WO2009119709A1 - 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 - Google Patents
垂直磁気記録媒体および垂直磁気記録媒体の製造方法 Download PDFInfo
- Publication number
- WO2009119709A1 WO2009119709A1 PCT/JP2009/056051 JP2009056051W WO2009119709A1 WO 2009119709 A1 WO2009119709 A1 WO 2009119709A1 JP 2009056051 W JP2009056051 W JP 2009056051W WO 2009119709 A1 WO2009119709 A1 WO 2009119709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic recording
- recording layer
- layer
- magnetic
- crystal grains
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 346
- 238000000034 method Methods 0.000 title abstract description 17
- 239000013078 crystal Substances 0.000 claims abstract description 82
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims description 37
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 30
- 239000000758 substrate Substances 0.000 claims description 23
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 21
- 239000007789 gas Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000000696 magnetic material Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 239000008187 granular material Substances 0.000 claims 1
- 230000005389 magnetism Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 14
- 238000000926 separation method Methods 0.000 abstract description 4
- 230000001747 exhibiting effect Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 261
- 239000010408 film Substances 0.000 description 18
- 239000011651 chromium Substances 0.000 description 17
- 230000005415 magnetization Effects 0.000 description 11
- 239000006249 magnetic particle Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000011241 protective layer Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 230000001050 lubricating effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000006911 nucleation Effects 0.000 description 5
- 238000010899 nucleation Methods 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000010702 perfluoropolyether Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000005354 aluminosilicate glass Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000003618 dip coating Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- -1 CoTaZr Inorganic materials 0.000 description 2
- 229910003271 Ni-Fe Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000006017 silicate glass-ceramic Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910020598 Co Fe Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910002519 Co-Fe Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 230000005316 antiferromagnetic exchange Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 238000003426 chemical strengthening reaction Methods 0.000 description 1
- 239000005345 chemically strengthened glass Substances 0.000 description 1
- IAQWMWUKBQPOIY-UHFFFAOYSA-N chromium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Cr+4] IAQWMWUKBQPOIY-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/64—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
- G11B5/66—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
- G11B5/674—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having differing macroscopic or microscopic structures, e.g. differing crystalline lattices, varying atomic structures or differing roughnesses
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/64—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
- G11B5/66—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
- G11B5/672—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/851—Coating a support with a magnetic layer by sputtering
Definitions
- the present invention relates to a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording type HDD (hard disk drive) and the like and a method of manufacturing the perpendicular magnetic recording medium.
- a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording type HDD (hard disk drive) and the like and a method of manufacturing the perpendicular magnetic recording medium.
- perpendicular magnetic recording type magnetic disks have been recently proposed.
- the easy axis of magnetization of the magnetic recording layer is aligned in the plane direction of the substrate surface, but in the perpendicular magnetic recording method, the easy magnetization axis is adjusted to be aligned in the direction perpendicular to the substrate surface. ing.
- the perpendicular magnetic recording method is more suitable for increasing the recording density because the thermal fluctuation phenomenon can be more suppressed during high-density recording than the in-plane recording method.
- CoCrPt—SiO 2 or CoCrPt—TiO 2 having a granular structure has been widely used as the magnetic recording layer.
- crystals having an hcp structure hexagonal close-packed crystal lattice
- Cr and SiO 2 or TiO 2
- a single pole type perpendicular head is used to generate a perpendicular magnetic field with respect to the magnetic recording layer.
- a single magnetic pole type vertical head makes it impossible to apply a sufficiently strong magnetic field to the magnetic recording layer because the magnetic flux exiting the single magnetic pole end immediately returns to the return magnetic pole on the opposite side. Therefore, a strong magnetic field in the perpendicular direction can be applied to the magnetic recording layer by providing a soft magnetic layer under the magnetic recording layer of the perpendicular magnetic recording disk and forming a magnetic flux path (magnetic path) in the soft magnetic layer. It becomes. That is, the soft magnetic layer is a layer in which the magnetization direction is aligned by a magnetic field when writing and dynamically forms a magnetic path.
- the continuous layer also has a role of improving the writeability, that is, the overwrite characteristic, by improving the saturation magnetization Ms.
- the purpose of providing a continuous layer on the magnetic recording layer is to improve the reverse domain nucleation magnetic field Hn to reduce noise and to improve the saturation magnetization Ms and to improve the overwrite characteristics.
- the continuous layer is also referred to as an auxiliary recording layer or a cap layer. In the present application, it is referred to as a continuous layer unless otherwise specified. JP 2003-346315 A
- the overwrite characteristic can be improved by the continuous layer having a high saturation magnetization Ms, the noise is increased. Since the continuous layer is located above the medium, the influence on noise increase is large.
- the recording magnetic field strength decreases remarkably as the distance from the recording head increases.
- the inventor has the function of the conventional continuous layer also in the first magnetic recording layer, so that the ideal magnetic field strength is weaker than the head magnetic field strength above the medium (a layer close to the surface layer of the medium). It came to be thought that the structure which achieves a typical magnetization reversal was ideal.
- the configuration of the present invention it is possible to achieve higher overwrite characteristics more efficiently, and the first magnetic recording layer is located in a part sufficiently away from the reproducing head, so that the increase in noise is reduced. The contribution is small.
- the present invention has been made in view of the above-described problems of the continuous layer provided in the perpendicular magnetic recording medium.
- the object of the present invention is to devise the interval between the crystal grains of the first magnetic recording layer. It is to provide a perpendicular magnetic recording medium in which one magnetic recording layer also has a function as a continuous layer, and a method for manufacturing the perpendicular magnetic recording medium.
- the inventors of the present invention diligently studied and found that the overwrite characteristics are improved when the interval between the crystal grains of the first magnetic recording layer has a predetermined value.
- the invention has been completed.
- a typical configuration of the perpendicular magnetic recording medium according to the present invention is a perpendicular magnetic recording medium having at least a first magnetic recording layer and a second magnetic recording layer in this order on a substrate.
- the first magnetic recording layer and the second magnetic recording layer are a ferromagnetic layer having a granular structure in which a grain boundary portion made of a non-magnetic substance is formed between crystal grains grown in a columnar shape.
- the crystal grains The distance between the grains determined by the average of the shortest distances between the grain boundaries between the crystal grains adjacent to each other is 1 nm or less.
- the first magnetic recording layer has the same function as the continuous layer due to the configuration in which the inter-particle distance between the crystal grains of the first magnetic recording layer and the adjacent crystal grains is 1 nm or less. Therefore, it is possible to reliably improve the reverse domain nucleation magnetic field Hn, improve the heat-resistant fluctuation characteristics, and improve the overwrite characteristics. If the inter-particle distance between the crystal grains in the first magnetic recording layer and the adjacent crystal grains is 1 nm or more, the function as a continuous layer cannot be achieved, and improvement of the overwrite characteristics cannot be expected.
- the inter-particle distance determined by the average of the shortest distances between the grain boundaries between the crystal grains and the adjacent crystal grains is preferably 0.5 nm or more.
- the high coercive force Hc and the high SNR can be maintained optimally. If the distance between the crystal grains in the second magnetic recording layer is 0.5 nm or less, the granular structure cannot be maintained, and the SNR is lowered.
- the average particle diameter of the crystal particles in the first magnetic recording layer is Anm and the average particle diameter of the crystal particles in the second magnetic recording layer is Bnm, A> B may be satisfied.
- the overwrite characteristic can be improved while fulfilling the function as a continuous layer. Further, the high magnetic coercive force Hc and the high SNR can be optimally maintained in the second magnetic recording layer.
- the ratio of the average grain size of the crystal grains in the first magnetic recording layer to the average grain size of the crystal grains in the second magnetic recording layer may be 1 ⁇ A / B ⁇ 1.2.
- the total thickness of the first magnetic recording layer and the second magnetic recording layer is preferably 15 nm or less.
- the film thickness of the first magnetic recording layer is preferably 5 nm or less, and desirably 3 nm to 4 nm. This is because the composition separation of the second magnetic recording layer cannot be promoted when the thickness is smaller than 3 nm, and the R / W characteristics (read / write characteristics) are deteriorated when the thickness is larger than 4 nm.
- the thickness of the second magnetic recording layer is preferably 5 nm or more, and desirably 7 nm to 15 nm. This is because if it is smaller than 7 nm, a sufficient coercive force cannot be obtained, and if it is larger than 15 nm, high Hn cannot be obtained. Therefore, in order to obtain high Hn, the total thickness of the first magnetic recording layer and the second magnetic recording layer is preferably 15 nm or less.
- the film thickness of the first magnetic recording layer may be about 0.2 to about 1 times the film thickness of the second magnetic recording layer.
- a continuous layer magnetically continuous in the direction of the substrate surface is provided on the side farther from the substrate than the second magnetic recording layer, and the film thickness of the first magnetic recording layer is about 0.2 to about 2 of the film thickness of the continuous layer. It should be double.
- a continuous layer magnetically continuous in the direction of the substrate surface is provided on the side farther from the substrate than the second magnetic recording layer, and the film thickness of the second magnetic recording layer is about 0.7 to about 2 of the film thickness of the continuous layer. It should be double.
- Magnetic substance contained in the first magnetic recording layer selected from SiO 2, TiO 2, Cr 2 O 3, Ta 2 O 5, Nb 2 O 5, the group of B 2 O 3 or ZrO 2, 1 Or it is good to include a plurality.
- a non-magnetic substance is a substance that can form a grain boundary around magnetic grains so that exchange interaction between crystal grains (magnetic grains or magnetic grains) is suppressed or blocked, and cobalt ( Any nonmagnetic substance that does not dissolve in Co) may be used.
- SiO 2 promotes miniaturization and isolation of magnetic particles (separation from adjacent magnetic particles), and TiO 2 has an effect of suppressing particle size dispersion of crystal particles.
- Cr 2 O 3 can increase the coercive force Hc. Furthermore, by combining these oxides and segregating at the grain boundaries of the magnetic recording layer, both benefits can be enjoyed.
- Magnetic substance contained in the second magnetic recording layer selected from SiO 2, TiO 2, Cr 2 O 3, Ta 2 O 5, Nb 2 O 5, the group of B 2 O 3 or ZrO 2, 1 Or it is good to include a plurality. Thereby, a grain boundary part can be formed reliably and a crystal grain can be separated clearly. Therefore, the SNR can be improved.
- a typical configuration of a method for manufacturing a perpendicular magnetic recording medium according to the present invention is a perpendicular magnetic recording medium comprising at least a first magnetic recording layer and a second magnetic recording layer in this order on a substrate.
- a manufacturing method, wherein the first magnetic recording layer is selected from the group consisting of oxygen or SiO 2 , TiO 2 , Cr 2 O 3 , Ta 2 O 5 , Nb 2 O 5 , B 2 O 3 or ZrO 2
- a magnetic target containing a plurality of oxides by using a magnetic target containing a plurality of oxides and setting the gas pressure to about 0.5 to about 5 Pa and the power to about 100 to about 700 W, a nonmagnetic grain boundary is formed between the crystal grains grown in a columnar shape.
- a ferromagnetic layer having a granular structure is formed and selected from the group consisting of oxygen or SiO 2 , TiO 2 , Cr 2 O 3 , Ta 2 O 5 , Nb 2 O 5 , B 2 O 3 or ZrO 2
- One more Uses a magnetic target containing a plurality of oxides, a gas pressure of about 0.5 to about 5 Pa, and a power of about 100 to about 1000 W, so that the crystal grains grown as columnar second magnetic recording layers In the first magnetic recording layer, the intergranular distance determined by the average of the shortest distances between the grain boundaries of the crystal grains and the adjacent crystal grains is formed. It is 1 nm or less.
- the constituent elements based on the technical idea of the perpendicular magnetic recording medium and the explanation thereof can be applied to the method for manufacturing the perpendicular magnetic recording medium.
- the first magnetic recording layer can have a function as a continuous layer by devising the interval between the crystal grains of the first magnetic recording layer, and the SNR and the overwrite characteristics can be improved. It becomes possible to improve appropriately.
- DESCRIPTION OF SYMBOLS 100 Perpendicular magnetic recording medium 110 ... Disk base
- FIG. 1 is a diagram illustrating the configuration of a perpendicular magnetic recording medium 100 according to the present embodiment.
- a perpendicular magnetic recording medium 100 shown in FIG. 1 includes a disk substrate 110 as a substrate, an adhesion layer 112, a first soft magnetic layer 114a, a spacer layer 114b, a second soft magnetic layer 114c, a pre-underlayer 116, and a first underlayer 118a.
- the first soft magnetic layer 114a, the spacer layer 114b, and the second soft magnetic layer 114c together constitute the soft magnetic layer 114.
- the first base layer 118a and the second base layer 118b together constitute the base layer 118.
- the first magnetic recording layer 122a and the second magnetic recording layer 122b together constitute the magnetic recording layer 122.
- the perpendicular magnetic recording medium 100 shown in the present embodiment includes a plurality of types of oxides (one or both of the first magnetic recording layer 122a and the second magnetic recording layer 122b of the magnetic recording layer 122).
- the composite oxide is segregated at the nonmagnetic grain boundaries by containing “composite oxide”.
- the disk substrate 110 may be a glass disk obtained by forming amorphous aluminosilicate glass into a disk shape by direct pressing.
- the type, size, thickness, etc. of the glass disk are not particularly limited.
- Examples of the material of the glass disk include aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, chain silicate glass, or glass ceramic such as crystallized glass. It is done.
- the glass disk is subjected to grinding, polishing, and chemical strengthening sequentially to obtain a smooth non-magnetic disk base 110 made of a chemically strengthened glass disk.
- the adhesion layer 112 to the continuous layer 124 are sequentially formed by the DC magnetron sputtering method, and the medium protective layer 126 can be formed by the CVD method. Thereafter, the lubricating layer 128 can be formed by dip coating. Note that it is also preferable to use an in-line film forming method in terms of high productivity. Hereinafter, the configuration and manufacturing method of each layer will be described.
- the adhesion layer 112 is an amorphous underlayer, which is formed in contact with the disk base 110 and has a function of increasing the peel strength between the soft magnetic layer 114 and the disk base 110 formed thereon.
- the adhesion layer 112 is preferably an amorphous alloy film so as to correspond to the amorphous glass surface.
- adhesion layer 112 for example, a CrTi-based amorphous layer can be selected.
- the soft magnetic layer 114 is a layer that temporarily forms a magnetic path during recording in order to pass magnetic flux in a direction perpendicular to the recording layer in the perpendicular magnetic recording method.
- the soft magnetic layer 114 is provided with AFC (Antiferro-magnetic exchange coupling) by interposing a nonmagnetic spacer layer 114b between the first soft magnetic layer 114a and the second soft magnetic layer 114c.
- AFC Antiferro-magnetic exchange coupling
- the magnetization direction of the soft magnetic layer 114 can be aligned along the magnetic path (magnetic circuit) with high accuracy, and the vertical component of the magnetization direction is extremely reduced, so that noise generated from the soft magnetic layer 114 is reduced. Can do.
- compositions of the first soft magnetic layer 114a and the second soft magnetic layer 114c include cobalt-based alloys such as CoTaZr, Co—Fe-based alloys such as CoCrFeB, and Ni—Fe such as [Ni—Fe / Sn] n multilayer structure.
- cobalt-based alloys such as CoTaZr
- Co—Fe-based alloys such as CoCrFeB
- Ni—Fe such as [Ni—Fe / Sn] n multilayer structure.
- a system alloy or the like can be used.
- the pre-underlayer 116 is a non-magnetic alloy layer, and acts to protect the soft magnetic layer 114 and the easy magnetization axis of the hexagonal close packed structure (hcp structure) included in the underlayer 118 formed thereon is a disk. A function for aligning in the vertical direction is provided.
- the pre-underlayer 116 preferably has a (111) plane having a face-centered cubic structure (fcc structure) or a (110) plane having a body-centered cubic structure (bcc structure) parallel to the main surface of the disk substrate 110. Further, the pre-underlayer 116 may have a configuration in which these crystal structures and amorphous are mixed.
- the material of the pre-underlayer 116 can be selected from Ni, Cu, Pt, Pd, Zr, Hf, Nb, and Ta. Furthermore, it is good also as an alloy which contains these metals as a main component and contains any one or more additional elements of Ti, V, Ta, Cr, Mo, and W. For example, NiW, CuW, CuCr as the fcc structure, and Ta as the bcc structure can be suitably selected.
- the underlayer 118 has an hcp structure, and has a function of growing a Co hcp crystal of the magnetic recording layer 122 as a granular structure. Therefore, the higher the crystal orientation of the underlayer 118, that is, the more the (0001) plane of the crystal of the underlayer 118 is parallel to the main surface of the disk substrate 110, the more the orientation of the magnetic recording layer 22 is improved. Can do.
- Ru is a typical material for the underlayer 118, but in addition, it can be selected from RuCr and RuCo. Since Ru has an hcp structure and the lattice spacing of crystals is close to Co, the magnetic recording layer 122 containing Co as a main component can be well oriented.
- the underlayer 118 is made of Ru
- a two-layer structure made of Ru can be obtained by changing the gas pressure during sputtering. Specifically, when forming the second base layer 118b on the upper layer side, the Ar gas pressure is set higher than when forming the first base layer 118a on the lower layer side.
- the gas pressure is increased, the free movement distance of the Ru ions to be sputtered is shortened, so that the film formation rate is reduced and the crystal separation can be improved. Further, by increasing the pressure, the size of the crystal lattice is reduced. Since the size of the Ru crystal lattice is larger than that of the Co crystal lattice, if the Ru crystal lattice is made smaller, it approaches that of Co, and the crystal orientation of the Co granular layer can be further improved.
- the nonmagnetic granular layer 120 is a nonmagnetic granular layer.
- a nonmagnetic granular layer is formed on the hcp crystal structure of the underlayer 118, and the granular layer of the first magnetic recording layer 122a is grown thereon, so that the magnetic granular layer can be grown from the initial growth stage (rise). Has the effect of separating.
- the composition of the nonmagnetic granular layer 120 can be a granular structure by forming a grain boundary by segregating a nonmagnetic substance between nonmagnetic crystal grains made of a Co-based alloy. In particular, CoCr—SiO 2 and CoCrRu—SiO 2 can be suitably used.
- a nonmagnetic substance is a substance that can form a grain boundary around magnetic grains so that exchange interaction between magnetic grains (magnetic grains) is suppressed or blocked, and is cobalt (Co). Any non-magnetic substance that does not dissolve in solution can be used. Examples thereof include silicon oxide (SiOx), chromium (Cr), chromium oxide (CrO 2 ), titanium oxide (TiO 2 ), zircon oxide (ZrO 2 ), and tantalum oxide (Ta 2 O 5 ).
- the magnetic recording layer 122 has a columnar granular structure in which a nonmagnetic substance is segregated around magnetic grains of a hard magnetic material selected from a Co-based alloy, an Fe-based alloy, and a Ni-based alloy to form a grain boundary. It is a magnetic layer.
- the nonmagnetic granular layer 120 By providing the nonmagnetic granular layer 120, the magnetic grains can be continuously epitaxially grown from the granular structure.
- the first magnetic recording layer 122a and the second magnetic recording layer 122b having different compositions and film thicknesses are used.
- the first magnetic recording layer 122a and the second magnetic recording layer 122b are all non-magnetic materials such as oxides such as SiO 2 , Cr 2 O 3 , TiO 2 , B 2 O 3 , Fe 2 O 3 , BN, etc. Nitride and carbides such as B 4 C 3 can be preferably used.
- the inter-particle distance determined by the average of the shortest distances between the grain boundaries between the magnetic grains (crystal grains) and the adjacent magnetic grains is 1 nm or less.
- the first magnetic recording layer 122a has the same function as the continuous layer 124 described later. Therefore, it is possible to reliably improve the reverse domain nucleation magnetic field Hn, improve the heat-resistant fluctuation characteristics, and improve the overwrite characteristics. If the distance between the crystal grains in the first magnetic recording layer 122a and the adjacent crystal grains is 1 nm or more, the function as the continuous layer 124 is not achieved, and the improvement of the overwrite characteristics cannot be expected.
- the overwrite characteristic can be improved while fulfilling the function as the continuous layer 124, and the high coercive force Hc and the high SNR can be optimally maintained in the second magnetic recording layer 122b.
- two or more nonmagnetic substances can be used in combination in either or both of the first magnetic recording layer 122a and the second magnetic recording layer 122b.
- the kind of nonmagnetic substance contained at this time it is particularly preferable to include SiO 2 and TiO 2 , and Cr 2 O 3 can be suitably used instead of / in addition to either of them.
- the first magnetic recording layer 122a contains Cr 2 O 3 and SiO 2 as an example of a complex oxide (a plurality of types of oxides) at the grain boundary, and an hcp crystal of CoCrPt—Cr 2 O 3 —SiO 2 .
- a structure can be formed.
- the second magnetic recording layer 122b contains SiO 2 and TiO 2 as examples of complex oxides at the grain boundary portion, and can form a CoCrPt—SiO 2 —TiO 2 hcp crystal structure.
- the continuous layer 124 is a layer (also referred to as a continuous layer) that is magnetically continuous in the in-plane direction on the magnetic recording layer 122 having a granular structure.
- the medium protective layer 126 can be formed by depositing carbon by a CVD method while maintaining a vacuum.
- the medium protective layer 126 is a protective layer for protecting the perpendicular magnetic recording medium from the impact of the magnetic head.
- carbon deposited by the CVD method has improved film hardness compared to that deposited by the sputtering method, so that the perpendicular magnetic recording medium can be more effectively protected against an impact from the magnetic head.
- the lubricating layer 128 can be formed of PFPE (perfluoropolyether) by dip coating.
- PFPE perfluoropolyether
- PFPE has a long chain molecular structure and binds with high affinity to N atoms on the surface of the medium protective layer 126. Due to the action of the lubricating layer 128, even if the magnetic head comes into contact with the surface of the perpendicular magnetic recording medium 100, damage or loss of the medium protective layer 126 can be prevented.
- the perpendicular magnetic recording medium 100 can be obtained.
- the effectiveness of the present invention will be described below using examples and comparative examples.
- a film was formed in order from the adhesion layer 112 to the continuous layer 124 in an Ar atmosphere by a DC magnetron sputtering method using a film forming apparatus that was evacuated.
- the adhesion layer 112 was made of CrTi.
- the composition of the first soft magnetic layer 114a and the second soft magnetic layer 114c was FeCoTaZr, and the composition of the spacer layer 114b was Ru.
- the composition of the pre-underlayer 116 was a NiW alloy having an fcc structure.
- the first underlayer 118a was formed with Ru under low-pressure Ar
- the second underlayer 118b was formed with Ru under high-pressure Ar.
- the composition of the nonmagnetic granular layer 120 was nonmagnetic CoCr—SiO 2 .
- the magnetic recording layer 122 was formed by the configurations of the following examples and comparative examples.
- the composition of the continuous layer 124 was CoCrPtB.
- the medium protective layer 126 was formed using C 2 H 4 and CN by the CVD method, and the lubricating layer 128 was formed using PFPE by the dip coating method.
- the thickness of the continuous layer 124 was 7 nm
- the thickness of the first magnetic recording layer 122a was 3 nm
- the thickness of the second magnetic recording layer 122b was 10 nm.
- FIG. 2 is an explanatory diagram for explaining the relationship between gas pressure and SNR and the relationship between input power and SNR when the magnetic recording layer 122 is formed.
- the thickness of the continuous layer 124 is fixed to 7 nm
- the thickness of the first magnetic recording layer 122a is set to 3 nm
- the average particle size of the magnetic grains is fixed to 7 nm
- the average inter-particle distance is fixed to 0.8 nm. It is the figure which showed the relationship (gas pressure and input electric power) at the time of forming the 2nd magnetic recording layer 122b, and the relationship of SNR.
- FIG. 2A the thickness of the continuous layer 124 is fixed to 7 nm
- the thickness of the first magnetic recording layer 122a is set to 3 nm
- the average particle size of the magnetic grains is fixed to 7 nm
- the average inter-particle distance is fixed to 0.8 nm.
- FIG. 6 is a diagram showing the relationship between conditions (gas pressure and input power) and SNR when forming the first magnetic recording layer 122a. In any case, the film formation time is adjusted so that the product of the input power and the film formation time is constant, so that the film thickness is constant.
- the first magnetic recording layer 122a contained Cr 2 O 3 and SiO 2 as an example of a composite oxide to form a hcp crystal structure of CoCrPt—Cr 2 O 3 —SiO 2 .
- the second magnetic recording layer 122b contained SiO 2 and TiO 2 as an example of a complex oxide to form a CoCrPt—SiO 2 —TiO 2 hcp crystal structure.
- the second magnetic recording layer 122b when the second magnetic recording layer 122b is formed at a gas pressure of 3 Pa and an input power of 400 W, an optimum SNR can be obtained.
- the average particle diameter and the distance between the particles of the second magnetic recording layer 122b can be measured with a transmission electron microscope (TEM), and the average particle diameter is 6.7 nm.
- the average interparticle distance was 1.4 nm.
- the average particle diameter of crystal grains As a specific example for obtaining the average particle diameter of crystal grains, all crystal grains included in an area of 100 nm 2 in the TEM measurement result are approximated using a circle. And the average particle diameter of a crystal grain can be calculated
- the inter-particle distance it can be obtained by measuring and averaging the shortest distance between each crystal particle and the crystal particle adjacent to the particle in the same TEM measurement range of 100 nm 2 .
- the distance between the centers of crystal grains approximated by a circle using the area is measured to determine the average inter-center distance, and the average diameter (2 of the radius) is calculated from the average inter-center distance. It can be obtained by subtracting (times).
- the average particle diameter of the magnetic particles of the first magnetic recording layer 122a can be measured with a transmission electron microscope, the average particle diameter is 6.3 nm, and the average inter-particle distance is 0.6 nm. .
- the first magnetic recording layer 122a having an average magnetic particle diameter of 7 nm and an average interparticle distance of 0.7 nm, and an average particle diameter of 6.7 nm and an average interparticle distance of 1.3 nm.
- the first magnetic recording layer 122b that is, the average magnetic grain size of the first magnetic recording layer 122a> the second magnetic recording layer 122b is referred to as Example 1.
- the first magnetic recording layer 122a having an average particle diameter of 6.7 nm and an average interparticle distance of 1.3 nm and an average particle diameter of 7 nm and an average interparticle distance of 0.7 nm. 2
- the magnetic recording layer 122b that is, the average grain size of the magnetic grains is the first magnetic recording layer 122a ⁇ the second magnetic recording layer 122b.
- FIG. 3 is an explanatory diagram for explaining the relationship between the average grain distance of the magnetic grains of the first magnetic recording layer 122a and the average grain distance of the magnetic grains of the second magnetic recording layer 122b, the overwrite characteristics, and the SNR. It is.
- the first magnetic recording layer is such that the average interparticle distance of the magnetic grains contained in the first magnetic recording layer 122a is smaller than the average intergrain distance of the magnetic grains contained in the second magnetic recording layer 122b.
- the average interparticle distance of the magnetic grains contained in the layer 122a is smaller than the average interparticle distance of the magnetic grains contained in the second magnetic recording layer 122b, high overwrite characteristics can be obtained.
- the overwrite characteristics can be improved optimally. Can do.
- the overwrite characteristics Will fall.
- the first magnetic recording layer 122a can be easily formed.
- the inter-particle distance of the magnetic particles inside can be made 1 nm or less.
- the overwrite characteristic can be optimally improved. Note that if the inter-particle distance of the magnetic grains in the first magnetic recording layer 122a is 1 nm or more, the improvement of the overwrite characteristics cannot be expected.
- the second magnetic recording layer 122b can be easily formed.
- the inter-particle distance of the magnetic particles inside can be set to 0.5 nm or more. As a result, the high coercive force Hc and the high SNR can be optimally maintained. If the distance between the magnetic grains in the second magnetic recording layer 122b is 0.5 nm or less, the granular structure cannot be maintained and the SNR is lowered.
- Example 2 the first magnetic recording layer 122a was incorporated as an example of a composite oxide, and Cr 2 O 3 and SiO 2 were contained therein to obtain CoCrPt—Cr 2 O 3. forming a hcp crystal structure of -SiO 2, the second magnetic recording layer 122b composite oxide (plural kinds of oxide) by incorporating a SiO 2 and TiO 2 as an example of CoCrPt-SiO 2 -TiO 2 of hcp A crystal structure was formed.
- the characteristics of a plurality of oxides can be obtained by forming the second magnetic recording layer 122b by containing a composite oxide of SiO 2 and TiO 2 . Therefore, by further miniaturizing and isolating the magnetic particles of the magnetic recording layer 122, noise can be reduced and SNR can be improved while maintaining high overwrite characteristics.
- SiO 2 promotes miniaturization and isolation of magnetic particles
- TiO 2 has an effect of suppressing the particle size dispersion of crystal particles.
- FIG. 4 is an explanatory diagram for explaining the perpendicular magnetic recording medium 100 manufactured by using the method for manufacturing a perpendicular magnetic recording medium according to the present embodiment.
- the perpendicular magnetic recording medium 100 manufactured by using the method for manufacturing a perpendicular magnetic recording medium according to the present embodiment has magnetic grains adjacent to the magnetic grains (crystal grains) in the first magnetic recording layer 122a.
- the film is formed such that the distance between the crystal grains is smaller than the distance between the magnetic grains (crystal grains) adjacent to the magnetic grains (crystal grains) in the second magnetic recording layer 122b.
- the first magnetic recording layer 122 a has the same function as the continuous layer 124. Therefore, it is possible to reliably improve the overwrite characteristics.
- the second magnetic recording layer can have a function as a continuous layer. Therefore, even when a weak head magnetic field is applied compared to the upper side of the medium, ideal magnetization reversal is achieved, and the function can be appropriately exhibited. As a result, the SNR and the overwrite characteristics can be appropriately improved.
- the magnetic recording layer is composed of two layers of the first magnetic recording layer and the second magnetic recording layer.
- the magnetic recording layer is composed of three or more layers, at least the average grain size of the magnetic grains of the lower magnetic recording layer is made larger than the average grain size of the magnetic grains of the upper magnetic recording layer.
- the present invention can be used as a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording type HDD or the like and a method of manufacturing the perpendicular magnetic recording medium.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
本発明は、第1磁気記録層の結晶粒子の間隔を工夫することで、連続層としての機能をも備えさせた連続層を備える垂直磁気記録媒体および垂直磁気記録媒体の製造方法を提供することを目的としている。本発明にかかる垂直磁気記録媒体100は、第1磁気記録層122aおよび第2磁気記録層122bは柱状に成長した結晶粒子の間に非磁性物質からなる粒界部を形成したグラニュラー構造の強磁性層であり、第1磁気記録層122aにおいて結晶粒子と隣接する結晶粒子との粒界部の最短距離の平均により定められる粒子間距離は1nm以下であることを特徴としている(図4)。
Description
本発明は、垂直磁気記録方式のHDD(ハードディスクドライブ)などに搭載される垂直磁気記録媒体および垂直磁気記録媒体の製造方法に関する。
近年の情報処理の大容量化に伴い、各種の情報記録技術が開発されている。特に磁気記録技術を用いたHDDの面記録密度は年率100%程度の割合で増加し続けている。最近では、HDD等に用いられる2.5インチ径磁気ディスクにして、1枚あたり160GBを超える情報記録容量が求められるようになってきており、このような要請にこたえるためには1平方インチあたり250GBitを超える情報記録密度を実現することが求められる。
HDD等に用いられる磁気ディスクにおいて高記録密度を達成するために、近年、垂直磁気記録方式の磁気ディスク(垂直磁気記録ディスク)が提案されている。従来の面内磁気記録方式は磁気記録層の磁化容易軸が基体面の平面方向に配向されていたが、垂直磁気記録方式は磁化容易軸が基体面に対して垂直方向に配向するよう調整されている。垂直磁気記録方式は面内記録方式に比べて、高密度記録時に、より熱揺らぎ現象を抑制することができるので、高記録密度化に対して好適である。
従来、磁気記録層としては、グラニュラー構造を有するCoCrPt-SiO2やCoCrPt-TiO2が広く用いられている。Coはhcp構造(六方最密結晶格子)の結晶が柱状に成長し、CrおよびSiO2(またはTiO2)が偏析して非磁性の粒界を形成する。かかるグラニュラー構造を用いることにより、物理的に独立した微細な磁性粒子を形成しやすく、高記録密度を達成しやすい。
上記垂直記録方式においては、単磁極型垂直ヘッドが用いられ磁気記録層に対して垂直方向の磁界を生じさせている。しかし、単に単磁極型垂直ヘッドを用いるのみでは、単磁極端部を出た磁束が直ぐに反対側のリターン磁極に戻ろうとするため十分な強度の磁界を磁気記録層に印加することができない。そこで、垂直磁気記録ディスクの磁気記録層の下に軟磁性層を設け、軟磁性層に磁束の通り道(磁路)を形成することで磁気記録層に垂直方向の強い磁界を印加することが可能となる。すなわち軟磁性層は、書き込むときの磁場によって磁化方向が整列し、動的に磁路を形成する層である。
しかし磁気記録層に強い磁界を印加すると、隣接トラックへの漏れ磁場も大きくなる。このことから、WATE(Wide Area Track Erasure)、すなわち、書込みの対象となるトラックを中心に数μmにわたって記録情報が消失する現象が問題となる。WATEを低減させる手法として、磁気記録層の逆磁区核形成磁界Hnを負とし、さらにその絶対値を大きくすることが重要といわれている。高い(絶対値の大きい)Hnを得るために、グラニュラー構造を有する磁気記録層の上方又は下方に高い垂直磁気異方性を示す薄膜(連続層)が形成されたCGC(Coupled Granular Continuous)媒体が考案されている(特許文献1)。
また磁気記録層の保磁力Hcを向上させていくと、高記録密度化が達成できる反面、磁気ヘッドによる書き込みが困難になる傾向にある。そこで連続層は、飽和磁化Msを向上させることにより、書き込みやすさ、すなわちオーバーライト特性を向上させる役割も有している。
言い換えれば、磁気記録層の上に連続層を設ける目的は、逆磁区核形成磁界Hnを向上させてノイズを低減し、飽和磁化Msを向上させてオーバーライト特性も向上させることである。なお連続層は補助記録層またはキャップ層とも呼ばれるが、本願では、特に断らない限り、連続層と呼ぶこととする。
特開2003-346315号公報
しかし、従来技術では、高い飽和磁化Msを有する連続層によりオーバーライト特性を改善できる反面、ノイズの増加を招くこととなる。当該連続層は、媒体の上方に位置することになるため、ノイズ増加に対する影響は大きい。
一般に、垂直磁気記録媒体においては、記録ヘッドからの距離が遠ざかるにつれて、記録磁界強度は著しく減少する。発明者は、従来の連続層の機能を第1磁気記録層にも備えさせることにより、媒体の上方(媒体の表層に近い層)でのヘッド磁界強度と比較して弱いヘッド磁界強度においても理想的な磁化反転を達成させる構成が理想的であると想到するに至った。本発明の構成を用いることにより、より効率的に高いオーバーライト特性を達成でき、かつ、第1磁気記録層は、再生ヘッドから十分に離れた部分に位置しているために、ノイズ増加への寄与も小さい。
本発明は、垂直磁気記録媒体に設けられる連続層が有する上記問題点に鑑みてなされたものであり、本発明の目的は、第1磁気記録層の結晶粒子の間隔を工夫することで、第1磁気記録層に連続層としての機能をも備えさせた垂直磁気記録媒体および垂直磁気記録媒体の製造方法を提供することである。
上記課題を解決するために、本発明の発明者らが鋭意検討したところ、第1磁気記録層の結晶粒子の間隔が所定の値を有することで、オーバーライト特性が向上することを見出し、本発明を完成するに到った。
すなわち上記課題を解決するために、本発明にかかる垂直磁気記録媒体の代表的な構成は、基体上に少なくとも第1磁気記録層、第2磁気記録層をこの順に備える垂直磁気記録媒体であって、第1磁気記録層および第2磁気記録層は柱状に成長した結晶粒子の間に非磁性物質からなる粒界部を形成したグラニュラー構造の強磁性層であり、第1磁気記録層において結晶粒子と隣接する結晶粒子との粒界部の最短距離の平均により定まる粒子間距離は1nm以下であることを特徴とする。
上記第1磁気記録層の結晶粒子と隣接する結晶粒子との粒子間距離を1nm以下にする構成により、第1磁気記録層が連続層と同様の機能を有することとなる。したがって、確実に逆磁区核形成磁界Hnの向上、耐熱揺らぎ特性の改善、オーバーライト特性の改善を図ることができる。なお、第1磁気記録層中の結晶粒子と隣接する結晶粒子との粒子間距離が、1nm以上であると、連続層としての機能を果たさなくなり、オーバーライト特性の向上が見込めなくなる。
上記第2磁気記録層において、結晶粒子と隣接する結晶粒子との粒界部の最短距離の平均により定まる粒子間距離は0.5nm以上であるとよい。
これにより、最適に高保磁力Hcおよび高SNRを維持することができる。なお、第2磁気記録層中の結晶粒子の粒子間距離が、0.5nm以下であると、グラニュラー構造を保つことができなくなり、SNRが低下する。
第1磁気記録層中の結晶粒子の平均粒径をAnm、第2磁気記録層中の結晶粒子の平均粒径をBnmとした場合、A>Bであってもよい。
これにより、第1磁気記録層において、連続層としての機能を果たしつつオーバーライト特性を向上させることができる。また、第2磁気記録層において、最適に高保磁力Hcおよび高SNRを維持することができる。
上記第1磁気記録層中の結晶粒子の平均粒径と、第2磁気記録層中の結晶粒子の平均粒径との比が1<A/B<1.2であるとよい。
これにより、最適にオーバーライト特性を向上させることができる。なお、第1磁気記録層中の結晶粒子の平均粒径と第2磁気記録層中の結晶粒子の平均粒径との比A/Bが1.2よりも大きいと、オーバーライト特性が低下してしまう。
上記第1磁気記録層と第2磁気記録層の総厚が15nm以下であるとよい。
第1磁気記録層の膜厚は5nm以下が好ましく、望ましくは3nm~4nmである。3nmより小さいと第2磁気記録層の組成分離を促進することができないためであり、4nmより大きいとR/W特性(リード・ライト特性)が低下するためである。第2磁気記録層の膜厚は5nm以上が好ましく、望ましくは7nm~15nmである。7nmより小さいと十分な保磁力が得られなくなるためであり、15nmより大きいと高いHnが得られなくなってしまうためである。したがって、高いHnを得るためには、第1磁気記録層と第2磁気記録層の総厚が15nm以下であることが好ましい。
上記第1磁気記録層の膜厚は、第2磁気記録層の膜厚の約0.2~約1倍であってもよい。上記第2磁気記録層より基体から遠い側に、基体面方向に磁気的に連続した連続層を備え、第1磁気記録層の膜厚は、連続層の膜厚の約0.2~約2倍であるとよい。上記第2磁気記録層より基体から遠い側に、基体面方向に磁気的に連続した連続層を備え、第2磁気記録層の膜厚は、連続層の膜厚の約0.7~約2倍であるとよい。
これにより、最適に高SNRを維持しつつ高オーバーライト特性を得ることができる。
上記第1磁気記録層に含まれる非磁性物質は、SiO2、TiO2、Cr2O3、Ta2O5、Nb2O5、B2O3またはZrO2の群から選択された、1または複数を含むとよい。非磁性物質とは、結晶粒子(磁性粒もしくは磁性グレイン)間の交換相互作用が抑制、または、遮断されるように、磁性粒の周囲に粒界部を形成しうる物質であって、コバルト(Co)と固溶しない非磁性物質であればよい。特に、SiO2は磁性粒子の微細化および孤立化(隣接する磁性粒子との分離)を促進し、TiO2は結晶粒子の粒径分散を抑制させる効果がある。またCr2O3は保磁力Hcを増加させることが可能となる。さらに、これらの酸化物を複合させて磁気記録層の粒界に偏析させることにより、双方の利益を享受することができる。
上記第2磁気記録層に含まれる非磁性物質は、SiO2、TiO2、Cr2O3、Ta2O5、Nb2O5、B2O3またはZrO2の群から選択された、1または複数を含むとよい。これにより、粒界部を確実に形成し結晶粒子を明確に分離することができる。したがって、SNRを向上させることができる。
上記課題を解決するために、本発明にかかる垂直磁気記録媒体の製造方法の代表的な構成は、基体上に少なくとも第1磁気記録層、第2磁気記録層をこの順に備える垂直磁気記録媒体の製造方法であって、第1磁気記録層として酸素もしくはSiO2、TiO2、Cr2O3、Ta2O5、Nb2O5、B2O3またはZrO2の群から選択された、1または複数の酸化物を含む磁性ターゲットを用いて、ガス圧を約0.5~約5Pa、電力を約100~約700Wとすることにより、柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラー構造の強磁性層を形成し、酸素もしくはSiO2、TiO2、Cr2O3、Ta2O5、Nb2O5、B2O3またはZrO2の群から選択された、1または複数の酸化物を含む磁性ターゲットを用いて、ガス圧を約0.5~約5Pa、電力を約100~約1000Wとすることにより、第2磁気記録層として柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラー構造の強磁性層を形成し、第1磁気記録層において、結晶粒子と隣接する結晶粒子との粒界部の最短距離の平均により定まる粒子間距離は1nm以下であることを特徴とする。
上述した垂直磁気記録媒体の技術的思想に基づく構成要素やその説明は、当該垂直磁気記録媒体の製造方法にも適用可能である。
本発明にかかる垂直磁気記録媒体は、第1磁気記録層の結晶粒子の間隔を工夫することで、第1磁気記録層に連続層としての機能を持たせることができ、SNRおよびオーバーライト特性を適切に向上させることが可能となる。
100 …垂直磁気記録媒体
110 …ディスク基体
112 …付着層
114 …軟磁性層
114a …第1軟磁性層
114b …スペーサ層
114c …第2軟磁性層
116 …前下地層
118 …下地層
118a …第1下地層
118b …第2下地層
120 …非磁性グラニュラー層
122 …磁気記録層
122a …第1磁気記録層
122b …第2磁気記録層
124 …連続層
126 …媒体保護層
128 …潤滑層
110 …ディスク基体
112 …付着層
114 …軟磁性層
114a …第1軟磁性層
114b …スペーサ層
114c …第2軟磁性層
116 …前下地層
118 …下地層
118a …第1下地層
118b …第2下地層
120 …非磁性グラニュラー層
122 …磁気記録層
122a …第1磁気記録層
122b …第2磁気記録層
124 …連続層
126 …媒体保護層
128 …潤滑層
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
(実施形態)
本発明にかかる垂直磁気記録媒体の製造方法の実施形態について説明する。図1は本実施形態にかかる垂直磁気記録媒体100の構成を説明する図である。図1に示す垂直磁気記録媒体100は、基体としてのディスク基体110、付着層112、第1軟磁性層114a、スペーサ層114b、第2軟磁性層114c、前下地層116、第1下地層118a、第2下地層118b、非磁性グラニュラー層120、第1磁気記録層122a、第2磁気記録層122b、連続層124、媒体保護層126、潤滑層128で構成されている。なお第1軟磁性層114a、スペーサ層114b、第2軟磁性層114cは、あわせて軟磁性層114を構成する。第1下地層118aと第2下地層118bはあわせて下地層118を構成する。第1磁気記録層122aと第2磁気記録層122bとはあわせて磁気記録層122を構成する。
本発明にかかる垂直磁気記録媒体の製造方法の実施形態について説明する。図1は本実施形態にかかる垂直磁気記録媒体100の構成を説明する図である。図1に示す垂直磁気記録媒体100は、基体としてのディスク基体110、付着層112、第1軟磁性層114a、スペーサ層114b、第2軟磁性層114c、前下地層116、第1下地層118a、第2下地層118b、非磁性グラニュラー層120、第1磁気記録層122a、第2磁気記録層122b、連続層124、媒体保護層126、潤滑層128で構成されている。なお第1軟磁性層114a、スペーサ層114b、第2軟磁性層114cは、あわせて軟磁性層114を構成する。第1下地層118aと第2下地層118bはあわせて下地層118を構成する。第1磁気記録層122aと第2磁気記録層122bとはあわせて磁気記録層122を構成する。
以下に説明するように、本実施形態に示す垂直磁気記録媒体100は、磁気記録層122の第1磁気記録層122aおよび第2磁気記録層122bのいずれかまたは両方に複数の種類の酸化物(以下、「複合酸化物」という。)を含有させることにより、非磁性の粒界に複合酸化物を偏析させている。
ディスク基体110は、アモルファスのアルミノシリケートガラスをダイレクトプレスで円板状に成型したガラスディスクを用いることができる。なおガラスディスクの種類、サイズ、厚さ等は特に制限されない。ガラスディスクの材質としては、例えば、アルミノシリケートガラス、ソーダライムガラス、ソーダアルミノケイ酸ガラス、アルミノボロシリケートガラス、ボロシリケートガラス、石英ガラス、チェーンシリケートガラス、又は、結晶化ガラス等のガラスセラミックなどが挙げられる。このガラスディスクに研削、研磨、化学強化を順次施し、化学強化ガラスディスクからなる平滑な非磁性のディスク基体110を得ることができる。
ディスク基体110上に、DCマグネトロンスパッタリング法にて付着層112から連続層124まで順次成膜を行い、媒体保護層126はCVD法により成膜することができる。この後、潤滑層128をディップコート法により形成することができる。なお、生産性が高いという点で、インライン型成膜方法を用いることも好ましい。以下、各層の構成および製造方法について説明する。
付着層112は非晶質の下地層であって、ディスク基体110に接して形成され、この上に成膜される軟磁性層114とディスク基体110との剥離強度を高める機能を備えている。付着層112は、ディスク基体110がアモルファスガラスからなる場合、そのアモルファスガラス表面に対応させる為にアモルファスの合金膜とすることが好ましい。
付着層112としては、例えばCrTi系非晶質層を選択することができる。
軟磁性層114は、垂直磁気記録方式において記録層に垂直方向に磁束を通過させるために、記録時に一時的に磁路を形成する層である。軟磁性層114は第1軟磁性層114aと第2軟磁性層114cの間に非磁性のスペーサ層114bを介在させることによって、AFC(Antiferro-magnetic exchange coupling:反強磁性交換結合)を備えるように構成することができる。これにより軟磁性層114の磁化方向を高い精度で磁路(磁気回路)に沿って整列させることができ、磁化方向の垂直成分が極めて少なくなるため、軟磁性層114から生じるノイズを低減することができる。第1軟磁性層114a、第2軟磁性層114cの組成としては、CoTaZrなどのコバルト系合金、CoCrFeBなどのCo-Fe系合金、[Ni-Fe/Sn]n多層構造のようなNi-Fe系合金などを用いることができる。
前下地層116は非磁性の合金層であり、軟磁性層114を防護する作用と、この上に成膜される下地層118に含まれる六方細密充填構造(hcp構造)の磁化容易軸をディスク垂直方向に配向させる機能を備える。前下地層116は面心立方構造(fcc構造)の(111)面、または体心立方構造(bcc構造)の(110)面がディスク基体110の主表面と平行となっていることが好ましい。また前下地層116は、これらの結晶構造とアモルファスとが混在した構成としてもよい。前下地層116の材質としては、Ni、Cu、Pt、Pd、Zr、Hf、Nb、Taから選択することができる。さらにこれらの金属を主成分とし、Ti、V、Ta、Cr、Mo、Wのいずれか1つ以上の添加元素を含む合金としてもよい。例えばfcc構造としてはNiW、CuW、CuCr、bcc構造としてはTaを好適に選択することができる。
下地層118はhcp構造であって、磁気記録層122のCoのhcp構造の結晶をグラニュラー構造として成長させる作用を有している。したがって、下地層118の結晶配向性が高いほど、すなわち下地層118の結晶の(0001)面がディスク基体110の主表面と平行になっているほど、磁気記録層22の配向性を向上させることができる。下地層118の材質としてはRuが代表的であるが、その他に、RuCr、RuCoから選択することができる。Ruはhcp構造をとり、また結晶の格子間隔がCoと近いため、Coを主成分とする磁気記録層122を良好に配向させることができる。
下地層118をRuとした場合において、スパッタ時のガス圧を変更することによりRuからなる2層構造とすることができる。具体的には、上層側の第2下地層118bを形成する際に、下層側の第1下地層118aを形成するときよりもArのガス圧を高くする。ガス圧を高くするとスパッタリングされるRuイオンの自由移動距離が短くなるため、成膜速度が遅くなり、結晶分離性を改善することができる。また高圧にすることにより、結晶格子の大きさが小さくなる。Ruの結晶格子の大きさはCoの結晶格子よりも大きいため、Ruの結晶格子を小さくすればCoのそれに近づき、Coのグラニュラー層の結晶配向性をさらに向上させることができる。
非磁性グラニュラー層120は非磁性のグラニュラー層である。下地層118のhcp結晶構造の上に非磁性のグラニュラー層を形成し、この上に第1磁気記録層122aのグラニュラー層を成長させることにより、磁性のグラニュラー層を初期成長の段階(立ち上がり)から分離させる作用を有している。非磁性グラニュラー層120の組成は、Co系合金からなる非磁性の結晶粒子の間に、非磁性物質を偏析させて粒界を形成することにより、グラニュラー構造とすることができる。特にCoCr-SiO2、CoCrRu-SiO2を好適に用いることができ、さらにRuに代えてRh(ロジウム)、Pd(パラジウム)、Ag(銀)、Os(オスミウム)、Ir(イリジウム)、Au(金)も利用することができる。また非磁性物質とは、磁性粒(磁性グレイン)間の交換相互作用が抑制、または、遮断されるように、磁性粒の周囲に粒界部を形成しうる物質であって、コバルト(Co)と固溶しない非磁性物質であればよい。例えば酸化珪素(SiOx)、クロム(Cr)、酸化クロム(CrO2)、酸化チタン(TiO2)、酸化ジルコン(ZrO2)、酸化タンタル(Ta2O5)を例示できる。
磁気記録層122は、Co系合金、Fe系合金、Ni系合金から選択される硬磁性体の磁性粒の周囲に非磁性物質を偏析させて粒界を形成した柱状のグラニュラー構造を有した強磁性層である。この磁性粒は、非磁性グラニュラー層120を設けることにより、そのグラニュラー構造から継続してエピタキシャル成長することができる。本実施形態では組成および膜厚の異なる第1磁気記録層122aと、第2磁気記録層122bとから構成されている。第1磁気記録層122aと第2磁気記録層122bは、いずれも非磁性物質としてはSiO2、Cr2O3、TiO2、B2O3、Fe2O3等の酸化物や、BN等の窒化物、B4C3等の炭化物を好適に用いることができる。
また本実施形態では、第1磁気記録層122aにおいて、磁性粒(結晶粒子)と隣接する磁性粒との粒界部の最短距離の平均により定まる粒子間距離は1nm以下としている。第1磁気記録層122aの結晶粒子と隣接する結晶粒子との粒子間距離を1nm以下にする構成により、第1磁気記録層122aが後述する連続層124と同様の機能を有することとなる。したがって、確実に逆磁区核形成磁界Hnの向上、耐熱揺らぎ特性の改善、オーバーライト特性の改善を図ることができる。なお、第1磁気記録層122a中の結晶粒子と隣接する結晶粒子との粒子間距離が、1nm以上であると、連続層124としての機能を果たさなくなり、オーバーライト特性の向上が見込めなくなる。
さらに本実施形態では、第1磁気記録層122a中の磁性粒(結晶粒子)の平均粒径をAnm、第2磁気記録層122b中の磁性粒(結晶粒子)の平均粒径をBnmとした場合、A>Bとしている。これにより、第1磁気記録層122aにおいて、連続層124としての機能を果たしつつオーバーライト特性を向上させ、第2磁気記録層122bにおいて、最適に高保磁力Hcおよび高SNRを維持することができる。
さらに本実施形態では、第1磁気記録層122aまたは第2磁気記録層122bのいずれかまたは両方において2以上の非磁性物質を複合して用いることもできる。このとき含有する非磁性物質の種類には限定がないが、特にSiO2およびTiO2を含むことが好ましく、次にいずれかに代えて/加えてCr2O3を好適に用いることができる。例えば第1磁気記録層122aは、粒界部に複合酸化物(複数の種類の酸化物)の例としてCr2O3とSiO2を含有し、CoCrPt-Cr2O3-SiO2のhcp結晶構造を形成することができる。また例えば第2磁気記録層122bは、粒界部に複合酸化物の例としてSiO2とTiO2を含有し、CoCrPt-SiO2-TiO2のhcp結晶構造を形成することができる。
連続層124はグラニュラー構造を有する磁気記録層122の上に、面内方向に磁気的に連続した層(連続層とも呼ばれる)である。連続層124を設けることにより磁気記録層122の高密度記録性と低ノイズ性に加えて、逆磁区核形成磁界Hnの向上、耐熱揺らぎ特性の改善、オーバーライト特性の改善を図ることができる。
媒体保護層126は、真空を保ったままカーボンをCVD法により成膜して形成することができる。媒体保護層126は、磁気ヘッドの衝撃から当該垂直磁気記録媒体を防護するための保護層である。一般にCVD法によって成膜されたカーボンはスパッタ法によって成膜したものと比べて膜硬度が向上するので、磁気ヘッドからの衝撃に対してより有効に当該垂直磁気記録媒体を防護することができる。
潤滑層128は、PFPE(パーフロロポリエーテル)をディップコート法により成膜することができる。PFPEは長い鎖状の分子構造を有し、媒体保護層126表面のN原子と高い親和性をもって結合する。この潤滑層128の作用により、垂直磁気記録媒体100の表面に磁気ヘッドが接触しても、媒体保護層126の損傷や欠損を防止することができる。
以上の製造工程により、垂直磁気記録媒体100を得ることができる。以下に、実施例と比較例を用いて本発明の有効性について説明する。
(実施例と評価)
ディスク基体110上に、真空引きを行った成膜装置を用いて、DCマグネトロンスパッタリング法にてAr雰囲気中で、付着層112から連続層124まで順次成膜を行った。付着層112は、CrTiとした。軟磁性層114は、第1軟磁性層114a、第2軟磁性層114cの組成はFeCoTaZrとし、スペーサ層114bの組成はRuとした。前下地層116の組成はfcc構造のNiW合金とした。下地層118は、第1下地層118aは低圧Ar下でRuを成膜し、第2下地層118bは高圧Ar下でRuを成膜した。非磁性グラニュラー層120の組成は非磁性のCoCr-SiO2とした。磁気記録層122は下記の実施例および比較例の構成で形成した。連続層124の組成はCoCrPtBとした。媒体保護層126はCVD法によりC2H4およびCNを用いて成膜し、潤滑層128はディップコート法によりPFPEを用いて形成した。
ディスク基体110上に、真空引きを行った成膜装置を用いて、DCマグネトロンスパッタリング法にてAr雰囲気中で、付着層112から連続層124まで順次成膜を行った。付着層112は、CrTiとした。軟磁性層114は、第1軟磁性層114a、第2軟磁性層114cの組成はFeCoTaZrとし、スペーサ層114bの組成はRuとした。前下地層116の組成はfcc構造のNiW合金とした。下地層118は、第1下地層118aは低圧Ar下でRuを成膜し、第2下地層118bは高圧Ar下でRuを成膜した。非磁性グラニュラー層120の組成は非磁性のCoCr-SiO2とした。磁気記録層122は下記の実施例および比較例の構成で形成した。連続層124の組成はCoCrPtBとした。媒体保護層126はCVD法によりC2H4およびCNを用いて成膜し、潤滑層128はディップコート法によりPFPEを用いて形成した。
本実施例において、連続層124の膜厚を7nmと、第1磁気記録層122aの膜厚を3nmと、第2磁気記録層122bの膜厚を10nmとした。
図2は、磁気記録層122を成膜する際のガス圧とSNRの関係と投入電力とSNRの関係を説明するための説明図である。特に図2(a)は、連続層124の膜厚を7nm、第1磁気記録層122aの膜厚を3nm、磁性粒の平均粒径を7nmと、平均粒子間距離を0.8nmと固定し第2磁気記録層122bを成膜する際の条件(ガス圧および投入電力)とSNRの関係を示した図である。また、図2(b)は、連続層124の膜厚を7nm、第2磁気記録層122bの膜厚を10nm、磁性粒の平均粒径を6nmと、平均粒子間距離を1.2nmと固定し第1磁気記録層122aを成膜する際の条件(ガス圧および投入電力)とSNRの関係を示した図である。なお、いずれの場合においても投入電力と成膜時間の積が一定となるように成膜時間を調整し、膜厚を一定としている。この際、第1磁気記録層122aは、複合酸化物の例としてCr2O3とSiO2を含有させてCoCrPt―Cr2O3―SiO2のhcp結晶構造を形成した。また、第2磁気記録層122bは、複合酸化物の例としてSiO2とTiO2を含有させてCoCrPt-SiO2-TiO2のhcp結晶構造を形成した。
図2(a)に示すように、第2磁気記録層122bは、ガス圧3Pa、投入電力400Wで成膜を行うと最適なSNRを得ることができる。この際の第2磁気記録層122bの磁性粒の平均粒径および粒子間距離は、透過型電子顕微鏡(Transmission Electron Microscope:TEM)で計測することができ、平均粒径は6.7nmであり、平均粒子間距離は1.4nmであった。
結晶粒子の平均粒径を求める具体例としては、TEMの測定結果における100nm2面積に含まれるすべての結晶粒子を面積を用いて円近似する。そして、円近似した結晶粒子の平均直径を計算することによって結晶粒子の平均粒径を求めることができる。粒子間距離を求める具体例としては、同様にTEMの測定範囲である100nm2において、各結晶粒子と粒子に隣接する結晶粒子との最短距離をそれぞれ計測して平均することにより求めることができる。また粒子間距離を求める他の例としては、面積を用いて円近似した結晶粒子の中心間の距離をそれぞれ計測して平均中心間距離を求め、この平均中心間距離から平均直径(半径の2倍)を差し引くことで求めることができる。
図2(b)に示すように、第1磁気記録層122aは、ガス圧2.5Pa、投入電力200Wで成膜を行うと最適なオーバーライト特性を得ることができる。この際の第1磁気記録層122aの磁性粒の平均粒径は、透過型電子顕微鏡で計測することができ、平均粒径は6.3nmであり、平均粒子間距離は0.6nmであった。
以下、磁性粒の平均粒径が7nm、平均粒子間距離が0.7nmである第1磁気記録層122aおよび磁性粒の平均粒径が6.7nm、平均粒子間距離が1.3nmである第2磁気記録層122bすなわち磁性粒の平均粒径が第1磁気記録層122a>第2磁気記録層122bを実施例1とする。また、磁性粒の平均粒径が6.7nm、平均粒子間距離が1.3nmである第1磁気記録層122aおよび磁性粒の平均粒径が7nm、平均粒子間距離が0.7nmである第2磁気記録層122bすなわち磁性粒の平均粒径が第1磁気記録層122a<第2磁気記録層122bを比較例とする。
図3は、第1磁気記録層122aの磁性粒の平均粒子間距離および第2磁気記録層122bの磁性粒の平均粒子間距離の関係とオーバーライト特性、SNRの関係を説明するための説明図である。
図3に示すように、第1磁気記録層122aに含まれる磁性粒の平均粒子間距離が第2磁気記録層122bに含まれる磁性粒の平均粒子間距離よりも小さい方が、第1磁気記録層122aに含まれる磁性粒の平均粒子間距離が第2磁気記録層122bに含まれる磁性粒の平均粒子間距離よりも小さい場合と比較して、高オーバーライト特性を得ることができる。
また第1磁気記録層122a中の磁性粒の平均粒径が、第2磁気記録層122b中の磁性粒の平均粒径よりも約0.3nm大きいことにより、最適にオーバーライト特性を向上させることができる。なお、比較例に示すように、第1磁気記録層122a中の磁性粒の平均粒径が第2磁気記録層122b中の磁性粒の平均粒径よりも約0.3nm小さいと、オーバーライト特性が低下してしまう。
また第1磁気記録層122a中の磁性粒の平均粒径を、第2磁気記録層122b中の磁性粒の平均粒径よりも約0.3nm大きくすることにより、容易に第1磁気記録層122a中の磁性粒の粒子間距離を1nm以下にすることができる。その結果、最適にオーバーライト特性を向上させることができる。なお、第1磁気記録層122a中の磁性粒の粒子間距離が、1nm以上であると、オーバーライト特性の向上が見込めなくなる。
さらに第1磁気記録層122a中の磁性粒の平均粒径を、第2磁気記録層122b中の磁性粒の平均粒径よりも約0.3nm大きくすることにより、容易に第2磁気記録層122b中の磁性粒の粒子間距離を、0.5nm以上にすることができる。その結果、最適に高保磁力Hcおよび高SNRを維持することができる。なお、第2磁気記録層122b中の磁性粒の粒子間距離が、0.5nm以下であると、グラニュラー構造を保つことができなくなり、SNRが低下する。
高オーバーライト特性を実現したままSNR向上を目指すために、実施例2では、第1磁気記録層122aを複合酸化物の例としてCr2O3とSiO2を含有させてCoCrPt―Cr2O3―SiO2のhcp結晶構造を形成し、第2磁気記録層122bを複合酸化物(複数の種類の酸化物)の例としてSiO2とTiO2を含有させてCoCrPt-SiO2-TiO2のhcp結晶構造を形成した。
図3に示すように、第2磁気記録層122bをSiO2とTiO2の複合酸化物を含有させて形成することにより、複数の酸化物の特性を得ることができる。したがって、磁気記録層122の磁性粒子のさらなる微細化と孤立化を図ることによりノイズを低減し、高オーバーライト特性を維持したままSNRを向上させることができた。
特に、SiO2は磁性粒子の微細化および孤立化を促進し、TiO2は結晶粒子の粒径分散を抑制させる効果がある。そしてこれらの酸化物を複合させて磁気記録層122の粒界に偏析させることにより、双方の利益を享受することができる。
図4は、本実施形態にかかる垂直磁気記録媒体の製造方法を用いて製造した垂直磁気記録媒体100を説明するための説明図である。
図4に示すように、本実施形態にかかる垂直磁気記録媒体の製造方法を用いて製造した垂直磁気記録媒体100は、第1磁気記録層122a中の磁性粒(結晶粒子)と隣接する磁性粒(結晶粒子)の粒子間距離は、第2磁気記録層122b中の磁性粒(結晶粒子)と隣接する磁性粒(結晶粒子)の粒子間距離よりも小さくなるように成膜される。このため、第1磁気記録層122aが連続層124と同様の機能を有することとなる。したがって、確実にオーバーライト特性を向上させることが可能となる。
上記構成によれば、第2磁気記録層に連続層としての機能を持たせることができる。したがって、媒体の上方と比較して弱いヘッド磁界が加えられた場合であっても理想的な磁化反転が達成され、その機能を適切に発揮させることができる。これにより、SNRおよびオーバーライト特性を適切に向上させることが可能となる。
以上、添付図面を参照しながら本発明の好適な実施例について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば、上記実施形態および実施例においては、磁気記録層を第1磁気記録層と第2磁気記録層の2層からなると説明した。しかし磁気記録層がさらに3以上の層からなる場合であっても、少なくとも下層の磁気記録層の磁性粒の平均粒径を上層の磁気記録層の磁性粒の平均粒径よりも大きくすることにより、上記と同様に本発明の利益を得ることができる。
本発明は、垂直磁気記録方式のHDDなどに搭載される垂直磁気記録媒体および垂直磁気記録媒体の製造方法として利用可能である。
Claims (11)
- 基体上に少なくとも第1磁気記録層、第2磁気記録層をこの順に備える垂直磁気記録媒体であって、
第1磁気記録層および第2磁気記録層は柱状に成長した結晶粒子の間に非磁性物質からなる粒界部を形成したグラニュラー構造の強磁性層であり、
前記第1磁気記録層において、前記結晶粒子と隣接する結晶粒子との最短距離の平均により定まる粒子間距離は1nm以下であることを特徴とする垂直磁気記録媒体。 - 前記第2磁気記録層において、前記結晶粒子と隣接する結晶粒子との粒界部の最短距離の平均により定まる粒子間距離は0.5nm以上であることを特徴とする請求項1に記載の垂直磁気記録媒体。
- 前記第1磁気記録層中の前記結晶粒子の平均粒径をAnm、前記第2磁気記録層中の前記結晶粒子の平均粒径をBnmとした場合、A>Bであることを特徴とする請求項1または2に記載の垂直磁気記録媒体。
- 前記第1磁気記録層中の前記結晶粒子の平均粒径と、前記第2磁気記録層中の前記結晶粒子の平均粒径との比が1<A/B<1.2であることを特徴とする請求項1から3いずれか1項に記載の垂直磁気記録媒体。
- 前記第1磁気記録層と第2磁気記録層の総厚が15nm以下であることを特徴とする請求項1から4のいずれか1項に記載の垂直磁気記録媒体。
- 前記第1磁気記録層の膜厚は、第2磁気記録層の膜厚の約0.2~約1倍であることを特徴とする請求項1から5のいずれか1項に記載の垂直磁気記録媒体。
- 前記第2磁気記録層より基体から遠い側に、基体面方向に磁気的に連続した連続層を備え、
前記第1磁気記録層の膜厚は、前記連続層の膜厚の約0.2~約2倍であることを特徴とする請求項1から6のいずれか1項に記載の垂直磁気記録媒体。 - 前記第2磁気記録層より基体から遠い側に、基体面方向に磁気的に連続した連続層を備え、
前記第2磁気記録層の膜厚は、前記連続層の膜厚の約0.7~約2倍であることを特徴とする請求項1から7のいずれか1項に記載の垂直磁気記録媒体。 - 前記第1磁気記録層に含まれる非磁性物質は、SiO2、TiO2、Cr2O3、Ta2O5、Nb2O5、B2O3またはZrO2の群から選択された、1または複数の酸化物を含むことを特徴とする請求項1から8のいずれか1項に記載の垂直磁気記録媒体。
- 前記第2磁気記録層に含まれる非磁性物質は、SiO2、TiO2、Cr2O3、Ta2O5、Nb2O5、B2O3またはZrO2の群から選択された、1または複数の酸化物を含むことを特徴とする請求項1から8のいずれか1項に記載の垂直磁気媒体。
- 基体上に少なくとも第1磁気記録層、第2磁気記録層をこの順に備える垂直磁気記録媒体の製造方法であって、
前記第1磁気記録層として酸素もしくはSiO2、TiO2、Cr2O3、Ta2O5、Nb2O5、B2O3またはZrO2の群から選択された、1または複数の酸化物を含む磁性ターゲットを用いて、ガス圧を約0.5~約5Pa、電力を約100~約700Wとすることにより、柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラー構造の強磁性層を形成し、
酸素もしくはSiO2、TiO2、Cr2O3、Ta2O5、Nb2O5、B2O3またはZrO2の群から選択された、1または複数の酸化物を含む磁性ターゲットを用いて、ガス圧を約0.5~約5Pa、電力を約100~約1000Wとすることにより、前記第2磁気記録層として柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラー構造の強磁性層を形成し、
前記第1磁気記録層において、前記結晶粒子と隣接する結晶粒子との粒界部の最短距離の平均により定まる粒子間距離は1nm以下であることを特徴とする垂直磁気記録媒体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/934,953 US9047903B2 (en) | 2008-03-26 | 2009-03-26 | Perpendicular magnetic recording medium and process for manufacture thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-082251 | 2008-03-26 | ||
JP2008082251A JP2009238299A (ja) | 2008-03-26 | 2008-03-26 | 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009119709A1 true WO2009119709A1 (ja) | 2009-10-01 |
Family
ID=41113897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/056051 WO2009119709A1 (ja) | 2008-03-26 | 2009-03-26 | 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9047903B2 (ja) |
JP (1) | JP2009238299A (ja) |
WO (1) | WO2009119709A1 (ja) |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5117895B2 (ja) | 2008-03-17 | 2013-01-16 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気記録媒体及びその製造方法 |
JP2009238299A (ja) | 2008-03-26 | 2009-10-15 | Hoya Corp | 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 |
JP2009238298A (ja) | 2008-03-26 | 2009-10-15 | Hoya Corp | 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 |
JP5453666B2 (ja) * | 2008-03-30 | 2014-03-26 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気ディスク及びその製造方法 |
US9177586B2 (en) | 2008-09-30 | 2015-11-03 | WD Media (Singapore), LLC | Magnetic disk and manufacturing method thereof |
US8877359B2 (en) | 2008-12-05 | 2014-11-04 | Wd Media (Singapore) Pte. Ltd. | Magnetic disk and method for manufacturing same |
WO2010116908A1 (ja) | 2009-03-28 | 2010-10-14 | Hoya株式会社 | 磁気ディスク用潤滑剤化合物及び磁気ディスク |
SG165294A1 (en) | 2009-03-30 | 2010-10-28 | Wd Media Singapore Pte Ltd | Perpendicular magnetic recording medium and method of manufacturing the same |
US20100300884A1 (en) | 2009-05-26 | 2010-12-02 | Wd Media, Inc. | Electro-deposited passivation coatings for patterned media |
US8496466B1 (en) | 2009-11-06 | 2013-07-30 | WD Media, LLC | Press system with interleaved embossing foil holders for nano-imprinting of recording media |
US9330685B1 (en) | 2009-11-06 | 2016-05-03 | WD Media, LLC | Press system for nano-imprinting of recording media with a two step pressing method |
JP5643516B2 (ja) | 2010-01-08 | 2014-12-17 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気記録媒体 |
JP5574414B2 (ja) | 2010-03-29 | 2014-08-20 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気ディスクの評価方法及び磁気ディスクの製造方法 |
JP5645476B2 (ja) | 2010-05-21 | 2014-12-24 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気ディスク |
JP5634749B2 (ja) | 2010-05-21 | 2014-12-03 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気ディスク |
JP2011248969A (ja) | 2010-05-28 | 2011-12-08 | Wd Media (Singapore) Pte. Ltd | 垂直磁気ディスク |
JP2011248967A (ja) | 2010-05-28 | 2011-12-08 | Wd Media (Singapore) Pte. Ltd | 垂直磁気ディスクの製造方法 |
JP2011248968A (ja) | 2010-05-28 | 2011-12-08 | Wd Media (Singapore) Pte. Ltd | 垂直磁気ディスク |
JP2012009086A (ja) | 2010-06-22 | 2012-01-12 | Wd Media (Singapore) Pte. Ltd | 垂直磁気記録媒体及びその製造方法 |
US8889275B1 (en) | 2010-08-20 | 2014-11-18 | WD Media, LLC | Single layer small grain size FePT:C film for heat assisted magnetic recording media |
US8743666B1 (en) | 2011-03-08 | 2014-06-03 | Western Digital Technologies, Inc. | Energy assisted magnetic recording medium capable of suppressing high DC readback noise |
US8711499B1 (en) | 2011-03-10 | 2014-04-29 | WD Media, LLC | Methods for measuring media performance associated with adjacent track interference |
US8491800B1 (en) | 2011-03-25 | 2013-07-23 | WD Media, LLC | Manufacturing of hard masks for patterning magnetic media |
US9028985B2 (en) | 2011-03-31 | 2015-05-12 | WD Media, LLC | Recording media with multiple exchange coupled magnetic layers |
US9058831B2 (en) | 2011-12-14 | 2015-06-16 | HGST Netherlands B.V. | Perpendicular magnetic recording medium with grain boundary controlling layers |
US8565050B1 (en) | 2011-12-20 | 2013-10-22 | WD Media, LLC | Heat assisted magnetic recording media having moment keeper layer |
US9029308B1 (en) | 2012-03-28 | 2015-05-12 | WD Media, LLC | Low foam media cleaning detergent |
US9269480B1 (en) * | 2012-03-30 | 2016-02-23 | WD Media, LLC | Systems and methods for forming magnetic recording media with improved grain columnar growth for energy assisted magnetic recording |
US8941950B2 (en) | 2012-05-23 | 2015-01-27 | WD Media, LLC | Underlayers for heat assisted magnetic recording (HAMR) media |
US8993134B2 (en) | 2012-06-29 | 2015-03-31 | Western Digital Technologies, Inc. | Electrically conductive underlayer to grow FePt granular media with (001) texture on glass substrates |
US8614862B1 (en) * | 2012-12-21 | 2013-12-24 | HGST Netherlands B.V. | Perpendicular magnetic recording media having a cap layer above a granular layer |
US9034492B1 (en) | 2013-01-11 | 2015-05-19 | WD Media, LLC | Systems and methods for controlling damping of magnetic media for heat assisted magnetic recording |
JP6265529B2 (ja) | 2013-01-23 | 2018-01-24 | 昭和電工株式会社 | 磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置 |
US10115428B1 (en) | 2013-02-15 | 2018-10-30 | Wd Media, Inc. | HAMR media structure having an anisotropic thermal barrier layer |
US9153268B1 (en) | 2013-02-19 | 2015-10-06 | WD Media, LLC | Lubricants comprising fluorinated graphene nanoribbons for magnetic recording media structure |
US9183867B1 (en) | 2013-02-21 | 2015-11-10 | WD Media, LLC | Systems and methods for forming implanted capping layers in magnetic media for magnetic recording |
US9196283B1 (en) | 2013-03-13 | 2015-11-24 | Western Digital (Fremont), Llc | Method for providing a magnetic recording transducer using a chemical buffer |
US9190094B2 (en) | 2013-04-04 | 2015-11-17 | Western Digital (Fremont) | Perpendicular recording media with grain isolation initiation layer and exchange breaking layer for signal-to-noise ratio enhancement |
US9093122B1 (en) | 2013-04-05 | 2015-07-28 | WD Media, LLC | Systems and methods for improving accuracy of test measurements involving aggressor tracks written to disks of hard disk drives |
US8947987B1 (en) | 2013-05-03 | 2015-02-03 | WD Media, LLC | Systems and methods for providing capping layers for heat assisted magnetic recording media |
US8867322B1 (en) | 2013-05-07 | 2014-10-21 | WD Media, LLC | Systems and methods for providing thermal barrier bilayers for heat assisted magnetic recording media |
US9296082B1 (en) | 2013-06-11 | 2016-03-29 | WD Media, LLC | Disk buffing apparatus with abrasive tape loading pad having a vibration absorbing layer |
US9406330B1 (en) | 2013-06-19 | 2016-08-02 | WD Media, LLC | Method for HDD disk defect source detection |
US9607646B2 (en) | 2013-07-30 | 2017-03-28 | WD Media, LLC | Hard disk double lubrication layer |
JP6144570B2 (ja) | 2013-08-05 | 2017-06-07 | 昭和電工株式会社 | 磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置 |
US9389135B2 (en) | 2013-09-26 | 2016-07-12 | WD Media, LLC | Systems and methods for calibrating a load cell of a disk burnishing machine |
US9177585B1 (en) | 2013-10-23 | 2015-11-03 | WD Media, LLC | Magnetic media capable of improving magnetic properties and thermal management for heat-assisted magnetic recording |
US9581510B1 (en) | 2013-12-16 | 2017-02-28 | Western Digital Technologies, Inc. | Sputter chamber pressure gauge with vibration absorber |
US9382496B1 (en) | 2013-12-19 | 2016-07-05 | Western Digital Technologies, Inc. | Lubricants with high thermal stability for heat-assisted magnetic recording |
US9824711B1 (en) | 2014-02-14 | 2017-11-21 | WD Media, LLC | Soft underlayer for heat assisted magnetic recording media |
US9447368B1 (en) | 2014-02-18 | 2016-09-20 | WD Media, LLC | Detergent composition with low foam and high nickel solubility |
US9431045B1 (en) | 2014-04-25 | 2016-08-30 | WD Media, LLC | Magnetic seed layer used with an unbalanced soft underlayer |
US9042053B1 (en) | 2014-06-24 | 2015-05-26 | WD Media, LLC | Thermally stabilized perpendicular magnetic recording medium |
US9159350B1 (en) | 2014-07-02 | 2015-10-13 | WD Media, LLC | High damping cap layer for magnetic recording media |
US10054363B2 (en) | 2014-08-15 | 2018-08-21 | WD Media, LLC | Method and apparatus for cryogenic dynamic cooling |
US9082447B1 (en) | 2014-09-22 | 2015-07-14 | WD Media, LLC | Determining storage media substrate material type |
US8995078B1 (en) | 2014-09-25 | 2015-03-31 | WD Media, LLC | Method of testing a head for contamination |
US9227324B1 (en) | 2014-09-25 | 2016-01-05 | WD Media, LLC | Mandrel for substrate transport system with notch |
US9685184B1 (en) | 2014-09-25 | 2017-06-20 | WD Media, LLC | NiFeX-based seed layer for magnetic recording media |
US9449633B1 (en) | 2014-11-06 | 2016-09-20 | WD Media, LLC | Smooth structures for heat-assisted magnetic recording media |
US9818442B2 (en) | 2014-12-01 | 2017-11-14 | WD Media, LLC | Magnetic media having improved magnetic grain size distribution and intergranular segregation |
US9401300B1 (en) | 2014-12-18 | 2016-07-26 | WD Media, LLC | Media substrate gripper including a plurality of snap-fit fingers |
US9218850B1 (en) | 2014-12-23 | 2015-12-22 | WD Media, LLC | Exchange break layer for heat-assisted magnetic recording media |
US9257134B1 (en) | 2014-12-24 | 2016-02-09 | Western Digital Technologies, Inc. | Allowing fast data zone switches on data storage devices |
US9990940B1 (en) | 2014-12-30 | 2018-06-05 | WD Media, LLC | Seed structure for perpendicular magnetic recording media |
US9280998B1 (en) | 2015-03-30 | 2016-03-08 | WD Media, LLC | Acidic post-sputter wash for magnetic recording media |
US9275669B1 (en) | 2015-03-31 | 2016-03-01 | WD Media, LLC | TbFeCo in PMR media for SNR improvement |
US9822441B2 (en) | 2015-03-31 | 2017-11-21 | WD Media, LLC | Iridium underlayer for heat assisted magnetic recording media |
US11074934B1 (en) | 2015-09-25 | 2021-07-27 | Western Digital Technologies, Inc. | Heat assisted magnetic recording (HAMR) media with Curie temperature reduction layer |
US10236026B1 (en) | 2015-11-06 | 2019-03-19 | WD Media, LLC | Thermal barrier layers and seed layers for control of thermal and structural properties of HAMR media |
US9406329B1 (en) | 2015-11-30 | 2016-08-02 | WD Media, LLC | HAMR media structure with intermediate layer underlying a magnetic recording layer having multiple sublayers |
US10121506B1 (en) | 2015-12-29 | 2018-11-06 | WD Media, LLC | Magnetic-recording medium including a carbon overcoat implanted with nitrogen and hydrogen |
CN111971745B (zh) * | 2018-03-28 | 2022-05-10 | Jx金属株式会社 | 垂直磁记录介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60239916A (ja) * | 1984-05-11 | 1985-11-28 | Fujitsu Ltd | 垂直磁気記録媒体 |
JPS63201912A (ja) * | 1987-02-18 | 1988-08-22 | Hitachi Ltd | 垂直磁気記録媒体 |
JPH1125439A (ja) * | 1997-07-08 | 1999-01-29 | Hitachi Ltd | 垂直磁気記録媒体及びそれを用いた磁気記録再生装置 |
JP2006309922A (ja) * | 2005-03-31 | 2006-11-09 | Fujitsu Ltd | 磁気記録媒体及び磁気記録装置 |
WO2007114402A1 (ja) * | 2006-03-31 | 2007-10-11 | Hoya Corporation | 垂直磁気記録ディスク及びその製造方法 |
JP2008108395A (ja) * | 2006-10-27 | 2008-05-08 | Hoya Corp | 垂直磁気記録媒体及びその製造方法 |
Family Cites Families (274)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2874298B2 (ja) * | 1990-07-24 | 1999-03-24 | 日本板硝子株式会社 | 磁気記録媒体およびその製造方法 |
US6287429B1 (en) * | 1992-10-26 | 2001-09-11 | Hoya Corporation | Magnetic recording medium having an improved magnetic characteristic |
US6099981A (en) * | 1993-12-28 | 2000-08-08 | Hoya Corporation | Magnetic recording medium having a lubricant film coated on optimum conditions and method of evaluating the lubricant film |
US6156404A (en) * | 1996-10-18 | 2000-12-05 | Komag, Inc. | Method of making high performance, low noise isotropic magnetic media including a chromium underlayer |
JPH0850715A (ja) * | 1994-01-28 | 1996-02-20 | Komag Inc | 低ノイズ,高い保磁力および優れた方形度を有する磁気記録媒体および磁気記録媒体形成方法 |
US5855746A (en) * | 1996-02-28 | 1999-01-05 | Western Digital Corporation | Buffered nitrogenated carbon overcoat for data recording disks and method for manufacturing the same |
US6309765B1 (en) * | 1996-03-25 | 2001-10-30 | Asahi Komag Co., Ltd. | Magnetic recording medium and process for its production |
US6103404A (en) * | 1996-06-03 | 2000-08-15 | Komag, Inc. | Laser textured magnetic disk comprising NiNb |
US6117499A (en) * | 1997-04-09 | 2000-09-12 | Komag, Inc. | Micro-texture media made by polishing of a selectively irradiated surface |
US6068891A (en) * | 1997-08-15 | 2000-05-30 | Komag, Inc. | Method for laser texturing a glass ceramic substrate and the resulting substrate |
US6200441B1 (en) * | 1997-08-27 | 2001-03-13 | Western Digital Corporation | Multiple station vacuum deposition apparatus for texturing a substrate using a scanning beam |
US6149696A (en) * | 1997-11-06 | 2000-11-21 | Komag, Inc. | Colloidal silica slurry for NiP plated disk polishing |
JP3099790B2 (ja) * | 1997-11-17 | 2000-10-16 | 日本電気株式会社 | 垂直磁気記録媒体 |
US6150015A (en) * | 1997-12-04 | 2000-11-21 | Komag, Incorporated | Ultra-thin nucleation layer for magnetic thin film media and the method for manufacturing the same |
US6387483B1 (en) * | 1997-12-18 | 2002-05-14 | Nec Corporation | Perpendicular magnetic recording medium and manufacturing process therefor |
JP3087715B2 (ja) * | 1998-02-19 | 2000-09-11 | 日本電気株式会社 | 磁気ディスク装置 |
US6261681B1 (en) * | 1998-03-20 | 2001-07-17 | Asahi Komag Co., Ltd. | Magnetic recording medium |
US6683754B2 (en) * | 1998-05-21 | 2004-01-27 | Komag, Inc. | Hard disk drive head-media system having reduced stiction and low fly height |
US6381090B1 (en) * | 1998-05-21 | 2002-04-30 | Komag, Incorporated | Hard disk drive head-media system having reduced stiction and low fly height |
US6159076A (en) * | 1998-05-28 | 2000-12-12 | Komag, Inc. | Slurry comprising a ligand or chelating agent for polishing a surface |
US6210819B1 (en) * | 1998-07-24 | 2001-04-03 | Hmt Technology Corporation | Magnetic recording media having a CrTi underlayer deposited under a substrate bias |
JP3090128B2 (ja) | 1998-08-28 | 2000-09-18 | 日本電気株式会社 | 垂直磁気記録媒体 |
US6216709B1 (en) * | 1998-09-04 | 2001-04-17 | Komag, Inc. | Method for drying a substrate |
US6571806B2 (en) * | 1998-09-04 | 2003-06-03 | Komag, Inc. | Method for drying a substrate |
US6146737A (en) * | 1998-09-18 | 2000-11-14 | Hmt Technology Corporation | Magnetic recording medium having a nitrogen-containing barrier layer |
US6164118A (en) * | 1998-09-30 | 2000-12-26 | Komag Incorporated | Calibration disk having discrete bands of calibration bumps |
US6408677B1 (en) * | 1998-09-30 | 2002-06-25 | Komag Corporation | Calibration disk having discrete bands of composite roughness |
US6303217B1 (en) * | 1998-10-02 | 2001-10-16 | Hmt Technology, Corporation | Longitudinal recording medium with a dual underlayer |
US6358636B1 (en) * | 1998-11-05 | 2002-03-19 | Hmt Technology Corporation | Thin overlayer for magnetic recording disk |
US6274063B1 (en) * | 1998-11-06 | 2001-08-14 | Hmt Technology Corporation | Metal polishing composition |
US6063248A (en) * | 1998-11-12 | 2000-05-16 | Hmt Technology Corporation | Process chamber isolation system in a deposition apparatus |
US6145849A (en) * | 1998-11-18 | 2000-11-14 | Komag, Incorporated | Disk processing chuck |
US6299947B1 (en) * | 1999-01-20 | 2001-10-09 | Komag, Inc. | Method of forming a magnetic hard disk with elliptical shaped laser bumps |
US6143375A (en) * | 1999-01-28 | 2000-11-07 | Komag, Incorporated | Method for preparing a substrate for a magnetic disk |
US6362452B1 (en) * | 1999-02-04 | 2002-03-26 | Komag, Inc. | Patterned laser zone texture |
US6403919B1 (en) * | 1999-03-01 | 2002-06-11 | Komag, Incorporated | Disk marking system |
SG102651A1 (en) | 1999-03-31 | 2004-03-26 | Hoya Corp | Magnetic recording medium, and thermal stability measuring method and apparatus of magnetic recording medium |
US6086730A (en) * | 1999-04-22 | 2000-07-11 | Komag, Incorporated | Method of sputtering a carbon protective film on a magnetic disk with high sp3 content |
US6248395B1 (en) * | 1999-05-24 | 2001-06-19 | Komag, Inc. | Mechanical texturing of glass and glass-ceramic substrates |
US6395349B1 (en) * | 1999-05-25 | 2002-05-28 | Komag, Inc. | Method of marking disks |
US6548821B1 (en) * | 1999-06-21 | 2003-04-15 | Komag, Inc. | Method and apparatus for inspecting substrates |
US6566674B1 (en) * | 1999-06-21 | 2003-05-20 | Komag, Inc. | Method and apparatus for inspecting substrates |
US6221119B1 (en) * | 1999-07-14 | 2001-04-24 | Komag, Inc. | Slurry composition for polishing a glass ceramic substrate |
US6363599B1 (en) * | 1999-08-04 | 2002-04-02 | Komag, Inc. | Method for manufacturing a magnetic disk including a glass substrate |
US6429984B1 (en) * | 1999-08-06 | 2002-08-06 | Komag, Inc | Circuit and method for refreshing data recorded at a density sufficiently high to undergo thermal degradation |
US6206765B1 (en) * | 1999-08-16 | 2001-03-27 | Komag, Incorporated | Non-rotational dresser for grinding stones |
US6290573B1 (en) * | 1999-08-23 | 2001-09-18 | Komag, Incorporated | Tape burnish with monitoring device |
US6795274B1 (en) * | 1999-09-07 | 2004-09-21 | Asahi Glass Company, Ltd. | Method for manufacturing a substantially circular substrate by utilizing scribing |
US6391213B1 (en) * | 1999-09-07 | 2002-05-21 | Komag, Inc. | Texturing of a landing zone on glass-based substrates by a chemical etching process |
US6664503B1 (en) * | 1999-09-07 | 2003-12-16 | Asahi Glass Company, Ltd. | Method for manufacturing a magnetic disk |
US20020060883A1 (en) * | 1999-09-21 | 2002-05-23 | Shoji Suzuki | Hard disk drive with load/unload capability |
US6482330B1 (en) * | 1999-10-01 | 2002-11-19 | Komag, Inc. | Method for manufacturing a data storage card |
US6283838B1 (en) * | 1999-10-19 | 2001-09-04 | Komag Incorporated | Burnishing tape handling apparatus and method |
US6381092B1 (en) * | 2000-01-10 | 2002-04-30 | Komag, Inc. | Spacer rings to compensate for disk warpage |
US6482505B1 (en) * | 2000-05-11 | 2002-11-19 | Komag, Inc. | Multi-layer texture layer |
US6565719B1 (en) * | 2000-06-27 | 2003-05-20 | Komag, Inc. | Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content |
JP2002056522A (ja) * | 2000-08-14 | 2002-02-22 | Hoya Corp | 磁気記録媒体及びその製造方法 |
US6730420B1 (en) * | 2000-10-31 | 2004-05-04 | Komag, Inc. | Magnetic thin film recording media having extremely low noise and high thermal stability |
US6528124B1 (en) * | 2000-12-01 | 2003-03-04 | Komag, Inc. | Disk carrier |
US7019924B2 (en) | 2001-02-16 | 2006-03-28 | Komag, Incorporated | Patterned medium and recording head |
US6759138B2 (en) * | 2001-07-03 | 2004-07-06 | Hoya Corporation | Antiferromagnetically coupled magnetic recording medium with dual-layered upper magnetic layer |
US6778353B1 (en) * | 2001-07-25 | 2004-08-17 | Komag, Inc. | Balance ring |
US7099112B1 (en) | 2001-07-25 | 2006-08-29 | Komag, Inc. | Balance ring |
SG108888A1 (en) | 2001-12-14 | 2005-02-28 | Hoya Corp | Magnetic recording medium |
US6899959B2 (en) * | 2002-02-12 | 2005-05-31 | Komag, Inc. | Magnetic media with improved exchange coupling |
JP3912497B2 (ja) | 2002-02-25 | 2007-05-09 | Hoya株式会社 | 磁気記録媒体 |
JP4515690B2 (ja) | 2002-05-29 | 2010-08-04 | 昭和電工株式会社 | 垂直多層磁気記録媒体 |
US6857937B2 (en) | 2002-05-30 | 2005-02-22 | Komag, Inc. | Lapping a head while powered up to eliminate expansion of the head due to heating |
US7119990B2 (en) | 2002-05-30 | 2006-10-10 | Komag, Inc. | Storage device including a center tapped write transducer |
US7054442B2 (en) * | 2002-08-02 | 2006-05-30 | Communication System, Inc. | Wall mounted DSL adapter jack with latches for attachment |
SG130014A1 (en) | 2002-09-03 | 2007-03-20 | Hoya Corp | Magnetic recording disk and process for manufacturing thereof |
US6939120B1 (en) * | 2002-09-12 | 2005-09-06 | Komag, Inc. | Disk alignment apparatus and method for patterned media production |
US20040132301A1 (en) * | 2002-09-12 | 2004-07-08 | Harper Bruce M. | Indirect fluid pressure imprinting |
US6972135B2 (en) * | 2002-11-18 | 2005-12-06 | Komag, Inc. | Texturing of magnetic disk substrates |
US20050036223A1 (en) | 2002-11-27 | 2005-02-17 | Wachenschwanz David E. | Magnetic discrete track recording disk |
US7147790B2 (en) | 2002-11-27 | 2006-12-12 | Komag, Inc. | Perpendicular magnetic discrete track recording disk |
JP3651681B2 (ja) | 2003-01-29 | 2005-05-25 | Hoya株式会社 | 磁気ディスクおよびその製造方法 |
JP2004247010A (ja) * | 2003-02-17 | 2004-09-02 | Hoya Corp | 磁気ディスク |
DE102004010336A1 (de) | 2003-03-05 | 2004-09-16 | Komag, Inc., San Jose | Magnetische Aufzeichnungsplatte mit Übergangszone |
US7016154B2 (en) | 2003-03-05 | 2006-03-21 | Komag, Inc. | Magnetic recording disk having a safe zone |
JP2004319058A (ja) | 2003-03-31 | 2004-11-11 | Hoya Corp | 磁気ディスクの製造方法及び磁気ディスク |
WO2004090874A1 (en) * | 2003-04-07 | 2004-10-21 | Showa Denko K. K. | Magnetic recording medium, method for producing thereof, and magnetic recording and reproducing apparatus. |
US20040202865A1 (en) * | 2003-04-08 | 2004-10-14 | Andrew Homola | Release coating for stamper |
US20040202793A1 (en) * | 2003-04-08 | 2004-10-14 | Harper Bruce M. | Dip-spin coater |
US20040209123A1 (en) * | 2003-04-17 | 2004-10-21 | Bajorek Christopher H. | Method of fabricating a discrete track recording disk using a bilayer resist for metal lift-off |
US6893748B2 (en) * | 2003-05-20 | 2005-05-17 | Komag, Inc. | Soft magnetic film for perpendicular recording disk |
US7166319B2 (en) | 2003-05-28 | 2007-01-23 | Hoya Corporation | Magnetic disk and method of producing the same |
US7006323B1 (en) * | 2003-07-18 | 2006-02-28 | Komag, Inc. | Magnetic head for proximity recording |
JP4169663B2 (ja) | 2003-07-25 | 2008-10-22 | Hoya株式会社 | 垂直磁気記録媒体 |
JP4247535B2 (ja) | 2003-11-11 | 2009-04-02 | Hoya株式会社 | ロードアンロード方式用磁気ディスク、ロードアンロード方式用磁気ディスクの製造方法及びロードアンロード方式用磁気ディスクの評価方法 |
US6967798B2 (en) * | 2003-12-19 | 2005-11-22 | Komag, Inc. | Magnetic recording disk having DTR patterned CSS zone |
US7632087B2 (en) | 2003-12-19 | 2009-12-15 | Wd Media, Inc. | Composite stamper for imprint lithography |
JP4812254B2 (ja) * | 2004-01-08 | 2011-11-09 | 富士電機株式会社 | 垂直磁気記録媒体、および、その製造方法 |
US20050151283A1 (en) * | 2004-01-08 | 2005-07-14 | Bajorek Christopher H. | Method and apparatus for making a stamper for patterning CDs and DVDs |
US20050150862A1 (en) * | 2004-01-13 | 2005-07-14 | Harper Bruce M. | Workpiece alignment assembly |
US20050151300A1 (en) * | 2004-01-13 | 2005-07-14 | Harper Bruce M. | Workpiece isothermal imprinting |
US20050151282A1 (en) * | 2004-01-13 | 2005-07-14 | Harper Bruce M. | Workpiece handler and alignment assembly |
US8012920B2 (en) | 2004-01-14 | 2011-09-06 | Wd Media (Singapore) Pte. Ltd. | Lubricant for magnetic disks, method for producing the lubricant used in the magnetic disks, and method for manufacturing the same |
US20050155554A1 (en) * | 2004-01-20 | 2005-07-21 | Saito Toshiyuki M. | Imprint embossing system |
US7329114B2 (en) | 2004-01-20 | 2008-02-12 | Komag, Inc. | Isothermal imprint embossing system |
US7686606B2 (en) | 2004-01-20 | 2010-03-30 | Wd Media, Inc. | Imprint embossing alignment system |
US7179549B2 (en) | 2004-01-21 | 2007-02-20 | Komag, Inc. | Magnetic recording medium having novel underlayer structure |
JP4214522B2 (ja) * | 2004-01-28 | 2009-01-28 | 富士電機デバイステクノロジー株式会社 | 垂直磁気記録媒体、および、その製造方法 |
JP4078317B2 (ja) | 2004-02-06 | 2008-04-23 | Hoya株式会社 | 固体表面の評価方法、磁気ディスクの評価方法、磁気ディスクおよびその製造方法 |
JP4407904B2 (ja) | 2004-02-06 | 2010-02-03 | Hoya株式会社 | 磁気ディスクの製造方法 |
US7004827B1 (en) * | 2004-02-12 | 2006-02-28 | Komag, Inc. | Method and apparatus for polishing a workpiece |
US7229266B2 (en) | 2004-03-23 | 2007-06-12 | Komag, Inc. | Press die alignment |
US7498062B2 (en) | 2004-05-26 | 2009-03-03 | Wd Media, Inc. | Method and apparatus for applying a voltage to a substrate during plating |
CN100589187C (zh) | 2004-06-30 | 2010-02-10 | Hoya株式会社 | 垂直磁记录盘以及其制造方法 |
US7320584B1 (en) | 2004-07-07 | 2008-01-22 | Komag, Inc. | Die set having sealed compliant member |
US7684152B2 (en) | 2004-09-24 | 2010-03-23 | Wd Media, Inc. | Method of mitigating eccentricity in a disk drive with DTR media |
JP4375617B2 (ja) | 2004-09-27 | 2009-12-02 | Hoya株式会社 | 磁気ディスク用潤滑剤の製造方法、磁気ディスク用潤滑剤、磁気ディスクおよび磁気ディスクの製造方法 |
JP4044546B2 (ja) | 2004-09-29 | 2008-02-06 | Hoya株式会社 | 磁気ディスク及びその製造方法 |
US7301726B1 (en) | 2004-11-04 | 2007-11-27 | Komag, Inc. | Banded LZT CSS zone |
US20060147758A1 (en) | 2005-01-06 | 2006-07-06 | Hong-Sik Jung | Perpendicular magnetic recording medium with magnetically resetable single domain soft magnetic underlayer |
US20060181697A1 (en) | 2005-01-13 | 2006-08-17 | Komag, Inc. | Circularly polarized light for optically inspecting workpieces |
US7239970B2 (en) | 2005-01-13 | 2007-07-03 | Komag, Inc. | Robotic system for optically inspecting workpieces |
US7184139B2 (en) | 2005-01-13 | 2007-02-27 | Komag, Inc. | Test head for optically inspecting workpieces |
US7425719B2 (en) | 2005-01-13 | 2008-09-16 | Wd Media, Inc. | Method and apparatus for selectively providing data from a test head to a processor |
US7375362B2 (en) | 2005-01-13 | 2008-05-20 | Wd Media, Inc. | Method and apparatus for reducing or eliminating stray light in an optical test head |
US7292329B2 (en) | 2005-01-13 | 2007-11-06 | Komag, Inc. | Test head for optically inspecting workpieces comprising a lens for elongating a laser spot on the workpieces |
US7302148B2 (en) | 2005-01-13 | 2007-11-27 | Komag, Inc. | Test head for optically inspecting workpieces |
US7305119B2 (en) | 2005-01-13 | 2007-12-04 | Komag, Inc. | Test head for optically inspecting workpieces |
US7161753B2 (en) | 2005-01-28 | 2007-01-09 | Komag, Inc. | Modulation of sidewalls of servo sectors of a magnetic disk and the resultant disk |
US7569490B2 (en) | 2005-03-15 | 2009-08-04 | Wd Media, Inc. | Electrochemical etching |
US20060207890A1 (en) | 2005-03-15 | 2006-09-21 | Norbert Staud | Electrochemical etching |
JP2006268972A (ja) | 2005-03-24 | 2006-10-05 | Hoya Corp | 垂直磁気記録ディスク及びその製造方法 |
US7281920B2 (en) | 2005-03-28 | 2007-10-16 | Komag, Inc. | Die set utilizing compliant gasket |
JP2006309919A (ja) * | 2005-03-30 | 2006-11-09 | Fujitsu Ltd | 垂直磁気記録媒体、その製造方法および磁気記憶装置 |
US7955723B2 (en) | 2005-03-31 | 2011-06-07 | WD Media (Singapore) Pte.Ltd. | Magnetic recording medium substrate and perpendicular magnetic recording medium |
US20060222900A1 (en) * | 2005-03-31 | 2006-10-05 | Fujitsu Limited | Magnetic recording medium and magnetic recording device |
US7910159B2 (en) | 2005-06-03 | 2011-03-22 | Wd Media, Inc. | Radial magnetic field reset system for producing single domain soft magnetic underlayer on perpendicular magnetic recording medium |
JP4928751B2 (ja) | 2005-07-14 | 2012-05-09 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気記録媒体 |
JP4410747B2 (ja) | 2005-09-30 | 2010-02-03 | Hoya株式会社 | 磁気記録ディスク用潤滑剤の成分比測定方法および磁気記録ディスクの製造方法 |
JP2007095234A (ja) | 2005-09-30 | 2007-04-12 | Hoya Corp | 磁気記録ディスクおよびその製造方法 |
US7993497B2 (en) | 2005-11-21 | 2011-08-09 | Wd Media (Singapore) Pte. Ltd. | Magnetic disk and magnetic disk manufacturing method |
JP4654339B2 (ja) | 2006-01-23 | 2011-03-16 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気ディスク |
US7314404B2 (en) | 2006-02-13 | 2008-01-01 | Komag, Inc. | Burnishing head |
JP2007257756A (ja) | 2006-03-24 | 2007-10-04 | Hoya Corp | 磁気ディスクの製造方法及び磁気ディスク |
JPWO2007116812A1 (ja) | 2006-03-29 | 2009-08-20 | Hoya株式会社 | 磁気ディスク及びその製造方法 |
JP2007265586A (ja) | 2006-03-30 | 2007-10-11 | Hoya Corp | 磁気ディスク及びその製造方法 |
US9142238B2 (en) | 2006-03-30 | 2015-09-22 | Wd Media (Singapore) Pte. Ltd. | Vertical magnetic recording disk manufacturing method and vertical magnetic recording disk |
JPWO2007114401A1 (ja) | 2006-03-31 | 2009-08-20 | Hoya株式会社 | 垂直磁気記録ディスク及びその製造方法 |
WO2007114400A1 (ja) | 2006-03-31 | 2007-10-11 | Hoya Corporation | 垂直磁気記録媒体の製造方法 |
JP2008084432A (ja) | 2006-09-27 | 2008-04-10 | Hoya Corp | 磁気記録媒体、及び磁気記録媒体の製造方法 |
US8383209B2 (en) | 2006-09-27 | 2013-02-26 | Wd Media (Singapore) Pte. Ltd. | Magnetic recording medium manufacturing method and laminate manufacturing method |
JP4993677B2 (ja) | 2006-09-27 | 2012-08-08 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気記録媒体の製造方法 |
JPWO2008038664A1 (ja) | 2006-09-29 | 2010-01-28 | Hoya株式会社 | 磁気記録媒体 |
US8178480B2 (en) | 2006-09-29 | 2012-05-15 | Wd Media (Singapore) Pte. Ltd. | Lubricant for magnetic disk, process for producing the same, and magnetic disk |
SG182153A1 (en) | 2007-02-13 | 2012-07-30 | Wd Media Singapore Pte Ltd | Magnetic recording medium, magnetic recording medium manufacturing method, and magnetic disk |
US9082444B2 (en) | 2007-03-28 | 2015-07-14 | Wd Media (Singapore) Pte. Ltd. | Magnetic recording medium and method of manufacturing a magnetic recording medium |
US8309239B2 (en) | 2007-03-30 | 2012-11-13 | Wd Media (Singapore) Pte. Ltd. | Perpendicular magnetic recording medium and method of manufacturing the same |
JP2008276915A (ja) | 2007-03-30 | 2008-11-13 | Hoya Corp | 磁気記録媒体 |
WO2008149812A1 (ja) | 2007-05-30 | 2008-12-11 | Hoya Corporation | 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 |
JP5607359B2 (ja) | 2007-05-31 | 2014-10-15 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気記録媒体の製造方法 |
JP5183134B2 (ja) | 2007-09-21 | 2013-04-17 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気ディスク及び磁気ディスクの製造方法 |
WO2009041432A1 (ja) | 2007-09-28 | 2009-04-02 | Hoya Corporation | 磁気ディスク及びその製造方法 |
US8057926B2 (en) | 2007-09-28 | 2011-11-15 | WD Media(Singapore) Pte. Ltd. | Perpendicular magnetic recording medium |
JP2009099247A (ja) | 2007-09-28 | 2009-05-07 | Hoya Corp | 垂直磁気記録媒体およびその製造方法 |
WO2009048045A1 (ja) | 2007-10-07 | 2009-04-16 | Hoya Corporation | 垂直磁気記録媒体 |
US9159351B2 (en) | 2007-10-15 | 2015-10-13 | Wd Media (Singapore) Pte. Ltd | Perpendicular magnetic recording medium and method of manufacturing the same |
US7944643B1 (en) | 2007-12-05 | 2011-05-17 | Wd Media, Inc. | Patterns for pre-formatted information on magnetic hard disk media |
US7755861B1 (en) | 2007-12-06 | 2010-07-13 | Western Digital (Fremont), Llc | Method and system for providing a magnetic recording media |
US8597723B1 (en) | 2008-03-14 | 2013-12-03 | WD Media, LLC | Perpendicular magnetic recording medium with single domain exchange-coupled soft magnetic underlayer and device incorporating same |
JP5117895B2 (ja) | 2008-03-17 | 2013-01-16 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気記録媒体及びその製造方法 |
SG196834A1 (en) | 2008-03-17 | 2014-02-13 | Wd Media Singapore Pte Ltd | Magnetic recording medium and manufacturing method of the magnetic recording medium |
JP2009238298A (ja) | 2008-03-26 | 2009-10-15 | Hoya Corp | 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 |
JP2009238299A (ja) | 2008-03-26 | 2009-10-15 | Hoya Corp | 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 |
JP2009245478A (ja) | 2008-03-28 | 2009-10-22 | Hoya Corp | 垂直磁気記録媒体の製造方法および垂直磁気記録媒体 |
JP2009245490A (ja) | 2008-03-29 | 2009-10-22 | Hoya Corp | 垂直磁気記録媒体の製造方法および垂直磁気記録媒体 |
JP5465454B2 (ja) | 2008-03-30 | 2014-04-09 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気ディスク及びその製造方法 |
JP5134413B2 (ja) | 2008-03-30 | 2013-01-30 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気ディスク及びその製造方法 |
JP2011034603A (ja) | 2008-03-31 | 2011-02-17 | Hoya Corp | 垂直磁気記録媒体 |
US7944165B1 (en) | 2008-05-02 | 2011-05-17 | Wd Media, Inc. | Inspection system with dual encoders |
US8394243B1 (en) | 2008-07-24 | 2013-03-12 | Wd Media, Inc. | Sputtered cobalt oxide for perpendicular magnetic recording medium with low media noise |
US8871368B2 (en) | 2008-09-16 | 2014-10-28 | Wd Media (Singapore) Pte. Ltd. | Perpendicular magnetic recording medium and process for manufacture thereof |
WO2010032767A1 (ja) | 2008-09-16 | 2010-03-25 | Hoya株式会社 | 垂直磁気記録媒体 |
US7924519B2 (en) | 2008-09-29 | 2011-04-12 | Wd Media, Inc. | Eccentricity determination for a disk |
US8488276B1 (en) | 2008-09-30 | 2013-07-16 | WD Media, LLC | Perpendicular magnetic recording medium with grain isolation magnetic anistropy layer |
US9177586B2 (en) | 2008-09-30 | 2015-11-03 | WD Media (Singapore), LLC | Magnetic disk and manufacturing method thereof |
US8877359B2 (en) | 2008-12-05 | 2014-11-04 | Wd Media (Singapore) Pte. Ltd. | Magnetic disk and method for manufacturing same |
US8795790B2 (en) | 2008-12-09 | 2014-08-05 | Wd Media (Singapore) Pte. Ltd. | Magnetic recording medium and magnetic recording medium manufacturing method |
US8002901B1 (en) | 2009-01-15 | 2011-08-23 | Wd Media, Inc. | Temperature dependent pull speeds for drying of a wet cleaned workpiece |
US8562748B1 (en) | 2009-01-30 | 2013-10-22 | WD Media, LLC | Multiple cleaning processes in a single tank |
US8137517B1 (en) | 2009-02-10 | 2012-03-20 | Wd Media, Inc. | Dual position DC magnetron assembly |
US8163093B1 (en) | 2009-02-11 | 2012-04-24 | Wd Media, Inc. | Cleaning operations with dwell time |
JP2012069173A (ja) | 2009-02-19 | 2012-04-05 | Hoya Corp | 磁気記録媒体 |
JP5631604B2 (ja) | 2009-02-19 | 2014-11-26 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気ディスクの製造方法 |
JP5638814B2 (ja) | 2009-02-23 | 2014-12-10 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 片面垂直磁気記録媒体 |
US8171949B1 (en) | 2009-03-06 | 2012-05-08 | Wd Media, Inc. | Fluid flow management |
JP2010250929A (ja) | 2009-03-27 | 2010-11-04 | Wd Media Singapore Pte Ltd | 磁気ディスク用潤滑剤化合物、磁気ディスク及びその製造方法 |
WO2010116908A1 (ja) | 2009-03-28 | 2010-10-14 | Hoya株式会社 | 磁気ディスク用潤滑剤化合物及び磁気ディスク |
SG165294A1 (en) | 2009-03-30 | 2010-10-28 | Wd Media Singapore Pte Ltd | Perpendicular magnetic recording medium and method of manufacturing the same |
JP5583997B2 (ja) | 2009-03-30 | 2014-09-03 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気記録媒体 |
JP5645443B2 (ja) | 2009-03-31 | 2014-12-24 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気記録媒体 |
JP5646865B2 (ja) | 2009-03-31 | 2014-12-24 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 |
JP5360892B2 (ja) | 2009-05-24 | 2013-12-04 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気記録媒体の製造方法 |
US20100300884A1 (en) | 2009-05-26 | 2010-12-02 | Wd Media, Inc. | Electro-deposited passivation coatings for patterned media |
US8404056B1 (en) | 2009-05-27 | 2013-03-26 | WD Media, LLC | Process control for a sonication cleaning tank |
US8101054B2 (en) | 2009-05-28 | 2012-01-24 | Wd Media, Inc. | Magnetic particle trapper for a disk sputtering system |
JP5360894B2 (ja) | 2009-06-30 | 2013-12-04 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気記録媒体の製造方法 |
JP2011018426A (ja) | 2009-07-10 | 2011-01-27 | Wd Media Singapore Pte Ltd | 垂直磁気記録媒体の評価方法及び垂直磁気記録媒体の製造方法 |
JP2011021165A (ja) | 2009-07-21 | 2011-02-03 | Wd Media Singapore Pte Ltd | 磁気ディスク用潤滑剤及び磁気ディスク |
US8247095B2 (en) | 2009-08-21 | 2012-08-21 | Western Digital Technologies, Inc. | Energy assisted discrete track media with heat sink |
US8492009B1 (en) | 2009-08-25 | 2013-07-23 | Wd Media, Inc. | Electrochemical etching of magnetic recording layer |
US7998912B2 (en) | 2009-09-14 | 2011-08-16 | Wd Media, Inc. | Composite lubricant for hard disk media |
US8206789B2 (en) | 2009-11-03 | 2012-06-26 | Wd Media, Inc. | Glass substrates and methods of annealing the same |
US8402638B1 (en) | 2009-11-06 | 2013-03-26 | Wd Media, Inc. | Press system with embossing foil free to expand for nano-imprinting of recording media |
US8496466B1 (en) | 2009-11-06 | 2013-07-30 | WD Media, LLC | Press system with interleaved embossing foil holders for nano-imprinting of recording media |
US8173282B1 (en) | 2009-12-11 | 2012-05-08 | Wd Media, Inc. | Perpendicular magnetic recording medium with an ordering temperature reducing layer |
US8406918B2 (en) | 2009-12-21 | 2013-03-26 | WD Media, LLC | Master teaching jig |
JP5643508B2 (ja) | 2009-12-28 | 2014-12-17 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気記録媒体の製造方法 |
US8399809B1 (en) | 2010-01-05 | 2013-03-19 | Wd Media, Inc. | Load chamber with heater for a disk sputtering system |
JP5643516B2 (ja) | 2010-01-08 | 2014-12-17 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気記録媒体 |
JP5617112B2 (ja) | 2010-01-14 | 2014-11-05 | 独立行政法人物質・材料研究機構 | 垂直磁気記録媒体及びその製造方法 |
US8596287B1 (en) | 2010-03-01 | 2013-12-03 | WD Media, LLC | Cross flow tank |
US8218260B2 (en) | 2010-03-05 | 2012-07-10 | Wd Media, Inc. | Processing disks on a spin stand |
US8331056B2 (en) | 2010-03-05 | 2012-12-11 | Wd Media, Inc. | Spin stand comprising a dual disk clamp |
US8125723B1 (en) | 2010-03-05 | 2012-02-28 | Wd Media, Inc. | Predictive characterization of adjacent track erasure in recording media |
US8125724B1 (en) | 2010-03-11 | 2012-02-28 | Wd Media, Inc. | Predictive characterization of adjacent track erasure in recording media |
US8608147B1 (en) | 2010-03-19 | 2013-12-17 | WD Media, LLC | Workpiece carrier |
JP5574414B2 (ja) | 2010-03-29 | 2014-08-20 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気ディスクの評価方法及び磁気ディスクの製造方法 |
JP5485770B2 (ja) | 2010-03-31 | 2014-05-07 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気ディスク装置 |
JP5646199B2 (ja) | 2010-03-31 | 2014-12-24 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気ディスク |
JP2011216141A (ja) | 2010-03-31 | 2011-10-27 | Wd Media Singapore Pte Ltd | 垂直磁気ディスクの製造方法 |
JP5916985B2 (ja) | 2010-03-31 | 2016-05-11 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 熱アシスト記録用磁気ディスクへの磁気記録方法 |
US8524052B1 (en) | 2010-04-02 | 2013-09-03 | WD Media, LLC | Cooling shower plate for disk manufacture |
US8397751B1 (en) | 2010-04-15 | 2013-03-19 | Wd Media, Inc. | Vortex reducer |
JP5638281B2 (ja) | 2010-04-30 | 2014-12-10 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気ディスク |
US8591709B1 (en) | 2010-05-18 | 2013-11-26 | WD Media, LLC | Sputter deposition shield assembly to reduce cathode shorting |
JP5645476B2 (ja) | 2010-05-21 | 2014-12-24 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気ディスク |
JP5634749B2 (ja) | 2010-05-21 | 2014-12-03 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気ディスク |
JP2011248967A (ja) | 2010-05-28 | 2011-12-08 | Wd Media (Singapore) Pte. Ltd | 垂直磁気ディスクの製造方法 |
JP2011248969A (ja) | 2010-05-28 | 2011-12-08 | Wd Media (Singapore) Pte. Ltd | 垂直磁気ディスク |
JP2011248966A (ja) | 2010-05-28 | 2011-12-08 | Wd Media (Singapore) Pte. Ltd | 垂直磁気記録媒体 |
JP2011248968A (ja) | 2010-05-28 | 2011-12-08 | Wd Media (Singapore) Pte. Ltd | 垂直磁気ディスク |
JP2011253597A (ja) | 2010-06-03 | 2011-12-15 | Wd Media (Singapore) Pte. Ltd | 垂直磁気記録媒体及びその製造方法 |
US8298609B1 (en) | 2010-06-14 | 2012-10-30 | Wd Media, Inc. | Method and system for interrogating the thickness of a carbon layer |
JP2012003805A (ja) | 2010-06-16 | 2012-01-05 | Wd Media (Singapore) Pte. Ltd | 垂直磁気記録媒体及び磁気ディスク装置 |
JP2012009086A (ja) | 2010-06-22 | 2012-01-12 | Wd Media (Singapore) Pte. Ltd | 垂直磁気記録媒体及びその製造方法 |
JP5743438B2 (ja) | 2010-06-22 | 2015-07-01 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気ディスク用潤滑剤、磁気ディスク及びその製造方法 |
JP5807944B2 (ja) | 2010-06-22 | 2015-11-10 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 垂直磁気記録媒体の製造方法 |
JP5835874B2 (ja) | 2010-06-22 | 2015-12-24 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | 磁気ディスクの製造方法 |
US8584687B1 (en) | 2010-06-25 | 2013-11-19 | WD Media, LLC | Sonication cleaning system |
US8551253B2 (en) | 2010-06-29 | 2013-10-08 | WD Media, LLC | Post polish disk cleaning process |
US8354618B1 (en) | 2010-06-30 | 2013-01-15 | Wd Media, Inc. | Load chamber with dual heaters |
US8517657B2 (en) | 2010-06-30 | 2013-08-27 | WD Media, LLC | Corner chamber with heater |
US8404369B2 (en) | 2010-08-03 | 2013-03-26 | WD Media, LLC | Electroless coated disks for high temperature applications and methods of making the same |
US8530065B1 (en) | 2010-08-10 | 2013-09-10 | WD Media, LLC | Composite magnetic recording medium |
US8316668B1 (en) | 2010-09-23 | 2012-11-27 | Wd Media, Inc. | Composite magnetic recording medium |
US8517364B1 (en) | 2010-10-07 | 2013-08-27 | WD Media, LLC | Disk holder with replaceable inserts to retain springs |
US8668953B1 (en) | 2010-12-28 | 2014-03-11 | WD Media, LLC | Annealing process for electroless coated disks for high temperature applications |
US8570844B1 (en) | 2011-02-01 | 2013-10-29 | Western Digital (Fremont), Llc | Absorption enhanced media for energy assisted magnetic recording |
US8743666B1 (en) | 2011-03-08 | 2014-06-03 | Western Digital Technologies, Inc. | Energy assisted magnetic recording medium capable of suppressing high DC readback noise |
US8711499B1 (en) | 2011-03-10 | 2014-04-29 | WD Media, LLC | Methods for measuring media performance associated with adjacent track interference |
US8491800B1 (en) | 2011-03-25 | 2013-07-23 | WD Media, LLC | Manufacturing of hard masks for patterning magnetic media |
US9028985B2 (en) | 2011-03-31 | 2015-05-12 | WD Media, LLC | Recording media with multiple exchange coupled magnetic layers |
US20120251842A1 (en) | 2011-03-31 | 2012-10-04 | Wd Media, Inc. | Low roughness heatsink design for heat assisted magnetic recording media |
US8609263B1 (en) | 2011-05-20 | 2013-12-17 | WD Media, LLC | Systems and methods for forming magnetic media with an underlayer |
US8619381B2 (en) | 2011-05-25 | 2013-12-31 | WD Media, LLC | System and method for improving head positioning |
US8834962B2 (en) | 2011-06-03 | 2014-09-16 | WD Media, LLC | Methods for improving the strength of glass substrates |
US8658292B1 (en) | 2011-06-10 | 2014-02-25 | Western Digital Technologies, Inc. | Systems and methods for controlling damping of magnetic media for assisted magnetic recording |
US8758912B2 (en) | 2011-09-16 | 2014-06-24 | WD Media, LLC | Interlayers for magnetic recording media |
US8556566B1 (en) | 2011-09-30 | 2013-10-15 | WD Media, LLC | Disk stacking method and apparatus |
US8685214B1 (en) | 2011-09-30 | 2014-04-01 | WD Media, LLC | Magnetic shunting pads for optimizing target erosion in sputtering processes |
US8565050B1 (en) | 2011-12-20 | 2013-10-22 | WD Media, LLC | Heat assisted magnetic recording media having moment keeper layer |
US8696404B2 (en) | 2011-12-21 | 2014-04-15 | WD Media, LLC | Systems for recycling slurry materials during polishing processes |
US8605555B1 (en) | 2012-04-19 | 2013-12-10 | WD Media, LLC | Recording media with multiple bi-layers of heatsink layer and amorphous layer for energy assisted magnetic recording system and methods for fabricating the same |
US8674327B1 (en) | 2012-05-10 | 2014-03-18 | WD Media, LLC | Systems and methods for uniformly implanting materials on substrates using directed magnetic fields |
US8941950B2 (en) | 2012-05-23 | 2015-01-27 | WD Media, LLC | Underlayers for heat assisted magnetic recording (HAMR) media |
US20140050843A1 (en) | 2012-08-17 | 2014-02-20 | Wd Media, Inc. | Dual single sided sputter chambers with sustaining heater |
US20140151360A1 (en) | 2012-11-30 | 2014-06-05 | Wd Media, Inc. | Heater assembly for disk processing system |
US8787130B1 (en) | 2013-03-15 | 2014-07-22 | WD Media, LLC | Systems and methods for providing heat assisted magnetic recording media configured to couple energy from a near field transducer |
US8787124B1 (en) | 2013-07-30 | 2014-07-22 | WD Media, LLC | Systems and methods for extracting Curie temperature distribution in heat assisted magnetic recording media |
-
2008
- 2008-03-26 JP JP2008082251A patent/JP2009238299A/ja active Pending
-
2009
- 2009-03-26 WO PCT/JP2009/056051 patent/WO2009119709A1/ja active Application Filing
- 2009-03-26 US US12/934,953 patent/US9047903B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60239916A (ja) * | 1984-05-11 | 1985-11-28 | Fujitsu Ltd | 垂直磁気記録媒体 |
JPS63201912A (ja) * | 1987-02-18 | 1988-08-22 | Hitachi Ltd | 垂直磁気記録媒体 |
JPH1125439A (ja) * | 1997-07-08 | 1999-01-29 | Hitachi Ltd | 垂直磁気記録媒体及びそれを用いた磁気記録再生装置 |
JP2006309922A (ja) * | 2005-03-31 | 2006-11-09 | Fujitsu Ltd | 磁気記録媒体及び磁気記録装置 |
WO2007114402A1 (ja) * | 2006-03-31 | 2007-10-11 | Hoya Corporation | 垂直磁気記録ディスク及びその製造方法 |
JP2008108395A (ja) * | 2006-10-27 | 2008-05-08 | Hoya Corp | 垂直磁気記録媒体及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2009238299A (ja) | 2009-10-15 |
US20110097603A1 (en) | 2011-04-28 |
US9047903B2 (en) | 2015-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009119709A1 (ja) | 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 | |
WO2009119708A1 (ja) | 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 | |
JP5645443B2 (ja) | 垂直磁気記録媒体 | |
US8057926B2 (en) | Perpendicular magnetic recording medium | |
JP5401069B2 (ja) | 垂直磁気記録媒体 | |
JP5643516B2 (ja) | 垂直磁気記録媒体 | |
JP5260510B2 (ja) | 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 | |
WO2009119635A1 (ja) | 垂直磁気記録媒体の製造方法および垂直磁気記録媒体 | |
WO2010032767A1 (ja) | 垂直磁気記録媒体 | |
WO2009123161A1 (ja) | 垂直磁気記録媒体 | |
WO2010064724A1 (ja) | 磁気ディスク及びその製造方法 | |
JP2011253597A (ja) | 垂直磁気記録媒体及びその製造方法 | |
JP2011248969A (ja) | 垂直磁気ディスク | |
JP2012009086A (ja) | 垂直磁気記録媒体及びその製造方法 | |
WO2010035810A1 (ja) | 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 | |
JP5261001B2 (ja) | 垂直磁気記録媒体 | |
JP5524464B2 (ja) | 垂直磁気記録媒体 | |
WO2009119636A1 (ja) | 垂直磁気記録媒体 | |
JP5620118B2 (ja) | 垂直磁気記録媒体 | |
JP5620071B2 (ja) | 垂直磁気記録媒体 | |
JP2009099242A (ja) | 垂直磁気記録媒体 | |
JP2009245477A (ja) | 垂直磁気記録媒体 | |
JP2011192319A (ja) | 垂直磁気記録媒体 | |
JP5593048B2 (ja) | 垂直磁気記録媒体 | |
JP5593049B2 (ja) | 垂直磁気記録媒体の製造管理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09725370 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12934953 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09725370 Country of ref document: EP Kind code of ref document: A1 |