WO2010032767A1 - 垂直磁気記録媒体 - Google Patents

垂直磁気記録媒体 Download PDF

Info

Publication number
WO2010032767A1
WO2010032767A1 PCT/JP2009/066200 JP2009066200W WO2010032767A1 WO 2010032767 A1 WO2010032767 A1 WO 2010032767A1 JP 2009066200 W JP2009066200 W JP 2009066200W WO 2010032767 A1 WO2010032767 A1 WO 2010032767A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
magnetic recording
recording layer
dividing
Prior art date
Application number
PCT/JP2009/066200
Other languages
English (en)
French (fr)
Inventor
貴弘 尾上
禎一郎 梅澤
Original Assignee
Hoya株式会社
ホーヤ マグネティクス シンガポール プライベートリミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008249266A external-priority patent/JP2011175686A/ja
Application filed by Hoya株式会社, ホーヤ マグネティクス シンガポール プライベートリミテッド filed Critical Hoya株式会社
Priority to US13/062,640 priority Critical patent/US9064518B2/en
Publication of WO2010032767A1 publication Critical patent/WO2010032767A1/ja
Priority to US14/724,557 priority patent/US20150262602A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/676Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having magnetic layers separated by a nonmagnetic layer, e.g. antiferromagnetic layer, Cu layer or coupling layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements

Definitions

  • the present invention relates to a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording type HDD (hard disk drive) or the like.
  • a perpendicular magnetic recording method has been proposed in order to achieve a high recording density in a magnetic recording medium used for an HDD or the like.
  • the perpendicular magnetic recording medium used for the perpendicular magnetic recording system is adjusted so that the easy axis of magnetization of the magnetic recording layer is oriented in the direction perpendicular to the substrate surface.
  • the perpendicular magnetic recording method can suppress the so-called thermal fluctuation phenomenon in which the thermal stability of the recording signal is lost due to the superparamagnetic phenomenon, and the recording signal disappears. Suitable for higher recording density.
  • Non-Patent Document 1 As a magnetic recording medium used in the perpendicular magnetic recording system, a CoCrPt—SiO 2 perpendicular magnetic recording medium (see Non-Patent Document 1) has been proposed because it exhibits high thermal stability and good recording characteristics.
  • This is a granular structure in which a nonmagnetic grain boundary portion in which SiO 2 is segregated is formed between magnetic grains in which Co hcp structure (hexagonal close-packed crystal lattice) crystals are continuously grown in a columnar shape in a magnetic recording layer.
  • the magnetic particles are made finer and the coercive force Hc is improved.
  • an oxide is used for a nonmagnetic grain boundary (a nonmagnetic portion between magnetic grains).
  • any one of SiO 2 , Cr 2 O 3 , TiO, TiO 2 , and Ta 2 O 5 has been proposed (Patent Document 1).
  • the magnetic layer having a granular structure can adjust the magnetostatic characteristics and electromagnetic conversion characteristics depending on the type of oxide forming the grain boundary and the content of the oxide. Both high coercive force and low noise are important, but there is a trade-off relationship that if one is raised, the other is lowered. For this reason, conventionally, the magnetic recording layer has been divided into a plurality of layers and assigned roles. For example, by providing a layer that improves the coercive force Hc by reducing the oxide and a layer that improves the SNR (SignalSignto Noise Ratio) by increasing the oxide, both characteristics are obtained. be able to.
  • the CGC medium disclosed in Patent Document 2 has a structure in which a thin film of a CoB magnetic film and a Pd nonmagnetic film is laminated, and high Hn is obtained using exchange coupling.
  • the exchange coupling action cannot be obtained unless the magnetic film is made a thin film.
  • the effect is weak in one layer, it is necessary to repeatedly laminate CoB and Pd about three times. Therefore, in recent years, an auxiliary recording layer, which is a single film substantially magnetically continuous in the in-plane direction of the main surface of the substrate and having a high perpendicular magnetic anisotropy, is often formed on the magnetic recording layer.
  • the auxiliary recording layer has a role of improving the ease of writing, that is, the overwrite characteristic by improving the saturation magnetization Ms.
  • the purpose of providing the auxiliary recording layer on the magnetic recording layer is to improve the reverse domain nucleation magnetic field Hn to reduce noise, to improve the saturation magnetization Ms, and to improve the overwrite characteristics.
  • the auxiliary recording layer may be called a continuous layer or a cap layer.
  • the magnetic recording medium has a higher recording density as described above, further improvement in the recording density is demanded in the future.
  • Important factors for achieving high recording density include improved magnetostatic characteristics such as coercive force Hc and reverse domain nucleation magnetic field Hn, overwrite characteristics, SNR (Signal to Noise Ratio), track width
  • improved magnetostatic characteristics such as coercive force Hc and reverse domain nucleation magnetic field Hn
  • overwrite characteristics SNR (Signal to Noise Ratio)
  • track width There is an improvement in electromagnetic conversion characteristics such as narrowing of.
  • the improvement of the coercive force Hc and the improvement of the SNR are important for reading and writing accurately and at high speed even in a recording bit having a small area.
  • the improvement of the SNR is performed mainly by reducing the magnetization transition region noise of the magnetic recording layer.
  • Factors effective for noise reduction include improvement of the crystal orientation of the magnetic recording layer, refinement of the particle size of the magnetic particles, and isolation of the magnetic particles. Above all, when the isolation of the magnetic particles is promoted, the magnetic interaction with the adjacent magnetic particles is blocked, so that the noise can be greatly reduced and the SNR can be remarkably improved.
  • the grain boundary is formed by an oxide, thereby isolating and miniaturizing the magnetic particles and improving the SNR.
  • the magnetic recording layer is composed of a plurality of layers, and both characteristics are obtained by sharing the role between the layer having a high coercive force and the layer having a high SNR.
  • noise caused by the layer having a high coercive force Hc is generated. It became a problem. For this reason, conventionally, the thickness of the layer having a high coercive force has been reduced to suppress noise.
  • it is necessary to secure the minimum necessary coercive force it is necessary to tolerate some noise.
  • the auxiliary recording layer does not have a granular structure, but has a structure that is magnetically continuous in the in-plane direction. For this reason, although the overwrite characteristics can be improved by the auxiliary recording layer, noise is increased. In particular, since the auxiliary recording layer is positioned above the medium, the influence on the increase in noise is large. However, without the auxiliary recording layer, the OW characteristics become extremely low, and the current magnetic recording layer having a high coercive force can no longer be written. For this reason, it was necessary to tolerate a certain amount of noise.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a perpendicular magnetic recording medium capable of further improving the SNR while ensuring a high coercive force Hc and achieving further higher recording density. .
  • the inventors have intensively studied and focused on reducing noise caused by the magnetic recording layer. That is, it was considered that the magnetization state in the magnetic recording layer may affect the generation of noise.
  • the magnetic recording layer is composed of two layers including a first magnetic layer and a second magnetic layer, and a nonmagnetic dividing layer including Ru is interposed therebetween, thereby magnetically recording the magnetic recording layer.
  • the inventors have found that the above-mentioned problems can be solved by controlling the magnetization direction of the recording layer, particularly the first magnetic layer, reducing noise, and completing the present invention.
  • a typical configuration of the perpendicular magnetic recording medium according to the present invention is a granular structure in which a nonmagnetic grain boundary portion is formed between crystal grains grown in a columnar shape on a substrate.
  • a first magnetic layer having a structure, a nonmagnetic dividing layer including Ru and provided on the first magnetic layer, and a nonmagnetic layer between crystal grains provided on the dividing layer and grown in a columnar shape.
  • a second magnetic layer having a granular structure in which a grain boundary portion is formed.
  • the first magnetic layer and the second magnetic layer include an oxide that forms the grain boundary portion and are included in the first magnetic layer.
  • the relationship A / B of the oxide content is in the range of 0.5 ⁇ A / B ⁇ 1.0, where A is the amount of oxide to be produced and B is the amount of oxide contained in the second magnetic layer. It is characterized by being.
  • an antiferromagnetic exchange coupling which is a magnetic interaction between the magnetic recording layers is provided by interposing a dividing layer containing Ru between the first magnetic layer and the second magnetic layer.
  • Antiferromagnetic-exchange can be generated. This makes it possible to align the magnetization direction of the first magnetic layer and the magnetization direction of the second magnetic layer in antiparallel (reciprocal directions) so that the magnetization directions are fixed to each other. .
  • the oxide content in the first magnetic layer and the second magnetic layer is such that the relationship A / B of the oxide content is in the range of 0.5 ⁇ A / B ⁇ 1.0.
  • the first magnetic layer can be a layer having few grain boundary parts and a high coercive force Hc
  • the second magnetic layer can be a layer having many grain boundary parts and a high SNR. Therefore, it is possible to further improve the SNR while ensuring a high coercive force Hc.
  • the first magnetic layer since the first magnetic layer has a high coercive force Hc, the first magnetic layer can function as a pin layer that fixes the magnetization direction of the second magnetic layer.
  • the thickness of the above-mentioned dividing fault is preferably 2 mm or more and 10 mm or less. By setting the thickness of the dividing layer within such a range, the magnetism of the first magnetic layer and the second magnetic layer can be cut off and AFC can be generated.
  • the thickness of the dividing layer is 10 mm or more, the exchange coupling generated between the magnetic recording layers is weakened, so that a desired SNR cannot be obtained.
  • the film thickness is increased to 10 mm or more, the magnetic recording layers above and below the dividing layer are completely separated from each other and the inheritance of the crystal orientation is completely lost.
  • the thickness of the dividing layer is 2 mm or less, the magnetism of the first magnetic layer and the second magnetic layer cannot be cut off, and AFC cannot be generated. If the thickness is 2 mm or less, a film cannot be formed.
  • the film does not necessarily have to be continuous. For example, even if the film is deposited in an island shape, there is no problem if the function can be exhibited.
  • the above-mentioned dividing fault may be made of Ru or Ru alloy. This is because Ru has the same crystal form (hcp) as Co constituting the magnetic particles, and therefore it is difficult to inhibit the epitaxial growth of Co crystal particles even if it is interposed between the magnetic recording layers.
  • Ru alloy may be selected from the group of RuTa 2 O 5.
  • Ru alloys that exist these Ru alloys are most effective in securing a high coercive force Hc and improving SNR.
  • the dividing layer contains oxygen atoms.
  • the portion of the dividing layer located on the grain boundary of the granular structure of the first magnetic layer has an affinity for the oxygen atom contained therein to the oxygen atom contained in the grain boundary of the first magnetic layer. Because of its high properties, it inherits the grain boundary structure of the magnetic layer as a Ru oxide.
  • the oxide has a high affinity with the grain boundary of the first magnetic layer, and similarly inherits the grain boundary structure of the first magnetic layer. Accordingly, in any case, the crystal grains of Co in the second magnetic layer can be grown without inhibiting the inheritance of the grain boundary structure of the first magnetic layer by the dividing layer.
  • a dividing fault can be comprised from Ru and an oxide as one of the concrete means for including Ru and oxygen. This is because, when sputtering is performed using a target including Ru and an oxide, oxygen dissociated from the oxide is contained in the film, and thus the same effect as that of addition of oxygen is achieved.
  • the oxide contained in the dividing line is particularly preferably WO 3 , TiO 2 , or RuO.
  • SNR electromagnetic conversion characteristics
  • WO 3 can obtain a high effect. This is because WO 3 is an unstable oxide, so that more oxygen is dissociated during sputtering and the effect of oxygen addition is more effectively exhibited.
  • the above-described problem can be solved by connecting the first magnetic recording layer and the auxiliary recording layer, which had been continuous with the main recording layer having a high SNR, by magnetic interaction.
  • the inventors have found that this can be solved, and have completed the present invention.
  • a typical configuration of the perpendicular magnetic recording medium according to the present invention has a granular structure in which a nonmagnetic grain boundary is formed at least between crystal grains grown in a columnar shape on a substrate.
  • a nonmagnetic grain boundary portion between a first magnetic layer, a first dividing layer provided on the first magnetic layer, and crystal grains provided on the first dividing layer and grown in a columnar shape A second magnetic layer having a granular structure, a second dividing layer provided on the second magnetic layer, and a magnet in the in-plane direction of the main surface of the substrate provided on the second dividing layer.
  • a third magnetic layer substantially continuous.
  • first magnetic layer first magnetic recording layer
  • second magnetic layer second magnetic recording layer
  • third magnetic layer auxiliary recording layer
  • the magnetism of the first and second magnetic layers can be cut off and AFC can be generated. it can.
  • the aspect ratio of the granular magnetic particles is shortened, so that the demagnetizing field generated inside the magnet is strengthened. For this reason, the first magnetic layer has a small magnetic moment to the outside, and can be a magnetic layer with little noise while exhibiting a high coercive force.
  • the film thickness is set to be relatively thin (for example, 0.2 nm to 0.6 nm) for the second dividing line.
  • the film thickness of the second dividing line is smaller than that of the first dividing line, and the film thickness is in a range that does not generate AFC.
  • strength of these exchange couplings can be adjusted moderately, without interrupting
  • the first or second dividing line may be made of Ru or a Ru alloy. This is because Ru has a crystal form (hcp) similar to that of Co constituting the magnetic particles, and therefore it is difficult to inhibit the epitaxial growth of Co crystal particles even if it is interposed between the magnetic layers.
  • Ru has a crystal form (hcp) similar to that of Co constituting the magnetic particles, and therefore it is difficult to inhibit the epitaxial growth of Co crystal particles even if it is interposed between the magnetic layers.
  • the first or second dividing line may further contain oxygen or oxide.
  • the portion of the dividing layer located above the grain boundary of the granular magnetic layer includes Ru and oxygen in the dividing layer, so that the oxygen atom contained has an affinity for the oxygen atom contained in the magnetic layer grain boundary. It has high properties and inherits the grain boundary structure of the magnetic layer as a Ru oxide. Or when the dividing layer contains an oxide, the oxide has a high affinity with the grain boundary of the magnetic layer, and similarly inherits the grain boundary structure of the magnetic layer. Therefore, Co in the upper layer can be grown without hindering the grain boundary structure of the magnetic layer.
  • the first or second dividing line may be RuO, RuWO 3 , or RuTiO 2 .
  • Various oxides are conceivable.
  • Ru, W (tungsten), or Ti (titanium) electromagnetic conversion characteristics (SNR) can be improved.
  • SNR electromagnetic conversion characteristics
  • WO 3 can obtain a high effect. This is because WO 3 is an unstable oxide, so that more oxygen is dissociated during sputtering and the effect of oxygen addition is more effectively exhibited.
  • the thickness of the first or second dividing fault may be 2 to 10 mm. This is because if the thickness of the dividing layer is 10 mm or more, the upper and lower magnetic layers of the dividing layer are completely separated magnetically and the inheritance of the crystal orientation is completely lost. On the other hand, if the film thickness is greater than 10 mm, the exchange coupling generated between the magnetic layers is weakened, so that a desired SNR cannot be obtained. On the other hand, if the film thickness is 2 mm or less, the film cannot be formed.
  • the thickness of the first magnetic layer may be 5 nm or less.
  • the first magnetic layer is preferably a layer having few grain boundary parts and a high coercive force Hc
  • the second magnetic layer is preferably a layer having many grain boundary parts and a high SNR.
  • the film thickness of the first magnetic layer is preferably 0.7 nm or more and 3.0 nm or less.
  • the demagnetizing field of the first magnetic layer can be strengthened, and noise caused by the first magnetic layer can be reduced.
  • the first magnetic layer also functions as a pin layer that fixes the magnetization direction of the second magnetic layer. Can be achieved.
  • the amount of oxide contained in the first magnetic layer is preferably 5 mol% or more. This is because a high coercive force Hc and a high SNR can be obtained when the content is 5 mol% or more.
  • the second magnetic layer may contain 5 mol% or more of an oxide constituting the grain boundary part.
  • the content is 5 mol% or more, high magnetostatic characteristics and electromagnetic conversion characteristics can be obtained, and in such a range, the characteristics of the third magnetic layer are deteriorated so as not to be ignored. This is because an improvement in characteristics can be obtained.
  • the second magnetic layer may contain two or more kinds of oxides. As a result, the characteristics of a plurality of oxides can be obtained, noise is reduced by further miniaturization and isolation of the magnetic particles of the second magnetic layer, and the SNR is improved to increase the recording density. A perpendicular magnetic recording medium that can be realized can be obtained.
  • the second magnetic layer may include one or more oxides selected from SiO 2 , TiO 2 , or CoO.
  • SiO 2 promotes miniaturization and isolation of magnetic particles, and TiO 2 has a characteristic of improving electromagnetic conversion characteristics (especially SNR). By combining these oxides and segregating at the grain boundaries of the second magnetic layer, both benefits can be enjoyed.
  • DESCRIPTION OF SYMBOLS 100 Perpendicular magnetic recording medium 110 ... Disk base
  • FIG. 1 is a diagram for explaining the configuration of a perpendicular magnetic recording medium 100 according to the present embodiment.
  • the perpendicular magnetic recording medium 100 shown in FIG. 1 includes a disk substrate 110, an adhesion layer 112, a first soft magnetic layer 114a, a spacer layer 114b, a second soft magnetic layer 114c, a pre-underlayer 116, a first underlayer 118a, and a second layer.
  • a glass disk obtained by molding amorphous (amorphous) aluminosilicate glass into a disk shape by direct pressing can be used.
  • the type, size, thickness, etc. of the glass disk are not particularly limited.
  • Examples of the material of the glass disk include aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, chain silicate glass, or glass ceramic such as crystallized glass. It is done.
  • the glass disk is subjected to grinding, polishing, and chemical strengthening sequentially to obtain a smooth non-magnetic disk base 110 made of a chemically strengthened glass disk.
  • a film is sequentially formed from the adhesion layer 112 to the auxiliary recording layer 126 by a DC magnetron sputtering method, and the medium protective layer 128 can be formed by a CVD method. Thereafter, the lubricating layer 130 can be formed by a dip coating method. Note that it is also preferable to use an in-line film forming method in terms of high productivity. Hereinafter, the configuration of each layer will be described.
  • the adhesion layer 112 is formed in contact with the disk substrate 110, and has a function of increasing the peel strength between the soft magnetic layer 114 formed on the disk substrate 110 and the disk substrate 110, and the crystal grains of each layer formed thereon are finely divided. It has a function to make it uniform and uniform.
  • the adhesion layer 112 is preferably an amorphous alloy film so as to correspond to the amorphous glass surface.
  • the adhesion layer 112 can be selected from, for example, a CrTi amorphous layer, a CoW amorphous layer, a CrW amorphous layer, a CrTa amorphous layer, or a CrNb amorphous layer.
  • the adhesion layer 112 may be a single layer made of a single material, or may be formed by laminating a plurality of layers.
  • the soft magnetic layer 114 is a layer that temporarily forms a magnetic path during recording in order to pass magnetic flux in a direction perpendicular to the recording layer in the perpendicular magnetic recording method.
  • the soft magnetic layer 114 can be configured to include AFC by interposing a nonmagnetic spacer layer 114b between the first soft magnetic layer 114a and the second soft magnetic layer 114c.
  • AFC magnetic frequency division multiplexing
  • the magnetization direction of the soft magnetic layer 114 can be aligned along the magnetic path (magnetic circuit) with high accuracy, and the vertical component of the magnetization direction is extremely reduced, so that noise generated from the soft magnetic layer 114 is reduced. Can do.
  • compositions of the first soft magnetic layer 114a and the second soft magnetic layer 114c include cobalt alloys such as CoTaZr, Co—Fe alloys such as CoCrFeB and CoFeTaZr, and Ni such as [Ni—Fe / Sn] n multilayer structure.
  • An Fe-based alloy or the like can be used.
  • the pre-underlayer 116 is a non-magnetic alloy layer, and has an effect of protecting the soft magnetic layer 114 and the easy axis of the hexagonal close-packed structure (hcp structure) included in the underlayer 118 formed thereon. It has a function of orienting the disk in the vertical direction.
  • the pre-underlayer 116 preferably has a (111) plane of a face-centered cubic structure (fcc structure) parallel to the main surface of the disk substrate 110. Further, the pre-underlayer 116 may have a configuration in which these crystal structures and amorphous are mixed.
  • the material of the pre-underlayer 116 can be selected from Ni, Cu, Pt, Pd, Zr, Hf, Nb, and Ta.
  • NiW, CuW, or CuCr can be suitably selected as an alloy having an fcc structure.
  • the underlayer 118 has an hcp structure, and has a function of growing a Co hcp crystal of the magnetic recording layer 122 as a granular structure. Therefore, the higher the crystal orientation of the underlayer 118, that is, the more the (0001) plane of the crystal of the underlayer 118 is parallel to the main surface of the disk substrate 110, the more the orientation of the magnetic recording layer 122 is improved. Can do.
  • Ru is a typical material for the underlayer 118, but in addition, it can be selected from RuCr and RuCo. Since Ru has an hcp structure and the lattice spacing of crystals is close to Co, the magnetic recording layer 122 containing Co as a main component can be well oriented.
  • the underlayer 118 is made of Ru
  • a two-layer structure made of Ru can be obtained by changing the gas pressure during sputtering.
  • the Ar gas pressure is set to a predetermined pressure, that is, a low pressure
  • the first lower layer 118b on the lower layer side is formed.
  • the gas pressure of Ar is set higher than when forming the first underlayer 118a, that is, the pressure is increased.
  • oxygen may be contained in Ru of the base layer 118.
  • the separation and refinement of the Ru crystal particles can be further promoted, and the magnetic recording layer can be further isolated and refined.
  • oxygen may be contained by reactive sputtering, but it is preferable to use a target containing oxygen at the time of sputtering film formation.
  • the nonmagnetic granular layer 120 is a nonmagnetic layer having a granular structure.
  • a nonmagnetic granular layer is formed on the hcp crystal structure of the underlayer 118, and a granular layer of the first magnetic recording layer 122a (or the magnetic recording layer 122) is grown thereon, thereby forming an initial magnetic granular layer. It has the effect of separating from the growth stage (rise). Thereby, isolation of the magnetic particles of the magnetic recording layer 122 can be promoted.
  • the composition of the nonmagnetic granular layer 120 can be a granular structure by forming a grain boundary by segregating a nonmagnetic substance between nonmagnetic crystal grains made of a Co-based alloy.
  • CoCr—SiO 2 is used for the nonmagnetic granular layer 120.
  • SiO 2 nonmagnetic substance
  • the nonmagnetic granular layer 120 has a granular structure.
  • CoCr—SiO 2 is an example, and the present invention is not limited to this.
  • CoCrRuSiO 2 can be preferably used, and Rh (rhodium), Pd (palladium), Ag (silver), Os (osmium), Ir (iridium), Au (gold) can also be used instead of Ru. can do.
  • a nonmagnetic substance is a substance that can form a grain boundary around magnetic grains so that exchange interaction between magnetic grains (magnetic grains) is suppressed or blocked, and is cobalt (Co). Any non-magnetic substance that does not dissolve in solution can be used. Examples thereof include silicon oxide (SiOx), chromium (Cr), chromium oxide (Cr 2 O 3 ), titanium oxide (TiO 2 ), zircon oxide (ZrO 2 ), and tantalum oxide (Ta 2 O 5 ).
  • the nonmagnetic granular layer 120 is provided on the underlayer 188 (second underlayer 188b).
  • the present invention is not limited to this.
  • the recording medium 100 can also be configured.
  • the magnetic recording layer 122 has a columnar granular structure in which a grain boundary is formed by segregating a nonmagnetic substance around the magnetic grains of a hard magnetic material selected from a Co-based alloy, an Fe-based alloy, and a Ni-based alloy. Yes.
  • a hard magnetic material selected from a Co-based alloy, an Fe-based alloy, and a Ni-based alloy.
  • the magnetic recording layer 122 includes a first magnetic recording layer 122a having a different composition and thickness, a second magnetic recording layer 122c, and a dividing layer 122b provided therebetween.
  • a first magnetic recording layer 122a having a different composition and thickness As a result, small crystal grains of the second magnetic recording layer 122c continue to grow from the crystal grains of the first magnetic recording layer 122a, and the second magnetic recording layer 122c, which is the main recording layer, can be miniaturized. Can be improved.
  • CoCrPt—Cr 2 O 3 is used for the first magnetic recording layer 122a.
  • Cr and Cr 2 O 3 oxide
  • which are nonmagnetic substances segregate around magnetic grains (grains) made of CoCrPt to form grain boundaries, and the magnetic grains are columnar.
  • a grown granular structure was formed.
  • the magnetic grains were epitaxially grown continuously from the granular structure of the nonmagnetic granular layer.
  • the dividing layer 122b is a nonmagnetic thin film made of Ru, and is interposed between the first magnetic recording layer 122a and the second magnetic recording layer 122c, thereby providing ferromagnetic continuity between the magnetic recording layers 122. Will be divided. Accordingly, antiferromagnetic exchange coupling (AFC) occurs between these magnetic recording layers 122. As a result, the magnetization direction is antiparallel between the magnetic recording layers 122 (the first magnetic recording layer 122a and the second magnetic recording layer 122c) above and below the dividing layer 122b, and noise can be reduced.
  • AFC antiferromagnetic exchange coupling
  • CoCrPt—SiO 2 —TiO 2 is used for the second magnetic recording layer 122c.
  • Cr, SiO 2 and TiO 2 composite oxide
  • which are nonmagnetic substances segregate around the magnetic grains (grains) made of CoCrPt to form grain boundaries. A granular structure grown in a columnar shape was formed.
  • first magnetic recording layer 122a and the second magnetic recording layer 122c are merely examples, and the present invention is not limited thereto.
  • the first magnetic recording layer 122a and the second magnetic recording layer 122c are different materials (targets).
  • the present invention is not limited to this, and materials having the same composition and type may be used.
  • nonmagnetic substance for forming the nonmagnetic region examples include silicon oxide (SiO x ), chromium (Cr), chromium oxide (Cr X O Y ), titanium oxide (TiO 2 ), zircon oxide (ZrO 2 ), Examples thereof include oxides such as tantalum oxide (Ta 2 O 5 ), iron oxide (Fe 2 O 3 ), and boron oxide (B 2 O 3 ). Further, nitrides such as BN, a carbide such as B 4 C 3 can also be suitably used.
  • one type of nonmagnetic substance is used in the first magnetic recording layer 122a and two types of nonmagnetic substances (oxides) in the second magnetic recording layer 122c.
  • the present invention is not limited to this. It is also possible to use a composite of two or more kinds of nonmagnetic substances in either or both of the first magnetic recording layer 122a and the second magnetic recording layer 122c.
  • the kind of nonmagnetic substance contained at this time it is particularly preferable to contain SiO 2 and TiO 2 as in this embodiment. Therefore, unlike the present embodiment, when the magnetic recording layer 122 is composed of only one layer, the magnetic recording layer 122 is preferably made of CoCrPt—SiO 2 —TiO 2 .
  • the auxiliary recording layer 126 is a magnetic layer that is substantially magnetically continuous in the in-plane direction of the main surface of the substrate.
  • the auxiliary recording layer 126 needs to be adjacent or close to the magnetic recording layer 122 so as to have a magnetic interaction.
  • As the material of the auxiliary recording layer 126 for example, CoCrPt, CoCrPtB, or a small amount of oxides can be contained in these.
  • the purpose of the auxiliary recording layer 126 is to adjust the reverse domain nucleation magnetic field Hn and the coercive force Hc, thereby improving the heat-resistant fluctuation characteristics, the OW characteristics, and the SNR.
  • the auxiliary recording layer 126 has high perpendicular magnetic anisotropy Ku and saturation magnetization Ms.
  • the auxiliary recording layer 126 is provided above the magnetic recording layer 122, but may be provided below.
  • magnetically continuous means that magnetism is continuous.
  • substantially continuous means that the magnetism may be discontinuous due to grain boundaries of crystal grains, etc., instead of a single magnet when observed in the entire auxiliary recording layer 126.
  • the grain boundaries are not limited to crystal discontinuities, and Cr may be segregated, and further, a minute amount of oxide may be contained and segregated.
  • the area is smaller than the grain boundary of the magnetic recording layer 122 (the content of the oxide is small).
  • the auxiliary recording layer 126 has a magnetic interaction with the granular magnetic grains of the magnetic recording layer 122 (performs exchange coupling), so that Hn and Hc can be adjusted, and heat resistance It is thought that fluctuation characteristics and SNR are improved.
  • the crystal grains connected to the granular magnetic grains have a larger area than the cross section of the granular magnetic grains, the magnetization is easily reversed by receiving a large amount of magnetic flux from the magnetic head. It is thought to improve the characteristics.
  • the medium protective layer 128 can be formed by depositing carbon by a CVD method while maintaining a vacuum.
  • the medium protective layer 128 is a layer for protecting the perpendicular magnetic recording medium 100 from the impact of the magnetic head.
  • carbon deposited by the CVD method has improved film hardness compared to that deposited by the sputtering method, so that the perpendicular magnetic recording medium 100 can be more effectively protected against the impact from the magnetic head.
  • the lubricating layer 130 can be formed of PFPE (perfluoropolyether) by dip coating.
  • PFPE perfluoropolyether
  • PFPE has a long chain molecular structure and binds with high affinity to N atoms on the surface of the medium protective layer 128. Due to the action of the lubricating layer 130, even if the magnetic head comes into contact with the surface of the perpendicular magnetic recording medium 100, the medium protective layer 128 can be prevented from being damaged or lost.
  • the perpendicular magnetic recording medium 100 could be obtained.
  • the magnetic recording layer 122 (the first magnetic recording layer 122a, the second magnetic recording layer 122c, and the dividing layer 122b provided therebetween) that is a feature of the present invention will be described in more detail.
  • the dividing layer 122b is a nonmagnetic layer provided between the first magnetic recording layer 122a and the second magnetic recording layer 122c. As a result, the ferromagnetic continuity between these magnetic recording layers 122 is broken, and antiferromagnetic exchange coupling (AFC) is generated between the magnetic recording layers 122 as a magnetic effect.
  • AFC antiferromagnetic exchange coupling
  • FIG. 2 is a diagram for explaining a magnetic coupling model including the first magnetic recording layer 122a, the dividing layer 122b, and the second magnetic recording layer 122c.
  • AFC antiferromagnetic exchange coupling
  • the thickness of the first magnetic recording layer 122a is preferably thinner than the thickness of the second magnetic recording layer 122c, and more preferably, the thickness of the first magnetic recording layer 122a is 0.7 nm or more. And it is good in it being 3.0 nm or less.
  • the first magnetic recording layer 122a is a magnet that is continuous with the second magnetic recording layer 122c if there is no dividing layer 122b, but becomes a short individual magnet because it is divided by the dividing layer 122b. Further, by reducing the film thickness of the first magnetic recording layer 122a, the aspect ratio of the granular magnetic particles is shortened (in the perpendicular magnetic recording medium, the film thickness direction corresponds to the vertical direction of the easy axis of magnetization). The demagnetizing field generated inside the magnet becomes stronger. For this reason, the magnetic field generated from the first magnetic recording layer 122a is weakened and is difficult to be picked up by the magnetic head.
  • the magnetic field (magnet of the magnet) is such that the magnetic field does not easily reach the magnetic head and has a magnetic interaction with the second magnetic recording layer 122c.
  • the magnetic recording layer 122 With setting the (strength), the magnetic recording layer 122 with low noise while exhibiting a high coercive force can be obtained.
  • the first magnetic recording layer 122a can reduce the oxide and increase the coercive force Hc, and further the second magnetic recording layer 122c. It can function as a pin layer that fixes the magnetization direction.
  • the dividing layer 122b may have a thickness of 2 mm or more and 10 mm or less (0.2 nm or more to 1 nm or less). Thereby, the magnetism of the 1st magnetic recording layer 122a and the 2nd magnetic recording layer 122c can be interrupted
  • the thickness of the dividing layer 122b is 10 mm or more, the exchange coupling generated between the magnetic recording layers 122 becomes weak, so that a desired SNR cannot be obtained, and the magnetic recording layers 122 above and below the dividing layer 122b are not obtained. Are completely separated magnetically and the inheritance of crystal orientation is lost.
  • the thickness of the dividing layer 122b is 2 mm or less, the magnetism of the first magnetic recording layer 122a and the second magnetic recording layer 122c cannot be cut off, AFC cannot be generated, and a film can be formed. It will disappear. Since the strength of exchange coupling of AFC is attenuated while vibrating depending on the thickness of the intervening dividing line 122b, it is preferable to set the film thickness so that a vibration peak can be obtained.
  • the dividing layer 122b does not contain as much oxide as the magnetic recording layer 122 (the first magnetic recording layer 122a and the second magnetic recording layer 122c), no grain boundary is formed, but it is an extremely thin film of 1 nm or less.
  • Ru constituting the dividing layer 122b has an hcp structure, it is presumed that the crystal growth is not inhibited.
  • the advantages of the magnetic recording layer 122 are described above. Next, the composition of the first magnetic recording layer 122a, the second magnetic recording layer 122c, and the dividing layer 122b will be described in detail.
  • the first magnetic recording layer 122a and the second magnetic recording layer 122c are layers having a granular structure in which nonmagnetic grain boundary portions are formed between columnar crystal grains, and are oxidized as substances forming the grain boundary portions. Contains products.
  • the amount of oxide contained in the first magnetic recording layer 122a is A and the amount of oxide contained in the second magnetic recording layer 122c is B, the relationship A / B of the oxide content is 0. .5 ⁇ A / B ⁇ 1.0 is preferable.
  • the first magnetic recording layer 122a can be a layer having a small grain boundary part and a high coercive force Hc
  • the second magnetic recording layer 122c can be a layer having a large grain boundary part and a high SNR, thereby ensuring a high coercive force Hc.
  • the SNR can be further improved.
  • the first magnetic recording layer 122a since the first magnetic recording layer 122a has a high coercive force, the first magnetic recording layer 122a can function as a pin layer that fixes the magnetization direction of the second magnetic recording layer 122c.
  • the amount of oxide contained in the first magnetic recording layer 122a is preferably 5 mol% or more. This is because a high coercive force Hc and a high SNR can be obtained.
  • the oxide included in the second magnetic recording layer 122c may be two or more kinds. As a result, the characteristics of a plurality of oxides can be obtained, the noise is reduced by further miniaturizing and isolating the magnetic particles of the second magnetic recording layer 122c, and the SNR is improved to improve the perpendicular magnetic recording medium 100. Recording density can be increased.
  • one or a plurality of oxides included in the second magnetic recording layer 122c may be selected from SiO 2 , TiO 2 , and CoO.
  • SiO 2 has the property of promoting the miniaturization and isolation of magnetic particles
  • TiO 2 has the property of improving electromagnetic conversion characteristics (especially SNR). Therefore, by combining these oxides and segregating at the grain boundaries of the second magnetic recording layer 122c, both benefits can be enjoyed.
  • the dividing fault 122b may be made of Ru or a Ru alloy. Since Ru has a lattice constant close to that of Co constituting the magnetic particles and has the same crystal form (hcp) as Co constituting the magnetic particles, even if it is interposed between the magnetic recording layers 122, the Co crystal particles can be epitaxially grown. This is because it is difficult to inhibit.
  • the Ru alloy may be selected from the group of RuO, RuCo, RuCr, RuSiO 2 , RuTiO 2 , RuCr 2 O 3 , RuWO 3 , and RuTa 2 O 5 . This is because these Ru alloys are most effective for securing a high coercive force Hc and improving the SNR.
  • a film was formed in order from the adhesion layer 112 to the auxiliary recording layer 126 in an Ar atmosphere by a DC magnetron sputtering method using a film forming apparatus that was evacuated.
  • the adhesion layer 112 was made of CrTi.
  • the composition of the first soft magnetic layer 114a and the second soft magnetic layer 114c was CoCrTaZr, and the composition of the spacer layer 114b was Ru.
  • the composition of the pre-underlayer 116 was a NiW alloy having an fcc structure.
  • a Ru film was formed in an Ar atmosphere at a predetermined pressure (low pressure: for example, 0.6 to 0.7 Pa).
  • a Ru film containing oxygen was formed in an Ar atmosphere at a pressure higher than a predetermined pressure (high pressure: for example, 4.5 to 7 Pa) using a target containing oxygen.
  • the composition of the nonmagnetic granular layer 120 was nonmagnetic CoCr—SiO 2 .
  • the second magnetic recording layer 122c contained SiO 2 and TiO 2 as examples of complex oxides (plural types of oxides) at the grain boundary portion, and formed an hcp crystal structure of CoCrPt—SiO 2 —TiO 2 .
  • the composition of the auxiliary recording layer 126 was CoCrPtB.
  • the medium protective layer 128 was formed using C 2 H 4 and CN by the CVD method, and the lubricating layer 130 was formed using PFPE by the dip coating method.
  • FIG. 3 is a diagram showing the relationship between the thickness of the dividing layer 122b and the SNR.
  • the composition of the dividing layer 122b was all Ru.
  • the substance names described in each series indicate the composition of the first magnetic recording layer 122a.
  • the SNR is remarkably improved as the dividing line 122b is not provided, that is, as the thickness of the dividing line 122b increases from 0 nm.
  • the thickness of the dividing layer 122b exceeds 1 nm (10 cm)
  • the SNR starts to decrease.
  • the thickness becomes 3 nm, the SNR is lower than that in the state where the dividing layer 122b is not provided.
  • the thickness of the dividing layer 122b is 0.2 nm to 1.0 nm ( It can be understood that 2 to 10) is preferable. This is because antiferromagnetic exchange coupling (AFC), which is a magnetic interaction, occurs between the first magnetic recording layer 122a and the second magnetic recording layer 122c, and the magnetization direction of the first magnetic recording layer 122a and the first magnetic recording layer 122a. 2 It is presumed that the SNR was improved as a result of fixing the magnetization direction of the magnetic recording layer 122c aligned and antiparallel to reduce noise.
  • AFC antiferromagnetic exchange coupling
  • the thickness of the dividing layer 122b is less than 0.2 nm, the magnetism of the first magnetic recording layer 122a and the second magnetic recording layer 122c cannot be cut off and AFC cannot be generated. It is considered that the SNR could not be improved. Further, when the thickness of the dividing layer 122b is larger than 1.0 nm, the AFC generated between the magnetic recording layers 122 is weakened, and therefore the magnetic recording layer 122 (the first magnetic recording layer 122a and the second magnetic recording layer 122c). It is considered that the desired SNR could not be obtained due to a decrease in the alignment and fixing action of the magnetization direction.
  • the four series include one series including SiO 2 (4 mol%) and TiO 2 (4 mol%) as an oxide, and Cr. It can be roughly divided into three other series including 2 O 3 .
  • the SNR is improved by providing the dividing line 122b in any series, and the thickness of the dividing line 122b is increased. It can be seen that almost the same tendency is shown in that the SNR is lowered when it becomes too much. From this, it can be seen that by optimizing the thickness of the dividing layer 122b, the SNR can be improved regardless of the type of oxide.
  • the SNR improves as the amount of oxide contained in the first magnetic recording layer 122a increases to 5 mol%, 7 mol%, and 9 mol%. . This is because by increasing the amount of oxide contained in the first magnetic recording layer 122a, the number of substances forming the grain boundaries of the columnar magnetic particles in the first magnetic recording layer 122a, that is, the grain boundary portion increases. This is thought to be because the magnetic particle column became thinner.
  • FIG. 4 is a diagram illustrating the relationship between the composition of the dividing layer 122b, the SNR, and the track width.
  • the composition of the dividing layer 122b is Ru in Example 1, RuCo in Example 2, RuCr in Example 3, RuSiO 2 in Example 4, Co—Cr in Comparative Example 1, and Ni—Cu in Comparative Example 2. It is. RuCo, RuCr and RuSiO 2 are Ru alloys.
  • the thickness of the dividing layer 122b was 7 mm.
  • the track width described above is not the actual track width of the perpendicular magnetic recording medium 100 but the track width at which the track profile obtained in the storable width test shows a predetermined ratio.
  • both the example and the comparative example exceed the desired SNR value of 17.5 dB when increasing the recording density.
  • the example in which the dividing layer 122b is made of Ru or a Ru alloy has a higher SNR than the comparative example. Therefore, it can be understood that Ru or Ru alloy is preferably used for the dividing layer 122b in order to achieve further higher recording density.
  • the example is narrower than the comparative example. This also shows that the track width can be narrowed by using Ru or Ru alloy for the dividing layer, and further higher recording density can be achieved.
  • FIG. 5 is a diagram showing the relationship between A / B, SNR, and coercive force Hc, which is the relationship of the oxide content of the magnetic recording layer 122. Since the coercive force Hc is better as the absolute value is larger, it is shown in the graph as an absolute value.
  • the composition of the dividing layer 122b was all Ru, and the film thickness was 7 mm.
  • FIG. 6 is a diagram showing the relationship between the film thickness of the first magnetic recording layer 122a and the coercive force Hc.
  • the coercive force Hc is shown as an absolute value in the graph.
  • the substance names described in each series indicate the composition of the first magnetic recording layer 122a.
  • the composition of the dividing layer 122b was all Ru, and the film thickness was 7 mm.
  • the coercive force Hc improves as the film thickness of the first magnetic recording layer 122a increases.
  • the coercive force Hc starts to decrease, and when the film thickness reaches about 4 nm, the coercive force Hc is lower than the state where the first magnetic recording layer 122a is not provided. Value.
  • the thickness of the first magnetic recording layer 122a is preferably 0.7 nm or more and 3.0 nm or less. it can. Thereby, it is possible to achieve a high recording density of the perpendicular magnetic recording medium 100 while ensuring a high coercive force Hc. Since the first magnetic recording layer 122a has a high coercive force Hc, the first magnetic recording layer 122a can function as a pin layer that fixes the magnetization direction of the second magnetic recording layer 122c.
  • the five series include a series containing TiO 2 (9 mol%) as an oxide, SiO 2 (4 mol%) and TiO 2 ( 4 mol%) and other three series containing Cr 2 O 3 .
  • the coercive force Hc increases as the film thickness of the first magnetic recording layer 122a increases, and the coercive force Hc starts to decrease when the film thickness becomes too thick. It can be seen that this tendency is shown. From this, it can be understood that by optimizing the film thickness of the first magnetic recording layer 122a, it is possible to ensure a high coercive force Hc regardless of the type of oxide.
  • the magnetic recording layer 122 includes the first magnetic recording layer 122a, the dividing layer 122b, and the second magnetic recording layer 122c, and the thickness and composition of each layer are optimized.
  • the SNR can be further improved while ensuring a high coercive force Hc.
  • the recording density of the perpendicular magnetic recording medium 100 can be further increased.
  • the dividing layer 122b is provided between the first magnetic recording layer 122a and the second magnetic recording layer 122c.
  • the second dividing layer 124 is further provided between the second magnetic recording layer 122c and the auxiliary recording layer 126 will be described.
  • the dividing line 122b described in the first embodiment is referred to as a “first dividing line 122b”.
  • FIG. 7 is a diagram illustrating the configuration of the perpendicular magnetic recording medium 100 according to the present embodiment.
  • the perpendicular magnetic recording medium 100 according to the second embodiment has the same configuration as that described in the first embodiment except for the magnetic recording layer 122 and the second dividing layer 124.
  • the magnetic recording layer 122 includes a first magnetic recording layer 122a (first magnetic layer), a first dividing layer 122b, and a second magnetic recording layer 122c (second magnetic layer), on which a second magnetic recording layer 122a is formed.
  • the dividing layer 124 and the auxiliary recording layer 126 (third magnetic layer) are formed in this order.
  • the first dividing layer 122b is a nonmagnetic thin film, and is interposed between the first magnetic recording layer 122a and the second magnetic recording layer 122c, so that the magnetic continuity between these magnetic layers is divided. .
  • the dividing layer 122b can be made of Ru or a Ru alloy, and can further contain oxygen or an oxide. Then, by setting the dividing layer 122b to a predetermined film thickness, antiferromagnetic exchange coupling (AFC) is generated between the first magnetic recording layer 122a and the second magnetic recording layer 122c. As a result, the magnetization direction is antiparallel between the upper and lower magnetic layers of the first dividing layer 122b and acts to fix the magnetization directions to each other, thereby reducing fluctuations in the magnetization axis and reducing noise. it can.
  • AFC antiferromagnetic exchange coupling
  • the dividing layer 122b is a very thin film, the inheritance of the crystal orientation between the first magnetic recording layer 122a and the second magnetic recording layer 122c is not hindered. Since the first dividing layer 122b does not contain as much oxide as the magnetic recording layer, no grain boundary is formed, but since it is an extremely thin film of 1 nm or less and Ru has an hcp structure, It is presumed that growth is not hindered.
  • the second dividing layer 124 is a nonmagnetic layer provided between the magnetic recording layer 122 (second magnetic recording layer 122c) and the auxiliary recording layer 126.
  • the second dividing layer 124 can be made of Ru or a Ru alloy, and can further contain oxygen or an oxide. Then, by setting the second dividing layer 124 to a predetermined thickness, ferromagnetic exchange coupling (FC) is generated between the second magnetic recording layer 122c and the auxiliary recording layer 126.
  • FC ferromagnetic exchange coupling
  • the second dividing layer 124 By providing such a second dividing layer 124, it is possible to reduce the noise considered to be caused by the auxiliary recording layer 126 and improve the SNR. This is presumably because, as an effect on the crystal structure, the fine structure inherited from the magnetic recording layer 122 can be adjusted when the auxiliary recording layer 126 grows.
  • Ru inherits the Co crystal structure of the magnetic recording layer 122 up to Co of the auxiliary recording layer 126.
  • the portion of the second dividing layer 124 positioned above the grain boundary of the magnetic recording layer 122 has no inheritance of crystal orientation because the lattice constant of the oxide forming the grain boundary and Ru are greatly different.
  • Ru and oxygen atoms form a film (crystal) while freely migrating.
  • the auxiliary recording layer 126 By forming the auxiliary recording layer 126 on the Ru crystal, the Co particles of the auxiliary recording layer 126 are further separated and the noise is reduced. Therefore, the crystal orientation of the auxiliary recording layer 126 is improved as a whole.
  • the split faults are made of only Ru, the OW characteristics and the like are improved.
  • Ru is preferable because it has a lattice constant close to that of Co constituting the magnetic particles, and even when interposed between the magnetic layers, it is difficult to inhibit the epitaxial growth of Co crystal particles.
  • a dramatic improvement in SNR is observed by adding oxygen to Ru. It is considered that oxygen atoms contained in the dividing layer have high affinity with oxygen atoms contained in the grain boundaries of the magnetic recording layer and are selectively precipitated.
  • oxygen is contained in the dividing layer in a proportion smaller than that of the oxide included in the magnetic recording layer 122, so that the grain boundary of the magnetic recording layer 122 containing a large amount of oxygen and oxygen are contained. It is presumed that magnetic and structural bridging with the auxiliary recording layer 126 that is not included has become possible.
  • the oxygen contained in Ru in the dividing fault includes either one or both of an oxygen atom as a simple substance and an oxygen atom as an oxide.
  • an oxygen atom as a simple substance
  • an oxygen atom as an oxide.
  • the reactive sputtering method is a method in which an active gas is added to an atmospheric gas supplied into a sputtering chamber to form a compound film or mixed film of target atoms and active gas atoms. Therefore, oxygen can be contained in the dividing line by adding oxygen gas as an active gas during sputtering of the dividing line.
  • the reactive sputtering method since the amount of oxygen gas added to the atmospheric gas is small, it is very difficult to adjust the amount of oxygen contained in the dividing layer to a desired amount. In addition, since it is difficult to adjust the active gas to be uniformly distributed in the atmospheric gas, the oxygen distribution in the dividing line becomes non-uniform. Furthermore, since it is difficult to completely deaerate oxygen gas mixed in the layer at the time of forming the dividing line, the oxygen gas remaining in the chamber forms a layer after the dividing line. Get into the chamber. Therefore, it is preferable to perform sputtering using a target made of Ru and an oxide because the oxygen can be uniformly contained in the entire film.
  • the composition of the dividing layer may be RuO, RuWO 3 , or RuTiO 2 .
  • oxygen in the dividing layer by including an oxide in the sputtering target.
  • oxides are conceivable.
  • SNR electromagnetic conversion characteristics
  • WO 3 can obtain a high effect. This is because, since WO 3 is an unstable oxide, oxygen is dissociated during sputtering, and the dissociated oxygen also exhibits the effect of oxygen addition. That is, the use of WO 3 is preferable because it can have both the effect of adding oxygen and the effect of adding oxide.
  • oxides include silicon oxide (SiO x ), chromium (Cr), chromium oxide (Cr X O Y ), titanium oxide (TiO 2 ), zircon oxide (ZrO 2 ), and tantalum oxide (Ta 2 O). 5 ), oxides such as iron oxide (Fe 2 O 3 ) and boron oxide (B 2 O 3 ). Further, nitrides such as BN, a carbide such as B 4 C 3 can also be suitably used.
  • the second dividing layer 124 is preferably non-magnetic, but may be slightly magnetic as long as it is slightly.
  • a specific example is RuCo 50 .
  • RuCo 50 is excellent in improving SNR because Co can inherit crystal orientation from the magnetic recording layer toward the auxiliary recording layer.
  • the thickness of the dividing faults may be 2 to 10 mm, respectively.
  • a strong exchange coupling can be obtained by setting the thickness to 7 to 9 mm. This is because if the thickness of the dividing layer is 10 mm or more, the upper and lower magnetic layers of the dividing layer are completely divided and the inheritance of crystal orientation is completely lost.
  • the film thickness is greater than 10 mm, the exchange coupling generated between the magnetic layers is weakened, so that a desired SNR cannot be obtained.
  • the film thickness is 2 mm or less, there is a possibility that the film cannot be formed.
  • the split fault 122b is the film thickness at which an AFC peak is obtained
  • the second split fault 124 is the FC peak. It is preferable that the film thickness be such that The film thickness at which these peaks occur is determined by experimentation according to the upper and lower magnetic recording layers and the material of the dividing layer.
  • FIG. 8 is a diagram for explaining two magnetic coupling models including the first magnetic recording layer 122a, the first dividing layer 122b, the second magnetic recording layer 122c, the second dividing layer 124, and the auxiliary recording layer 126.
  • the magnetization directions of the first magnetic recording layer 122a and the second magnetic recording layer 122c are antiparallel due to AFC coupling
  • the magnetization directions of the second magnetic recording layer 122c and the auxiliary recording layer 126 are parallel due to FC coupling. Both of them act to fix the magnetization directions to each other. For this reason, fluctuations in the magnetization axis are reduced, and noise can be reduced.
  • the first magnetic recording layer 122a is a magnet that is continuous with the second magnetic recording layer 122c if there is no first dividing layer 122b.
  • the first magnetic recording layer 122a is divided by the first dividing layer 122b, it is an individual short magnet. It becomes.
  • the film thickness of the first magnetic recording layer 122a the aspect ratio of the granular magnetic particles is shortened (in the perpendicular magnetic recording medium, the film thickness direction corresponds to the vertical direction of the easy axis of magnetization).
  • the demagnetizing field generated inside the magnet becomes stronger. For this reason, although the first magnetic recording layer 122a is hard magnetic, the magnetic moment to be exposed to the outside becomes small and is difficult to be picked up by the magnetic head.
  • the magnetic moment (of the magnet) is such that the magnetic flux hardly reaches the magnetic head and has a magnetic interaction with the second magnetic recording layer 122c.
  • the magnetic recording layer 122 with low noise while exhibiting a high coercive force can be obtained.
  • the thickness of the first magnetic recording layer 122a may be 5 nm or less.
  • the first magnetic recording layer 122a is preferably a layer having few grain boundary portions and a high coercive force Hc
  • the second magnetic recording layer 122c is preferably a layer having many grain boundary portions (many oxides) and a high SNR.
  • the demagnetizing field of the first magnetic recording layer 122a can be strengthened, and the magnetic moment emitted from the first magnetic recording layer 122a can be reduced.
  • the first magnetic recording layer 122a can reduce the oxide and increase the coercive force Hc, and the magnetization direction of the second magnetic recording layer 122c can be changed. It can function as a pin layer to be fixed.
  • the magnetic recording layer 122 may contain two or more kinds of oxides. As a result, characteristics of a plurality of oxides can be obtained, noise is reduced by further miniaturization and isolation of the magnetic particles of the magnetic recording layer 122, and SNR is improved to increase the recording density. Can be obtained.
  • the magnetic recording layer 122 may contain SiO 2 and TiO 2 as oxides.
  • SiO 2 promotes miniaturization and isolation of magnetic particles, and TiO 2 has a characteristic of improving electromagnetic conversion characteristics (especially SNR). By combining these oxides and segregating at the grain boundaries of the magnetic recording layer 122, both benefits can be enjoyed.
  • the magnetic recording layer 122 may contain 5 mol% or more of an oxide constituting the grain boundary part.
  • the content is 5 mol% or more, high magnetostatic characteristics and electromagnetic conversion characteristics can be obtained, and in such a range, the characteristics of the auxiliary recording layer 126 deteriorate to a level that cannot be ignored. This is because an improvement in characteristics can be obtained by providing.
  • a film was formed in order from the adhesion layer 112 to the auxiliary recording layer 126 in an Ar atmosphere by a DC magnetron sputtering method using a film forming apparatus that was evacuated.
  • the adhesion layer 112 was made of CrTi.
  • the composition of the first soft magnetic layer 114a and the second soft magnetic layer 114c was CoFeTaZr, and the composition of the spacer layer 114b was Ru.
  • the composition of the pre-underlayer 116 was a NiW alloy having an fcc structure.
  • a Ru film was formed in an Ar atmosphere at a predetermined pressure (low pressure: for example, 0.6 to 0.7 Pa).
  • a Ru film containing oxygen was formed in an Ar atmosphere at a pressure higher than a predetermined pressure (high pressure: for example, 4.5 to 7 Pa) using a target containing oxygen.
  • the composition of the nonmagnetic granular layer 120 was nonmagnetic CoCr—SiO 2 .
  • the first magnetic recording layer 122a contained Cr 2 O 3 as an example of an oxide at the grain boundary part, and formed a hcp crystal structure of CoCrPt—Cr 2 O 3 .
  • the second magnetic recording layer 122c contained SiO 2 and TiO 2 as examples of complex oxides (plural types of oxides) at the grain boundary portion, and formed an hcp crystal structure of CoCrPt—SiO 2 —TiO 2 .
  • the first split layer 122b and the second split layer 124 have a thickness of 8 mm and 4 mm, respectively, and their compositions were compared by creating the following examples and comparative examples.
  • the composition of the auxiliary recording layer 126 was CoCrPtB.
  • the medium protective layer 128 was formed using C 2 H 4 and CN by the CVD method, and the lubricating layer 130 was formed using PFPE by the dip coating method.
  • FIG. 9 is a diagram showing an example and a comparative example based on the presence or absence of a dividing fault.
  • Example 11 is an example in which a first split layer 122b and a second split layer 124 are provided and a plurality of oxides are combined in the second magnetic recording layer 122c.
  • Example 12 is an example in which CoO is further added as an oxide.
  • Example 13 is the case where the oxide is a single material. Comparative Example 11 is an example in which the first split fault 122b and the second split fault 124 are not provided, Comparative Example 12 is an example in which only the second split fault 124 is provided, and Comparative Example 13 is only the first split fault 122b. Is an example.
  • SNR was measured as a coercive force Hc and a reverse domain nucleation magnetic field Hn as a magnetostatic characteristic, and an electromagnetic conversion characteristic. Since the coercive force Hc and the reverse domain nucleation magnetic field Hn are better as the absolute values are larger, they are shown on the graph as absolute values on the same axis.
  • Comparative Example 12 shows that the second dividing line 124 improves SNR
  • Comparative Example 13 shows that the first dividing line 122b also slightly improves SNR. Recognize. However, by combining both as in the embodiment, the performance can be dramatically improved.
  • Example 11 Compared Example 11 and Example 13, it can be seen that a higher effect can be obtained by mixing a plurality of oxides with the oxide of the second magnetic recording layer 122c. Further, referring to Example 12, it can be seen that Hc, Hn, and SNR are further increased when CoO is further added.
  • FIG. 10 is a diagram in which the composition of the second dividing layer 124 is varied and compared.
  • Example 12 is an example in which the second dividing line 124 is formed of RuWO 3
  • Example 14 is an example in which the second dividing line 124 is formed of Ru—SiO 2
  • Example 15 is the second dividing line 124. Is formed by exposure to Ru + O 2
  • Example 16 is an example in which the second dividing layer 124 is formed only by Ru.
  • Example 12 the SNR is significantly improved in Examples 12 to 15 containing oxygen, compared to Example 16 formed only with Ru. Among them, the SNR was most improved in Example 12 in which the split layer was formed with RuWO 3 .
  • the SNR of the magnetic recording layer can be further improved.
  • the recording density of the perpendicular magnetic recording medium 100 can be further increased.
  • FIG. 11 is a TEM photograph of the auxiliary recording layer 126 of Example 11 (when the second dividing layer 124 is provided) and Comparative Example 11 (when the second dividing layer 124 is not provided).
  • Comparative Example 11 the fine structure of the auxiliary recording layer 126 is blurred, but in Example 11, separation between particles is clearly promoted. That is, it can be said that the separation of crystal grains is promoted in the magnetic layer provided on the dividing layer. Thereby, it can be confirmed that the noise of the auxiliary recording layer 126 can be reduced by the dividing layer 124.
  • the perpendicular magnetic recording medium 100 it is possible to reduce the noise considered to be caused by the auxiliary recording layer and improve the SNR. As a result, the recording density of the perpendicular magnetic recording medium 100 can be further increased.
  • the present invention can be used as a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording type HDD or the like.

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

【課題】 高い保磁力Hcを確保しつつSNRを更に向上し、更なる高記録密度化を達成することが可能な垂直磁気記録媒体を提供する。 【解決手段】 本発明にかかる垂直磁気記録媒体100の構成は、基体110上に少なくとも、柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラ構造の第1磁気記録層122aと、第1の磁性層の上に設けられ、Ruを含む非磁性の分断層122bと、分断層の上に設けられ、柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラ構造の第2磁気記録層122cと、を備え、第1の磁性層および第2の磁性層は、粒界部を形成する酸化物を含み、第1の磁性層に含まれる酸化物の量をA、第2の磁性層に含まれる酸化物の量をBとすると、酸化物の含有量の関係A/Bは、0.5<A/B<1.0の範囲であることを特徴とする。

Description

垂直磁気記録媒体
 本発明は、垂直磁気記録方式のHDD(ハードディスクドライブ)などに搭載される垂直磁気記録媒体に関するものである。
 近年の情報処理の大容量化に伴い、各種の情報記録技術が開発されている。特に磁気記録技術を用いたHDDの面記録密度は年率100%程度の割合で増加し続けている。最近では、HDD等に用いられる2.5インチ径の磁気記録媒体にして、1枚あたり200GBを超える情報記録容量が求められるようになってきており、このような要請にこたえるためには1平方インチあたり400GBを超える情報記録密度を実現することが求められる。
 HDD等に用いられる磁気記録媒体において高記録密度を達成するために、近年、垂直磁気記録方式が提案されている。垂直磁気記録方式に用いられる垂直磁気記録媒体は、磁気記録層の磁化容易軸が基板面に対して垂直方向に配向するよう調整されている。垂直磁気記録方式は従来の面内記録方式に比べて、超常磁性現象により記録信号の熱的安定性が損なわれ、記録信号が消失してしまう、いわゆる熱揺らぎ現象を抑制することができるので、高記録密度化に対して好適である。
 垂直磁気記録方式に用いる磁気記録媒体としては、高い熱安定性と良好な記録特性を示すことから、CoCrPt-SiO垂直磁気記録媒体(非特許文献1参照)が提案されている。これは磁気記録層において、Coのhcp構造(六方最密結晶格子)の結晶が柱状に連続して成長した磁性粒子の間に、SiOが偏析した非磁性の粒界部を形成したグラニュラ構造を構成し、磁性粒子の微細化と保磁力Hcの向上をあわせて図るものである。非磁性の粒界(磁性粒子間の非磁性部分)には酸化物を用いることが知られており、例えばSiO、Cr、TiO、TiO、Taのいずれか1つを用いることが提案されている(特許文献1)。
 またグラニュラ構造を有する磁性層は、粒界を形成する酸化物の種類や、酸化物の含有量によって静磁気特性および電磁変換特性を調整することができる。高い保磁力と低ノイズはいずれも重要であるが、一方を上げれば他方が下がるというトレードオフの関係にある。このため従来からも、磁気記録層を複数の層に分け、役割分担させることが行われている。例えば酸化物を少なくして保磁力Hcの向上を図る層と、酸化物を多くしてSNR(Signal to Noise Ratio:シグナルノイズ比)の向上を図る層とを設けることにより、両方の特性を得ることができる。
 ところで磁気記録層に強い磁界を印加すると、隣接トラックへの漏れ磁場も大きくなることから、WATE(Wide Area Track Erasure)、すなわち、書込みの対象となるトラックを中心に数μmにわたって記録情報が消失する現象が問題となる。WATEを低減させる手法として、磁気記録層の逆磁区核形成磁界Hnを負とし、さらにその絶対値を大きくすることが重要である。高い(絶対値の大きい)Hnを得るために、グラニュラ構造を有する磁気記録層の上方又は下方に高い垂直磁気異方性を示す薄膜が形成されたCGC(Coupled Granular Continuous)媒体が考案されている(特許文献2)。
 特許文献2に示されたCGC媒体はCoB磁性膜とPd非磁性膜の薄膜を積層した構造であり、交換結合を利用して高いHnを得るものであった。しかしCGC媒体では磁性膜を薄膜にしなければ交換結合作用が得られない上、1つの層では効果が微弱であるためにCoBとPdを3回ほど繰り返して積層する必要があった。そのため近年では、基体主表面の面内方向に磁気的にほぼ連続し、垂直磁気異方性の高い単一の膜である補助記録層を磁気記録層の上に形成する場合が多い。
 また磁気記録層の保磁力Hcを向上させていくと、高記録密度化が達成できる反面、磁気ヘッドによる書き込みが困難になる傾向にある。そこで補助記録層は、飽和磁化Msを向上させることにより書き込みやすさ、すなわちオーバーライト特性を向上させる役割を有している。言い換えれば、磁気記録層の上に補助記録層を設ける目的は、逆磁区核形成磁界Hnを向上させてノイズを低減し、飽和磁化Msを向上させてオーバーライト特性も向上させることである。なお補助記録層は連続層またはキャップ層とも呼ばれる場合もある。
T. Oikawa et. al.、IEEE Trans. Magn、vol.38、1976-1978(2002)
特開2006-024346号公報 特開2003-346315号公報
 上記の如く高記録密度化している磁気記録媒体であるが、今後さらなる記録密度の向上が要請されている。高記録密度化のために重要な要素としては、保磁力Hcや逆磁区核形成磁界Hnなどの静磁気特性の向上と、オーバーライト特性やSNR(Signal to Noise Ratio:シグナルノイズ比)、トラック幅の狭小化などの電磁変換特性の向上がある。その中でも保磁力Hcの向上とSNRの向上は、面積の小さな記録ビットにおいても正確に且つ高速に読み書きするために重要である。
 SNRの向上は、主に磁気記録層の磁化遷移領域ノイズの低減により行われる。ノイズ低減のために有効な要素としては、磁気記録層の結晶配向性の向上、磁性粒子の粒径の微細化、および磁性粒子の孤立化が挙げられる。中でも、磁性粒子の孤立化が促進されると隣接する磁性粒子との磁気的相互作用を遮断されるため、ノイズを大幅に低減することができ、SNRを著しく向上させることが可能となる。上述のグラニュラ構造の垂直磁気記録媒体では、酸化物によって粒界を形成することによって磁性粒子を孤立化および微細化し、SNRを向上させている。
 しかし上記のように、磁性粒子の孤立化を促進させるために単に磁気記録層中の酸化物量を増加させると、保磁力Hcの低下を引き起こし、記録再生特性の悪化につながる。そこで、磁気記録層を複数の層から構成して、保磁力が高い層とSNRが高い層に役割分担することにより両方の特性を得ていたが、高保磁力Hcを有する層に起因するノイズが問題となった。このため従来は保磁力の高い層の膜厚を薄めにしてノイズを抑えていた。しかし、最低限必要な保磁力を確保する必要があるため、ある程度のノイズは容認する必要があった。
 また、上記の補助記録層はグラニュラ構造を有しておらず、面内方向に磁気的にほぼ連続した構造となっている。このため、補助記録層によりオーバーライト特性を改善できる反面、ノイズの増加を招くこととなる。特に補助記録層は、媒体の上方に位置することになるため、ノイズ増加に対する影響は大きい。かといって、補助記録層なしではOW特性が極端に低くなり、昨今の保磁力の高い磁気記録層は、もはや書き込むことができなくなってしまう。このため、やはりある程度のノイズは容認する必要があった。
 したがって、上記の技術では、高い保磁力Hcを確保するためにノイズの増加をある程度許容しなくてはならず、SNRの向上は限界に達していた。このため、磁気記録媒体の更なる高記録密度化の達成には、高い保磁力Hcを確保しつつ、SNRを更に向上することが可能な新たな手法の確立が課題となっていた。
 本発明は、このような課題に鑑み、高い保磁力Hcを確保しつつSNRを更に向上し、更なる高記録密度化を達成することが可能な垂直磁気記録媒体を提供することを目的とする。
 上記課題を解決するために発明者らが鋭意検討したところ、磁気記録層に起因するノイズの低減に着目した。すなわち、磁気記録層における磁化状態がノイズの発生に影響を及ぼしている可能性があると考えた。そして、さらに研究を重ねることにより、磁気記録層を第1の磁性層と第2の磁性層とからなる2層で構成し、その間にRuを含む非磁性の分断層を介在させることにより、磁気記録層、特に第1の磁性層の磁化方向を制御し、低ノイズ化を図り、上記課題の解決できることを見出し、本発明を完成するに到った。
 すなわち、上記課題を解決するために、本発明にかかる垂直磁気記録媒体の代表的な構成は、基体上に、少なくとも、柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラ構造の第1の磁性層と、第1の磁性層の上に設けられ、Ruを含む非磁性の分断層と、分断層の上に設けられ、柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラ構造の第2の磁性層と、を備え、第1の磁性層および第2の磁性層は、粒界部を形成する酸化物を含み、第1の磁性層に含まれる酸化物の量をA、第2の磁性層に含まれる酸化物の量をBとすると、酸化物の含有量の関係A/Bは、0.5<A/B<1.0の範囲であることを特徴とする。
 上記構成の如く、第1の磁性層と第2の磁性層の間に、Ruを含む分断層を介在させることにより、磁気記録層間に磁気的な相互作用である反強磁性交換結合(AFC:Antiferro-magnetic exchange coupling)を発生させることができる。これにより、第1の磁性層の磁化方向と、第2の磁性層の磁化方向とを反平行(相反する方向)に整列させ、相互に磁化方向を固定するように作用させることが可能となる。
 また、酸化物の含有量の関係A/Bは、0.5<A/B<1.0の範囲とすることにより、第1の磁性層および第2の磁性層における酸化物の含有量が適切化され、第1の磁性層は粒界部が少なく保磁力Hcが高い層、第2の磁性層は粒界部が多くSNRが高い層とすることができる。したがって、高保磁力Hcを確保しつつSNRを更に向上することが可能となる。また第1の磁性層が高保磁力Hcであることから、かかる第1の磁性層は、第2の磁性層の磁化方向を固定するpin層として機能することが可能となる。
 上記の分断層は、膜厚が2Å以上且つ10Å以下であるとよい。分断層の膜厚をかかる範囲内に設定することにより、第1の磁性層および第2の磁性層の磁気を遮断し、AFCを発生させることができる。
 なお、分断層の膜厚を10Å以上とすると、磁気記録層間で生じる交換結合が弱くなってしまうために、所望のSNRが得られない。また10Å以上に膜厚が厚くなると、分断層の上下の磁気記録層が磁気的に完全に分離されて結晶配向性の継承を全く失ってしまう。一方、分断層の膜厚を2Å以下とすると、第1の磁性層および第2の磁性層の磁気を遮断できず、AFCを発生させることが出来なくなってしまう。また2Å以下では皮膜を形成できなくなってしまう。尚、ここで皮膜とは必ずしも連続なものでなくともよく、例えば島状に膜が析出した状態でも、機能が発揮できれば問題とはならない。
 上記の分断層は、RuまたはRu合金からなるとよい。Ruは磁性粒子を構成するCoと同様の結晶形態(hcp)を有する為、磁気記録層の間に介在させてもCo結晶粒子のエピタキシャル成長を阻害しにくいためである。
 上記のRu合金は、RuO、RuCo、RuCr、RuSiO、RuTiO、RuCr、RuWO、RuTaの群から選択されるとよい。数多く存在するRu合金の中でも、これらのRu合金が、高保磁力Hcの確保およびSNRの向上に最も効果的である。
 特に、かかるRu合金が、RuOである場合、または酸化物を含有する場合、分断層は酸素原子を含む事となる。これにより、分断層のうち、第1の磁性層のグラニュラ構造の粒界の上に位置する部分は、含有させた酸素原子が第1の磁性層の粒界に含まれている酸素原子と親和性が高いため、Ru酸化物として磁性層の粒界構造を継承する。また分断層が酸化物を含んでいる場合、その酸化物が第1の磁性層の粒界と親和性が高くなり、同様に第1の磁性層の粒界構造を継承することとなる。したがって、いずれの場合においても分断層が第1の磁性層の粒界構造の承継を阻害することなく、第2の磁性層のCoの結晶粒子を成長させることができる。
 なお、分断層は、Ruと酸素とを含ませるための具体的な手段の一つとして、Ruと酸化物とから構成することができる。Ruと酸化物とを含むターゲットを用いてスパッタリングを行うと、酸化物から解離した酸素が膜中に含まれるため、酸素添加と同様の効果を奏するためである。
 また、分断層に含まれる酸化物は、WO、TiO、またはRuOが特に好ましい。これにより、電磁変換特性(SNR)を向上させることができる。中でも、WOは高い効果を得ることができる。これは、WOが不安定な酸化物であるので、スパッタ中により多くの酸素が解離され、より効果的に酸素添加の効果を示すためである。
 そして、さらに研究を重ねることにより、従来は第1磁気記録層および補助記録層がSNRの高い主記録層に対してそれぞれ連続していたところを、磁気的相互作用によって接続させることによって上記課題を解決できることを見出し、本発明を完成するに到った。
 すなわち、上記課題を解決するために本発明にかかる垂直磁気記録媒体の代表的な構成は、基体上に少なくとも、柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラ構造の第1の磁性層と、第1の磁性層の上に設けられた第1の分断層と、第1の分断層の上に設けられ柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラ構造の第2の磁性層と、第2の磁性層の上に設けられた第2の分断層と、第2の分断層の上に設けられ基体主表面の面内方向に磁気的にほぼ連続した第3の磁性層とを備えることを特徴とする。
 第1の磁性層(第1磁気記録層)と第2の磁性層(第2磁気記録層)の間、もしくは第2の磁性層と第3の磁性層(補助記録層)との間に第1または第2の分断層を介在させることにより、これらの磁性層間に磁気的な相互作用を発生させ、かつコントロールすることができる。すなわち分断層の膜厚を変化させることで磁性層の間に、反強磁性交換結合(AFC:Antiferro-magnetic exchange coupling)を発生させたり、強磁性交換結合(FC:Ferromagnetic exchange coupling)を調整したりする。これにより分断層の上下の磁性層間の結合状態や強さを調整することで、磁化軸の揺らぎを低減させたり、ノイズを低減させたりすることができる。
 特に第1の分断層は、比較的厚め(例えば0.6nm~1.2nm)に膜厚を設定することにより、第1および第2の磁性層の磁気を遮断し、AFCを発生させることができる。また第1の磁性層においては、膜厚を薄くすることにより、グラニュラ磁性粒子の縦横比が短くなることから、磁石の内部に発生する反磁界が強くなる。このため第1の磁性層は外部に出す磁気モーメントが小さくなり、高い保磁力を発揮しながらもノイズの少ない磁性層とすることができる。
 一方、第2の分断層は比較的薄め(例えば0.2nm~0.6nm)に膜厚を設定する。第2の分断層の膜厚は第1の分断層より薄く、AFCを発生させない範囲の膜厚である。これにより、第1および第2の磁性層の磁気を遮断せず、これらの交換結合の強さを適度に調整することができる。これにより第3の磁性層に起因すると考えられるノイズを低減させてSNRを向上させることができる。これは、第2の磁性層と第3の磁性層との間に第2の分断層を設けることにより、補助記録層と磁気記録層の交換結合が適度に調整されるためと推察される。
 第1または第2の分断層は、Ru又はRu合金で構成されていてもよい。Ruは磁性粒子を構成するCoと同様の結晶形態(hcp)を有する為、磁性層の間に介在させてもCo結晶粒子のエピタキシャル成長を阻害しにくいためである。
 第1または第2の分断層は、さらに酸素または酸化物を含んでいてもよい。分断層のうちグラニュラ磁性層の粒界の上に位置する部分は、分断層にRuと酸素とを含ませることによって、含有させた酸素原子は磁性層粒界に含まれている酸素原子と親和性が高く、Ru酸化物として磁性層の粒界構造を継承する。あるいは分断層に酸化物を含んでいる場合、その酸化物が磁性層粒界と親和性が高くなり、同様に磁性層の粒界構造を継承することとなる。したがって、磁性層の粒界構造を阻害することなく、上層のCoを成長させることができる。
 第1または第2の分断層は、RuO、RuWO、またはRuTiOであってもよい。酸化物としては様々なものが考えられるが、特にRu、W(タングステン)、Ti(チタン)の酸化物を用いることにより、電磁変換特性(SNR)を向上させることができる。中でも、WOは高い効果を得ることができる。これは、WOが不安定な酸化物であるので、スパッタ中により多くの酸素が解離され、より効果的に酸素添加の効果を示すためである。
 第1または第2の分断層の厚さが2Å~10Åであってもよい。分断層の膜厚を10Å以上とすると、分断層の上下の磁性層が磁気的に完全に分離されて結晶配向性の継承を全く失ってしまうためである。また10Å以上に膜厚が厚くなると、磁性層間で生じる交換結合が弱くなってしまうために、所望のSNRが得られない。一方、膜厚が2Å以下では皮膜を形成できなくなってしまうためである。
 第1の磁性層の厚さが5nm以下であってもよい。このとき、第1の磁性層は粒界部が少なく保磁力Hcが高い層、第2の磁性層は粒界部が多くSNRが高い層であることが好ましい。これにより第1の磁性層の反磁界を強くして、第1の磁性層から出る磁界を低減することができる。したがって第1の磁性層から出るノイズは磁気ヘッドに到達しないため、第1の磁性層は酸化物を減らして保磁力Hcを強くすることができ、第2磁気記録層の磁化方向を固定するpin層として機能させることができる。
 上記の第1の磁性層は、膜厚が0.7nm以上且つ3.0nm以下であるとよい。これにより第1の磁性層の反磁界を強くして、第1の磁性層に起因するノイズを低減させることができる。そして、第1の磁性層の酸化物を減らして保磁力Hcを強くすることにより、第1の磁性層は第2の磁性層の磁化方向を固定するpin層としても機能するため、高保磁力Hcを達成することができる。
 第1の磁性層に含まれる酸化物の量は、5mol%以上であるとよい。5mol%以上であるとき高い保磁力Hcと高いSNRとを得ることができるためである。
 第2の磁性層は、粒界部を構成する酸化物を5mol%以上含んでいてもよい。5mol%以上であるとき高い静磁気特性と電磁変換特性とを得ることができると共に、そのような範囲では第3の磁性層の特性が無視できないほどに低下するところ、上記の分断層を設けることによって特性の改善を得ることができるためである。
 第2の磁性層は2種以上の酸化物を含んでいてもよい。これにより、複数の酸化物の特性を得ることができ、第2の磁性層の磁性粒子のさらなる微細化と孤立化を図ることによりノイズを低減し、かつSNRを向上させて高記録密度化を図ることのできる垂直磁気記録媒体を得ることができる。
 第2の磁性層はSiO、TiO、またはCoOから選択される1または複数の酸化物を含んでいてもよい。SiOは磁性粒子の微細化および孤立化を促進し、TiOは電磁変換特性(特にSNR)を向上させる特性がある。そしてこれらの酸化物を複合させて第2の磁性層の粒界に偏析させることにより、双方の利益を享受することができる。
 本発明によれば、高い保磁力Hcを確保しつつSNRを更に向上し、更なる高記録密度化を達成することが可能な垂直磁気記録媒体を提供することができる。
本実施形態にかかる垂直磁気記録媒体の構成を説明する図である。 第1磁気記録層、分断層、第2磁気記録層からなる磁気結合のモデルを説明する図である。 分断層の膜厚とSNRの関係を示す図である。 分断層の組成とSNRおよびトラック幅の関係を示す図である。 磁気記録層の酸化物の含有量の関係であるA/BとSNRおよび保磁力Hcの関係を示す図である。 第1磁気記録層の膜厚と保磁力Hcの関係を示す図である。 垂直磁気記録媒体の構成を説明する図である。 第1磁気記録層、第1の分断層、第2磁気記録層、第2の分断層、および補助記録層からなる2つの反強磁性交換結合のモデルを説明する図である。 非磁性の有無による実施例と比較例を示す図である。 分断層の組成を異ならせて比較した図である。 実施例と比較例の補助記録層のTEM写真である。
100…垂直磁気記録媒体
110…ディスク基体
112…付着層
114…軟磁性層
114a…第1軟磁性層
114b…スペーサ層
114c…第2軟磁性層
116…前下地層
118…下地層
118a…第1下地層
118b…第2下地層
120…非磁性グラニュラ層
122…磁気記録層
122a…第1磁気記録層
122b…分断層(第1の分断層)
122c…第2磁気記録層
124…第2の分断層
126…補助記録層
128…媒体保護層
130…潤滑層
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
(第1実施形態)
 第1本実施形態では、まず本発明にかかる垂直磁気記録媒体の実施形態について説明した後に、第1の磁性層、第2の磁性層、および第1の磁性層と第2の磁性層の間に設けた分断層について詳細に説明する。
[垂直磁気記録媒体]
 図1は、本実施形態にかかる垂直磁気記録媒体100の構成を説明する図である。図1に示す垂直磁気記録媒体100は、ディスク基体110、付着層112、第1軟磁性層114a、スペーサ層114b、第2軟磁性層114c、前下地層116、第1下地層118a、第2下地層118b、非磁性グラニュラ層120、第1磁気記録層122a(第1の磁性層)、分断層122b、第2磁気記録層122c(第2の磁性層)、補助記録層126、媒体保護層128、潤滑層130で構成されている。なお第1軟磁性層114a、スペーサ層114b、第2軟磁性層114cは、あわせて軟磁性層114を構成する。第1下地層118aと第2下地層118bはあわせて下地層118を構成する。第1磁気記録層122aと分断層122b、第2磁気記録層122cとはあわせて磁気記録層122を構成する。
 ディスク基体110は、アモルファス(非晶質)のアルミノシリケートガラスをダイレクトプレスで円板状に成型したガラスディスクを用いることができる。なおガラスディスクの種類、サイズ、厚さ等は特に制限されない。ガラスディスクの材質としては、例えば、アルミノシリケートガラス、ソーダライムガラス、ソーダアルミノケイ酸ガラス、アルミノボロシリケートガラス、ボロシリケートガラス、石英ガラス、チェーンシリケートガラス、又は、結晶化ガラス等のガラスセラミックなどが挙げられる。このガラスディスクに研削、研磨、化学強化を順次施し、化学強化ガラスディスクからなる平滑な非磁性のディスク基体110を得ることができる。
 ディスク基体110上に、DCマグネトロンスパッタリング法にて付着層112から補助記録層126まで順次成膜を行い、媒体保護層128はCVD法により成膜することができる。この後、潤滑層130をディップコート法により形成することができる。なお、生産性が高いという点で、インライン型成膜方法を用いることも好ましい。以下、各層の構成について説明する。
 付着層112はディスク基体110に接して形成され、この上に成膜される軟磁性層114とディスク基体110との剥離強度を高める機能と、この上に成膜される各層の結晶グレインを微細化及び均一化させる機能を備えている。付着層112は、ディスク基体110がアモルファスガラスからなる場合、そのアモルファスガラス表面に対応させる為にアモルファスの合金膜とすることが好ましい。
 付着層112としては、例えばCrTi系非晶質層、CoW系非晶質層、CrW系非晶質層、CrTa系非晶質層、CrNb系非晶質層から選択することができる。付着層112は単一材料からなる単層でも良いが、複数層を積層して形成してもよい。
 軟磁性層114は、垂直磁気記録方式において記録層に垂直方向に磁束を通過させるために、記録時に一時的に磁路を形成する層である。軟磁性層114は第1軟磁性層114aと第2軟磁性層114cの間に非磁性のスペーサ層114bを介在させることによって、AFCを備えるように構成することができる。これにより軟磁性層114の磁化方向を高い精度で磁路(磁気回路)に沿って整列させることができ、磁化方向の垂直成分が極めて少なくなるため、軟磁性層114から生じるノイズを低減することができる。第1軟磁性層114a、第2軟磁性層114cの組成としては、CoTaZrなどのコバルト系合金、CoCrFeB、CoFeTaZrなどのCo-Fe系合金、[Ni-Fe/Sn]n多層構造のようなNi-Fe系合金などを用いることができる。
 前下地層116は非磁性の合金層であり、軟磁性層114を防護する作用と、この上に成膜される下地層118に含まれる六方最密充填構造(hcp構造)の磁化容易軸をディスク垂直方向に配向させる機能を備える。前下地層116は面心立方構造(fcc構造)の(111)面がディスク基体110の主表面と平行となっていることが好ましい。また前下地層116は、これらの結晶構造とアモルファスとが混在した構成としてもよい。前下地層116の材質としては、Ni、Cu、Pt、Pd、Zr、Hf、Nb、Taから選択することができる。さらにこれらの金属を主成分とし、Ti、V、Cr、Mo、Wのいずれか1つ以上の添加元素を含む合金としてもよい。例えばfcc構造を取る合金としてはNiW、CuW、CuCrを好適に選択することができる。
 下地層118はhcp構造であって、磁気記録層122のCoのhcp構造の結晶をグラニュラ構造として成長させる作用を有している。したがって、下地層118の結晶配向性が高いほど、すなわち下地層118の結晶の(0001)面がディスク基体110の主表面と平行になっているほど、磁気記録層122の配向性を向上させることができる。下地層118の材質としてはRuが代表的であるが、その他に、RuCr、RuCoから選択することができる。Ruはhcp構造をとり、また結晶の格子間隔がCoと近いため、Coを主成分とする磁気記録層122を良好に配向させることができる。
 下地層118をRuとした場合において、スパッタ時のガス圧を変更することによりRuからなる2層構造とすることができる。具体的には、下層側の第1下地層118aを形成する際にはArのガス圧を所定圧力、すなわち低圧にし、上層側の第2下地層118bを形成する際には、下層側の第1下地層118aを形成するときよりもArのガス圧を高くする、すなわち高圧にする。これにより、第1下地層118aによる磁気記録層122の結晶配向性の向上、および第2下地層118bによる磁気記録層122の磁性粒子の粒径の微細化が可能となる。
 また、ガス圧を高くするとスパッタリングされるプラズマイオンの平均自由行程が短くなるため、成膜速度が遅くなり、皮膜が粗になるため、Ruの結晶粒子の分離微細化を促進することができ、Coの結晶粒子の微細化も可能となる。
 さらに、下地層118のRuに酸素を微少量含有させてもよい。これによりさらにRuの結晶粒子の分離微細化を促進することができ、磁気記録層のさらなる孤立化と微細化を図ることができる。なお酸素はリアクティブスパッタによって含有させてもよいが、スパッタリング成膜する際に酸素を含有するターゲットを用いることが好ましい。
 非磁性グラニュラ層120はグラニュラ構造を有する非磁性の層である。下地層118のhcp結晶構造の上に非磁性のグラニュラ層を形成し、この上に第1磁気記録層122a(または磁気記録層122)のグラニュラ層を成長させることにより、磁性のグラニュラ層を初期成長の段階(立ち上がり)から分離させる作用を有している。これにより、磁気記録層122の磁性粒子の孤立化を促進することができる。非磁性グラニュラ層120の組成は、Co系合金からなる非磁性の結晶粒子の間に、非磁性物質を偏析させて粒界を形成することにより、グラニュラ構造とすることができる。
 本実施形態においては、かかる非磁性グラニュラ層120にCoCr-SiOを用いる。これにより、Co系合金(非磁性の結晶粒子)の間にSiO(非磁性物質)が偏析して粒界を形成し、非磁性グラニュラ層120がグラニュラ構造となる。なお、CoCr-SiOは一例であり、これに限定されるものではない。他には、CoCrRuSiOを好適に用いることができ、さらにRuに代えてRh(ロジウム)、Pd(パラジウム)、Ag(銀)、Os(オスミウム)、Ir(イリジウム)、Au(金)も利用することができる。また非磁性物質とは、磁性粒(磁性グレイン)間の交換相互作用が抑制、または、遮断されるように、磁性粒の周囲に粒界部を形成しうる物質であって、コバルト(Co)と固溶しない非磁性物質であればよい。例えば酸化珪素(SiOx)、クロム(Cr)、酸化クロム(Cr23)、酸化チタン(TiO)、酸化ジルコン(ZrO)、酸化タンタル(Ta)を例示できる。
 なお本実施形態では、下地層188(第2下地層188b)の上に非磁性グラニュラ層120を設けているが、これに限定されるものではなく、非磁性グラニュラ層120を設けずに垂直磁気記録媒体100を構成することも可能である。
 磁気記録層122は、Co系合金、Fe系合金、Ni系合金から選択される硬磁性体の磁性粒の周囲に非磁性物質を偏析させて粒界を形成した柱状のグラニュラ構造を有している。この磁性粒は、非磁性グラニュラ層120を設けることにより、そのグラニュラ構造から継続してエピタキシャル成長することができる。
 磁気記録層122は、本実施形態では組成および膜厚の異なる第1磁気記録層122aと、第2磁気記録層122c、およびこれらの間に設けられた分断層122bとから構成されている。これにより、第1磁気記録層122aの結晶粒子から継続して第2磁気記録層122cの小さな結晶粒子が成長し、主記録層たる第2磁気記録層122cの微細化を図ることができ、SNRの向上が可能となる。
 本実施形態では、第1磁気記録層122aにCoCrPt-Crを用いる。CoCrPt-Crは、CoCrPtからなる磁性粒(グレイン)の周囲に、非磁性物質であるCrおよびCr(酸化物)が偏析して粒界を形成し、磁性粒が柱状に成長したグラニュラ構造を形成した。この磁性粒は、非磁性グラニュラ層のグラニュラ構造から継続してエピタキシャル成長した。
 分断層122bはRuからなる非磁性の薄膜であって、第1磁気記録層122aと第2磁気記録層122cの間に介在させることにより、これらの磁気記録層122間の強磁性的な連続性は分断される。したがってこれらの磁気記録層122の間には、反強磁性交換結合(AFC)が発生する。これにより分断層122bの上下の磁気記録層122(第1磁気記録層122aおよび第2磁気記録層122c)の間では磁化方向が反平行となり、ノイズを低減することができる。
 また第2磁気記録層122cには、CoCrPt-SiO-TiOを用いる。第2磁気記録層122cにおいても、CoCrPtからなる磁性粒(グレイン)の周囲に非磁性物質であるCrおよびSiO、TiO(複合酸化物)が偏析して粒界を形成し、磁性粒が柱状に成長したグラニュラ構造を形成した。
 なお、上記に示した第1磁気記録層122aおよび第2磁気記録層122cに用いた物質は一例であり、これに限定されるものではない。また、本実施形態では、第1磁気記録層122aと第2磁気記録層122cで異なる材料(ターゲット)であるが、これに限定されず組成や種類が同じ材料であってもよい。非磁性領域を形成するための非磁性物質としては、例えば酸化珪素(SiO)、クロム(Cr)、酸化クロム(Cr)、酸化チタン(TiO)、酸化ジルコン(ZrO)、酸化タンタル(Ta)、酸化鉄(Fe)、酸化ボロン(B)等の酸化物を例示できる。また、BN等の窒化物、B等の炭化物も好適に用いることができる。
 さらに本実施形態では、第1磁気記録層122aにおいて1種類の、第2磁気記録層122cにおいて2種類の非磁性物質(酸化物)を用いているが、これに限定されるものではなく、第1磁気記録層122aまたは第2磁気記録層122cのいずれかまたは両方において2種類以上の非磁性物質を複合して用いることも可能である。このとき含有する非磁性物質の種類には限定がないが、本実施形態の如く特にSiOおよびTiOを含むことが好ましい。したがって、本実施形態とは異なり、磁気記録層122が1層のみで構成される場合、かかる磁気記録層122はCoCrPt-SiO-TiOからなることが好ましい。
 補助記録層126は基体主表面の面内方向に磁気的にほぼ連続した磁性層である。補助記録層126は磁気記録層122に対して磁気的相互作用を有するように、隣接または近接している必要がある。補助記録層126の材質としては、例えばCoCrPt、CoCrPtB、またはこれらに微少量の酸化物を含有させて構成することができる。補助記録層126は逆磁区核形成磁界Hnの調整、保磁力Hcの調整を行い、これにより耐熱揺らぎ特性、OW特性、およびSNRの改善を図ることを目的としている。この目的を達成するために、補助記録層126は垂直磁気異方性Kuおよび飽和磁化Msが高いことが望ましい。なお本実施形態において補助記録層126は磁気記録層122の上方に設けているが、下方に設けてもよい。
 なお、「磁気的に連続している」とは磁性が連続していることを意味している。「ほぼ連続している」とは、補助記録層126全体で観察すれば一つの磁石ではなく、結晶粒子の粒界などによって磁性が不連続となっていてもよいことを意味している。粒界は結晶の不連続のみではなく、Crが偏析していてもよく、さらに微少量の酸化物を含有させて偏析させても良い。ただし補助記録層126に酸化物を含有する粒界を形成した場合であっても、磁気記録層122の粒界よりも面積が小さい(酸化物の含有量が少ない)ことが好ましい。補助記録層126の機能と作用については必ずしも明確ではないが、磁気記録層122のグラニュラ磁性粒と磁気的相互作用を有する(交換結合を行う)ことによってHnおよびHcを調整することができ、耐熱揺らぎ特性およびSNRを向上させていると考えられる。またグラニュラ磁性粒と接続する結晶粒子(磁気的相互作用を有する結晶粒子)がグラニュラ磁性粒の断面よりも広面積となるため磁気ヘッドから多くの磁束を受けて磁化反転しやすくなり、全体のOW特性を向上させるものと考えられる。
 媒体保護層128は、真空を保ったままカーボンをCVD法により成膜して形成することができる。媒体保護層128は、磁気ヘッドの衝撃から垂直磁気記録媒体100を防護するための層である。一般にCVD法によって成膜されたカーボンはスパッタ法によって成膜したものと比べて膜硬度が向上するので、磁気ヘッドからの衝撃に対してより有効に垂直磁気記録媒体100を防護することができる。
 潤滑層130は、PFPE(パーフロロポリエーテル)をディップコート法により成膜することができる。PFPEは長い鎖状の分子構造を有し、媒体保護層128表面のN原子と高い親和性をもって結合する。この潤滑層130の作用により、垂直磁気記録媒体100の表面に磁気ヘッドが接触しても、媒体保護層128の損傷や欠損を防止することができる。
 以上の製造工程により、垂直磁気記録媒体100を得ることができた。次に、本発明の特徴である磁気記録層122(第1磁気記録層122a、第2磁気記録層122c、およびこれらの間に設けた分断層122b)についてさらに詳述する。
 上述したように、分断層122bは、第1磁気記録層122aと第2磁気記録層122cとの間に設けられた非磁性層である。これにより、これらの磁気記録層122間の強磁性的な連続性は分断され、磁気記録層122の間には、磁気的効果として反強磁性交換結合(AFC)が発生する。
 図2は、第1磁気記録層122a、分断層122b、第2磁気記録層122cからなる磁気結合のモデルを説明する図である。図2に示すように、第1磁気記録層122aと第2磁気記録層122cとの間に分断層122bを設けることで反強磁性交換結合(AFC)が発生し、第1磁気記録層122aと第2磁気記録層122cは磁化方向が反平行となり、相互に磁化方向を固定するように作用する。このため、ノイズを低減することができる。
 また図2に示すように、第1磁気記録層122aの厚みは第2磁気記録層122cの厚みよりも薄いことが好ましく、更に好ましくは、第1磁気記録層122aは膜厚が0.7nm以上且つ3.0nm以下であるとよい。
 ここで第1磁気記録層122aは、分断層122bがなければ第2磁気記録層122cと連続した磁石であったところ、分断層122bによって分断されるために個別の短い磁石となる。そして、さらに第1磁気記録層122aの膜厚を薄くすることにより、グラニュラ磁性粒子の縦横比が短くなることから(垂直磁気記録媒体においては、膜厚方向が磁化容易軸の縦方向にあたる)、磁石の内部に発生する反磁界が強くなる。このため第1磁気記録層122aから外部に発生する磁界が弱まり、磁気ヘッドによって拾われにくくなる。すなわち、第1磁気記録層122aの膜厚を調節することによって、磁気ヘッドまで磁界が到達しにくく、かつ第2磁気記録層122cに対しては磁気的相互作用を有する程度に磁気モーメント(磁石の強さ)を設定することにより、高い保磁力を発揮しながらもノイズの少ない磁気記録層122とすることができる。
 また、第1磁気記録層122aから出るノイズは磁気ヘッドに到達しないため、第1磁気記録層122aは酸化物を減らして保磁力Hcを強くすることができ、さらには第2磁気記録層122cの磁化方向を固定するpin層として機能させることができる。
 分断層122bは、膜厚が2Å以上且つ10Å以下(0.2nm以上~1nm以下)であるとよい。これにより、第1磁気記録層122aおよび第2磁気記録層122cの磁気を遮断し、AFCを発生させることができる。ここで、分断層122bの膜厚を10Å以上とすると、磁気記録層122間で生じる交換結合が弱くなってしまうために所望のSNRが得られず、また分断層122bの上下の磁気記録層122が磁気的に完全に分離されて結晶配向性の継承も失ってしまう。一方、分断層122bの膜厚を2Å以下とすると、第1磁気記録層122aおよび第2磁気記録層122cの磁気を遮断できず、AFCを発生させることが出来なくなってしまい、また皮膜を形成できなくなってしまう。なおAFCの交換結合の強さは介在する分断層122bの厚みによって振動しながら減衰するため、振動のピークを得られる膜厚とすることが好ましい。
 また結晶構造上は、第1磁気記録層122aと第2磁気記録層122cが同様のグラニュラ構造であることから、これらの結晶配向性の継承を妨げない。分断層122bには磁気記録層122(第1磁気記録層122aおよび第2磁気記録層122c)ほど大量の酸化物が含まれていないために粒界は形成しないが、1nm以下という極端な薄膜であり、かつ後述するように分断層122bを構成するRuがhcp構造を有することから、結晶成長を阻害しないものと推察される。
 以上、磁気記録層122の膜構成による利点を説明した。次に、第1磁気記録層122aおよび第2磁気記録層122c、分断層122bの組成について詳述する。
 第1磁気記録層122aおよび第2磁気記録層122cは、柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラ構造を有する層であり、粒界部を形成する物質として酸化物を含有する。ここで、第1磁気記録層122aに含まれる酸化物の量をA、第2磁気記録層122cに含まれる酸化物の量をBとすると、酸化物の含有量の関係A/Bは、0.5<A/B<1.0の範囲であるとよい。
 これにより、第1磁気記録層122aは粒界部が少なく保磁力Hcが高い層、第2磁気記録層122cは粒界部が多くSNRが高い層とすることができ、高い保磁力Hcを確保しつつSNRを更に向上することが可能となる。また第1磁気記録層122aが高保磁力であることから、かかる第1磁気記録層122aは、第2磁気記録層122cの磁化方向を固定するpin層として機能することが可能となる。
 なお、第1磁気記録層122aに含まれる酸化物の量は、5mol%以上であるとよい。これにより、高い保磁力Hcと高いSNRとを得ることができるためである。
 また、第2磁気記録層122cに含まれる酸化物は、2種以上であるとよい。これにより、複数の酸化物の特性を得ることができ、第2磁気記録層122cの磁性粒子のさらなる微細化と孤立化を図ることによりノイズを低減し、SNRを向上させて垂直磁気記録媒体100の高記録密度化を図ることができる。
 中でも、第2磁気記録層122cに含まれる酸化物は、SiO、TiO、およびCoOから1または複数選択されるとよい。SiOは磁性粒子の微細化および孤立化の促進、TiOは電磁変換特性(特にSNR)の向上を図る特性がある。したがって、これらの酸化物を複合させて第2磁気記録層122cの粒界に偏析させることにより、双方の利益を享受することができる。
 分断層122bは、RuまたはRu合金からなるとよい。Ruは磁性粒子を構成するCoと格子定数が近く、また磁性粒子を構成するCoと同様の結晶形態(hcp)を有する為、磁気記録層122の間に介在させてもCo結晶粒子のエピタキシャル成長を阻害しにくいためである。
 なお、Ru合金は、RuO、RuCo、RuCr、RuSiO、RuTiO、RuCr、RuWO、RuTaの群から選択されるとよい。これらのRu合金が、高保磁力Hcの確保およびSNRの向上に最も効果的だからである。
(実施例)
 ディスク基体110上に、真空引きを行った成膜装置を用いて、DCマグネトロンスパッタリング法にてAr雰囲気中で、付着層112から補助記録層126まで順次成膜を行った。付着層112は、CrTiとした。軟磁性層114は、第1軟磁性層114a、第2軟磁性層114cの組成はCoCrTaZrとし、スペーサ層114bの組成はRuとした。前下地層116の組成はfcc構造のNiW合金とした。第1下地層118aは所定圧力(低圧:例えば0.6~0.7Pa)のAr雰囲気下でRu膜を成膜した。第2下地層118bは、酸素が含まれているターゲットを用いて所定圧力より高い圧力(高圧:例えば4.5~7Pa)のAr雰囲気下で、酸素を含有するRu膜を成膜した。非磁性グラニュラ層120の組成は非磁性のCoCr-SiOとした。第2磁気記録層122cは、粒界部に複合酸化物(複数の種類の酸化物)の例としてSiOとTiOを含有し、CoCrPt-SiO-TiOのhcp結晶構造を形成した。第1磁気記録層122aおよび分断層122bは、膜厚および組成について下記のような実施例と比較例を作成した。補助記録層126の組成はCoCrPtBとした。媒体保護層128はCVD法によりCおよびCNを用いて成膜し、潤滑層130はディップコート法によりPFPEを用いて形成した。
 図3は、分断層122bの膜厚とSNRの関係を示す図である。分断層122bの組成は全てRuとした。また、図3中、各系列に記載している物質名は、第1磁気記録層122aの組成を示している。
 図3に示すように、いずれの系列においても、分断層122bを設けない、すなわち分断層122bの膜厚が0nmから増すにつれ、SNRが著しく向上する。そして、分断層122bの膜厚が1nm(10Å)を超えるとSNRは低下し始め、膜厚が3nmとなると、SNRは分断層122bを設けない状態よりも低い値となる。
 垂直磁気記録媒体100の高記録密度化達成のために所望されるSNRは17.5dB以上であることから、図3を参照すると、分断層122bの膜厚は、0.2nm~1.0nm(2Å~10Å)が好ましいことが理解できる。これは、第1磁気記録層122aと第2磁気記録層122cとの間に磁気的な相互作用である反強磁性交換結合(AFC)が発生し、第1磁気記録層122aの磁化方向と第2磁気記録層122cの磁化方向とが反平行に整列して固定され、ノイズが低減された結果、SNRが向上したためと推測される。
 なお、分断層122bの厚みが0.2nmより薄い場合、第1磁気記録層122aおよび第2磁気記録層122cの磁気を遮断できず、AFCを発生させることが出来なかったため、所望する値までのSNRの向上が図れなかったと考えられる。また、分断層122bの膜厚が1.0nmよりも厚い場合、磁気記録層122間で生じるAFCが弱くなってしまったため、磁気記録層122(第1磁気記録層122aおよび第2磁気記録層122c)の磁化方向の整列や固定する作用が低下し、所望のSNRを得ることができなかったと考察される。
 更に、図3において第1磁気記録層122aに含まれる酸化物に着目すると、4つの系列は、酸化物として、SiO(4mol%)およびTiO(4mol%)を含む1つの系列と、Crを含む他の3つの系列とに大別することができる。そして、SiOおよびTiOを含む系列と、Crを含む系列とを比較すると、いずれの系列においても、分断層122bを設けることでSNRが向上し、分断層122bの膜厚が厚くなりすぎるとSNRが低下する、というほぼ同様の傾向を示していることがわかる。このことから、分断層122bの膜厚を最適化することで、酸化物の種類に依ることなくSNRの向上が可能であることがわかる。
 また、Crを含む系列のみに着目すると、第1磁気記録層122aに含まれる酸化物の量が5mol%、7mol%、9mol%と増加するにつれて、SNRが向上していることがわかる。これは、第1磁気記録層122aに含まれる酸化物の量を増やすことで、第1磁気記録層122aにおける柱状の磁性粒子の粒界、すなわち粒界部を形成する物質が増え、その結果、磁性粒子の柱が細くなったためと考えられる。
 図4は、分断層122bの組成とSNRおよびトラック幅の関係を示す図である。ここで、分断層122bの組成は、実施例1ではRu、実施例2ではRuCo、実施例3ではRuCr、実施例4ではRuSiO、比較例1ではCo-Cr、比較例2ではNi-Cuである。RuCo、RuCrおよびRuSiOは、Ru合金である。また、分断層122bの膜厚は全て7Åとした。なお、上記のトラック幅とは、垂直磁気記録媒体100の実際のトラック幅ではなく、記憶可能幅試験において求められたトラックプロファイルが所定の割合を示すトラックの幅である。
 図4に示すように、実施例および比較例は、いずれも高記録密度化に際して所望されるSNRの値、17.5dBを上回っている。しかし、実施例および比較例を比較すると、分断層122bがRuまたはRu合金から構成される実施例の方が比較例よりも高SNRであることがわかる。したがって、更なる高記録密度化を達成するためには、分断層122bにはRuまたはRu合金を用いることが好ましいことが理解できる。
 またトラック幅においても、実施例は比較例よりも狭小化されている。このことからも、分断層にRuまたはRu合金を用いることでトラック幅を狭小化することができ、更なる高記録密度化の達成が可能であることがわかる。
 図5は、磁気記録層122の酸化物の含有量の関係であるA/BとSNRおよび保磁力Hcの関係を示す図である。なお、保磁力Hcは絶対値が大きいほど優れているため、絶対値としてグラフに示している。なお、分断層122bの組成は全てRuとし、膜厚は7Åとした。
 図5に示すように、A/Bが増大するにつれて、SNRは向上し、保磁力Hcは低下する。このことから、保磁力HcとSNRはトレードオフの関係にあることが改めてわかる。しかし、A/Bを0.5<A/B<1.0の範囲とすることで、高記録密度化達成のための、SNR17.5dB以上、および保磁力Hc4800Oe以上という2つの条件を満たすことができる。したがって、高い保磁力Hcを確保しつつSNRを更に向上し、更なる高記録密度化を達成することが可能となる。
 図6は、第1磁気記録層122aの膜厚と保磁力Hcの関係を示す図である。なお、図6においても保磁力Hcは絶対値としてグラフに示している。また図6中、各系列に記載している物質名は、第1磁気記録層122aの組成を示している。分断層122bの組成は全てRuとし、膜厚は7Åとした。
 図6に示すように、いずれの系列においても、第1磁気記録層122aの膜厚が増すにつれ、保磁力Hcが向上する。そして、第1磁気記録層122aの膜厚が約3nmを超えると保磁力Hcは低下し始め、膜厚が約4nmとなると、保磁力Hcは第1磁気記録層122aを設けない状態よりも低い値となる。
 垂直磁気記録媒体に所望される保磁力Hcは4800Oe以上であることから、図6を参照すると、第1磁気記録層122aの膜厚は、0.7nm以上且つ3.0nm以下が好ましいことが理解できる。これにより、高保磁力Hcを確保しつつ、垂直磁気記録媒体100の高記録密度化を達成することができる。そして、第1磁気記録層122aが高保磁力Hcであることから、かかる第1磁気記録層122aは、第2磁気記録層122cの磁化方向を固定するpin層として機能することが可能となる。
 また、図6において第1磁気記録層122aに含まれる酸化物に着目すると、5つの系列は、酸化物として、TiO(9mol%)を含む系列と、SiO(4mol%)およびTiO(4mol%)を含む系列と、Crを含む他の3つの系列とに大別することができる。そして、上記の系列を比較すると、いずれの系列においても、第1磁気記録層122aの膜厚が厚くなると保磁力Hcが向上していき、膜厚が厚くなりすぎると保磁力Hcが低下し始めるという傾向を示すことがわかる。このことから、第1磁気記録層122aの膜厚を最適化することで、酸化物の種類に依ることなく高保磁力Hcの確保が可能であることが理解できる。
 上記説明した如く、本発明によれば、磁気記録層122を第1磁気記録層122a、分断層122b、および第2磁気記録層122cから構成し、各層の膜厚および組成を最適化することで、高い保磁力Hcを確保しつつSNRを更に向上させることができる。これにより、垂直磁気記録媒体100の更なる高記録密度化を達成することが可能である。
(第2実施形態)
 本発明にかかる垂直磁気記録媒体の第2実施形態について説明する。上記第1実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
 上記第1実施形態においては、第1磁気記録層122aと第2磁気記録層122cの間に分断層122bを設けるように説明した。これに対し本実施形態は、さらに第2磁気記録層122cと補助記録層126の間に第2の分断層124を設けた構成について説明する。以下の説明において、第1実施形態に説明した分断層122bを、「第1の分断層122b」と称する。
 図7は、本実施形態にかかる垂直磁気記録媒体100の構成を説明する図である。第2実施形態にかかる垂直磁気記録媒体100は、磁気記録層122および第2の分断層124以外は第1実施形態において説明した構成と同じである。磁気記録層122は、第1磁気記録層122a(第1の磁性層)、第1の分断層122b、第2磁気記録層122c(第2の磁性層)から構成され、その上に第2の分断層124、補助記録層126(第3の磁性層)がこの順に成膜される。
 第1の分断層122bは非磁性の薄膜であって、第1磁気記録層122aと第2磁気記録層122cの間に介在させることにより、これらの磁性層間の磁気的な連続性は分断される。分断層122bはRu又はRu合金で構成することができ、さらに酸素または酸化物を含ませることができる。そして分断層122bを所定の膜厚とすることにより、第1磁気記録層122aと第2磁気記録層122cとの間に反強磁性交換結合(AFC)を発生させる。これにより第1の分断層122bの上下の磁性層の間では磁化方向が反平行となり、相互に磁化方向を固定するように作用するため、磁化軸の揺らぎが低減し、ノイズを低減することができる。
 また結晶構造上は、分断層122bが極めて薄い膜であることから、第1磁気記録層122aと第2磁気記録層122cの間の結晶配向性の継承を妨げない。第1の分断層122bには磁気記録層ほど大量の酸化物が含まれていないために粒界は形成しないが、1nm以下という極端な薄膜であり、かつRuがhcp構造を有することから、結晶成長を阻害しないものと推察される。
 第2の分断層124は、磁気記録層122(第2磁気記録層122c)と補助記録層126との間に設けられた非磁性の層である。第2の分断層124はRu又はRu合金で構成することができ、さらに酸素または酸化物を含ませることができる。そして第2の分断層124を所定の膜厚とすることにより、第2磁気記録層122cと補助記録層126の間に強磁性交換結合(FC)を発生させる。
 このような第2の分断層124を設けることにより、補助記録層126に起因すると考えられるノイズを低減させてSNRを向上させることができる。これは、結晶構造上の効果として、補助記録層126が結晶成長する際に磁気記録層122から継承する微細構造を調整できるためと推察される。第2の分断層124のうち磁気記録層122の磁性粒子の上に位置する部分は、Ruが磁気記録層122のCoの結晶構造を補助記録層126のCoまで継承させる。第2の分断層124のうち磁気記録層122の粒界の上に位置する部分は、粒界を形成する酸化物とRuの格子定数が大きく異なることから結晶配向性の継承は存在せず、Ruと酸素原子は自由にマイグレーションを生じながら皮膜(結晶)を形成する。そしてこのRuの結晶の上に補助記録層126が成膜されることにより、補助記録層126のCo粒子は、より分離が促進され、低ノイズ化が達成される。したがって、全体として補助記録層126の結晶配向性が向上する。
 分断層(第1の分断層122b、第2の分断層124)は、Ruのみから構成してもOW特性等の向上はみられる。Ruは磁性粒子を構成するCoと格子定数が近いため、磁性層の間に介在させてもCo結晶粒子のエピタキシャル成長を阻害しにくいため好適である。ただし、Ruに酸素を含有させることによりSNRの飛躍的な向上がみられる。分断層に含有させた酸素原子は磁気記録層の粒界に含まれている酸素原子と親和性が高く、選択的に析出するためと考えられる。特に第2の分断層124においては、分断層に磁気記録層122に含まれる酸化物よりも少ない割合で酸素を含ませることにより、多量の酸素を含む磁気記録層122の粒界と、酸素を含まない補助記録層126との磁気的、構造的な橋渡しをすることが可能になったものと推察される。
 分断層においてRuに含有させる酸素には、単体としての酸素原子、もしくは酸化物としての酸素原子のいずれか一方または両方が含まれる。Ruに微少量の酸素を含有させるにあたり、ターゲットにあらかじめ酸素を含有させる方法と、スパッタリングの際に雰囲気ガスに酸素を添加するリアクティブスパッタ法がある。リアクティブスパッタ法は、スパッタリングを行うチャンバ内に供給する雰囲気ガスに活性ガスを添加し、ターゲットの原子と活性ガスの原子との化合物膜または混合膜を成膜する方法である。したがって、分断層のスパッタリングの際に活性ガスとして酸素ガスを添加することで、分断層に酸素を含有させることができる。
 ただし、リアクティブスパッタ法は、雰囲気ガスに添加する酸素ガスの量が少量であるため、分断層に含有される酸素の量が所望する量になるよう調整することが非常に困難である。また雰囲気ガス中において活性ガスが均一に分布するよう調節することが難しいため、分断層における酸素の分布が不均一になってしまう。更には、分断層の成膜の際に層内に混入した酸素ガスを完全に脱気することが困難であるため、チャンバ内に残留した酸素ガスが、分断層より後の層を成膜するチャンバに入り込んでしまう。そこで分断層をRuと酸化物からなるターゲットを用いてスパッタリングを行う方が、膜全体に均一に酸素を含有させられるために好ましい。
 具体例として、分断層の組成は、RuO、RuWO、またはRuTiOであってもよい。上記のように、スパッタリングのターゲットに酸化物を含有させることにより、分断層に酸素を含有させることが好ましい。酸化物としては様々なものが考えられるが、特にW、Ti、Ruの酸化物を用いることにより、電磁変換特性(SNR)を向上させることができる。中でも、WOは高い効果を得ることができる。これは、WOが不安定な酸化物であるので、スパッタ中に酸素が解離され、解離された酸素が、酸素添加の効果も示す。つまり、WOを使うことにより、酸素添加の効果と酸化物添加の効果を併せ持つことができるので、好適である。酸化物の他の例としては、酸化珪素(SiO)、クロム(Cr)、酸化クロム(Cr)、酸化チタン(TiO)、酸化ジルコン(ZrO)、酸化タンタル(Ta)、酸化鉄(Fe)、酸化ボロン(B)等の酸化物を例示できる。また、BN等の窒化物、B等の炭化物も好適に用いることができる。
 なお、第2の分断層124は非磁性であることが好ましいが、若干であれば弱い磁性を帯びていてもよい。具体例としては、RuCo50を挙げることができる。特にRuCo50は、Coが磁気記録層から補助記録層に向かって結晶配向性を継承することができ、SNRの向上に優れている。
 分断層(第1の分断層122b、第2の分断層124)の厚さは、それぞれ2Å~10Åであってもよい。また特に7Å~9Åとすることにより、強い交換結合を得ることができる。分断層の膜厚を10Å以上とすると、分断層の上下の磁性層が完全に分断されて結晶配向性の継承を全く失ってしまうためである。また10Å以上に膜厚が厚くなると、磁性層間で生じる交換結合が弱くなってしまうために、所望のSNRが得られない。一方、膜厚が2Å以下では皮膜を形成できなくなってしまうおそれがある。なお交換結合の強さは介在する分断層の厚みによってFCとAFCの間を振動しながら減衰するため、分断層122bはAFCのピークが得られる膜厚、第2の分断層124はFCのピークが得られる膜厚とすることが好ましい。これらのピークを生じる膜厚は、上下の磁気記録層および分断層の材質に応じて、実験することによって求められる。
 図8は第1磁気記録層122a、第1の分断層122b、第2磁気記録層122c、第2の分断層124、および補助記録層126からなる2つの磁気結合のモデルを説明する図である。図8に示すように第1磁気記録層122aと第2磁気記録層122cはAFC結合によって磁化方向が反平行となり、第2磁気記録層122cと補助記録層126とはFC結合によって磁化方向が平行となり、いずれも相互に磁化方向を固定するように作用する。このため、磁化軸の揺らぎが低減し、ノイズを低減することができる。
 ここで第1磁気記録層122aは、第1の分断層122bがなければ第2磁気記録層122cと連続した磁石であったところ、第1の分断層122bによって分断されるために個別の短い磁石となる。そして、さらに第1磁気記録層122aの膜厚を薄くすることにより、グラニュラ磁性粒子の縦横比が短くなることから(垂直磁気記録媒体においては、膜厚方向が磁化容易軸の縦方向にあたる)、磁石の内部に発生する反磁界が強くなる。このため第1磁気記録層122aは硬磁性であるにもかかわらず、外部に出す磁気モーメントが小さくなり、磁気ヘッドによって拾われにくくなる。すなわち、第1磁気記録層122aの膜厚を調節することによって、磁気ヘッドまで磁束が到達しにくく、かつ第2磁気記録層122cに対しては磁気的相互作用を有する程度に磁気モーメント(磁石の強さ)を設定することにより、高い保磁力を発揮しながらもノイズの少ない磁気記録層122とすることができる。
 第1磁気記録層122aの厚さは、5nm以下であってもよい。このとき、第1磁気記録層122aは粒界部が少なく保磁力Hcが高い層、第2磁気記録層122cは粒界部が多く(酸化物が多く)SNRが高い層であることが好ましい。これにより第1磁気記録層122aの反磁界を強くして、第1磁気記録層122aから出る磁気モーメントを低減することができる。したがって第1磁気記録層122aから出るノイズは磁気ヘッドに到達しないため、第1磁気記録層122aは酸化物を減らして保磁力Hcを強くすることができ、第2磁気記録層122cの磁化方向を固定するpin層として機能させることができる。
 磁気記録層122は2種以上の酸化物を含んでいてもよい。これにより、複数の酸化物の特性を得ることができ、磁気記録層122の磁性粒子のさらなる微細化と孤立化を図ることによりノイズを低減し、かつSNRを向上させて高記録密度化を図ることのできる垂直磁気記録媒体を得ることができる。
 磁気記録層122は酸化物としてSiOとTiOを含んでいてもよい。SiOは磁性粒子の微細化および孤立化を促進し、TiOは電磁変換特性(特にSNR)を向上させる特性がある。そしてこれらの酸化物を複合させて磁気記録層122の粒界に偏析させることにより、双方の利益を享受することができる。
 磁気記録層122は、粒界部を構成する酸化物を5mol%以上含んでいてもよい。5mol%以上であるとき高い静磁気特性と電磁変換特性とを得ることができると共に、そのような範囲では補助記録層126の特性が無視できないほどに低下するところ、上記の第2の分断層124を設けることによって特性の改善を得ることができるためである。
(実施例)
 ディスク基体110上に、真空引きを行った成膜装置を用いて、DCマグネトロンスパッタリング法にてAr雰囲気中で、付着層112から補助記録層126まで順次成膜を行った。付着層112は、CrTiとした。軟磁性層114は、第1軟磁性層114a、第2軟磁性層114cの組成はCoFeTaZrとし、スペーサ層114bの組成はRuとした。前下地層116の組成はfcc構造のNiW合金とした。第1下地層118aは所定圧力(低圧:例えば0.6~0.7Pa)のAr雰囲気下でRu膜を成膜した。第2下地層118bは、酸素が含まれているターゲットを用いて所定圧力より高い圧力(高圧:例えば4.5~7Pa)のAr雰囲気下で、酸素を含有するRu膜を成膜した。非磁性グラニュラ層120の組成は非磁性のCoCr-SiOとした。第1磁気記録層122aは粒界部に酸化物の例としてCrを含有し、CoCrPt-Crのhcp結晶構造を形成した。第2磁気記録層122cは、粒界部に複合酸化物(複数の種類の酸化物)の例としてSiOとTiOを含有し、CoCrPt-SiO-TiOのhcp結晶構造を形成した。第1の分断層122bおよび第2の分断層124は膜厚をそれぞれ8Åと4Åとし、その組成は、下記のような実施例と比較例を作成して比較した。補助記録層126の組成はCoCrPtBとした。媒体保護層128はCVD法によりCおよびCNを用いて成膜し、潤滑層130はディップコート法によりPFPEを用いて形成した。
 図9は分断層の有無による実施例と比較例示す図である。実施例11は第1の分断層122bおよび第2の分断層124を設け第2磁気記録層122cに複数の酸化物を複合した例、実施例12はさらに酸化物としてCoOを追加した例、実施例13は酸化物が単一材料の場合である。比較例11は第1の分断層122bおよび第2の分断層124を設けていない例、比較例12は第2の分断層124のみを設けた例、比較例13は第1の分断層122bのみを設けた例である。そして各実施例および比較例について、静磁気特性として保磁力Hcおよび逆磁区核形成磁界Hn、電磁変換特性としてSNRを測定した。保磁力Hcおよび逆磁区核形成磁界Hnは絶対値が大きいほどよいため、同軸上に絶対値としてグラフに示している。
 図9からわかるように、実施例は比較例に対してHcとHnも向上しているが、特にSNRが顕著に向上している。比較例11~比較例13で比べれば、比較例12により第2の分断層124はSNRを向上させることがわかり、比較例13により第1の分断層122bもSNRを少し向上させていることがわかる。しかし実施例のように両方を兼ね備えることにより、飛躍的に性能の向上を図ることができる。
 また実施例11と実施例13を比較すれば、第2磁気記録層122cの酸化物を複数の酸化物を混合させた方が高い効果を得られることがわかる。また実施例12を参照すれば、さらにCoOを添加している方がHc、Hn、およびSNRのいずれもさらに高くなっていることがわかる。
 図10は第2の分断層124の組成を異ならせて比較した図である。実施例12は第2の分断層124をRuWOにて形成した例、実施例14は第2の分断層124をRu-SiOにて形成した例、実施例15は第2の分断層124をRu+O曝露にて形成した例、実施例16は第2の分断層124をRuのみによって形成した例である。
 図10から、Ruのみによって形成した実施例16よりも、酸素を含有する実施例12~実施例15の方が大幅にSNRが向上していることがわかる。中でも、RuWOにて分断層を形成した実施例12が最もSNRが向上していた。
 上記説明した如く、本発明によれば、磁気記録層のSNRをさらに向上させることができる。これにより、垂直磁気記録媒体100の更なる高記録密度化を達成することが可能である。
 図11は、実施例11(第2の分断層124を設けた場合)と比較例11(第2の分断層124を設けない場合)の補助記録層126のTEM写真である。図4を参照すれば、比較例11では補助記録層126の微細構造がぼやけているが、実施例11では明確に粒子間の分離が促進されていることがわかる。すなわち、分断層の上に設けられた磁性層は、結晶粒子の分離が促進されるということができる。これにより、分断層124によって補助記録層126の低ノイズ化を図ることができたことを裏付けることができる。
 上記説明した如く、第1実施形態にかかる垂直磁気記録媒体100によれば、補助記録層に起因すると考えられるノイズを低減させてSNRの向上を図ることができる。これにより、垂直磁気記録媒体100の更なる高記録密度化を達成することが可能である。
 以上、添付図面を参照しながら本発明の好適な実施例について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 本発明は、垂直磁気記録方式のHDDなどに搭載される垂直磁気記録媒体として利用することができる。

Claims (15)

  1.  基体上に、少なくとも、
     柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラ構造の第1の磁性層と、
     前記第1の磁性層の上に設けられ、Ruを含む非磁性の分断層と、
     前記分断層の上に設けられ、柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラ構造の第2の磁性層と、を備え、
     前記第1の磁性層および第2の磁性層は、前記粒界部を形成する酸化物を含み、
     前記第1の磁性層に含まれる酸化物の量をA、前記第2の磁性層に含まれる酸化物の量をBとすると、該酸化物の含有量の関係A/Bは、0.5<A/B<1.0の範囲であることを特徴とする垂直磁気記録媒体。
  2.  前記分断層は、膜厚が2Å以上且つ10Å以下であることを特徴とする請求項1に記載の垂直磁気記録媒体。
  3.  前記分断層は、RuまたはRu合金からなることを特徴とする請求項1に記載の垂直磁気記録媒体。
  4.  前記Ru合金は、RuO、RuCo、RuCr、RuSiO、RuTiO、RuCr、RuWO、RuTaの群から選択されることを特徴とする請求項3に記載の垂直磁気記録媒体。
  5.  基体上に少なくとも、
     柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラ構造の第1の磁性層と、
     前記第1の磁性層の上に設けられた第1の分断層と、
     前記第1の分断層の上に設けられ柱状に成長した結晶粒子の間に非磁性の粒界部を形成したグラニュラ構造の第2の磁性層と、
     前記第2の磁性層の上に設けられた第2の分断層と、
     前記第2の分断層の上に設けられ基体主表面の面内方向に磁気的にほぼ連続した第3の磁性層とを備えることを特徴とする垂直磁気記録媒体。
  6.  前記第1または第2の分断層は、Ru又はRu合金で構成されていることを特徴とする請求項5に記載の垂直磁気記録媒体。
  7.  前記第1または第2の分断層は、さらに酸素または酸化物を含むことを特徴とする請求項5に記載の垂直磁気記録媒体。
  8.  前記第1または第2の分断層は、RuO、RuWO、またはRuTiOであることを特徴とする請求項7に記載の垂直磁気記録媒体。
  9.  前記第1または第2の分断層の厚さが2Å~10Åであることを特徴とする請求項5に記載の垂直磁気記録媒体。
  10.  前記第1の磁性層の厚さが5nm以下であることを特徴とする請求項1または5に記載の垂直磁気記録媒体。
  11.  前記第1の磁性層は、膜厚が0.7nm以上且つ3.0nm以下であることを特徴とする請求項1または5に記載の垂直磁気記録媒体。
  12.  前記第1の磁性層は、前記粒界部を構成する酸化物を5mol%以上含むことを特徴とする請求項1または5に記載の垂直磁気記録媒体。
  13.  前記第2の磁性層は、前記粒界部を構成する酸化物を5mol%以上含むことを特徴とする請求項1または5に記載の垂直磁気記録媒体。
  14.  前記第2の磁性層は2種以上の酸化物を含むことを特徴とする請求項1または5に記載の垂直磁気記録媒体。
  15.  前記第2の磁性層はSiO、TiO、またはCoOから選択される1または複数の酸化物を含むことを特徴とする請求項1または5に記載の垂直磁気記録媒体。
PCT/JP2009/066200 2008-09-16 2009-09-16 垂直磁気記録媒体 WO2010032767A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/062,640 US9064518B2 (en) 2008-09-16 2009-09-16 Perpendicular magnetic recording medium
US14/724,557 US20150262602A1 (en) 2008-09-16 2015-05-28 Perpendicular magnetic recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008236271 2008-09-16
JP2008-236271 2008-09-16
JP2008249266A JP2011175686A (ja) 2008-09-26 2008-09-26 垂直磁気記録媒体
JP2008-249266 2008-09-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/062,640 A-371-Of-International US9064518B2 (en) 2008-09-16 2009-09-16 Perpendicular magnetic recording medium
US14/724,557 Division US20150262602A1 (en) 2008-09-16 2015-05-28 Perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
WO2010032767A1 true WO2010032767A1 (ja) 2010-03-25

Family

ID=42039591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066200 WO2010032767A1 (ja) 2008-09-16 2009-09-16 垂直磁気記録媒体

Country Status (2)

Country Link
US (2) US9064518B2 (ja)
WO (1) WO2010032767A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013003763A1 (en) * 2011-06-30 2013-01-03 Seagate Technology Llc Recording layer for heat assisted magnetic recording

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117895B2 (ja) 2008-03-17 2013-01-16 ダブリュディ・メディア・シンガポール・プライベートリミテッド 磁気記録媒体及びその製造方法
JP2009238299A (ja) 2008-03-26 2009-10-15 Hoya Corp 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP5453666B2 (ja) 2008-03-30 2014-03-26 ダブリュディ・メディア・シンガポール・プライベートリミテッド 磁気ディスク及びその製造方法
US9177586B2 (en) 2008-09-30 2015-11-03 WD Media (Singapore), LLC Magnetic disk and manufacturing method thereof
WO2010064724A1 (ja) 2008-12-05 2010-06-10 Hoya株式会社 磁気ディスク及びその製造方法
WO2010116908A1 (ja) 2009-03-28 2010-10-14 Hoya株式会社 磁気ディスク用潤滑剤化合物及び磁気ディスク
SG165294A1 (en) 2009-03-30 2010-10-28 Wd Media Singapore Pte Ltd Perpendicular magnetic recording medium and method of manufacturing the same
US20100300884A1 (en) 2009-05-26 2010-12-02 Wd Media, Inc. Electro-deposited passivation coatings for patterned media
US9330685B1 (en) 2009-11-06 2016-05-03 WD Media, LLC Press system for nano-imprinting of recording media with a two step pressing method
US8496466B1 (en) 2009-11-06 2013-07-30 WD Media, LLC Press system with interleaved embossing foil holders for nano-imprinting of recording media
JP5643516B2 (ja) 2010-01-08 2014-12-17 ダブリュディ・メディア・シンガポール・プライベートリミテッド 垂直磁気記録媒体
JP5574414B2 (ja) 2010-03-29 2014-08-20 ダブリュディ・メディア・シンガポール・プライベートリミテッド 磁気ディスクの評価方法及び磁気ディスクの製造方法
JP5634749B2 (ja) 2010-05-21 2014-12-03 ダブリュディ・メディア・シンガポール・プライベートリミテッド 垂直磁気ディスク
JP5645476B2 (ja) 2010-05-21 2014-12-24 ダブリュディ・メディア・シンガポール・プライベートリミテッド 垂直磁気ディスク
JP2011248967A (ja) 2010-05-28 2011-12-08 Wd Media (Singapore) Pte. Ltd 垂直磁気ディスクの製造方法
JP2011248968A (ja) 2010-05-28 2011-12-08 Wd Media (Singapore) Pte. Ltd 垂直磁気ディスク
JP2011248969A (ja) 2010-05-28 2011-12-08 Wd Media (Singapore) Pte. Ltd 垂直磁気ディスク
JP2012009086A (ja) 2010-06-22 2012-01-12 Wd Media (Singapore) Pte. Ltd 垂直磁気記録媒体及びその製造方法
US8889275B1 (en) 2010-08-20 2014-11-18 WD Media, LLC Single layer small grain size FePT:C film for heat assisted magnetic recording media
US8743666B1 (en) 2011-03-08 2014-06-03 Western Digital Technologies, Inc. Energy assisted magnetic recording medium capable of suppressing high DC readback noise
US8711499B1 (en) 2011-03-10 2014-04-29 WD Media, LLC Methods for measuring media performance associated with adjacent track interference
US8491800B1 (en) 2011-03-25 2013-07-23 WD Media, LLC Manufacturing of hard masks for patterning magnetic media
US9028985B2 (en) 2011-03-31 2015-05-12 WD Media, LLC Recording media with multiple exchange coupled magnetic layers
US8565050B1 (en) 2011-12-20 2013-10-22 WD Media, LLC Heat assisted magnetic recording media having moment keeper layer
US9029308B1 (en) 2012-03-28 2015-05-12 WD Media, LLC Low foam media cleaning detergent
US9269480B1 (en) 2012-03-30 2016-02-23 WD Media, LLC Systems and methods for forming magnetic recording media with improved grain columnar growth for energy assisted magnetic recording
US8941950B2 (en) 2012-05-23 2015-01-27 WD Media, LLC Underlayers for heat assisted magnetic recording (HAMR) media
US8993134B2 (en) 2012-06-29 2015-03-31 Western Digital Technologies, Inc. Electrically conductive underlayer to grow FePt granular media with (001) texture on glass substrates
US9034492B1 (en) 2013-01-11 2015-05-19 WD Media, LLC Systems and methods for controlling damping of magnetic media for heat assisted magnetic recording
US10115428B1 (en) 2013-02-15 2018-10-30 Wd Media, Inc. HAMR media structure having an anisotropic thermal barrier layer
US9153268B1 (en) 2013-02-19 2015-10-06 WD Media, LLC Lubricants comprising fluorinated graphene nanoribbons for magnetic recording media structure
US9183867B1 (en) 2013-02-21 2015-11-10 WD Media, LLC Systems and methods for forming implanted capping layers in magnetic media for magnetic recording
US9196283B1 (en) 2013-03-13 2015-11-24 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer using a chemical buffer
US9190094B2 (en) 2013-04-04 2015-11-17 Western Digital (Fremont) Perpendicular recording media with grain isolation initiation layer and exchange breaking layer for signal-to-noise ratio enhancement
US9093122B1 (en) 2013-04-05 2015-07-28 WD Media, LLC Systems and methods for improving accuracy of test measurements involving aggressor tracks written to disks of hard disk drives
US8947987B1 (en) 2013-05-03 2015-02-03 WD Media, LLC Systems and methods for providing capping layers for heat assisted magnetic recording media
US8867322B1 (en) 2013-05-07 2014-10-21 WD Media, LLC Systems and methods for providing thermal barrier bilayers for heat assisted magnetic recording media
US9296082B1 (en) 2013-06-11 2016-03-29 WD Media, LLC Disk buffing apparatus with abrasive tape loading pad having a vibration absorbing layer
US9406330B1 (en) 2013-06-19 2016-08-02 WD Media, LLC Method for HDD disk defect source detection
JP6076214B2 (ja) * 2013-07-09 2017-02-08 昭和電工株式会社 磁気記録媒体、磁気記録再生装置、磁気記録方法及び磁気再生方法
US9607646B2 (en) 2013-07-30 2017-03-28 WD Media, LLC Hard disk double lubrication layer
US9389135B2 (en) 2013-09-26 2016-07-12 WD Media, LLC Systems and methods for calibrating a load cell of a disk burnishing machine
US9177585B1 (en) 2013-10-23 2015-11-03 WD Media, LLC Magnetic media capable of improving magnetic properties and thermal management for heat-assisted magnetic recording
US9581510B1 (en) 2013-12-16 2017-02-28 Western Digital Technologies, Inc. Sputter chamber pressure gauge with vibration absorber
US9382496B1 (en) 2013-12-19 2016-07-05 Western Digital Technologies, Inc. Lubricants with high thermal stability for heat-assisted magnetic recording
US9824711B1 (en) 2014-02-14 2017-11-21 WD Media, LLC Soft underlayer for heat assisted magnetic recording media
US9447368B1 (en) 2014-02-18 2016-09-20 WD Media, LLC Detergent composition with low foam and high nickel solubility
US9431045B1 (en) 2014-04-25 2016-08-30 WD Media, LLC Magnetic seed layer used with an unbalanced soft underlayer
US9042053B1 (en) 2014-06-24 2015-05-26 WD Media, LLC Thermally stabilized perpendicular magnetic recording medium
US9159350B1 (en) 2014-07-02 2015-10-13 WD Media, LLC High damping cap layer for magnetic recording media
US10054363B2 (en) 2014-08-15 2018-08-21 WD Media, LLC Method and apparatus for cryogenic dynamic cooling
US9082447B1 (en) 2014-09-22 2015-07-14 WD Media, LLC Determining storage media substrate material type
US9685184B1 (en) 2014-09-25 2017-06-20 WD Media, LLC NiFeX-based seed layer for magnetic recording media
US9227324B1 (en) 2014-09-25 2016-01-05 WD Media, LLC Mandrel for substrate transport system with notch
US8995078B1 (en) 2014-09-25 2015-03-31 WD Media, LLC Method of testing a head for contamination
US9449633B1 (en) 2014-11-06 2016-09-20 WD Media, LLC Smooth structures for heat-assisted magnetic recording media
US9818442B2 (en) 2014-12-01 2017-11-14 WD Media, LLC Magnetic media having improved magnetic grain size distribution and intergranular segregation
US9401300B1 (en) 2014-12-18 2016-07-26 WD Media, LLC Media substrate gripper including a plurality of snap-fit fingers
US9218850B1 (en) 2014-12-23 2015-12-22 WD Media, LLC Exchange break layer for heat-assisted magnetic recording media
US9257134B1 (en) 2014-12-24 2016-02-09 Western Digital Technologies, Inc. Allowing fast data zone switches on data storage devices
US9990940B1 (en) 2014-12-30 2018-06-05 WD Media, LLC Seed structure for perpendicular magnetic recording media
US9280998B1 (en) 2015-03-30 2016-03-08 WD Media, LLC Acidic post-sputter wash for magnetic recording media
US9275669B1 (en) 2015-03-31 2016-03-01 WD Media, LLC TbFeCo in PMR media for SNR improvement
US9822441B2 (en) 2015-03-31 2017-11-21 WD Media, LLC Iridium underlayer for heat assisted magnetic recording media
US11074934B1 (en) 2015-09-25 2021-07-27 Western Digital Technologies, Inc. Heat assisted magnetic recording (HAMR) media with Curie temperature reduction layer
US10236026B1 (en) 2015-11-06 2019-03-19 WD Media, LLC Thermal barrier layers and seed layers for control of thermal and structural properties of HAMR media
US9406329B1 (en) 2015-11-30 2016-08-02 WD Media, LLC HAMR media structure with intermediate layer underlying a magnetic recording layer having multiple sublayers
US10121506B1 (en) 2015-12-29 2018-11-06 WD Media, LLC Magnetic-recording medium including a carbon overcoat implanted with nitrogen and hydrogen
JP6745773B2 (ja) * 2017-09-19 2020-08-26 株式会社東芝 磁気記録媒体及び磁気記録再生装置
US10706883B2 (en) * 2017-10-20 2020-07-07 Western Digital Technologies, Inc. Perpendicular recording media with carbon grain isolation initiation layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039033A (ja) * 2002-06-28 2004-02-05 Toshiba Corp 磁気記録媒体及び磁気記録再生装置
JP2005222669A (ja) * 2004-01-05 2005-08-18 Fujitsu Ltd 磁気記録媒体および磁気記憶装置
JP2006331622A (ja) * 2005-05-24 2006-12-07 Hitachi Global Storage Technologies Netherlands Bv 高酸素含有量の記録層を有する垂直磁気記録ディスク
WO2007114402A1 (ja) * 2006-03-31 2007-10-11 Hoya Corporation 垂直磁気記録ディスク及びその製造方法
JP2009110606A (ja) * 2007-10-30 2009-05-21 Fujitsu Ltd 磁気記録媒体、その製造方法及び磁気記憶装置
WO2009123161A1 (ja) * 2008-03-31 2009-10-08 Hoya株式会社 垂直磁気記録媒体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573881A (ja) 1991-09-17 1993-03-26 Hitachi Ltd 磁気記録媒体およびその製造方法
US7842409B2 (en) * 2001-11-30 2010-11-30 Seagate Technology Llc Anti-ferromagnetically coupled perpendicular magnetic recording media with oxide
US6808830B2 (en) * 2001-12-28 2004-10-26 Showa Denko K.K. Magnetic recording medium, production process and apparatus thereof, and magnetic recording and reproducing apparatus
JP4515690B2 (ja) 2002-05-29 2010-08-04 昭和電工株式会社 垂直多層磁気記録媒体
AU2003279009A1 (en) * 2002-09-30 2004-04-23 Seagate Technology Llc Magnetic storage media having tilted magnetic anisotropy
US7470474B2 (en) * 2003-04-07 2008-12-30 Kabushiki Kaisha Toshiba Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus including both oxide and non-oxide perpendicular magnetic layers
CN100470637C (zh) 2004-06-07 2009-03-18 昭和电工株式会社 磁记录介质及其制造方法以及磁记录和再现设备
US7429427B2 (en) * 2004-12-06 2008-09-30 Seagate Technology Llc Granular magnetic recording media with improved grain segregation and corrosion resistance
US7736765B2 (en) * 2004-12-28 2010-06-15 Seagate Technology Llc Granular perpendicular magnetic recording media with dual recording layer and method of fabricating same
JP2007220177A (ja) 2006-02-15 2007-08-30 Fujitsu Ltd 垂直磁気記録媒体
JP2007273057A (ja) 2006-03-31 2007-10-18 Fujitsu Ltd 垂直磁気記録媒体および磁気記憶装置
WO2007114401A1 (ja) * 2006-03-31 2007-10-11 Hoya Corporation 垂直磁気記録ディスク及びその製造方法
JP2007317255A (ja) 2006-05-23 2007-12-06 Showa Denko Kk 垂直磁気記録媒体の製造方法及び垂直磁気記録媒体と磁気記録再生装置
US7862913B2 (en) * 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media
JP5261001B2 (ja) 2007-09-28 2013-08-14 ダブリュディ・メディア・シンガポール・プライベートリミテッド 垂直磁気記録媒体
JP2009245479A (ja) 2008-03-28 2009-10-22 Hoya Corp 垂直磁気記録媒体
JP2010009683A (ja) 2008-06-27 2010-01-14 Showa Denko Kk 磁気記録媒体及び磁気記録装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039033A (ja) * 2002-06-28 2004-02-05 Toshiba Corp 磁気記録媒体及び磁気記録再生装置
JP2005222669A (ja) * 2004-01-05 2005-08-18 Fujitsu Ltd 磁気記録媒体および磁気記憶装置
JP2006331622A (ja) * 2005-05-24 2006-12-07 Hitachi Global Storage Technologies Netherlands Bv 高酸素含有量の記録層を有する垂直磁気記録ディスク
WO2007114402A1 (ja) * 2006-03-31 2007-10-11 Hoya Corporation 垂直磁気記録ディスク及びその製造方法
JP2009110606A (ja) * 2007-10-30 2009-05-21 Fujitsu Ltd 磁気記録媒体、その製造方法及び磁気記憶装置
WO2009123161A1 (ja) * 2008-03-31 2009-10-08 Hoya株式会社 垂直磁気記録媒体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013003763A1 (en) * 2011-06-30 2013-01-03 Seagate Technology Llc Recording layer for heat assisted magnetic recording
US8507114B2 (en) 2011-06-30 2013-08-13 Seagate Technology Llc Recording layer for heat assisted magnetic recording
US9443544B1 (en) 2011-06-30 2016-09-13 Seagate Technology Llc Recording layer for heat assisted magnetic recording

Also Published As

Publication number Publication date
US9064518B2 (en) 2015-06-23
US20150262602A1 (en) 2015-09-17
US20110223446A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
WO2010032767A1 (ja) 垂直磁気記録媒体
JP5646865B2 (ja) 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP5643516B2 (ja) 垂直磁気記録媒体
JP5645443B2 (ja) 垂直磁気記録媒体
US8057926B2 (en) Perpendicular magnetic recording medium
WO2009119708A1 (ja) 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
WO2009119709A1 (ja) 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
WO2010064724A1 (ja) 磁気ディスク及びその製造方法
WO2010035810A1 (ja) 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP5261001B2 (ja) 垂直磁気記録媒体
JP5524464B2 (ja) 垂直磁気記録媒体
JP5530673B2 (ja) 垂直磁気記録媒体
WO2009119636A1 (ja) 垂直磁気記録媒体
JP5620071B2 (ja) 垂直磁気記録媒体
JP5620118B2 (ja) 垂直磁気記録媒体
JP2011192319A (ja) 垂直磁気記録媒体
JP2009099242A (ja) 垂直磁気記録媒体
JP2009245477A (ja) 垂直磁気記録媒体
JP2009230837A (ja) 垂直磁気記録媒体の製造方法
JP2010097680A (ja) 垂直磁気記録媒体
JP2010086583A (ja) 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP2010086584A (ja) 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP5593049B2 (ja) 垂直磁気記録媒体の製造管理方法
JP5593048B2 (ja) 垂直磁気記録媒体
JP2011175686A (ja) 垂直磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13062640

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09814612

Country of ref document: EP

Kind code of ref document: A1