WO2009119708A1 - 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 - Google Patents

垂直磁気記録媒体および垂直磁気記録媒体の製造方法 Download PDF

Info

Publication number
WO2009119708A1
WO2009119708A1 PCT/JP2009/056050 JP2009056050W WO2009119708A1 WO 2009119708 A1 WO2009119708 A1 WO 2009119708A1 JP 2009056050 W JP2009056050 W JP 2009056050W WO 2009119708 A1 WO2009119708 A1 WO 2009119708A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic recording
recording layer
layer
magnetic
recording medium
Prior art date
Application number
PCT/JP2009/056050
Other languages
English (en)
French (fr)
Inventor
貴弘 尾上
Original Assignee
Hoya株式会社
ホーヤ マグネティクス シンガポール プライベートリミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社, ホーヤ マグネティクス シンガポール プライベートリミテッド filed Critical Hoya株式会社
Priority to US12/934,935 priority Critical patent/US8580410B2/en
Publication of WO2009119708A1 publication Critical patent/WO2009119708A1/ja
Priority to US14/051,414 priority patent/US9183869B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/674Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having differing macroscopic or microscopic structures, e.g. differing crystalline lattices, varying atomic structures or differing roughnesses

Definitions

  • the present invention relates to a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording type HDD (hard disk drive) and the like and a method of manufacturing the perpendicular magnetic recording medium.
  • a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording type HDD (hard disk drive) and the like and a method of manufacturing the perpendicular magnetic recording medium.
  • perpendicular magnetic recording type magnetic disks In order to achieve high recording density in magnetic disks used in HDDs and the like, perpendicular magnetic recording type magnetic disks (perpendicular magnetic recording disks) have been recently proposed.
  • the easy axis of magnetization of the magnetic recording layer In the conventional in-plane magnetic recording method, the easy axis of magnetization of the magnetic recording layer is aligned in the plane direction of the substrate surface, but in the perpendicular magnetic recording method, the easy magnetization axis is adjusted to be aligned in the direction perpendicular to the substrate surface. ing.
  • Patent Document 1 discloses a technique related to a perpendicular magnetic recording medium in which an underlayer, a Co-based perpendicular magnetic recording layer, and a protective layer are formed in this order on a substrate.
  • Patent Document 2 discloses a perpendicular magnetic recording medium having a structure in which an artificial lattice film continuous layer (exchange coupling layer) exchange-coupled to a particulate recording layer is attached.
  • the perpendicular magnetic recording method can suppress the thermal fluctuation phenomenon as compared with the in-plane recording method, it is suitable for increasing the recording density.
  • Patent Document 3 discloses a configuration in which two magnetic recording layers are formed, the recording layer on the substrate side has a composition containing CoCrPtTa, and the recording layer far from the substrate has a composition containing CoCrPtB.
  • the inventors of the present application have a two-layer structure of the magnetic recording layer and appropriately control the amount of nonmagnetic material (ratio to the magnetic material) that forms the grain boundary of the two magnetic recording layers, thereby providing a coercive force. It has been found that SNR is improved while improving Hc.
  • the inventors of the present application have found that the coercive force Hc and SNR are not necessarily determined only by the composition and amount of the nonmagnetic substance. That is, it was found that the SNR increased or decreased due to other factors even when the crystal grain composed of the magnetic substance and the grain boundary composed of the nonmagnetic substance had the same composition (material and ratio).
  • the present invention has been made in view of the above-mentioned problems of the magnetic recording layer, and an object of the present invention is to improve the coercive force by devising the grain size of the crystal grains in the magnetic recording layer having a two-layer structure. It is to provide a perpendicular magnetic recording medium having a magnetic recording layer with improved SNR while maintaining the same, and a method for manufacturing the perpendicular magnetic recording medium.
  • the inventors of the present invention diligently studied and further improved the SNR by having a predetermined relationship between the crystal grain sizes of each layer in the magnetic recording layer formed of two layers. As a result, the present invention has been completed.
  • a typical configuration of the perpendicular magnetic recording medium according to the present invention is a perpendicular magnetic recording medium having at least an underlayer, a first magnetic recording layer, and a second magnetic recording layer in this order on a substrate.
  • the first magnetic recording layer and the second magnetic recording layer are a ferromagnetic layer having a granular structure in which a grain boundary portion made of a nonmagnetic substance is formed between crystal grains grown in a columnar shape, and the first magnetic recording layer A ⁇ B, where Anm is the average grain size of the crystal grains and Bnm is the average grain diameter of the crystal grains in the second magnetic recording layer.
  • each magnetic recording layer can play a role, and the SNR can be improved while maintaining a high coercive force Hc.
  • the ratio of the average grain size of the crystal grains in the first magnetic recording layer to the average grain size of the crystal grains in the second magnetic recording layer is preferably 0.8 ⁇ A / B ⁇ 1.
  • the total thickness of the first magnetic recording layer and the second magnetic recording layer is preferably 15 nm or less.
  • the film thickness of the first magnetic recording layer is preferably 5 nm or less, and desirably 3 nm to 4 nm. This is because the composition separation of the second magnetic recording layer cannot be promoted when the thickness is smaller than 3 nm, and the R / W characteristics (read / write characteristics) are deteriorated when the thickness is larger than 4 nm.
  • the thickness of the second magnetic recording layer is preferably 5 nm or more, and desirably 7 nm to 15 nm. This is because if it is smaller than 7 nm, a sufficient coercive force cannot be obtained, and if it is larger than 15 nm, a high (large absolute value) reverse domain nucleation magnetic field Hn cannot be obtained. Therefore, in order to obtain a high reverse magnetic domain nucleation magnetic field Hn, the total thickness of the first magnetic recording layer and the second magnetic recording layer is preferably 15 nm or less.
  • the non-magnetic substance may contain one or more of chromium, oxygen, and oxide.
  • a non-magnetic substance is a substance that can form a grain boundary around magnetic grains so that exchange interaction between crystal grains (magnetic grains or magnetic grains) is suppressed or blocked, and cobalt ( Any nonmagnetic substance that does not dissolve in Co) may be used.
  • oxides such as niobium oxide (Nb 2 O 5 ) and boron oxide (B 2 O 3 ).
  • the oxide may include one or more oxides selected from the group consisting of SiO 2 , TiO 2 , Cr 2 O 3 , Ta 2 O 5 , Nb 2 O 5 , B 2 O 3 or ZrO 2. .
  • SiO 2 promotes miniaturization and isolation of magnetic particles (separation from adjacent magnetic particles), and TiO 2 has an effect of suppressing particle size dispersion of crystal particles.
  • Cr 2 O 3 can increase the coercive force Hc. Furthermore, by combining these oxides and segregating at the grain boundaries of the magnetic recording layer, both benefits can be enjoyed.
  • the oxide contained in the second magnetic recording layer is selected from the group consisting of SiO 2 , TiO 2 , Cr 2 O 3 , Ta 2 O 5 , Nb 2 O 5 , B 2 O 3 or ZrO 2 , or 1 or A plurality of oxides may be included. Thereby, a grain boundary part can be formed reliably and a crystal grain can be separated clearly. Therefore, the SNR can be improved.
  • a typical configuration of a method for manufacturing a perpendicular magnetic recording medium according to the present invention is a perpendicular structure including at least an underlayer, a first magnetic recording layer, and a second magnetic recording layer in this order on a substrate.
  • a method of manufacturing a magnetic recording medium wherein the first magnetic recording layer uses a magnetic target having a composition of chromium, oxygen, or an oxide, or a plurality of oxides, and a gas pressure of about 0.5 Pa, By setting the power to about 100 to about 700 W, a ferromagnetic layer having a granular structure in which a nonmagnetic grain boundary is formed between crystal grains grown in a columnar shape, and the composition is chromium, oxygen, or oxide.
  • a crystal grown as a second magnetic recording layer in a columnar shape by using a magnetic target containing one or a plurality of oxides and a gas pressure of about 0.5 Pa and a power of about 100 to about 1000 W.
  • the average grain size of the crystal grains in the first magnetic recording layer is set to Anm, and the crystal grains in the second magnetic recording layer When the average particle diameter is Bnm, A ⁇ B.
  • the constituent elements based on the technical idea of the perpendicular magnetic recording medium and the explanation thereof can be applied to the method for manufacturing the perpendicular magnetic recording medium.
  • the perpendicular magnetic recording medium according to the present invention can be provided with a magnetic recording layer with improved SNR while maintaining a high coercive force by devising the grain size of crystal grains in a magnetic recording layer having a two-layer structure. It becomes.
  • DESCRIPTION OF SYMBOLS 100 Perpendicular magnetic recording medium 110 ... Disk base
  • FIG. 1 is a diagram illustrating the configuration of a perpendicular magnetic recording medium 100 according to the present embodiment.
  • a perpendicular magnetic recording medium 100 shown in FIG. 1 includes a disk substrate 110 as a substrate, an adhesion layer 112, a first soft magnetic layer 114a, a spacer layer 114b, a second soft magnetic layer 114c, a pre-underlayer 116, and a first underlayer 118a.
  • the first soft magnetic layer 114a, the spacer layer 114b, and the second soft magnetic layer 114c together constitute the soft magnetic layer 114.
  • the first base layer 118a and the second base layer 118b together constitute the base layer 118.
  • the first magnetic recording layer 122a and the second magnetic recording layer 122b together constitute the magnetic recording layer 122.
  • the perpendicular magnetic recording medium 100 shown in the present embodiment includes a plurality of types of oxides (one or both of the first magnetic recording layer 122a and the second magnetic recording layer 122b of the magnetic recording layer 122).
  • the composite oxide is segregated at the nonmagnetic grain boundaries by containing “composite oxide”.
  • the disk substrate 110 may be a glass disk obtained by forming amorphous aluminosilicate glass into a disk shape by direct pressing.
  • the type, size, thickness, etc. of the glass disk are not particularly limited.
  • Examples of the material of the glass disk include aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, chain silicate glass, or glass ceramic such as crystallized glass. It is done.
  • the glass disk is subjected to grinding, polishing, and chemical strengthening sequentially to obtain a smooth non-magnetic disk base 110 made of a chemically strengthened glass disk.
  • the adhesion layer 112 to the continuous layer 124 are sequentially formed by the DC magnetron sputtering method, and the medium protective layer 126 can be formed by the CVD method. Thereafter, the lubricating layer 128 can be formed by dip coating. Note that it is also preferable to use an in-line film forming method in terms of high productivity. Hereinafter, the configuration and manufacturing method of each layer will be described.
  • the adhesion layer 112 is an amorphous underlayer, which is formed in contact with the disk substrate 110 and has a function of increasing the peel strength between the soft magnetic layer 114 and the disk substrate 110 formed thereon.
  • the adhesion layer 112 is preferably an amorphous alloy film so as to correspond to the amorphous glass surface.
  • adhesion layer 112 for example, a CrTi-based amorphous layer can be selected.
  • the soft magnetic layer 114 is a layer that temporarily forms a magnetic path during recording in order to pass magnetic flux in a direction perpendicular to the recording layer in the perpendicular magnetic recording method.
  • the soft magnetic layer 114 is provided with AFC (Antiferro-magnetic exchange coupling) by interposing a nonmagnetic spacer layer 114b between the first soft magnetic layer 114a and the second soft magnetic layer 114c.
  • AFC Antiferro-magnetic exchange coupling
  • the magnetization direction of the soft magnetic layer 114 can be aligned along the magnetic path (magnetic circuit) with high accuracy, and the vertical component of the magnetization direction is extremely reduced, so that noise generated from the soft magnetic layer 114 is reduced. Can do.
  • compositions of the first soft magnetic layer 114a and the second soft magnetic layer 114c include cobalt-based alloys such as CoTaZr, Co—Fe-based alloys such as CoCrFeB, and Ni—Fe such as [Ni—Fe / Sn] n multilayer structure.
  • cobalt-based alloys such as CoTaZr
  • Co—Fe-based alloys such as CoCrFeB
  • Ni—Fe such as [Ni—Fe / Sn] n multilayer structure.
  • a system alloy or the like can be used.
  • the pre-underlayer 116 is a non-magnetic alloy layer, and acts to protect the soft magnetic layer 114 and the easy magnetization axis of the hexagonal close packed structure (hcp structure) included in the underlayer 118 formed thereon is a disk. A function for aligning in the vertical direction is provided.
  • the pre-underlayer 116 preferably has a (111) plane having a face-centered cubic structure (fcc structure) or a (110) plane having a body-centered cubic structure (bcc structure) parallel to the main surface of the disk substrate 110. Further, the pre-underlayer 116 may have a configuration in which these crystal structures and amorphous are mixed.
  • the material of the front ground layer can be selected from Ni, Cu, Pt, Pd, Zr, Hf, Nb, and Ta. Furthermore, it is good also as an alloy which contains these metals as a main component and contains any one or more additional elements of Ti, V, Ta, Cr, Mo, and W. For example, NiW, CuW, CuCr as the fcc structure, and Ta as the bcc structure can be suitably selected.
  • the underlayer 118 has an hcp structure, and has a function of growing a Co hcp crystal of the magnetic recording layer 122 as a granular structure. Therefore, the higher the crystal orientation of the underlayer 118, that is, the more the (0001) plane of the crystal of the underlayer 118 is parallel to the main surface of the disk substrate 110, the more the orientation of the magnetic recording layer 22 is improved. Can do.
  • Ru is a typical material for the underlayer, but in addition, it can be selected from RuCr and RuCo. Since Ru has an hcp structure and the lattice spacing of crystals is close to Co, a magnetic recording layer containing Co as a main component can be well oriented.
  • the underlayer 118 is made of Ru
  • a two-layer structure made of Ru can be obtained by changing the gas pressure during sputtering. Specifically, when forming the second base layer 118b on the upper layer side, the Ar gas pressure is set higher than when forming the first base layer 118a on the lower layer side.
  • the gas pressure is increased, the free movement distance of the Ru ions to be sputtered is shortened, so that the film formation rate is reduced and the crystal separation can be improved. Further, by increasing the pressure, the size of the crystal lattice is reduced. Since the size of the Ru crystal lattice is larger than that of the Co crystal lattice, if the Ru crystal lattice is made smaller, it approaches that of Co, and the crystal orientation of the Co granular layer can be further improved.
  • the nonmagnetic granular layer 120 is a nonmagnetic granular layer.
  • a nonmagnetic granular layer is formed on the hcp crystal structure of the underlayer 118, and the granular layer of the first magnetic recording layer 122a is grown thereon, so that the magnetic granular layer can be grown from the initial growth stage (rise). Has the effect of separating.
  • the composition of the nonmagnetic granular layer 120 can be a granular structure by forming a grain boundary by segregating a nonmagnetic substance between nonmagnetic crystal grains made of a Co-based alloy. In particular, CoCr—SiO 2 and CoCrRu—SiO 2 can be suitably used.
  • a nonmagnetic substance is a substance that can form a grain boundary around magnetic grains so that exchange interaction between magnetic grains (magnetic grains) is suppressed or blocked, and is cobalt (Co). Any non-magnetic substance that does not dissolve in solution can be used. Examples thereof include silicon oxide (SiOx), chromium (Cr), chromium oxide (CrO 2 ), titanium oxide (TiO 2 ), zircon oxide (ZrO 2 ), and tantalum oxide (Ta 2 O 5 ).
  • the magnetic recording layer 122 has a columnar granular structure in which a nonmagnetic substance is segregated around magnetic grains of a hard magnetic material selected from a Co-based alloy, an Fe-based alloy, and a Ni-based alloy to form a grain boundary. It is a magnetic layer.
  • the nonmagnetic granular layer 120 By providing the nonmagnetic granular layer 120, the magnetic grains can be continuously epitaxially grown from the granular structure.
  • the first magnetic recording layer 122a and the second magnetic recording layer 122b having different compositions and film thicknesses are used.
  • the first magnetic recording layer 122a and the second magnetic recording layer 122b are all non-magnetic materials such as oxides such as SiO 2 , Cr 2 O 3 , TiO 2 , B 2 O 3 , Fe 2 O 3 , BN, etc. Nitride and carbides such as B 4 C 3 can be preferably used.
  • the average particle diameter of the magnetic grains (crystal grains) in the first magnetic recording layer 122a is Anm
  • the average grain diameter of the magnetic grains (crystal grains) in the second magnetic recording layer 122b is Bnm. , A ⁇ B.
  • two or more nonmagnetic substances can be used in combination in either or both of the first magnetic recording layer 122a and the second magnetic recording layer 122b.
  • the kind of nonmagnetic substance contained at this time it is particularly preferable to include SiO 2 and TiO 2 , and Cr 2 O 3 can be suitably used instead of / in addition to either of them.
  • the first magnetic recording layer 122a contains Cr 2 O 3 and SiO 2 as an example of a complex oxide (a plurality of types of oxides) at the grain boundary, and an hcp crystal of CoCrPt—Cr 2 O 3 —SiO 2 .
  • a structure can be formed.
  • the second magnetic recording layer 122b contains SiO 2 and TiO 2 as examples of complex oxides at the grain boundary portion, and can form a CoCrPt—SiO 2 —TiO 2 hcp crystal structure.
  • the continuous layer 124 is a layer (also referred to as a continuous layer) that is magnetically continuous in the in-plane direction on the magnetic recording layer 122 having a granular structure.
  • the continuous layer 124 is not always necessary, but by providing it, in addition to the high density recording property and low noise property of the magnetic recording layer 122, the reverse magnetic domain nucleation magnetic field Hn is improved, the heat-resistant fluctuation property is improved, and the overwrite property is improved. Can be improved.
  • the medium protective layer 126 can be formed by depositing carbon by a CVD method while maintaining a vacuum.
  • the medium protective layer 126 is a protective layer for protecting the perpendicular magnetic recording medium from the impact of the magnetic head.
  • carbon deposited by the CVD method has improved film hardness compared to that deposited by the sputtering method, so that the perpendicular magnetic recording medium can be more effectively protected against an impact from the magnetic head.
  • the lubricating layer 128 can be formed of PFPE (perfluoropolyether) by dip coating.
  • PFPE perfluoropolyether
  • PFPE has a long chain molecular structure and binds with high affinity to N atoms on the surface of the medium protective layer 126. Due to the action of the lubricating layer 128, even if the magnetic head comes into contact with the surface of the perpendicular magnetic recording medium 100, damage or loss of the medium protective layer 126 can be prevented.
  • the perpendicular magnetic recording medium 100 can be obtained.
  • the effectiveness of the present invention will be described below using examples and comparative examples.
  • a film was formed in order from the adhesion layer 112 to the continuous layer 124 in an Ar atmosphere by a DC magnetron sputtering method using a film forming apparatus that was evacuated.
  • the adhesion layer 112 was made of CrTi.
  • the composition of the first soft magnetic layer 114a and the second soft magnetic layer 114c was FeCoTaZr, and the composition of the spacer layer 114b was Ru.
  • the composition of the pre-underlayer 116 was a NiW alloy having an fcc structure.
  • the first underlayer 118a was formed with Ru under low-pressure Ar
  • the second underlayer 118b was formed with Ru under high-pressure Ar.
  • the composition of the nonmagnetic granular layer 120 was nonmagnetic CoCr—SiO 2 .
  • the magnetic recording layer 122 was formed by the configurations of the following examples and comparative examples.
  • the composition of the continuous layer 124 was CoCrPtB.
  • the medium protective layer 126 was formed using C 2 H 4 and CN by the CVD method, and the lubricating layer 128 was formed using PFPE by the dip coating method.
  • FIG. 2 is an explanatory diagram for explaining the relationship between gas pressure and SNR and the relationship between input power and SNR when the magnetic recording layer 122 is formed.
  • FIG. 2 (a) shows the conditions (gas pressure and input power) when the second magnetic recording layer 122b is formed with the first magnetic recording layer 122a fixed at a film thickness of 3 nm and the average particle diameter of the magnetic grains fixed at 6 nm.
  • FIG. 2B shows the conditions (gas pressure and input power) when the first magnetic recording layer 122a is formed with the thickness of the second magnetic recording layer 122b fixed to 10 nm and the average particle size of the magnetic grains fixed to 7 nm.
  • the SNR shows the conditions (gas pressure and input power) when the first magnetic recording layer 122a is formed with the thickness of the second magnetic recording layer 122b fixed to 10 nm and the average particle size of the magnetic grains fixed to 7 nm.
  • the film formation time is adjusted so that the product of the input power and the film formation time is constant, so that the film thickness is constant.
  • the first magnetic recording layer 122a formed a hcp crystal structure of CoCrPt—Cr 2 O 3 —SiO 2 containing Cr 2 O 3 and SiO 2 as an example of a composite oxide.
  • the second magnetic recording layer 122b formed a hcp crystal structure of CoCrPt—SiO 2 —TiO 2 containing SiO 2 and TiO 2 as an example of a composite oxide.
  • the second magnetic recording layer 122b when the second magnetic recording layer 122b is formed at a gas pressure of 2.5 Pa and an input power of 400 W, an optimum SNR can be obtained.
  • the average particle diameter of the magnetic grains of the second magnetic recording layer 122b can be measured with a transmission electron microscope (TEM), and is 6.7 nm.
  • the first magnetic recording layer 122a when the first magnetic recording layer 122a is formed at a gas pressure of 3.0 Pa and an input power of 200 W, an optimum SNR can be obtained. At this time, the average particle diameter of the magnetic grains of the first magnetic recording layer 122a can be measured with a transmission electron microscope and was 6.5 nm.
  • the first magnetic recording layer 122a having an average grain size of 6 nm and the second magnetic recording layer 122b having an average grain size of 7 nm, that is, the average grain size of the magnetic grains is the first magnetic recording layer 122a ⁇
  • the second magnetic recording layer 122b is referred to as Example 1.
  • the first magnetic recording layer 122a having an average particle diameter of 7 nm and the second magnetic recording layer 122b having an average particle diameter of 6 nm, that is, the average particle diameter of the magnetic particles is the first magnetic recording layer 122a>.
  • the second magnetic recording layer 122b is used as a comparative example.
  • FIG. 3 is an explanatory diagram for explaining the relationship between the SNR and the relationship between the average grain size of the magnetic grains of the first magnetic recording layer 122a and the average grain size of the magnetic grains of the second magnetic recording layer 122b.
  • the first magnetic recording layer 122a includes a magnetic particle having a particle size smaller than that of the magnetic particle contained in the second magnetic recording layer 122b. Compared with the case where the particle size of the magnetic particles is larger than the particle size of the magnetic particles contained in the second magnetic recording layer 122b, a high SNR can be obtained.
  • the average particle diameter of the magnetic grains in the first magnetic recording layer 122a is about 1 nm smaller than the average grain diameter of the magnetic grains in the second magnetic recording layer 122b (the magnetic grains in the first magnetic recording layer 122a
  • the ratio (A / B) of the average grain size A of the magnetic grains in the first magnetic recording layer 122a to the average grain size B of the magnetic grains in the second magnetic recording layer 122b is 1. If it is 16, that is, 1 or more, the role of miniaturizing each magnetic recording layer 122 and improving the orientation cannot be shared, and even if two magnetic recording layers 122 are provided, an improvement in SNR cannot be expected.
  • Example 2 the first magnetic recording layer 122a was incorporated as an example of a composite oxide, and Cr 2 O 3 and SiO 2 were contained therein to produce an hcp crystal structure of CoCrPt—Cr 2 O 3 —SiO 2.
  • the second magnetic recording layer 122b as an example of a composite oxide (a plurality of types of oxides) containing SiO 2 and TiO 2 to form a CoCrPt—SiO 2 —TiO 2 hcp crystal structure.
  • the characteristics of a plurality of oxides can be obtained by forming the second magnetic recording layer 122b by containing a composite oxide of SiO 2 and TiO 2 . Therefore, the noise can be reduced and the SNR can be improved by further miniaturizing and isolating the magnetic particles of the magnetic recording layer 122.
  • SiO 2 promotes miniaturization and isolation of magnetic particles
  • TiO 2 has an effect of suppressing the particle size dispersion of crystal particles.
  • FIG. 4 is an explanatory diagram for explaining the perpendicular magnetic recording medium 100 manufactured by using the method for manufacturing a perpendicular magnetic recording medium according to the present embodiment.
  • the average particle diameter of the magnetic grains (crystal grains) in the first magnetic recording layer 122a is The film is formed to be smaller than the average particle diameter of the magnetic grains (crystal grains) in the second magnetic recording layer 122b. Therefore, the magnetic grains can be refined in the first magnetic recording layer 122a, and the orientation of the magnetic grains can be reliably controlled in the second magnetic recording layer 122b. The refinement of magnetic grains and the improvement in orientation are in a trade-off relationship. For this reason, with the above configuration, each magnetic recording layer 122 can play a role, and the SNR can be improved while maintaining a high coercive force Hc.
  • the present embodiment can also be applied to the nonmagnetic granular layer 120. That is, by making the average particle size of the nonmagnetic granular layer 120 smaller than the average particle size of the first magnetic recording layer 122a, the average particle size of the first magnetic recording layer 122a is effectively reduced, and the first magnetic recording layer 122a is reduced.
  • the magnitude relationship between the crystal grains (magnetic grains) of the recording layer 122a and the second magnetic recording layer 122b can be adjusted.
  • the magnetic recording layer 122 is composed of two layers, the first magnetic recording layer 122a and the second magnetic recording layer 122b.
  • the magnetic recording layer 122 is composed of three or more layers, at least the average grain size of the magnetic grains of the upper magnetic recording layer 122 is larger than the average grain size of the magnetic grains of the lower magnetic recording layer 122. By doing so, the same effect as described above can be obtained.
  • the present invention can be used as a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording type HDD or the like and a method of manufacturing the perpendicular magnetic recording medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

 2層構造の磁気記録層122において結晶粒子の粒径を工夫することで、高い保磁力を維持したまま、SNRを向上させた磁気記録層122を備える垂直磁気記録媒体100を提供することを目的としている。本発明にかかる垂直磁気記録媒体100の製造方法は、ディスク基体110上に少なくとも下地層118、第1磁気記録層122a、第2磁気記録層122bをこの順に備える垂直磁気記録媒体100であって、第1磁気記録層122aおよび第2磁気記録層122bは柱状に成長した結晶粒子の間に非磁性物質からなる粒界部を形成したグラニュラー構造の強磁性層であり、第1磁気記録層122a中の結晶粒子の平均粒径をAnm、第2磁気記録層122b中の結晶粒子の平均粒径をBnmとした場合、A<Bであることを特徴としている(図4)。

Description

垂直磁気記録媒体および垂直磁気記録媒体の製造方法
 本発明は、垂直磁気記録方式のHDD(ハードディスクドライブ)などに搭載される垂直磁気記録媒体および垂直磁気記録媒体の製造方法に関する。
 近年の情報処理の大容量化に伴い、各種の情報記録技術が開発されている。特に磁気記録技術を用いたHDDの面記録密度は年率100%程度の割合で増加し続けている。最近では、HDD等に用いられる2.5インチ径磁気ディスクにして、1枚あたり160GBを超える情報記録容量が求められるようになってきている。このような要請にこたえるためには1平方インチあたり250GBitを超える情報記録密度を実現することが求められる。
 HDD等に用いられる磁気ディスクにおいて高記録密度を達成するために、近年、垂直磁気記録方式の磁気ディスク(垂直磁気記録ディスク)が提案されている。従来の面内磁気記録方式は磁気記録層の磁化容易軸が基体面の平面方向に配向されていたが、垂直磁気記録方式は磁化容易軸が基体面に対して垂直方向に配向するよう調整されている。
 例えば特許文献1では、基板上に下地層、Co系垂直磁気記録層、保護層をこの順で形成してなる垂直磁気記録媒体に関する技術が開示されている。また、特許文献2には、粒子性の記録層に交換結合した人口格子膜連続層(交換結合層)を付着させた構造からなる垂直磁気記録媒体が開示されている。
 垂直磁気記録方式は面内記録方式に比べて熱揺らぎ現象を抑制することができるので、高記録密度化に対して好適である。
 また従来から、保磁力HcとSNR(Signal-Noise Ratio)の向上を目的として、磁気記録層を2層とする構成が提案されている。例えば特許文献3には、磁気記録層を2層として、基体側の記録層をCoCrPtTaを含有した組成とし、基体から遠い側の記録層をCoCrPtBを含有した組成とする構成が開示されている。
特開2002-92865号公報 米国特許第6468670号明細書 特開2001-256632号公報
 上述したように、さらなる高記録密度を達成するためには、保磁力Hcを向上させる必要がある。保磁力Hcを向上させるために、磁気記録層の膜厚を厚くする方法が考えられるが、膜厚を厚くすると、SNRが低下してしまう。
 そこで、本願発明者らは、磁気記録層を2層構造とし、2層の磁気記録層の粒界を形成する非磁性物質の量(磁性物質に対する比率)を適切に制御することで、保磁力Hcを向上させつつSNRをも向上させることを見出した。
 しかし、本願発明者らが、さらに詳細に2層構造の磁気記録層を検討した結果、必ずしも非磁性物質の組成や量だけで保磁力HcとSNRが決定されるわけではないことを発見した。すなわち、磁性物質からなる結晶粒子と非磁性物質からなる粒界の組成(材質および比率)が同じであったとしても、他の要因によってSNRが増減していることがわかった。
 本発明は、磁気記録層が有する上記問題点に鑑みてなされたものであり、本発明の目的は、2層構造の磁気記録層において結晶粒子の粒径を工夫することで、高い保磁力を維持したまま、SNRを向上させた磁気記録層を備える垂直磁気記録媒体および垂直磁気記録媒体の製造方法を提供することである。
 上記課題を解決するために、本発明の発明者らが鋭意検討したところ、2層で形成された磁気記録層における層ごとの結晶粒子の粒径が所定の関係を有することによりSNRをさらに向上させることができることを見出し、本発明を完成するに到った。
 すなわち上記課題を解決するために、本発明にかかる垂直磁気記録媒体の代表的な構成は、基体上に少なくとも下地層、第1磁気記録層、第2磁気記録層をこの順に備える垂直磁気記録媒体であって、第1磁気記録層および第2磁気記録層は柱状に成長した結晶粒子の間に非磁性物質からなる粒界部を形成したグラニュラー構造の強磁性層であり、第1磁気記録層中の結晶粒子の平均粒径をAnm、第2磁気記録層中の結晶粒子の平均粒径をBnmとした場合、A<Bであることを特徴とする。
 上記第1磁気記録層の結晶粒子の粒径を第2磁気記録層の結晶粒子の粒径よりも小さくした構成により、第1磁気記録層にて結晶粒子を微細化し、第2磁気記録層にて結晶粒子の配向性を向上させることができる。結晶粒子の微細化と配向性向上はトレードオフの関係にある。このため、上記構成にすることにより、各磁気記録層でそれぞれの役割を担うことができ、高い保磁力Hcを維持したまま、SNRを向上させることができる。
 上記第1磁気記録層中の結晶粒子の平均粒径と、第2磁気記録層中の結晶粒子の平均粒径との比は、0.8<A/B<1であるとよい。
 これにより、最適にSNRを向上させることができる。なお、第1磁気記録層中の結晶粒子の平均粒径と第2磁気記録層中の結晶粒子の平均粒径との比が上記範囲以外となると、各磁気記録層の微細化と配向性向上の役割分担ができなくなり磁気記録層を2層設けてもSNRの向上は見込めない。
 上記第1磁気記録層と第2磁気記録層の総厚が15nm以下であるとよい。
 第1磁気記録層の膜厚は5nm以下が好ましく、望ましくは3nm~4nmである。3nmより小さいと第2磁気記録層の組成分離を促進することができないためであり、4nmより大きいとR/W特性(リード・ライト特性)が低下するためである。第2磁気記録層の膜厚は5nm以上が好ましく、望ましくは7nm~15nmである。7nmより小さいと十分な保磁力が得られなくなるためであり、15nmより大きいと高い(絶対値の大きい)逆磁区核形成磁界Hnが得られなくなってしまうためである。したがって、高い逆磁区核形成磁界Hnを得るためには、第1磁気記録層と第2磁気記録層の総厚が15nm以下であることが好ましい。
 上記非磁性物質は、クロム、酸素、または酸化物のいずれか、または複数を含んでもよい。
 非磁性物質とは、結晶粒子(磁性粒もしくは磁性グレイン)間の交換相互作用が抑制、または、遮断されるように、磁性粒の周囲に粒界部を形成しうる物質であって、コバルト(Co)と固溶しない非磁性物質であればよい。例えばクロム(Cr)、酸素(O)、酸化珪素(SiO)、酸化クロム(Cr)、酸化チタン(TiO)、酸化ジルコン(ZrO)、酸化タンタル(Ta)、酸化ニオブ(Nb)、酸化ボロン(B)などの酸化物を例示できる。
 上記酸化物は、SiO、TiO、Cr、Ta、Nb、BまたはZrOの群から選択された、1または複数の酸化物を含むとよい。特に、SiOは磁性粒子の微細化および孤立化(隣接する磁性粒子との分離)を促進し、TiOは結晶粒子の粒径分散を抑制させる効果がある。またCrは保磁力Hcを増加させることが可能となる。さらに、これらの酸化物を複合させて磁気記録層の粒界に偏析させることにより、双方の利益を享受することができる。
 上記第2磁気記録層に含まれる酸化物は、SiO、TiO、Cr、Ta、Nb、BまたはZrOの群から選択された、1または複数の酸化物を含むとよい。これにより、粒界部を確実に形成し結晶粒子を明確に分離することができる。したがって、SNRを向上させることができる。
 上記課題を解決するために、本発明にかかる垂直磁気記録媒体の製造方法の代表的な構成は、基体上に少なくとも下地層、第1磁気記録層、及び第2磁気記録層をこの順に備える垂直磁気記録媒体の製造方法であって、第1磁気記録層として組成がクロム、酸素、または酸化物のいずれか、または複数の酸化物を含む磁性ターゲットを用いて、ガス圧を約0.5Pa、電力を約100から約700Wとすることにより、柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラー構造の強磁性層を形成し、組成がクロム、酸素、または酸化物のいずれか、または複数の酸化物を含む磁性ターゲットを用いて、ガス圧を約0.5Pa、電力を約100から約1000Wとすることにより、第2磁気記録層として柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラー構造の強磁性層を形成することにより、第1磁気記録層中の結晶粒子の平均粒径をAnm、第2磁気記録層中の結晶粒子の平均粒径をBnmとした場合、A<Bとすることを特徴とする。
 上述した垂直磁気記録媒体の技術的思想に基づく構成要素やその説明は、当該垂直磁気記録媒体の製造方法にも適用可能である。
 本発明にかかる垂直磁気記録媒体は、2層構造の磁気記録層において結晶粒子の粒径を工夫することで、高い保磁力を維持したまま、SNRを向上させた磁気記録層を備えることが可能となる。
実施形態にかかる垂直磁気記録媒体の構成を説明する図である。 磁気記録層を成膜する際のガス圧とSNRの関係と投入電力とSNRの関係を説明するための説明図である。 第1磁気記録層の磁性粒の平均粒径および第2磁気記録層の磁性粒の平均粒径の関係とSNRの関係を説明するための説明図である。 本実施形態にかかる垂直磁気記録媒体の製造方法を用いて製造した垂直磁気記録媒体を説明するための説明図である。
符号の説明
100  …垂直磁気記録媒体
110  …ディスク基体
112  …付着層
114  …軟磁性層
114a  …第1軟磁性層
114b  …スペーサ層
114c  …第2軟磁性層
116  …前下地層
118  …下地層
118a  …第1下地層
118b  …第2下地層
120  …非磁性グラニュラー層
122  …磁気記録層
122a  …第1磁気記録層
122b  …第2磁気記録層
124  …連続層
126  …媒体保護層
128  …潤滑層
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
(実施形態)
 本発明にかかる垂直磁気記録媒体の製造方法の実施形態について説明する。図1は本実施形態にかかる垂直磁気記録媒体100の構成を説明する図である。図1に示す垂直磁気記録媒体100は、基体としてのディスク基体110、付着層112、第1軟磁性層114a、スペーサ層114b、第2軟磁性層114c、前下地層116、第1下地層118a、第2下地層118b、非磁性グラニュラー層120、第1磁気記録層122a、第2磁気記録層122b、連続層124、媒体保護層126、潤滑層128で構成されている。なお第1軟磁性層114a、スペーサ層114b、第2軟磁性層114cは、あわせて軟磁性層114を構成する。第1下地層118aと第2下地層118bはあわせて下地層118を構成する。第1磁気記録層122aと第2磁気記録層122bとはあわせて磁気記録層122を構成する。
 以下に説明するように、本実施形態に示す垂直磁気記録媒体100は、磁気記録層122の第1磁気記録層122aおよび第2磁気記録層122bのいずれかまたは両方に複数の種類の酸化物(以下、「複合酸化物」という。)を含有させることにより、非磁性の粒界に複合酸化物を偏析させている。
 ディスク基体110は、アモルファスのアルミノシリケートガラスをダイレクトプレスで円板状に成型したガラスディスクを用いることができる。なおガラスディスクの種類、サイズ、厚さ等は特に制限されない。ガラスディスクの材質としては、例えば、アルミノシリケートガラス、ソーダライムガラス、ソーダアルミノケイ酸ガラス、アルミノボロシリケートガラス、ボロシリケートガラス、石英ガラス、チェーンシリケートガラス、又は、結晶化ガラス等のガラスセラミックなどが挙げられる。このガラスディスクに研削、研磨、化学強化を順次施し、化学強化ガラスディスクからなる平滑な非磁性のディスク基体110を得ることができる。
 ディスク基体110上に、DCマグネトロンスパッタリング法にて付着層112から連続層124まで順次成膜を行い、媒体保護層126はCVD法により成膜することができる。この後、潤滑層128をディップコート法により形成することができる。なお、生産性が高いという点で、インライン型成膜方法を用いることも好ましい。以下、各層の構成および製造方法について説明する。
 付着層112は非晶質の下地層であって、ディスク基体110に接して形成され、この上に成膜される軟磁性層114とディスク基体110との剥離強度を高める機能を備えている。付着層112は、ディスク基体110がアモルファスガラスからなる場合、そのアモルファスガラス表面に対応させる為にアモルファスの合金膜とすることが好ましい。
 付着層112としては、例えばCrTi系非晶質層を選択することができる。
 軟磁性層114は、垂直磁気記録方式において記録層に垂直方向に磁束を通過させるために、記録時に一時的に磁路を形成する層である。軟磁性層114は第1軟磁性層114aと第2軟磁性層114cの間に非磁性のスペーサ層114bを介在させることによって、AFC(Antiferro-magnetic exchange coupling:反強磁性交換結合)を備えるように構成することができる。これにより軟磁性層114の磁化方向を高い精度で磁路(磁気回路)に沿って整列させることができ、磁化方向の垂直成分が極めて少なくなるため、軟磁性層114から生じるノイズを低減することができる。第1軟磁性層114a、第2軟磁性層114cの組成としては、CoTaZrなどのコバルト系合金、CoCrFeBなどのCo-Fe系合金、[Ni-Fe/Sn]n多層構造のようなNi-Fe系合金などを用いることができる。
 前下地層116は非磁性の合金層であり、軟磁性層114を防護する作用と、この上に成膜される下地層118に含まれる六方細密充填構造(hcp構造)の磁化容易軸をディスク垂直方向に配向させる機能を備える。前下地層116は面心立方構造(fcc構造)の(111)面、または体心立方構造(bcc構造)の(110)面がディスク基体110の主表面と平行となっていることが好ましい。また前下地層116は、これらの結晶構造とアモルファスとが混在した構成としてもよい。前下地層の材質としては、Ni、Cu、Pt、Pd、Zr、Hf、Nb、Taから選択することができる。さらにこれらの金属を主成分とし、Ti、V、Ta、Cr、Mo、Wのいずれか1つ以上の添加元素を含む合金としてもよい。例えばfcc構造としてはNiW、CuW、CuCr、bcc構造としてはTaを好適に選択することができる。
 下地層118はhcp構造であって、磁気記録層122のCoのhcp構造の結晶をグラニュラー構造として成長させる作用を有している。したがって、下地層118の結晶配向性が高いほど、すなわち下地層118の結晶の(0001)面がディスク基体110の主表面と平行になっているほど、磁気記録層22の配向性を向上させることができる。下地層の材質としてはRuが代表的であるが、その他に、RuCr、RuCoから選択することができる。Ruはhcp構造をとり、また結晶の格子間隔がCoと近いため、Coを主成分とする磁気記録層を良好に配向させることができる。
 下地層118をRuとした場合において、スパッタ時のガス圧を変更することによりRuからなる2層構造とすることができる。具体的には、上層側の第2下地層118bを形成する際に、下層側の第1下地層118aを形成するときよりもArのガス圧を高くする。ガス圧を高くするとスパッタリングされるRuイオンの自由移動距離が短くなるため、成膜速度が遅くなり、結晶分離性を改善することができる。また高圧にすることにより、結晶格子の大きさが小さくなる。Ruの結晶格子の大きさはCoの結晶格子よりも大きいため、Ruの結晶格子を小さくすればCoのそれに近づき、Coのグラニュラー層の結晶配向性をさらに向上させることができる。
 非磁性グラニュラー層120は非磁性のグラニュラー層である。下地層118のhcp結晶構造の上に非磁性のグラニュラー層を形成し、この上に第1磁気記録層122aのグラニュラー層を成長させることにより、磁性のグラニュラー層を初期成長の段階(立ち上がり)から分離させる作用を有している。非磁性グラニュラー層120の組成は、Co系合金からなる非磁性の結晶粒子の間に、非磁性物質を偏析させて粒界を形成することにより、グラニュラー構造とすることができる。特にCoCr-SiO、CoCrRu-SiOを好適に用いることができ、さらにRuに代えてRh(ロジウム)、Pd(パラジウム)、Ag(銀)、Os(オスミウム)、Ir(イリジウム)、Au(金)も利用することができる。また非磁性物質とは、磁性粒(磁性グレイン)間の交換相互作用が抑制、または、遮断されるように、磁性粒の周囲に粒界部を形成しうる物質であって、コバルト(Co)と固溶しない非磁性物質であればよい。例えば酸化珪素(SiOx)、クロム(Cr)、酸化クロム(CrO)、酸化チタン(TiO)、酸化ジルコン(ZrO)、酸化タンタル(Ta)を例示できる。
 磁気記録層122は、Co系合金、Fe系合金、Ni系合金から選択される硬磁性体の磁性粒の周囲に非磁性物質を偏析させて粒界を形成した柱状のグラニュラー構造を有した強磁性層である。この磁性粒は、非磁性グラニュラー層120を設けることにより、そのグラニュラー構造から継続してエピタキシャル成長することができる。本実施形態では組成および膜厚の異なる第1磁気記録層122aと、第2磁気記録層122bとから構成されている。第1磁気記録層122aと第2磁気記録層122bは、いずれも非磁性物質としてはSiO、Cr、TiO、B、Fe等の酸化物や、BN等の窒化物、B等の炭化物を好適に用いることができる。
 また本実施形態では、第1磁気記録層122a中の磁性粒(結晶粒子)の平均粒径をAnm、第2磁気記録層122b中の磁性粒(結晶粒子)の平均粒径をBnmとした場合、A<Bとしている。第1磁気記録層122aの磁性粒の粒径を第2磁気記録層122bの磁性粒の粒径よりも小さくした構成により、第1磁気記録層122aにて磁性粒を微細化し、第2磁気記録層122bにて磁性粒の配向性を向上させることができる。磁性粒の微細化と配向性向上はトレードオフの関係にある。このため、上記構成にすることにより、各磁気記録層122でそれぞれの役割を担うことができ、高い保磁力Hcを維持したまま、SNRを向上させることができる。
 さらに本実施形態では、第1磁気記録層122aまたは第2磁気記録層122bのいずれかまたは両方において2以上の非磁性物質を複合して用いることもできる。このとき含有する非磁性物質の種類には限定がないが、特にSiOおよびTiOを含むことが好ましく、次にいずれかに代えて/加えてCrを好適に用いることができる。例えば第1磁気記録層122aは、粒界部に複合酸化物(複数の種類の酸化物)の例としてCrとSiOを含有し、CoCrPt-Cr-SiOのhcp結晶構造を形成することができる。また例えば第2磁気記録層122bは、粒界部に複合酸化物の例としてSiOとTiOを含有し、CoCrPt-SiO-TiOのhcp結晶構造を形成することができる。
 連続層124はグラニュラー構造を有する磁気記録層122の上に、面内方向に磁気的に連続した層(連続層とも呼ばれる)である。連続層124は必ずしも必要ではないが、これを設けることにより磁気記録層122の高密度記録性と低ノイズ性に加えて、逆磁区核形成磁界Hnの向上、耐熱揺らぎ特性の改善、オーバーライト特性の改善を図ることができる。
 媒体保護層126は、真空を保ったままカーボンをCVD法により成膜して形成することができる。媒体保護層126は、磁気ヘッドの衝撃から当該垂直磁気記録媒体を防護するための保護層である。一般にCVD法によって成膜されたカーボンはスパッタ法によって成膜したものと比べて膜硬度が向上するので、磁気ヘッドからの衝撃に対してより有効に当該垂直磁気記録媒体を防護することができる。
 潤滑層128は、PFPE(パーフロロポリエーテル)をディップコート法により成膜することができる。PFPEは長い鎖状の分子構造を有し、媒体保護層126表面のN原子と高い親和性をもって結合する。この潤滑層128の作用により、垂直磁気記録媒体100の表面に磁気ヘッドが接触しても、媒体保護層126の損傷や欠損を防止することができる。
 以上の製造工程により、垂直磁気記録媒体100を得ることができる。以下に、実施例と比較例を用いて本発明の有効性について説明する。
(実施例と評価)
 ディスク基体110上に、真空引きを行った成膜装置を用いて、DCマグネトロンスパッタリング法にてAr雰囲気中で、付着層112から連続層124まで順次成膜を行った。付着層112は、CrTiとした。軟磁性層114は、第1軟磁性層114a、第2軟磁性層114cの組成はFeCoTaZrとし、スペーサ層114bの組成はRuとした。前下地層116の組成はfcc構造のNiW合金とした。下地層118は、第1下地層118aは低圧Ar下でRuを成膜し、第2下地層118bは高圧Ar下でRuを成膜した。非磁性グラニュラー層120の組成は非磁性のCoCr-SiOとした。磁気記録層122は下記の実施例および比較例の構成で形成した。連続層124の組成はCoCrPtBとした。媒体保護層126はCVD法によりCおよびCNを用いて成膜し、潤滑層128はディップコート法によりPFPEを用いて形成した。
 図2は、磁気記録層122を成膜する際のガス圧とSNRの関係と投入電力とSNRの関係を説明するための説明図である。特に図2(a)は、第1磁気記録層122aの膜厚を3nm、磁性粒の平均粒径を6nmと固定し第2磁気記録層122bを成膜する際の条件(ガス圧および投入電力)とSNRの関係を示した図である。また、図2(b)は第2磁気記録層122bの膜厚を10nm、磁性粒の平均粒径を7nmと固定し第1磁気記録層122aを成膜する際の条件(ガス圧および投入電力)とSNRの関係を示した図である。なお、いずれの場合においても投入電力と成膜時間の積が一定となるように成膜時間を調整し、膜厚を一定としている。この際、第1磁気記録層122aは、複合酸化物の例としてCrとSiOを含有させたCoCrPt―Cr―SiOのhcp結晶構造を形成した。また、第2磁気記録層122bは、複合酸化物の例としてSiOとTiOを含有させたCoCrPt-SiO-TiOのhcp結晶構造を形成した。
 図2(a)に示すように、第2磁気記録層122bは、ガス圧2.5Pa、投入電力400Wで成膜を行うと最適なSNRを得ることができる。この際の第2磁気記録層122bの磁性粒の平均粒径は、透過型電子顕微鏡(Transmission Electron Microscope:TEM)で計測することができ、6.7nmであった。
 図2(b)に示すように、第1磁気記録層122aは、ガス圧3.0Pa、投入電力200Wで成膜を行うと最適なSNRを得ることができる。この際の第1磁気記録層122aの磁性粒の平均粒径は、透過型電子顕微鏡で計測することができ、6.5nmであった。
 以下、磁性粒の平均粒径が6nmである第1磁気記録層122aおよび磁性粒の平均粒径が7nmである第2磁気記録層122bすなわち磁性粒の平均粒径が第1磁気記録層122a<第2磁気記録層122bを実施例1とする。また、磁性粒の平均粒径が7nmである第1磁気記録層122aおよび磁性粒の平均粒径が6nmである第2磁気記録層122bすなわち磁性粒の平均粒径が第1磁気記録層122a>第2磁気記録層122bを比較例とする。
 図3は、第1磁気記録層122aの磁性粒の平均粒径および第2磁気記録層122bの磁性粒の平均粒径の関係とSNRの関係を説明するための説明図である。
 図3に示すように、第1磁気記録層122aに含まれる磁性粒の粒径が第2磁気記録層122bに含まれる磁性粒の粒径よりも小さい方が、第1磁気記録層122aに含まれる磁性粒の粒径が第2磁気記録層122bに含まれる磁性粒の粒径よりも大きい場合と比較して、高SNRを得ることができる。
 また第1磁気記録層122a中の磁性粒の平均粒径が、第2磁気記録層122b中の磁性粒の平均粒径よりも約1nm小さいことにより(第1磁気記録層122a中の磁性粒の平均粒径をA、第2磁気記録層122b中の磁性粒の平均粒径をBとしたとき、A/B≒0.85)、最適にSNRを向上させることができる。なお、比較例に示すように、第1磁気記録層122a中の磁性粒の平均粒径Aと第2磁気記録層122b中の磁性粒の平均粒径Bの比(A/B)が1.16すなわち1以上であると、各磁気記録層122の微細化と配向性向上の役割分担ができなくなり磁気記録層122を2層設けてもSNRの向上は見込めなくなる。
 さらなるSNR向上を目指すために、実施例2では、第1磁気記録層122aを複合酸化物の例としてCrとSiOを含有させてCoCrPt―Cr―SiOのhcp結晶構造を形成し、第2磁気記録層122bを複合酸化物(複数の種類の酸化物)の例としてSiOとTiOを含有させてCoCrPt-SiO-TiOのhcp結晶構造を形成した。
 図3に示すように、第2磁気記録層122bをSiOとTiOの複合酸化物を含有させて形成することにより、複数の酸化物の特性を得ることができる。したがって、磁気記録層122の磁性粒子のさらなる微細化と孤立化を図ることによりノイズを低減し、かつSNRを向上させることができた。
 特に、SiOは磁性粒子の微細化および孤立化を促進し、TiOは結晶粒子の粒径分散を抑制させる効果がある。そしてこれらの酸化物を複合させて磁気記録層122の粒界に偏析させることにより、双方の利益を享受することができる。
 図4は、本実施形態にかかる垂直磁気記録媒体の製造方法を用いて製造した垂直磁気記録媒体100を説明するための説明図である。
 図4に示すように、本実施形態にかかる垂直磁気記録媒体の製造方法を用いて製造した垂直磁気記録媒体100は、第1磁気記録層122a中の磁性粒(結晶粒子)の平均粒径は、第2磁気記録層122b中の磁性粒(結晶粒子)の平均粒径よりも小さくなるように成膜される。したがって、第1磁気記録層122aにて磁性粒を微細化し、第2磁気記録層122bにて磁性粒の配向を確実に制御することができる。磁性粒の微細化と配向性向上はトレードオフの関係にある。このため、上記構成にすることにより、各磁気記録層122でそれぞれの役割を担うことができ、高い保磁力Hcを維持したまま、SNRを向上させることができる。
 また、本実施形態は非磁性グラニュラー層120にも適用することができる。すなわち、非磁性グラニュラー層120の平均粒径を、第1磁気記録層122aの平均粒径よりも小さくすることにより、第1磁気記録層122aの平均粒径を効果的に低減させ、第1磁気記録層122aと第2磁気記録層122bの結晶粒子(磁性粒)の大小関係を調整することができる。
 さらには、上記実施形態および実施例においては、磁気記録層122を第1磁気記録層122aと第2磁気記録層122bの2層からなると説明した。しかし磁気記録層122がさらに3以上の層からなる場合であっても、少なくとも上層の磁気記録層122の磁性粒の平均粒径を下層の磁気記録層122の磁性粒の平均粒径よりも大きくすることにより、上記と同様の効果を得ることができる。
 以上、添付図面を参照しながら本発明の好適な実施例について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 本発明は、垂直磁気記録方式のHDDなどに搭載される垂直磁気記録媒体および垂直磁気記録媒体の製造方法として利用可能である。

Claims (7)

  1.  基体上に少なくとも下地層、第1磁気記録層、第2磁気記録層をこの順に備える垂直磁気記録媒体であって、
     第1磁気記録層および第2磁気記録層は柱状に成長した結晶粒子の間に非磁性物質からなる粒界部を形成したグラニュラー構造の強磁性層であり、
     前記第1磁気記録層中の前記結晶粒子の平均粒径をAnm、前記第2磁気記録層中の前記結晶粒子の平均粒径をBnmとした場合、A<Bであることを特徴とする垂直磁気記録媒体。
  2.  前記第1磁気記録層中の前記結晶粒子の平均粒径と、前記第2磁気記録層中の前記結晶粒子の平均粒径との比は、0.8<A/B<1であることを特徴とする請求項1記載の垂直磁気記録媒体。
  3.  前記第1磁気記録層と第2磁気記録層の総厚が15nm以下であることを特徴とする請求項1または2に記載の垂直磁気記録媒体。
  4.  前記非磁性物質は、クロム、酸素、または酸化物のいずれか、または複数を含むことを特徴とする請求項1から3のいずれか1項に記載の垂直磁気記録媒体。
  5.  前記酸化物は、SiO、TiO、Cr、Ta、Nb、BまたはZrOの群から選択された、1または複数の酸化物を含むことを特徴とする請求項4に記載の垂直磁気記録媒体。
  6.  前記第2磁気記録層に含まれる酸化物は、SiO、TiO、Cr、Ta、Nb、BまたはZrOの群から選択された、1または複数の酸化物を含むことを特徴とする請求項4に記載の垂直磁気媒体。
  7.  基体上に少なくとも下地層、第1磁気記録層、及び第2磁気記録層をこの順に備える垂直磁気記録媒体の製造方法であって、
     前記第1磁気記録層として組成がクロム、酸素、または酸化物のいずれか、または複数の酸化物を含む磁性ターゲットを用いて、ガス圧を約0.5Pa、電力を約100から約700Wとすることにより、柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラー構造の強磁性層を形成し、
     組成がクロム、酸素、または酸化物のいずれか、または複数の酸化物を含む磁性ターゲットを用いて、ガス圧を約0.5Pa、電力を約100から約1000Wとすることにより、前記第2磁気記録層として柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラー構造の強磁性層を形成することにより、
     前記第1磁気記録層中の前記結晶粒子の平均粒径をAnm、前記第2磁気記録層中の前記結晶粒子の平均粒径をBnmとした場合、A<Bとすることを特徴とする垂直磁気記録媒体の製造方法。
PCT/JP2009/056050 2008-03-26 2009-03-26 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 WO2009119708A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/934,935 US8580410B2 (en) 2008-03-26 2009-03-26 Perpendicular magnetic recording medium and process for manufacture thereof
US14/051,414 US9183869B2 (en) 2008-03-26 2013-10-10 Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008082250A JP2009238298A (ja) 2008-03-26 2008-03-26 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP2008-082250 2008-03-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/934,935 A-371-Of-International US8580410B2 (en) 2008-03-26 2009-03-26 Perpendicular magnetic recording medium and process for manufacture thereof
US14/051,414 Division US9183869B2 (en) 2008-03-26 2013-10-10 Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
WO2009119708A1 true WO2009119708A1 (ja) 2009-10-01

Family

ID=41113896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056050 WO2009119708A1 (ja) 2008-03-26 2009-03-26 垂直磁気記録媒体および垂直磁気記録媒体の製造方法

Country Status (3)

Country Link
US (2) US8580410B2 (ja)
JP (1) JP2009238298A (ja)
WO (1) WO2009119708A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110242702A1 (en) * 2010-03-30 2011-10-06 Kabushiki Kaisha Toshiba Magnetic recording medium, method of manufacturing the same, and magnetic recording/reproduction apparatus

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117895B2 (ja) 2008-03-17 2013-01-16 ダブリュディ・メディア・シンガポール・プライベートリミテッド 磁気記録媒体及びその製造方法
JP2009238298A (ja) 2008-03-26 2009-10-15 Hoya Corp 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP2009238299A (ja) 2008-03-26 2009-10-15 Hoya Corp 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP5453666B2 (ja) 2008-03-30 2014-03-26 ダブリュディ・メディア・シンガポール・プライベートリミテッド 磁気ディスク及びその製造方法
WO2010038773A1 (ja) 2008-09-30 2010-04-08 Hoya株式会社 磁気ディスク及びその製造方法
WO2010064724A1 (ja) 2008-12-05 2010-06-10 Hoya株式会社 磁気ディスク及びその製造方法
WO2010116908A1 (ja) 2009-03-28 2010-10-14 Hoya株式会社 磁気ディスク用潤滑剤化合物及び磁気ディスク
SG165294A1 (en) 2009-03-30 2010-10-28 Wd Media Singapore Pte Ltd Perpendicular magnetic recording medium and method of manufacturing the same
US20100300884A1 (en) 2009-05-26 2010-12-02 Wd Media, Inc. Electro-deposited passivation coatings for patterned media
JP2011096333A (ja) * 2009-10-30 2011-05-12 Wd Media Singapore Pte Ltd 垂直磁気記録媒体の製造方法
US9330685B1 (en) 2009-11-06 2016-05-03 WD Media, LLC Press system for nano-imprinting of recording media with a two step pressing method
US8496466B1 (en) 2009-11-06 2013-07-30 WD Media, LLC Press system with interleaved embossing foil holders for nano-imprinting of recording media
JP5643516B2 (ja) 2010-01-08 2014-12-17 ダブリュディ・メディア・シンガポール・プライベートリミテッド 垂直磁気記録媒体
JP5574414B2 (ja) 2010-03-29 2014-08-20 ダブリュディ・メディア・シンガポール・プライベートリミテッド 磁気ディスクの評価方法及び磁気ディスクの製造方法
JP5645476B2 (ja) 2010-05-21 2014-12-24 ダブリュディ・メディア・シンガポール・プライベートリミテッド 垂直磁気ディスク
JP5634749B2 (ja) 2010-05-21 2014-12-03 ダブリュディ・メディア・シンガポール・プライベートリミテッド 垂直磁気ディスク
JP2011248968A (ja) 2010-05-28 2011-12-08 Wd Media (Singapore) Pte. Ltd 垂直磁気ディスク
JP2011248969A (ja) 2010-05-28 2011-12-08 Wd Media (Singapore) Pte. Ltd 垂直磁気ディスク
JP2011248967A (ja) 2010-05-28 2011-12-08 Wd Media (Singapore) Pte. Ltd 垂直磁気ディスクの製造方法
JP2012009086A (ja) 2010-06-22 2012-01-12 Wd Media (Singapore) Pte. Ltd 垂直磁気記録媒体及びその製造方法
US8889275B1 (en) 2010-08-20 2014-11-18 WD Media, LLC Single layer small grain size FePT:C film for heat assisted magnetic recording media
US8743666B1 (en) 2011-03-08 2014-06-03 Western Digital Technologies, Inc. Energy assisted magnetic recording medium capable of suppressing high DC readback noise
US8711499B1 (en) 2011-03-10 2014-04-29 WD Media, LLC Methods for measuring media performance associated with adjacent track interference
US8491800B1 (en) 2011-03-25 2013-07-23 WD Media, LLC Manufacturing of hard masks for patterning magnetic media
US9028985B2 (en) 2011-03-31 2015-05-12 WD Media, LLC Recording media with multiple exchange coupled magnetic layers
US8565050B1 (en) 2011-12-20 2013-10-22 WD Media, LLC Heat assisted magnetic recording media having moment keeper layer
US9029308B1 (en) 2012-03-28 2015-05-12 WD Media, LLC Low foam media cleaning detergent
US9269480B1 (en) 2012-03-30 2016-02-23 WD Media, LLC Systems and methods for forming magnetic recording media with improved grain columnar growth for energy assisted magnetic recording
US8941950B2 (en) 2012-05-23 2015-01-27 WD Media, LLC Underlayers for heat assisted magnetic recording (HAMR) media
US8993134B2 (en) 2012-06-29 2015-03-31 Western Digital Technologies, Inc. Electrically conductive underlayer to grow FePt granular media with (001) texture on glass substrates
US9034492B1 (en) 2013-01-11 2015-05-19 WD Media, LLC Systems and methods for controlling damping of magnetic media for heat assisted magnetic recording
US10115428B1 (en) 2013-02-15 2018-10-30 Wd Media, Inc. HAMR media structure having an anisotropic thermal barrier layer
US9153268B1 (en) 2013-02-19 2015-10-06 WD Media, LLC Lubricants comprising fluorinated graphene nanoribbons for magnetic recording media structure
US9183867B1 (en) 2013-02-21 2015-11-10 WD Media, LLC Systems and methods for forming implanted capping layers in magnetic media for magnetic recording
US9196283B1 (en) 2013-03-13 2015-11-24 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer using a chemical buffer
US9190094B2 (en) 2013-04-04 2015-11-17 Western Digital (Fremont) Perpendicular recording media with grain isolation initiation layer and exchange breaking layer for signal-to-noise ratio enhancement
US9093122B1 (en) 2013-04-05 2015-07-28 WD Media, LLC Systems and methods for improving accuracy of test measurements involving aggressor tracks written to disks of hard disk drives
US8947987B1 (en) 2013-05-03 2015-02-03 WD Media, LLC Systems and methods for providing capping layers for heat assisted magnetic recording media
US8867322B1 (en) 2013-05-07 2014-10-21 WD Media, LLC Systems and methods for providing thermal barrier bilayers for heat assisted magnetic recording media
US9296082B1 (en) 2013-06-11 2016-03-29 WD Media, LLC Disk buffing apparatus with abrasive tape loading pad having a vibration absorbing layer
US9406330B1 (en) 2013-06-19 2016-08-02 WD Media, LLC Method for HDD disk defect source detection
US9607646B2 (en) 2013-07-30 2017-03-28 WD Media, LLC Hard disk double lubrication layer
US9389135B2 (en) 2013-09-26 2016-07-12 WD Media, LLC Systems and methods for calibrating a load cell of a disk burnishing machine
US9177585B1 (en) 2013-10-23 2015-11-03 WD Media, LLC Magnetic media capable of improving magnetic properties and thermal management for heat-assisted magnetic recording
US9581510B1 (en) 2013-12-16 2017-02-28 Western Digital Technologies, Inc. Sputter chamber pressure gauge with vibration absorber
US9382496B1 (en) 2013-12-19 2016-07-05 Western Digital Technologies, Inc. Lubricants with high thermal stability for heat-assisted magnetic recording
US9824711B1 (en) 2014-02-14 2017-11-21 WD Media, LLC Soft underlayer for heat assisted magnetic recording media
US9447368B1 (en) 2014-02-18 2016-09-20 WD Media, LLC Detergent composition with low foam and high nickel solubility
US9431045B1 (en) 2014-04-25 2016-08-30 WD Media, LLC Magnetic seed layer used with an unbalanced soft underlayer
US9042053B1 (en) 2014-06-24 2015-05-26 WD Media, LLC Thermally stabilized perpendicular magnetic recording medium
US9159350B1 (en) 2014-07-02 2015-10-13 WD Media, LLC High damping cap layer for magnetic recording media
US10054363B2 (en) 2014-08-15 2018-08-21 WD Media, LLC Method and apparatus for cryogenic dynamic cooling
US9082447B1 (en) 2014-09-22 2015-07-14 WD Media, LLC Determining storage media substrate material type
US9227324B1 (en) 2014-09-25 2016-01-05 WD Media, LLC Mandrel for substrate transport system with notch
US8995078B1 (en) 2014-09-25 2015-03-31 WD Media, LLC Method of testing a head for contamination
US9685184B1 (en) 2014-09-25 2017-06-20 WD Media, LLC NiFeX-based seed layer for magnetic recording media
US9449633B1 (en) 2014-11-06 2016-09-20 WD Media, LLC Smooth structures for heat-assisted magnetic recording media
US9818442B2 (en) 2014-12-01 2017-11-14 WD Media, LLC Magnetic media having improved magnetic grain size distribution and intergranular segregation
US9401300B1 (en) 2014-12-18 2016-07-26 WD Media, LLC Media substrate gripper including a plurality of snap-fit fingers
US9218850B1 (en) 2014-12-23 2015-12-22 WD Media, LLC Exchange break layer for heat-assisted magnetic recording media
US9257134B1 (en) 2014-12-24 2016-02-09 Western Digital Technologies, Inc. Allowing fast data zone switches on data storage devices
US9990940B1 (en) 2014-12-30 2018-06-05 WD Media, LLC Seed structure for perpendicular magnetic recording media
US9280998B1 (en) 2015-03-30 2016-03-08 WD Media, LLC Acidic post-sputter wash for magnetic recording media
US9275669B1 (en) 2015-03-31 2016-03-01 WD Media, LLC TbFeCo in PMR media for SNR improvement
US9822441B2 (en) 2015-03-31 2017-11-21 WD Media, LLC Iridium underlayer for heat assisted magnetic recording media
US11074934B1 (en) 2015-09-25 2021-07-27 Western Digital Technologies, Inc. Heat assisted magnetic recording (HAMR) media with Curie temperature reduction layer
US10236026B1 (en) 2015-11-06 2019-03-19 WD Media, LLC Thermal barrier layers and seed layers for control of thermal and structural properties of HAMR media
US9406329B1 (en) 2015-11-30 2016-08-02 WD Media, LLC HAMR media structure with intermediate layer underlying a magnetic recording layer having multiple sublayers
US10121506B1 (en) 2015-12-29 2018-11-06 WD Media, LLC Magnetic-recording medium including a carbon overcoat implanted with nitrogen and hydrogen
US9990951B2 (en) * 2016-02-23 2018-06-05 Seagate Technology Llc Perpendicular magnetic recording with multiple antiferromagnetically coupled layers
JP6767251B2 (ja) * 2016-12-08 2020-10-14 昭和電工株式会社 磁気記録媒体の製造方法
JP6767256B2 (ja) * 2016-12-21 2020-10-14 昭和電工株式会社 磁気記録媒体の製造方法
JP6989427B2 (ja) 2018-03-23 2022-01-05 昭和電工株式会社 磁気記録媒体および磁気記録再生装置
WO2019191553A1 (en) * 2018-03-30 2019-10-03 Battelle Energy Alliance, Llc Methods and systems for treating an aqueous solution
JP7049182B2 (ja) * 2018-05-21 2022-04-06 昭和電工株式会社 磁気記録媒体および磁気記憶装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314310A (ja) * 1986-07-07 1988-01-21 Matsushita Electric Ind Co Ltd 垂直磁気記録媒体
JP2004259423A (ja) * 2003-02-07 2004-09-16 Hitachi Maxell Ltd 磁気記録媒体及びその製造方法並びに磁気記録装置
JP2006309919A (ja) * 2005-03-30 2006-11-09 Fujitsu Ltd 垂直磁気記録媒体、その製造方法および磁気記憶装置
WO2007114401A1 (ja) * 2006-03-31 2007-10-11 Hoya Corporation 垂直磁気記録ディスク及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468670B1 (en) 2000-01-19 2002-10-22 International Business Machines Corporation Magnetic recording disk with composite perpendicular recording layer
JP2001256632A (ja) 2000-03-13 2001-09-21 Fuji Electric Co Ltd 磁気記録媒体
JP2002092865A (ja) 2000-09-11 2002-03-29 Hoya Corp 垂直磁気記録媒体
US7226674B2 (en) * 2003-02-07 2007-06-05 Hitachi Maxell, Ltd. Magnetic recording medium, method for producing the same, and magnetic recording apparatus
JP4812254B2 (ja) * 2004-01-08 2011-11-09 富士電機株式会社 垂直磁気記録媒体、および、その製造方法
JP4214522B2 (ja) * 2004-01-28 2009-01-28 富士電機デバイステクノロジー株式会社 垂直磁気記録媒体、および、その製造方法
US7494726B2 (en) * 2004-07-07 2009-02-24 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium, method of manufacturing same, and magnetic recording device
WO2007114402A1 (ja) 2006-03-31 2007-10-11 Hoya Corporation 垂直磁気記録ディスク及びその製造方法
US7582368B2 (en) * 2006-09-14 2009-09-01 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium with an exchange-spring recording structure and a lateral coupling layer for increasing intergranular exchange coupling
WO2008099859A1 (ja) * 2007-02-13 2008-08-21 Hoya Corporation 磁気記録媒体、磁気記録媒体の製造方法、及び磁気ディスク
JP2009238299A (ja) * 2008-03-26 2009-10-15 Hoya Corp 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP2009238298A (ja) 2008-03-26 2009-10-15 Hoya Corp 垂直磁気記録媒体および垂直磁気記録媒体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314310A (ja) * 1986-07-07 1988-01-21 Matsushita Electric Ind Co Ltd 垂直磁気記録媒体
JP2004259423A (ja) * 2003-02-07 2004-09-16 Hitachi Maxell Ltd 磁気記録媒体及びその製造方法並びに磁気記録装置
JP2006309919A (ja) * 2005-03-30 2006-11-09 Fujitsu Ltd 垂直磁気記録媒体、その製造方法および磁気記憶装置
WO2007114401A1 (ja) * 2006-03-31 2007-10-11 Hoya Corporation 垂直磁気記録ディスク及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110242702A1 (en) * 2010-03-30 2011-10-06 Kabushiki Kaisha Toshiba Magnetic recording medium, method of manufacturing the same, and magnetic recording/reproduction apparatus
JP2011210333A (ja) * 2010-03-30 2011-10-20 Toshiba Corp 磁気記録媒体、その製造方法、及び磁気記録再生装置
US10100398B2 (en) 2010-03-30 2018-10-16 Kabushiki Kaisha Toshiba Magnetic recording medium, method of manufacturing the same, and magnetic recording/reproduction apparatus

Also Published As

Publication number Publication date
JP2009238298A (ja) 2009-10-15
US9183869B2 (en) 2015-11-10
US20110097600A1 (en) 2011-04-28
US8580410B2 (en) 2013-11-12
US20140044992A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
WO2009119708A1 (ja) 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
WO2009119709A1 (ja) 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
US8057926B2 (en) Perpendicular magnetic recording medium
JP5646865B2 (ja) 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP5645443B2 (ja) 垂直磁気記録媒体
JP5643516B2 (ja) 垂直磁気記録媒体
WO2009119635A1 (ja) 垂直磁気記録媒体の製造方法および垂直磁気記録媒体
WO2010064724A1 (ja) 磁気ディスク及びその製造方法
WO2010032767A1 (ja) 垂直磁気記録媒体
JP2012009086A (ja) 垂直磁気記録媒体及びその製造方法
JPWO2007114401A1 (ja) 垂直磁気記録ディスク及びその製造方法
WO2010035810A1 (ja) 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP5261001B2 (ja) 垂直磁気記録媒体
JP5524464B2 (ja) 垂直磁気記録媒体
JP5530673B2 (ja) 垂直磁気記録媒体
WO2009119636A1 (ja) 垂直磁気記録媒体
JP5620118B2 (ja) 垂直磁気記録媒体
JP5620071B2 (ja) 垂直磁気記録媒体
JP2009099242A (ja) 垂直磁気記録媒体
JP2011192319A (ja) 垂直磁気記録媒体
JP2009245477A (ja) 垂直磁気記録媒体
JP2009230837A (ja) 垂直磁気記録媒体の製造方法
JP5593049B2 (ja) 垂直磁気記録媒体の製造管理方法
JP5593048B2 (ja) 垂直磁気記録媒体
JP2010086584A (ja) 垂直磁気記録媒体および垂直磁気記録媒体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12934935

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09723931

Country of ref document: EP

Kind code of ref document: A1