JP2008108395A - 垂直磁気記録媒体及びその製造方法 - Google Patents

垂直磁気記録媒体及びその製造方法 Download PDF

Info

Publication number
JP2008108395A
JP2008108395A JP2006292695A JP2006292695A JP2008108395A JP 2008108395 A JP2008108395 A JP 2008108395A JP 2006292695 A JP2006292695 A JP 2006292695A JP 2006292695 A JP2006292695 A JP 2006292695A JP 2008108395 A JP2008108395 A JP 2008108395A
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
ferromagnetic
ferromagnetic layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006292695A
Other languages
English (en)
Inventor
Kentaro Nakajima
健太郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2006292695A priority Critical patent/JP2008108395A/ja
Publication of JP2008108395A publication Critical patent/JP2008108395A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

【課題】高S/N比をもった垂直磁気記録媒体を提供する。
【解決手段】基板1と、該基板1上に形成された密着層2と、該密着層2上に形成された、非磁性体を含む軟磁性裏打ち層3と、該軟磁性裏打ち層3上に形成された非磁性下地層4と、該非磁性下地層4上に形成された磁気記録層とを備え、該磁気記録層は、第一の強磁性層5と、該第一の強磁性層5上に形成された第二の強磁性層9とからなり、第一の強磁性層5上の少なくとも一部に非金属膜8が形成されている垂直磁気記録媒体である。
【選択図】図1

Description

本発明は、垂直磁気記録媒体及びその製造方法に関し、特にさらなる記録密度の高密度化に好適な膜構成を有する垂直磁気記録媒体及びその製造方法に関するものである。
垂直磁気記録方式とは、磁気記録層の磁化容易軸を基板面に垂直に配向させる方式である。この方式では、従来用いられていた基板面に平行に磁化容易軸を配向させた長手磁気記録方式に比べ、記録ビット間の磁化遷移領域付近における反磁界が小さいために、記録密度が高くなるほど静磁気的に安定となり熱揺らぎ耐性が向上することから、高密度磁気記録に適した方式である。
現在、実用化されている垂直磁気記録媒体の磁気記録層には、粒界相により分離された数nm以下の強磁性結晶粒集合体(以下、グラニュラー構造と略記する。)が用いられている。
磁気記録再生における読み出しノイズは、均一かつ稠密な磁壁のピン止めサイトを導入することにより低減することができる。従来の長手記録方式では、記録層の結晶粒をより小さくし、かつ結晶粒間の交換結合の大きさを小さくすることにより上記目的を達成してきた。しかしながら垂直磁気記録方式では、結晶粒間に存在する非金属粒界層を介した静磁相互作用が小さいために、上記方法を単純に用いると、熱揺らぎ耐性が低下するという問題があった。
この点を解決するために、垂直磁気記録方式に用いられる媒体では、結晶粒間に適度な交換相互作用を導入することが提案されている。その方法としては、結晶粒間の直接交換結合も考えられるが、その場合、結晶粒分布が不均一であると、結果として不均一な磁気クラスターを作りやすく、ノイズを低減することが困難である。
そこで非特許文献1、2に記載されているように、グラニュラー構造をもつ磁気記録層の上下いずれかに、別途強磁性連続膜を形成し、この連続膜を経由した交換相互作用を導入するという方法が提案されている(Coupled Granular Continuous:以下CGC構造と略記する。)。
また、熱揺らぎ耐性を向上させ、同時に書き込み磁界を低減する手段として、特許文献1、2、3、非特許文献3に記載されているように、磁気記録層に高い結晶磁気異方性を有する強磁性材料と低保磁力強磁性材料を積層して用い、実効的に保磁力を低減させる方式も提案されている(ExchangeCoupled Composite:以下ECC構造と略記する。)。
これらの方法では、強磁性層間の交換相互作用の大きさ、向きを制御するために、前記強磁性層間に、Ru、Pd、Pt、Re、Cr、V、Irなどの非磁性中間層を用いて、層間相互作用による交換結合を利用している。しかしながら、非磁性層を介した層間相互作用は非磁性層膜厚に敏感であり、理想的な結合を得るためには非磁性層膜厚を0.1nm以下の精度で制御する必要がある。また膜面に垂直方向に磁化容易軸が向いた多層膜での層間相互作用については、その基礎物性について十分な検討がなされているとは言い難い。
さらに上記非磁性層を形成するためには、別途膜形成工程が必要となる。また3d遷移金属を主体とした強磁性層のグラニュラー化プロセスと、非磁性元素、特に従来用いられているPt、Ru、Pdなどの高融点4d、5d遷移金属のグラニュラー化プロセスとは、その機構が大きく異なる。したがって上下強磁性層と非磁性中間層を粒境界が滑らかに連続したグラニュラー構造とすることは従来公知の技術では困難である。
これら上記の非磁性層を強磁性層間に挿入することによる製造上の問題点は、現在に至るまで解決されていない。
特開2006−155861号公報 特開2006−48900号公報 特開2006−31932号公報 アイイーイーイー・トランスアクションズ・オン・マグネティクス(IEEE Trans. Magn.)、第38巻、第4号、p. 1632−1636(2002年) アイイーイーイー・トランスアクションズ・オン・マグネティクス(IEEE Trans. Magn.)、第41巻、第10号、p. 2828−2833(2005年) アプライド・フィジックス・レターズ(Appl. Phys.Lett.)、第88巻、p. 092501(2006年)
垂直記録媒体の高S/N比化を実現するためには、磁気記録層の上下に別途強磁性連続膜を形成するか、磁気記録層に高い結晶磁気異方性を有する強磁性材料と低保磁力強磁性材料を積層して用いる方法がある。いずれの場合にも、前記強磁性層間には、非磁性中間層を形成する必要があり、従来公知の技術では製造は困難である。
本発明の目的は、上記の課題に鑑みてなされたものであり、非磁性中間層を用いずに、十分に高いS/N比をもった垂直磁気記録媒体を提供することにある。
上記目的を達成するために、本発明は以下の構成を有する。
(構成1)基板上に少なくとも磁気記録層を備える垂直磁気記録媒体であって、前記磁気記録層は、第一の強磁性層と、該第一の強磁性層上に形成された第二の強磁性層とからなり、前記第一の強磁性層上の少なくとも一部に非金属膜が形成されていることを特徴とする垂直磁気記録媒体。
(構成2)前記第一の強磁性層上の非金属膜は、膜面内で不連続な膜構造であることを特徴とする構成1記載の垂直磁気記録媒体。
(構成3)前記第一の強磁性層上の非金属膜が酸素を含むことを特徴とする構成1又は2記載の垂直磁気記録媒体。
(構成4)前記第一の強磁性層と前記第二の強磁性層は、その少なくとも一方が、強磁性結晶粒と非金属からなる結晶粒界相とを有していることを特徴とする構成1乃至3の何れか一に記載の垂直磁気記録媒体。
(構成5)基板上に少なくとも磁気記録層を備える垂直磁気記録媒体の製造方法であって、前記磁気記録層は、第一の強磁性層と、該第一の強磁性層上に形成された第二の強磁性層とからなり、該磁気記録層を形成する工程は、前記第一の強磁性層上の少なくとも一部に非金属膜を形成する工程を含み、該非金属膜を形成する工程は、気体への曝露によって行われることを特徴とする垂直磁気記録媒体の製造方法。
(構成6)前記非金属膜の形成工程が、前記第一の強磁性層又は第二の強磁性層の形成工程に用いる真空容器内で行われることを特徴とする構成5記載の垂直磁気記録媒体の製造方法。
本発明に係る磁気記録媒体の一実施の形態としては、後述するように、基板と、基板上に形成された密着層と、密着層上に形成され、非磁性体を含む軟磁性層と、軟磁性層上に形成された非磁性下地層と、非磁性下地層に形成された(エピタキシャル成長した)磁気記録層とを備える。この磁気記録層は、第一の強磁性層と、第一の強磁性層上に形成された第二の強磁性層とを有し、第一の強磁性層上の少なくとも一部に非金属膜が形成されている。第一、第二の強磁性層は、そのいずれか乃至両方が、強磁性結晶粒と非金属からなる結晶粒界とを有している。
本発明の構造では、磁気記録層を構成する第一と第二の強磁性層は、僅かに酸化された第一の強磁性層表面に形成された非金属層を介して結合している。この非金属層は、連続膜ではなく、例えば膜面内に空隙を有するような不連続な構造を有することにより、第一と第二の強磁性層は、非金属層に存在する開口部を介して直接交換結合が可能である。しかしながら、空隙以外の非金属に被覆された部分では、交換結合が存在し得ないので、全体として第一と第二の強磁性層間の相互作用は小さく抑えられる。また第一と第二の強磁性層間の交換結合の大きさは、非金属の膜厚、構造を変化させることで制御可能である。
本発明によれば、磁気記録層を構成する第一、第二の強磁性層は、第一の強磁性層上の少なくとも一部に形成された非金属膜を介して結合しており、全体として第一と第二の強磁性層間の相互作用は小さく抑えられるため、高S/N比を実現することができる。また、この非金属膜は、第一の強磁性層形成後、その表面を例えば酸化させることによって形成できるため、従来技術のように、別途非磁性膜の形成工程を追加する必要が無い。これにより、高S/N比を有する垂直磁気記録媒体を容易に得ることができる。
以下、本発明を図示した好ましい実施の形態に基づいて詳細に説明するが、以下の実施の形態で説明される構成、形状、大きさおよび配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、また数値および各構成の組成(材質)については例示にすぎない。従って本発明は、以下に説明される実施の形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。
(実施の形態1)
図1は、本発明に係る第1の実施の形態であるCGC構造を持つ垂直磁気記録媒体の断面構造を模式的に示した図である。まず本図を用いて初めに本発明の原理について説明する。
垂直磁気記録媒体では、低ノイズ、高S/N比と熱安定性の両立を目指し、グラニュラー構造をもつ記録層上に強磁性連続膜を積層したCGC構造、またグラニュラー構造を持つ記録層に、異なる保磁力、磁気異方性を有する複数の強磁性体を積層して用いるECC構造等の検討がすでに報告されている。これらの構造では、複数の強磁性体間の交換結合を制御するために、非磁性体の中間層が用いられている。しかしながら、非磁性中間層を形成するためには、別途成膜工程を追加することが必要である。図2には、従来用いられているCGC構造の垂直磁気記録媒体の断面図を模式的に示した。本発明の構造では、この非磁性中間層10(図2参照)が省略されていることが大きな特徴である。
次に図1の断面図を詳細に説明する。1は基板、2はCr、Tiおよびそれらの合金等の非磁性体密着層(金属層)、3は軟磁性裏打ち層であり、CoTaZr、CoTaNb、FeCoB、FeAlSi、NiFe合金、CoFe合金などの強磁性金属膜、FeMn、IrMnなどの反強磁性金属膜およびRu、Ir、Os、Cr、Cuなどの非磁性金属膜等の多層膜からなる。4は磁気記録層の結晶配向を制御する非磁性下地層であり、Ta、NiW、Ru及びRu合金などからなる。なお、基板1、密着層2、軟磁性裏打ち層3、非磁性下地層4に用いられる材料、積層構造は、後述する磁気記録層の特性を損なわない限りにおいて適宜変更しても差し支えない。
磁気記録層である第一の強磁性層5は、粒界相6と強磁性体結晶粒7からなるグラニュラー構造を有する。強磁性体結晶粒7には、Co、FeとCr、Pt、Pd、Cu、Mn、Ti、B、Siなどの合金を用いるのが好適である。例えばその例としてCoCrPt合金、CoPt合金、FePt合金等が挙げられる。粒界相6はSi、Mg、Ti、Cr、Ta、Zr、Y、Ce等の元素を含んでいる。粒界相6に酸素が含まれているとより好適である。本発明の特徴は、第一の強磁性層5を構成する強磁性体結晶粒7が非金属膜8を介して第二の強磁性層9と結合していることである。この非金属膜8の組成は、粒界相と同一であっても、異なっていてもよい。また、水素、窒素、炭素、フッ素の他、Ar、Krなど希ガス元素を含有していても構わない。第一の強磁性層5と第二の強磁性層9との界面には、粒界相6を形成する非金属と前記極薄非金属膜8とが存在する。第二の強磁性層9は、前記第一の強磁性層5上に形成される。第二の強磁性層9は連続膜であり、Co、Fe、NiとCr、Pt、Pd、Cu、Mn、Ti 、B、Siなど、さらにはTb、Dy、Er、Gdなどの希土類元素との合金乃至多層膜構造を用いるのが好適である。例えばその例としてCoPt合金、CoCr合金、FePt合金、(Er、Gd、Tb、Dy)/Co合金、Co/Pt多層膜、Co/Pd多層膜が挙げられる。
この場合、第一の強磁性層と第二の強磁性層との層間相互作用は以下のような機構で行われる。第1は、前記非金属膜8の厚さが、自由電子のトンネル効果を許容する程度薄い場合に生じる、トンネル電子を介した層間結合である。第2は、酸化物を挟む界面のラフネスに起因した静磁結合である。第3は、前記極薄非金属膜が強磁性体あるいは非磁性体である場合である。この場合、極薄酸化物を介した直接交換作用または超交換相互作用により、層間結合が生じる。これらの結合は、前記非金属膜が連続膜として存在する場合に顕著に生じる。
一方、前記非金属膜8が連続膜として存在せず、島状構造、網目構造など膜面内に不連続な多数の開口部を持つ構造を持った場合は、別の機構による層間結合が生じる。この原理を、図3を用いて説明する。図3は、前記第一の強磁性層5の強磁性微粒子7と第二の強磁性層9との界面を拡大して示したものである。ここで非金属膜8が図3に示すように不連続な膜構造を持つと、非金属膜中の空隙(開口部)を介して前記第一の強磁性層の強磁性微粒子と第二の強磁性層とが直接交換し、層間結合が生じる。しかしながら、前記空隙以外の非金属膜で被覆された部分では強磁性体間の直接交換は生じないので、全体として層間結合の大きさは、非金属膜が存在しない清浄な界面を接合した場合に比べ大幅に減少する。さらに、非金属膜の被覆率により、層間結合の大きさを人為的に制御することが可能である。より具体的には、被覆率が70%以上の場合に直接交換結合の大きさが70%以下に低下し、非磁性体の中間層を形成した場合に生じる層間相互作用の大きさと同程度となるので好適である。また本発明では、一部に強磁性結晶が直接接触している部分を有しているので、両強磁性層が結晶配向を維持したまま成長することができることも、不連続な構造をもった非金属膜を形成することの大きな利点である。
本発明の要件は、第一の強磁性層の強磁性粒子が非金属膜を介して第二の強磁性層と結合しており、第一、第二の強磁性層間の層間結合の大きさが、清浄表面を接触させた場合に比べ小さいことにある。したがって係る作用を実現させるものであれば、前記非金属膜の組成、構成元素に特段の制限はない。
次に図4を参照して、図1に示す第1の実施の形態に係る垂直磁気記録媒体を製造する方法を説明する。図4(a)は、基板1上に、密着層2、軟磁性裏打ち層3、非磁性下地層4を形成した状態である。これら各層の製造方法については従来公知の方法により可能であり、詳細な説明は省略する。図4(b)は、前記下地層4上に、第一の強磁性層5を形成した状態である。同図に示すようなグラニュラー構造を得るためには、前述の強磁性粒子を構成する元素を含むターゲット、または前述の強磁性粒子を構成する元素に加えて前述の粒界相を構成する元素を含むターゲット、さらに上記ターゲットに酸化物を加えた複合ターゲットからのスパッタリングが好適である。その際のスパッタリングガスとしては、Ar、Kr等の希ガス及び酸素との混合ガスを用いることもできる。
図4(c)は、前記第一の強磁性層5の強磁性粒子7上に非金属膜8を形成した状態である。非金属膜の形成は、スパッタリング成膜後に、酸素、窒素、炭素、フッ素を含む気体種への曝露を行うことにより行われる。この際、化学変化をアシストする目的で、前記気体種を加速して照射してもよいし、プラズマ化、紫外線照射による解離、またオゾン導入を行ってもよい。前記気体種の導入は、スパッタリング後に別途新規ガスに置換してもよいし、スパッタガスをそのまま利用してもよいし、スパッタリング後の真空容器の残留ガスを利用してもよい。また膜形成用の真空容器間の基板搬送時に気体曝露を行ってもよい。
前記非金属膜の膜厚、構造は、上記プロセス時間、プロセス条件を変化させることにより制御可能である。
上記では、第一の強磁性層の形成工程後に非金属膜を形成する場合を説明したが、第二の強磁性層の形成前に、非金属膜の形成を行ってもよい。この場合、非金属膜の形成工程は、第二の強磁性層の形成工程と同一の真空容器で実施可能である。
本発明による磁気記録媒体の製造方法の大きな利点は、前記非金属膜の形成工程が、第一又は第二の強磁性層の形成工程と同一の真空容器、それらの真空容器間の基板搬送時に実施可能であることである。したがって、従来の非磁性中間層形成工程を削減することができ、スループットの向上が可能である。
図4(d)は、次いで第二の強磁性層9を形成し、磁気記録層の形成が完了した状態である。この後に行われる後工程については、従来公知の技術により実現可能であるのでここでは説明を省略する。
(実施の形態2)
図5は、本発明に係る第2の実施の形態であるECC構造を持つ垂直磁気記録媒体の断面構造を模式的に示した図である。図5の断面図を詳細に説明する。1は基板、2はCr、Tiおよびそれらの合金等の非磁性体密着層(金属層)、3は軟磁性裏打ち層であり、CoTaZr、CoTaNb、FeCoB、FeAlSi、NiFe合金、CoFe合金などの強磁性金属膜、FeMn、IrMnなどの反強磁性金属膜およびRu、Ir、Os、Cr、Cuなどの非磁性金属膜等の多層膜からなる。4は非磁性下地層である。なお、基板1、密着層2、軟磁性裏打ち層3、非磁性下地層4に用いられる材料、積層構造は、後述する磁気記録層の特性を損なわない限りにおいて適宜変更しても差し支えない。
磁気記録層である第一の強磁性層5は、粒界相6によって分離された強磁性体粒子7からなるグラニュラー構造を有する。強磁性粒子には、Co、FeとCr、Pt、Cu、Mn、Ti 、B、Siなどの合金を用いるのが好適である。例えばその例としてCoCrPt合金、CoPt合金、FePt合金等が挙げられる。粒界相はSi、Mg、Ti、Cr、Ta、Zr、Y、Ce等の元素を含んでいる。粒界相に酸素が含まれているとより好適である。本発明の特徴は、第一の強磁性層5を構成する強磁性粒子7が非金属膜8を介して第二の強磁性層と結合していることである。この非金属膜8の組成は、粒界相の非金属と同一であっても、異なっていてもよい。第二の強磁性層13は、前記第一の強磁性層5上に形成され、第一の強磁性層と同様にグラニュラー構造をもつ。すなわち、第二の強磁性層13は、非金属を含む粒界相11と強磁性体粒子12からなるグラニュラー構造を有する。強磁性粒子には、第一の強磁性層同様にCo、FeとCr、Pt、Cu、Mn、Ti 、B、Siなどの合金を用いるのが好適である。粒界相はSi、Mg、Ti、Cr、Ta、Zr、Y、Ce等の元素を含んでいる。粒界相に酸素が含まれているとより好適である。ECC構造では、二種以上の強磁性材料を積層し、一方の強磁性層が高い結晶磁気異方性により熱安定性を維持し、もう一方の強磁性層が比較的小さい保磁力を有して、総和として熱安定性と適度な書き込み磁界を実現している。したがって第一の強磁性層5と第二の強磁性層13とは、その結晶磁気異方性、保磁力、飽和磁化がそれぞれ異なっていることが必要である。それを実現するためには、第一、第二の強磁性層とで、その強磁性粒子の組成、粒界相の組成を変化させてもよいし、膜厚、形成条件を変化させてもよい。これを実現する組み合わせとしては、Co、Fe、NiとCr、Pt、Pd、Cu、Mn、Ti 、B、Siなど、さらにはTb、Dy、Er、Gdなどの希土類元素との合金乃至多層膜構造を用いるのが好適である。例えばその例としてCoPt合金、CoCr合金、FePt合金、(Er、Gd、Tb、Dy)/Co合金、Co/Pt多層膜、Co/Pd多層膜が挙げられる。第一、第二の強磁性層のどちらに高い結晶磁気異方性材料を用いるかは、適宜変更することが可能である。
図6には、従来用いられているECC構造の垂直磁気記録媒体の断面図を模式的に示した。従来構造に比べると本発明の構造では、非磁性中間層10(図6参照)が省略されていることが大きな特徴である。
次に図7を参照して、図5に示す第2の実施の形態に係る垂直磁気記録媒体を製造する方法を説明する。図7(a)は、基板1上に、密着層2、軟磁性裏打ち層3、非磁性下地層4を順に形成した状態である。これら各層の製造方法については従来公知の方法により可能であり、詳細な説明は省略する。図7(b)は、前記下地層4上に、第一の強磁性層5を形成した状態である。図7(c)は、前記第一の強磁性層5の強磁性粒子7上に極薄の非金属膜8を形成した状態である。非金属膜8の形成方法については、前述の第1の実施の形態と同様であり説明は省略する。図7(d)は、次いで第二の強磁性層13を形成し、磁気記録層の形成が完了した状態である。本発明の利点は従来例のように非磁性中間層を用いないために、非磁性中間層の工程、さらにより困難である非磁性中間層のグラニュラー化を省略することが可能であることである。3d遷移金属を主体とした第一、第二の強磁性層のグラニュラー化プロセスと、非磁性元素、特に従来用いられているPt、Ru、Pdなどの高融点4d,5d遷移金属のグラニュラー化プロセスとは、その機構が大きく異なる。したがって、従来公知の技術では図7(d)に示すように第一、第二の強磁性層で、強磁性粒子の粒境界が滑らかに連続した構造を得ることは困難である。本発明の利点は、この困難を回避することができることであり、その利点はきわめて大きい。
この後に行われる後工程については、従来公知の技術により実現可能であるのでここでは説明を省略する。
図8は、本発明に係る第3の実施の形態であるECC構造を持つ垂直磁気記録媒体の断面構造を模式的に示した図である。本実施の形態では、第一の強磁性層5において、第二の強磁性層13に比べ、強磁性粒子7の平均径が大きく、粒界相6が薄い。そのため第二の強磁性層13に比べ、第一の強磁性層5は、粒子間の結合が大きく、CGC構造に類似した効果が期待できる。図8に示すような第一の強磁性層の構造は、スパッタリングターゲット組成、スパッタリング条件を制御することにより実現可能である。
図9は、本発明に係る第4の実施の形態であるECC構造を持つ垂直磁気記録媒体の断面構造を模式的に示した図である。本実施の形態では、第一の強磁性層5において、下部が膜14によって連続構造となっている。そのため粒子間には結合が生じており、CGC構造に類似した効果が期待できる。図9に示すような第一の強磁性層の構造は、膜形成工程において、スパッタリング条件を連続的に変化させることにより複数の工程を経ずとも実現可能である。
以下、実施例により本発明の実施の形態を更に具体的に説明する。
(実施例1)
次のようにして、図1に示すようなCGC構造を持つ垂直磁気記録ディスクを製造した。
アモルファスのアルミノシリケートガラスをダイレクトプレスで円盤状に成型し、ガラスディスクを作成した。このガラスディスクに研削、研磨、化学強化を順次施し、化学強化ガラスディスクからなる平滑な非磁性ガラス基板1を得た。ディスク直径は65mmである。このガラス基板1の主表面の表面粗さをAFM(原子間力顕微鏡)で測定したところ、Rmaxが4.8nm、Raが0.42nmという平滑な表面形状であった。なお、Rmax及びRaは、日本工業規格(JIS)に従う。
次に、得られたガラス基板1上に、真空引きを行なった成膜装置を用いて、DCマグネトロンスパッタリング法にて、Arガス雰囲気中で、密着層2、軟磁性裏打ち層3、非磁性下地層4を順次成膜した。
密着層2は、CrTiを膜厚10nmに形成した。軟磁性裏打ち層3は、膜厚20nmのCoFeとTaZrの合金膜と、膜厚0.65nmのRu膜と、膜厚20nmのCoFeとTaZrの合金膜との多層膜とした。また、非磁性下地層4は、Ruを膜厚25nmに形成した。
次に、TiO2を含有するCoCrPtからなる硬磁性体のターゲットを用いて、膜厚12nmのhcp結晶構造からなる第一の強磁性層5を形成した。該強磁性層5を形成するためのターゲットの組成は、Co:65.5at%、Cr:10.9at%、Pt:14.6at%、TiO2:9mol%である。なお、強磁性層5は、総ガス圧4Pa、酸素分圧0.5%のアルゴン(Ar)と酸素の混合雰囲気中で成膜した。
次いで、Ar流量480sccm、ガス圧5Pa、DC電力100W、酸素分圧1%のアルゴン(Ar)と酸素プラズマ中に5秒間曝露することによって、上記第一の強磁性層5上に非金属膜8を形成した。
次に、第二の強磁性層9の形成を行った。第二の強磁性層は、NiCoを膜厚2nmに形成した。
次に、プラズマCVD法により、水素化カーボンからなる炭素系保護層を形成した。炭素系保護層の膜厚は3.5nmである。水素化炭素とすることで、膜硬度が向上するので、磁気ヘッドからの衝撃に対して垂直磁気記録層を防護することができる。 この後、PFPE(パーフロロポリエーテル)からなる潤滑層をディップコート法により形成した。潤滑層の膜厚は1nmである。
以上の製造工程により、本実施例の垂直磁気記録ディスクが得られた。得られた垂直磁気記録ディスクの表面粗さをAFMで測定したところ、Rmaxが4.53nm、Raが0.40nmという平滑な表面形状であった。
得られた本実施例の垂直磁気記録ディスクにおける垂直磁気記録層(第一の強磁性層5と第二の強磁性層9を併せて垂直磁気記録層と呼ぶ。以下同様。)の配向性をX線回折法にて分析したところ、hcp(六方細密充填)結晶構造のc軸がディスク面に対して垂直方向に配向していた。また、得られた垂直磁気記録ディスクにおける第一の強磁性層5を透過型電子顕微鏡(TEM)を利用して詳細に分析したところ、グラニュラー構造を備えていた。具体的には、Coを含有するhcp結晶構造の結晶粒子の間に、Tiの酸化物からなる粒界部分が形成されていることを確認した。この分析から約6nmの磁気粒子と約1.0nmの非磁性体からなる境界領域から形成されていることがわかった。一方、グラニュラー構造となっている強磁性層5の上の層である第二の強磁性層9をTEMで詳細に分析したところ、グラニュラー構造とはなっていなかった。これは、第二の強磁性層9が磁気的に連続に近い構造からできていることを示している。
次に、得られた本実施例の垂直磁気記録ディスクの静磁気特性をVSMと極カーループトレーサーで評価し、保磁力(Hc)及び磁化反転核生成磁界(Hn)を測定した結果、保磁力(Hc)は5400エルステッド(Oe)、磁化反転核生成磁界(Hn)は−2300(Oe)であった。
また、本実施例の垂直磁気記録ディスクの電磁変換特性は以下のようにして測定した。
R/Wアナライザーと、記録側がSPT素子、再生側がGMR素子を備える垂直磁気記録方式用磁気ヘッドとを用いて測定した。このとき、磁気ヘッドの浮上量は10nmであった。
S/N比及びオーバーライト特性(O/W)の測定方法は以下のとおりである。
最高記録密度(1F)を960kfciとして、S/N比は、S/N(1T/1T)とS/N(10T/1T)の測定を行った。S/N(1T/1T)は、24F記録密度(40kfci)で垂直磁気記録媒体上にキャリア信号記録した後に、DC周波数領域から1Fの1.2倍の周波数領域までの媒体ノイズをスペクトロアナライザーを用いて観測し算出した。また、S/N(10T/1T)は、2F記録密度(480kfci)で垂直磁気記録媒体上にキャリア信号記録した後に、DC周波数領域から1Fの1.2倍の周波数領域までの媒体ノイズをスペクトロアナライザーを用いて観測し算出した。さらに、オーバーライト特性は、24F(40kfci)記録密度で垂直磁気記録媒体上にキャリア信号記録した後に、1F記録密度(960kfci)でキャリアを上書きし、元々の24F(40kfci)記録密度のキャリア再生出力と、1F上書き後の12Fキャリアの残存再生出力を測定して求めた。
以上の測定の結果、S/N(1T/1T)は8.7dB、S/N(10T/1T)は15.2dB、オーバーライト特性(O/W)は44.3dBであった。
以上の結果から、本発明によれば、磁気特性、電磁変換特性の良好な媒体が得られ、特に高S/N比を持つ垂直磁気記録媒体が得られることが分かる。
(実施例2)
次のようにして、図5に示すようなECC構造を持つ垂直磁気記録ディスクを製造した。
まず、実施例1と同様のガラス基板1を作製し、得られたガラス基板1上に、実施例1と同様にして、密着層2、軟磁性裏打ち層3、非磁性下地層4を順次成膜した。
次に、TiO2を含有するCoCrPtからなる硬磁性体のターゲットを用いて、膜厚12nmのhcp結晶構造からなる第一の強磁性層5を形成した。該強磁性層5を形成するためのターゲットの組成は、Co:65.5at%、Cr:10.9at%、Pt:14.6at%、TiO2:9mol%である。なお、強磁性層5は、総ガス圧4Pa、酸素分圧0.5%のアルゴン(Ar)と酸素の混合雰囲気で成膜した。
次いで、Ar流量480sccm、ガス圧5Pa、DC電力100W、酸素分圧1%のアルゴン(Ar)と酸素プラズマ中に5秒間曝露することによって、上記第一の強磁性層5上に非金属膜8を形成した。
次に、グラニュラー構造の第二の強磁性層13の形成を行った。すなわち、TiO2を含有するCoCrPtからなる硬磁性体のターゲットを用いて、膜厚4nmのhcp結晶構造からなる第二の強磁性層13を形成した。該強磁性層13を形成するためのターゲットの組成は、Co:66.5at%、Cr:13.3at%、Pt:15.2at%、TiO2:5mol%である。なお、強磁性層13は、総ガス圧4Pa、酸素分圧0.8%のアルゴン(Ar)と酸素の混合雰囲気中で成膜した。
次に、実施例1と同様にして、水素化カーボンからなる炭素系保護層、及びPFPE(パーフロロポリエーテル)からなる潤滑層を形成した。
以上の製造工程により、本実施例の垂直磁気記録ディスクが得られた。得られた垂直磁気記録ディスクの表面粗さをAFMで測定したところ、Rmaxが4.53nm、Raが0.40nmという平滑な表面形状であった。
得られた本実施例の垂直磁気記録ディスクにおける垂直磁気記録層(第一の強磁性層5と第二の強磁性層13を併せて垂直磁気記録層と呼ぶ。以下同様。)の配向性をX線回折法にて分析したところ、hcp(六方細密充填)結晶構造のc軸がディスク面に対して垂直方向に配向していた。また、得られた垂直磁気記録ディスクにおける第一の強磁性層5を透過型電子顕微鏡(TEM)を利用して詳細に分析したところ、グラニュラー構造を備えていた。具体的には、Coを含有するhcp結晶構造の結晶粒子の間に、Tiの酸化物からなる粒界部分が形成されていることを確認した。この分析から約6nmの磁気粒子と約1.0nmの非磁性体からなる境界領域から形成されていることがわかった。一方、グラニュラー構造となっている強磁性層5の上の層である第二の強磁性層13をTEMで詳細に分析したところ、グラニュラー構造を備えていた。具体的には、Coを含有するhcp結晶構造の結晶粒子の間に、Tiの酸化物からなる粒界部分が形成されていることを確認した。この分析から約8nmの磁気粒子と約0.7nmの非磁性体からなる境界領域から形成されていることがわかった。
次に、得られた本実施例の垂直磁気記録ディスクの静磁気特性を実施例1と同様にVSMと極カーループトレーサーで評価し、保磁力(Hc)及び磁化反転核生成磁界(Hn)を測定した結果、保磁力(Hc)は5200エルステッド(Oe)、磁化反転核生成磁界(Hn)は−2100エルステッド(Oe)であった。
また、本実施例の垂直磁気記録ディスクの電磁変換特性を実施例1と同様に測定した結果、S/N(1T/1T)は8.9dB、S/N(10T/1T)は25.3dB、オーバーライト特性(O/W)は45.3dBであった。
以上の結果から、本実施例においても磁気特性、電磁変換特性の良好な媒体が得られ、特に高S/N比を持つECC構造の垂直磁気記録媒体が得られることが分かる。
本発明は、高密度磁気記録再生装置の製造に利用される。
本発明の第1の実施の形態に係る垂直磁気記録媒体の断面構造を模式的に示した図である。 従来技術によるCGC構造を有する垂直磁気記録媒体の断面構造を模式的に示した図である。 本発明に係る磁気記録層の層構成を模式的に示した図である。 本発明に係る第1の実施形態の垂直磁気記録媒体の製造工程を模式的に示した図である。 本発明の第2の実施の形態に係る垂直磁気記録媒体の断面構造を模式的に示した図である。 従来技術によるECC構造を有する垂直磁気記録媒体の断面構造を模式的に示した図である。 本発明に係る第2の実施形態の垂直磁気記録媒体の製造工程を模式的に示した図である。 本発明の第3の実施の形態に係る垂直磁気記録媒体の断面構造を模式的に示した図である。 本発明の第4の実施の形態に係る垂直磁気記録媒体の断面構造を模式的に示した図である。
符号の説明
1 基板
2 密着層
3 軟磁性裏打ち層
4 非磁性下地層
5 第一の強磁性層
6,11 非金属粒界相
7,12 強磁性結晶粒
8 非金属膜
9 第二の強磁性層
10,13 非磁性中間層
14 膜

Claims (6)

  1. 基板上に少なくとも磁気記録層を備える垂直磁気記録媒体であって、前記磁気記録層は、第一の強磁性層と、該第一の強磁性層上に形成された第二の強磁性層とからなり、前記第一の強磁性層上の少なくとも一部に非金属膜が形成されていることを特徴とする垂直磁気記録媒体。
  2. 前記第一の強磁性層上の非金属膜は、膜面内で不連続な膜構造であることを特徴とする請求項1記載の垂直磁気記録媒体。
  3. 前記第一の強磁性層上の非金属膜が酸素を含むことを特徴とする請求項1又は2記載の垂直磁気記録媒体。
  4. 前記第一の強磁性層と前記第二の強磁性層は、その少なくとも一方が、強磁性結晶粒と非金属からなる結晶粒界相とを有していることを特徴とする請求項1乃至3の何れか一に記載の垂直磁気記録媒体。
  5. 基板上に少なくとも磁気記録層を備える垂直磁気記録媒体の製造方法であって、前記磁気記録層は、第一の強磁性層と、該第一の強磁性層上に形成された第二の強磁性層とからなり、該磁気記録層を形成する工程は、前記第一の強磁性層上の少なくとも一部に非金属膜を形成する工程を含み、該非金属膜を形成する工程は、気体への曝露によって行われることを特徴とする垂直磁気記録媒体の製造方法。
  6. 前記非金属膜の形成工程が、前記第一の強磁性層又は第二の強磁性層の形成工程に用いる真空容器内で行われることを特徴とする請求項5記載の垂直磁気記録媒体の製造方法。
JP2006292695A 2006-10-27 2006-10-27 垂直磁気記録媒体及びその製造方法 Pending JP2008108395A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006292695A JP2008108395A (ja) 2006-10-27 2006-10-27 垂直磁気記録媒体及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292695A JP2008108395A (ja) 2006-10-27 2006-10-27 垂直磁気記録媒体及びその製造方法

Publications (1)

Publication Number Publication Date
JP2008108395A true JP2008108395A (ja) 2008-05-08

Family

ID=39441614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292695A Pending JP2008108395A (ja) 2006-10-27 2006-10-27 垂直磁気記録媒体及びその製造方法

Country Status (1)

Country Link
JP (1) JP2008108395A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205730A (ja) * 2008-02-27 2009-09-10 Sony Corp 垂直磁気記録媒体及び磁気記録再生装置
WO2009119709A1 (ja) * 2008-03-26 2009-10-01 Hoya株式会社 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
WO2013044133A1 (en) * 2011-09-23 2013-03-28 Carnegie Mellon University Thin-film media structures for perpendicular magnetic recording and storage devices made therewith
US10818376B2 (en) 2018-07-20 2020-10-27 Lapis Semiconductor Co., Ltd. Testing method for semiconductor memory

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002092845A (ja) * 2000-09-20 2002-03-29 Hitachi Maxell Ltd 情報記録媒体及びそれを用いた情報記録装置
WO2002027713A1 (fr) * 2000-09-25 2002-04-04 Hitachi Maxell, Ltd. Support d'enregistrement d'informations, appareil d'enregistrement d'informations et procede d'enregistrement
JP2002358616A (ja) * 2000-06-12 2002-12-13 Toshiba Corp 磁気記録媒体および磁気記録装置
JP2003016620A (ja) * 2001-06-29 2003-01-17 Toshiba Corp 磁気記録媒体、磁気記録装置および磁気記録方法
JP2003157516A (ja) * 2001-11-22 2003-05-30 Toshiba Corp 垂直磁気記録媒体および磁気記録装置
JP2003162807A (ja) * 2001-11-27 2003-06-06 Toshiba Corp 垂直磁気記録媒体及びこれを用いた磁気記録再生装置
JP2004039033A (ja) * 2002-06-28 2004-02-05 Toshiba Corp 磁気記録媒体及び磁気記録再生装置
JP2008065879A (ja) * 2006-09-05 2008-03-21 Fuji Electric Holdings Co Ltd 垂直磁気記録媒体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358616A (ja) * 2000-06-12 2002-12-13 Toshiba Corp 磁気記録媒体および磁気記録装置
JP2002092845A (ja) * 2000-09-20 2002-03-29 Hitachi Maxell Ltd 情報記録媒体及びそれを用いた情報記録装置
WO2002027713A1 (fr) * 2000-09-25 2002-04-04 Hitachi Maxell, Ltd. Support d'enregistrement d'informations, appareil d'enregistrement d'informations et procede d'enregistrement
JP2003016620A (ja) * 2001-06-29 2003-01-17 Toshiba Corp 磁気記録媒体、磁気記録装置および磁気記録方法
JP2003157516A (ja) * 2001-11-22 2003-05-30 Toshiba Corp 垂直磁気記録媒体および磁気記録装置
JP2003162807A (ja) * 2001-11-27 2003-06-06 Toshiba Corp 垂直磁気記録媒体及びこれを用いた磁気記録再生装置
JP2004039033A (ja) * 2002-06-28 2004-02-05 Toshiba Corp 磁気記録媒体及び磁気記録再生装置
JP2008065879A (ja) * 2006-09-05 2008-03-21 Fuji Electric Holdings Co Ltd 垂直磁気記録媒体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205730A (ja) * 2008-02-27 2009-09-10 Sony Corp 垂直磁気記録媒体及び磁気記録再生装置
WO2009119709A1 (ja) * 2008-03-26 2009-10-01 Hoya株式会社 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
US9047903B2 (en) 2008-03-26 2015-06-02 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium and process for manufacture thereof
WO2013044133A1 (en) * 2011-09-23 2013-03-28 Carnegie Mellon University Thin-film media structures for perpendicular magnetic recording and storage devices made therewith
US9076476B2 (en) 2011-09-23 2015-07-07 Carnegie Mellon University Thin film media structure for perpendicular magnetic recording and storage devices made therewith
US10818376B2 (en) 2018-07-20 2020-10-27 Lapis Semiconductor Co., Ltd. Testing method for semiconductor memory

Similar Documents

Publication Publication Date Title
US20180268852A1 (en) Multilayer exchange spring recording media
JP4126276B2 (ja) 反強磁性結合された垂直磁気記録媒体
JP3641611B2 (ja) 磁気記録媒体及びその製造方法並びに磁気記録装置
JP5103097B2 (ja) 垂直磁気記録媒体及びそれを用いた磁気記録再生装置
CN101809659B (zh) 垂直磁记录介质和磁记录再生装置
JP5088629B2 (ja) 磁気記録媒体および磁気記録再生装置
JPWO2006003922A1 (ja) 垂直磁気記録ディスク及びその製造方法
JPWO2007116813A1 (ja) 垂直磁気記録ディスクの製造方法及び垂直磁気記録ディスク
JP2006313584A (ja) 磁気記録媒体の製造方法
US8034470B2 (en) Perpendicular magnetic recording medium and method of manufacturing the medium
JP2006351058A (ja) 負異方性交換結合型磁気記録媒体及び磁気記録再生装置
JP5337451B2 (ja) 垂直磁気記録媒体
JP4031956B2 (ja) 垂直磁気記録媒体および磁気記憶装置
CN102270459B (zh) 磁记录介质和磁记录再生装置
JP2008065879A (ja) 垂直磁気記録媒体
JP2005322402A (ja) 情報を記憶するための磁気媒体
JP4772015B2 (ja) 磁気記録媒体および磁気記録再生装置
JP2008108395A (ja) 垂直磁気記録媒体及びその製造方法
CN100543843C (zh) 垂直磁记录介质及其制造方法以及磁记录和再现装置
JP2007164941A (ja) 垂直磁気記録媒体
US20090142624A1 (en) Magnetic recording medium and a method of producing the same
JP5127950B2 (ja) 磁気記録媒体
JP5232730B2 (ja) 磁気記録媒体、磁気記録媒体の製造方法及び磁気記録再生装置
JP2011123959A (ja) 垂直磁気記録媒体
JP3652999B2 (ja) 垂直磁気記録媒体及び磁気記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100608

A131 Notification of reasons for refusal

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A131

A711 Notification of change in applicant

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Effective date: 20101017

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A02 Decision of refusal

Effective date: 20101111

Free format text: JAPANESE INTERMEDIATE CODE: A02