CN110923586A - 一种微合金化超高导磁铁基纳米晶合金带材及其制备方法 - Google Patents
一种微合金化超高导磁铁基纳米晶合金带材及其制备方法 Download PDFInfo
- Publication number
- CN110923586A CN110923586A CN201911151828.6A CN201911151828A CN110923586A CN 110923586 A CN110923586 A CN 110923586A CN 201911151828 A CN201911151828 A CN 201911151828A CN 110923586 A CN110923586 A CN 110923586A
- Authority
- CN
- China
- Prior art keywords
- temperature
- furnace
- charging
- preparation
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/003—Making ferrous alloys making amorphous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
- C22C33/06—Making ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/02—Amorphous alloys with iron as the major constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15308—Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15333—Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15341—Preparation processes therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/03—Amorphous or microcrystalline structure
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Continuous Casting (AREA)
Abstract
本发明涉及纳米晶合金带材技术领域,尤其涉及一种微合金化超高导磁铁基纳米晶合金带材及其制备方法。包括成分与重量比为:Si8.5~9.1%,B1.8~2.0%,P0.1~0.3%,Cu1.10~1.35%,Nb4.8~5.2%,Mo0.8~1%,Ni0.3~0.5%,Cr0.2~0.5%,Fe80.05~82.4%;所述制备方法为:步骤一:采用中频感应加热的真空熔炼炉制备母合金;步骤二:在重力制带机组将母合金重熔熔化过程中,采用珍珠岩进行保护和打除低温渣、高温渣;步骤三:采用重力制带机将所述步骤二中的材料制备为非晶合金薄带;提供了一种微合金化超高导磁铁基纳米晶合金带材,具有超高导磁率和良好韧性,且制备工艺整体合理,提高钢液流动性,大大降低了生产成本。
Description
技术领域
本发明涉及纳米晶合金带材技术领域,尤其涉及一种微合金化超高导磁铁基纳米晶合金带材及其制备方法。
背景技术
铁基纳米晶合金是由铁元素为主,加入少量其它元素,经1988年日本的Yoshizawa等人首先发现,在Fe-Si-B非晶合金的基体中加入少量Cu和M,经适当的温度晶化退火以后,可获得一种性能优异的具有bcc结构超细晶粒软磁合金,但是目前,铁基纳米晶合金带材存在初始导磁率不太高,高初始导磁率带材韧性较差的情况,同时与之匹配的制备工艺的不适宜,导致钢液流动性差和原料烧损大,提高了整体的生产成本。
发明内容
本发明所要解决的技术问题,是针对上述存在的技术不足,提供了一种微合金化超高导磁铁基纳米晶合金带材及其制备方法,具有超高导磁率和良好韧性,且制备工艺整体合理,提高钢液流动性,大大降低了生产成本。
为解决上述技术问题,本发明所采用的技术方案是:包括成分与重量比为:Si8.5~9.1%,B1.8~2.0%,P0.1~0.3%,Cu1.10~1.35%,Nb4.8~5.2%,Mo0.8~1%,Ni0.3~0.5%,Cr0.2~0.5%,Fe80.05~82.4%;所述Nb和Mo两种元素含量总和不超出5.6~5.8%。
优选的,所述制备方法为:
步骤一:采用中频感应加热的真空熔炼炉制备母合金;
步骤二:在重力制带机组将母合金重熔熔化过程中,采用珍珠岩进行保护和打除低温渣、高温渣;
步骤三:采用重力制带机将所述步骤二中的材料制备为非晶合金薄带;
步骤四:将非晶合金薄带按特定规格尺寸要求卷好铁芯,并在真空退火炉内进行晶化退火处理,获得纳米晶磁芯。
所述步骤一制备母合金的具体过程包括装料和原料熔融合金化,所述装料为每次装料前检查真空熔炼炉内侧底部、内壁、炉口是否存在裂纹缝隙,检查完毕,将坩埚倾斜10~20度,开始装料;
所述原料熔融合金化,一次装料完毕后,启动滑阀泵和罗茨泵抽将坩埚熔炼炉内部抽真空,真空度达到10~200Pa,同时进行预热,预热功率调至50~55kw,预热时间为15~20min,预热完成,关闭滑阀泵和罗茨泵;然后升温加热,加热功率调至95~100kw,加热时间为5~7min,再将加热功率调至150~175kw,加热时间为15~20min,钢液温度为1500~1550℃,停电镇静2min后,将炉体破空打掉高温渣,3~4次;打渣结束、二次装料完毕后,盖上炉盖抽真空,真空度为10~20Pa,加热功率为220~240kw,加热时间8~12min,然后加热功率调至95~100kw,加热时间10~15min,钢液温度为1380~1420℃;加热时间结束停电冷却降温,冷却降温时间为25~30min;钢液温度达到1280~1300℃时开始浇钢,浇钢时加热功率调至25kw,浇钢过程先慢,中间快,剩余30公斤约3分钟浇铸完成,在炉内钢锭模中镇静4~5min,打开炉盖将钢锭模吊出,钢锭随钢锭模自然冷却30~35min后,脱模,钢锭在空气中快速冷却降温至常温,所述步骤一完成。
优选的,所述装料包括一次装料和二次装料;所述一次装料在坩埚炉底先放入金属硅2~3Kg,再放入全部的纯铁,纯铁分上下两层放置,然后倒入全部的铌铁和钼铁;所述二次装料先放入全部的硼铁、铬铁和电解镍,再放入全部的电解铜、磷铁和剩余的金属硅。
优选的,所述预热完成时炉内原料显暗红色;所述钢液温度为1500~1550℃时炉内纯铁、铌铁和钼铁全部熔清;所述钢液温度为1380~1420℃时炉内所有原料全部熔清并搅拌均匀。
优选的,所述原料熔融合金化过程中的高温渣采用珍珠岩进行打渣。
优选的,所述低温渣为重熔熔化过程中,母合金全部浸入钢水熔清状态时产生的氧化物渣质;所述高温渣为制带浇钢步骤前,提高钢液温度时产生的氧化物渣质。
优选的,所述步骤四中铁芯晶化退火处理温度为565~570℃,保温时间为120~150min。
与现有技术相比,本发明具有以下优点:采用合金元素之间成分搭配,配合整体制备工艺,使铁基纳米晶合金带材本身具有超高的导磁率、良好的带材韧性和卓越的温度稳定性,并且通过加入Nb、Mo和Cr,控制晶粒的长大到合适的纳米尺寸,加入微量P改善钢液流动性,而微量Ni能够有效抑制表面晶化,以改善整体工艺性。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
实施例1
一种微合金化超高导磁铁基纳米晶合金带材及其制备方法,其特征在于:包括成分与重量比为:Si8.5%,B1.8%,P0.1%,Cu1.1%,Nb4.8%,Mo0.8%,Ni0.3%,Cr0.2%,Fe82.4%;
步骤一:采用中频感应加热的真空熔炼炉制备母合金;
步骤二:在重力制带机组将母合金重熔熔化过程中,采用珍珠岩进行保护和打除低温渣、高温渣;
步骤三:采用重力制带机将所述步骤二中的材料制备为非晶合金薄带;
步骤四:将非晶合金薄带按特定规格尺寸要求卷好铁芯,并在真空退火炉内进行晶化退火处理,获得纳米晶磁芯。
所述步骤一制备母合金的具体过程包括装料和原料熔融合金化,所述装料为每次装料前检查真空熔炼炉内侧底部、内壁、炉口是否存在裂纹缝隙,检查完毕,将坩埚倾斜10~20度,开始装料;
所述原料熔融合金化,一次装料完毕后,启动滑阀泵和罗茨泵抽将坩埚熔炼炉内部抽真空,真空度达到10~200Pa,同时进行预热,预热功率调至50kw,预热时间为15min,预热完成,关闭滑阀泵和罗茨泵;然后升温加热,加热功率调至100kw,加热时间为5min,再将加热功率调至150kw,加热时间为15min,钢液温度为1500℃,停电镇静2min后,将炉体破空打掉高温渣,3次;打渣结束、二次装料完毕后,盖上炉盖抽真空,真空度为10Pa,加热功率为220kw,加热时间8min,然后加热功率调至100kw,加热时间10min,钢液温度为1380℃;加热时间结束停电冷却降温,冷却降温时间为25min;钢液温度达到1300℃时开始浇钢,浇钢时加热功率调至25kw,浇钢过程先慢,中间快,剩余30公斤约3分钟浇铸完成,在炉内钢锭模中镇静4min,打开炉盖将钢锭模吊出,钢锭随钢锭模自然冷却30min后,脱模,钢锭在空气中快速冷却降温至常温,所述步骤一完成;
所述步骤四中铁芯晶化退火处理温度为565℃,保温150min。
实施例2
一种微合金化超高导磁铁基纳米晶合金带材及其制备方法,其特征在于:包括成分与重量比为:Si9.1%,B2.0%,P0.3%,Cu1.35%,Nb5.0%,Mo0.8%,Ni0.5%,Cr0.5%,Fe80.45%;
步骤一:采用中频感应加热的真空熔炼炉制备母合金;
步骤二:在重力制带机组将母合金重熔熔化过程中,采用珍珠岩进行保护和打除低温渣、高温渣;
步骤三:采用重力制带机将所述步骤二中的材料制备为非晶合金薄带;
步骤四:将非晶合金薄带按特定规格尺寸要求卷好铁芯,并在真空退火炉内进行晶化退火处理,获得纳米晶磁芯。
所述步骤一制备母合金的具体过程包括装料和原料熔融合金化,所述装料为每次装料前检查真空熔炼炉内侧底部、内壁、炉口是否存在裂纹缝隙,检查完毕,将坩埚倾斜10~20度,开始装料;
所述原料熔融合金化,一次装料完毕后,启动滑阀泵和罗茨泵抽将坩埚熔炼炉内部抽真空,真空度达到10~200Pa,同时进行预热,预热功率调至55kw,预热时间为20min,预热完成,关闭滑阀泵和罗茨泵;然后升温加热,加热功率调至100kw,加热时间为7min,再将加热功率调至175kw,加热时间为20min,钢液温度为1550℃,停电镇静2min后,将炉体破空打掉高温渣,3次;打渣结束、二次装料完毕后,盖上炉盖抽真空,真空度为10Pa,加热功率为240kw,加热时间12min,然后加热功率调至100kw,加热时间12min,钢液温度为1400℃;加热时间结束停电冷却降温,冷却降温时间为30min;钢液温度达到1280℃时开始浇钢,浇钢时加热功率调至25kw,浇钢过程先慢,中间快,剩余30公斤约3分钟浇铸完成,在炉内钢锭模中镇静4min,打开炉盖将钢锭模吊出,钢锭随钢锭模自然冷却30min后,脱模,钢锭在空气中快速冷却降温至常温,所述步骤一完成;
所述步骤四中铁芯晶化退火处理温度为570℃,保温110min。
实施例3
一种微合金化超高导磁铁基纳米晶合金带材及其制备方法:包括成分与重量比为:Si9.0%,B1.95%,P0.1%,Cu1.32%,Nb4.8%,Mo1.0%,Ni0.5%,Cr0.2%,Fe81.13%;
步骤一:采用中频感应加热的真空熔炼炉制备母合金;
步骤二:在重力制带机组将母合金重熔熔化过程中,采用珍珠岩进行保护和打除低温渣、高温渣;
步骤三:采用重力制带机将所述步骤二中的材料制备为非晶合金薄带;
步骤四:将非晶合金薄带按特定规格尺寸要求卷好铁芯,并在真空退火炉内进行晶化退火处理,获得纳米晶磁芯。
所述步骤一制备母合金的具体过程包括装料和原料熔融合金化,所述装料为每次装料前检查真空熔炼炉内侧底部、内壁、炉口是否存在裂纹缝隙,检查完毕,将坩埚倾斜10~20度,开始装料;
所述原料熔融合金化,一次装料完毕后,启动滑阀泵和罗茨泵抽将坩埚熔炼炉内部抽真空,真空度达到10~200Pa,同时进行预热,预热功率调至55kw,预热时间为20min,预热完成,关闭滑阀泵和罗茨泵;然后升温加热,加热功率调至100kw,加热时间为7min,再将加热功率调至175kw,加热时间为20min,钢液温度为1520℃,停电镇静2min后,将炉体破空打掉高温渣,3次;打渣结束、二次装料完毕后,盖上炉盖抽真空,真空度为10Pa,加热功率为240kw,加热时间12min,然后加热功率调至100kw,加热时间12min,钢液温度为1380℃;加热时间结束停电冷却降温,冷却降温时间为30min;钢液温度达到1280℃时开始浇钢,浇钢时加热功率调至25kw,浇钢过程先慢,中间快,剩余30公斤约3分钟浇铸完成,在炉内钢锭模中镇静4min,打开炉盖将钢锭模吊出,钢锭随钢锭模自然冷却30min后,脱模,钢锭在空气中快速冷却降温至常温,所述步骤一完成;
所述步骤四中铁芯晶化退火处理温度为568℃,保温150min。
实施例4
一种微合金化超高导磁铁基纳米晶合金带材及其制备方法,其特征在于:包括成分与重量比为:Si8.9%,B1.9%,P0.2%,Cu1.3%,Nb5.0%,Mo1.0%,Ni0.4%,Cr0.3%,Fe81.0%;
步骤一:采用中频感应加热的真空熔炼炉制备母合金;
步骤二:在重力制带机组将母合金重熔熔化过程中,采用珍珠岩进行保护和打除低温渣、高温渣;
步骤三:采用重力制带机将所述步骤二中的材料制备为非晶合金薄带;
步骤四:将非晶合金薄带按特定规格尺寸要求卷好铁芯,并在真空退火炉内进行晶化退火处理,获得纳米晶磁芯。
所述步骤一制备母合金的具体过程包括装料和原料熔融合金化,所述装料为每次装料前检查真空熔炼炉内侧底部、内壁、炉口是否存在裂纹缝隙,检查完毕,将坩埚倾斜10~20度,开始装料;
所述原料熔融合金化,一次装料完毕后,启动滑阀泵和罗茨泵抽将坩埚熔炼炉内部抽真空,真空度达到10~200Pa,同时进行预热,预热功率调至55kw,预热时间为20min,预热完成,关闭滑阀泵和罗茨泵;然后升温加热,加热功率调至100kw,加热时间为7min,再将加热功率调至175kw,加热时间为20min,钢液温度为1550℃,停电镇静2min后,将炉体破空打掉高温渣,4次;打渣结束、二次装料完毕后,盖上炉盖抽真空,真空度为10Pa,加热功率为240kw,加热时间12min,然后加热功率调至100kw,加热时间12min,钢液温度为1400℃;加热时间结束停电冷却降温,冷却降温时间为30min;钢液温度达到1280℃时开始浇钢,浇钢时加热功率调至25kw,浇钢过程先慢,中间快,剩余30公斤约3分钟浇铸完成,在炉内钢锭模中镇静4min,打开炉盖将钢锭模吊出,钢锭随钢锭模自然冷却30min后,脱模,钢锭在空气中快速冷却降温至常温,所述步骤一完成;
所述步骤四中铁芯晶化退火处理温度为566℃,保温150min。
本发明在纯铁放置时分为上下两层能够提高熔炼时与合金元素的均匀混合,同时在二次装料时先放入全部的硼铁、铬铁和电解镍,再放入全部的电解铜、磷铁和剩余的金属硅,可以降低熔炼温度,减少烧损和溶解吸气,提高微合金化速度及炉体的寿命;
采用一次破空能够提高装料速度增加可操作性,减少高温坩埚表面被大气氧化,形成含氧化物很高的浮渣层,同时破空后快速加入珍珠岩进行打渣,将形成的金属氧化物快速清除,防止下炉钢液熔炼时含氧量增加;
对于铁芯晶化退火采用的温度和保温时间,能够有效消除内应力,促进晶化形核获得纳米晶粒;同时工艺优化以后,熔炼时的加热功率和温度的选择,整体加热时间所耗费的能源大幅度减少,有效降低了生产成本;
在组分当中,去除铁元素和合金元素后,剩余部分为不可避免的杂质元素含量,对于最后产品的品质没有影响。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。
Claims (7)
1.一种微合金化超高导磁铁基纳米晶合金带材及其制备方法,其特征在于:包括成分与重量比为:Si8.5~9.1%,B1.8~2.0%,P0.1~0.3%,Cu1.10~1.35%,Nb4.8~5.2%,Mo0.8~1%,Ni0.3~0.5%,Cr0.2~0.5%,Fe80.05~82.4%;所述Nb和Mo两种元素含量总和不超出5.6~5.8%。
2.根据权利要求1所述的一种微合金化超高导磁铁基纳米晶合金带材及其制备方法,其特征在于:所述制备方法为:
步骤一:采用中频感应加热的真空熔炼炉制备母合金;
步骤二:在重力制带机组将母合金重熔熔化过程中,采用珍珠岩进行保护和打除低温渣、高温渣;
步骤三:采用重力制带机将所述步骤二中的材料制备为非晶合金薄带;
步骤四:将非晶合金薄带按特定规格尺寸要求卷好铁芯,并在真空退火炉内进行晶化退火处理,获得纳米晶磁芯。
所述步骤一制备母合金的具体过程包括装料和原料熔融合金化,所述装料为每次装料前检查真空熔炼炉内侧底部、内壁、炉口是否存在裂纹缝隙,检查完毕,将坩埚倾斜10~20度,开始装料;
所述原料熔融合金化,一次装料完毕后,启动滑阀泵和罗茨泵抽将坩埚熔炼炉内部抽真空,真空度达到10~200Pa,同时进行预热,预热功率调至50~55kw,预热时间为15~20min,预热完成,关闭滑阀泵和罗茨泵;然后升温加热,加热功率调至95~100kw,加热时间为5~7min,再将加热功率调至150~175kw,加热时间为15~20min,钢液温度为1500~1550℃,停电镇静2min后,将炉体破空打掉高温渣,3~4次;打渣结束、二次装料完毕后,盖上炉盖抽真空,真空度为10~20Pa,加热功率为220~240kw,加热时间8~12min,然后加热功率调至95~100kw,加热时间10~15min,钢液温度为1380~1420℃;加热时间结束停电冷却降温,冷却降温时间为25~30min;钢液温度达到1280~1300℃时开始浇钢,浇钢时加热功率调至25kw,浇钢过程先慢,中间快,剩余30公斤约3分钟浇铸完成,在炉内钢锭模中镇静4~5min,打开炉盖将钢锭模吊出,钢锭随钢锭模自然冷却30~35min后,脱模,钢锭在空气中快速冷却降温至常温,所述步骤一完成。
3.根据权利要求2所述的一种微合金化超高导磁铁基纳米晶合金带材及其制备方法,其特征在于:所述装料包括一次装料和二次装料;所述一次装料在坩埚炉底先放入金属硅2~3Kg,再放入全部的纯铁,纯铁分上下两层放置,然后倒入全部的铌铁和钼铁;所述二次装料先放入全部的硼铁、铬铁和电解镍,再放入全部的电解铜、磷铁和剩余的金属硅。
4.根据权利要求2所述的一种微合金化超高导磁铁基纳米晶合金带材及其制备方法,其特征在于:所述预热完成时炉内原料显暗红色;所述钢液温度为1500~1550℃时炉内纯铁、铌铁和钼铁全部熔清;所述钢液温度为1380~1420℃时炉内所有原料全部熔清并搅拌均匀。
5.根据权利要求2所述的一种微合金化超高导磁铁基纳米晶合金带材及其制备方法,其特征在于:所述原料熔融合金化过程中的高温渣采用珍珠岩进行打渣。
6.根据权利要求2所述的一种微合金化超高导磁铁基纳米晶合金带材及其制备方法,其特征在于:所述低温渣为重熔熔化过程中,母合金全部浸入钢水熔清状态时产生的氧化物渣质;所述高温渣为制带浇钢步骤前,提高钢液温度时产生的氧化物渣质。
7.根据权利要求2所述的一种微合金化超高导磁铁基纳米晶合金带材及其制备方法,其特征在于:所述步骤四中铁芯晶化退火处理温度为565~570℃,保温时间为120~150min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911151828.6A CN110923586A (zh) | 2019-11-22 | 2019-11-22 | 一种微合金化超高导磁铁基纳米晶合金带材及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911151828.6A CN110923586A (zh) | 2019-11-22 | 2019-11-22 | 一种微合金化超高导磁铁基纳米晶合金带材及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110923586A true CN110923586A (zh) | 2020-03-27 |
Family
ID=69851557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911151828.6A Pending CN110923586A (zh) | 2019-11-22 | 2019-11-22 | 一种微合金化超高导磁铁基纳米晶合金带材及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110923586A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114045435A (zh) * | 2021-11-11 | 2022-02-15 | 泉州天智合金材料科技有限公司 | 一种铁基非晶纳米晶吸波材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101445895A (zh) * | 2007-11-26 | 2009-06-03 | 比亚迪股份有限公司 | 一种稀土基非晶合金及其制备方法 |
EP2123781A1 (en) * | 2008-05-08 | 2009-11-25 | OCAS N.V. - Onderzoekscentrum voor Aanwending van Staal | Amorphous alloy and method for producing products made thereof |
CN102741437A (zh) * | 2008-08-22 | 2012-10-17 | 牧野彰宏 | 合金组合物、Fe基纳米晶合金及其制造方法和磁性部件 |
CN103014477A (zh) * | 2013-01-16 | 2013-04-03 | 青岛云路新能源科技有限公司 | 一种冶炼铁基纳米晶母合金的方法 |
CN107365950A (zh) * | 2017-07-24 | 2017-11-21 | 广东咏旺新材料科技有限公司 | Fe‑Si‑B‑Nb‑Cu铁基非晶/纳米晶软磁合金材料及制备和热处理工艺 |
-
2019
- 2019-11-22 CN CN201911151828.6A patent/CN110923586A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101445895A (zh) * | 2007-11-26 | 2009-06-03 | 比亚迪股份有限公司 | 一种稀土基非晶合金及其制备方法 |
EP2123781A1 (en) * | 2008-05-08 | 2009-11-25 | OCAS N.V. - Onderzoekscentrum voor Aanwending van Staal | Amorphous alloy and method for producing products made thereof |
CN102741437A (zh) * | 2008-08-22 | 2012-10-17 | 牧野彰宏 | 合金组合物、Fe基纳米晶合金及其制造方法和磁性部件 |
CN103014477A (zh) * | 2013-01-16 | 2013-04-03 | 青岛云路新能源科技有限公司 | 一种冶炼铁基纳米晶母合金的方法 |
CN107365950A (zh) * | 2017-07-24 | 2017-11-21 | 广东咏旺新材料科技有限公司 | Fe‑Si‑B‑Nb‑Cu铁基非晶/纳米晶软磁合金材料及制备和热处理工艺 |
Non-Patent Citations (1)
Title |
---|
北京钢铁学校等: "《钢锭浇铸问答》", 31 May 1980, 冶金工业出版社 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114045435A (zh) * | 2021-11-11 | 2022-02-15 | 泉州天智合金材料科技有限公司 | 一种铁基非晶纳米晶吸波材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104372238B (zh) | 一种取向高硅钢的制备方法 | |
CN103635596B (zh) | 晶粒取向的、电工用途的磁性钢带或磁性钢板的制造方法 | |
CN103805918B (zh) | 一种高磁感取向硅钢及其生产方法 | |
JP6025864B2 (ja) | 生産性及び磁気的性質に優れた高珪素鋼板及びその製造方法 | |
WO2012114383A1 (ja) | 無方向性電磁鋼板およびその製造方法 | |
WO2022083218A1 (zh) | 一种工程机械齿轮用钢的制备法及其锻件的制备方法 | |
MX2012007473A (es) | Acero electrico no orientado que tiene alta induccion magnetica relativa y alta intensidad y metodo de fabricacion del mismo. | |
MX2012010529A (es) | Metodo de fabricacion de acero al silicio no orientado de alta eficiencia con excelentes propiedades magneticas. | |
CN111876662B (zh) | 一种热作模具钢钢板及其制造方法 | |
CN111545720A (zh) | 一种降低渗碳齿轮钢带状组织的成型工艺 | |
CN109252085A (zh) | 一种预硬化塑料模具用钢板的生产方法 | |
CN114540699A (zh) | 一种高性能热作模具钢及其制备方法 | |
CN106399822A (zh) | 一种采用固有抑制剂法和铸坯低温加热工艺制造的Hi-B钢 | |
CN110923586A (zh) | 一种微合金化超高导磁铁基纳米晶合金带材及其制备方法 | |
CN113462988B (zh) | 阀体铸件及其铸造工艺 | |
CN110952034A (zh) | 一种大厚度水电用s550q钢板及其生产方法 | |
CN113981321A (zh) | 一种低碳CrNiMo齿轮钢及其带状组织控制方法 | |
CN116083816A (zh) | 一种高淬透性超大规格石油装备用钢及其生产工艺 | |
CN115449696A (zh) | 一种提高低温高磁感取向硅钢磁感强度的生产方法 | |
CN114657461B (zh) | 一种基于固溶强化的高强度无取向硅钢及其制备方法 | |
CN102732802B (zh) | 一种厚度≥80毫米的锅炉汽包用钢及其生产方法 | |
CN112157233B (zh) | 宽钢带铁铬铝合金连铸板坯两连浇的制造方法 | |
CN107916375A (zh) | 用于铸造耐磨离心缸的铸造材料及其铸造工艺 | |
CN109797348B (zh) | 一种高强度板簧的生产工艺 | |
CN111394645B (zh) | 高铬铸铁轧辊及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200327 |