WO2006009285A1 - ポリ乳酸およびその製造方法 - Google Patents

ポリ乳酸およびその製造方法 Download PDF

Info

Publication number
WO2006009285A1
WO2006009285A1 PCT/JP2005/013672 JP2005013672W WO2006009285A1 WO 2006009285 A1 WO2006009285 A1 WO 2006009285A1 JP 2005013672 W JP2005013672 W JP 2005013672W WO 2006009285 A1 WO2006009285 A1 WO 2006009285A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
mol
polylactic acid
acid
molecular weight
Prior art date
Application number
PCT/JP2005/013672
Other languages
English (en)
French (fr)
Inventor
Yoshiharu Kimura
Zhen Tang
Kazuki Fukushima
Kiyotsuna Toyohara
Ryuji Nonokawa
Yasuhito Maeda
Masayuki Takada
Yuka Komazawa
Tsuyoshi Aoki
Original Assignee
Teijin Limited
Musashino Chemical Laboratory, Ltd.
Mutual Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004214496A external-priority patent/JP4511890B2/ja
Priority claimed from JP2004230978A external-priority patent/JP2006045428A/ja
Priority claimed from JP2004252804A external-priority patent/JP5175421B2/ja
Priority claimed from JP2004378709A external-priority patent/JP5250178B2/ja
Application filed by Teijin Limited, Musashino Chemical Laboratory, Ltd., Mutual Corporation filed Critical Teijin Limited
Priority to KR1020077001435A priority Critical patent/KR101240218B1/ko
Priority to EP05767665A priority patent/EP1780234A4/en
Priority to CA002575049A priority patent/CA2575049A1/en
Priority to US11/658,093 priority patent/US8304490B2/en
Priority to BRPI0513553-2A priority patent/BRPI0513553A/pt
Priority to CN2005800246621A priority patent/CN1989171B/zh
Publication of WO2006009285A1 publication Critical patent/WO2006009285A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to polylactic acid and a method for producing the same.
  • the present invention also relates to a composition containing polylactic acid.
  • this invention relates to the molded object which consists of polylactic acid.
  • biodegradable polymers that are degraded in the natural environment have attracted attention and are being studied all over the world.
  • biodegradable polymer polyhydroxypropylate, polyprolactone, aliphatic polyester and polylactic acid are known.
  • polylactic acid can be produced from natural products such as lactic acid or lactide, and its use as a general-purpose polymer is also being investigated.
  • Polylactic acid is highly transparent and tough, but it is easily hydrolyzed in the presence of water, and further decomposes without polluting the environment after disposal.
  • Polycrystalline acid has a melting point of about 1700 ° C., but it is not sufficient for use as a general-purpose polymer, and improvement in heat resistance is required.
  • an amorphous polymer having a molecular weight of about 200,000 having 70 to 95 mol% of L-lactic acid unit and an amorphous polymer having a molecular weight of about 200,000 having 70 to 95 mol% of D-lactic acid unit is also disclosed (see Patent Document 2).
  • Patent Document 2 A method for producing a stereocomplex by melt blending with lima is also disclosed (see Patent Document 2).
  • its melting point is about 1944 ° C, and there is room for improvement in heat resistance.
  • the method for producing high molecular weight stereocomplex polylactic acid using poly (L-lactic acid) and poly (D) -lactic acid having an optical purity close to 100% has a problem in productivity.
  • the use of amorphous poly (L) monolactic acid and amorphous poly (D) -lactic acid with an optical purity of about 70 to 95 mol% does not affect productivity, but has a high melting point stereocomplex. There is a problem that polylactic acid cannot be obtained.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6 3-2 4 1 0 2 4
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2 0 0 0-1 7 1 6 3
  • Non-Patent Document 1 Macromolecules, 24, 5651 (1991) Disclosure of Invention
  • the inventors of the present invention coexisted a specific crystalline polymer mainly composed of L-lactic acid units and a specific crystalline polymer mainly composed of D-lactic acid units at a specific weight ratio, which has never been achieved at a high temperature.
  • a specific crystalline polymer mainly composed of L-lactic acid units and a specific crystalline polymer mainly composed of D-lactic acid units at a specific weight ratio, which has never been achieved at a high temperature.
  • the weight average molecular weight is 80 to 500,000, and in the differential scanning calorimeter (DSC) measurement, the proportion of the melting peak at 195 ° C or higher of the melting peak in the temperature rising process is 80% or higher.
  • DSC differential scanning calorimeter
  • the present invention also comprises (1) L monolactic acid units 90 to; L 00 mol%, D-lactic acid units, and 0 to 10 mol% of copolymer component units other than Z or lactic acid.
  • Crystalline polymer (A) having a weight average molecular weight of 100,000 to 500,000, D—lactic acid units of 90 to 99 mol%, L monolactic acid unit and copolymer component unit other than Z or lactic acid
  • a crystalline polymer (B-1) having a melting point of 140 to 170 ° C and a weight average molecular weight of 100,000 to 500,000, and a weight ratio (A) Z (B — 1) coexist in the range of 10 90-90Z10,
  • D—lactic acid unit 90- L is composed of 00 mol%, L monolactic acid unit and copolymer component unit other than Z or lactic acid, and has a melting point of 140-180 ° C.
  • Crystalline polymer (B) having a weight average molecular weight of 100,000 to 500,000, L-lactic acid unit 90 to 99 mol%, D-lactic acid unit and copolysynthetic compound other than Z or lactic acid 1 to 10 mol
  • the present invention also relates to a method for producing polylactic acid having a stereocomplex crystal content of 80 to 100%,
  • L monolactic acid block (LB) and D-lactic acid block (DB), DBZ LB 40 to 60-3Z97.5 (weight ratio), and weight average molecular weight is 80,000 to 300,000.
  • L-lactic acid block (LB) and D-lactic acid block (DB), LB / DB 40 60-3 / 97.5 (weight ratio), weight average molecular weight 80,000-3
  • this invention includes the molded object which consists of said polylactic acid.
  • the polylactic acid of the present invention has a high molecular weight, excellent molding processability, and excellent heat resistance. According to the production method of the present invention, the polylactic acid can be produced simply and at low cost.
  • the composition containing the polylactic acid and filler of the present invention is excellent in biodegradability, mechanical strength, and heat resistance.
  • the molded product of the present invention is excellent in biodegradability, mechanical strength, and heat resistance.
  • FIG. 1 is a DSC chart of polylactic acid obtained in Example 1.
  • m 2 is a DSC chart of the polylactic acid obtained in Example 7.
  • FIG. 3 is a chart of 13C-NMR measurement of polylactic acid obtained in Production Example 19. Explanation of symbols
  • the polylactic acid of the present invention has a weight average molecular weight of 80 to 500,000, and in the differential scanning calorimetry (DSC) measurement, the proportion of melting peaks at 195 ° C or higher is 80% among melting peaks in the temperature rising process. % Or more.
  • the weight average molecular weight of the polylactic acid of the present invention is preferably 100,000 to 300,000.
  • the weight average molecular weight is a standard polystyrene equivalent weight average molecular weight value measured by gel permeation chromatography (GPC) using black mouth form as an eluent.
  • the ratio of the melting peak at 195 ° C. or higher is preferably 90% or more, more preferably 95%, of the melting peak in the temperature rising process in differential scanning calorimetry (DSC) measurement. That's it.
  • the polylactic acid of the present invention includes a polylactic acid (I) that is a first aspect and a polylactic acid (I I) that is a second aspect.
  • the polylactic acid (I) of the present invention contains L monolactic acid units and D-lactic acid units represented by the following formula as basic components.
  • the weight average molecular weight of polylactic acid (I) is preferably 100,000 to 500,000. More preferably, it is 100,000 to 300,000.
  • the weight average molecular weight is a weight average molecular weight value in terms of standard polystyrene as measured by gel repayation chromatography (GPC) using black mouth form as an eluent.
  • Polylactic acid '(I) has a ratio of melting peak at 195 ° C or higher to 80% or higher, preferably 90% or higher, among melting peaks in the temperature rising process in differential scanning calorimetry (DSC) measurement. Preferably it is 95% or more.
  • the melting point is in the range of 195 to 250 ° C, more preferably in the range of 200 to 220 ° C.
  • the melting enthalpy is 20 JZg or more, preferably 30 J / g or more.
  • DSC differential scanning calorimetry
  • the percentage of melting peak at 195 ° C or higher in the melting peak in the heating process is 90% or higher, and the melting point is 19 It is preferable that the temperature is in the range of 5 to 250 ° C and the S solution is 20 JZg or more.
  • Polylactic acid (I) is composed of (1) polylactic acid units (A) and (B-1), and the weight ratio (A) Z (B-1) is in the range of 10/90 to 9010. preferable.
  • Polylactic acid (I) consists of (2) polylactic acid unit (B) and polylactic acid unit (A-1), and the weight ratio (A-1) / (B) is in the range of 10Z90 ⁇ 90/10. It is preferable.
  • the polylactic acid unit (A) is composed of 90 to 100 mol% of L monolactic acid units and 0 to 10 mol% of D-lactic acid units and copolymer component units other than Z or lactic acid.
  • the polylactic acid unit (A) includes a polylactic acid unit (A-1) and a polylactic acid unit (A-2).
  • the polylactic acid unit (A-1) is composed of L-lactic acid units of 90 to 99 mol% and D monolactic acid units and / or 1 to 10 mol% of copolymer component units other than lactic acid.
  • the polylactic acid unit (A-2) has an L monolactic acid unit exceeding 99 mol% and 100 mol% or less, and a D-lactic acid unit and a copolymer component unit other than Z or lactic acid are 0 mol% or more and 1 mol%. Is less than.
  • the polylactic acid unit (B) is composed of D-lactic acid units 90 to L; L 00 mol%, and L monolactic acid units and copolymer component units other than Z or lactic acid 0 to 10 mol%.
  • the polylactic acid unit (B) includes a polylactic acid unit (B-1) and a polylactic acid unit (B-2).
  • the polylactic acid unit (B-1) is composed of 90 to 99 mol% of D-lactic acid unit and 1 to 10 mol% of copolymer component unit other than L monolactic acid unit and Z or lactic acid.
  • the polylactic acid unit (B-2) has a D-lactic acid unit of more than 99 mol% and 100 mol% or less, L monolactic acid unit and Z or a copolymer component unit other than lactic acid 0 mol% or more and 1 mol Less than%.
  • the weight ratio ( ⁇ -1) / ( ⁇ -1) is more preferably 40/60 to 60/40.
  • Polylactic acid having a ratio (A-2) / (B-1) in the range of 10/90 to 90/10, 40 / 60-60 / 40 is preferred (combination 2).
  • the weight ratio (A-2) / (B-1) is more preferably 40/60 to 60-40.
  • polylactic acid unit (B-2) and polylactic acid unit (A ⁇ l), and the weight ratio (A-1) / (B-2) is in the range of 10/90 to 90/10. Is preferred (Combination 3).
  • the weight ratio (A-1) / (B-2) is more preferably 40-60 to 40-40.
  • composition of polylactic acid (I) the combination of polylactic acid units (A-2) and (B-2) is excluded.
  • the copolymer component unit in these polylactic acid units is composed of units derived from dicarboxylic acid, polyhydric alcohol, hydroxycarboxylic acid, lactone, etc. having a functional group capable of forming two or more ester bonds, and these various components. Units derived from various polyesters, various polyethers, various polycarbonates, etc. are laminated alone or in combination.
  • dicarboxylic acid examples include succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, and isophthalic acid.
  • Polyhydric alcohols include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol, glycerin, sorbitan, neopentylglycol, diethylene glycol, triethylene glycol, polyethylene glycol , Aliphatic polyhydric alcohols such as polypropylene glycol or bisphenol Aromatic polyhydric alcohols such as those obtained by adding ethylene oxide to nord.
  • Examples of the hydroxycarboxylic acid include glycolic acid and hydroxybutyrylcarboxylic acid.
  • Examples of the lactone include glycolide, ⁇ -force prolactone glycolide, ⁇ -force prolactone, jS-propiolactone, ⁇ -butyrolactone, j3- or aptilolactone, pivalolactone, ⁇ 5-valerolactone, and the like.
  • the weight ratio (A) / (B) of the polylactic acid unit in the polylactic acid (I) is 90:10 to 10:90.
  • the ratio is preferably 75:25 to 25:75, more preferably 60:40 to 40:60.
  • Polylactic acid (I) can be produced from crystalline polymers (A) and (B) having L monolactic acid or D-lactic acid units represented by the following formula.
  • Polylactic acid (I) consists of a crystalline polymer (A) and a crystalline polymer (B-1) coexisting in a weight ratio (A) / (B-1) in the range of 10Z90 to 90/10. It can be produced by heat treatment at ⁇ 300 ° C.
  • polylactic acid (I) contains crystalline polymer (B) and crystalline polymer (A-1) in a weight ratio (A-1) Z (B) in the range of 10Z90 to 90Z10. It can be manufactured by heat treatment at 300 ° C.
  • the crystalline polymer (A) is composed of L monolactic acid units 90 to: L 00 mol%, and D-lactic acid units and copolymer component units other than Z or lactic acid 0 to 10 mol%.
  • the melting point is 140-180 ° C.
  • the weight average molecular weight is 100,000 to 500,000.
  • Crystalline polymer (A) includes crystalline polymer (A-1) and crystalline polymer (A-2). .
  • the crystalline polymer (A-1) is composed of 90 to 99 mol% of L monolactic acid units and 1 to 10 mol% of copolymer component units other than D monolactic acid units and / or lactic acid. 140 to 170 ° C., preferably 140 to 160 ° C. A polymer having a weight average molecular weight of 100,000 to 500,000, preferably 100,000 to 200,000.
  • the crystalline polymer (A-2) has an L monolactic acid unit of more than 99 mol% and less than 100 mol%, and a D-lactic acid unit and / or a copolymer component unit other than lactic acid of 0 mol% or more and less than 1 mol%. Consists of.
  • the melting point is 160-180 ° C, preferably 165-176.
  • the crystalline polymer (B) is composed of D-lactic acid units 90-: L 00 mol%, L monolactic acid units and copolymer component units other than Z or lactic acid 0-: L 0 mol%.
  • the melting point is 140-18 Ot :.
  • the weight average molecular weight is 100,000 to 500,000.
  • Crystalline polymer (B) includes crystalline polymer (B-1) and crystalline polymer (B-2).
  • the crystalline polymer (B-1) is composed of 90 to 99 mol% of D-lactic acid units and 1 to 10 mol% of copolymer component units other than L monolactic acid units and z or lactic acid.
  • the melting point is 140-170 ° C, preferably 140-160 ° C.
  • the weight average molecular weight is 100,000 to 500,000, preferably 100,000 to 200,000.
  • Crystalline polymer (B-2) has a D-lactic acid unit of more than 99 mol% and less than 100 mol%, and an L-lactic acid unit and / or a copolymer component unit other than lactic acid of 0 mol% or more and less than 1 mol%. It consists of.
  • the melting point is 160 to 180 ° C, preferably 165 to 176 ° C.
  • the weight average molecular weight is 100,000 to 500,000, preferably 100,000 to 300,000, more preferably 150,000 to 250,000.
  • the crystalline polymer (A-1) and the crystalline polymer (B-1) are coexistent in a weight ratio (A-1) (B-1) in the range of 90Z10 to 90, and 270 to Heat treatment at 300 ° C is preferred (Combination 1).
  • the weight ratio (A-1) / (B-1) is more preferably in the range of 60-40 to 40/60.
  • the crystalline polymer (A-2) and the crystalline polymer (B-1) (A-2) / (B-1) coexist in the range of 10/90 to 90Z10,
  • the crystalline polymer (B-2) and the crystalline polymer (A-1) are allowed to coexist in a weight ratio (A-1) Z (B-2) in the range of 10/90 to 90Z10.
  • -2) is more preferably in the range of 40/60 to 622 11110/40.
  • the combination of the crystalline polymers (A-2) and (B-2) is excluded from the combination of the crystalline polymers (A) and (B). Therefore, such combinations are also excluded in the description of the combinations of the crystalline polymers (A) and (B) below.
  • the crystalline polymer (A) and the crystalline polymer (B) used in the present invention may be those having various terminal cappings at the terminal groups.
  • Examples of such a terminal blocking group include a acetyl group, an ester group, an ether group, an amide group, a urethane group, and the like.
  • the crystalline polymers (A) and (B) can be produced by any known polylactic acid polymerization method, such as ring-opening polymerization of lactide, dehydration condensation of lactic acid, and solid phase with these. It can manufacture by the method etc. which combined superposition
  • the copolymer components of the crystalline polymers (A) and (B) are dicarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids having functional groups capable of forming two or more ester bonds, Examples include lactones and various polyesters composed of these various constituents, various polyesters, and various polycarbonates.
  • dicarboxylic acid examples include succinic acid, adipic acid, azelaic acid, sepacic acid, terephthalic acid, and isophthalic acid.
  • Polyhydric alcohols include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol, glycerin, sorbitan, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, Examples include aliphatic polyhydric alcohols such as polypropylene glycol and aromatic polyhydric alcohols such as those obtained by adding ethylene oxide to bisphenol.
  • Examples of the hydroxycarboxylic acid include glycolic acid and hydroxybutyl carboxylic acid.
  • Examples of the lactone include glycolide, ⁇ -force prolactone glycolide, ⁇ -force prolactone, -propiolactone, ⁇ 1-ptylolactone, 1 or 1-ptilolactone, pivalolactone, (5-valerolactone, and the like.
  • the weight average molecular weights of the crystalline polymers ( ⁇ ) and ( ⁇ ) are standard polystyrene equivalent weight average molecular weight values measured by gel permeation chromatography (GPC) using black mouth form as an eluent.
  • the crystalline polymers ( ⁇ ) and ( ⁇ ) may contain a catalyst for polymerization as long as the thermal stability of the resin is not impaired.
  • a catalyst for polymerization examples include various tin compounds, aluminum compounds, titanium compounds, zirconium compounds, calcium compounds, organic acids, inorganic acids, and at the same time, a stabilizer that inactivates them. It may be allowed.
  • Specific catalysts include tin, aluminum, zirconium and titanium fatty acid salts, carbonates, sulfates, phosphates, oxides, hydroxides, halides, alcoholates, or the metals themselves. It is done.
  • the present invention is characterized in that the crystalline polymers (A) and (B) coexist in the above-mentioned ratio range and are heat-treated at 2450-300 ° C.
  • the polymers (A) and (B) In the heat treatment, it is preferable to mix the polymers (A) and (B). Mixing can be any method as long as they are uniformly mixed when heat-treated. As such a method, there are a method in which the crystalline polymers (A) and (B) are mixed in the presence of a solvent and then reprecipitated to obtain a mixture, or a method in which the solvent is removed by heating to obtain a mixture. It can be illustrated. In this case, prepare a solution in which the crystalline polymers (A) and (B) are separately dissolved in a solvent and mix them together, or dissolve the crystalline polymers — (A) and (B) together in a solvent. It is preferable to carry out by mixing them together.
  • the solvent is not particularly limited as long as it can dissolve the crystalline polymers (A) and (B).
  • chloroform, methylene chloride, dichloroethane, tetrachloroethane, phenol Preferred are tetrahydrofuran, N-methylpyrrolidone, N, N-dimethylformamide, ptyrolactone, trioxane, hexafluoroisopropanol, or a mixture of two or more.
  • the rate of temperature increase after evaporation of the solvent (heat treatment) is preferably, but not limited to, a short time since there is a possibility of decomposition when the heat treatment is performed for a long time.
  • the present invention can be carried out by mixing the crystalline polymers (A) and (B) in the absence of a solvent. That is, a predetermined amount of crystalline polymers (A) and (B) previously powdered or chipped are mixed and then melted. Alternatively, a method of kneading and mixing after melting, or a method of mixing and mixing one of the crystalline polymer (A) or (B) after the remaining one is added and mixed can be employed.
  • the present invention includes a method for producing polylactic acid, in which a crystalline polymer is mixed in the presence of a solvent, or is mixed in the absence, and heat-treated.
  • the size of the powder or chip is not particularly limited as long as the powder or chip of the crystalline polymer (A) and (B) is uniformly mixed, but it is 3 mm or less.
  • the size is preferably 1 to 0.25 mm.
  • stereocomplex crystals are formed regardless of size, but when powder or chips are uniformly mixed and then simply melted, the diameter of the powder or chips is 3 mm or more. In this case, homocrystals are also precipitated, which is not preferable.
  • a mixing device used for mixing the crystalline polymers (A) and (B), when mixing by melting a reactor equipped with a batch type stirring blade, a continuous type
  • a biaxial or uniaxial extruder, and when mixing with powder a tumbler type powder mixer, a continuous powder mixer, various milling devices, etc. can be suitably used. .
  • the heat treatment in the production method of the present invention means that the crystalline polymer (A) and the crystalline polymer (B) are allowed to coexist in the above weight ratio and are maintained in a temperature range of 2450 ° C to 300 ° C.
  • the temperature of the heat treatment is preferably 2700 to 300 ° C, more preferably 2 8
  • the heat treatment time is not particularly limited, but 0.2 to 6
  • the atmosphere during the heat treatment can be either an inert atmosphere at normal pressure or a reduced pressure.
  • any apparatus or method that can be heated while adjusting the atmosphere can be used.
  • a batch reactor, a continuous reactor, a biaxial or uniaxial extruder It is possible to use a pressing machine or a flow tube type extruder to process while molding.
  • An object of the invention in the second aspect is to provide a polylactic acid containing a stereocomplex crystal, excellent in forming processability, high molecular weight, high crystallinity and high melting point, and a method for producing the same.
  • the present inventors melt mixed or mixed a specific polylactic acid block copolymer (A) mainly composed of L-lactic acid segments and a specific polylactic acid block copolymer (B) mainly composed of D-lactic acid segments. It has been found that polylactic acid having a high molecular weight, a high content of stereocomplex crystals and a high melting point can be obtained by mixing the solution, and the present invention has been completed.
  • the present invention is a polylactic acid having a melting peak ratio of 195 ° C or higher of 80% or more of the melting peak in the temperature rising process.
  • (1) It consists of a polylactic acid block copolymer composed of L acid block and D-lactic acid block.
  • the weight average molecular weight is 80,000-300,000
  • the polylactic acid block copolymer is a block copolymer in which an L-lactic acid block and a D-lactic acid block are arranged.
  • the L-lactic acid block and D-lactic acid block have L monolactic acid unit or D-lactic acid unit as the basic unit shown in the following formula.
  • L-Lactic acid block and D-Lactic acid block of polylactic acid block copolymer The chain length is 5-40, preferably 10-30. When the average chain length is less than 5, the crystallinity force S is remarkably reduced. In use, sufficient heat resistance and mechanical strength cannot be obtained, and when it exceeds 40, the stereocomplex crystallization rate is decreased, which is preferable. Absent.
  • L component ZD component (weight ratio) 20/8 0
  • it can be arbitrarily set within the range of -80/20 it is preferably 25Z75 to 75Z25, more preferably 40/60 to 60Z40. Within this ratio range, the melting point becomes high, but the crystallinity of the stereocomplex polylactic acid is impaired as the ratio deviates from 50Z50.
  • the polylactic acid (I I) has a weight average molecular weight of 80,000 to 300,000, more preferably 90,000 to 250,000, and still more preferably 100,000 to 200,000. When the molecular weight is low, a molded article having good strength cannot be obtained, and when the molecular weight is high, the moldability is remarkably lowered.
  • the molecular weight distribution (Mw / Mn) is preferably in the range of 1.5 to 3.0.
  • Polylactic acid (I I) has a stereocomplex crystal content of 80 to 100%, preferably 90 to 100%.
  • Polylactic acid (II) has a melting peak ratio of 200 ° C or higher, preferably 80% or higher, more preferably 90%, of the melting peak in the temperature rising process in differential scanning calorimetry (DSC) measurement. More preferably, it is 95% or more.
  • the melting point is in the range of 200-250 ° C, more preferably in the range of 200-220 ° C.
  • the melting enthalpy is 20 JZg or more, preferably 30 JZg or more.
  • DSC differential scanning calorimetry
  • the melting enthalpy is preferably 20 JZg or more.
  • Polylactic acid (II) may contain a copolymer component other than L monolactic acid unit and D-lactic acid unit represented by the above formula in a proportion of 10% by weight or less.
  • This copolymer component is a dicarboxylic acid, polyhydric alcohol, hydroxycarboxylic acid, lactone or the like having a functional group capable of forming two or more ester bonds.
  • L monolactic acid block (LB) and D-lactic acid block (DB), LB no DB 40 no 60 ⁇ 3 / 97.5 (weight ratio), weight average molecular weight 80,000-3
  • the weight average molecular weights of the polylactic acid block copolymers (A) and (B) are both 80,000 to 300,000, preferably 90,000 to 250,000, and more preferably 100,000 to 200,000.
  • the molecular weight distribution (Mw / Mn) is preferably in the range of 1.5 to 3.0.
  • the average chain length of the L monolactic acid block and the D-lactic acid block of the polylactic acid block copolymers (A) and (B) is 5 to 40, preferably 10 to 30.
  • the average chain length is less than 5, the crystallinity is remarkably lowered, and heat resistance and mechanical strength sufficient for use cannot be obtained.
  • it exceeds 40 the stereocomplex crystallization ratio is lowered, which is not preferable.
  • the polylactic acid block copolymers (A) and (B) both have two melting points, a melting peak of 200 ° C or higher and a melting peak of 180 ° C or lower in differential scanning calorimetry (DS C) measurement. It is preferable to have a peak and the ratio of melting peaks at 200 ° C. or higher is 10 to 50% of the total melting peak.
  • polylactic acid block copolymers (A) and (B) those having various end cappings on the end groups may be used.
  • the end capping group such as H include a acetyl group, an ester group, an ether group, an amide group, a urethane group, and the like.
  • Melt mixing is a method in which polylactic acid block copolymers (A) and (B) are mixed in a molten state.
  • the melting temperature may be a temperature at which the polylactic acid block copolymers (A) and (B) are melted.
  • the temperature is lowered as much as possible so that the melt mixture does not solidify.
  • the higher melting point of the polylactic acid block copolymer (A) or (B) is set as the lower limit, 50 ° C from the lower limit, more preferably 30 ° C, especially 10-20 ° C. It is preferable to melt within a range where the upper limit is a high temperature. Specifically, it is preferable to melt and mix at 150 ° C. to 22 O.
  • the atmosphere at the time of melt mixing is not particularly limited, and it can be carried out under normal pressure or reduced pressure conditions. In the case of normal pressure, it is preferable to carry out under the flow of an inert gas such as nitrogen or argon. In order to remove the monomer that is decomposed during melting, it is preferably carried out under reduced pressure.
  • the order in which the polylactic acid block copolymers (A) and (B) are charged into an apparatus or the like during melt mixing is not limited. Accordingly, the two components may be charged simultaneously into the mixing apparatus. For example, after the polylactic acid block copolymer (A) is melted, the polylactic acid block copolymer (B) may be charged and mixed. At this time, each component may have any shape such as powder, granule, or pellet. Mixing may be performed by heating and kneading using a mill roll, a mixer, a single or twin screw extruder, a heatable batch container, and the like.
  • Solution mixing is a method in which polylactic acid block copolymers (A) and (B) are dissolved and mixed in a solvent, and then the solvent is removed.
  • the solvent is not particularly limited as long as the polylactic acid block copolymers (A) and (B) can be dissolved.
  • examples thereof include black mouth form, methylene chloride, dichloroethane, tetrachloroethane, Preference is given to phenol, terahydrofuran, N-methylpyrrolidone, N, N-dimethylformamide, ptyrolactone, trioxane, hexafluoroisopropanol, or a mixture of two or more.
  • the amount of the solvent is such that the polylactic acid block copolymers (A) and (B) are 1 to 30 parts by weight, preferably 1 to 10 parts by weight, with respect to 100 parts by weight of the solvent. Is preferable.
  • Mixing may be performed by dissolving the polylactic acid block copolymers (A) and (B) in a solvent and mixing them, or after dissolving one in a solvent and adding Ikekata. May be.
  • the solvent can be removed by heating, distillation under reduced pressure, extraction, or a combination thereof.
  • the polylactic acid (II) obtained by the method of the present invention has a stereocomplex crystal content of 80 to 100%, preferably 90 to 100%, and a weight average molecular weight of 8 It is 10,000 to 300,000, more preferably 90,000 to 250,000, and still more preferably 100,000 to 200,000.
  • Polylactic acid (II) consists of antioxidants, light stabilizers, catalyst stabilizers, antibacterial agents, dyeing agents, lubricants, nucleating agents, plasticizers, etc., and organic fillers and organic substances to reinforce the properties of resins. It may contain additives necessary for resin processing such as filler.
  • the polylactic acid block copolymer (A) used in the method of the present invention is composed of poly (L-lactic acid) (PLLA) having a weight average molecular weight of 50,000 to 20,000 and a weight average molecular weight of 50,000 to 20,000.
  • Poly-L-Lactic acid and Poly-D-Lactic acid are produced by the living stage polymerization method of lactide, a cyclic dimer of lactic acid (Mak Romo 1. Chem. 191, 481-4 88 (1990), JP-A-11225225 ), Direct ring-opening polymerization of racemic lactide using a specific stereoselective polymerization catalyst (JP 2003-64174), melt polymerization from lactic acid, and ring-opening polymerization of lactide. can do.
  • the weight average molecular weights of poly-L-lactic acid and poly-D-lactic acid are preferably from 50,000 to 10,000.
  • Melt mixing refers to mixing poly L-lactic acid and poly D-lactic acid in a molten state.
  • the melt mixing temperature may be a temperature condition in which poly-L-lactic acid and poly-D-lactic acid melt.
  • the temperature should be as high as possible so that the melt mixture does not solidify. It is preferable to lower the value. Therefore, the lower limit of the melting point of poly-L-? L acid and poly-D-lactic acid is 50 ° C, more preferably 3 It is preferable to melt in a range where the upper limit is 0 ° C, particularly 10 to 20 ° C. Specifically, it is preferable to melt and mix at 150 to 200 ° C.
  • the atmosphere at the time of melt mixing is not particularly limited, and it can be carried out under normal pressure or reduced pressure conditions. In the case of normal pressure, it is preferable to carry out under the flow of an inert gas such as nitrogen or argon. In order to remove the monomer that is decomposed during melting, it is preferably carried out under reduced pressure.
  • Solution mixing is a method in which poly-L-lactic acid and poly-D-lactic acid are dissolved and mixed in a solvent, and then the solvent is removed.
  • the solvent is not particularly limited as long as it dissolves poly-L-lactic acid and poly-D-lactic acid.
  • chloroform methylene chloride, dichloroethane, tetrachloroethane, phenol
  • Preferred are tetrahydrofuran, N-methylpyrrolidone, N, N-dimethylformamide, ptylolactone, trioxane, hexafluoroisopropanol, or a mixture of two or more.
  • the amount of the solvent is preferably in the range of 1 to 30 parts by weight, preferably 1 to 10 parts by weight of poly-L monolactic acid and poly-D-lactic acid with respect to 100 parts by weight of the solvent.
  • Mixing may be performed by dissolving poly (L-monolactic acid) and poly (D-lactic acid) in a solvent and mixing them. Alternatively, after dissolving one in a solvent, the other may be added and mixed. The solvent can be removed by heating.
  • Solid state polymerization is a temperature above the glass transition temperature (Tg) and below the melting point (Tm), more preferably above Tg and 10 ° C below Tm, especially above Tg and above 50 ° C above Tm. It can be performed at a low temperature or lower. Dinga can be measured by DSC.
  • the solid phase polymerization is preferably performed under reduced pressure, for example, 0.01 to 20 hPa, preferably 0.1 to 2 hPa.
  • Poly 1 L monolactic acid and poly 1 D-lactic acid are chemically combined by ester reaction or dehydration condensation reaction, and as a result, H 2 O is by-produced as the reaction proceeds.
  • this by-product water may be removed from the system.
  • the reaction equilibrium can be shifted to the polymerization side. If it exceeds 20 hPa, such dehydration becomes insufficient. On the other hand, even if it falls below 0.0 lhPa, no further dehydration effect can be obtained, which is useless.
  • Solid phase polymerization can also be carried out in an inert gas atmosphere such as nitrogen.
  • the time for solid phase polymerization is at least 5 hours, preferably 5 to 50 hours. It is preferable to increase the solid-state polymerization temperature in accordance with the degree of polymerization.
  • the apparatus for solid-phase polymerization is not particularly limited, but a concentration drying apparatus or the like can be used. Conical dryers and drum heaters can also be used.
  • end group sealing treatment After the solid-phase polymerization, it is preferable to perform end group sealing treatment to improve the thermal stability of the produced polymer, and further to remove the catalyst and unreacted monomer by reprecipitation or the like.
  • the polylactic acid block copolymer (B) is composed of poly-L-lactic acid (PLLA) having a weight average molecular weight of 50,000 to 20,000 and poly-D-lactic acid having a weight average molecular weight of 50,000 to 20,000.
  • PLLA poly-L-lactic acid
  • the polylactic acid block copolymer (B) is the same as the polylactic acid block copolymer (A) described above, except that the composition ratio of poly-L-monolactic acid and poly-mono-D-lactic acid is different. Can be manufactured.
  • the polylactic acid block copolymers (A) and (B) may contain a catalyst involved in polymerization as long as the thermal stability of the resin is not impaired.
  • a catalyst include various tin compounds, titanium compounds, calcium compounds, organic acids, inorganic acids, and the like, and at the same time, a stabilizer that inactivates them may coexist.
  • Polylactic acid includes polylactic acid (1) and polylactic acid (II).
  • the filler is preferably an inorganic filler or an organic filler.
  • organic fillers examples include natural fiber, para-type aramid fiber, polyazole fiber, polyarylate, polyoxybenzoic acid whisker, polyoxynaphthoic whisker, and cell mouth swisher.
  • fillers can be in the form of fibers, plates or needles.
  • fibrous inorganic fillers are preferable, and glass fibers are particularly preferable.
  • the aspect ratio of the filler is preferably 5 or more, and more preferably 10 or more. Particularly preferred is 100 or more.
  • the aspect ratio is obtained by dividing the fiber length by the fiber diameter in the case of a fibrous filler, and by dividing the length in the long period direction by the thickness in the case of a plate.
  • the elastic modulus of the filler is preferably 50 GPa or more.
  • the filler may be coated or focused with a thermoplastic resin or thermosetting shelf, treated with a coupling agent such as aminosilane or epoxysilane, or modified with various organic substances.
  • a coupling agent such as aminosilane or epoxysilane, or modified with various organic substances.
  • One filler may be used alone or in combination of two or more.
  • the natural fiber has a strength as a single fiber of preferably 20 OMPa or more, more preferably 30 OMPa or more. This is because, within this range, the composite has sufficient mechanical properties, and the amount to be mixed as a filler is reduced, so that good results can be obtained for the finish of the molding surface.
  • Natural fibers have a fiber diameter in the range of 0.1 m to 1 mm, preferably in the range of 1 m to 500 m.
  • the aspect ratio (length or diameter), which is the ratio of the fiber to the diameter, is preferably 50 or more.
  • the resin and the fiber can be mixed well, and a molded product with good physical properties can be obtained by combining. More preferably, it is 100-500, and more preferably 100-300.
  • Any natural fiber may be used as long as it satisfies the above conditions, but vegetable fibers such as kenaf, bamboo, flax, hemp, wood pulp, and cotton are preferably used. be able to.
  • wood pulp obtained from waste wood, pulp obtained from paper discharge, and fiber made from kenaf are very preferable because they have low environmental impact and high regeneration capacity.
  • Natural fiber can be produced by any method as long as its form and strength are maintained within an appropriate range. Examples of such methods include (0 fiberization by chemical pulping, (iii) fiberization by biopulving, (ii) detonation, (iv) mechanical unraveling, etc.
  • the surface of the natural fiber may be modified. It is more preferable when the surface of the natural fiber is modified to increase the strength of the interface between the resin and the fiber and further increase the durability. Examples of such modification methods include a method of chemically introducing a functional group, a method of mechanically loosening or smoothing the surface, a method of reacting a surface modifier with a mechanical stimulus, and the like. be able to. Natural fibers may be single fibers or aggregates of fibers.
  • composition is within the range not impairing the object of the present invention, and other conventional additives other than the fillers listed above, for example, plasticizers, antioxidants, light stabilizers, ultraviolet absorbers, heat stabilizers, lubricants. 1 type or 2 or more types of release agents, antistatic agents, flame retardants, foaming agents, fillers, antibacterial / antifungal agents, nucleating agents, dyes, pigments, etc. Can do.
  • thermoplastic resins thermosetting resin, soft thermoplastic resin, etc.
  • thermosetting resin thermosetting resin, soft thermoplastic resin, etc.
  • composition of the present invention is produced, for example, by the following method.
  • a polylactic acid film is prepared in advance, a plurality of natural fibers are arranged thereon, and a polylactic acid film is further stacked thereon.
  • the biodegradable composite of the present invention thus obtained exhibits sufficient strength, and neither polylactic acid nor natural fiber gives an environmental load, and thus can be suitably used as various molded products. . It is particularly suitable for structural members and building materials that require strength, as well as joinery materials and construction temporary materials.
  • the biodegradable composite of the present invention has a heat distortion temperature (HDT) of preferably 2400 ° C. or less, more preferably 2200 ° C. or less, and further preferably 1700 ° C. or less.
  • the composition of the present invention can be used for various applications as a molded article such as a sheet or a mat.
  • polylactic acid of the present invention injection molded products, extrusion molded products, vacuum / pressure molded products, professional molded products, films, sheet nonwoven fabrics, fibers, fabrics, composites with other materials, agricultural materials, fishery Materials, civil engineering / building materials, stationery, medical supplies or other molded products can be obtained. Molding can be performed by a conventional method.
  • Polylactic acid includes polylactic acid
  • polylactic acid (I I) is included.
  • a film can be produced by casting a solution contained in a solvent at 90 to 90/10, then evaporating the solvent to form a film and heat-treating at 270 to 300 ° C.
  • Weight average molecular weight (Mw) The weight average molecular weight of the polymer was determined by GPC (column temperature 40 ° C, black mouth form) by comparison with a polystyrene standard sample.
  • Tc melting point
  • Tm melting point
  • AHm melting enthalpy
  • the ratio (%) of the melting peak at 195 ° C or higher was calculated from the melting peak area at 195 ° C or higher (high temperature) and the melting peak area at 140 to 180 ° C (low temperature) by the following formula.
  • a 195 or higher Melting peak area of 195 ° C or higher
  • the ratio (%) of the melting peak at 205 ° C or higher was calculated from the melting peak area at 205 ° C or higher (high temperature) and the melting peak area at 140 to 180 ° C (low temperature) by the following formula.
  • ⁇ ⁇ "205 or more ⁇ ') A 2 o 5 or more, A 2 05 or more + A 1 4 80) 100
  • Biodegradability test The biodegradability of the biodegradable complex was evaluated using a laboratory scale composting device. The disintegration property in the curing compost was visually observed to determine the presence or absence of biodegradability. The specific procedure is described below.
  • porous wood pieces Biochip manufactured by Matsushita Electric Works Co., Ltd.
  • cellulose particles with fine pores Biopol manufactured by Matsushita Electric Works Co., Ltd.
  • 0.075 kg Daily About 1 to 1.5 kg of vegetable waste is replenished, stirred once every 3 hours for 2 minutes, and manually squeezed once a week, moisture 50 to 60%, pH 7.5 to 8.5, inside
  • a molded product of the biodegradable composite was placed in a composition maintained at a temperature of 45 to 55 ° C, and the film was sampled after a predetermined time. Decomposability is indicated when the shape of the molded product after 30 days of composting has clearly started to collapse.
  • Thermal deformation temperature The thermal deformation temperature was determined according to the method described in JISK 7191.
  • the resulting polymer A1 had a reduced viscosity of 1.48 (mLZg) and a weight average molecular weight of 110,000.
  • the melting point (Tm) was 158 ° C.
  • the polymer A 1 obtained in Production Example 1 was washed with an acetone solution of 7% 5N hydrochloric acid, and the catalyst was removed to obtain a polymer A2.
  • the obtained polymer A 2 had a reduced viscosity of 1.47 (mL / g) and a weight average molecular weight of 100,000.
  • the melting point (Tm) was 159 ° C.
  • the crystallization point (Tc) was 120 ° C.
  • L-Lactide (Musashino Chemical Laboratory Co., Ltd.) 1. Perform the same procedure as in Production Example 1 except that 25 g and D-lactide (Musashino Chemical Laboratory Co., Ltd.) 48.75 g were used. Manufactured. The reduced viscosity of polymer B 1 was 1.69, and the weight average molecular weight was 140,000. The melting point (Tm) was 155 ° C. The crystallization point (Tc) was 121 ° C.
  • the same procedure as in Production Example 2 was performed except that polymer B 1 was used, and the catalyst was removed to obtain polymer B2.
  • the obtained polymer B2 had a reduced viscosity of 1.76 (mLZg) and a weight average molecular weight of 120,000.
  • the melting point (Tm) was 156 ° C.
  • the crystallization point (Tc) was 120 ° C.
  • polymer B1 was used, the same procedure as in Production Example 3 was carried out to acetylate one end of polymer to obtain polymer B3.
  • the resulting polymer B 3 had a reduced viscosity of 2.06 (mL / g) and a weight average molecular weight of 140,000.
  • the melting point (Tm) was 158 ° C.
  • the crystallization point (Tc) was 122 ° C.
  • L-lactide (Musashino Chemical Laboratory, Inc.) 47. 50 ⁇ and 0-lactide (Musashino Chemical Laboratory, Inc.) 2.5 O g was added to the flask, and the system was replaced with nitrogen.
  • the polymer A4 was produced by polymerization at 190 ° (:, 2 hours.
  • the resulting polymer A4 had a reduced viscosity of 2.07 and a weight average molecular weight of 140,000.
  • the melting point (Tm) was 148. C.
  • the crystallization point (Tc) was 131 C.
  • Equal amounts of 5% chloroform solution of polymer A1 and 5% chloroform solution of polymer B 1 were cast and cast into a film, then heated in a nitrogen atmosphere to evaporate the chloroform, and then at 20 ° CZ min.
  • the temperature was raised to 280 ° C, and the film was obtained by maintaining with 28 (TC for 3 minutes and then quenching with liquid nitrogen.
  • the obtained film had a weight average molecular weight of 140,000.
  • a melting peak with a melting point of 202 ° C was observed on the DSC chart, and its melting enthalpy was 33 J / g.
  • the ratio of melting peaks above 195 ° C (R 195 and above) was 100%, and the crystallization point was 117 ° C.
  • Example 2 The same procedure as in Example 1 was performed except that a 5% chloroform solution of polymer A4 and a 5% chloroform solution of polymer B4 were used.
  • the weight average molecular weight of the obtained film was 120,000.
  • a melting peak with a melting point of 199 ° C was observed, and the melting enthalpy was 42 J / g. R 195 or higher was 99.9%.
  • the crystallization point was 108 ° C.
  • Example 3 The same procedure as in Example 3 was performed, except that polymer A 3 and polymer B 3 were used.
  • the obtained resin had a weight average molecular weight of 120,000 and a reduced viscosity of 1.60 mL / g, and there was almost no difference from the molecular weight and reduced viscosity of Polymer A3 and Polymer B3.
  • DSC measurement was performed on this resin. As a result, a melting peak with a melting point of 202 ° C was observed on the DSC chart, and its melting enthalpy was 39 J / g. The percentage of melting peaks above 195 ° C (above R 195 ) was 99.99%.
  • the crystallization point was 110 ° c.
  • Example 2 The same operation as in Example 1 was performed, except that a solution containing 10% by weight of lactide was added to a 5% black mouth form solution of polymer A2 and a 5% black mouth form solution of polymer B2, respectively.
  • the obtained film had a weight average molecular weight of 110,000.
  • the DSC chart showed a melting peak with a melting point of 202 ° C, with a melting enthalpy of 24 J / g.
  • the ratio of melting peaks above 195 ° C (R 1 95 and above) was 90%.
  • the crystallization point was 107 ° C.
  • Example 2 After casting, the same operation as in Example 1 was performed except that heat treatment was performed at 240 ° C. The weight average molecular weight of the obtained film was 140,000.
  • the DSC chart has a melting peak with a melting point of 161 ° C and a melting peak with a melting point of 206 ° C. It was done. Rl95 or higher was 51%.
  • a film was obtained in the same manner as in Example 1 except that poly-L-lactic acid (PLLA) and poly-D-lactic acid (PDLA) shown below were used. DSC measurement was performed on the obtained film. As a result, a melting peak with a melting point of 173 ° C and a melting peak with a melting point of 220 ° C were observed. R 195 or higher was 40%.
  • PLLA poly-L-lactic acid
  • PDLA poly-D-lactic acid
  • PLLA L-lactic acid unit 99.5 mol%, D-lactic acid unit 0.5 mol%, reduced viscosity 2.7 OmL / g, weight average molecular weight 250,000, melting point (Tm) 166 ° C, crystallization point (Tc) 125 ° C.
  • PDLA D-lactic acid unit 99.3 mol%, L-lactic acid unit 0.7 mol%, viscosity 2.80 mL / g, weight average molecular weight 260,000, melting point (Tm) 168 ° C, crystallization point (Tc) 1 22 ° C.
  • L-lactide (Musashino Chemical Laboratory Co., Ltd.) 1. 25 g and D-lactide (Musashino Chemical Laboratory Co., Ltd.) 48. 75 g were added to the flask, and the system was purged with nitrogen.
  • As a catalyst 25 mg of tin octylate was added, and polymerization was carried out at 190 ° C. for 2 hours to obtain a polymer.
  • This polymer was washed with an acetone solution of 7% 5N hydrochloric acid to remove the catalyst, and polymer B6 was obtained.
  • the polymer B 6 obtained had a reduced viscosity of 2.71 (mL / g) and a weight average molecular weight of 200,000.
  • the melting point (Tm) was 159 ° C.
  • the crystallization point (Tc) was 132 ° C.
  • L-lactide (Musashino Chemical Laboratory Co., Ltd.) 5 O g was added to the flask, and the system was purged with nitrogen. Then, 0.1 mg of stearyl alcohol and 5 mg of tin octylate as a catalyst were added, and polymerized at 190 ° C for 2 hours. To produce polymer A5.
  • the obtained polymer A5 had a reduced viscosity of 2.92 (mL / g) and a weight average molecular weight of 190,000.
  • the melting point (Tm) is 168. C.
  • the crystallization point (Tc) was 122 ° C.
  • L-lactide (Musashino Chemical Laboratory Co., Ltd.) 5 O g was added to the flask, and the system was purged with nitrogen. Then 0.1 g of stearyl alcohol and 5 mg of tin octylate as a catalyst were added, and the polymerization was carried out for 190 ⁇ for 2 hours. To produce a polymer. This polymer was washed with an acetone solution of 7% 5N hydrochloric acid to remove the catalyst, and polymer A6 was obtained. The resulting polymer A6 has a reduced viscosity of 2.65 (mL / g) and a weight average molecular weight. It was 200,000. The melting point (Tm) was 176 ° C. The crystallization point (Tc) was 139 ° C.
  • the resulting polymer D1 had a reduced viscosity of 2.48 (mL / g) and a weight average molecular weight of 170,000.
  • the melting point (Tm) was 158 ° C.
  • D-lactide (Musashino Chemical Laboratory Co., Ltd.) 50 g was added to the flask, the inside of the system was purged with nitrogen, 0.1 g of stearyl alcohol, and 5 mg of tin octylate as a catalyst were added, and polymerized at 190 ° C for 2 hours. To produce a polymer. This polymer was washed with a 7% 5N hydrochloric acid acetone solution to remove the catalyst, and polymer C1 was obtained. The resulting polymer C 1 had a reduced viscosity of 2.8 OmL / g and a weight average molecular weight of 220,000. The melting point (Tm) was 168 ° C. The crystallization point (Tc) was 122 ° C.
  • Equal amounts of 5% black mouth form solution of polymer B5 and 5% black mouth form solution of polymer A5 are cast to form a film, and then heated in a nitrogen atmosphere to evaporate the chloroform, and then in 20 minutes. The temperature was raised to 280 ° C, maintained at 280 ° C for 3 minutes, and then quenched with liquid nitrogen to obtain a film.
  • the weight average molecular weight of the obtained film was 190,000. DSC measurement was performed on this film. As a result, a melting angle peak of melting point 211 was observed on the DSC chart, and its melting enthalpy was 51 JZg. Melting peak of 140 to 180 ° C was not observed, the percentage of more melting peaks 205T (R 2. 5 above) was 1 100%. The crystallization point was 99 ° C. Figure 2 shows this DSC chart.
  • Example 8> Equal amounts of Polymer B 6 and Polymer A 6 were added to the flask. After purging with nitrogen, the temperature was raised to 260 and melt blended at 260 ° C for 3 minutes.
  • the obtained resin had a weight average molecular weight of 160,000 and a reduced viscosity of 2.65 mL / g.
  • Example 8 The same operation as in Example 8 was performed except that heat treatment was performed at 280 ° C.
  • the obtained resin had a weight average molecular weight of 160,000 and a reduced viscosity of 2.42 mLZg.
  • Equal amounts of Polymer C 1 and Polymer D 1 were added to the flask, replaced with nitrogen, heated to 260 ° C., and melt blended at 260 C for 3 minutes.
  • the resulting resin has a weight average molecular weight of 150,000 and a reduced viscosity of 2.35 mL / g.
  • Example 2 After casting, the same operation as in Example 1 was performed except that heat treatment was performed at 240 ° C. The weight average molecular weight of the obtained film was 190,000. On the DSC chart, a peak derived from the homocrystal and a peak derived from the stereocomplex crystal were observed. R 205 or higher was 39%.
  • a film was obtained in the same manner as in Example 1 except that poly-L-lactic acid (PLLA) and poly-D-lactic acid (PDLA) shown below were used. DSC measurement was performed on the obtained film. As a result, a melting peak with a melting point of 173 ° C and a melting peak with a melting point of 220 ° C were observed. R 2 . More than 5 was 40%.
  • PLLA poly-L-lactic acid
  • PDLA poly-D-lactic acid
  • PLLA L—lactic acid unit 99.5 mol%, D—lactic acid unit 0.5 mol%, reduced viscosity 2. 70 mLZg, weight average molecular weight 250,000, melting point (Tm) 166 ° C, crystallization point (Tc) 125 ° C.
  • PDLA D—lactic acid unit 99.3 mol%, L monolactic acid unit 0.7 mol%, viscosity 2.8 OmL / g, weight average molecular weight 260,000, melting point (Tm) 168 ° C, crystallization point (Tc) 122 ° (.
  • Equal amounts of Polymer A 7 and Polymer B 7 were added to the flask, and after nitrogen substitution, the temperature was raised to 280 ° C. and melt blended at 280 ° C. for 3 minutes.
  • the weight average molecular weight of the obtained resin was 110,000, and the reduced viscosity was 1.46 mLZg. There was almost no difference from the molecular weight and reduced viscosity of polymer A7 and polymer B7.
  • DSC measurement was performed on this resin. As a result, a fast melting angle peak with a melting point of 207 ° C was observed on the DSC chart, and its melting enthalpy was 40 J / g. The melting peak at 140 to 180 ° C was not observed, and the ratio of the melting peak at 195 ° C or higher (R 195 or higher) was 100%.
  • the crystallization point was 1 12 ° C.
  • the resulting molded product has an HDT of 9 o ° c.
  • TMS Tetramethylsilane
  • peak (a) (around 170.1-1 70. 3MHz) is homo-sequence (LLLLLL or DDDDDD)
  • peak (b) (around 170.0-169.8 MHz) belongs to the racemic chain (LLLDDD), and the average chain length was calculated from the integrated value of these peaks by the following formula.
  • the measurement was performed by increasing the temperature of sample 1 Omg from room temperature to 250 ° C at a rate of 10 ° C / min in a nitrogen atmosphere, allowing to cool for 20 minutes, and then increasing the temperature to 250 ° C again at 10 ° C Zmin.
  • the method was performed.
  • the homocrystal melting temperature (Tmh), the homocrystal melting heat (AHmh), the stereocomplex crystal melting temperature (Tms), and the stereocomplex crystal melting heat (AHms) were measured.
  • the crystallization temperature (Tc) was determined.
  • the ratio of the melting peak at 200 ° C or higher was calculated from the melting peak area at 200 ° C or higher (high temperature) and the melting peak area at 140 to 180 ° C (low temperature) by the following formula.
  • the degree of crystallinity was determined as follows.
  • xc (SC) (3 ⁇ 4) 1 OOx [(AHms / AHms 0) / (AHmh / AHmhOIAHms / AHms 0)]
  • the optical purity was determined from the composition ratio of L-lactic acid and D-lactic acid, which constitutes poly-l-lactic acid and poly-l-lactic acid. Add 5 M sodium hydroxide 5 ml and isopropanol 2.5 ml to 1 g of sample,
  • the detection peak area of L-lactic acid and D-lactic acid at 54 nm was measured, and the weight ratio [L] (%) of L-lactic acid constituting the polylactic acid polymer and the weight ratio [D] ( %) And optical purity (%) were calculated by the following formula.
  • a pump Shimadzu LC-1 6A
  • UV detector Shimadzu SP D-6 AV
  • column SUM I CH I RAL OA-5000 (Sumiichi Analytical Center Co., Ltd.) ImM copper sulfate aqueous solution was used as the eluent, and the flow rate was 1.
  • OmlX min measured at 40 ° C.
  • the polylactic acid block copolymer A 8 weight average molecular weight (Mw), polydispersity (Mw / Mn), the Chiya one bets measured 3 C-NMR measurement of average chain length v is shown in FIG. 3) . These results are shown in Table 5. (Production Example 20) Preparation of polylactic acid block copolymer B 8
  • Polylactic acid block copolymer A9 was obtained in the same manner as in Production Example 19 except that poly (L) monolactic acid: poly (mono) D-lactic acid was mixed at a ratio of 90:10. Each characteristic of this copolymer was evaluated in the same manner as in Production Example 19. These results are shown in Table 5.
  • a polylactic acid block copolymer B9 was obtained in the same manner as in Production Example 20 except that poly-D-lactic acid: poly-mono-L mono-lactic acid was mixed at a ratio of 90:10. Each characteristic of this copolymer was evaluated in the same manner as in Production Example 20. These results are shown in Table 5.
  • Crystallization temperature (Tc), homocrystal melting temperature (Tmh), steo-reocomplex crystal melting temperature (Tms), homocrystal melting heat (AHmh), stereocomplex crystal melting heat (AHms) of the resulting stereocomplex polylactic acid ) was measured. These results are shown in Table 6. Also, melting peak ratio of 200 ° C or higher (R 200 or higher), total crystallinity (xc (total)), stereocomplex crystal content (xc
  • PLLA Poly-L-Lactic acid
  • PDLA Poly-D-lactic acid
  • PLLA weight average molecular weight 110,000, polydispersity (Mw / Mn) 2. 66, melting point (Tm) 165 ° C.
  • PDLA weight average molecular weight 100,000, polydispersity (Mw / Mn) 2.49, melting point (Tm) 166.
  • Production example 19 A8 80 20 100000 2.63 100 176 211 41.4 16.6 28.63 ⁇ 4 323 ⁇ 4 36% 21.5 Production example 21 A9 90 10 119000 2.73 117 178 209 58.5 17.7 23.23 ⁇ 4 413 ⁇ 4 303 ⁇ 4 28.2 Production example 20 B8 20 80 87000 2.36 106 167 210 40.9 33 44.73 ⁇ 4 43% 543 ⁇ 4 19.8 Production Example 22 B9 10 90 93000 2.26 119 171 201 48.5 11.5 19.23 ⁇ 4 32% 253 ⁇ 4 12.7
  • Example 14 A8 B8 50/50 89000 2.35 97 165 205 8.5 37.2 81.4 30 86 16.0
  • Example 16 A9 ⁇ 9 50/50 106000 2.41 105 167 207 7.3 29.5 80.2 24 85 18.8 Comparative Example 6
  • PLLA PDLA 50/50 107000 2.53 106 167 207 24.6 19.6 44.3 26 53 48.8
  • Example 15 A8 ⁇ 8 50/50 81000 2.07 99 168 212 0.8 49.8 98.4 35 99 22.3
  • Example 17 A9 ⁇ 9 50/50 86000 2.04 102 170 213 2.6 57.2 95.7 42 97 24.2
  • Example 18 A9 ⁇ 9 50/50 85000 1.90 103 170 212 2.3 47.0 95.3 34 97 18.3 Comparative Example 7 PLLA PDLA 50/50 85000 2.17 113 169 214 31.3
  • polylactic acid is provided that is excellent in mechanical strength, heat resistance, and thermal stability and excellent in transparency, safety, and biodegradability. Therefore, such polylactic acid is expected to be used for engineering applications such as food, packaging, automobiles and home appliances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明の目的は、ステレオコンプレックス結晶を含有し、成形加工性に優れ、高分子量で、高結晶性で、高融点のポリ乳酸およびその製造方法を提供することにある。また、本発明の他の目的は、該ポリ乳酸の組成物、成形品を提供することにある。本発明は、重量平均分子量が8~50万で、示差走査熱量計(DSC)測定において、昇温過程における融解ピークのうち、195℃以上の融解ピークの割合が80%以上であるポリ乳酸およびその製造方法である。

Description

明 細 書 ポリ乳酸およびその製造方法 技術分野
• 本発明はポリ乳酸およびその製造方法に関する。 また、 本発明はポリ乳酸を含 有する組成物に関する。 さらに本発明はポリ乳酸からなる成形体に関する。 背景技術
近年、 地球環境保護の目的から、 自然環境下で分解される生分解性ポリマーが 注目され、 世界中で研究されている。 生分解性ポリマ一として、 ポリヒドロキシ プチレート、 ポリ力プロラクトン、 脂肪族ポリエステルやポリ乳酸が知られてい る。
これらの中でポリ乳酸は、 その原料である乳酸あるいはラクチドが、 天然物か ら製造することが可能であり、 単なる生分解性ポリマーとしてではなく、 汎用性 ポリマーとしての利用も検討されつつある。
ポリ乳酸は、 透明性が高く、 強靭であるが、 水の存在下では容易に加水分解さ れ、 さらに廃棄後には環境を汚染することなく分解するので、 環境負荷の少ない 樹脂である。
ポリ し酸の融点はおよそ 1 7 0 °Cであるが、 汎用ポリマーとして用いるには、 十分であるとは言い難く、 耐熱性の向上が求められている。
一方で、 L一乳酸単位のみからなるポリ一 L一乳酸 (P L L A) と D—乳酸単 位のみからなるポリ一 D—乳酸 (P D L A) を、 溶液あるいは溶融状態で混合す ることにより、 ステレオコンプレックスポリ乳酸が形成されることが知られてい る (特許文献 1および非特 文献 1参照)。 このステレオコンプレックスポリ乳 酸は P L L Aや P D LAに比べて、 高融点、 高結晶性を示すことが発見されてい る。
しかし、 ステレオコンプレックスポリ乳酸を製造する際に、 P L L Aおよび P D L Aの分子量が 1 0万以上であると、 ステレオコンプレックスポリ乳酸が得ら れにくいという欠点がある。 一方、 成形体としての実用的な強度を有するために は、 分子量 1 0万以上であることが必要である。 また、 溶液ブレンドにおいて、 1 0万以上の高分子量の P L L Aおよび P D L Aからステレオコンプレックスの 形成が試みられているが、 溶液状態で長期間にわたって保持する必要があり、 生 産性に問題があった。
また、 L一乳酸単位を 7 0〜 9 5モル%有する分子量 2 0万程度の非結晶性ポ リマーと D—乳酸単位を 7 0〜9 5モル%有する分子量 2 0万程度の非結晶性ポ リマ一とを溶融ブレンドしステレオコンプレックスを製造する方法も開示されて いる (特許文献 2参照)。 しかしその融点は 1 9 4 °C程度であり、 耐熱性に改良 の余地がある。
以上のように、 光学純度が 1 0 0 %に近いポリ一 L—乳酸とポリ一 D—乳酸を 用いて高分子量のステレオコンプレックスポリ乳酸を製造する方法は生産性に問 題がある。 一方、 光学純度の 7 0〜 9 5モル%程度の非結晶性ポリ一 L一乳酸と 非結晶性ポリ一 D—乳酸を用いると、 生産性には支障がないものの、 高融点のス テレオコンプレックスポリ乳酸が得られないという問題点がある。
(特許文献 1 ) 特開昭 6 3— 2 4 1 0 2 4号公報
(特許文献 2 ) 特開 2 0 0 0 - 1 7 1 6 3号公報
(非特許文献 1 ) Macromolecules, 24, 5651 (1991) 発明の開示
本発明の目的は、 ステレオコンプレックス結晶を含有し、 成形加工性に優れ、 高分子量で、 高結晶性で、 高融点のポリ乳酸およびその製造方法を提供すること にある。 また、 本発明の他の目的は、 該ポリ乳酸の組成物、 成形品を提供するこ とにある。
本発明者らは、 主として L一乳酸単位からなる特定の結晶性ポリマーと、 主と して D—乳酸単位からなる特定の結晶性ポリマーとを、 特定の重量比で共存させ、 従来にない高温で熱処理することにより、 ステレオコンプレックス結晶を含有し、 高分子量で、 高結晶性で、 高融点のポリ乳酸が得られることを見出し、 本発明を 完成した。
すなわち本発明は、 重量平均分子量が 8〜 50万で、 示差走査熱量計 (DS C) 測定において、 昇温過程における融解ピークのうち、 195°C以上の融解ピ —クの割合が 80%以上であるポリ乳酸である。
また本発明は、 (1) L一乳酸単位 90〜; L 00モル%と、 D—乳酸単位およ び Zまたは乳酸以外の共重合成分単位 0〜 10モル%とにより構成され、 融点が 140〜 180 °Cであり、 重量平均分子量が 10万〜 50万の結晶性ポリマー (A) と、 D—乳酸単位 90〜99モル%と、 L一乳酸単位および Zまたは乳酸 以外の共重合成分単位 1〜10モル%とにより構成され、 融点が 140~ 17 0°Cであり、 重量平均分子量が 10万〜 50万の結晶性ポリマー (B— 1) とを、 重量比 (A) Z (B— 1) が 10 90〜90Z10の範囲で共存させるか、
(2) D—乳酸単位 90〜: L 00モル%と、 L一乳酸単位および Zまたは乳酸 以外の共重合成分単位 0〜10モル%とにより構成され、 融点が 140〜18 0°Cであり、 重量平均分子量が 10万〜 50万の結晶性ポリマ一 (B) と、 L— 乳酸単位 90〜99モル%と、 D—乳酸単位および Zまたは乳酸以外の共重合成 分単位 1〜 10モル%とにより構成され、 融点が 140〜 170でであり、 重量 平均分子量が 10万〜 50万の結晶性ポリマー (A— 1) とを、 重量比 (A— 1) / (B) が 10Z90〜90Z10の範囲で共存させ、 245〜300°Cで 熱処理することを特徴とするポリ乳酸の製造方法である。
また本発明は、 ステレオコンプレックス結晶の含有率が 80〜100%である ポリ乳酸を製造する方法であつて、
(i) L一乳酸ブロック (LB) と D—乳酸ブロック (DB) とからなり、 DBZ LB = 40ノ 60〜3Z97. 5 (重量比) であり、 重量平均分子量が 8万〜 3 0万であり、 各ブロックの平均連鎖長が 5〜40であるポリ乳酸ブロック共重合 体 (A) と、
(ii) L—乳酸ブロック (LB) と D—乳酸ブロック (DB) とからなり、 LB/ DB = 40 60〜3/97. 5 (重量比) であり、 重量平均分子量が 8万〜 3 0万であり、 各ブロックの平均連鎖長が 5〜 40であるポリ乳酸プロック共重合 体 (B) とを、
(iii) 溶融混合または溶液混合することからなるステレオコンプレックスポリ乳 酸の製造方法である。
また本発明は、 前記ポリ乳酸からなる成形体を包含する。
さらに本発明は、 前記ポリ乳酸およびフイラ一を含有し、 前者/後者 (重量 比) =98Ζ2〜1/99の組成物および該組成物からなる成形体を包含する。 発明の効果
本発明のポリ乳酸は、 高分子量で、 成形加工性に優れ、 耐熱性に優れる。 本発 明の製造方法によれば、 該ポリ乳酸を簡便かつ低コストで製造することができる。 本発明のポリ乳酸およびフィラーを含有する組成物は、 生分解性、 機械強度、 耐 熱性に優れる。 本発明の成形体は、 生分解性、 機械強度、 耐熱性に優れる。 図面の簡単な説明
図 1 実施例 1で得られたポリ乳酸の D S Cチャート図である。
m 2 実施例 7で得られたポリ乳酸の D S Cチヤ一ト図である。
図 3 製造例 19で得られたポリ乳酸の 13C— NMR測定のチャートである。 符号の説明
1 ピーク (a) (170. 1 - 170. 3MHz辺り)
2 ピーク (b) (170. 0- 169. 8MHz辺り) 発明を実施するための最良の形態
以下、 本発明について詳細に説明する。
本発明のポリ乳酸は、 重量平均分子量が 8〜 50万で、 示差走査熱量計 (DS C) 測定において、 昇温過程における融解ピークのうち、 195°C以上の融解ピ ークの割合が 80%以上である。 本発明のポリ乳酸の重量平均分子量は、 好ましくは 10万〜 30万である。 重 量平均分子量は溶離液にクロ口ホルムを用いたゲルパ一ミエーシヨンクロマトグ ラフィー(GPC)測定による標準ポリスチレン換算の重量平均分子量値である。 本発明のポリ乳酸は、 示差走査熱量計 (DSC) 測定において、 昇温過程にお ける融解ピークのうち、 195 °C以上の融解ピークの割合が、 好ましくは 90% 以上、 さらに好ましくは 95%以上である。
本発明のポリ乳酸には、 第一の態様であるポリ乳酸 (I) と、 第二の態様であ るポリ乳酸 (I I) がある。
第一の態様
くポリ乳酸 (I) >
本発明のポリ乳酸 (I) は、 下記式に示す、 L一乳酸単位、 D—乳酸単位を基 本成分とする。
Figure imgf000006_0001
ポリ乳酸 (I) の重量平均分子量は、 好ましくは 10万〜 50万である。 より 好ましくは 10万〜 30万である。 重量平均分子量は溶離液にクロ口ホルムを用 いたゲリレパ一ミエ一シヨンクロマトグラフィ一( G P C )測定による標準ポリスチ レン換算の重量平均分子量値である。
ポリ乳酸'(I) は、 示差走査熱量計 (DSC) 測定において、 昇温過程におけ る融解ピークのうち、 195°C以上の融解ピークの割合が 80%以上、 好ましく は 90%以上、 さらに好ましくは 95%以上である。
融点は、 195〜250°Cの範囲、 より好ましくは 200〜220°Cの範囲で ある。 融解ェンタルピーは、 20 JZg以上、 好ましくは 30 J/g以上である。 具体的には、 示差走査熱量計 (DSC) 測定において、 昇温過程における融解ピ ークのうち、 195 °C以上の融解ピークの割合が 90 %以上であり、 融点が 19 5〜250°Cの範囲にあり、 S解ェンタルピ一が 20 JZg以上であることが好 ましい。
ポリ乳酸 (I) は、 (1) ポリ乳酸単位 (A) および (B— 1) からなり、 重 量比 (A) Z (B— 1) が 10/90〜90 10の範囲にあることが好ましい。 またポリ乳酸 (I) は、 (2) ポリ乳酸単位 (B) およびポリ乳酸単位 (A— 1) からなり、 重量比 (A— 1) / (B) が 10Z90〜90/10の範囲にあ ることが好ましい。
ポリ乳酸単位 (A) は、 L一乳酸単位 90-100モル%と、 D—乳酸単位お よび Zまたは乳酸以外の共重合成分単位 0〜10モル%とにより構成される。 ポ リ乳酸単位 (A) には、 ポリ乳酸単位 (A- 1) およびポリ乳酸単位 (A-2) が包含される。 ポリ乳酸単位 (A- 1) は、 L—乳酸単位 90〜99モル%と、 D一乳酸単位および/または乳酸以外の共重合成分単位 1〜 10モル%とにより 構成される。 ポリ乳酸単位 (A— 2) は、 L一乳酸単位が 99モル%を超え 10 0モル%以下であり、 D—乳酸単位および Zまたは乳酸以外の共重合成分単位が 0モル%以上 1モル%未満である。
ポリ乳酸単位 (B) は、 D—乳酸単位 90〜; L 00モル%と、 L一乳酸単位お よび Zまたは乳酸以外の共重合成分単位 0〜10モル%とにより構成される。 ポ リ乳酸単位 (B) には、 ポリ乳酸単位 (B— 1) およびポリ乳酸単位 (B-2) が包含される。 ポリ乳酸単位 (B— 1) は、 D—乳酸単位 90〜99モル%と、 L一乳酸単位および Zまたは乳酸以外の共重合成分単位 1〜10モル%とにより 構成される。 ポリ乳酸単位 (B-2) は、 D—乳酸単位が 99モル%を超え 10 0モル%以下と、 L一乳酸単位および Zまた.は乳酸以外の共重合成分単位 0モ ル%以上 1モル%未満とにより構成される。
従って、 ポリ乳酸単位 (A— 1) およびポリ乳酸単位 (B— 1) からなり、 重 量比 (A— 1) / (B— 1) 0/90-90/10, 40Z60〜60Z4 0の範囲にあるポリ乳酸が好ましい (組合せ 1)。 重量比 (Α— 1) / (Β— 1) は、 より好ましくは 40/60〜60/40である。
また、 ポリ乳酸単位 (Α— 2) およびポリ乳酸単位 (Β— 1) からなり、 重量 比 (A - 2) / (B- 1) が 10/90〜 90/10、 40/60-60/40 の範囲にあるポリ乳酸が好ましい (組合せ 2)。 重量比 (A— 2) / (B— 1) は、 より好ましくは 40/60〜60ノ40である。
さらに、 ポリ乳酸単位 (B-2) およびポリ乳酸単位 (A~ l) からなり、 重 量比 (A— 1) / (B— 2) が 10/90〜90/10の範囲にあるポリ乳酸が 好ましい (組合せ 3)。 重量比 (A— 1) / (B-2) は、 より好ましくは 40 ノ 60〜60ノ 40である。
以上の組合せをまとめると以下のようになる。 組合せ 1 : 組合せ 2 : 組合せ 3 :
Figure imgf000008_0001
[L] L一乳酸単位
[D] : D -乳酸単位
以上のようにポリ乳酸 (I) の組成において、 ポリ乳酸単位 (A-2) と (B -2) との組み合わせは余外される。
これらのポリ乳酸単位における共重合成分単位は、 2個以上のエステル結合形 成可能な官能基を持つジカルボン酸、 多価アルコール、 ヒドロキシカルボン酸、 ラクトン等由来の単位およびこれら種々の構成成分からなる各種ポリエステル、 各種ポリエーテル、 各種ポリカーボネート等由来の単位を単独、 もしくは混合し て積層される。
ジカルボン酸としては、 コハク酸、 アジピン酸、 ァゼライン酸、 セバシン酸、 テレフタル酸、 イソフタル酸等が挙げられる。 多価アルコ一ルとしてはエチレン グリコ一ル、 プロピレングリコール、 ブタンジオール、 ペンタンジォ一ル、 へキ サンジオール、 オクタンジオール、 グリセリン、 ソルビタン、 ネオペンチルグリ コ一ル、 ジエチレングリコール、 トリエチレングリコール、 ポリエチレングリコ ール、 ポリプロピレングリコール等の脂肪族多価アルコール等あるいはビスフエ ノールにェチレンォキシドを付加させたものなどの芳香族多価アルコール等が挙 げられる。 ヒドロキシカルボン酸として、 グリコール酸、 ヒドロキシブチリレカル ボン酸等が挙げられる。 ラクトンとしては、 グリコリド、 ε—力プロラクトング リコリド、 ε—力プロラクトン、 jS—プロピオラクトン、 δ—ブチロラクトン、 j3—またはァープチロラクトン、 ピバロラクトン、 <5—バレロラクトン等が挙げ られる。
ポリ乳酸 (I) 中のポリ乳酸単位の重量比 (A) / (B) は、 90: 10〜1 0: 90である。 75 : 25〜25: 75であることが好ましく、 さらに好まし くは 60: 40〜40: 60である。
くポリ乳酸 (I) の製造方法 >
ポリ乳酸 (I) は、 下記式で表される L一乳酸若しくは D—乳酸単位を有する 結晶性ポリマ一 (A) および (B) により製造することができる。
Figure imgf000009_0001
ポリ乳酸 (I) は、 結晶性ポリマ一 (A) と、 結晶性ポリマー (B— 1) とを、 重量比 (A) / (B- 1) が 10Z90〜90/10の範囲で共存させ 245〜 300°Cで熱処理することにより製造することができる。
またポリ乳酸 (I) は、 結晶性ポリマー (B) と、 結晶性ポリマー (A— 1) とを、 重量比 (A— 1) Z (B) が 10Z90〜90Z10の範囲で共存させ、 245〜300°Cで熱処理することにより製造することができる。
結晶性ポリマー (A) は、 L一乳酸単位 90〜: L 00モル%と、 D—乳酸単位 および Zまたは乳酸以外の共重合成分単位 0〜 10モル%とにより構成される。 融点は 140〜180°Cである。 重量平均分子量は 10万〜 50万である。 結晶 性ポリマー (A) には、 結晶性ポリマー (A— 1) および結晶性ポリマー (A— 2) が包含される。 .
9
結晶性ポリマ一 ( A— 1〉 は、 L一乳酸単位 90-99モル%と、 D一乳酸単 位および/または乳酸以外の共重合成分単位 1〜 10モル%とにより構成される。 融点は 140〜170°C、 好ましくは 140〜160°Cである。 重量平均分子量 が 10万〜 50万、 好ましくは 10万〜 20万のポリマーである。
結晶性ポリマー (A— 2) は、 L一乳酸単位 99モル%を超え 100モル%以 下と、 D—乳酸単位および/または乳酸以外の共重合成分単位が 0モル%以上 1 モル%未満とにより構成される。 融点は 160〜180°C、 好ましくは 165〜 176でである。 重量平均分子量が 10万〜 50万、 好ましくは 10万〜 30万、 より好ましくは 15万〜 25万のポリマ一である。
結晶性ポリマー (B) は、 D—乳酸単位 90〜: L 00モル%と、 L一乳酸単位 および Zまたは乳酸以外の共重合成分単位 0〜: L 0モル%とにより構成される。 融点は 140〜18 Ot:である。 重量平均分子量は 10万〜 50万である。 結晶 性ポリマー (B) には、 結晶性ポリマー (B— 1) および結晶性ポリマ一 (B— 2) が包含される。
結晶性ポリマ一 (B— 1) は、 D—乳酸単位 90〜99モル%と、 L一乳酸単 位および zまたは乳酸以外の共重合成分単位 1〜 10モル%とにより構成される。 融点は 140〜170°C、 好ましくは 140〜 160 °Cである。 重量平均分子量 は 10万〜 50万、 好ましくは 10万〜 20万である。
結晶性ポリマ一 (B— 2) は、 D—乳酸単位 99モル%を超え 100モル%以 下と、 L一乳酸単位および/または乳酸以外の共重合成分単位 0モル%以上 1モ ル%未満とにより構成される。 融点は 160〜180°C、 好ましくは 165〜1 76°Cである。 重量平均分子量は 10万〜 50万、 好ましくは 10万〜 30万、 より好ましくは 1 5万〜 25万である。
従って、 結晶性ポリマー (A— 1) と、 結晶性ポリマ一 (B— 1) とを、 重量 比 (A— 1) (B— 1) が 90Z10〜10ノ 90の範囲で共存させ、 270 〜300°Cで熱処理することが好ましい (組合せ 1)。 重量比 (A— 1) / (B —1) は、 60ノ 40〜40/60の範囲であることがより好ましい。
また、 結晶性ポリマー (A— 2) と、 結晶性ポリマー (B— 1) とを、 重量比 (A— 2) / (B— 1) が 10/90〜90Z10の範囲で共存させ、 245〜
300°Cで熱処理することが好ましい (組合せ 2)。 重量比 (A— 2) / (B-
1) は、 40ノ 60〜60Z40の範囲であることがより好ましい。
さらに、 結晶性ポリマー (B— 2) と、 結晶性ポリマー (A— 1) とを、 重量 比 (A— 1) Z (B— 2) が 10/90〜90Z10の範囲で共存させ、 245
〜300°Cで熱処理す A A A B B Bることが好ましい (組合せ 3)。 重量比 (A— 1) / (B
-2) は、 40/60〜622 11110/40の範囲であることがより好ましい。
以上の組合せをまとめると以下のようになる。
結晶性ポリマー
組合せ 1 : 組合せ 2 : 組合せ 3 :
Figure imgf000011_0001
[L]: L一乳酸単位
[D]: D—乳酸単位
以上のように、 本発明の製造方法においては、 結晶性ポリマー (A) と (B) との組合せにおいて、 結晶性ポリマー (A— 2) と (B— 2) との組合せは除か れる。 従って以下の結晶性ポリマ一 (A) および (B) の組合せについての説明 においてもかかる組合せは除外される。
本発明に用いる結晶性ポリマー (A) および結晶性ポリマ一 (B) は、 その末 端基に各種の末端封止が施されたものを用いてもよい。 このような末端封止基と しては、 ァセチル基、 エステル基、 エーテル基、 アミド基、 ウレタン基、 などを 例示することが出来る。
結晶性ポリマー (A) および (B) は、 既知の任意のポリ乳酸の重合方法によ り製造方法することができ、 例えばラクチドの開環重合、 乳酸の脱水縮合、 およ びこれらと固相重合を組み合わせた方法などにより製造することができる。 結晶性ポリマー (A) および (B) の共重合成分は 2個以上のエステル結合形 成可能な官能基を持つジカルボン酸、 多価アルコール、 ヒドロキシカルボン酸、 ラクトン等およびこれら種々の構成成分からなる各種ポリエステル、 各種ポリェ 一テル、 各種ポリカーボネート等が挙げられる。
ジカルボン酸としては、 コハク酸、 アジピン酸、 ァゼライン酸、 セパシン酸、 テレフタル酸、 イソフタル酸等が挙げられる。 多価アルコールとしてはエチレン グリコール、 プロピレングリコール、 ブタンジオール、 ペンタンジオール、 へキ サンジォ一ル、 オクタンジオール、 グリセリン、 ソルビタン、 ネオペンチルグリ コ一ル、 ジエチレングリコール、 トリエチレングリコ一ル、 ポリエチレングリコ ール、 ポリプロピレングリコ一ル等の脂肪族多価アルコ一ル等ぁるいはビスフエ ノールにエチレンォキシドが付加させたものなどの芳香族多価アルコール等が挙 げられる。 ヒドロキシカルボン酸として、 グリコール酸、 ヒドロキシブチルカル ボン酸等が挙げられる。 ラクトンとしては、 グリコリド、 ε—力プロラクトング リコリド、 ε—力プロラクトン、 ープロピオラクトン、 δ一プチロラク卜ン、 一またはァ一プチロラクトン、 ピバロラクトン、 (5—バレロラクトン等が挙げ られる。
結晶性ポリマ一 (Α) および (Β) の重量平均分子量は溶離液にクロ口ホルム を用いたゲルパーミエ一シヨンクロマトグラフィー(G P C)測定による標準ポリ スチレン換算の重量平均分子量値である。
結晶性ポリマー (Α) および (Β) は、 樹脂の熱安定性を損ねない範囲で重合 に関わる触媒を含有していてもよい。 このような触媒としては、 各種のスズ化合 物、 アルミニウム化合物、 チタン化合物、 ジルコニウム化合物、 カルシウム化合 物、 有機酸類、 無機酸類などを挙げることができ、 さらに同時にこれらを不活性 化する安定剤を共存させていてもよい。 具体的な触媒としては、 スズ、 アルミ二 ゥム、 ジルコニウムおよびチタンの脂肪酸塩、 炭酸塩、 硫酸塩、 リン酸塩、 酸化 物、 水酸化物、 ハロゲン化物、 アルコラート、 あるいは、 それら金属そのものが 挙げられる。
特に具体的には、 ォクチル酸スズ、 アルミニウムァセチルァセトネート、 アル ミニゥムアルコキシド、 チタンアルコキシド、 ジルコニウムアルコキシドが挙げ られる。 本発明の製造方法における結晶性ポリマー (A) とポリマ一 (B) との共存比 は、 (A) / (B) が 1 0 Z 9 0〜9 0 / 1 0である。 (A) / (B) = 2 5 / 7 5〜7 5 / 2 5であることが好ましく、 さらに好ましくは 4 0 6 0〜6 0 Z4 0である。 一方のポリマーの重量比が 1 0未満であるかまたは、 9 0を超えると、 ホモ結晶化が優先してしまい、 ステレオコンプレックスを形成し難くなるので好 ましくない。
本発明においては、 結晶性ポリマー (A) と (B) とを上記比率の範囲で共存 させ 2 4 5〜 3 0 0 °Cで熱処理することを特徴とする。
熱処理に際して、 ポリマ一 (A) と (B) とを混合することが好ましい。 混合 は、 それらが熱処理したときに均一に混合される方法であればいかなる方法をと ることもできる。 そのような方法として、 結晶性ポリマー (A) と (B) とを、 溶媒の存在下で混合した後、 再沈殿して混合物を得る方法や、 加熱により溶媒を 除去して混合物を得る方法が例示できる。 この場合には結晶性ポリマー (A) と (B) とを別々に溶媒に溶解した溶液を調製し両者を混合するか、 結晶性ポリマ — (A) と (B) とを一緒に溶媒に溶解させ混合することにより行うことが好ま しい。
溶媒は、 結晶性ポリマー (A) および (B) カ溶解するものであれば、 特に限 定されるものではないが、 例えば、 クロ口ホルム、 塩化メチレン、 ジクロロエタ ン、 テトラクロロェタン、 フエノール、 テトラヒドロフラン、 N—メチルピロリ ドン、 N, N—ジメチルホルムアミド、 プチロラクトン、 トリオキサン、 へキサ フルォロイソプロパノ一ル等の単独あるいは 2種以上混合したものが好ましい。 溶媒が存在しても、 加熱することにより、 溶媒が蒸発し、 無溶媒の状態で熱処 理することができる。 溶媒の蒸発後 (熱処理) の昇温速度は、 長時間、 熱処理を すると分解する可能性があるので短時間で行うのが好ましいが特に限定されるも のではない。
また本発明においては、 結晶性ポリマー (A) および (B) を溶媒の非存在下 で混合することにより行うことができる。 即ち、 結晶性ポリマー (A) および (B) をあらかじめ粉体化あるいはチップ化したものを所定量混合した後に溶融 し、 あるいは溶融後、 混練して混合する方法、 結晶性ポリマ一 (A〉 あるいは (B) いずれか一方を溶融させた後に残る一方を加えて混線し混合する方法を採 用することができる。
従って本発明は、 結晶性ポリマーを溶媒の存在下で混合するか、 または非存在 下で混合し、 熱処理するポリ乳酸の製造方法を包含する。
ここで、 上記において粉体あるいはチップの大きさは、 結晶性ポリマー (A) および (B) の粉体あるいはチップが均一に混合されれば特に限定されるもので はないが、 3 mm以下が好ましく、 さらには 1から 0 . 2 5 mmのサイズである ことが好ましい。 溶 ¾混合する場合、 大きさに関係なく、 ステレオコンプレック ス結晶を形成するが、 粉体あるいはチップを均一に混合した後に単に溶融する場 合、 粉体あるいはチップの直径が 3 mm以上の大きさになると、 ホモ結晶も析出 するので好ましくない。
本発明の製造方法において、 結晶性ポリマー (A) および (B) を混合するた めに用いる混合装置としては、 溶融によって混合する場合にはバッチ式の攪拌翼 がついた反応器、 連続式の反応器のほか、 二軸あるいは一軸のェクストルーダー、 粉体で混合する場合にはタンブラ一式の粉体混合器、 連続式の粉体混合器、 各種 のミリング装置などを好適に用いることができる。
本発明の製造方法における熱処理とは、 結晶性ポリマー (A) および結晶性ポ リマー (B) を上記重量比で共存させ 2 4 5 °C〜 3 0 0 °Cの温度領域で維持する ことをいう。 熱処理の温度は好ましくは 2 7 0〜3 0 0 °C、 より好ましくは 2 8
0〜2 9 0 °Cである。 3 0 0 °Cを超えると、 分解反応を抑制するのが難しくなる ので好ましくない。 熱処理の時間は特に限定されるものではないが、 0 . 2〜6
0分、 好ましくは 1〜 2 0分である。 熱処理時の雰囲気は、 常圧の不活性雰囲気 下、 または減圧のいずれも適用可能である。
熱処理に用いる装置、 方法としては、 雰囲気調整を行いながら加熱できる装置、 方法であれば用いることができるが、 たとえば、 バッチ式の反応器、 連続式の反 応器、 二軸あるいは一軸のェクストル一ダ一など、 またはプレス機、 流管式の押 し出し機を用いて、 成型しながら処理する方法をとることが出来る。 第二の態様
第二の態様における発明の目的は、 ステレオコンプレックス結晶を含有し、 成 形加工性に優れ、 高分子量で、 高結晶性で、 高融点のポリ乳酸およびその製造方 法を提供することにある。 本発明者らは、 主として L—乳酸セグメントからなる 特定のポリ乳酸ブロック共重合体 (A) と、 主として D—乳酸セグメントからな る特定のポリ乳酸ブロック共重合体 (B) とを溶融混合または溶液混合すること により、 高分子量で、 ステレオコンプレックス結晶の含有率が高く、 高融点のポ リ乳酸が得られることを見い出し、 本発明を完成した。
本発明は、 示差走査熱量計 (DSC) 測定において、 昇温過程における融解ピ ークのうち、 195 °C以上の融解ピークの割合が 80%以上であるポリ乳酸であ つて、
(1) L一季し酸プロックと D—乳酸プロックとから構成されるポリ乳酸プロック 共重合体からなり、
(2) 各ブロックの平均連鎖長が 5〜 40であり、
(3) L一乳酸単位 (L成分) と D—乳酸単位 (D成分) との割合は、 D成分 Z L成分 =20/80〜80ノ 20 (重量比) であり、
(4) 重量平均分子量は 8万〜 30万であり、
(5) ステレオコンプレックス結晶の含有率が 80〜100%であるポリ乳酸 (I I) を包含する。
ポリ乳酸ブロック共重合体は、 L—乳酸ブロックと D—乳酸ブロックが配置さ れたブロック共重合体である。 L—乳酸ブロックと D—乳酸ブロックは、 下記式 に示す、 L一乳酸単位ないし D—乳酸単位を基本単位とする。
Figure imgf000015_0001
ポリ乳酸ブロック共重合体の L一乳酸プロックおよび D—乳酸プロックの平均 連鎖長は 5〜40、 好ましくは 10〜30である。 平均連鎖長が 5未満の場合に は結晶性力 S著しく低下し、 使用上、 十分な耐熱性や力学強度が得られず、 40を 超える場合には、 ステレオコンプレックス結晶化率が低下するので好ましくない。 ポリ乳酸 (I I) は、 その中に含まれる上記式で表わされる L一乳酸単位 (L 成分) と D—乳酸単位 (D成分) の割合は L成分 ZD成分 (重量比) =20/8 0-80/20の範囲で任意に設定することが出来るが、 好ましくは 25Z75 〜75Z25、 より好ましくは 40/60〜60Z40である。 この比率の範囲 であれば、 高融点となるが、 この比率が 50Z50からずれるほどステレオコン プレックスポリ乳酸の結晶性が損なわれる。
ポリ乳酸 (I I) の重量平均分子量は 8万〜 30万、 更に好ましくは 9万〜 2 5万、 更に好ましくは 10万〜 20万である。 分子量が低い場合には、 良好な強 度の成型品を得ることが出来ず、 分子量が高い場合には成形性などが著しく低下 するので好ましくない。 分子量分布 (Mw/Mn) は、 1. 5〜3. 0の範囲が 好ましい。
ポリ乳酸 (I I) は、 ステレオコンプレックス結晶の含有率が 80~100%、 好ましくは 90〜100%である。
ポリ乳酸 (I I) は、 示差走査熱量計 (DSC) 測定において、 昇温過程にお ける融解ピークのうち、 200°C以上の融解ピークの割合が好ましくは 80%以 上、 より好ましくは 90%以上、 さらに好ましくは 95%以上である。 融点は、 200〜250°Cの範囲、 より好ましくは 200〜220°Cの範囲である。 融解 ェンタルピーは、 20JZg以上、 好ましくは 30 JZg以上である。 具体的に は、 示差走査熱量計 (DSC) 測定において、 昇温過程における融解ピークのう ち、 200°C以上の融解ピークの割合が 90%以上であり、 融点が 200〜25 0°Cの範囲にあり、 融解ェンタルピーが 20 JZg以上であることが好ましい。 ポリ乳酸 (I I) は、 上記式で表わされる L一乳酸単位と D—乳酸単位以外の 共重合成分を 10重量%以下の割合で含有していてもよい。 この共重合成分は、 前述の 2個以上のエステル結合形成可能な官能基を持つジカルボン酸、 多価アル コール、 ヒドロキシカルボン酸、 ラクトン等である。 くポリ乳酸 ( I I ) の製造方法〉
ポリ乳酸 (I I) は、
(i) L—乳酸ブロック (LB) と D—乳酸ブロック (DB) とからなり、 DBZ LB = 40/60〜3ノ97. 5 (重量比) であり、 重量平均分子量が 8万〜 3 0万であり、 各ブロックの平均連鎖長が 5〜40であるポリ乳酸ブロック共重合 体 (A) と、
(ii) L一乳酸ブロック (LB) と D—乳酸ブロック (DB) とからなり、 LBノ DB = 40ノ60〜3/97. 5 (重量比) であり、 重量平均分子量が 8万〜 3 0万であり、 各プロックの平均連鎖長が 5 ~ 40であるポリ乳酸プロック共重合 体 (B) とを、
(i i i) 溶融混合または溶液混合することにより製造することができる。
(ポリ乳酸ブロック共重合体 (A) および (B))
ポリ乳酸ブロック共重合体 (A) の L—乳酸ブロック (LB) と D—乳酸プロ ック (DB) との割合は、 DB/LB (重量比) =40Z60〜3Z97. 5で ある。 好ましくは 35 Z 65〜 5 Z 95、 より好ましくは 30/70-5/95, さらに好ましくは 15Z85〜5ノ 95である。 (DB/LB) く (3/97) の場合、 ステレオコンプレックス結晶生成率が低くなる場合もあるので好ましく ない。 40Z60く (DBZLB) く 60 Z40の場合にはポリ乳酸ブロック共 重合体の分子量が小さく、 耐熱性に優れた高分子量のステレオコンプレックスポ リ乳酸が得られない場合があるので好ましくない。
ポリ乳酸ブロック共重合体 (B) の L一乳酸ブロック (LB) と D—乳酸プロ ック (DB) との割合は、 LB/DB (重量比) =40Z60〜3Z97. 5で ある。 好ましくは 35Z65〜5 95、 より好ましくは 30Z70〜 5Z95、 さらに好ましくは 15Z85〜5 95である。 (LBZDB) く (3Z97) の場合、 ステレオコンプレックス結晶生成率が低くなる場合もあるので好ましく ない。 40Z60く (LB/DB) く 60Z40の場合にはポリ乳酸ブロック共 重合体の分子量が小さく、 耐熱性に優れた高分子量のステレオコンプレックスポ リ乳酸が得られない場合があるので好ましくない。 ポリ乳酸ブロック共重合体 (A) および (B) の重量平均分子量は、 共に、 8 万〜 30万、 好ましくは 9万〜 25万、 より好ましくは 10万〜 20万である。 分子量分布 (Mw/Mn) は、 1. 5〜3. 0の範囲が好ましい。
ポリ乳酸ブロック共重合体 (A) および (B) の L一乳酸ブロックおよび D— 乳酸プロックの平均連鎖長は 5〜40、 好ましくは 10〜 30である。 平均連鎖 長が 5未満の場合には結晶性が著しく低下し、 使用上十分な耐熱性や力学強度が 得られず、 40を超える場合には、 ステレオコンプレックス結晶化率が低下する ので好ましくない。
また、 ポリ乳酸ブロック共重合体 (A) および (B) は、 共に、 示差走査熱量 計 (DS C) 測定において 200°C以上の融解ピークと 180°C以下の融解ピ一 クの 2つの融解ピークを有し、 かつ、 200°C以上の融解ピークの割合が全融解 ピークの 10〜 50%であることが好ましい。
ポリ乳酸ブロック共重合体 (A) と (B) との重量比は、 (A) / (B) =9 0/10〜10Z90であることが好ましい。 (A) / (B) =75ノ 25〜2 5Z75であることがより好ましく、 さらに好ましくは 60/40〜40/60 である。
ポリ乳酸ブロック共重合体 (A) および (B) は、 その末端基に各種の末端封 止が施されたものを用いてもよい。 ヒのような末端封止基としては、 ァセチル基、 エステル基、 エーテル基、 アミド基、 ウレタン基、 などを例示することが出来る。 溶融混合は、 ポリ乳酸ブロック共重合体 (A) と (B) とを溶融状態で混合す る方法である。
溶融温度は、 ポリ乳酸ブロック共重合体 (A) と (B) が溶融する温度であれ ばよいが、 溶融混合中の分解反応を抑えるために、 溶融混合物が固まらない程度 にできるだけ温度を下げて行うことが好ましい。 従って、 ポリ乳酸ブロック共重 合体 (A) と (B) の溶融点のいずれか高い方を下限とし、 その下限値より 5 0°C、 より好ましくは 30°C, 特には 10~20°C高い温度を上限とする範囲で 溶融することが好ましい。 具体的には、 150°C〜22 O で溶融混合すること が好ましい。 溶融混合時の雰囲気は特に限定されるものではなく、 常圧および減圧のいずれ の条件下でも行なうことができる。 常圧の場合には、 窒素、 アルゴンなどの不活 性ガス流通下で行うのが好ましい。 また溶融の際に分解生成するモノマーを取り 除くためには、 減圧下で行うことが好ましい。
溶融混合の際の装置等へのポリ乳酸ブロック共重合体 (A) と (B) の投入順 序などは問わない。 従って、 2成分を同時に混合装置に投入してもよく、 例えば ポリ乳酸ブロック共重合体 (A) を溶融した後に、 ポリ乳酸ブロック共重合体 (B) を投入および混合してもよい。 この際、 各成分は、 粉末状、 顆粒状または ペレット状などのいずれの形状であってもよい。 混合には、 ミルロール、 ミキサ 一、単軸または二軸押出機、 加熱可能なバッチ式容器などを用いて加熱し混練す ればよい。
溶液混合は、 ポリ乳酸プロック共重合体 (A) および (B) を溶媒に溶かして 混合し、 その後、 溶媒を除去する方法である。
溶媒は、 ポリ乳酸ブロック共重合体 (A) および (B) が溶解するものであれ ば、 特に限定されるものではないが、 例えば、 クロ口ホルム、 塩化メチレン、 ジ クロロェタン、 テトラクロロェタン、 フエノール、 テ卜ラヒドロフラン、 N—メ チルピロリドン、 N, N—ジメチルホルムアミド、 プチロラクトン、 トリオキサ ン、 へキサフルォロイソプロパノール等の単独あるいは 2種以上混合したものが 好ましい。
溶媒の量は、 溶媒 1 0 0重量部に対し、 ポリ乳酸ブロック共重合体 (A) およ び (B) が 1〜3 0重量部、 好ましくは 1〜1 0重量部の範囲になるようにする のが好ましい。
混合は、 ポリ乳酸ブロック共重合体 (A)、 (B) をそれぞれ溶媒に溶解しそれ らを混合することにより行っても良いし、 一方を溶媒に溶解した後、 池方を加え て混合しても良い。 溶媒の除去は、 加熱、 減圧留去、 抽出またはこれらの組み合 わせにより行なうことができる。
本発明方法で得られるポリ乳酸 (I I ) は、 ステレオコンプレックス結晶の含 有率が 8 0〜 1 0 0 %、 好ましくは 9 0〜 1 0 0 %であり、 重量平均分子量は 8 万〜 30万、 更に好ましくは 9万〜 25万、 更に好ましくは 10万〜 20万であ る。
ポリ乳酸 (I I) は、 酸化防止剤、 光安定剤、 触媒安定剤、 抗菌剤、 染色剤、 滑剤、 核剤、 可塑剤等、 また、 樹脂の特性を補強するための有機物フィラー、 無 機物フイラ一等、 樹脂加工に必要な添加物を含んでいてもよい。
(ポリ乳酸ブロック共重合体 (A) の製造)
本発明方法に用いるポリ乳酸ブロック共重合体 (A) は、 重量平均分子量が 0. 5万〜 2万のポリ一 L一乳酸 (PLLA) と、 重量平均分子量が 0. 5万〜 2万 のポリ一 D—乳酸 (PDLA) とを、 PDLAZPLLA=40Z60〜3/9 7. 5 (重量比) の割合で、 溶融混合または溶液混合した後、 固化させ、 さらに 固相重合することにより製造することができる。
ポリ一 L一乳酸およびポリー D—乳酸は、 乳酸の環状二量体であるラクチドの リビング段階重合法 (Mak r omo 1. Ch em. 191, 481— 4 88 (1990)、 特開平 1一 225622号公報参照)、 特定の立体選択重合触 媒を用いたラセミ体ラクチドの直接開環重合法 (特開 2003— 64174号公 報)、 乳酸からの溶融重合法ゃラクチドの開環重合法により合成することができ る。 ポリ一 L—乳酸およびポリ一 D—乳酸の重量平均分子量は、 好ましくは 0. 5万〜 1万である。
ポリ一L一乳酸 (PLLA) とポリ一 D—乳酸 (PDLA) との重量比は、 P DLAZPLLA=40Z60〜3Z97. 5である。 好ましくは 35ノ 65〜 5/95、 より好ましくは 30/70-5/95, さらに好ましくは 15/85 〜5_/95である。
溶融混合は、 ポリ一 L一乳酸およびポリ一 D—乳酸を溶融状態で混合すること をいう。
溶融混合の温度は、 ポリ〜 L—乳酸とポリ一 D—乳酸が溶融する温度条件であ ればよいが、 溶融混合中の分解反応を抑えるために、 溶融混合物が固まらない程 度にできるだけ温度を下げて行うことが好ましい。 従って、 ポリ— L— ?L酸とポ リ—D—乳酸の溶融点を下限とし、 その下限値より 50°C、 より好ましくは 3 0°C、 特には 10~20°C高い温度を上限とする範囲で溶融することが好ましい。 具体的には、 150〜 200 °Cで溶融混合することが好ましい。
溶融混合時の雰囲気は特に限定されるものではなく、 常圧および減圧のいずれ の条件下でも行なうことができる。 常圧の場合には、 窒素、 アルゴンなどの不活 性ガス流通下で行うのが好ましい。 また溶融の際に分解生成するモノマーを取り 除くためには、 減圧下で行うことが好ましい。
溶液混合は、 ポリ一 L—乳酸およびポリー D—乳酸を溶媒に溶かして混合し、 その後、 溶媒を除去する方法である。
溶媒は、 ポリ— L—乳酸およびポリ一 D—乳酸が溶解するものであれば、 特に 限定されるものではないが、 例えば、 クロ口ホルム、 塩化メチレン、 ジクロロェ タン、 テトラクロロェタン、 フエノール、 テトラヒドロフラン、 N—メチルピロ リドン、 N, N—ジメチルホルムアミド、 プチロラクトン、 トリオキサン、 へキ サフルォロイソプロパノール等の単独あるいは 2種以上混合したものが好ましい。 溶媒の量は、 溶媒 100重量部に対し、 ポリ— L一乳酸およびポリ一 D—乳酸 が 1〜30重量部、 好ましくは 1〜10重量部の範囲になるようにするのが好ま しい。
混合は、 ポリ一 L一乳酸およびポリー D—乳酸をそれぞれ溶媒に溶解しそれら を混合することにより行っても良いし、 一方を溶媒に溶解した後、 他方を加えて 混合しても良い。 溶媒の除去は、 加熱により行なうことができる。
ポリ— L一乳酸およびポリ一 D—乳酸を溶融混合または溶液混合した後、 冷却 などにより固化し、 固相重合を行う。 固相重合は、 ガラス転移温度 (Tg) 以上 で融点 (Tm) 以下の温度、 より好ましくは Tg以上であって Tmより 10°C低 い温度、 特には Tg以上であって Tmより 50°C低い温度以下で行うことができ る。 丁^ゃ丁 は、 DSCによって測定することができる。
固相重合は、 減圧下で行うことが好ましく、 例えば、 0. 01〜20hPa、 好ましくは 0. l〜2hPaとする。 ポリ一 L一乳酸とポリ一 D—乳酸とは、 ェ ステル反応や脱水縮合反応によって化学的に結合されるため、 反応の進行に伴つ て H20が副生する。 減圧下で重合させるとこの副生水を系外に除去することが でき、 反応平衡を重合側に移行させることができる。 20hP aを上回ると、 こ のような脱水が不十分となり、 一方 0. 0 lhP aを下回ってもそれ以上の脱水 効果が得られず無駄である。 なお、 固相重合は、 窒素などの不活性ガス雰囲気下 で行うこともできる。 固相重合の時間は、 少なくとも 5時間、 好ましくは 5~ 5 0時間である。 重合度の上昇度に対応して固相重合温度を上げることが好ましい。 なお、 固相重合の装置としては特に装置に限定はないが、 濃縮乾燥装置などを使 用することができる。 また、 コニカルドライヤー、 ドラム式加熱器などを使用こ ともできる。
固相重合後に、 生成ポリマーの熱安定性向上のために末端基の封止処理を行い、 さらに、 再沈殿等による触媒と未反応のモノマ一を取り除く処理を行なうことが 好ましい。
(ポリ乳酸ブロック共重合体 (B) の製造)
ポリ乳酸ブロック共重合体 (B) は、 重量平均分子量が 0. 5万〜 2万のポリ 一 L—乳酸 (PLLA) と、 重量平均分子量が 0. 5万〜 2万のポリ— D—乳酸 (PDLA) とを、 PLLAZPDLA=40Z60〜3Z97. 5 (重量比) の割合で、 溶融混合または溶媒の存在下で混合した後、 固化させ、 さらに固相重 合し製造することができる。 ポリ乳酸ブロック共重合体 (B) は、 前述のポリ乳 酸ブロック共重合体 (A) と、 ポリ一 L一乳酸とポリ一 D—乳酸との組成比が異 なるだけで、 同一の方法により製造することができる。
ポリ乳酸ブロック共重合体 (A) および (B) は、 樹脂の熱安定性を損ねない 範囲で重合に関わる触媒を含有していてもよい。 このような触媒としては、 各種 のスズ化合物、 チタン化合物、 カルシウム化合物、 有機酸類、 無機酸類などを挙 げることができ、 さらに同時にこれらを不活性化する安定剤を共存させていても よい。
<組成物 >
本発明は、 ポリ乳酸およびフィラーを含有し、 前者/後者 (重量比) =98/ 2〜1ノ 99の組成物を包含する。 ポリ乳酸には、 ポリ乳酸 (1)、 ポリ乳酸 (I I) が包含される。 フイラ一は無機フイラ一または有機フィラーが好ましい。 無機フイラ一として、 ガラス繊維、 グラフアイト繊維、 炭素繊維、 金属繊維、 チタン酸カリウムゥイス力一、 ホウ酸アルミニウムゥイスカー、 マグネシウム系 ゥイス力一、 珪素系ゥイス力一、 ワラステナイト、 セピオライト、 ゾノライト、 エレスタダイト、 石膏繊維、 シリカ繊維、 シリカ 'アルミナ繊維、 ジルコニァ繊 維、 窒化珪素繊維、 硼素繊維、 ガラスフレーク、 非膨潤性雲母、 グラフアイト、 金属箔、 タルク、 クレイ、 マイ力、 セリサイト、 ベントナイト、 カオリン、 炭酸 マグネシウム、 硫酸バリウム、 硫酸マグネシウム、 水酸化アルミニウム、 酸化マ グネシゥム、 ハイド口タルサイト、 水酸化マグネシウム、 石膏およびドーソナイ ト等が挙げられる。
また有機フイラ一として、 天然繊維、 パラ型ァラミド繊維、 ポリアゾール繊維、 ポリアリレート、 ポリオキシ安息香酸ゥイス力一、 ポリオキシナフトイルゥイス カーおよびセル口一スゥイスカー等が挙げられる。
これらのフイラ一は、 繊維状、 板状または針状のものを用いることができる。 これらのフィラーの中で、 繊維状の無機フィラーが、好ましく、 特にガラス繊維が 好ましい。
また、 フィラーのアスペクト比は 5以上であることが好ましく、 1 0以上であ ることがより好ましい。 特に好ましいのは 1 0 0以上である。 アスペクト比とは、 繊維状フイラ一の場合は、 繊維長を繊維直径で除したもので、 板状の場合は、 長 周期方向の長さを厚さで除したものを指す。 フィラーの弾性率は、 5 0 G P a以 以上であることが好ましい。
フィラーは、 熱可塑性樹脂や熱硬ィ匕性棚旨で被覆または集束処理されていても よく、 アミノシランやエポキシシランなどのカップリング剤などで処理、 または 各種有機物で修飾処理されていてもよい。 フイラ一は一種類で用いても、 2種以 上併用しても構わない。
天然繊維は、 その単繊維としての強度が、 好ましくは 2 0 O MP a以上、 さら に好ましくは 3 0 O MP a以上である。 この範囲であれば複合体として十分な力 学物性を持ち、 さらにフィラーとして混合する量が減るために成型表面の仕上が りなども良好な結果を得ることができるからである。 天然繊維は、 その繊維の直径が 0 . 1 mから 1 mmの範囲、 好ましくは 1 mから 5 0 0 mの範囲である。 その繊維と直径の比からなるァスぺク卜比 (長 さや直径) が 5 0以上であることが好ましい。 この範囲であれば、 樹脂と繊維 との混合を良好に行うことができ、 さらに複合化によって良好な物性の成型品を 得ることができる。 より好ましくは 1 0 0〜5 0 0、 さらに好ましくは 1 0 0〜 3 0 0である。
天然繊維は、 前出の条件を満たすものであればどのようなものでも好適に用い ることができるが、 にケナフ、 竹、 亜麻、 麻、 木材パルプ、 木綿などの植物性 繊維を好適に用いることができる。 特に、 廃材から得られる木質パルプや、 排紙 から得られるパルプ、 ケナフを原料とする繊維は環境負荷が低く、 再生能力が高 いため非常に好ましい。
天然繊維は、 その形態、 強度が適切な範囲に保たれる方法であればいかなる方 法によっても製造することができる。 そのような方法としては、 (0 化学パルピ ングによる繊維化、 (Π)バイオパルビングによる繊維化、 (i i i)爆碎、 (iv)機械 的解碎などをあげることができる。
天然繊維はその表面が修飾されていてもよい。 天然繊維の表面を修飾すること によって、 樹脂と繊維の界面の強度が増し、 さらに耐久性などが増すような場合 にはさらに好ましい。 そのような修飾の方法としては、 化学的に官能基を導入す る方法、 機械的に表面を疎化、 あるいは滑化する方法、 表面修飾剤を機械的刺激 によって反応させる方法、 などを例示することができる。 天然繊維は、 単繊維で あっても繊維の集合体であってもよい。
組成物中のポリ乳酸と天然繊維との重量比は、 前者 Z後者 = 9 8/2〜l Z 9 9である。 好ましくは前者 Z後者 = 8 5Z 1 5〜4 0 6 0、 さらに好ましくは 7 0 / 3 0〜5 0 / 5 0である。
組成物は、 本発明の目的を損なわない範囲内で、 上記で列記したフィラー以外 の通常の添加剤、 例えば、 可塑剤、 酸化防止剤、 光安定剤、 紫外線吸収剤、 熱安 定剤、 滑剤、 離形剤、 帯電防止剤、 難燃剤、 発泡剤、 充填剤、 抗菌 ·抗カビ剤、 核形成剤、 染料、 顔料を含む着色剤などの 1種あるいは 2種以上を含有すること ができる。
また、 組成物に対して、 本発明の目的を損なわない範囲で、 他の熱可塑性樹脂、 熱硬化性榭脂、 軟質熱可塑性樹脂などの少なくとも一種以上をさらに添加するこ ともできる。
本発明の組成物は、 例えば次のような方法で製造される。
( i ) ポリ乳酸を加熱溶融し、 天然繊維を配合し、 均一に混合分散させる方法;
(i i) 予めポリ乳酸のフィルムを作成し、 その上に天然繊維を複数並べ、 更にそ の上にポリ乳酸のフィルムを重ねる。 この操作を繰り返して得られた積層体をポ リ乳酸の融点以上に加熱し、 複合化する方法;
(i i i) 予め賦形した天然繊維に微粒子化したポリ乳酸を付着させ、 これをポリ 乳酸の融点以上に加熱し複合化する方法;
(iv) ポリ乳酸を繊維状に加工し、 天然繊維と併せてヤーンを作り、 これに所定 の形状を与えた後、 ポリ乳酸のガラス転移温度以上に加熱し複合化する方法;な どがあげられる。
このようにして得られた本発明の生分解性複合体は、 十分な強度を示すととも にポリ乳酸、 天然繊維ともに環境に負荷を与えることはないので、 様々な成形品 として好適に使用できる。 特に強度を必要とする構造部材、 建築材料はもちろん のこと、 建具材料、 建設仮設材などに好適である。 本発明の生分解性複合体は、 熱変形温度 (HD T) が好ましくは 2 4 0 °C以下、 さらに好ましくは 2 0 0 °C以 下、 さらに好ましくは 1 7 0 °C以下である。 本発明の組成物は、 シート、 マット などの成形体として種々の用途に使用することができる。
<成形体 >
本発明のポリ乳酸を用いて、 射出成形品、 押出成形品、 真空圧空成形品、 プロ —成形品、 フィルム、 シート不織布、 繊維、 布、 他の材料との複合体、 農業用資 材、 漁業用資材、 土木 ·建築用資材、 文具、 医療用品またはその他の成形品を得 ることができる。 成形は常法により行うことができる。 ポリ乳酸には、 ポリ乳酸
( 1 )、 ポリ乳酸 (I I ) が包含される。
例えば、 結晶性ポリマ一 (A) と (B) とを、 重量比 (A) / (B) = 1 0 / 90〜90/10で溶媒中に含有する溶液を流延した後、 溶媒を蒸発させフィル ム状にして、 270〜300°Cで熱処理することによりフィルムを製造すること ができる。
実施例
以下、 本発明を実施例によりさらに具体的に説明するが、 本発明は、 これらの 実施例に何等限定を受けるものではない。 また実施例中における各値は下記の方 法で求めた。
(1) 還元粘度:ポリマー 0. 12 gを 1 OmLのテトラクロ口エタンノフエノ ール (容量比 1/1) に溶解し、 35°Cにおける還元粘度 (mL/g) を測定し た。
(2) 重量平均分子量 (Mw) :ポリマーの重量平均分子量は GPC (カラム温 度 40°C、 クロ口ホルム) により、 ポリスチレン標準サンプルとの比較で求めた。
(3) 結晶化点、 融点、 融解ェンタルピーおよび 195 °C以上の融解ピークの割 合: DSCを用いて、 窒素雰囲気下、 昇温速度 20°C/分で測定し、 結晶化点
(Tc)、 融点 (Tm) および融解ェンタルピー (AHm) を求めた。
195 °C以上の融解ピークの割合 (%) は、 195°C以上 (高温) の融解ピー ク面積と 140〜180°C (低温) 融解ピーク面積から以下の式により算出した。
l 95以上 、^^) = 195以上 z ("^i 95以上 + A ^ 40〜: I 80) X I 00
R195P^: 195 °C以上の融解ピークの割合
A195以上 : 195 °C以上の融解ピーク面積
A14。~18。: 140〜180°Cの融解ピーク面積
205 °C以上の融解ピークの割合 (%) は、 205°C以上 (高温) の融解 ピーク面積と 140〜180°C (低温) 融解ピーク面積から以下の式により 算出した。
丄^ " 205以上 ゝ' ) =A2 o 5以上 、A 205以上 + A 14 80) 100
R 20 5以上 : 205 °C以上の融解ピークの割合
A 20 5以上 : 205°C以上の融解ピーク面積 A14。〜18。: 140〜180°Cの融解ピーク面積
(4) 生分解性試験:生分解性複合体の生分解性は、 実験室規模のコンポスト化 装置を用いて評価した。 養生コンポスト中での崩壊性を目視観察し、 生分解性の 有無を判定した。 以下、 具体的な手順について説明する。
コンポスト容器 (容積 11リットル) に植種源として、 多孔質木片 (松下電工 株式会社製バイオチップ) 1. 72kg, 微細気孔を持つセルロース粒子 (松下 電工株式会社製バイォポール) 0. 075 k g、 に毎日野菜屑約 1〜 1. 5kg を補充し、 3時間に 1度 2分間撹拌し、 1週間に 1回手動にて鋤き込みし、 水分 50〜60%、 pH7. 5〜8. 5、 内温 45 ~ 55°Cに保持した状態のコンポ スト中に、 生分解性複合体の成型品を入れ、 所定時間後にフィルムをサンプリン グした。 30日間コンポスト処理した後の成型品の形状が明らかに崩壊しはじめ ている場合を分解性ありとした。
(5) 熱変形温度 (HDT):熱変形温度は、 J I S K 7191記載の方法 に準拠して求めた。
(製造例 1 :ポリマー A 1の製造)
Lーラクチド (株式会社武蔵野化学研究所製) 48. 75 gと D—ラクチド (株式会社武蔵野化学研究所製) 1. 25 gをフラスコに加え、 系内を窒素置換 した後、 ステアリルアルコール 0. 05g、 触媒としてォクチル酸スズ 25mg を加え、 190°C、 2時間、 重合を行いポリマー A 1を製造した。 得られたポリ マー A1の還元粘度は 1. 48 (mLZg)、 重量平均分子量 11万であった。 融点 (Tm) は 158°Cであった。 結晶化点 (Tc) は 117°Cであった。
(製造例 2:ポリマー A 2の製造)
製造例 1で得られたポリマ一 A 1を 7 % 5 N塩酸のアセトン溶液で洗浄し、 触 媒を除去し、 ポリマー A2を得た。 得られたポリマー A 2の還元粘度は 1. 47 (mL/g), 重量平均分子量 10万であった。 融点 (Tm) は 159°Cであつ た。 結晶化点 (Tc) は 120°Cであった。
(製造例 3:ポリマー A 3の製造)
製造例 1で得られたポリマー A1を 10 g、 ピリジン 5 mLZクロ口ホルム 2 O OmLに溶解し、 室温で、 無水酢酸 9 mLを加えた。 5時間、 攪拌後、 1時間、 加熱還流を行い、 ポリマ一末端をァセチル化し、 ポリマ一 A3を得た。 得られた ポリマ一 A 3の還元粘度は 1. 66 (mL/g)、 重量平均分子量 11万であつ た。 融点 (Tm) は 157°Cであった。 結晶化点 (Tc) は 121°Cであった。 (製造例 4:ポリマ一 B 1の製造)
Lーラクチド (株式会社武蔵野化学研究所) 1. 25 gと D—ラクチド (株式 会社武蔵野化学研究所) 48. 75 gを用いた以外は製造例 1と同様な操作を行 い、 ポリマ一 B 1を製造した。 ポリマー B 1の還元粘度は 1. 69、 重量平均分 子量 14万であった。 融点 (Tm) は 155°Cであった。 結晶化点 (Tc) は 1 21°Cであった。
(製造例 5 :ポリマ一 B 2の製造)
ポリマ一 B 1を用いた以外は製造例 2と同様の操作を行い、 触媒を除去し、 ポ リマ一 B2を得た。 得られたポリマー B2の還元粘度は 1. 76 (mLZg)、 重量平均分子量 12万であった。 融点 (Tm) は 156°Cであった。 結晶化点 (Tc) は 120°Cであった。
(製造例 6 :ポリマ一 B 3の製造)
ポリマ一 B 1を用いた以外は製造例 3と同様の操作を行いポリマ一末端をァセ チル化し、 ポリマ一 B3を得た。 得られたポリマ一 B 3の還元粘度は 2. 06 (mL/g), 重量平均分子量 14万であった。 融点 (Tm) は 158°Cであつ た。 結晶化点 (Tc) は 122°Cであった。
(製造例 7 :ポリマー A 4の製造)
L—ラクチド (株式会社武蔵野化学研究所) 47. 50 §と0—ラクチド (株 式会社武蔵野化学研究所) 2. 5 O gをフラスコに加え、 系内を窒素置換した後、 ォクチル酸スズ 25 mgを加え、 190° (:、 2時間、 重合を行い、 ポリマ一 A4 を製造した。 得られたポリマー A4の還元粘度は 2. 07、 重量平均分子量 14 万であった。 融点 (Tm) は 148。Cであった。 結晶化点 (Tc) は 131 Cで あった。
(製造例 8.:ポリマー B 4の製造) ' Lーラクチド (株式会社武蔵野化学研究所) 2. 50 と0—ラクチド (株式 会社武蔵野化学研究所) 47. 50 gを用いた以外は製造例 7と同様の操作を行 いポリマー B4を製造した。 得られたポリマ一 B4の還元粘度は 1. 95、 重量 平均分子量 1 1万であった。 融点は 148°Cであった。 結晶化点 (Tc) は 13 3でであった。
<実施例 1>
ポリマー A1の 5%クロロホルム溶液およびポリマ一 B 1の 5 %クロロホルム 溶液を等量混合し、 キャスト製膜を行った後、 窒素雰囲気下で加熱し、 クロロホ ルムを蒸発させ、 その後 20°CZ分で 280°Cまで昇温し、 28 (TCで 3分間維 持した後、 液体窒素でクェンチしてフィルムを得た。 得られたフィルムの重量平 均分子量は 14万であった。 このフィルムについて DSC測定を行った。 その結 果、 DSCチャートには、 融点 202°Cの融解ピ一クが観測され、 その融解ェン タルピーは 33 J/gであった。 140〜180°Cの融解ピ一クは観測されず、 195 °C以上の融解ピ一クの割合 (R195以上) は 100%であった。 結晶化点は 117°Cであった。 この DSCチャートを図 1に示す。
く実施例 2〉
ポリマ一 A 4の 5 %クロ口ホルム溶液およびポリマー B 4の 5 %クロロホルム 溶液を用いた以外は実施例 1と同じ操作を行った。 得られたフィルムの重量平均 分子量は 12万であった。 DSCチャートには、 融点 199°Cの融解ピ一クが観 測され、 その融解ェンタルピ一は 42 J/gであった。 R195以上は、 99. 9 9%であった。 結晶化点は 108°Cであった。
く実施例 3〉
ポリマー A 2およびポリマ一 B 2を等量、 フラスコに加え、 窒素置換後、 28 0°Cまで昇温し、 280°Cで 3分間、 溶融ブレンドを行った。 得られた樹脂の重 量平均分子量は 1 1万で、 還元粘度は 1. 46mLZgであり、 ポリマ一 A2お よびポリマ一 B 2の分子量および還元粘度と殆ど差は見られなかった。 この樹脂 について DSC測定を行った。 その結果、 DSCチャートには、 融点 207°Cの 融解ピークが観測され、 その融解ェン夕ルビ一は 40 JZgであった。 140〜 180°Cの融解ピークは観測されず、 195°C以上の融解ピークの割合 (R195 以上) は 100%であった。 結晶化点は 112°Cであった。
<実施例 4〉
ポリマ一 A 3およびポリマー B 3を用いた以外は実施例 3と同じ操作を行つた。 得られた樹脂の重量平均分子量は 12万で、 還元粘度は 1. 60mL/gであり、 ポリマー A 3およびポリマー B 3の分子量および還元粘度と殆ど差は見られなか つた。 この樹脂について DSC測定を行った。 その結果、 DSCチャートには、 融点 202 °Cの融解ピークが観測され、 その融解ェンタルピーは 39 J/gであ つた。 195°C以上の融解ピークの割合 (R195 上) は 99. 99%であった。 結晶化点は 110 °cであつた。
<実施例 5>
ポリマー A2の 5%クロ口ホルム溶液およびポリマー B2の 5%クロ口ホルム 溶液にそれぞれポリマーに対して 10重量%のラクチドを添加した溶液を用いた 以外は実施例 1と同じ操作を行った。 得られたフィルムの重量平均分子量は 11 万であった。 DSCチヤ一トには、 融点 202°Cの融解ピークが観測され、 その 融解ェンタルピーは 24 J/gであった。 195°C以上の融解ピークの割合 (R 195以上) は 90%であった。 結晶化点は 107°Cであった。
<実施例 6>
直径 3 mmのポリマー A 2とポリマー B 2のチップを試験管に 5 gずつ加え、 280°Cで溶融させた。 得られた溶融体は直ちに液体窒素でクェンチレた。 得ら れたポリマ一の重量平均分子量は 10万であった。 DSCチャートには、 融点 2 06 °Cの融解ピークが観測され、 その融解ェンタルピーは 26 J / であった。
195°C以上の融解ピークの割合 (R195以上) は 91%であった。 結晶化点は 1 13°Cであった。
<比較例 1>
キャスト製膜を行った後、 240°Cで熱処理すること以外は、 実施例 1と同じ 操作を行った。 得られたフィルムの重量平均分子量は 14万であった。 DSCチ ヤートには、 融点 161°Cの融解ピ一クおよび融点 206 °Cの融解ピークが観測 された。 Rl95以上は、 51%であった。
<比較例 2〉
以下に示すポリ一 L—乳酸 (PLLA) とポリ一 D—乳酸 (PDLA) を用い た以外は実施例 1と同じ操作を行いフィルムを得た。 得られたフィルムについて DSC測定を行った。 その結果、 融点 173 °Cの融解ピークおよび融点 220°C の融解ピークが観測された。 R195以上は、 40%であった。
PLLA: L乳酸単位 99. 5モル%、 D乳酸単位 0. 5モル%、 還元粘度 2. 7 OmL/g, 重量平均分子量 25万、 融点 (Tm) 166°C、 結晶化点 (T c ) 125 °C。
PDLA: D乳酸単位 99. 3モル%、 L乳酸単位 0. 7モル%、 粘度 2. 80 mL/g, 重量平均分子量 26万、 融点 (Tm) 168°C、 結晶化点 (Tc) 1 22°C。
表 1
Figure imgf000032_0001
表 2
Figure imgf000032_0002
(製造例 9 :ポリマ一 B 5の製造)
Lーラクチド (株式会社武蔵野化学研究所) 1. 25 gと D—ラクチド (株式 会社武蔵野化学研究所) 48. 75 gをフラスコに加え、 系内を窒素置換した後、 触媒としてォクチル酸スズ 25 mgを加え、 190°C、 2時間、 重合を行い、 ポ リマ一 B 5を製造した。 ポリマ一 B 5の還元粘度は 2. 26 (mL/g)、 重量 平均分子量 1 9万であった。 融点 (Tm) は 1 56°Cであった。 結晶化点 (T c) は 117°Cであった。
(製造例 10 :ポリマ一 B 6の製造)
Lーラクチド (株式会社武蔵野化学研究所) 1. 25 gと D—ラクチド (株式 会社武蔵野化学研究所) 48. 75 gをフラスコに加え、 系内を窒素置換した後、 ステアリルアルコール 0. 05 g、 触媒としてォクチル酸スズ 25mgを加え、 190°C, 2時間、 重合を行い、 ポリマ一を得た。 このポリマ一を 7% 5 N塩酸 のアセトン溶液で洗浄し、 触媒を除去し、 ポリマ一 B 6を得た。 得られたポリマ —B 6の還元粘度は 2. 71 (mL/g)、 重量平均分子量 20万であった。 融 点 (Tm) は 159°Cであった。 結晶化点 (Tc) は 132°Cであった。
(製造例 11 :ポリマー A 5の製造)
Lーラクチド (株式会社武蔵野化学研究所) 5 O gをフラスコに加え、 系内を 窒素置換した後、 ステアリルアルコール 0. l g、 触媒としてォクチル酸スズ 2 5mgを加え、 190°C、 2時間、 重合を行い、 ポリマ一 A5を製造した。 得ら れたポリマー A 5の還元粘度は 2. 92 (mL/g)、 重量平均分子量 19万で あった。 融点 (Tm) は 168。Cであった。 結晶化点 (Tc) は 122°Cであつ た。
(製造例 12 :ポリマ一 A 6の製造)
Lーラクチド (株式会社武蔵野化学研究所) 5 O gをフラスコに加え、 系内を 窒素置換した後、 ステアリルアルコール 0. l g、 触媒としてォクチル酸スズ 2 5mgを加え、 190^、 2時間、 重合を行い、 ポリマーを製造した。 このポリ マ一を 7% 5N塩酸のアセトン溶液で洗浄し、 触媒を除去し、 ポリマー A 6を得 た。 得られたポリマー A6の還元粘度は 2. 65 (mL/g)、 重量平均分子量 20万であった。 融点 (Tm) は 176°Cであった。 結晶化点 (Tc) は 13 9°Cであった。
(製造例 13 :ポリマー D 1の製造〉
Lーラクチド (株式会社武蔵野化学研究所製) 48. 75 gと D—ラクチド (株式会社武蔵野化学研究所製) 1. 25 gをフラスコに加え、 系内を窒素置換 した後、 ステアリルアルコール 0. l g、 触媒としてォクチル酸スズ 25 mgを 加え、 190°C、 2時間、 重合を行いポリマー D 1を製造した。 得られたポリマ 一 D1の還元粘度は 2. 48 (mL/g)、 重量平均分子量 17万であった。 融 点 (Tm) は 158°Cであった。 結晶化点 (Tc) は 117°Cであった。
(製造例 14:ポリマー C 1の製造)
D—ラクチド (株式会社武蔵野化学研究所) 50 gをフラスコに加え、 系内を 窒素置換した後、 ステアリルアルコール 0. l g、 触媒としてォクチル酸スズ 2 5mgを加え、 190°C、 2時間、 重合を行い、 ポリマーを製造した。 このポリ マーを 7 % 5 N塩酸のァセトン溶液で洗浄し、 触媒を除去し、 ポリマー C 1を得 た。 得られたポリマ一 C 1の還元粘度は 2. 8 OmL/g, 重量平均分子量 22 万であった。 融点 (Tm) は 168°Cであった。 結晶化点 (Tc) は 122°Cで あった。
<実施例 7 >
ポリマー B5の 5%クロ口ホルム溶液およびポリマー A5の 5%クロ口ホルム 溶液を等量混合し、 キャスト製膜を行った後、 窒素雰囲気下で加熱し、 クロロホ ルムを蒸発させ、 その後 20 分で 280°Cまで昇温し、 280°Cで 3分間維 持した後、 液体窒素でクェンチしてフィルムを得た。
得られたフィルムの重量平均分子量は 19万であった。 このフィルムについて DSC測定を行った。 その結果、 DSCチャートには、 融点 211 の融角军ピ一 クが観測され、 その融解ェンタルピーは 51 JZgであった。 140〜180°C の融解ピークは観測されず、 205T以上の融解ピークの割合 (R25以上) は 1 00%であった。 結晶化点は 99 °Cであった。 この DSCチャートを図 2に示す。 <実施例 8> ポリマー B 6およびポリマ一 A 6を等量、 フラスコに加え、 窒素置換後、 26 0 まで昇温し、 260°Cで 3分間、 溶融ブレンドを行った。
得られた樹脂の重量平均分子量は 16万で、 還元粘度は 2. 65mL/gであ つた。
この樹脂について DSCを測定を行った。 その結果、 DSCチャートには、 融 点 209 °Cの融解ピークが観測され、 その融解ェンタルピ一は 32 JZgであつ た。 140〜180°Cの融解ピークはわずかに観測されたが、 205°C以上の融 解ピークの割合 (R25以上) は 93%であった。 結晶化点は 116°Cであった。 く実施例 9 >
280 °Cで熱処理すること以外は、 実施例 8と同じ操作を行つた。
得られた樹脂の重量平均分子量は 16万で、 還元粘度は 2. 42mLZgであ つた。
この樹脂について DSCを測定を行った。 その結果、 DSCチャートには、 融 点 209 °Cの融解ピークが観測され、 その融解ェンタルピーは 38 JZgであつ た。 140〜 180 °Cの融解ピークは観測されず、 205 °C以上の融解ピークの 割合 (R205Sx±) は 100%であった。 結晶化点は 107°Cであった。
<実施例 1 0>
ポリマー C 1およびポリマー D 1を等量、 フラスコに加え、 窒素置換後、 26 0°Cまで昇温し、 260 Cで 3分間、 溶融ブレンドを行った。
得られた樹脂の重量平均分子量は 15万で、 還元粘度は 2. 35mL/gであ つ Tこ。
この樹脂について DSCを測定を行った。 その結果、 DSCチャートには、 融 点 21 1°Cの融解ピークが観測され、 その融解ェンタルピ一は 31 JZgであつ た。 140〜18 (TCの融解ピークはほとんど観測されず、 205°C以上の融解 ピークの割合 (R25以上) は 97%であった。 結晶化点は 1 14°Cであった。 <比較例 3>
キャスト製膜を行った後、 240°Cで熱処理すること以外は、 実施例 1と同じ 操作を行った。 得られたフィルムの重量平均分子量は 19万であった。 DSCチャートには、 ホモ結晶に由来するピークとステレオコンプレックス結晶に由来するピークが観 測された。 R205以上は、 39%であった。
<比較例 4>
以下に示すポリ一 L一乳酸 (PLLA) とポリ一 D—乳酸 (PDLA) を用い た以外は実施例 1と同じ操作を行いフィルムを得た。 得られたフィルムについて DSC測定を行った。 その結果、 融点 173 °Cの融解ピークおよび融点 220°C の融解ピークが観測された。 R25以上は、 40%であった。
PLLA: L—乳酸単位 99. 5モル%、 D—乳酸単位 0. 5モル%、 還元 粘度 2. 70mLZg、 重量平均分子量 25万、 融点 (Tm) 166°C、 結晶化 点 (Tc) 125°C。
PDLA: D—乳酸単位 99. 3モル%、 L一乳酸単位 0. 7モル%、 粘度 2. 8 OmL/g, 重量平均分子量 26万、 融点 (Tm) 168°C、 結晶化点 (Tc) 122° (。
表 3
Figure imgf000037_0001
表 4
ホ。リマ- ホ。リマ- 重量比 温度 フ"レンド Mw Tm(。C) ΔΗκι 以上 Tc
(。C) 方法 (J/g) (%) (。C) 実施例 7 B5 A5 50/50 280 溶液 19X104 211 51 100 99 実施例 8 B6 A6 50/50 260 溶融 16X104 209 32 93 116 実施例 9 B6 A6 50/50 280 溶融 16X104 209 38 100 107 実施例 C1 D1 50/50 260 溶融 15X104 211 31 97 114 10
比較例 3 B5 A5 50/50 240 溶液 19X104 158, 173/208 23/15 39 126 比較例 4 PDLA PLLA 50/50 280 溶液 25X104 173/220 29/19 40 121
(製造例 15 :ポリマー A 7の製造)
L—ラクチド (株式会社武蔵野化学研究所製〉 48. 75重量部と D—ラクチ ド (株式会社武蔵野化学研究所製) 1. 25重量部を重合容器に加え、 系内を窒 素置換した後、 ステアリルアルコール 0. 05重量部、 触媒としてォクチル酸ス ズ 25 X 10—3重量部を加え、 190°C、 2時間、 重合を行いポリマー A7を 製造した。 得られたポリマー A 7の還元粘度は 1. 48 (mLZg)、 重量平均 分子量 11万であった。 融点 (Tm) は 158°Cであった。 結晶化点 (Tc) は 117°Cであった。
(製造例 16 :ポリマー B 7の製造)
Lーラクチド (株式会社武蔵野化学研究所) 1. 25重量部と D—ラクチド (株式会社武蔵野化学研究所) 8. 75重量部を用いた以外は製造例 15と同 様な操作を行い、 ポリマ一 B 1を製造した。 ポリマー B 7の還元粘度は 1. 69、 重量平均分子量 14万であった。 融点 (Tm) は 155°Cであった。 結晶化点 (Tc) は 121°Cであった。
<実施例 11 >
ポリマー A 7およびポリマー B 7を等量、 フラスコに加え、 窒素置換後、 28 0°Cまで昇温し、 280°Cで 3分間、 溶融ブレンドを行った。 得られた樹脂の重 量平均分子量は 11万で、 還元粘度は 1. 46mL/gであり、 ポリマー A 7お よびポリマー B 7の分子量及び還元粘度と殆ど差は見られなかった。 この樹脂に ついて DSC測定を行った。 その結果、 DSCチャートには、 融点 207°Cの融 解ピークが観測され、 その融解ェンタルピーは 40 J/gであった。 140〜1 80°Cの融解ピークは観測されず、 195°C以上の融解ピークの割合 (R195以 上) は 100%であった。 結晶化点は 112°Cであった。
得られた樹脂 3 gをクロ口ホルム 50 m 1に溶解して樹脂溶液とした。 ケナフ ファイバ一 (繊維径 200 / m、 繊維強度 30 OMp a) のマツト (厚み 1 Om m) を 12mmX 120mm (重さ 3 g) を切り出して、 樹脂溶液に浸漬して 乾燥させた。 乾燥後、 170°Cで熱プレスし、 成型品を得た。 得られた成型品の HDTは 160Cであった。 生分角性はありと判定された。 <実施例 12>
ポリマー A 7およびポリマー B 7を等量、 フラスコに加え、 窒素置換後、 28 0°Cまで昇温し、 280°Cで 3分間、 溶融ブレンドを行った。 得られた樹脂の重 量平均分子量は 11万で、 還元粘度は 1. 46mLZgであり、 ポリマー A7お よびポリマー B 7の分子量及び還元粘度と殆ど差は見られなかった。 この樹脂に ついて DSC測定を行った。 その結果、 DSCチャートには、 融点 207°Cの融 角早ピークが観測され、 その融解ェンタルピーは 40 J /gであった。 140〜1 80°Cの融解ピークは観測されず、 195°C以上の融解ピークの割合 (R195以 上) は 100%であった。 結晶化点は 1 12°Cであった。
得られた樹脂 3 gをクロ口ホルム 50mlに溶解して樹脂溶液とした。 ケナフ ファイバ一 (繊維径 200 tm、 繊維強度 30 OMp a) のマツト (厚み 1 Om m) を 12mmX 120mm (重さ 3 g) を切り出して、 樹脂溶液に浸漬して 乾燥させた。 乾燥後、 200°Cで熱プレスし、 成型品を得た。 得られた成型品の HDTは、 168°Cであった。 生分解性はありと判定された。
く実施例 13>
ポリマー A7およびポリマ一 B 7のチップをそれぞれ 35重量部および、 ケナ フチヨップドファイバ一 (繊維径 200 τα, 繊維長 5mm、 繊維強度 300M p a) 30重量部を混合した。 この混合物を融解シリンダ一の 3つの温度設定ゾ —ンを投入口側からそれぞれ、 200°C、 230°C、 265°Cに設定した射出成 型機 (日精樹脂工業 (株) 製小型射出成形機 PS— 20) に投入し、 型温度 9 0°Cで射出成型して成型品を得た。 得られた成型品の HDTは 170°Cであった。 生分解性はありと判定された。
<比較例 5>
L—ラクチド 500重量部を用いて製造例 15に準じた操作で合成した P L L A3 gをクロ口ホルム 5 Omlに溶解して樹脂溶液とした。 ケナフファイバ一 (繊維径 200 urn, 繊維強度 30 OMp a) のマツト (厚み 1 Omm) を 12 mmx 12 Omm (重さ 3 g) を切り出して、 樹脂溶液に浸漬して乾燥させた。 乾燥後、 200°Cで熱プレスし、 成型品を得た。 得られた成型品の HDTは、 9 o°cであった。
以下の実施例において、 物性等は下記の方法で求めた。
(1) 重量平均分子量 (Mw) と数平均分子量 (Mn)
ゲルパーミエーシヨンクロマトグラフィー (GPC) による標準ポリスチレン に換算した。 G PC測定機器は、
検出器;示差屈折計島津 R I D— 6 A、
ポンプ;島津 LC— 9A、
カラム;東ソー TSKg e 1 G3000HXL、 TSKg e 1 G400 OHXL, TSKg e I G5000HXLと TSKgua r dc okumnHXL— Lを直 列に接続したもの、 あるいは東ソー TSKg e 1 G2000HXL、 TSKg e 1 G3000HXLと TSKgua r dc o k umnHXL— Lを直列に接続し たものを使用した。 溶離液としてはクロ口ホルムを使用し、 温度 40°C、 流速 1. OmlZmi nで流し、 濃度 lmg/ml ( 1 %へキサフルォロイソプロパノー ルを含むクロ口ホルム) の試料を 10 21注入した。
(2) ブロックの平均連鎖長の測定
13 CNMR装置: 日本ブルカー製 BURKE R ARX—500
サンプル: 5 OmgZO. 7ml
測定溶媒 : 10% HF I P含有重水素化クロロホルム
内部標準:テトラメチルシラン (TMS) 1% (v/v)
測定温度: 27°C (30 OK)
測定周波数: 125MHz
13C— NMR測定により、 カルポニル炭素 (C==0) に帰属される炭素のピ —クのうち、 ピーク (a) (170. 1— 1 70. 3MHz辺り) はホモ配列 (LLLLLLまたは DDDDDD) に、 ピーク (b) (170. 0- 169. 8MHz辺り) はラセミ鎖 (LLLDDD ) に帰属し、 これらのピークの積分 値から、 下記の式により平均連鎖長を算出した。
=ピ一ク (a) の積分値/ピ一ク (b) の積分値
(3) 熱的特性 島津 D SC-β 0示差走査熱量測定計 D S Cを用いた。
測定は、 試料 1 Omgを窒素雰囲気下、 昇温速度 10°C/mi nで室温から 2 50°Cまで昇温し、 20分間放冷、 再び 10°CZm i nで 250°Cまで昇温させ る方法により行った。 第一スキャンでは、 ホモ結晶融解温度 (Tmh)、 ホモ結 晶融解熱 (AHmh)、 ステレオコンプレックス結晶融解温度 (Tms)、 ステレ ォコンプレックス結晶融解熱 (AHms) を測定した。 第二スキャンでは結晶化 温度 (Tc) を求めた。
(4) 200°C以上の融解ピークの割合 (R20Qai)
200°C以上の融解ピークの割合 ) は、 200°C以上 (高温) の融解ピー ク面積と 140〜180°C (低温) 融解ピーク面積から以下の式により算出した。
以上 (%ノ =A2oo以上/ (A2oo以上 +Ai 40〜: 180) X 丄 00
R 20 0以上 : 200°C以上の融解ピークの割合
A200以上 : 200°C以上の融解ピーク面積
A14018(): 140〜180°Cの融解ピーク面積
(5) 総結晶化度 (χ c (総))
結晶化度は、 以下のように求めた。
100 %結晶化したポリ乳酸のホモ結晶融解熱 (AHm 0) を一 203. 4 J/g、 100%結晶化したポリ乳酸ステレオコンプレックス体結晶融解熱 (Δ Hras 0) を一 142 JZgとして、 D S Cから実際に得られたホモ結晶融解熱 (厶 Hmh)、 ステレオコンプレックス結晶化熱融解熱 (AHms) より、 下記 式によって算出した。
Xc(W
Figure imgf000041_0001
(AHmh/AiMiO+AHms/AHmsO)
(6) ステレオコンプレックス結晶化率 (xc (SO)
さらに、 ステレオコンプレックス結晶の含有率は下記式によって算出した。 xc(SC) (¾) = 1 OOx [ (AHms/AHms 0) / (AHmh/AHmhOIAHms/AHms 0) ]
(7) 光学純度 )
ポリ一 L—乳酸、 ポリ一 D—乳酸を構成する L—乳酸と D—乳酸の構成比率か ら光学純度を求めた。 試料 1 gに 5 M水酸ナトリウム 5 m 1とイソプロパノール 2. 5m 1を添加し、
40 で加熱攪拌しながら加水分角早した後に 1 M硫酸で中和した。 中和液 1 m 1 を 25倍に希釈することで濃度を調整した。 これを HP LCにて、 紫外光 UV2
54 nmでの L—乳酸と D—乳酸との検出ピーク面積を測定し、 ポリ乳酸重合体 を構成する L一乳酸の重量比率 [L] (%) と D—乳酸の重量比率 [D] (%) と から、 光学純度 (%) を下記式によって算出した。
なお、 HP LC装置として、 ポンプ;島津 LC一 6A、 UV検出器;島津 SP D— 6 AV、 カラム; SUM I CH I RAL OA- 5000 ((株) 住ィヒ分析 センタ一〉 を使用し、 溶離液には ImM硫酸銅水溶液を用い、 流速 1. OmlX min、 40°Cで測定した。
光学純度 (%) =10 OX [L] / ([L] + [D])
(または 10 OX [D] / ([L] + [D]) (製造例 17) ポリ一 L一乳酸の調製
濃度 90重量%の —乳酸水溶液 (株式会社武蔵野化学研究所) 1 k gを 15 0°C/4, 00 OP aで 6時間撹拌しながら水を留出させてオリゴマー化した。 このオリゴマ一に塩化第一スズ 0. 2 gと p—トルエンスルホン酸 0. 2gとを 添加し、 180°CZ1, 30 OPaで 6時間溶融重合させた。 冷却後、 固体を粉 砕し、 重量平均分子量が 7, 800、 Tmが 153。Cのポリ—L—乳酸を得た。 光学純度は 99. 2 %であった。
(製造例 18) ポリ— D—乳酸の調製
濃度 90重量%の0—乳酸水溶液 (株式会社武蔵野化学研究所) を用いて製造 例 17と同様の操作を行い、 重量平均分子量が 8, 000、 Tmが 154°Cのポ リー D—乳酸を得た。 光学純度は 99. 0%であった。
(製造例 19) ポリ乳酸プロック共重合体 A 8の調製
製造例 17で得たポリ一 L一乳酸 80 gと製造例 18で得られたポリ一 D—乳 酸 20 gを混合し、 常圧で 5分加熱した。 混合の際、 樹脂の温度は、 各ポリマー の融点から徐々に昇温し、 175°Cで均一に混合したことを確認した。 このポリ 一 DZL—乳酸ブレンドを、 冷却して固化させ粉碎して粒子状にした。 ついで、 減圧 (0. 5mmHg) 下、 140°Cで 10時間、 次に 150°Cで 10時間、 更 に 160°Cで 10時間、 段階的に昇温し (総時間 30時間) 固相重合を行い、 ポ リ乳酸ステレオブロック共重合体 A8を得た。 このポリ乳酸ブロック共重合体 A 8の、 重量平均分子量 (Mw)、 多分散度 (Mw/Mn)、 平均連鎖長 vを測定し た 3 C— NMR測定のチヤ一トを図 3に示す)。 これらの結果を表 5に示す。 (製造例 20) ポリ乳酸プロック共重合体 B 8の調製
製造例 18で得たポリ一 D—乳酸 80 gと製造例 17で得られたポリ一 L—乳 酸 20 gを用いて製造例 19と同様の操作を行い、 ポリ乳酸ステレオブロック共 重合体 B 8を得た。 このポリ乳酸プロック共重合体 B 8について製造例 19と同 様に各特性を評価した。 これらの結果を表 5に示す。
(製造例 21) ポリ乳酸ブロック共重合体 A 9の調製
ポリ一 L一乳酸:ポリ一 D—乳酸 =90 : 10の割合で混合した以外は製造例 19と同様に操作してポリ乳酸プロック共重合体 A 9を得た。 この共重合体につ いて製造例 19と同様に各特性を評価した。 これらの結果を表 5に示す。
(製造例 22) ポリ乳酸プロック共重合体 B 9の調製
ポリ一 D—乳酸:ポリ一 L一乳酸 =90 : 10の割合で混合した以外は製造例 20と同様に操作してポリ乳酸ブロック共重合体 B 9を得た。 この共重合体につ いて製造例 20と同様に各特性を評価した。 これらの結果を表 5に示す。
<実施例 14>
ポリ乳酸ブロック共重合体 A8とポリ乳酸ブロック共重合体 B 8のそれぞれ 0. 5 gをクロ口ホルム 9m 1と HF I P (1, 1, 1, 3, 3, 3, —へキサフル ォロイソプロパノ一ル) 1mlの混合溶媒に溶解させ (全量 20ml)、 L/D 組成が 50/50になるように混合した。 混合攪拌 20分後にガラスシャーレに 流し込み、 室温、 常圧下で 15時間静置した。 その後、 バキュームオーブンにて 室温で 2時間、 60°Cで 2時間、 80 Cで 6時間にて連続的に乾燥を行なった。 得られたステレオコンプレックスポリ乳酸の結晶化温度 (Tc)、 ホモ結晶融 解温度 (Tmh)、 ステ,レオコンプレックス結晶融解温度 (Tms)、 ホモ結晶融 解熱 (AHmh)、 ステレオコンプレックス結晶融解熱 (AHms) を測定した。 これらの結果を表 6に示す。 また、 200°C以上の融解ピークの割合 (R 200 以上)、 総結晶化度 (xc (総))、 ステレオコンプレックス結晶の含有率 (xc
(SO) を表 6に示す。
<実施例 15>
ポリ乳酸プロック共重合体 A 8とポリ乳酸プロック共重合体 B 8のそれぞれ 1 gをクロ口ホルム 18ml中に溶解させ、 無水酢酸を 1—2滴添加し、 1時間攪 拌し、 末端処理をした。 その後、 HF I Pを 2ml添加し完全に溶解させた後に メタノール 200ml中に再沈殿させ、 吸引ろ過、 乾燥させた。 乾燥はバキュ一 ムォ一ブンにて室温で 2時間、 60°Cで 2時間、 80°Cで 6時間の乾燥を連続的 に行なった。
末端処理、 精製後のポリ乳酸ブロック共重合体 A8と B 8のそれぞれ 0. 5 g をクロ口ホルム 9ml と HF IP 1m 1の混合溶媒に溶解させ (全量 20m 1)、 L/D組成が 50/50になるように混合した。 混合攪拌 20分後にガラ スシャーレに流し込み、 室温、 常圧下で 15時間静置した。 乾燥はバキュームォ ーブンにて室温で 2時間、 60°Cで 2時間、 80Cで 6時間の乾燥を連続的に行 なった。
このステレオコンプレックスポリ乳酸について実施例 14と同様に各特性を評 価した。 これらの結果を表 6に示す。
<実施例 16>
ポリ乳酸ブロック共重合体 A9:ポリ乳酸ブロック共重合体 B 9 = 50: 50 の割合で混合した以外は実施例 14と同様に操作してステレオコンプレックスポ リ乳酸を得た。 このステレオコンプレックスポリ乳酸について実施例 14と同様 に各特性を評価した。 これらの結果を表 6に示す。
<実施例 17>
ポリ乳酸プロック共重合体 B 9:ポリ乳酸プロック共重合体 A 9 = 50 : 50 の割合で混合した以外は実施例 15と同様に操作してポリ乳酸ステレオコンプレ ックス体を得た。 この共重合体について実施例 15と同様に各特性を評価した。 これらの結果を表 6に示す。 <実施例 18>
ポリ乳酸プロック共重合体 B 9:ポリ乳酸プロック共重合体 A 9 = 50: 50の 割合でフラスコに加え、 窒素置換後、 175〜220°Cまで昇温し、 220°Cで 3分間、 溶融ブレンドを行った。 得られた共重合体について実施例 15と同様に 各特性を評価した。 これらの結果を表 6に示す。
<比較例 6>
以下に示すポリ一 L一乳酸 (PLLA) とポリ一 D—乳酸 (PDLA) を用い て、 ポリ一 L一乳酸:ポリー D—乳酸 = 50 : 50の割合で混合した以外は実施 例 14と同様に操作してフィルムを得た。 このフィルムについて実施例 14と同 様に各特性を評価した。 これらの結果を表 6に示す。
PLLA:重量平均分子量 11万、 多分散度 (Mw/Mn) 2. 66、 融点 (Tm) 165°C。
PDLA:重量平均分子量 10万、 多分散度 (Mw/Mn) 2. 49、 融点 (Tm) 166。C。
<比較例 7>
比較例 6と同様に、 ポリ一 L—乳酸 (PLLA) とポリ一 D—乳酸 (PDL A) を用いて、 ポリ— L—乳酸:ポリ一 D—乳酸 =50: 50の割合で混合した 以外は実施例 15と同様に操作してフィルムを得た。 このフィルムについて実施 例 15と同様に各特性を評価した。 これらの結果を表 6に示す。
表 5
ポリ乳酸 L/D比率 Tc Tffl Tms 厶馳 △ Hms
項目 プロック Mw 1 c
Mw/Mn z c
¾oo以上 V 共重合体 L D ° C 0 C ° C (総) (SO
J/g J/g
製造例 19 A8 80 20 100000 2.63 100 176 211 41.4 16.6 28.6¾ 32¾ 36% 21.5 製造例 21 A9 90 10 119000 2.73 117 178 209 58.5 17.7 23.2¾ 41¾ 30¾ 28.2 製造例 20 B8 20 80 87000 2.36 106 167 210 40.9 33 44.7¾ 43% 54¾ 19.8 製造例 22 B9 10 90 93000 2.26 119 171 201 48.5 11.5 19.2¾ 32% 25¾ 12.7
表 6
原料ポリ乳酸ブロック共重
SC Tc Tmh Tms 厶馳 AHras X c X c 項目 合体 ¾oo以上 (総) (SC) V
(%)
A B Α/β仕込み比率 Mw Mw/ n 0 C 0 C ° C J/g J/g (%) (%) 実施例 14 A8 B8 50/50 89000 2.35 97 165 205 8.5 37.2 81.4 30 86 16.0 実施例 16 A9 Β9 50/50 106000 2.41 105 167 207 7.3 29.5 80.2 24 85 18.8 比較例 6 PLLA PDLA 50/50 107000 2.53 106 167 207 24.6 19.6 44.3 26 53 48.8 実施例 15 A8 Β8 50/50 81000 2.07 99 168 212 0.8 49.8 98.4 35 99 22.3 実施例 17 A9 Β9 50/50 86000 2.04 102 170 213 2.6 57.2 95.7 42 97 24.2 実施例 18 A9 Β9 50/50 85000 1.90 103 170 212 2.3 47.0 95.3 34 97 18.3 比較例 7 PLLA PDLA 50/50 85000 2.17 113 169 214 31.3 29.4 48.4 36 57 45.3
産業上の利用可能性
本発明によれば、 機械的強度、 耐熱性、 熱安定性に優れ、 透明性、 安全性、 生 分解性にも優れたポリ乳酸が提供される。 よってかかるポリ乳酸は、 食品用、 包 装用、 自動車や家電製品などのエンジニアリング用途に使用されることが期待さ れる。

Claims

請 求 の 範 囲
1. 重量平均分子量が 8〜 50万で、 示差走査熱量計 (DSC)測定において、 昇温過程における融解ピークのうち、 195°C以上の融解ピークの割合が 80% 以上であるポリ乳酸。
2. (1) L—乳酸単位 90〜: L 00モル%と、 D—乳酸単位および/または 乳酸以外の共重合成分単位 0〜 10モル%とにより構成されるポリ乳酸単位
(A) および
D一乳酸単位 90-99モル%と、 L一乳酸単位および Zまたは乳酸以外の共重 合成分単位 1〜10モル%とにより構成されるポリ乳酸単位 (B-1) からなり、 重量比 (A) / (B— 1) が 10Z90〜90ノ10の範囲にある、 または
(2) D—乳酸単位 90〜: 100モル%と、 L一乳酸単位および Zまたは乳酸 以外の共重合成分単位 0〜10モル%とにより構成されるポリ乳酸単位 (B) お よび
L一乳酸単位 90〜 99モル%と、 D—乳酸単位および Zまたは乳酸以外の共重 合成分単位 1〜10モル%とにより構成されるポリ乳酸単位 (A— 1) からなり、 重量比 (A— 1) / (B) が 10/90〜90Z10の範囲にある請求項 1記載 のポリ乳酸。
3. ポリ乳酸単位 (A— 1) およびポリ乳酸単位 (B— 1) からなり、 重量比 (A— 1) / (B— 1) が 10Z90〜90/10の範囲にある請求項 2記載の ポリ乳酸。
4. L—乳酸単位 99モル%を超え 100モル%と、 D—乳酸単位および Zま たは乳酸以外の共重合成分単位 0モル%以上 1モル%未満とにより構成されるポ リ乳酸単位 (A— 2) およびポリ乳酸単位 (B— 1) からなり、 重量比 (A— 2) / (B— 1) が 10/90〜90Z10の範囲にある請求項 2記載のポリ乳
5. D—乳酸単位 99モル%を超え 100モル%以下と、 L—乳酸単位および または乳酸以外の共重合成分単位 0モル%以上 1モル%未満とにより構成され るポリ乳酸単位 (B-2) およびポリ乳酸単位 (A- 1) からなり、 重量比 (A — 1) / (B-2) が 10Z90〜90/10の範囲にある請求項 2記載のポリ 乳酸。
6. (1) L—乳酸単位 90-100モル%と、 D—乳酸単位および Zまたは 乳酸以外の共重合成分単位 0〜 10モル%とにより構成され、 融点が 140〜 1
80°Cであり、 重量平均分子量が 10万〜 50万の結晶性ポリマ一 (A) と、 D—乳酸単位 90〜99モル%と、 L一乳酸単位および/または乳酸以外の共重 合成分単位 1〜 10モル%とにより構成され、 融点が 140〜 170。(:であり、 重量平均分子量が 10万〜 50万の結晶性ポリマー (B— 1) とを、 重量比 (A) / (B— 1) 力 10Z90〜90Z10の範囲で共存させるか、
(2) D—乳酸単位 90〜: 100モル%と、 L—乳酸単位および Ζまたは乳酸 以外の共重合成分単位 0〜 10モル%とにより構成され、 融点が 140〜 18 0°Cであり、 重量平均分子量が 10万〜 50万の結晶性ポリマ一 (B) と、 L一乳酸単位 90〜 99モル%と、 D—乳酸単位および Zまたは乳酸以外の共重 合成分単位 1〜 10モル%とにより構成され、 融点が 140〜 170°Cであり、 重量平均分子量が 10万〜 50万の結晶性ポリマ一 (A— 1) とを、 重量比 (A 一 1) / (B) が 10Z90〜90Z10の範囲で共存させ、 245〜300°C で熱処理することを特徴とするポリ乳酸の製造方法。
7. 結晶性ポリマー (A— 1) と、 結晶性ポリマー (B— 1) とを、 重量比 (A— 1)' / (B— 1) が 90ノ10〜10ノ90の範囲で共存させ、 2 70〜 300 °Cで熱処理する請求項 6記載の製造方法。
8. L一乳酸単位 99モル%を超え 100モル%以下と、 D—乳酸単位および Zまたは乳酸以外の共重合成分単位が 0モル%以上 1モル%未満とにより構成さ れ、 融点が 160〜 180 °Cであり、 重量平均分子量が 10万〜 50万の結晶性 ポリマ一 (A— 2) と、 結晶性ポリマ一 (B— 1) とを、 重量比 (A— 2) / (B— 1) が 10/90〜90Z10の範囲で共存させ、 245〜300°Cで熱 処理する請求項 6記載の製造方法。
9. D一乳酸単位 99モル%を超え 100モル%以下と、 L一乳酸単位および /または乳酸以外の共重合成分単位 0モル%以上 1モル%未満とにより構成され、 融点が 160〜 180。Cであり、 重量平均分子量が 10万〜 50万の結晶性ポリ マ一 (B— 2) と、 結晶性ポリマ一 (A— 1) とを、 重量比 (A— 1) / (B~ 2) が 10Z90〜90Z10の範囲で共存させ、 245〜300°Cで熱処理す る請求項 6記載の製造方法。
10. 結晶性ポリマーを溶媒の存在下で混合するか、 または非存在下で混合し、 熱処理することを特徴とする請求項 6記載の製造方法。
11. 結晶性ポリマ一は、 粉体またはチップ状である請求項 6記載の製造方法。
12. (1) L一乳酸ブロックと D—乳酸ブロックとから構成されるポリ乳酸 ブロック共重合体からなり、
( 2 ) 各プロックの平均連鎖長が 5〜 40であり、
(3) L—乳酸単位 (L成分) と D—乳酸単位 (D成分) との割合は、 D成分 Z L成分 =20ノ 80〜80Z20 (重量比) であり、
(4) 重量平均分子量は 8万〜 30万であり、
(5) ステレオコンプレックス結晶の含有率が 80〜100%である、
請求項 1記載のポリ乳酸。
13. ステレオコンプレックス結晶の含有率が 80〜100%であるポリ乳酸 を製造する方法であって、
(i) L—乳酸プロック (LB) と D—乳酸ブロック (DB) と力 らなり、 DB/ LB = 40Z60〜3/97. 5 (重量比) であり、 重量平均分子量が 8万〜 3 0万であり、 各ブロックの平均達鎖長が 5〜40であるポリ乳酸ブロック共重合 体 (A) と、
(ii) L一乳酸ブロック (LB) と D—乳酸ブロック (DB) と力、らなり、 LB/ DB = 40/'60〜3Z97. 5 (重量比) であり、 重量平均分子量が 8万〜 3 0万であり、 各プロックの平均連鎖長が 5〜 40であるポリ学し酸プロック共重合 体 (B) とを、
(i i i) 溶融混合または溶液混合することからなるステレオコンプレックスポリ乳 酸の製造方法。
14. 重量平均分子量が 0. 5万〜 2万のポリ一 L一乳酸 (PLLA) と、 重 量平均分子量が 0. 5万〜 2万のポリ一 D—乳酸 (PDLA) とを、 PDLA/
PLLA=40Z60〜3Z97. 5 (重量比) の割合で、 溶融混合または溶液 混合した後、 固化させ、 さらに固相重合し、 ポリ乳酸ブロック共重合体 (A) を 製造する工程を含む請求項 13記載の製造方法。
15. 重量平均分子量が 0. 5万〜 2万のポリ— L—乳酸 (PLLA) と、 重 量平均分子量が 0. 5万〜 2万のポリ一 D—乳酸 (PDLA) とを、 PLLAZ PDLA=40/60〜3 97. 5 (重量比) の割合で、 溶融混合または溶液 混合した後、 固化させ、 さらに固相重合し、 ポリ乳酸ブロック共重合体 (B) を 製造する工程を含む請求項 13記載の製造方法。
16. 請求項 1記載のポリ乳酸およびフィラーを含有し、 前者/後者 (重量 比) =98ノ 2〜: 1/99の組成物。
17. フィラーが、 天然繊維である請求項 16記載の組成物。
18. 請求項 1に記載のポリ乳酸からなる成形体。
19. 請求項 16記載の組成物からなる成形体。
PCT/JP2005/013672 2004-07-22 2005-07-20 ポリ乳酸およびその製造方法 WO2006009285A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020077001435A KR101240218B1 (ko) 2004-07-22 2005-07-20 폴리락트산 및 그 제조 방법
EP05767665A EP1780234A4 (en) 2004-07-22 2005-07-20 POLYMIC ACID AND MANUFACTURING METHOD THEREFOR
CA002575049A CA2575049A1 (en) 2004-07-22 2005-07-20 Polylactic acid and manufacturing process thereof
US11/658,093 US8304490B2 (en) 2004-07-22 2005-07-20 Polylactic acid and manufacturing process thereof
BRPI0513553-2A BRPI0513553A (pt) 2004-07-22 2005-07-20 ácido polilático, processo para a produção de ácido polilático, composição, e produto moldado
CN2005800246621A CN1989171B (zh) 2004-07-22 2005-07-20 聚乳酸及其制备方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004/214496 2004-07-22
JP2004214496A JP4511890B2 (ja) 2004-07-22 2004-07-22 ステレオコンプレックスポリ乳酸およびその製造方法
JP2004/230978 2004-08-06
JP2004230978A JP2006045428A (ja) 2004-08-06 2004-08-06 生分解性複合体
JP2004252804A JP5175421B2 (ja) 2004-08-31 2004-08-31 ステレオコンプレックスポリ乳酸およびその製造方法
JP2004/252804 2004-08-31
JP2004/378709 2004-12-28
JP2004378709A JP5250178B2 (ja) 2004-12-28 2004-12-28 ステレオコンプレックスポリ乳酸、その製造方法、組成物および成形品

Publications (1)

Publication Number Publication Date
WO2006009285A1 true WO2006009285A1 (ja) 2006-01-26

Family

ID=35785384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013672 WO2006009285A1 (ja) 2004-07-22 2005-07-20 ポリ乳酸およびその製造方法

Country Status (7)

Country Link
US (1) US8304490B2 (ja)
EP (1) EP1780234A4 (ja)
KR (1) KR101240218B1 (ja)
BR (1) BRPI0513553A (ja)
CA (1) CA2575049A1 (ja)
TW (1) TWI389971B (ja)
WO (1) WO2006009285A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083820A1 (ja) * 2006-01-18 2007-07-26 Teijin Chemicals Ltd. 樹脂組成物、成形品およびこれらの製造方法
WO2008013295A1 (en) * 2006-07-25 2008-01-31 Tohcello Co., Ltd. Polylactic acid stretched film
WO2008032965A1 (en) * 2006-09-11 2008-03-20 Sk Chemicals Co., Ltd. Adhesive composition for polyester having the excellent transmittance
WO2008032964A1 (en) * 2006-09-11 2008-03-20 Sk Chemicals Co., Ltd. Solvent adhesive composition for polyester
JP2008062588A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系積層体
JP2008062590A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd 収縮包装用ポリ乳酸フィルム
JP2008062589A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系離型フィルム
JP2008062586A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系ガスバリア性フィルム
JP2008062591A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系多層フィルム
JP2008062587A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系積層フィルム
JP2008088402A (ja) * 2006-07-25 2008-04-17 Tohcello Co Ltd ポリ乳酸系延伸フィルム
WO2008120821A1 (ja) * 2007-03-29 2008-10-09 Teijin Limited ポリ乳酸組成物
WO2008120807A1 (ja) * 2007-03-30 2008-10-09 Teijin Limited ポリ乳酸組成物およびそれよりなる繊維
WO2008120825A1 (ja) * 2007-03-30 2008-10-09 Teijin Limited ポリ乳酸組成物
JP2008248162A (ja) * 2007-03-30 2008-10-16 Teijin Ltd ステレオコンプレックスポリ乳酸フィルム
WO2009078381A1 (ja) * 2007-12-18 2009-06-25 Teijin Limited バイオマス原料から成るボタンおよびその製造方法
CN101522798A (zh) * 2006-06-01 2009-09-02 东赛璐株式会社 聚乳酸类组合物构成的成型品
US20100130676A1 (en) * 2007-03-30 2010-05-27 Teijin Limited Polylactic acid composition and fiber thereof
JP2011140666A (ja) * 2006-07-25 2011-07-21 Mitsui Chemicals Tohcello Inc ポリ乳酸系延伸フィルム
US8163849B2 (en) * 2007-02-09 2012-04-24 Teijin Limited Process of producing polylactic acid

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157094B2 (ja) * 2006-05-30 2013-03-06 東洋製罐株式会社 耐熱性に優れた生分解性延伸成形容器
CN101495570B (zh) * 2006-07-26 2012-07-04 三井化学株式会社 聚乳酸类树脂组合物、其成型体及聚乳酸类化合物
CA2660352A1 (en) * 2006-07-28 2008-01-31 Teijin Limited Resin composition, manufacturing method thereof, and molded article
JPWO2008018474A1 (ja) * 2006-08-08 2009-12-24 帝人株式会社 ポリ乳酸およびその製造方法
US8877338B2 (en) * 2006-11-22 2014-11-04 Polynew, Inc. Sustainable polymeric nanocomposites
US8211986B2 (en) * 2006-12-28 2012-07-03 Musashino Chemical Laboratory, Ltd. Method for producing polylactic acid block copolymer
TWI455966B (zh) * 2007-09-10 2014-10-11 Teijin Ltd 薄膜
US8173752B2 (en) * 2008-04-21 2012-05-08 Purac Biochem B.V. Polymer composition comprising polylactide
EP2112199A1 (en) * 2008-04-21 2009-10-28 PURAC Biochem BV Polymer composition comprising polylactide
CN102099404A (zh) * 2008-05-16 2011-06-15 印度尼西亚科学学院(Lipi) 大麻槿微纤维与聚丙烯或聚乳酸的复合物
US9770856B2 (en) * 2008-05-29 2017-09-26 National University Corporation Kyoto Insitute Of Technology Composite molded article having two-layer structure
US20100125112A1 (en) * 2008-11-17 2010-05-20 Cheil Industries Inc. Natural Fiber-Reinforced Polylactic Acid Resin Composition and Molded Product Made Using the Same
AU2009327883A1 (en) * 2008-12-15 2011-06-30 Teijin Limited Resin composition containing cyclic carbodimide
BE1018671A5 (fr) 2009-02-27 2011-06-07 Futerro Sa Procede de production de stereocomplexes plla/pdla.
KR101225944B1 (ko) * 2009-07-08 2013-01-24 제일모직주식회사 천연 보강제 강화 폴리유산 복합 수지 조성물 및 이를 이용한 성형품
US20110319509A1 (en) * 2010-03-23 2011-12-29 Polynew, Inc. Polymer composites incorporating stereocomplexation
US20130030128A1 (en) * 2010-04-14 2013-01-31 Agency For Science, Technology And Research Thermoplastic composition formed from polylactic acid and elastomeric graft copolymer
US8445602B2 (en) 2010-06-28 2013-05-21 Fuji Xerox Co., Ltd. Poly lactic acid resin, resin composition, and resin molding
JP5630439B2 (ja) * 2010-08-31 2014-11-26 東レ株式会社 ポリ乳酸ブロック共重合体の製造方法
EP2702103A4 (en) * 2011-04-25 2015-03-11 Saint Gobain Performance Plast MIXTURE COMPOSITION, FLEXIBLE TUBING MATERIAL AND METHOD FOR PRODUCING THE MIXTURE
ES2671944T3 (es) * 2011-07-28 2018-06-11 Natureworks Llc Resina de poli(ácido láctico) y método para producir la misma
KR101241014B1 (ko) * 2011-07-29 2013-03-11 한국기술교육대학교 산학협력단 용액캐스팅 법을 이용한 폴리유산 스테레오컴플렉스 제조방법
EP2786864B1 (en) * 2011-11-30 2016-07-20 Toray Industries, Inc. Polylactic acid resin sheet and molded body
KR101438032B1 (ko) * 2012-08-17 2014-09-05 정지수 상용성이 우수한 생분해 폴리락트산계 고분자블렌드 조성물, 그를 이용한 내열성의 압출발포시트 및 그로부터 제조된 발포성형체
US9623122B2 (en) 2012-09-04 2017-04-18 Shimadzu Corporation Molecular assembly using branched amphiphilic block polymer, and drug transportation system
CN104018294B (zh) * 2014-04-10 2016-06-22 中国科学院宁波材料技术与工程研究所 一种聚乳酸纳米纤维膜及其制备方法
US20160208094A1 (en) 2014-12-19 2016-07-21 Earth Renewable Technologies Extrudable polylactic acid composition and method of makingmolded articles utilizing the same
US11292909B2 (en) 2014-12-19 2022-04-05 Earth Renewable Technologies Extrudable polymer composition and method of making molded articles utilizing the same
US20160201231A1 (en) * 2015-01-09 2016-07-14 Dennis Lenz Renewably sourced yarn and method of manufacturing same
US20180355523A1 (en) * 2015-01-09 2018-12-13 Mill Direct, Inc. Renewably Sourced Yarn and Method of Manufacturing Same
WO2016187103A1 (en) 2015-04-07 2016-11-24 Earth Renewable Technologies Extrudable polymer composition and method of making molded articles utilizing the same
US20180223454A1 (en) 2017-02-07 2018-08-09 Earth Renewable Technologies Bicomponent fiber additive delivery composition
CN109021515B (zh) * 2018-06-15 2020-03-17 金发科技股份有限公司 一种聚乳酸3d打印材料及其制备方法
CN110624484B (zh) * 2019-07-26 2020-12-18 东华大学 一种全立构聚乳酸多孔微球及其制备方法
KR102327606B1 (ko) * 2020-02-28 2021-11-17 한국과학기술연구원 수중유형 에멀젼 혼합법을 이용한 스테레오컴플렉스 폴리락트산 복합체의 제조방법, 이를 이용한 약물전달용 조성물의 제조방법 및 이에 의해 제조된 약물전달용 조성물

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017164A (ja) * 1998-06-30 2000-01-18 Shimadzu Corp ポリ乳酸ステレオコンプレックスポリマー製造用ペレット、及びステレオコンプレックスポリマー成型物の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766182A (en) * 1986-12-22 1988-08-23 E. I. Du Pont De Nemours And Company Polylactide compositions
US4719246A (en) 1986-12-22 1988-01-12 E. I. Du Pont De Nemours And Company Polylactide compositions
JP2606260B2 (ja) 1988-03-07 1997-04-30 日本合成ゴム株式会社 ブロック共重合体
US4902515A (en) 1988-04-28 1990-02-20 E. I. Dupont De Nemours And Company Polylactide compositions
US5317064A (en) * 1992-12-11 1994-05-31 E. I. Du Pont De Nemours And Company Manufacture of polylactide stereocomplexes
JP3687354B2 (ja) 1998-06-30 2005-08-24 トヨタ自動車株式会社 ポリ乳酸ステレオコンプレックスポリマー組成物
US6365173B1 (en) * 1999-01-14 2002-04-02 Efrat Biopolymers Ltd. Stereocomplex polymeric carriers for drug delivery
JP4655342B2 (ja) 2000-07-14 2011-03-23 東レ株式会社 ポリ乳酸樹脂組成物および成形品
JP2002030523A (ja) * 2000-07-14 2002-01-31 Toray Ind Inc ポリ乳酸繊維
JP4078855B2 (ja) 2001-03-29 2008-04-23 東レ株式会社 ポリ乳酸ブロック共重合体、その製造方法、成形品およびポリ乳酸組成物
JP4770092B2 (ja) 2001-08-24 2011-09-07 財団法人名古屋産業科学研究所 ラクトンの開環重合用触媒、ポリエステルの製造方法、及びブロック共重合体の製造方法。
JP5157035B2 (ja) 2001-09-27 2013-03-06 東レ株式会社 ポリ乳酸樹脂組成物、その製造方法および成形品
JP4663186B2 (ja) 2001-09-28 2011-03-30 ユニチカ株式会社 ポリ乳酸ステレオコンプレックス繊維の製造方法
JP2003119626A (ja) 2001-10-12 2003-04-23 Nippon Ester Co Ltd 分割型ポリエステル複合繊維
JP3583097B2 (ja) 2001-10-23 2004-10-27 三菱樹脂株式会社 乳酸系樹脂成形体
JP3901989B2 (ja) 2001-11-01 2007-04-04 ユニチカ株式会社 嵩高性、伸縮性に優れたポリ乳酸系仮撚加工糸
JP3995467B2 (ja) 2001-12-20 2007-10-24 旭化成ケミカルズ株式会社 ポリオレフィン製微多孔膜
CN1246387C (zh) * 2001-12-28 2006-03-22 旭电化工业株式会社 聚乳酸型树脂组合物、模塑制品和其制备方法
JP4799796B2 (ja) 2002-02-15 2011-10-26 東レ株式会社 ポリ乳酸ブロック共重合体の製造方法
JP2004026876A (ja) 2002-06-21 2004-01-29 Mitsui Chemicals Inc ブロック共重合ポリ乳酸及びその製造方法
JP4220770B2 (ja) 2002-12-11 2009-02-04 三菱樹脂株式会社 印刷層を有する成形体、および、その製造方法
JP2004224990A (ja) * 2003-01-27 2004-08-12 Suzuki Motor Corp ポリ乳酸系ポリマー樹脂組成物とその成形品

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017164A (ja) * 1998-06-30 2000-01-18 Shimadzu Corp ポリ乳酸ステレオコンプレックスポリマー製造用ペレット、及びステレオコンプレックスポリマー成型物の製造方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791192B2 (en) 2006-01-18 2014-07-29 Teijin Limited Resin composition, molded article, and production methods thereof
WO2007083820A1 (ja) * 2006-01-18 2007-07-26 Teijin Chemicals Ltd. 樹脂組成物、成形品およびこれらの製造方法
CN101522798A (zh) * 2006-06-01 2009-09-02 东赛璐株式会社 聚乳酸类组合物构成的成型品
CN101522798B (zh) * 2006-06-01 2012-11-28 东赛璐株式会社 聚乳酸类组合物构成的成型品
WO2008013295A1 (en) * 2006-07-25 2008-01-31 Tohcello Co., Ltd. Polylactic acid stretched film
KR101403881B1 (ko) * 2006-07-25 2014-06-09 미쓰이 가가쿠 토세로 가부시키가이샤 폴리락트산계 연신 필름
JP5465877B2 (ja) * 2006-07-25 2014-04-09 三井化学東セロ株式会社 ポリ乳酸系延伸フィルム
TWI424009B (zh) * 2006-07-25 2014-01-21 Tohcello Co Ltd Polylactic acid - based extended film
CN101516973B (zh) * 2006-07-25 2013-07-17 东赛璐株式会社 聚乳酸类拉伸膜
US7993745B2 (en) 2006-07-25 2011-08-09 Tohcello Co., Ltd. Polylactic acid stretched film
JP2008088402A (ja) * 2006-07-25 2008-04-17 Tohcello Co Ltd ポリ乳酸系延伸フィルム
JP2011140666A (ja) * 2006-07-25 2011-07-21 Mitsui Chemicals Tohcello Inc ポリ乳酸系延伸フィルム
JP2008062589A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系離型フィルム
JP2008062586A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系ガスバリア性フィルム
JP2008062588A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系積層体
JP2008062590A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd 収縮包装用ポリ乳酸フィルム
JP2008062591A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系多層フィルム
JP2008062587A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系積層フィルム
WO2008032964A1 (en) * 2006-09-11 2008-03-20 Sk Chemicals Co., Ltd. Solvent adhesive composition for polyester
WO2008032965A1 (en) * 2006-09-11 2008-03-20 Sk Chemicals Co., Ltd. Adhesive composition for polyester having the excellent transmittance
US8163849B2 (en) * 2007-02-09 2012-04-24 Teijin Limited Process of producing polylactic acid
WO2008120821A1 (ja) * 2007-03-29 2008-10-09 Teijin Limited ポリ乳酸組成物
US20100130676A1 (en) * 2007-03-30 2010-05-27 Teijin Limited Polylactic acid composition and fiber thereof
WO2008120807A1 (ja) * 2007-03-30 2008-10-09 Teijin Limited ポリ乳酸組成物およびそれよりなる繊維
WO2008120825A1 (ja) * 2007-03-30 2008-10-09 Teijin Limited ポリ乳酸組成物
JP2008248162A (ja) * 2007-03-30 2008-10-16 Teijin Ltd ステレオコンプレックスポリ乳酸フィルム
WO2009078381A1 (ja) * 2007-12-18 2009-06-25 Teijin Limited バイオマス原料から成るボタンおよびその製造方法

Also Published As

Publication number Publication date
US20080039579A1 (en) 2008-02-14
EP1780234A1 (en) 2007-05-02
TW200611940A (en) 2006-04-16
BRPI0513553A (pt) 2008-05-06
KR101240218B1 (ko) 2013-03-07
CA2575049A1 (en) 2006-01-26
US8304490B2 (en) 2012-11-06
KR20070043796A (ko) 2007-04-25
TWI389971B (zh) 2013-03-21
EP1780234A4 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
WO2006009285A1 (ja) ポリ乳酸およびその製造方法
Simmons et al. Improvements in the crystallinity and mechanical properties of PLA by nucleation and annealing
JP5046491B2 (ja) ステレオコンプレックスポリ乳酸を含有する樹脂組成物の製造方法
CN1989171B (zh) 聚乳酸及其制备方法
JP5620061B2 (ja) ポリ乳酸ブロック共重合体の製造方法
Bai et al. Low-temperature sintering of stereocomplex-type polylactide nascent powder: effect of crystallinity
JP5175421B2 (ja) ステレオコンプレックスポリ乳酸およびその製造方法
Huang et al. Sulfonated biodegradable PBAT copolyesters with improved gas barrier properties and excellent water dispersibility: From synthesis to structure-property
JP2008069271A (ja) ポリラクチドの製造方法
Zhang et al. Inducing stereocomplex crystals by template effect of residual stereocomplex crystals during thermal annealing of injection-molded polylactide
WO2008096895A1 (ja) ポリ乳酸の製造方法
Li et al. Simultaneous improvement of the foaming property and heat resistance in polylactide via one-step branching reaction initiated by cyclic organic peroxide
JP5461755B2 (ja) ポリ乳酸
Baimark et al. Flexible and high heat-resistant stereocomplex PLLA-PEG-PLLA/PDLA blends prepared by melt process: Effect of chain extension
JP5250178B2 (ja) ステレオコンプレックスポリ乳酸、その製造方法、組成物および成形品
JP5794498B2 (ja) ポリ乳酸樹脂組成物
Torres et al. Effect of multi‐branched PDLA additives on the mechanical and thermomechanical properties of blends with PLLA
Zheng et al. Fabrication of recyclable and biodegradable PBAT vitrimer via construction of highly dynamic cross-linked network
JPWO2005054366A1 (ja) ポリ(3−ヒドロキシアルカノエート)組成物およびその成形体
WO2008120821A1 (ja) ポリ乳酸組成物
JP2006045428A (ja) 生分解性複合体
JP5323312B2 (ja) ポリラクチドの製造方法
JP2004359840A (ja) 樹脂組成物、その成形品および分散助剤
JP2010059354A (ja) ポリ乳酸組成物
Kang et al. Biodegradable stereocomplex polylactide having flexible ɛ-caprolactone unit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077001435

Country of ref document: KR

Ref document number: 2575049

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580024662.1

Country of ref document: CN

Ref document number: 252/CHENP/2007

Country of ref document: IN

Ref document number: 11658093

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2005767665

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005767665

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005767665

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11658093

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0513553

Country of ref document: BR