from (001) [100] was 12.7%.
  • Comparative Example 2 As a metal layer, it carried out similarly to Example 1 except using the copper foil (thickness of 18 micrometers) whose glossiness is 55.1 rolled by the reduction rate of 98.6%. The ratio of the area where the crystal orientation on the surface of the copper foil after the heat treatment before forming the protective layer was shifted by 6 ° or more from (001) [100] was 10.0%.
  • the crystal orientation and crystal orientation of the outermost layer of the substrates obtained in Example 1-3 and Comparative Examples 1 and 2 were measured.
  • the obtained substrate was converted to EBSD (JEOL Ltd. SEM-840 and TSL Solutions DigiView) and crystal orientation analysis software (EDAX) Analysis was performed using the company OIM Data Collection and OIM Analysis), and the ratio of the area in which the crystal orientation per 1 mm 2 was shifted by 6 ° or more from (001) [100] was obtained.
  • the orientation was set to (001) [100] in “Crystal Orientation”, the range of the inclination from that direction was specified, and the area ratio in each range was calculated.
  • the measurement area per EBSD is set to 1 mm 2 for the substrate, and the ratio of the area where the crystal orientation is displaced by 6 ° or more from (001) [100] at any 30 points , ⁇ and ⁇ were measured by EBSD, and the average values were calculated.
  • Superconducting wire An intermediate layer (CeO 2 , YSZ, Y 2 O 3 ) was formed by RF magnetron sputtering on the substrates obtained in Example 1-3 and Comparative Examples 1 and 2, and the intermediate layer was formed by PLD method. A superconducting layer (GdBCO) having a thickness of 2.1 ⁇ m to 2.3 ⁇ m was formed thereon to obtain a superconducting wire. The critical current value Ic in the width of 10 mm of the obtained superconducting wire was measured, and the critical current density Jc was calculated.
  • GdBCO superconducting layer having a thickness of 2.1 ⁇ m to 2.3 ⁇ m
  • the critical current value Ic was measured in a self magnetic field at a temperature of 77 K, and was defined as an energization current value when an electric field of 10 ⁇ 6 V / cm was generated.
  • Table 1 FIG. 1 and FIG.
  • FIG. 1 is a diagram showing the relationship between ⁇ and ⁇ and the critical current density
  • FIG. 2 is the relationship between the ratio of the area where the crystal orientation is shifted from (001) [100] by 6 ° or more and the critical current density.
  • FIG. 1 is a diagram showing the relationship between ⁇ and ⁇ and the critical current density
  • FIG. 2 is the relationship between the ratio of the area where the crystal orientation is shifted from (001) [100] by 6 ° or more and the critical current density.
  • the substrate of Example 1 and the substrate of Example 2 have substantially the same ⁇ , but ⁇ differs by about 0.5 °, so ⁇ and ⁇ directly correspond to a proportional relationship or the like. It turns out that it is not related. That is, if ⁇ simply decreases, ⁇ does not decrease accordingly, and ⁇ and ⁇ are different factors. Further, ⁇ is a difference of about 1.3 ° to 1.9 ° between the substrate of Example 1-3 and the substrate of Comparative Example 1, but the crystal orientation of the outermost layer of the substrate is (001) [100 ] Is significantly different from 7.5% or more, and ⁇ is proportional to the ratio of the area where the crystal orientation is displaced by 6 ° or more from (001) [100].
  • is a difference of about 0.7 ° to 0.9 ° between the substrate of Example 1-3 and the substrate of Comparative Example 1, but the crystal orientation of the outermost layer of the substrate is (001) [ Since the difference in the ratio of the area deviated by 6 ° or more from 100] is greatly different from 7.5% or more, ⁇ and the ratio of the area in which the crystal orientation is deviated by 6 ° or more from (001) [100] It can be seen that there is no directly corresponding relationship such as a proportional relationship. That is, when ⁇ is simply reduced, the proportion of the area where the crystal orientation is shifted by 6 ° or more from (001) [100] does not decrease accordingly. Is a factor.
  • the superconducting wire using the substrate of Example 1-3 has a higher critical current density and superconducting characteristics than the superconducting wire using the substrates of Comparative Examples 1 and 2. An improvement was observed. In the substrates of Examples 1-3 and Comparative Examples 1 and 2, ⁇ is all 6 ° or less, but ⁇ is 6 ° or less, and the crystal orientation is shifted by 6 ° or more from (001) [100]. The superconducting property was improved by making the ratio of 6% or less. Further, by comparing the superconducting wire using the substrates of Examples 2 and 3 with the superconducting wire using the substrate of Example 1, the area where the crystal orientation is shifted by 6 ° or more from (001) [100]. It was shown that the superconducting properties were further improved by setting the ratio of less than 5%.
  • Example 4 About the laminated body, the relationship between the grinding
  • the degree of crystal orientation slightly deteriorates. If the rolling reduction exceeds 2%, strain due to rolling is introduced into the copper layer, which is considered to have an adverse effect upon crystal orientation. Therefore, the rolling reduction is preferably 2% or less, more preferably 1.5% or less, and particularly preferably 1% or less.
  • the reduction ratio is 0%
  • the set reduction amount of the rolling mill is ⁇ 0.15 ⁇ m, and it is not necessarily reduced, but a difference is observed in the ⁇ m order in the laminate before and after rolling. The calculated value based on the plate thickness was 0%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Laminated Bodies (AREA)

Abstract

 優れた超電導特性を有する超電導線材を製造するための超電導線材用基板及びその製造方法を提供することを目的とする。 最表層の金属の結晶配向が、c軸配向率99%以上であり、Δωが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下である超電導線材用基板。

Description

超電導線材用基板及びその製造方法、並びに超電導線材
 本発明は、超電導線材用基板及びその製造方法に関する。また、超電導線材用基板を用いた超電導線材に関する。
 超電導線材は、金属基板の上に、又は金属基板上に単層又は複層の酸化セリウム(CeO)、ジルコニア添加酸化イットリウム(YSZ)、酸化イットリウム(Y)等の酸化物層などからなる中間層を積層した基材の上に、超電導層(RE123膜、RE:Y、Gd、Ho等)を積層することで製造する。
 結晶配向した超電導層を得るための技術として、ハステロイ等の無配向金属基板の上に配向中間層を成膜することで、超電導層に結晶配向を引き継がせるイオン・アシスト・ビーム成膜法(IBAD法)や、2軸結晶配向した金属基板を用いることで、中間層、超電導層と結晶配向を引き継がせて成膜する方法(RABiTS法等)が知られている。成膜速度等、将来の生産効率を考慮した場合、後者の方法が有利であるが、超電導特性を向上させるには、金属基板を高度に2軸結晶配向させることが必要となる。ここで、金属基板の結晶配向性は、例えば、基板の最表層のc軸配向率、Δω(面外配向性の指標)やΔφ(面内配向性の指標)の値によって評価されている。
 このような金属基板(超電導線材用基板)として、ステンレス基板上に結晶配向した銅を積層させ、その上にさらにニッケルを積層させた基板が知られている。例えば、特許文献1には、配向化された銅からなる配向化金属層に補強材である金属基材をクラッドしてなるエピタキシャル膜形成用配向基板において、前記配向化金属層は、配向度Δφ、Δωがいずれも5~9°である配向性を有する金属であり、前記配向化金属層の表面上に、ニッケルめっき膜からなり100~5000nmの厚さの配向性改善層を備え、前記配向化金属層表面における配向度(Δφ及びΔω)と、前記配向性改善層表面における配向度(Δφ及びΔω)との差が、いずれも0.1~3.0°であることを特徴とするエピタキシャル膜形成用配向基板が開示されている。
特開2012-229493号公報
 前記のように、従来の超電導線材用基板は、2軸結晶配向した金属基板の最表層のc軸配向率、ΔωやΔφの値を特定の値にして製造されており、c軸配向率が高ければ高いほど、また、Δωが小さければ小さいほど、Δφが小さければ小さいほど超電導特性が良い超電導線材が得られることが知られている。
 しかし、従来の超電導線材では、最表層の金属の結晶配向が十分なc軸配向率、Δω及びΔφを有している金属基板を用いた場合であっても、この基板を用いて得られる超電導線材の超電導特性がばらつくことがあった。
 そこで本発明は、優れた超電導特性を有する超電導線材を製造するための超電導線材用基板及びその製造方法を提供することを目的とする。
 本発明者らは、前記課題を解決するため鋭意検討を行った結果、超電導線材用基板の最表層の金属の結晶配向が特定のc軸配向率及びΔωを有し、且つ、最表層の結晶方位が(001)[100]から特定の角度以上ずれている面積の割合を所定の範囲内に制御することにより、超電導特性が向上した超電導線材を得ることが可能となることを見出し、発明を完成した。すなわち、本発明の要旨は以下の通りである。
(1)最表層の金属の結晶配向が、c軸配向率99%以上であり、Δωが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下である超電導線材用基板。
(2)最表層の金属の結晶配向が、Δφが6°以下である、(1)に記載の超電導線材用基板。
(3)最表層の金属の結晶配向が、Δω及びΔφが5°未満である、(1)又は(2)に記載の超電導線材用基板。
(4)最表層が銅、ニッケル又はそれらの合金からなる、(1)~(3)のいずれかに記載の超電導線材用基板。
(5)前記超電導線材用基板は、非磁性の金属板に、前記最表層を有する金属層が積層されている、(1)~(4)のいずれかに記載の超電導線材用基板。
(6)前記非磁性の金属板は、ステンレス鋼又はニッケル合金である(5)に記載の超電導線材用基板。
(7)(1)~(6)のいずれかに記載の超電導線材用基板の製造方法であって、熱処理により、c軸配向率が99%以上であり、Δωが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下である層を形成させる工程を含む前記製造方法。
(8)非磁性の金属板と、金属層とを表面活性化接合にて積層する工程と、非磁性の金属板と金属層との積層体の金属層側表面の単位面積10×10μm当たりの表面粗度Raを15nm以下に処理する工程と、c軸配向率が99%以上であり、Δωが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下となるように金属層の熱処理を行う工程とを含む、超電導線材用基板の製造方法。
(9)表面粗度Raを15nm以下に処理する工程が、バフ研磨及び鏡面ロールによる圧下率0~1%の軽圧延をこの順に行うことにより行われる、(8)に記載の製造方法。
(10)(1)~(6)のいずれかに記載の超電導線材用基板と、基板上に積層した中間層と、中間層上に積層した超電導層とを有する超電導線材。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2014-218436号の開示内容を包含する。
 本発明によれば、超電導線材用基板の最表層の金属の結晶配向について、c軸配向率を99%以上、Δωを6°以下に規定し、さらに、結晶方位が(001)[100]から6°以上ずれている面積の割合を単位面積あたり6%以下に規定したことにより、優れた超電導特性を有する超電導線材を製造するための基板を得ることができる。
図1は、実施例における、Δω、Δφと臨界電流密度との関係を示す図である。 図2は、実施例における、結晶方位が(001)[100]から6°以上ずれている面積の割合と臨界電流密度との関係を示す図である。 図3は、研磨に伴う銅層の表面粗度の変化を示すグラフである。 図4は、研磨に伴う銅層の表面粗度の変化を示すグラフである。
 以下、本発明を詳細に説明する。
1.超電導線材用基板
 本発明の超電導線材用基板は、最表層の金属の結晶配向が、c軸配向率99%以上であり、Δωが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積(1mm)あたり6%以下であることを特徴とする。
 Δωは面外配向度を示す。Δωは、結晶粒のRD[100]及びTD[010]周りの回転角の平均値であり、1つ1つの結晶粒がどれくらいずれているかは不明であるため、結晶方位が(001)[100]から特定の角度以上ずれている面積の割合の指標とはならない。
 本発明において、「結晶方位が(001)[100]から○○°以上ずれている面積の割合」とは、EBSD法で観察した場合に、(001)[100]からの角度差が○○°以上である結晶の面積の割合をいう。ここで、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)とは、SEM(Scanning Electron Microscope:走査電子顕微鏡)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用して結晶方位を解析する技術である。通常、電子線は最表層表面に照射され、このとき得られる情報は電子線が侵入する数10nmの深さまでの方位情報、すなわち最表層の方位情報である。
 本発明の超電導線材用基板は、最表層の金属の結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下であり、5%未満であることがより好ましい。基板の最表層の金属の結晶方位をこのようにすることにより、この基板を用いて得られる超電導線材の超電導特性を向上させることができる。
 本発明の超電導線材用基板において、好ましくは、その最表層の金属の結晶方位が(001)[100]から10°以上ずれている面積の割合は単位面積あたり1%未満であり、15°以上ずれている面積の割合は単位面積あたり0.3%未満である。このようにすることで、得られる超電導線材において非常に優れた超電導特性を達成できる。
 本発明の超電導線材用基板は、最表層の金属の結晶配向が、Δωが6°以下であり、さらに好ましくは、Δωは5°未満である。このようにすることで、得られる超電導線材において優れた超電導特性を達成できる。
 本発明の超電導線材用基板は、最表層の金属の結晶配向が、好ましくは、Δφが6°以下であり、さらに好ましくは、Δφは5°未満である。このようにすることで、得られる超電導線材において非常に優れた超電導特性を達成できる。
 Δφは面内配向度を示す。Δφは、結晶粒のND[001]周りの回転角の平均値である。Δωは面外配向度を示し、結晶粒のRD[100]及びTD[010]周りの回転角の平均値であるため、ΔωとΔφの間には相関性はない。つまり、ΔωとΔφとは、比例関係等の直接対応する関係にはない。また、Δφ及びΔωは平均値であり、1つ1つの結晶粒がどれくらいずれているかは不明であるため、結晶方位が(001)[100]から特定の角度以上ずれている面積の割合の指標とはならない。
 本発明の超電導線材用基板は、好ましくは、最表層の金属の結晶配向が、Δωが6°以下であり、Δφが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下であり、さらに好ましくは、最表層の金属の結晶配向が、Δωが5°未満であり、Δφが5°未満であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり5%未満である。このようにすることで、得られる超電導線材において非常に優れた超電導特性を達成できる。
 本発明の超電導線材用基板の最表層のΔω、Δφ及び結晶方位が(001)[100]から6°以上ずれている面積の割合については、EBSDの1回あたりの測定面積を基板1mmとし、任意の30点についてEBSDにより結晶配向性を測定して得られた、Δω、Δφ及び結晶方位が(001)[100]から6°以上ずれている面積の割合のそれぞれの平均値及び標準偏差σから算出した2σの範囲内の平均値が所定の値に収まっていればよい。
 本発明の超電導線材用基板の最表層は、面心立方格子金属であることが好ましく、例えばニッケル、銅、銀、アルミニウム、パラジウムよりなる群から選ばれる1種以上又はそれらの合金からなり、二軸結晶配向のしやすさ及び中間層との格子マッチングが良好であることから、好ましくは銅、ニッケル又はそれらの合金からなる。
 本発明の超電導線材用基板は、最表層が前記の金属の結晶配向及び結晶方位を有していればよく、その下層に無配向の別の金属層があってもよい。
 本発明の超電導線材用基板の厚さは特に限定されないが、50μm~200μmであることが好ましい。厚さが50μm未満であると基板の機械的強度が確保できず、厚さが200μmより大きいと超電導線材を加工する際の加工性が確保できないためである。
 本発明の一つの実施形態において、本発明の超電導線材用基板は、非磁性の金属板と、非磁性の金属板の上に積層された結晶配向した金属層(以下、結晶配向金属層とも呼ぶ。)とを含む。なお、金属層は、非磁性の金属板の片面のみに積層させても良く、あるいは金属板の両面に積層させてもよい。
 本発明において、「非磁性」とは、77K以上で強磁性体ではない、すなわちキュリー点やネール点が77K以下に存在し、77K以上の温度では常磁性体又は反強磁性体となる状態をいう。非磁性の金属板としては、ニッケル合金やオーステナイト系ステンレス鋼板が、強度に優れた補強材としての役割を有することから好ましく用いられる。
 一般に、オーステナイト系ステンレス鋼は、常温では非磁性の状態、すなわち金属組織が100%オーステナイト(γ)相であるが、強磁性体であるマルテンサイト(α’)相変態点(Ms点)が77K以上に位置している場合、液体窒素温度で強磁性体であるα’相が発現する可能性がある。そのため、液体窒素温度(77K)下で使用される超電導線材用基板としては、Ms点が77K以下に設計されているものが好ましく用いられる。
 使用するγ系ステンレス鋼板としては、Ms点が77Kより十分に低く設計された安定なγ相を有し、且つ一般に普及し、比較的安価に入手できるという点から、SUS316やSUS316L、SUS310やSUS305等の板材が好ましく用いられる。これらの金属板の厚さは、通常20μm以上であれば適用可能であり、超電導線材の薄肉化及び強度を考慮すると、50μm~100μmであることが好ましいが、この範囲に限定されるものではない。
 本発明の超電導線材用基板に用いられる金属層は、好ましくは、最終圧延時の圧下率が90%以上、さらに好ましくは95%~99%未満の圧下率で冷間圧延され、且つその冷間圧延後再結晶のための熱処理を施されず、冷間圧延により発達した圧延集合組織を保持している。圧下率が90%未満であると後に行う熱処理において金属が配向しないおそれがあり、圧下率が99%以上であると、超電導線材用基板の最表層のΔωを6°以下にすることができず、得られる超電導線材において優れた超電導特性を達成できないためである。
 金属層は、圧延後に熱処理を施すことにより結晶配向する金属、例えばニッケル、銅、銀、及びアルミニウムよりなる群から選ばれる1種以上又はそれらの合金から選択することができるが、二軸結晶配向のしやすさ及び中間層との格子マッチングが良好であることから、好ましくは銅又は銅合金からなる。
 金属層には、後記の熱処理による2軸結晶配向性をより向上させるため、1%以下程度の微量の元素を含有させてもよい。このような添加元素としては、Ag、Sn、Zn、Zr、O及びN等から選択される一種以上の元素が挙げられる。これらの添加元素と金属層に含まれる金属とは固溶体を形成するが、添加量が1%を超えると固溶体以外の酸化物等の不純物が増加してしまい、結晶配向性に悪影響を及ぼす恐れがある。
 金属層としては、金属箔が好ましく用いられる。用いることができる金属箔は、一般的にも入手可能であり、例えば、銅箔として、JX日鉱日石金属(株)製の高圧延銅箔(HA箔)や、SHカッパープロダクツ(株)製の高圧延銅箔(HX箔)等がある。
 金属層の厚さは、金属層自体の強度を確保するとともに、後に超電導線材を加工する際の加工性を良好にするため、通常7μm~70μm、好ましくは15μm~70μmの範囲とする。
 本発明の超電導線材用基板において、基板の最表層のΔωを6°以下とし、金属の結晶方位が(001)[100]から6°以上ずれている面積の割合を単位面積あたり6%以下にするための一つの方法として、光沢度が、例えば50未満、好ましくは30~45の範囲である銅箔等の金属層を用いることができる。ここで、光沢度は、後記の基板の製造方法において、非磁性の金属板上に積層される前であり、且つ圧延後の金属層について色差計でL、a、bを測定して得られるL値である。
 また、本発明の超電導線材用基板は、結晶配向金属層の上に形成された保護層を含んでいてもよい。
 本発明の超電導線材用基板に用いられる保護層は、面心立方格子金属が好ましく、例えば、ニッケル、パラジウム、銀又はそれらの合金からなり、好ましくはニッケル又はニッケル合金からなる。ニッケルを含む保護層は耐酸化性に優れ、また保護層が存在することによって、その上にCeO等の中間層を形成する際に、結晶配向金属層に含まれる金属の酸化膜が生成して結晶配向性が崩れることを防止することができるためである。ニッケル、パラジウム又は銀の合金の含有元素としては、磁性が低減されるものが好ましく、例としてCu、Sn、W、Cr等の元素が挙げられる。また、結晶配向性に悪影響を及ぼさない範囲であれば、不純物を含んでいてもよい。
 保護層の厚さは、薄過ぎると、超電導線材の製造において、その上に中間層、超電導層を積層する際に結晶配向金属層中の金属が保護層表面まで拡散することにより表面が酸化する可能性があり、また厚過ぎると保護層の結晶配向性が崩れ、めっき歪も増大するため、これらを考慮して適宜設定される。具体的には、1μm~5μmの範囲であることが好ましい。
2.超電導線材用基板の製造方法
 本発明の超電導線材用基板は、熱処理により、c軸配向率が99%以上であり、Δωが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下である層を形成させる工程を含む方法によって製造できる。
 本発明の一つの実施形態において、熱処理により形成される、c軸配向率が99%以上であり、Δωが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下である層は結晶配向金属層である。
 熱処理は、例えば、温度150℃以上で施す。熱処理時間は温度によって異なるが、例えば400℃であれば1~10時間、700℃以上の高温であれば数秒~5分程度保持するとよい。熱処理温度をあまり高温にすると金属層が2次再結晶を起こしやすくなり、結晶配向性が悪くなるため、150℃~1000℃で行う。後の中間層や超電導層を形成する工程で基板が600℃~900℃の高温雰囲気におかれることを考慮した場合、600℃~900℃での熱処理が好ましい。さらに好ましくは段階的に、低温での熱処理の後、高温での熱処理を行うことにより、結晶配向金属層及びその後形成する保護層の結晶配向及び表面粗度が良好となる。具体的には200℃~400℃での熱処理の後、800℃~900℃の熱処理を行うのが特に好ましい。275℃~325℃での熱処理の後、850℃~900℃の熱処理を行うのがより好ましい。
 本発明の一つの実施形態において、超電導線材用基板は、非磁性の金属板と、金属層とを表面活性化接合にて積層する工程と、非磁性の金属板と金属層との積層体の金属層側表面の単位面積10×10μm当たりの表面粗度(平均表面粗さをいう)Raを15nm以下に処理する工程と、c軸配向率が99%以上であり、Δωが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下となるように金属層の熱処理を行う工程とを含む方法によって製造する。
 本発明の超電導線材用基板の製造方法において、得られる基板の最表層のΔωを6°以下とし、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合を単位面積あたり6%以下にするためには、例えば、用いられる銅箔等の金属層の光沢度を調整する方法が挙げられる。金属層の光沢度は、例えば50未満、好ましくは30~45の範囲とする。ここで、光沢度は、非磁性の基板に積層される前の圧延後の金属層について色差計でL、a、bを測定して得られるL値である。また、前記の金属層の光沢度を調整する方法以外にも、金属層の圧下率を調整する方法によっても、得られる基板の最表層のΔωを6°以下とし、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合を単位面積あたり6%以下にすることができる。金属層の最終圧延時の圧下率は、好ましくは90%以上、さらに好ましくは95%~99%未満である。また、前記の金属層の光沢度又は圧下率を調整する方法以外でも、例えば、金属層の圧延集合組織中のカッパー方位(Copper方位)の割合を高くすると共にブラス方位(Brass方位)の割合を低くすることによって、熱処理後の基板の最表層のΔωを6°以下とし、最表層の結晶方位が(001)[100]から6°以上ずれている面積の割合を単位面積あたり6%以下にすることができる。
 本発明の超電導線材用基板の製造方法における、非磁性の金属板と金属層とを表面活性化接合にて積層する工程について、表面活性化接合では、非磁性の金属板及び金属層のそれぞれの表面にスパッタエッチング処理を行うことにより表面吸着層及び表面酸化膜を除去して活性化させ、その後、活性化した2つの面同士を冷間圧接することにより非磁性の金属板と圧延集合組織の状態を保持した金属層とを接合する。
 表面活性化接合は、具体的には、非磁性の金属板及び金属層を、幅150mm~600mmの長尺コイルとして用意し、接合する2つの面を予め活性化処理した後、冷間圧接する。
 表面活性化処理は、接合面を有する非磁性の金属板と金属層をそれぞれアース接地した一方の電極とし、絶縁支持された他の電極との間に1MHz~50MHzの交流を印加してグロー放電を発生させ、且つグロー放電によって生じたプラズマ中に露出される電極の面積が前記の他の電極の面積の1/3以下でスパッタエッチング処理することで行われる。不活性ガスとしては、アルゴン、ネオン、キセノン、クリプトンなどや、これらを少なくとも1種類含む混合気体を適用することができる。
 スパッタエッチング処理では、非磁性の金属板及び金属層の接合する面を不活性ガスによりスパッタすることにより、少なくとも表面吸着層を除去し、さらに表面酸化膜を除去してもよく、この処理により接合する面を活性化させる。このスパッタエッチング処理中は、前記のアース接地した電極が冷却ロールの形をとっており、各搬送材料の温度上昇を防いでいる。
 その後、連続的に圧接ロール工程に搬送し、活性化された面同士を圧接する。圧接下の雰囲気は、Oガスなどが存在すると、搬送中、活性化処理された面が再酸化され密着に影響を及ぼす。前記圧接工程を通って密着させた積層体は、巻き取り工程まで搬送され、そこで巻き取られる。
 なお、前記スパッタエッチング工程において、接合面の吸着物は完全に除去するものの、表面酸化層は完全に除去する必要はない。表面全体に酸化層が残留していても、冷間圧接工程で、接合面での摩擦により素地を露出させることで、非磁性の金属板と金属層との接合性を確保することができるからである。
 また、乾式エッチングで酸化層を完全に除去しようとすると、高プラズマ出力、又は長時間のエッチングが必要となり、材料の温度が上昇してしまう。スパッタエッチング処理において、温度が、金属層中の金属の再結晶開始温度以上に上昇すると金属層の再結晶が起こり、金属層は接合前に結晶配向してしまうこととなる。結晶配向した金属層を圧延すると、金属層に歪が導入され、金属層の2軸結晶配向性が劣化する。このような理由から、スパッタエッチング工程では、金属層の温度を、金属の再結晶開始温度未満に保持する必要がある。例えば、金属層として銅箔を用いる場合、銅箔の温度を150℃未満に保持する。好ましくは、100℃以下に保持し金属層の金属組織を圧延集合組織のまま保持する。
 また、非磁性の金属板をスパッタエッチングする処理においても、高プラズマ出力で処理したり、時間をかけて金属板温度を金属層中の金属の再結晶開始温度以上にしたりすると、圧接時に金属層との接触で金属層の温度が上昇し、圧延と同時に金属層の再結晶が起こり、2軸結晶配向性が劣化するおそれがある。
 このため、非磁性の金属板のスパッタエッチング工程においても、金属板の温度を金属層中の金属の再結晶開始温度未満に保つことが望ましい。例えば、金属層として銅箔を用いる場合、150℃未満に銅箔を保持する。好ましくは、金属層を常温~100℃に保つのがよい。
 このように非磁性の金属板及び金属層の表面を活性化処理した後、両者を真空中で圧延ロールにて接合する。この時の真空度は、表面への再吸着物を防止するため高い方が好ましいが、10-5Pa~10-2Paの範囲の真空度であればよい。
 また、非磁性の金属板表面や金属層表面への酸素の再吸着によって両者間の密着強度が低下するので、非酸化雰囲気中、例えばArなどの不活性ガス雰囲気中で前記圧延ロール接合をすることも好ましい。
 圧延ロールによる加圧は、接合界面の密着面積の確保、及び圧下時の接合界面で起こる摩擦により一部表面酸化膜層を剥離させ、素地を露出させるために行い、300MPa以上加えることが好ましく、特に、非磁性の金属板及び金属層は、共に硬い材料であるため、600MPa~1.5GPaでの加圧が好ましい。圧力はこれ以上かけてもよく、圧下率で30%までは後の熱処理後に結晶配向性が劣化しないことは確認しているが、好ましくは、5%未満の圧下率となるように加圧する。圧下率で30%を超えるような圧力を加えると、金属層表面にクラックが発生するとともに、圧延、熱処理後の結晶配向金属層の結晶配向性が悪くなる。
 以上のような表面活性化接合によって積層した非磁性の金属板と金属層との積層体(以下、単に積層体とも呼ぶ)を、金属層側表面の単位面積10×10μm当たりの表面粗度Ra(以下、表面粗度Raとも呼ぶ)を15nm以下に処理する(表面粗度調整工程)。本発明において、積層体の表面粗度は原子間力顕微鏡(AFM)により測定することができる。この工程により、特定の結晶配向性を有する本発明の基板を得ることができ、また、保護層の上にさらにエピタキシャル成長によって積層させる中間層及び超電導化合物層の結晶配向性を良好に維持することができる。処理後の積層体の圧下率は、通常、5%未満である。
 積層体の金属層側表面の表面粗度Raを15nm以下に処理するための方法としては、特に限定されずに、例えば、鏡面ロール等の圧延ロールによる圧下、バフ研磨、電解研磨や電解砥粒研磨等が挙げられる。これらの方法を2つ以上組み合わせてもよい。これらの方法の中で、得られる超電導線材の超電導特性及び表面粗度、並びに生産性の観点から、バフ研磨と鏡面ロールによる軽圧延を併用することが好ましい。鏡面ロールとは、ロール表面が鏡面加工された圧延ロールを言う。
 表面粗度調整工程において、バフ研磨と鏡面ロールによる軽圧延を併用する場合、バフ研磨及び鏡面ロールによる圧下率0~1%の軽圧延をこの順に行うことが好ましく、具体的には、バフ研磨により表面粗度Raを25nm以下にし、その後、鏡面ロールによる圧下率0~1%の軽圧延により、表面粗度Raを15nm以下にすることが好ましい。
 バフ研磨に用いる砥粒の種類は適宜選択することができるが、特に、SiCからなる砥粒を用いたバフ研磨の後、Alの砥粒を用いたバフ研磨を施すことで表面粗度Raを25nm以下と小さくすることができる。バフ研磨工程は、例えば多段にする等して複数回行っても良い。
 鏡面ロールによる軽圧延は、表面粗さRaが0.01μm以下の鏡面ロールで行うことが好ましい。鏡面ロールによる軽圧延は、通常、加圧力500MPa~900MPaで行われる。この処理は、所定の表面粗度が得られるまで繰り返し行ってもよい。表面粗度Raを15nm以下にするために、鏡面ロールによる軽圧延は2回以上行うことが好ましい。
 本発明の一つの実施形態において、表面粗度調整工程は、SiCからなる砥粒を用いたバフ研磨の後、Alの砥粒を用いたバフ研磨を施して表面粗度Raを25nm以下にし、その後、鏡面ロールによる圧下率0~1%の軽圧延により、表面粗度Raを15nm以下にする。
 表面粗度調整工程において、積層体の金属層側表面の圧延方向(長手方向)の単位長さ10μm当たりの表面粗度Ra1(以下、表面粗度Ra1とも呼ぶ)を5nm未満とすることが好ましく、さらに3nm未満とすることがより好ましい。これにより、得られる超電導線材において、超電導流が阻害されることにより超電導特性が著しく低下することを防止することができ、超電導線材はより高い超電導特性を有することができる。表面粗度Ra1は、好ましくは、SiCからなる砥粒を用いたバフ研磨の後、Alの砥粒を用いるバフ研磨を施すことにより、5nm未満にすることができる。
 表面粗度調整工程において、積層体の金属層側表面の、圧延方向に対して直角方向に沿った単位長さ10μm当たりの表面粗度Ra2(以下、表面粗度Ra2とも呼ぶ)を21nm未満とすることが好ましく、さらに15nm未満とすることがより好ましい。前記のバフ研磨のみでは、圧延方向に対して直角方向に沿った表面粗度Ra2が小さくなりにくいばかりか、バフ筋と呼ばれる研磨の跡が付くことによりRa2がむしろ大きくなることもあった。Ra2の増大は、Ra1ほどではないが、超電導特性の低下につながるおそれがある。また、Ra1が小さくても、Ra2が大きいか又はRzjis(十点平均粗さ。粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜き取り部分の平均線から縦倍率の方向に測定した、最も高い山頂から5番目までの山頂の標高(Yp)の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高(Yv)の絶対値の平均値との和を求め、この値をマイクロメートル(μm)で表したものをいう。)が大きいと、保護層形成の際に電解Niめっきを用いた場合、Niの結晶が凸部から優先的に析出し、表面粗度がやや悪くなるおそれがある。表面粗度Ra2は、バフ研磨の後、鏡面ロールによる圧下率0~1%の軽圧延を施すことにより、21nm未満にすることができる。
 以上のような金属層側表面の単位面積10×10μm当たりの表面粗度Raを15nm以下に処理した積層体をc軸配向率が99%以上であり、Δωが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下となるように金属層の熱処理を行う。熱処理は、前記の通り、例えば、温度150℃以上で施す。熱処理時間は温度によって異なるが、例えば400℃であれば1~10時間、700℃以上の高温であれば数秒~5分程度保持するとよい。熱処理温度をあまり高温にすると金属層が2次再結晶を起こしやすくなり、結晶配向性が悪くなるため、150℃以上1000℃以下で行う。後の中間層や超電導層を形成する工程で基板が600℃~900℃の高温雰囲気におかれることを考慮した場合、600℃~900℃での熱処理が好ましい。さらに好ましくは段階的に、低温での熱処理の後、高温での熱処理を行うことにより、結晶配向金属層及びその後形成する保護層の結晶配向及び表面粗度が良好となる。具体的には200℃~400℃での熱処理の後、800℃~900℃の熱処理を行うのが特に好ましい。250℃~325℃での熱処理の後、850℃~900℃の熱処理を行うのがより好ましい。
 前記の通り、本発明の超電導線材用基板は、結晶配向金属層の上に形成された保護層を含むことができる。金属層を熱処理して得た2軸結晶配向した結晶配向金属層と非磁性の金属板との積層体をめっき処理することにより、結晶配向金属層の上に結晶配向金属層の結晶配向を引き継いだ保護層を形成することができる。
 めっき処理は、保護層のめっき歪が小さくなるような条件を適宜採用して行うことができる。ここで、めっき歪とは、金属板等の下地にめっき処理を施した場合に、めっき皮膜内に生ずる歪(ひずみ)の度合いをいう。例えば、保護層としてニッケルからなる層を形成する場合は、めっき浴として従来知られたワット浴やスルファミン酸浴を用いて行うことができる。特に、スルファミン酸浴は、保護層のめっき歪を小さくしやすいため好適に用いられる。めっき浴組成の好ましい範囲は以下の通りであるが、これに限定されるものではない。
ワット浴
 硫酸ニッケル 200g/l~300g/l
 塩化ニッケル 30g/l~60g/l
 ホウ酸    30g/l~40g/l
 pH     4~5
 浴温     40℃~60℃
スルファミン酸浴
 スルファミン酸ニッケル 200g/l~600g/l
 塩化ニッケル      0g/l~15g/l
 ホウ酸         30g/l~40g/l
 添加剤         適量
 pH          3.5~4.5
 浴温          40℃~70℃
 めっき処理を行う際の電流密度は、特に限定されるものではなく、めっき処理に要する時間とのバランスを考慮して適宜設定される。具体的には、例えば、保護層として2μm以上のめっき皮膜を形成する場合、低電流密度であるとめっき処理に要する時間が長くなり、その時間を確保するためにラインスピードが遅くなって、生産性が低下したり、めっきの制御が困難になる場合があるため、通常、電流密度を10A/dm以上とすることが好ましい。また、電流密度の上限は、めっき浴の種類によって異なり、特に限定されるものではないが、例えばワット浴であれば25A/dm以下、スルファミン酸浴であれば35A/dm以下とすることが好ましい。一般に、電流密度が35A/dmを超えると、所謂めっき焼けによって良好な結晶配向が得られない場合がある。
 形成した保護層は、めっき条件等によって表面にマイクロピットが発生する場合がある。その場合、必要に応じて、めっき後にさらに熱処理による平均化を行い、表面を平滑にすることができる。その際の熱処理温度は、例えば700℃~1000℃とすることが好ましい。
 また、めっき後の保護層の表面粗度は、めっき前の銅層の表面粗度に対し大きくなることが多いが、保護層の結晶配向が崩れるおそれがあるため保護層形成後は研磨が出来ない。したがって、めっき条件の制御により、単位面積10×10μm当たりの表面粗度Ra(Ni)が20nm以下とするのが好ましく、より好ましくは16nm以下とする。
3.超電導線材
 以上のような超電導線材用基板の上に、従来の方法に従って中間層及び超電導層を順次積層することにより、超電導線材を製造することができる。具体的には、超電導線材用基板の最表層の上に、CeO、YSZ、SrTiO、MgO、Y等の中間層をスパッタリング法等の手段を用いてエピタキシャル成膜し、さらにその上にY123系等の超電導化合物層をPLD(パルスレーザー蒸着;Pulse Laser Deposition)法、MOD(有機金属成膜;Metal Organic Deposition)法、MOCVD(有機金属気相成長;Metal Organic Chemical Vapor Deposition)法などの方法により成膜することによって超電導線材を得ることができる。中間層は複数層であってもよい。必要に応じて、超電導化合物層の上にさらにAg、Cu等からなる保護膜を設けてもよい。
 以下、実施例及び比較例に基づき本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
1.超電導線材用基板
(実施例1)
 非磁性の金属板としてSUS316L(厚さ100μm)を用い、金属層として、圧下率98.6%で圧延され、色差計(日本電色工業株式会社NR-3000)で測定した圧延後の光沢度が42.8である銅箔(厚さ18μm)を用いた。SUS316Lと銅箔を表面活性化接合装置を用いて常温で表面活性化接合し、SUS316Lと銅箔の積層体を形成させた。
 表面活性化接合において、スパッタエッチングを、0.1Pa下で、プラズマ出力を200W、接合面へのスパッタ照射時間を20秒として実施し、SUS316L及び銅箔の吸着物層を完全に除去した。また圧延ロールでの加圧は600MPaとした。
 積層体の銅箔側表面をSiCによるバフ研磨及びAlによるバフ研磨により表面粗度Raを25nm以下とした後、積層体を、表面粗度Ra<0.01μmの鏡面ロールを用いて、加圧力600MPaにて3回圧延して、積層体の銅箔側表面の表面粗度Raを15nm以下とした。その後、積層体に、温度300℃にて5分均熱保持の後、875℃にて5分均熱保持の条件にて連続熱処理炉にて熱処理を施して銅箔を2軸結晶配向させた。熱処理後の銅箔表面において後述するEBSDを用いて解析を行ったところ、結晶方位が(001)[100]から6°以上ずれている面積の割合は5.2%であった。
 次に、積層体をカソードとして、銅箔上にニッケルめっきを施してニッケル層を保護層として形成させて基板を得た。めっき浴の組成は以下の通りである。なお、ニッケルめっき厚は2.5μmとし、めっき浴温は60℃、めっき浴のpHはpH4に設定した。
(スルファミン酸浴)
 スルファミン酸ニッケル  450g/l
 塩化ニッケル         5g/l
 ホウ酸           30g/l
 添加剤           5ml/l
(実施例2)
 金属層として、圧下率96.8%で圧延された光沢度が34.2である銅箔(厚さ48μm)を用いる以外は実施例1と同様にした。なお、保護層形成前の、熱処理後の銅箔表面における結晶方位が(001)[100]から6°以上ずれている面積の割合は2.2%であった。
(実施例3)
 金属層として、圧下率96.8%で圧延された光沢度が39.4である銅箔(厚さ48μm)を用いる以外は実施例1と同様にした。なお、保護層形成前の、熱処理後の銅箔表面における結晶方位が(001)[100]から6°以上ずれている面積の割合は3.2%であった。
(比較例1)
 金属層として、圧下率98.6%で圧延された光沢度が55.3である銅箔(厚さ18μm)を用いる以外は実施例1と同様にした。なお、保護層形成前の、熱処理後の銅箔表面における結晶方位が(001)[100]から6°以上ずれている面積の割合は12.7%であった。
(比較例2)
 金属層として、圧下率98.6%で圧延された光沢度が55.1である銅箔(厚さ18μm)を用いる以外は実施例1と同様にした。なお、保護層形成前の、熱処理後の銅箔表面における結晶方位が(001)[100]から6°以上ずれている面積の割合は10.0%であった。
 実施例1-3及び比較例1、2で得られた基板の最表層の結晶配向及び結晶方位を測定した。
(1)結晶方位が(001)[100]から6°以上ずれている面積の割合
 得られた基板をEBSD(日本電子株式会社SEM-840及び株式会社TSLソリューションズ DigiView)及び結晶方位解析ソフト(EDAX社OIM Data Collection及びOIM Analysis)を用いて解析し、1mmあたりの結晶方位が(001)[100]から6°以上ずれている面積の割合を求めた。具体的には、「Crystal Orientation」にてOrientationを(001)[100]に設定し、その方向からの傾きの範囲を指定して、それぞれの範囲での面積率を算出した。
(2)面外配向度(Δω)
 得られた基板をEBSD及び結晶方位解析ソフトを用い、「Crystal Direction」の<001>∥NDを用いて以下の方法で解析することにより得た;
  1.結晶座標系において、<001>を試料座標系のND[001]とあわせるような軸の回転操作を行う:
  2.その後、試料座標系のND[001]軸に対して、各測定点の結晶座標系の<001>軸がどれくらい傾いているかを測定点毎に算出する:
  3.各点の傾きを積算グラフで表示し、縦軸:Number fractionが0.5のときの傾き:AlignmentをΔωの1/2とする。よって、Δωは得られた値の2倍とする。
(3)面内配向度(Δφ)
 得られた基板をEBSD及び結晶方位解析ソフトを用い、「Crystal Direction」の<111>∥NDを用いて以下の方法で解析することにより得た;
  1.結晶座標系において、<111>を試料座標系のND[001]とあわせるような軸の回転操作を行う:
  2.その後、試料座標系のND[001]軸に対して、各測定点の結晶座標系の<111>軸がどれくらい傾いているかを測定点毎に算出する:
  3.各点の傾きを積算グラフで表示し、縦軸:Number fractionが0.5のときの傾き:AlignmentをΔφの1/2とする。よって、Δφは得られた値の2倍とする。
 前記の(1)~(3)において、EBSDの1回あたりの測定面積を基板1mmとし、任意の30点について、結晶方位が(001)[100]から6°以上ずれている面積の割合、Δω及びΔφをそれぞれEBSDにより測定し、その平均値をそれぞれ算出した。
(4)c軸配向率
 得られた基板について、X線回折装置(株式会社リガクRINT2000)にてθ/2θ測定を行い、(200)面のc軸配向を測定して得た。具体的には、c軸配向率(%)=I(200)/ΣI(hkl)×100(%)により求めた。
2.超電導線材
 実施例1-3及び比較例1、2で得られた基板上に、RFマグネトロンスパッタリング法により中間層(CeO、YSZ、Y)を形成させ、PLD法により、中間層の上に2.1μm~2.3μmの厚さの超電導層(GdBCO)を形成させて超電導線材を得た。得られた超電導線材の10mm幅における臨界電流値Icを測定し、臨界電流密度Jcを算出した。臨界電流値Icについては、温度が77Kで、自己磁場中において測定を行い、10-6V/cmの電界が発生したときの通電電流値とした。結果を表1、図1及び図2に示す。図1は、Δω、Δφと臨界電流密度との関係を示す図であり、図2は、結晶方位が(001)[100]から6°以上ずれている面積の割合と臨界電流密度との関係を示す図である。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1の基板と実施例2の基板とは、Δφはほぼ同等であるが、Δωは0.5°程度異なることから、ΔωとΔφとは、比例関係等の直接対応する関係にはないことがわかる。つまり、単純にΔωが小さくなると、それに応じてΔφが小さくなるものではなく、ΔωとΔφとは別のファクターである。また、実施例1-3の基板と比較例1の基板とは、Δωはそれぞれ1.3°~1.9°程度の差であるが、基板の最表層の結晶方位が(001)[100]から6°以上ずれている面積の割合の差は7.5%以上と大きく異なることから、Δωと結晶方位が(001)[100]から6°以上ずれている面積の割合とは、比例関係等の直接対応する関係にはないことが分かる。つまり、単純にΔωが小さくなると、それに応じて結晶方位が(001)[100]から6°以上ずれている面積の割合が少なくなるものではなく、Δωとずれている面積の割合とは別のファクターである。同様に、実施例1-3の基板と比較例1の基板とは、Δφはそれぞれ0.7°~0.9°程度の差であるが、基板の最表層の結晶方位が(001)[100]から6°以上ずれている面積の割合の差は7.5%以上と大きく異なることから、Δφと結晶方位が(001)[100]から6°以上ずれている面積の割合とは、比例関係等の直接対応する関係にはないことが分かる。つまり、単純にΔφが小さくなると、それに応じて結晶方位が(001)[100]から6°以上ずれている面積の割合が少なくなるものではなく、Δφとずれている面積の割合とは別のファクターである。
 表1、図1及び図2より、実施例1-3の基板を用いた超電導線材は、比較例1、2の基板を用いた超電導線材と比較して、臨界電流密度が高く、超電導特性の向上が認められた。実施例1-3及び比較例1、2の基板は、Δφは全て6°以下であるが、Δωを6°以下とし、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合を6%以下とすることにより、超電導特性が向上した。また、実施例2、3の基板を用いた超電導線材と、実施例1の基板を用いた超電導線材とを比較することにより、結晶方位が(001)[100]から6°以上ずれている面積の割合を5%未満とすることで、超電導特性がより向上したことが示された。
(実施例4)
 積層体について、研磨方法と、積層体の金属層側表面の表面粗度との関係を調べた。具体的には、実施例1と同様にして活性化接合した、SUS316Lと銅箔との積層体について、圧延方向に沿ってSiC砥粒によるロール式バフ研磨を行った後、Al砥粒によるロール式バフ研磨を行った。次に、鏡面ロールによる圧下率0.1~1%の軽圧延を合計で3回繰り返した。各研磨工程の後に、AFM装置(Digital Instruments製Nano ScopeIIIaD3000)を用いて、積層体の銅層表面の単位長さ10μm当たりの表面粗度Ra1、Ra2、Rzjis1、Rzjis2、並びに単位面積10×10μm当たりのRa(□Ra)及びRzjis(□Rzjis)を測定した。その結果を図3及び図4に示す。図3及び図4において、「asclad」は研磨を施す前の積層体の状態を指し、「1pass」~「3pass」は、1~3回目の鏡面ロールによる軽圧延を指している。
 図3及び4より、バフ研磨と鏡面ロールによる軽圧延を併用することで、銅層の表面粗度を効果的に低減することができた。また、SiC砥粒によるバフ研磨を行った後、Al砥粒によるバフ研磨を施すことで、積層体の金属層側表面の単位面積10×10μm当たりの表面粗度Ra(□Ra)を25nm以下にすることができ、その後、鏡面ロールによる軽圧延を繰り返し施すことで、積層体の金属層側表面の単位面積10×10μm当たりの表面粗度Raを15nm以下にすることができた。特に、SiC砥粒によるバフ研磨とAl砥粒によるバフ研磨とを併用することで、積層体の金属層側表面の圧延方向の単位長さ10μm当たりの表面粗度Ra1を効果的に低減することができた。
(参考例)
 鏡面ロールによる軽圧延における、圧下率の影響について調査した。
 まず、金属基材としてのSUSと銅層とを活性化接合し、SUS/Cu積層材を作製した。続いて、銅層表面をバフ研磨し、銅層表面の表面粗度をRa1=25nm、Ra2=27nm(実施例と同じAFM装置を用いて測定した、10μmにおける値)まで低下させた。次に、鏡面ロールによる軽圧延を圧下率を変えて行い、配向化熱処理(250℃×1時間)を施した後、銅層の結晶配向度Δφを測定した。圧下率は、軽圧延前後の全体の板厚から算出した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 圧下率が2.6%になると、表面粗度をRa1=15nm、Ra2=16nmに低減することができるが、表2に示すように、結晶配向度が若干劣化する。圧下率が2%を超えると、銅層に対し圧延によるひずみが導入され、結晶配向させる際に悪影響を与えるものと考えられる。したがって、圧下率は2%以下とすることが好ましく、より好ましくは1.5%以下、特に好ましくは1%以下である。なお、表2において、圧下率0%のものは、圧延機の設定圧下量は-0.15μmであり、圧下されていないわけではないが、圧延前後の積層材においてμmオーダーでは差が観測されず、板厚に基づく計算値としては0%となった。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (10)

  1.  最表層の金属の結晶配向が、c軸配向率99%以上であり、Δωが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下である超電導線材用基板。
  2.  最表層の金属の結晶配向が、Δφが6°以下である、請求項1に記載の超電導線材用基板。
  3.  最表層の金属の結晶配向が、Δω及びΔφが5°未満である、請求項1又は2に記載の超電導線材用基板。
  4.  最表層が銅、ニッケル又はそれらの合金からなる、請求項1~3のいずれか1項に記載の超電導線材用基板。
  5.  前記超電導線材用基板は、非磁性の金属板に、前記最表層を有する金属層が積層されている、請求項1~4のいずれか1項に記載の超電導線材用基板。
  6.  前記非磁性の金属板は、ステンレス鋼又はニッケル合金である請求項5に記載の超電導線材用基板。
  7.  請求項1~6のいずれか1項に記載の超電導線材用基板の製造方法であって、熱処理により、c軸配向率が99%以上であり、Δωが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下である層を形成させる工程を含む前記製造方法。
  8.  非磁性の金属板と、金属層とを表面活性化接合にて積層する工程と、非磁性の金属板と金属層との積層体の金属層側表面の単位面積10×10μm当たりの表面粗度Raを15nm以下に処理する工程と、c軸配向率が99%以上であり、Δωが6°以下であり、且つ結晶方位が(001)[100]から6°以上ずれている面積の割合が単位面積あたり6%以下となるように金属層の熱処理を行う工程とを含む、超電導線材用基板の製造方法。
  9.  表面粗度Raを15nm以下に処理する工程が、バフ研磨及び鏡面ロールによる圧下率0~1%の軽圧延をこの順に行うことにより行われる、請求項8に記載の製造方法。
  10.  請求項1~6のいずれか1項に記載の超電導線材用基板と、基板上に積層した中間層と、中間層上に積層した超電導層とを有する超電導線材。
     
PCT/JP2015/079999 2014-10-27 2015-10-23 超電導線材用基板及びその製造方法、並びに超電導線材 WO2016068046A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15856116.7A EP3214627B1 (en) 2014-10-27 2015-10-23 Superconducting wire material substrate and method for manufacturing same, and superconducting wire material
US15/522,378 US10748678B2 (en) 2014-10-27 2015-10-23 Substrate for superconducting wire, production method therefor, and superconducting wire
KR1020177008923A KR102403087B1 (ko) 2014-10-27 2015-10-23 초전도 선재용 기판 및 그 제조 방법과 초전도 선재
CN201580052715.4A CN106716559B (zh) 2014-10-27 2015-10-23 超导线材用基板及其制造方法、以及超导线材
JP2016556541A JP6539673B2 (ja) 2014-10-27 2015-10-23 超電導線材用基板及びその製造方法、並びに超電導線材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-218436 2014-10-27
JP2014218436 2014-10-27

Publications (1)

Publication Number Publication Date
WO2016068046A1 true WO2016068046A1 (ja) 2016-05-06

Family

ID=55857385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079999 WO2016068046A1 (ja) 2014-10-27 2015-10-23 超電導線材用基板及びその製造方法、並びに超電導線材

Country Status (6)

Country Link
US (1) US10748678B2 (ja)
EP (1) EP3214627B1 (ja)
JP (1) JP6539673B2 (ja)
KR (1) KR102403087B1 (ja)
CN (1) CN106716559B (ja)
WO (1) WO2016068046A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180297327A1 (en) * 2015-10-23 2018-10-18 Toyo Kohan Co., Ltd. Substrate for epitaxial growth and method for producing same
CN111051546A (zh) * 2018-03-29 2020-04-21 古河电气工业株式会社 绝缘基板及其制造方法
WO2022209565A1 (ja) * 2021-03-29 2022-10-06 Jx金属株式会社 積層体及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6442020B1 (ja) * 2017-10-12 2018-12-19 福田金属箔粉工業株式会社 硬質圧延銅箔及び該硬質圧延銅箔の製造方法
US11661646B2 (en) 2021-04-21 2023-05-30 General Electric Comapny Dual phase magnetic material component and method of its formation
US11926880B2 (en) 2021-04-21 2024-03-12 General Electric Company Fabrication method for a component having magnetic and non-magnetic dual phases

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275504A (ja) * 1990-03-23 1991-12-06 Nippon Telegr & Teleph Corp <Ntt> 酸化物超伝導体薄膜およびその製造方法
JP2009046734A (ja) * 2007-08-21 2009-03-05 Chubu Electric Power Co Inc エピタキシャル膜形成用配向基板及びエピタキシャル膜形成用配向基板の表面改質方法
JP2010118246A (ja) * 2008-11-12 2010-05-27 Toyo Kohan Co Ltd 酸化物超電導線材用金属積層基板の製造方法及び該基板を用いた酸化物超電導線材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395847C (zh) * 2005-05-20 2008-06-18 清华大学 一种高温超导覆膜导体及其制备方法
JP5517196B2 (ja) * 2009-11-20 2014-06-11 東洋鋼鈑株式会社 超電導化合物用基板及びその製造方法
JP5531065B2 (ja) * 2012-08-16 2014-06-25 中部電力株式会社 エピタキシャル膜形成用配向基板
EP3042978B1 (en) 2013-09-04 2020-07-29 Toyo Kohan Co., Ltd. Layered substrate for epitaxial growth and process for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275504A (ja) * 1990-03-23 1991-12-06 Nippon Telegr & Teleph Corp <Ntt> 酸化物超伝導体薄膜およびその製造方法
JP2009046734A (ja) * 2007-08-21 2009-03-05 Chubu Electric Power Co Inc エピタキシャル膜形成用配向基板及びエピタキシャル膜形成用配向基板の表面改質方法
JP2010118246A (ja) * 2008-11-12 2010-05-27 Toyo Kohan Co Ltd 酸化物超電導線材用金属積層基板の製造方法及び該基板を用いた酸化物超電導線材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214627A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180297327A1 (en) * 2015-10-23 2018-10-18 Toyo Kohan Co., Ltd. Substrate for epitaxial growth and method for producing same
US11524486B2 (en) * 2015-10-23 2022-12-13 Toyo Kohan Co., Ltd. Substrate for epitaxtail, growth and method for producing same
US12070923B2 (en) 2015-10-23 2024-08-27 Toyo Kohan Co., Ltd. Substrate for epitaxial growth and method for producing same
CN111051546A (zh) * 2018-03-29 2020-04-21 古河电气工业株式会社 绝缘基板及其制造方法
WO2022209565A1 (ja) * 2021-03-29 2022-10-06 Jx金属株式会社 積層体及びその製造方法
JP2022153032A (ja) * 2021-03-29 2022-10-12 Jx金属株式会社 積層体及びその製造方法

Also Published As

Publication number Publication date
KR102403087B1 (ko) 2022-05-27
JP6539673B2 (ja) 2019-07-03
CN106716559A (zh) 2017-05-24
US20170338008A1 (en) 2017-11-23
CN106716559B (zh) 2018-07-10
KR20170074862A (ko) 2017-06-30
JPWO2016068046A1 (ja) 2017-08-10
EP3214627B1 (en) 2021-06-16
EP3214627A1 (en) 2017-09-06
EP3214627A4 (en) 2018-06-27
US10748678B2 (en) 2020-08-18

Similar Documents

Publication Publication Date Title
WO2016068046A1 (ja) 超電導線材用基板及びその製造方法、並びに超電導線材
JP5382911B2 (ja) 酸化物超電導線材用金属積層基板の製造方法及び該基板を用いた酸化物超電導線材
JP5723773B2 (ja) 酸化物超電導線材用金属積層基板の製造方法
JP5517196B2 (ja) 超電導化合物用基板及びその製造方法
JP6244142B2 (ja) 超電導線材用基板及びその製造方法、並びに超電導線材
JP6530713B2 (ja) 酸化物層の成膜方法、並びにエピタキシャル成長用積層基材及びその製造方法
JP6666656B2 (ja) Rfマグネトロンスパッタリング装置
JP6666655B2 (ja) エピタキシャル成長用積層基材の製造方法
JP6074527B2 (ja) エピタキシャル成長用基板及びその製造方法、並びに超電導線材用基板
JP6948621B2 (ja) エピタキシャル成長用基板及びその製造方法
JP5918920B2 (ja) 超電導化合物用基板及びその製造方法
JP2013101832A (ja) エピタキシャル成長用基板及びその製造方法、並びに超電導線材用基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556541

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177008923

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015856116

Country of ref document: EP