WO2009098944A1 - Esd保護デバイス - Google Patents
Esd保護デバイス Download PDFInfo
- Publication number
- WO2009098944A1 WO2009098944A1 PCT/JP2009/050928 JP2009050928W WO2009098944A1 WO 2009098944 A1 WO2009098944 A1 WO 2009098944A1 JP 2009050928 W JP2009050928 W JP 2009050928W WO 2009098944 A1 WO2009098944 A1 WO 2009098944A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic
- protection device
- esd protection
- discharge
- multilayer substrate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T1/00—Details of spark gaps
- H01T1/20—Means for starting arc or facilitating ignition of spark gap
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T4/00—Overvoltage arresters using spark gaps
- H01T4/10—Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T4/00—Overvoltage arresters using spark gaps
- H01T4/10—Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
- H01T4/12—Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed
Definitions
- the present invention relates to an ESD protection device, and more particularly, to a technique for preventing a ceramic multilayer substrate from being broken or deformed by a crack or the like in an ESD protection device in which discharge electrodes are opposed to each other in a cavity of the ceramic multilayer substrate.
- ESD Electro-Static Discharge
- a charged conductive object such as a human body
- another conductive object such as an electronic device
- ESD causes problems such as damage and malfunction of electronic devices. In order to prevent this, it is necessary to prevent an excessive voltage generated during discharge from being applied to the circuit of the electronic device.
- An ESD protection device is used for such an application, and is also called a surge absorbing element or a surge absorber.
- the ESD protection device is disposed, for example, between the signal line of the circuit and the ground (ground). Since the ESD protection device has a structure in which a pair of discharge electrodes are spaced apart from each other, the ESD protection device has a high resistance in a normal use state, and a signal does not flow to the ground side. On the other hand, when an excessive voltage is applied, for example, when static electricity is applied from an antenna such as a mobile phone, a discharge occurs between the discharge electrodes of the ESD protection device, and the static electricity can be guided to the ground side. Thereby, a voltage due to static electricity is not applied to a circuit subsequent to the ESD device, and the circuit can be protected.
- the ESD protection device shown in the exploded perspective view of FIG. 9 and the cross-sectional view of FIG. 10 is a discharge electrode in which a cavity portion 5 is formed in a ceramic multilayer substrate 7 on which an insulating ceramic sheet 2 is laminated and is electrically connected to an external electrode 1.
- 6 is disposed oppositely in the cavity 5, and the discharge gas is confined in the cavity 5.
- a voltage causing dielectric breakdown is applied between the discharge electrodes 6, a discharge occurs between the discharge electrodes 6 in the cavity 5, and an excessive voltage is guided to the ground by the discharge, thereby protecting the subsequent circuit.
- the ESD responsiveness is likely to fluctuate due to the variation in the interval between the discharge electrodes.
- region which a discharge electrode opposes it is difficult to implement
- the present invention intends to provide an ESD protection device that can easily adjust and stabilize the ESD characteristics.
- the present invention provides an ESD protection device configured as follows.
- the ESD protection device includes (a) a ceramic multilayer substrate, (b) at least a pair of discharge electrodes formed on the ceramic multilayer substrate and facing each other with a space therebetween, and (c) formed on the surface of the ceramic multilayer substrate. And an external electrode connected to the discharge electrode.
- the ESD protection device includes an auxiliary electrode in which a conductive material coated with an inorganic material having no conductivity is dispersed in a region connecting the pair of discharge electrodes.
- the discharge start voltage can be adjusted by adjusting the amount and type of the conductive material contained in the auxiliary electrode. Can be set to a desired value. Thereby, the discharge start voltage can be set with higher accuracy than the case where the discharge start voltage is adjusted only by changing the interval between the facing portions of the discharge electrode.
- the inorganic material contains at least a part of elements constituting the ceramic multilayer substrate.
- the inorganic material that coats the conductive material contains some of the elements that make up the ceramic multilayer substrate, the adhesion of the auxiliary electrode to the ceramic multilayer substrate is improved, and the auxiliary electrode peels off during firing. It becomes difficult to do. In addition, repeated resistance is improved.
- a ceramic material is added to the auxiliary electrode.
- the auxiliary electrode contains the ceramic material
- the difference in shrinkage behavior and thermal expansion coefficient between the auxiliary electrode and the ceramic multilayer substrate can be reduced.
- the contact between the conductive materials is further hindered, so that a short circuit between the discharge electrodes can be prevented.
- the ceramic material contains at least a part of elements constituting the ceramic multilayer substrate.
- the ceramic material is a semiconductor.
- the semiconductor material since the semiconductor material is interposed, the semiconductor material also contributes to the discharge and the ESD characteristics are improved.
- the conductive material coated with the inorganic material is contained in a ratio of 10 vol% or more and 85 vol% or less.
- the shrinkage start temperature of the auxiliary electrode during firing becomes an intermediate value between the shrinkage start temperature of the discharge electrode and the shrinkage start temperature of the ceramic multilayer substrate. Can be.
- the content ratio of the conductive material is 85 vol% or less, it is possible to prevent a short circuit between the discharge electrodes due to the conductive material in the auxiliary electrode.
- the ceramic multilayer substrate has a cavity therein, and the discharge electrode is formed along the inner surface of the cavity.
- the discharge generated between the discharge electrodes when a voltage of a predetermined level or larger is applied between the external electrodes is a creeping discharge generated mainly along the interface between the cavity and the ceramic multilayer substrate. Since the auxiliary electrode is formed along this creepage surface, that is, along the inner surface of the cavity, electrons can easily move, a discharge phenomenon can be generated more efficiently, and the ESD response can be enhanced. Therefore, it is possible to reduce the variation in the ESD response due to the variation in the interval between the discharge electrodes. Therefore, adjustment and stabilization of the ESD characteristics are facilitated.
- the ceramic multilayer substrate is formed by alternately laminating first ceramic layers that are not substantially sintered and second ceramic layers that are completely sintered.
- the ceramic multilayer substrate is a so-called non-shrinkable substrate in which shrinkage in the plane direction of the second ceramic layer is suppressed by the first ceramic layer during firing. Since non-shrinkable substrates hardly cause dimensional variations in the surface direction, using non-shrinkable substrates for ceramic multilayer substrates can form the gaps between the opposing discharge electrodes with high accuracy, resulting in variations in characteristics such as the discharge start voltage. Can be small.
- the ESD protection device of the present invention is easy to adjust and stabilize the ESD characteristics.
- FIG. 1 is a perspective view of an ESD protection device.
- FIG. (Modification) 1 is a perspective view of an ESD protection device.
- FIG. (Modification) 1 is a perspective view of an ESD protection device.
- FIG. (Modification) It is sectional drawing of an ESD protection device.
- Example 2 It is a disassembled perspective view of an ESD protection device.
- Conventional example It is sectional drawing of an ESD protection device. (Conventional example)
- FIG. 1 is a cross-sectional view of the ESD protection device 10.
- FIG. 2 is an enlarged cross-sectional view of a main part schematically showing a region 11 indicated by a chain line in FIG. 3 is a cross-sectional view taken along line AA in FIG.
- the ESD protection device 10 has a cavity 13 and a pair of discharge electrodes 16 and 18 formed in a ceramic multilayer substrate 12.
- the discharge electrodes 16 and 18 include facing portions 17 and 19 formed along the inner surface of the cavity portion 13.
- the discharge electrodes 16 and 18 extend from the cavity 13 to the outer peripheral surface of the ceramic multilayer substrate 12 and are connected to external electrodes 22 and 24 formed outside the ceramic multilayer substrate 12, that is, on the surface of the ceramic multilayer substrate 12. Yes.
- the external electrodes 22 and 24 are used for mounting the ESD protection device 10.
- the tips 17k and 19k of the facing portions 17 and 19 of the discharge electrodes 16 and 18 are opposed to each other with an interval 15 provided.
- a voltage of a predetermined value or more is applied from the external electrodes 22 and 24, a discharge is generated between the facing portions 17 and 19 of the discharge electrodes 16 and 18.
- the auxiliary electrode 14 is adjacent to the periphery of the cavity 13 adjacent to the portion where the opposing portions 17 and 19 of the discharge electrodes 16 and 18 and the interval 15 between the opposing portions 17 and 19 are formed. Is formed. That is, the auxiliary electrode 14 is formed in a region connecting the discharge electrodes 16 and 18. The auxiliary electrode 14 is in contact with the opposing portions 17 and 19 of the discharge electrodes 16 and 18 and the ceramic multilayer substrate 12. As shown schematically in FIG. 2, the auxiliary electrode 14 includes a particulate conductive material 34 dispersed in a ceramic material substrate.
- the auxiliary electrode 14 includes a conductive material 34 and a ceramic material 30 coated with an inorganic material 32 having no conductivity.
- the conductive material 34 is Cu particles having a diameter of 2 to 3 ⁇ m
- the inorganic material 32 is Al 2 O 3 particles having a diameter of 1 ⁇ m or less
- the ceramic material 30 is a particle of BAS material made of Al 2 O 3 , Ba, and Si. It is.
- the inorganic material 32 and the ceramic material 30 react during firing, and may be altered after firing.
- the ceramic powder that constitutes the ceramic material and the multilayer substrate 12 also reacts during firing, and may be altered after firing.
- the conductive material 34 When the conductive material 34 is not coated with the inorganic material 32, there is a possibility that the conductive materials 34 are already in contact with each other in a state before firing, and there is a possibility that the conductive materials 34 are connected to each other to cause a short circuit. is there.
- the possibility of occurrence of a short circuit increases as the ratio of the conductive material 34 increases.
- the conductive material 34 is coated with the inorganic material 32, there is no possibility that the conductive materials 34 are in contact with each other before firing. Further, even if the inorganic material 32 is altered after firing, the state where the conductive materials 34 are separated from each other is maintained. Therefore, when the conductive material 34 is coated on the inorganic material 32, the possibility that the conductive materials 34 are connected to each other to cause a short circuit is reduced.
- the ceramic material 30 in the base material of the auxiliary electrode 14 may be the same as or different from the ceramic material of the ceramic multilayer substrate 12. Therefore, the number of types of materials used can be reduced.
- the auxiliary electrode can be regarded as being formed only by a conductive material coated with an inorganic material.
- the conductive material 34 included in the auxiliary electrode 14 may be the same as or different from the discharge electrodes 16 and 18, but if the same, the contraction behavior and the like are matched to the discharge electrodes 16 and 18. And the number of materials used can be reduced.
- the auxiliary electrode 14 includes the conductive material 34 and the ceramic material 30, the shrinkage behavior during firing of the auxiliary electrode 14 is in an intermediate state between the discharge electrodes 16 and 18 including the facing portions 17 and 19 and the ceramic multilayer substrate 12. Can be. Accordingly, the difference in shrinkage behavior during firing between the facing portions 17 and 19 of the discharge electrodes 16 and 18 and the ceramic multilayer substrate 12 can be reduced by the auxiliary electrode 14. As a result, it is possible to reduce defects and characteristic variations due to peeling of the facing portions 17 and 19 of the discharge electrodes 16 and 18. Moreover, since the variation of the space
- the coefficient of thermal expansion of the auxiliary electrode 14 can be set to an intermediate value between the discharge electrodes 16 and 18 and the ceramic multilayer substrate 12. As a result, the difference in thermal expansion coefficient between the facing portions 17 and 19 of the discharge electrodes 16 and 18 and the ceramic multilayer substrate 12 can be reduced by the auxiliary electrode 14. As a result, it is possible to reduce defects due to peeling of the facing portions 17 and 19 of the discharge electrodes 16 and 18 and changes over time in characteristics.
- the discharge start voltage can be set to a desired value by adjusting the amount and type of the conductive material 34 included in the auxiliary electrode 14. Thereby, the discharge start voltage can be set with higher accuracy than the case where the discharge start voltage is adjusted only by the interval 15 between the facing portions 17 and 19 of the discharge electrodes 16 and 18.
- the ceramic material used as the material of the ceramic multilayer substrate 12 was a material having a composition centered on Ba, Al, and Si. Each material was prepared and mixed so as to have a predetermined composition, and calcined at 800-1000 ° C. The obtained calcined powder was pulverized with a zirconia ball mill for 12 hours to obtain a ceramic powder. To this ceramic powder, an organic solvent such as toluene and echinene is added and mixed. Further, a binder and a plasticizer are added and mixed to obtain a slurry. The slurry thus obtained is molded by a doctor blade method to obtain a ceramic green sheet having a thickness of 50 ⁇ m.
- an electrode paste for forming the discharge electrodes 16 and 18 is prepared.
- An electrode paste was obtained by adding a solvent to a binder resin composed of 80 wt% Cu powder having an average particle size of about 2 ⁇ m and ethyl cellulose, and stirring and mixing with a roll.
- the mixed paste for forming the auxiliary electrode 14 is prepared by blending Al 2 O 3 coated Cu powder having an average particle size of about 2 ⁇ m and the BAS material calcined ceramic powder at a predetermined ratio, and adding a binder resin and a solvent. It was obtained by stirring and mixing with a roll. In the mixed paste, resin and solvent were 20 wt%, and the remaining 80 wt% was ceramic and coated Cu powder.
- the ratio of ceramic / coated Cu powder of each mixed paste is shown in Table 1 below.
- Table 2 shows the types of coated Cu powder used for comparative evaluation.
- the coating amount (wt%) in Table 2 is the mass ratio of the coating type in the coated Cu powder.
- a resin paste for forming the cavity 13 is also produced by the same method.
- the resin paste consists only of a resin and a solvent.
- a resin that decomposes and disappears upon firing is used.
- PET polypropylene
- ethyl cellulose acrylic resin and the like.
- the mixed paste is applied by screen printing so as to form a predetermined pattern.
- the ceramic / coated metal mixed paste may be filled in the recesses provided in advance in the ceramic green sheet.
- an electrode paste is applied to form discharge electrodes 16 and 18 having an interval 15 that becomes a discharge gap between the opposed portions 17 and 19.
- the discharge electrodes 16 and 18 are formed to have a thickness of 100 ⁇ m and a discharge gap width (a dimension of the interval 15 between the facing portions 17 and 19) of 30 ⁇ m.
- a resin paste is applied to form the cavity 13 thereon.
- the resin paste disappears and the cavity 13 is formed. Moreover, the organic solvent in a ceramic green sheet, the binder resin in a mixed paste, and a solvent also lose
- electrolytic Ni—Sn plating is performed on the external electrode.
- the ceramic material is not particularly limited to the above materials, and other materials such as those obtained by adding glass to foresterite or those obtained by adding glass to CaZrO 3 may be added.
- the ceramic material forming at least one layer of the ceramic multilayer substrate is preferably the same as the ceramic material forming at least one layer of the ceramic multilayer substrate.
- the ceramic material is preferably a semiconductor from the viewpoint of ESD response.
- Semiconductor ceramic materials include carbides such as silicon carbide, titanium carbide, zirconium carbide, molybdenum carbide, tungsten carbide, nitrides such as titanium nitride, zirconium nitride, chromium nitride, vanadium nitride, tantalum nitride, titanium silicide, silicide Silicides such as zirconium, tungsten silicide, molybdenum silicide, chromium silicide, and chromium silicide, borides such as titanium boride, zirconium boride, chromium boride, lanthanum boride, molybdenum boride, tungsten boride, It refers to oxides such as zinc oxide and strontium titanate.
- silicon carbide is particularly preferred because it is relatively inexpensive and various particle size variations are commercially available.
- These semiconductor ceramic materials may be used alone or in admixture of two or more. Further, the semiconductor ceramic material may be appropriately mixed with an insulating ceramic material such as alumina or BAS material.
- the conductive material is not limited to Cu, but may be Ag, Pd, Pt, Al, Ni, W, or a combination thereof.
- a material having lower conductivity than the metal material such as a semiconductor material such as SiC powder or a resistance material may be used.
- a semiconductor material or a resistance material is used as the conductive material, an effect of suppressing a short circuit can be obtained.
- the coating material for coating the conductive material is not particularly limited as long as it is an inorganic material.
- An inorganic material such as Al 2 O 3 , ZrO 2 , or SiO 2 or a mixed calcined material such as BAS may be used. From the viewpoint of suppressing delamination, it is preferable to have the same component as the ceramic material or to contain at least an element constituting the ceramic material or the ceramic multilayer substrate. If the coating material for coating the conductive material contains a part of the elements constituting the ceramic multilayer substrate, the adhesion of the auxiliary electrode to the ceramic multilayer substrate is improved, and peeling of the auxiliary electrode occurs during firing. This is because it becomes difficult and the repeated resistance is improved.
- the ceramic / coated metal mixed material may be formed not only as a paste but also as a sheet.
- a resin paste is applied to form the hollow portion 13, but it is sufficient that the resin paste disappears even if it is not a resin, such as carbon. You may arrange
- the short between the discharge electrodes 16 and 18, the disconnection after firing, and the presence or absence of delamination were evaluated by observation of the internal cross section. Those having a short-circuit defect rate of 40% or less were determined to have good short characteristics, and those having a short-circuit defect rate exceeding 40% were determined to be defective. Those in which the occurrence of delamination was not recognized at all were determined to be acceptable ( ⁇ mark), and those in which even one occurrence of delamination was observed were determined to be unacceptable (marked x). Delamination means peeling between the auxiliary electrode and the discharge electrode or between the auxiliary electrode and the ceramic multilayer substrate.
- the shrinkage start temperature of the paste was compared. Specifically, in order to examine the shrinkage behavior of each paste alone, the paste was dried and then the powder was pressed to produce a pressure-bonded body having a height of 3 mm and measured by the TMA (thermomechanical analysis) method.
- the shrinkage start temperature of the ceramic is the sample No. It was 885 degreeC similarly to the paste of 1.
- the discharge response to ESD was evaluated.
- the discharge response to ESD was performed by an electrostatic discharge immunity test defined in IEC standard, IEC61000-4-2. It was investigated whether discharge occurred between the discharge electrodes of the sample by applying 8 kV by contact discharge. When the peak voltage detected on the protection circuit side exceeds 700v, the discharge response is poor (x mark), when the peak voltage is 500v to 700v, the discharge response is good (circle mark), and the peak voltage is less than 500v The product was judged to have particularly good discharge response (marked with ⁇ ).
- ESD resistance was evaluated.
- contact discharge 10 times of 8 kV application, 10 times of 4 kV application, 10 times of 2 kV application, 10 times of 1 kV application, 10 times of 0.5 kV application, 10 times of 0.2 kV application.
- the discharge responsiveness to ESD was evaluated.
- the peak voltage detected on the protection circuit side exceeds 700V, the discharge response is poor (x mark), when the peak voltage is 500V to 700V, the discharge response is good (circle mark), and the peak voltage is less than 500V
- the product was judged to have particularly good discharge response (marked with ⁇ ).
- Tables 3 to 5 below show the conditions of the ceramic / coated metal mixed paste and the evaluation results.
- the shrinkage start temperature of the paste can be brought close to the shrinkage start temperature of the ceramic even under a low ceramic powder ratio. Dissolution of the discharge electrode was observed.
- the coating amount exceeded 7 wt%, the short-circuit occurrence rate was 0%, but the paste shrinkage start temperature was too different from the discharge electrode shrinkage start temperature, and delamination was generated.
- a good coating amount is 0.5 to 5 wt%.
- the stress applied between the electrode and the ceramic can be reduced by arranging the mixed material of the coated metal and the ceramic between the discharge electrode and the ceramic multilayer substrate and in the discharge gap portion. Electrode delamination, shorts due to electrode peeling in the cavity, and variations in discharge gap width due to variations in electrode shrinkage are less likely to occur.
- the coating metal ratio of the coating amount of 0.5 to 5 wt% is 10 to 85 vol% in the mixed material.
- the metal content in the mixed material is desirably 50 vol% or less from the occurrence of short circuit.
- occurrence of a short circuit is suppressed, and it is possible to input up to 85 vol%.
- the heat generated during electrostatic discharge (sparking) can be dissipated more.
- the generation of microcracks in the ceramic due to thermal stress can be reduced by improving heat dissipation.
- FIGS. 5 to 7 are perspective views of the ESD protection devices 10a to 10i.
- the discharge electrodes 16a to 16i; the pairs 18a to 18i, the auxiliary electrodes 14a to 14i, and the external electrodes 22a formed at intervals from each other. ... To 22i; 24a to 24i are hatched.
- the auxiliary electrodes 14a to 14i are formed only in the gap region between the discharge electrodes 16a to 16i; 18a to 18i, they are wider than the illustrated region, for example, the discharge electrodes 16a to 16i; 18a. It may be formed so as to overlap with 18i.
- the auxiliary electrodes 14a to 14i only need to be formed in a region connecting the discharge electrodes 16a to 16i; 18a to 18i.
- the cavity is formed so as to overlap the region between the discharge electrodes 16a to 16i; 18a to 18i and the discharge electrodes 16a to 16i; 18a to 18i in the vicinity thereof.
- a portion in the vicinity of the region between the discharge electrodes 16a to 16i; 18a to 18i is a facing portion arranged so as to face each other along the inner surface of the cavity portion.
- the tips of the substantially linear discharge electrodes 16a to 16c; 18a to 18c are opposed to each other. Since the discharge start voltage decreases as the width of the opposed portions 17a to 17c; 19a to 19c of the discharge electrodes 16a to 16c; 18a to 18c facing each other increases, the response to ESD can be accelerated.
- the ESD protection devices 10d to 10f shown in FIG. 6 are formed so that the discharge electrodes 16d to 16f; 18d to 18f are opposed to each other, that is, the auxiliary electrodes 14d to 14f are bent, and the discharge electrodes 16d to 16f; Since the width of 18 to 18f facing each other is larger than that of the ESD protection devices 10a to 10c of FIG. 5, the response to ESD can be further accelerated.
- external electrodes 22g, 22h; 24g, 24h are formed along the long sides of a rectangular ceramic multilayer substrate.
- the discharge electrodes 16g, 16h; 18g , 18h can be easily increased in width.
- the ESD protection device 10i shown in FIG. 7 (i) includes a plurality of sets of discharge electrodes 16i and 18i, auxiliary electrodes 14i, and external electrodes 22i and 24i in one ESD protection device 10i. Even with such a shape, the width of the discharge electrodes 16i and 18i facing each other can be increased, and the response to ESD can be accelerated.
- Example 2 An ESD protection device 10s of Example 2 will be described with reference to FIG.
- FIG. 8 is a cross-sectional view of the ESD protection device 10s.
- the ESD protection device 10s of the second embodiment is configured in substantially the same manner as the ESD protection device 10 of the first embodiment.
- symbol is used for the same component as Example 1, and it demonstrates centering around difference with the ESD protection device 10 of Example 1.
- FIG. 1 the same code
- the ESD protection device 10s according to the second embodiment is different from the ESD protection device 10 according to the first embodiment in that the cavity 13 is not included. That is, in the ESD protection device 10 s of Example 2, a pair of discharge electrodes 16 s and 18 s facing each other is formed on the upper surface 12 t of the ceramic multilayer substrate 12 s and covered with the resin 42.
- the discharge electrodes 16s and 18s are formed so as to face each other with an interval of 15s as in the ESD protection device 10 of the first embodiment.
- On the upper surface 12t side of the ceramic multilayer substrate 12s there is conductivity in a portion where the interval 15s between the discharge electrodes 16s, 18s is formed and in the vicinity thereof, that is, in a region connecting the discharge electrodes 15s, 18s.
- the discharge electrodes 16s and 18s are connected to external electrodes 22 and 24 formed on the surface of the ceramic multilayer substrate 12s.
- Example 2 The ESD protection device of Example 2 was manufactured by a method substantially similar to the ESD protection device of Example 1. However, the ESD protection device of Example 2 does not have a hollow portion, and thus no resin paste is applied.
- the conductive material the same 3 wt% Al 2 O 3 coated Cu as in the production example of Example 1 and the same BAS material calcined ceramic powder as in the production example of Example 1 were used as the ceramic material.
- Table 6 shows the conditions of the ceramic / coated metal mixed paste and the evaluation results.
- the ESD protection device having no cavity of Example 2 can be put to practical use, but the ESD discharge responsiveness is lower than that of Example 1 having a cavity. The tendency to do was recognized.
- the ESD protection device having a hollow portion can generate creeping discharge at the auxiliary electrode of the discharge electrode when ESD is applied, and it is assumed that the ESD discharge response is improved.
- Example 3 An ESD protection device of Example 3 will be described.
- the ESD protection device of Example 3 is the same as Example 1 except that the ceramic material of the auxiliary electrode is a semiconductor.
- Example 3 an ESD protection device was fabricated using ceramic semiconductor silicon carbide as the ceramic material. Note that silicon carbide having a particle size of about 1 ⁇ m was used. Further, the same 3 wt% Al 2 O 3 coated Cu as in the production example of Example 1 was used as the conductive material.
- Table 7 shows the conditions of the ceramic / coated metal mixed paste and the evaluation results.
- Example 4 An ESD protection device of Example 4 will be described.
- the ESD protection device of Example 4 is the same as the ESD protection device of Example 1 except that the same material is used for the coating material and the ceramic material.
- an ESD protection device was produced in the same manner as in the production example of Example 1, except that Cu powder coated with BAS material calcined ultrafine powder was used. That is, the BAS material calcined ceramic powder obtained in the production example of Example 1 was dispersed in an acetone medium, zirconia fine media was put into the dispersion, and pulverized with a continuous media type wet pulverizer. . After pulverization, acetone and zirconia fine media were removed to prepare a BAS calcined ultrafine powder having a particle size of about 100 nm.
- the obtained BAS material calcined ultrafine powder and Cu powder having an average particle size of about 2 ⁇ m were mixed by a mechanofusion method to obtain Cu powder coated with the BAS material calcined ultrafine powder.
- the coating amount of the BAS material calcined ultrafine powder was about 1 wt%.
- Table 8 shows the conditions of the ceramic / coated metal mixed paste and the evaluation results.
- Example 5 An ESD protection device of Example 5 will be described.
- the ESD protection device of Example 5 is the same as the ESD protection device of Example 1 except that a ceramic multilayer substrate in which shrinkage suppression layers and base material layers are alternately stacked is used.
- the paste for shrinkage suppression layer (for example, Al 2 O 3 powder, glass frit, and organic vehicle is formed on the same ceramic green sheet as the manufacturing example of Example 1. ) Is applied to the entire surface by screen printing. Furthermore, in order to form the auxiliary electrode 14 thereon, the mixed paste is applied by screen printing so as to form a predetermined pattern. Further, an electrode paste is applied thereon to form discharge electrodes 16 and 18 having an interval 15 that becomes a discharge gap between the opposed portions 17 and 19. Here, the discharge electrodes 16 and 18 are formed to have a thickness of 100 ⁇ m and a discharge gap width (a dimension of the interval 15 between the facing portions 17 and 19) of 30 ⁇ m. Further, a resin paste is applied to form the cavity 13 thereon. Further, the shrinkage-suppressing paste is applied thereon by screen printing.
- the paste for shrinkage suppression layer for example, Al 2 O 3 powder, glass frit, and organic vehicle is formed on the same ceramic green sheet as the manufacturing example of Example 1.
- the ceramic multilayer substrate was alternately laminated with the shrinkage suppression layer and the base material layer, the ceramic multilayer substrate was alternately provided with the shrinkage suppression layer and the base material layer in the same manner as in Example 1.
- An ESD protection device which is a non-shrinkable substrate laminated on, was formed. That is, after firing, the base material layer is completely sintered, but the shrinkage suppression layer is not substantially sintered.
- the conductive material the same 3 wt% Al 2 O 3 coated Cu as in the manufacturing example of Example 1 was used.
- Table 9 shows the conditions of the ceramic / coated metal mixed paste and the evaluation results.
- a material having an intermediate shrinkage behavior between the ceramic material and the electrode material by mixing the conductive material and the ceramic material is used as a gap between the discharge electrode and the ceramic multilayer substrate and between the tips of the discharge electrode. If the auxiliary electrode is formed in the area, the stress acting between the discharge electrode and the ceramic multilayer substrate can be reduced, and the discharge electrode can be disconnected, the discharge electrode can be delaminated, and the discharge electrode can be peeled off or discharged in the cavity. Variations in the discharge gap width due to variations in shrinkage, shorts, etc. are less likely to occur.
- the conductive material is coated with an inorganic material that does not have conductivity, it is possible to prevent the conductive materials from coming into contact with each other in the auxiliary electrode. As a result, the possibility that the conductive materials are connected to each other to cause a short circuit is reduced.
- the discharge start voltage of the ESD protection device can be set with high accuracy, and the ESD protection device can be easily adjusted and stabilized.
- the effects of the present invention are as follows. (1) Since the coated conductive material is used, the content of the conductive material can be increased, and excellent ESD response can be exhibited. (2) Since the coated conductive material is used, the ESD response does not deteriorate even if the ESD application is repeated. (3) Since the inorganic material contains the same component as the ceramic material, or at least a part of the elements constituting the ceramic material or the ceramic multilayer substrate, delamination hardly occurs. (4) Since the ceramic material is the same as the ceramic material forming at least one layer of the ceramic multilayer substrate, delamination is unlikely to occur. (5) When the hollow portion is provided, creeping discharge can be expected, and the ESD response can be further improved.
- the auxiliary electrode is formed on the ceramic multilayer substrate side, but it is also possible to form the auxiliary electrode on the resin side.
Landscapes
- Thermistors And Varistors (AREA)
- Spark Plugs (AREA)
Abstract
Description
12,12s セラミック多層基板
13 空洞部
14,14a~14i,14s 補助電極
15,15s 間隔
16,16a~16i,16s 放電電極
17,17a~17c 対向部
18,18a~18i,18s 放電電極
19,19a~19c 対向部
22,22a~22i 外部電極
24,24a~24i 外部電極
30 セラミック粒
32 無機材料
34 導電材料
セラミック多層基板12の材料となるセラミック材料には、Ba、Al、Siを中心とした組成からなる材料を用いた。各素材を所定の組成になるよう調合、混合し、800-1000℃で仮焼した。得られた仮焼粉末をジルコニアボールミルで12時間粉砕し、セラミック粉末を得た。このセラミック粉末に、トルエン・エキネンなどの有機溶媒を加え混合する。さらにバインダー、可塑剤を加え混合し、スラリーを得る。このようにして得られたスラリーをドクターブレード法により成形し、厚さ50μmのセラミックグリーンシートを得る。
セラミックグリーンシート上に、補助電極14を形成するため、混合ペーストを所定のパターンになるよう、スクリーン印刷にて塗布する。混合ペーストの厚みが大きい場合などには、セラミックグリーンシートに予め設けた凹部に、セラミック/コート金属の混合ペーストを充填するようにしても構わない。
通常のセラミック多層基板と同様に、セラミックグリーンシートを積層し、圧着する。作製例では、厚み0.3mm、その中央に放電電極16,18の対向部17,19、空洞部13が配置されるように積層した。
LCフィルタのようなチップタイプの電子部品と同様に、マイクロカッタでカットして、各チップにわける。作製例では、1.0mm×0.5mmになるようにカットした。その後、端面に電極ペーストを塗布し、外部電極22,24を形成する。
次いで、通常のセラミック多層基板と同様に、N2雰囲気中で焼成する。また、ESDに対する応答電圧を下げるため空洞部13にAr、Neなどの希ガスを導入する場合には、セラミック材料の収縮、焼結が行われる温度領域をAr、Neなどの希ガス雰囲気で焼成すればよい。酸化しない電極材料(Agなど)の場合には、大気雰囲気でも構わない。
LCフィルタのようなチップタイプの電子部品と同様に、外部電極上に電解Ni-Snメッキを行う。
(1)コート導電材料を用いているので、導電材料含有量を高くでき、優れたESD応答性を発現できる。
(2)コート導電材料を用いているので、ESD印加を繰返してもESD応答性が劣化しない。
(3)無機材料は、セラミック材料と同一の成分、又は、少なくとも前記セラミック材料又は前記セラミック多層基板を構成する元素の一部を含有しているので、デラミネーションが発生し難い。
(4)セラミック材料は、セラミック多層基板の少なくとも1層を形成するセラミック材料と同じであるため、デラミネーションが発生し難い。
(5)空洞部を有すると、沿面放電が期待でき、ESD応答性をさらに向上できる。
(6)セラミック材料としてセラミック半導体を用いると、コート金属含有量が低くても優れたESD応答性を得ることができる。
(7)セラミック材料として炭化ケイ素を用いることで、安価、かつ、良好なESD保護デバイスを提供できる。
(8)導電材料としてCu粉末を用いることで、安価、かつ、良好なESD保護デバイスを提供できる。
Claims (8)
- セラミック多層基板と、
前記セラミック多層基板に形成され、間隔を設けて互いに対向する、少なくとも一対の放電電極と、
前記セラミック多層基板の表面に形成され、前記放電電極と接続される外部電極と、
を有するESD保護デバイスであって、
前記一対の放電電極間を接続する領域に、導電性を有さない無機材料によりコートされた導電材料が分散してなる補助電極を備えたことを特徴とする、ESD保護デバイス。 - 前記無機材料は、少なくとも前記セラミック多層基板を構成する元素の一部を含有していることを特徴とする、請求項1に記載のESD保護デバイス。
- 前記補助電極には、セラミック材料が添加されていることを特徴とする、請求項1又は2に記載のESD保護デバイス。
- 前記セラミック材料は、少なくとも前記セラミック多層基板を構成する元素の一部を含有していることを特徴とする、請求項3に記載のESD保護デバイス。
- 前記セラミック材料は、半導体であることを特徴とする、請求項3に記載のESD保護デバイス。
- 前記補助電極において、前記無機材料によりコートされた前記導電材料が10vol%以上、85vol%以下の割合で含有されていることを特徴とする、請求項3乃至5のいずれか一つに記載のESD保護デバイス。
- 前記セラミック多層基板は、その内部に空洞部を有し、前記放電電極は前記空洞部の内面に沿って形成されていることを特徴とする、請求項1乃至6のいずれか一つに記載のESD保護デバイス。
- 前記セラミック多層基板は、実質的に焼結していない第一のセラミック層と、焼結が完了している第二のセラミック層を交互に積層してなることを特徴とする、請求項1乃至7のいずれか一つに記載のESD保護デバイス。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980104317.7A CN101933204B (zh) | 2008-02-05 | 2009-01-22 | Esd保护器件 |
EP09707860.4A EP2242154B1 (en) | 2008-02-05 | 2009-01-22 | Esd protection device |
JP2009541655A JP4434314B2 (ja) | 2008-02-05 | 2009-01-22 | Esd保護デバイス |
US12/846,878 US8238069B2 (en) | 2008-02-05 | 2010-07-30 | ESD protection device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008025392 | 2008-02-05 | ||
JP2008-025392 | 2008-02-05 | ||
JP2008-314771 | 2008-12-10 | ||
JP2008314771 | 2008-12-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/846,878 Continuation US8238069B2 (en) | 2008-02-05 | 2010-07-30 | ESD protection device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009098944A1 true WO2009098944A1 (ja) | 2009-08-13 |
Family
ID=40952022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/050928 WO2009098944A1 (ja) | 2008-02-05 | 2009-01-22 | Esd保護デバイス |
Country Status (6)
Country | Link |
---|---|
US (1) | US8238069B2 (ja) |
EP (1) | EP2242154B1 (ja) |
JP (1) | JP4434314B2 (ja) |
KR (1) | KR101072673B1 (ja) |
CN (1) | CN101933204B (ja) |
WO (1) | WO2009098944A1 (ja) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010165660A (ja) * | 2008-07-24 | 2010-07-29 | Tdk Corp | 静電気対策素子 |
JP2011100649A (ja) * | 2009-11-06 | 2011-05-19 | Murata Mfg Co Ltd | 電子部品内蔵基板および電子モジュール。 |
WO2011096335A1 (ja) * | 2010-02-04 | 2011-08-11 | 株式会社 村田製作所 | Esd保護装置の製造方法及びesd保護装置 |
WO2011099385A1 (ja) * | 2010-02-15 | 2011-08-18 | 株式会社 村田製作所 | Esd保護装置 |
JP2011187439A (ja) * | 2010-02-15 | 2011-09-22 | Murata Mfg Co Ltd | Esd保護装置 |
JP2011243492A (ja) * | 2010-05-20 | 2011-12-01 | Murata Mfg Co Ltd | Esd保護デバイス及びその製造方法 |
JP2011243896A (ja) * | 2010-05-21 | 2011-12-01 | Murata Mfg Co Ltd | セラミック多層基板および電子モジュール |
JP2011243380A (ja) * | 2010-05-17 | 2011-12-01 | Murata Mfg Co Ltd | Esd保護装置 |
CN102299485A (zh) * | 2010-05-18 | 2011-12-28 | 株式会社村田制作所 | Esd保护装置的制造方法及esd保护装置 |
JP2012004104A (ja) * | 2010-05-18 | 2012-01-05 | Murata Mfg Co Ltd | Esd保護装置の製造方法およびesd保護装置 |
CN102437513A (zh) * | 2010-09-29 | 2012-05-02 | 株式会社村田制作所 | Esd保护器件及其制造方法 |
EP2447959A1 (en) * | 2009-09-30 | 2012-05-02 | Murata Manufacturing Co., Ltd. | Esd protection device and method for manufacturing same |
JP2012209244A (ja) * | 2011-03-14 | 2012-10-25 | Murata Mfg Co Ltd | Esd保護デバイスおよびその製造方法 |
WO2012153655A1 (ja) * | 2011-05-10 | 2012-11-15 | 株式会社村田製作所 | Esd保護デバイス |
JP2012248329A (ja) * | 2011-05-25 | 2012-12-13 | Tdk Corp | 静電気保護部品 |
JP2012248325A (ja) * | 2011-05-25 | 2012-12-13 | Tdk Corp | 静電気保護部品 |
CN102893467A (zh) * | 2010-05-20 | 2013-01-23 | 株式会社村田制作所 | Esd保护器件 |
WO2013011821A1 (ja) * | 2011-07-15 | 2013-01-24 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
WO2013038892A1 (ja) * | 2011-09-14 | 2013-03-21 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
WO2013038893A1 (ja) * | 2011-09-14 | 2013-03-21 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
US8432653B2 (en) | 2008-12-10 | 2013-04-30 | Murata Manufacturing Co., Ltd. | ESD protection device |
CN103155312A (zh) * | 2010-09-29 | 2013-06-12 | 株式会社村田制作所 | Esd保护器件及其制造方法 |
WO2013111711A1 (ja) * | 2012-01-27 | 2013-08-01 | Tdk株式会社 | 静電気対策素子 |
US8514536B2 (en) | 2009-09-30 | 2013-08-20 | Murata Manufacturing Co., Ltd. | ESD protection device and manufacturing method therefor |
WO2013129272A1 (ja) * | 2012-02-29 | 2013-09-06 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
WO2013129271A1 (ja) * | 2012-02-29 | 2013-09-06 | 株式会社村田製作所 | Esd保護デバイス |
WO2013137032A1 (ja) * | 2012-03-13 | 2013-09-19 | Tdk株式会社 | 静電気対策素子 |
KR20140114056A (ko) | 2012-02-29 | 2014-09-25 | 가부시키가이샤 무라타 세이사쿠쇼 | Esd 보호 디바이스 및 그 제조방법 |
WO2014188792A1 (ja) * | 2013-05-23 | 2014-11-27 | 株式会社村田製作所 | Esd保護装置 |
WO2014188791A1 (ja) * | 2013-05-23 | 2014-11-27 | 株式会社村田製作所 | Esd保護装置 |
JP2015057797A (ja) * | 2014-12-19 | 2015-03-26 | Tdk株式会社 | 静電気保護部品 |
US9185785B2 (en) | 2011-05-25 | 2015-11-10 | Tdk Corporation | Electrostatic protection component |
JP6086151B2 (ja) * | 2013-05-08 | 2017-03-01 | 株式会社村田製作所 | Esd保護装置 |
US9698109B2 (en) | 2012-08-13 | 2017-07-04 | Murata Manufacturing Co., Ltd. | ESD protection device |
US10271413B2 (en) | 2014-10-08 | 2019-04-23 | Tdk Corporation | ESD protection device |
JP2020168060A (ja) * | 2019-04-01 | 2020-10-15 | 株式会社日本イノベーション | マッサージ器具 |
US12100536B2 (en) | 2021-06-03 | 2024-09-24 | Tdk Corporation | Transient voltage protection device |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5093361B2 (ja) * | 2008-11-26 | 2012-12-12 | 株式会社村田製作所 | Esd保護デバイス及びその製造方法 |
JPWO2010061519A1 (ja) * | 2008-11-26 | 2012-04-19 | 株式会社村田製作所 | Esd保護デバイス及びその製造方法 |
WO2012090730A1 (ja) * | 2010-12-27 | 2012-07-05 | 株式会社村田製作所 | Esd保護装置及びその製造方法 |
US8885324B2 (en) | 2011-07-08 | 2014-11-11 | Kemet Electronics Corporation | Overvoltage protection component |
US9142353B2 (en) | 2011-07-08 | 2015-09-22 | Kemet Electronics Corporation | Discharge capacitor |
US8629752B2 (en) * | 2011-07-11 | 2014-01-14 | Amotech Co., Ltd. | Suppressor |
KR101396769B1 (ko) * | 2011-07-11 | 2014-05-20 | 주식회사 아모텍 | 써프레서 |
WO2013031605A1 (ja) * | 2011-08-29 | 2013-03-07 | 株式会社 村田製作所 | Esd保護デバイス |
JP2013080694A (ja) * | 2011-09-22 | 2013-05-02 | Tdk Corp | 静電気対策素子 |
WO2013065672A1 (ja) * | 2011-11-01 | 2013-05-10 | 株式会社 村田製作所 | Esd保護デバイス |
JP5733480B2 (ja) | 2012-08-26 | 2015-06-10 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
US9780559B2 (en) * | 2013-03-15 | 2017-10-03 | Tdk Corporation | ESD protection device |
JP5614563B2 (ja) * | 2013-10-28 | 2014-10-29 | 株式会社村田製作所 | Esd保護デバイスの製造方法 |
KR101608224B1 (ko) * | 2014-11-20 | 2016-04-14 | 주식회사 아모텍 | 감전보호소자 및 이를 구비한 휴대용 전자장치 |
CN107005028B (zh) * | 2014-12-18 | 2018-11-13 | 株式会社村田制作所 | Esd保护装置以及其制造方法 |
KR101808794B1 (ko) * | 2015-05-07 | 2018-01-18 | 주식회사 모다이노칩 | 적층체 소자 |
JP6274361B2 (ja) * | 2015-07-01 | 2018-02-07 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
DE102015116278A1 (de) * | 2015-09-25 | 2017-03-30 | Epcos Ag | Überspannungsschutzbauelement und Verfahren zur Herstellung eines Überspannungsschutzbauelements |
KR102609147B1 (ko) * | 2016-05-30 | 2023-12-05 | 삼성전기주식회사 | 복합 전자 부품 |
CN110031330B (zh) * | 2019-03-07 | 2022-03-08 | 航天科工防御技术研究试验中心 | 一种陶瓷涂层结合强度的测试试样、制备方法及测试方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001043954A (ja) | 1999-07-30 | 2001-02-16 | Tokin Corp | サージ吸収素子及びその製造方法 |
JP2003297524A (ja) * | 2002-03-29 | 2003-10-17 | Mitsubishi Materials Corp | サージアブソーバ及びその製造方法 |
JP2004014437A (ja) * | 2002-06-11 | 2004-01-15 | Mitsubishi Materials Corp | チップ型サージアブソーバ及びその製造方法 |
JP2005276666A (ja) * | 2004-03-25 | 2005-10-06 | Mitsubishi Materials Corp | サージアブソーバ |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01311585A (ja) | 1988-06-09 | 1989-12-15 | Okaya Electric Ind Co Ltd | 放電型サージ吸収素子 |
JPH0246679A (ja) | 1988-08-05 | 1990-02-16 | Okaya Electric Ind Co Ltd | 放電型サージ吸収素子及びその製造方法 |
JP2745386B2 (ja) | 1994-06-29 | 1998-04-28 | 岡谷電機産業株式会社 | 放電型サージ吸収素子の製造方法 |
JP2000077163A (ja) | 1998-08-28 | 2000-03-14 | Tokin Corp | 表面実装型サージ吸収素子 |
JP2001122660A (ja) | 1999-10-22 | 2001-05-08 | Taiyo Yuden Co Ltd | 導電性ペースト、積層セラミック電子部品及びその製造方法 |
JP2001338831A (ja) | 2000-05-29 | 2001-12-07 | Kyocera Corp | 導電性ペースト及びそれを用いた積層セラミックコンデンサ |
JP4140173B2 (ja) * | 2000-05-31 | 2008-08-27 | 三菱マテリアル株式会社 | チップ型サージアブソーバおよびその製造方法 |
JP4541517B2 (ja) * | 2000-09-13 | 2010-09-08 | キヤノン株式会社 | 記録装置 |
JP2002298643A (ja) | 2001-03-29 | 2002-10-11 | Kyocera Corp | 外部電極用導電性ペースト及びそれを用いた積層セラミックコンデンサ |
JP2003246680A (ja) * | 2002-02-26 | 2003-09-02 | Murata Mfg Co Ltd | 多層セラミック基板の製造方法 |
JP3929989B2 (ja) | 2004-03-29 | 2007-06-13 | 京都エレックス株式会社 | 導電性ペースト及びその導電性ペーストを用いたセラミック多層回路基板。 |
JP2006032090A (ja) * | 2004-07-15 | 2006-02-02 | Mitsubishi Materials Corp | サージアブソーバ |
EP1788680A4 (en) * | 2004-07-15 | 2013-12-04 | Mitsubishi Materials Corp | SURGE |
JP2006054061A (ja) | 2004-08-09 | 2006-02-23 | Sumitomo Metal Mining Co Ltd | 導電性ペースト |
CN1805649A (zh) * | 2005-12-30 | 2006-07-19 | 上海维安热电材料股份有限公司 | 一种高分子基esd防护元件及其制造方法 |
KR101027092B1 (ko) | 2007-05-28 | 2011-04-05 | 가부시키가이샤 무라타 세이사쿠쇼 | Esd 보호 디바이스 |
US20090091233A1 (en) * | 2007-10-03 | 2009-04-09 | Liu Te-Pang | Protecting device for electronic circuit and manufacturing method thereof |
-
2009
- 2009-01-22 EP EP09707860.4A patent/EP2242154B1/en active Active
- 2009-01-22 KR KR1020107017106A patent/KR101072673B1/ko active IP Right Grant
- 2009-01-22 WO PCT/JP2009/050928 patent/WO2009098944A1/ja active Application Filing
- 2009-01-22 CN CN200980104317.7A patent/CN101933204B/zh active Active
- 2009-01-22 JP JP2009541655A patent/JP4434314B2/ja active Active
-
2010
- 2010-07-30 US US12/846,878 patent/US8238069B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001043954A (ja) | 1999-07-30 | 2001-02-16 | Tokin Corp | サージ吸収素子及びその製造方法 |
JP2003297524A (ja) * | 2002-03-29 | 2003-10-17 | Mitsubishi Materials Corp | サージアブソーバ及びその製造方法 |
JP2004014437A (ja) * | 2002-06-11 | 2004-01-15 | Mitsubishi Materials Corp | チップ型サージアブソーバ及びその製造方法 |
JP2005276666A (ja) * | 2004-03-25 | 2005-10-06 | Mitsubishi Materials Corp | サージアブソーバ |
Cited By (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010165660A (ja) * | 2008-07-24 | 2010-07-29 | Tdk Corp | 静電気対策素子 |
US8432653B2 (en) | 2008-12-10 | 2013-04-30 | Murata Manufacturing Co., Ltd. | ESD protection device |
EP2447959A1 (en) * | 2009-09-30 | 2012-05-02 | Murata Manufacturing Co., Ltd. | Esd protection device and method for manufacturing same |
JP5310863B2 (ja) * | 2009-09-30 | 2013-10-09 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
KR101392455B1 (ko) * | 2009-09-30 | 2014-05-07 | 가부시키가이샤 무라타 세이사쿠쇼 | Esd 보호 디바이스 및 그 제조 방법 |
US8514536B2 (en) | 2009-09-30 | 2013-08-20 | Murata Manufacturing Co., Ltd. | ESD protection device and manufacturing method therefor |
EP2447959A4 (en) * | 2009-09-30 | 2013-05-15 | Murata Manufacturing Co | ELECTROSTATIC DISCHARGE PROTECTION DEVICE (EDS) AND METHOD OF MANUFACTURING THE SAME |
US8421582B2 (en) | 2009-09-30 | 2013-04-16 | Murata Manufacturing Co., Ltd. | ESD protection device and manufacturing method therefor |
EP2453536A4 (en) * | 2009-09-30 | 2015-03-04 | Murata Manufacturing Co | DEVICE FOR PROTECTION AGAINST ELECTROSTATIC DISCHARGE AND METHOD OF MANUFACTURING THE SAME |
CN102576586A (zh) * | 2009-09-30 | 2012-07-11 | 株式会社村田制作所 | Esd保护器件及其制造方法 |
JP2011100649A (ja) * | 2009-11-06 | 2011-05-19 | Murata Mfg Co Ltd | 電子部品内蔵基板および電子モジュール。 |
JP5557060B2 (ja) * | 2010-02-04 | 2014-07-23 | 株式会社村田製作所 | Esd保護装置の製造方法 |
US8847726B2 (en) | 2010-02-04 | 2014-09-30 | Murata Manufacturing Co., Ltd. | Method for manufacturing ESD protection device and ESD protection device |
CN102754291A (zh) * | 2010-02-04 | 2012-10-24 | 株式会社村田制作所 | Esd保护装置的制造方法及esd保护装置 |
WO2011096335A1 (ja) * | 2010-02-04 | 2011-08-11 | 株式会社 村田製作所 | Esd保護装置の製造方法及びesd保護装置 |
CN102771024A (zh) * | 2010-02-15 | 2012-11-07 | 株式会社村田制作所 | Esd保护装置 |
JP5403075B2 (ja) * | 2010-02-15 | 2014-01-29 | 株式会社村田製作所 | Esd保護装置 |
US8618904B2 (en) | 2010-02-15 | 2013-12-31 | Murata Manufacturing Co., Ltd. | ESD protection device |
WO2011099385A1 (ja) * | 2010-02-15 | 2011-08-18 | 株式会社 村田製作所 | Esd保護装置 |
JP2011187439A (ja) * | 2010-02-15 | 2011-09-22 | Murata Mfg Co Ltd | Esd保護装置 |
US8503147B2 (en) | 2010-05-17 | 2013-08-06 | Murata Manufacturing Co., Ltd. | ESD protection device |
JP2011243380A (ja) * | 2010-05-17 | 2011-12-01 | Murata Mfg Co Ltd | Esd保護装置 |
JP2012004104A (ja) * | 2010-05-18 | 2012-01-05 | Murata Mfg Co Ltd | Esd保護装置の製造方法およびesd保護装置 |
CN102299485A (zh) * | 2010-05-18 | 2011-12-28 | 株式会社村田制作所 | Esd保护装置的制造方法及esd保护装置 |
CN102299485B (zh) * | 2010-05-18 | 2013-09-18 | 株式会社村田制作所 | Esd保护装置的制造方法及esd保护装置 |
US8760830B2 (en) | 2010-05-20 | 2014-06-24 | Murata Manufacturing Co., Ltd. | ESD protection device |
JP2011243492A (ja) * | 2010-05-20 | 2011-12-01 | Murata Mfg Co Ltd | Esd保護デバイス及びその製造方法 |
CN102893467A (zh) * | 2010-05-20 | 2013-01-23 | 株式会社村田制作所 | Esd保护器件 |
JP2011243896A (ja) * | 2010-05-21 | 2011-12-01 | Murata Mfg Co Ltd | セラミック多層基板および電子モジュール |
CN103155312A (zh) * | 2010-09-29 | 2013-06-12 | 株式会社村田制作所 | Esd保护器件及其制造方法 |
TWI487226B (zh) * | 2010-09-29 | 2015-06-01 | Murata Manufacturing Co | 靜電放電保護裝置及其製造方法 |
CN102437513A (zh) * | 2010-09-29 | 2012-05-02 | 株式会社村田制作所 | Esd保护器件及其制造方法 |
US9077174B2 (en) | 2010-09-29 | 2015-07-07 | Murata Manufacturing Co., Ltd. | ESD protection device and manufacturing method therefor |
US8711537B2 (en) | 2011-03-14 | 2014-04-29 | Murata Manufacturing Co., Ltd. | ESD protection device and method for producing the same |
JP2012209244A (ja) * | 2011-03-14 | 2012-10-25 | Murata Mfg Co Ltd | Esd保護デバイスおよびその製造方法 |
WO2012153655A1 (ja) * | 2011-05-10 | 2012-11-15 | 株式会社村田製作所 | Esd保護デバイス |
JP2012248325A (ja) * | 2011-05-25 | 2012-12-13 | Tdk Corp | 静電気保護部品 |
CN105322441A (zh) * | 2011-05-25 | 2016-02-10 | Tdk株式会社 | 静电保护部件 |
US9185785B2 (en) | 2011-05-25 | 2015-11-10 | Tdk Corporation | Electrostatic protection component |
JP2012248329A (ja) * | 2011-05-25 | 2012-12-13 | Tdk Corp | 静電気保護部品 |
JP5637314B2 (ja) * | 2011-07-15 | 2014-12-10 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
US9386673B2 (en) | 2011-07-15 | 2016-07-05 | Murata Manufacturing Co., Ltd. | ESD protection device and method for producing same |
KR101555047B1 (ko) | 2011-07-15 | 2015-09-23 | 가부시키가이샤 무라타 세이사쿠쇼 | Esd 보호 디바이스 및 그 제조방법 |
WO2013011821A1 (ja) * | 2011-07-15 | 2013-01-24 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
JPWO2013011821A1 (ja) * | 2011-07-15 | 2015-02-23 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
JPWO2013038892A1 (ja) * | 2011-09-14 | 2015-03-26 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
US9368253B2 (en) | 2011-09-14 | 2016-06-14 | Murata Manufacturing Co., Ltd. | ESD protection device and method for producing the same |
WO2013038893A1 (ja) * | 2011-09-14 | 2013-03-21 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
WO2013038892A1 (ja) * | 2011-09-14 | 2013-03-21 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
US9117834B2 (en) | 2011-09-14 | 2015-08-25 | Murata Manufacturing Co., Ltd. | ESD protection device and method for producing the same |
JPWO2013038893A1 (ja) * | 2011-09-14 | 2015-03-26 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
WO2013111711A1 (ja) * | 2012-01-27 | 2013-08-01 | Tdk株式会社 | 静電気対策素子 |
JP2013175443A (ja) * | 2012-01-27 | 2013-09-05 | Tdk Corp | 静電気対策素子 |
KR101596909B1 (ko) | 2012-02-29 | 2016-02-23 | 가부시키가이샤 무라타 세이사쿠쇼 | Esd 보호 디바이스 및 그 제조방법 |
KR101593078B1 (ko) | 2012-02-29 | 2016-03-22 | 가부시키가이샤 무라타 세이사쿠쇼 | Esd 보호 디바이스 및 그 제조방법 |
US9373954B2 (en) | 2012-02-29 | 2016-06-21 | Murata Manufacturing Co., Ltd. | ESD protection device and method for producing the same |
JPWO2013129271A1 (ja) * | 2012-02-29 | 2015-07-30 | 株式会社村田製作所 | Esd保護デバイス |
US9374877B2 (en) | 2012-02-29 | 2016-06-21 | Murata Manufacturing Co., Ltd. | ESD protection device and method for producing the same |
KR20140114056A (ko) | 2012-02-29 | 2014-09-25 | 가부시키가이샤 무라타 세이사쿠쇼 | Esd 보호 디바이스 및 그 제조방법 |
WO2013129272A1 (ja) * | 2012-02-29 | 2013-09-06 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
WO2013129271A1 (ja) * | 2012-02-29 | 2013-09-06 | 株式会社村田製作所 | Esd保護デバイス |
JP5585744B2 (ja) * | 2012-02-29 | 2014-09-10 | 株式会社村田製作所 | Esd保護デバイスおよびその製造方法 |
JP2013219019A (ja) * | 2012-03-13 | 2013-10-24 | Tdk Corp | 静電気対策素子 |
WO2013137032A1 (ja) * | 2012-03-13 | 2013-09-19 | Tdk株式会社 | 静電気対策素子 |
US9698109B2 (en) | 2012-08-13 | 2017-07-04 | Murata Manufacturing Co., Ltd. | ESD protection device |
US10057970B2 (en) | 2013-05-08 | 2018-08-21 | Murata Manufacturing Co., Ltd. | ESD protection device |
JP6086151B2 (ja) * | 2013-05-08 | 2017-03-01 | 株式会社村田製作所 | Esd保護装置 |
WO2014188791A1 (ja) * | 2013-05-23 | 2014-11-27 | 株式会社村田製作所 | Esd保護装置 |
JPWO2014188791A1 (ja) * | 2013-05-23 | 2017-02-23 | 株式会社村田製作所 | Esd保護装置 |
JP6075447B2 (ja) * | 2013-05-23 | 2017-02-08 | 株式会社村田製作所 | Esd保護装置 |
WO2014188792A1 (ja) * | 2013-05-23 | 2014-11-27 | 株式会社村田製作所 | Esd保護装置 |
US10193332B2 (en) | 2013-05-23 | 2019-01-29 | Murata Manufacturing Co., Ltd. | ESD protection device |
US10271413B2 (en) | 2014-10-08 | 2019-04-23 | Tdk Corporation | ESD protection device |
JP2015057797A (ja) * | 2014-12-19 | 2015-03-26 | Tdk株式会社 | 静電気保護部品 |
JP2020168060A (ja) * | 2019-04-01 | 2020-10-15 | 株式会社日本イノベーション | マッサージ器具 |
JP7392967B2 (ja) | 2019-04-01 | 2023-12-06 | 株式会社日本イノベーション | マッサージ器具 |
US12100536B2 (en) | 2021-06-03 | 2024-09-24 | Tdk Corporation | Transient voltage protection device |
Also Published As
Publication number | Publication date |
---|---|
KR20100098722A (ko) | 2010-09-08 |
EP2242154B1 (en) | 2017-12-06 |
EP2242154A4 (en) | 2013-03-06 |
JPWO2009098944A1 (ja) | 2011-05-26 |
JP4434314B2 (ja) | 2010-03-17 |
CN101933204A (zh) | 2010-12-29 |
CN101933204B (zh) | 2015-06-03 |
KR101072673B1 (ko) | 2011-10-11 |
US8238069B2 (en) | 2012-08-07 |
EP2242154A1 (en) | 2010-10-20 |
US20100309595A1 (en) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4434314B2 (ja) | Esd保護デバイス | |
WO2010067503A1 (ja) | Esd保護デバイス | |
JP5590122B2 (ja) | Esd保護デバイス | |
US8711537B2 (en) | ESD protection device and method for producing the same | |
JP5741708B2 (ja) | Esd保護デバイス | |
KR20120062821A (ko) | Esd 보호 디바이스 및 그 제조 방법 | |
JPWO2010061519A1 (ja) | Esd保護デバイス及びその製造方法 | |
JP5403370B2 (ja) | Esd保護装置 | |
US9502891B2 (en) | ESD protection device | |
WO2014027552A1 (ja) | Esd保護装置 | |
JP5614315B2 (ja) | Esd保護装置 | |
US8618904B2 (en) | ESD protection device | |
TWI506900B (zh) | Electrostatic discharge protection device | |
JP6086151B2 (ja) | Esd保護装置 | |
WO2013146324A1 (ja) | Esd保護装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980104317.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009541655 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09707860 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009707860 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20107017106 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |