WO2005071362A1 - 磁気エンコーダ及び軸受 - Google Patents

磁気エンコーダ及び軸受 Download PDF

Info

Publication number
WO2005071362A1
WO2005071362A1 PCT/JP2005/000526 JP2005000526W WO2005071362A1 WO 2005071362 A1 WO2005071362 A1 WO 2005071362A1 JP 2005000526 W JP2005000526 W JP 2005000526W WO 2005071362 A1 WO2005071362 A1 WO 2005071362A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnet
slinger
encoder
resin
Prior art date
Application number
PCT/JP2005/000526
Other languages
English (en)
French (fr)
Inventor
Tosikazu Yabe
Takesi Murakami
Nariaki Aihara
Tosimi Takazyou
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34812175&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005071362(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2004024111A external-priority patent/JP2005214874A/ja
Priority claimed from JP2004289967A external-priority patent/JP4178412B2/ja
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to US10/586,990 priority Critical patent/US7592798B2/en
Priority to EP18190038.2A priority patent/EP3495782B1/en
Priority to US16/437,837 priority patent/USRE48526E1/en
Priority to EP14193662.5A priority patent/EP2865999B1/en
Priority to EP05703763.2A priority patent/EP1707923B1/en
Publication of WO2005071362A1 publication Critical patent/WO2005071362A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7869Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward
    • F16C33/7879Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward with a further sealing ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3248Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings provided with casings or supports
    • F16J15/3252Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings provided with casings or supports with rigid casings or supports
    • F16J15/3256Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings provided with casings or supports with rigid casings or supports comprising two casing or support elements, one attached to each surface, e.g. cartridge or cassette seals
    • F16J15/326Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings provided with casings or supports with rigid casings or supports comprising two casing or support elements, one attached to each surface, e.g. cartridge or cassette seals with means for detecting or measuring relative rotation of the two elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders

Definitions

  • the present invention relates to a magnetic encoder and a bearing used for detecting the number of rotations of a rotating body.
  • an anti-skid to prevent skid of an automobile (a phenomenon in which a wheel slips in a substantially stopped state) or a traction control to effectively transmit a driving force to a road surface (there is no need for a drive wheel which is likely to occur during starting or acceleration)
  • the rotation speed detection device used for such applications as an idle rotation control detects an annular encoder in which the N and S poles are alternately magnetized in the circumferential direction, and detects changes in the magnetic field near the encoder.
  • the encoder is installed in a sealing device for sealing the bearing that supports the wheel, and the encoder is rotated together with the rotation of the wheel, and the magnetic field change synchronized with the rotation of the wheel is detected by the sensor.
  • Patent Documents 1 and 2 are known (for example, see Patent Documents 1 and 2).
  • the rotation speed detecting device with a seal described in Patent Document 1 includes a seal member 302 attached to an outer ring 30la, a slinger 303 fitted to an inner ring 301b, and a slinger 303.
  • An encoder 304 is attached to the outer surface of the encoder and generates a magnetic pulse
  • a sensor 305 is disposed close to the encoder 304 and detects a magnetic noise.
  • the seal member 302 and the slinger 303 prevent foreign substances such as dust and water from entering the inside of the bearing, and the lubricant filled in the bearing. Is prevented from leaking to the outside of the bearing.
  • the encoder 304 generates a number of magnetic pulses corresponding to the number of poles during one rotation of the inner ring 301b, and detects the number of rotations of the inner ring 301b by detecting this magnetic pulse with the sensor 305.
  • a rubber magnet in which a magnetic substance powder is mixed into rubber is used for a magnetic encoder used for a wheel bearing.
  • the magnetic encoder consisting of a rubber magnet is suitably bonded to the slinger by vulcanization bonding, so it occurs in a severe temperature environment (140 ° C-120 ° C)
  • the difference in thermal expansion and contraction with the slinger can be absorbed by its elastic deformation. For this reason, even under the above-mentioned temperature environment, the sticking property to the slinger is maintained, and the problem of peeling hardly occurs.
  • nitrile rubber containing ferrite is used as a magnetic powder in encoders, and the magnetic powder is mechanically oriented by kneading with a roll. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-255337
  • Patent Document 2 JP-A-2003-57070
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a highly reliable magnetic encoder and a bearing having high magnetic characteristics and capable of detecting a rotational speed with high accuracy. Is to do. Further, an object of the present invention is to provide a magnetic encoder and a bearing which can prevent a crack from being generated in a magnet portion and a magnet portion from falling off from a slinger which is a fixing member even under severe use conditions. It is in.
  • a magnetic encoder having a substantially annular magnet portion multipolarly magnetized in the circumferential direction.
  • thermoplastic resin contains at least a thermoplastic resin having a soft segment in a molecule.
  • Magnetic encoder according to (1)
  • the magnet portion is configured to contain the magnetic material and the resin, it is possible to mix a relatively large amount of magnetic material powder into the rubber magnet, and to obtain excellent magnetic characteristics.
  • the resin is preferably a thermoplastic resin, and more preferably contains a thermoplastic resin having a soft segment in the molecule, so that cracks are prevented from being generated in the magnet part. And reliability can be improved.
  • the magnet part is attached to the magnetic material.
  • the magnet part and the fixing member are joined by an adhesive containing at least one of a phenolic resin type and an epoxy resin type. Can be improved.
  • the magnet portion is formed by the disk gate type injection molding, the magnet material is injection-molded in a radial shape and has high mechanical strength without forming a weld portion.
  • the magnetic material contained in the encoder has a high degree of orientation and excellent magnetic properties.
  • FIG. 1 is a sectional view showing a rolling bearing unit according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a seal device including the magnetic encoder according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view showing an example in which a magnetic encoder is magnetized in multiple directions in a circumferential direction.
  • FIG. 4 (a) shows a surface of a slinger subjected to a chemical etching treatment observed by a microscope.
  • FIG. 4 (b) shows the surface of the slinger subjected to the chemical etching treatment observed with a microscope.
  • FIG. 4 (c) is a cross-sectional view showing a bonding state between the slinger and the magnet portion which have been subjected to the chemical etching treatment, observed with a microscope.
  • FIG. 5 is a schematic view showing a magnetic field injection molding machine.
  • FIG. 6 (a) is a cross-sectional view of a movable mold and a fixed mold that form a cavity.
  • FIG. 6 (b) is an enlarged sectional view of VI of FIG. 6 (a).
  • FIG. 7 is a cross-sectional view showing a seal device including a magnetic encoder according to a modified example of the first embodiment in which the shape of the magnet unit is different.
  • FIG. 8 is a sectional view showing a modified example of the hub unit bearing provided with the magnetic encoder of the first embodiment.
  • FIG. 9 is an enlarged sectional view showing a rolling bearing unit according to a second embodiment of the present invention.
  • FIG. 10 is a sectional view showing a rolling bearing unit according to a third embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a seal device including a magnetic encoder according to a third embodiment of the present invention.
  • FIG. 12 is a rolling bearing unit to which a magnetic encoder according to a fourth embodiment of the present invention is assembled. It is sectional drawing of a knit.
  • FIG. 13 is a front view of the slinger shown in FIG. 12.
  • FIG. 14 is a cross-sectional view of a principal part of the rolling bearing unit shown in FIG. 12, on the same plane as a cross section taken along the line XIV-XIV of the slinger shown in FIG.
  • FIG. 15 is a cross-sectional view of a principal part of the rolling bearing unit shown in FIG. 12 on the same plane as a cross section taken along the line XV-XV of the slinger shown in FIG. 13.
  • FIG. 14 is a sectional view of a mold used for injection molding of the encoder shown in FIG.
  • Garden 17 is a sectional view of a rolling bearing unit to which a magnetic encoder according to a fifth embodiment of the present invention is assembled.
  • FIG. 18 is a perspective view showing a bonding surface of a magnet part of the magnetic encoder.
  • FIG. 19 is a sectional view taken along the line XIX-XIX in FIG. 18.
  • Garden 20 is a perspective view showing a magnet part of a magnetic encoder that is a modification of the fifth embodiment.
  • 21 is a sectional view of a spindle device to which a magnetic encoder according to a sixth embodiment of the present invention is assembled.
  • FIG. 22 is a perspective view of a magnet part of the magnetic encoder shown in FIG. 21, and is a schematic view showing a magnetized pattern of the magnet part.
  • FIG. 23 is a sectional view taken along arrows XXIII-XXIII in FIG. 22.
  • FIG. 24 is a cross-sectional view of a rolling bearing unit including a magnetic encoder according to a seventh embodiment of the present invention.
  • FIG. 25 is an enlarged sectional view of a part surrounded by a dotted circle XXV in FIG. 24.
  • FIG. 26 is a plan view of the magnetic encoder shown in FIG. 24.
  • FIG. 27 is a sectional view taken along the line XXVn-XXVn in FIG. 26.
  • FIG. 28 is a plan view of a magnetic encoder according to a first modification of the seventh embodiment.
  • FIG. 29 is a sectional view taken along arrows ⁇ - ⁇ in FIG. 28.
  • FIG. 30 is a cross-sectional view of a magnetic encoder according to a second modification of the seventh embodiment.
  • FIG. 31 is a sectional view of a magnetic encoder according to a third modification of the seventh embodiment.
  • FIG. 32 is a sectional view taken along arrows ⁇ - ⁇ in FIG. 31.
  • FIG. 33 is a sectional view of a magnetic encoder according to a fourth modification of the seventh embodiment.
  • FIG. 34 is a sectional view of a magnetic encoder according to a fifth modification of the seventh embodiment.
  • FIG. 35 is a sectional view of a magnetic encoder according to a sixth modification of the seventh embodiment.
  • 36 is a sectional view of a magnetic encoder of a seventh modification of the seventh embodiment.
  • FIG. 37 is a sectional view of a hub unit bearing provided with an encoder according to an eighth embodiment of the present invention.
  • FIG. 38 is a plan view of the encoder in FIG. 37.
  • FIG. 39 is a sectional view taken along the line XXXIX-XXXIX in FIG. 38.
  • FIG. 40 is a perspective view of a magnet part of the magnetic encoder in FIG. 37 and a schematic view showing a magnetization pattern of a permanent magnet.
  • Garden 41 is a plan view of a magnetic encoder that is a modification of the eighth embodiment.
  • FIG. 42 is a sectional view taken along the line XXXXII-XXXXII in FIG. 41.
  • FIG. 43 is a perspective view showing a slinger roughened by press working.
  • FIG. 44 is a cross-sectional view showing a state where the slinger is pressed.
  • Garden 45 is a sectional view showing a seal device provided with a magnetic encoder of another modification of the first embodiment provided with a moisture-proof coating.
  • FIG. 47 is a cross-sectional view showing a conventional rolling bearing unit.
  • FIG. 1 shows, as an example of an embodiment of the present invention, a case where the present invention is applied to a hub unit bearing 2a which is a wheel bearing for supporting a non-driven wheel, which is supported on an independent suspension type suspension. ing. Since the configuration and operation other than the features of the present invention are the same as those of a conventionally widely known structure, the description will be simplified, and the following description will focus on the features of the present invention.
  • the hub unit bearing 2a includes an outer ring 5a that is a fixed ring, a hub 7a and an inner ring 16a that are rotating wheels (rotating bodies) that integrally rotate with a mounting flange 12 for fixing a wheel (not shown).
  • a plurality of rolling elements disposed so as to freely roll in the circumferential direction between the outer ring 5a, the hub 7a and the inner ring 16; Balls 17a, 17a, and a magnetic encoder 26.
  • the inner race 16a fitted to the small-diameter step portion 15 formed at the inner end of the hub 7a is formed by caulking and expanding the inner end of the hub 7a outward in the radial direction. By holding down the part, it is connected and fixed to the hub 7a.
  • the wheels are studs 8 which are planted at predetermined intervals in the circumferential direction on mounting flanges 12 formed at portions protruding from the outer ends of the outer ring 5a as fixed wheels at the outer end of the hub 7a. It can be connected and fixed freely.
  • the outer ring 5a can be connected and fixed to a knuckle (not shown) constituting a suspension device by a connecting flange 11 formed on the outer peripheral surface thereof.
  • a connecting flange 11 formed on the outer peripheral surface thereof.
  • a plurality of balls 17a, 17a guided by a retainer 18 are arranged in a rolling manner in the circumferential direction.
  • seal rings 21a and 21b are provided between the inner peripheral surfaces of both ends of the outer ring 5a, the outer peripheral surface of the intermediate portion of the hub 7a, and the outer peripheral surface of the inner end of the inner ring 16a, respectively. These seal rings 21a, 21b block the space provided with the balls 17a, 17a from the outer space between the inner peripheral surface of the outer race 5a and the outer peripheral surfaces of the hub 7a and the inner race 16a.
  • Each of the seal rings 21a and 21b is formed by bending a mild steel plate and reinforcing the elastic members 22a and 22b with core metals 24a and 24b each having an L-shaped cross section and an annular shape as a whole.
  • the respective cores 24a and 24b are fitted to both ends of the outer ring 5a by interference fit, and the tip of the seal lip formed by the respective elastic members 22a and 22b is formed as follows.
  • a slinger 25 externally fitted and fixed to the outer peripheral surface of the intermediate portion of the hub 7a or the outer peripheral surface of the inner end of the inner ring 16a is slid over the entire circumference.
  • the magnetic encoder 26 includes a slinger 25 as a fixed member, and a magnetic pole forming ring 27 as a magnet unit integrally joined to a side surface of the slinger 25.
  • the magnetic pole forming ring 27 is a multipolar magnet, and N poles and S poles are formed alternately in the circumferential direction.
  • a magnetic sensor 28 is disposed facing the magnetic pole forming ring 27 (see FIG. 1).
  • the magnetic material of the magnetic pole forming ring 27 of the magnetic encoder 26 contains 86 to 92% by weight (60 to 80% by volume) of magnetic powder for anisotropy, and a thermoplastic resin as a binder.
  • An anisotropic magnet compound can be suitably used.
  • magnetic powder strike Ferrites such as ronium ferrite and barium ferrite, and rare earth magnetic powders such as neodymium-iron-boron, samarium-cobalt, and samarium-iron can be used. When a rare earth-based magnetic powder is used, its oxidation resistance is lower than that of a ferrite-based magnetic powder.
  • an electric nickel plating or electroless nickel powder is used.
  • a surface treatment layer such as a kerme coating, an epoxy resin coating, a silicon resin coating, or a fluororesin coating may be provided on the encoder surface.
  • ferrite such as strontium fluoride is most preferable in consideration of weather resistance, and lanthanum and cobalt are mixed to further improve the magnetic properties of ferrite.
  • Part of the ferrite may be replaced with rare earth magnetic powders such as neodymium ferrous boron, samarium cobalt, and samarium-iron.
  • rare earth magnetic powders such as neodymium ferrous boron, samarium cobalt, and samarium-iron.
  • the content of the magnetic powder is less than 86% by weight, the magnetic properties are equal to or lower than those of a conventionally used ferrite rubber magnet, and it is difficult to perform multipole magnetization in a circumferential direction at a fine pitch. It is not desirable.
  • the content of the magnetic powder exceeds 92% by weight, the amount of the resin binder becomes too small, so that the strength of the entire magnet is lowered, and at the same time, the molding becomes difficult and the practicality is reduced. .
  • a thermoplastic resin that can be injection-molded is preferable, and a polyamide-based resin such as polyamide 6, polyamide 12, polyamide 612, or polyamide 11, and polyphenylene sulfide (PPS) are preferably used.
  • the encoder can be injection-molded in a magnetic field, and the magnetic powder in the encoder can be magnetically oriented.
  • the magnetic field orientation can increase the degree of orientation of the magnetic material as compared with the mechanical orientation, and can improve the magnetic properties.
  • thermoplastic resin having a soft segment in a molecule specifically, a hard segment made of a polyamide such as polyamide 12, and a polyether component are used.
  • the main component is a modified polyamide resin, which is a block copolymer having the following soft segments, and is selected from the group consisting of polyamide 12, polyamide 11, and polyamide 612 to maintain the balance between tensile strength and heat resistance. At least one type of It may be a mixture obtained by further mixing ordinary polyamide.
  • modified polyamide 12 resin having polyamide 12 as a hard segment examples include an aminocarboxylic acid compound represented by the formula (A1) and / or a ratatam compound represented by the formula (A2) and a formula (B) Triblock polyether diamine conjugates, and those obtained by polymerizing a dicarboxylic acid compound represented by the formula (C) are exemplified.
  • R 1 represents a linking group containing a hydrocarbon chain.
  • R 2 represents a linking group containing a hydrocarbon chain.
  • R 3 represents a linking group containing a hydrocarbon chain, and m is 0 or 1.
  • the aminocarboxylic acid compound and the Z or ratatam compound are based on the total amount of the compound of the formula (A1), the compound of the formula (A2), the compound of the formula (B) and the compound of the formula (C). It is preferably used in an amount of 10 to 95% by weight.
  • the compound of the formula (A1) and / or the compound of the formula (A2) is 15 to 70% by mass, and the total amount of the compound of the formula (B) and the compound of the formula (C) is 30 to 85% by mass. % Is preferably used.
  • R 1 in formula (A1) may include an alkylene group having 2 to 20 carbon atoms
  • R 2 in formula (A2) may include an alkylene group having 3 to 20 carbon atoms.
  • X is a numerical value of 2-6
  • y is a numerical value of 6-12
  • z is a force representing a numerical value of 1-5
  • X in Formula (B) is 2 It is preferred that -10 be a number, y be 13-28, and z be 1-9.
  • the modified polyamide 12 resin those having a melting point within a range of 145 to 176 ° C. and a flexural modulus within a range of 60 to 500 MPa can be suitably used.
  • the melting point is more preferably in the range of 150 to 162 ° C and the flexural modulus is in the range of 65 to 250 MPa.
  • a modified polyamide 12 resin having a melting point force of less than S145 ° C or a flexural modulus of less than 60 is used, flexibility of the magnet material as a whole is improved, but heat resistance, tensile strength, and the like are expected to decrease. Preferred les.
  • the flexural modulus exceeds 500 MPa, it is difficult to improve the bending deflection to a level where the effect of improving the flexibility is low and the effect of preventing crack generation is exhibited.
  • the plastic magnet material used in the present invention preferably has a domain orientation (axial anisotropy) in the thickness direction of the ring-shaped magnet, and has a maximum energy product (BHmax) of 1.3 in terms of magnetic properties. — 15MG ⁇ e, more preferably 1.8-12MG ⁇ e. If the maximum energy product is less than 1.3MG ⁇ e, the magnetic properties are too low, and it is necessary to arrange the sensor with the sensor very close to detect the rotation speed. There is not much difference from rubber magnets, and no performance improvement can be expected.
  • BHmax maximum energy product
  • the magnetic material of the present invention comprises, as main components, 86-92% by weight of strontium ferrite for anisotropy and 11-% modified polyamide 12 resin. 7% by weight and 11% by weight of polyamide 12
  • at least one specific material selected from benzenesulfonic acid alkylamides, toluenesulfonic acid alkylamides, and hydroxybenzoic acid alkyl esters is used.
  • the plasticizer may contain about 0.1 to 14% by weight of the total weight.
  • benzenesulfonic acid alkylamides include benzenesulfonic acid pentopenoleamide, benzenesulfonic acid butylamide, and benzenesulfonic acid 2-ethylhexylamide.
  • Specific examples of the toluenesulfonic acid alkylamides include N-ethynole o_ or N-ethyl-p-toluenesulfonic acid butylamide, N-ethynole_o_ or N-ethynole-p-tonoleenesulfonic acid 2_ethyl.
  • Xylamide and the like can be mentioned.
  • alkyl hydroxybenzoates include o_ or p-ethylhexyl hydroxybenzoate, o_ or hexyldecyl p-hydroxybenzoate, o_ or p-ethylethyl benzoate, o_ or Examples thereof include otatyl p-hydroxybenzoate, o_ or decyl dodecyl p-hydroxybenzoate, and o- or dodecinole p-hydroxybenzoate.
  • benzenesulfonic acid butylamide, p-hydroxyethyl hexyl hexyl, and p-hydroxybenzoic acid hexinoledecinole are particularly preferred because of their compatibility with resins, low bleed-out properties, and heat resistance.
  • various additives such as a silane coupling agent and an antioxidant for improving the dispersibility of ferrite and the adhesion to polyamides may be added.
  • the plastic composition constituting the magnetic encoder according to the present invention has toughness.
  • a carboxylated styrene-butadiene rubber vulcanizate fine particles are added, and to improve the adhesiveness, for example, a copolymer containing glycidyl methacrylate as a component.
  • An agent may be appropriately added.
  • the thermoplastic resin is a modified polyester which is a block copolymer having at least one hard segment of polybutylene terephthalate or polybutylene naphthalate and at least one soft segment of a polyether component or a polyester component.
  • an iron-based magnetic material is used without deteriorating the magnetic characteristics of the magnetic encoder and from the usage environment.
  • the corrosion resistance and cost may be appropriately determined.
  • a magnetic material such as a ferritic stainless steel (SUS430 or the like) or a martensitic stainless steel (SUS410 or SUS420) having a certain level of corrosion resistance is most preferable.
  • the surface of this stainless steel slinger can be either a bright finish such as BA5 or a finish such as No. 2B where fine irregularities remain on the surface if the adhesive is selected.
  • mechanical surface roughening such as shot blasting, surface roughening with chemical etching performed in the following steps, or press shown below It is preferable to perform a roughening process during processing.
  • the first step of the surface roughening treatment accompanied by the chemical etching treatment after cleaning the surface of the slinger 25 with an alkaline degreasing agent, it is immersed in a dilute hydrochloric acid or the like at room temperature for several minutes and then pickled. Both are immersed in an iron oxalate treatment solution containing oxalate ions and fluorine compound ions for several minutes to form an iron oxalate film on the surface.
  • the magnetic stainless steel back yoke on which the iron oxalate film is formed is immersed in an aqueous solution of a mixed acid of nitric acid and hydrofluoric acid at room temperature for several minutes, so that the underlying stainless steel is not immersed.
  • a third step of further improving the heat resistance or the adhesiveness of the adhesive may be performed.
  • the treatment for improving the anti-dust property include force S, which is the iron oxalate film treatment used in the second step, and fine crystals that do not cover the uneven surface formed in the second step. Is preferred.
  • a method of forming a crystal nucleus by immersion treatment in a surface conditioning liquid before the treatment is effective.
  • silane coupling agent film acts as a primer for the adhesive, and one having an amino group, an epoxy group, or the like that is highly reactive with the functional group of the adhesive at one end is preferred. It is ethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, or the like, and is formed by immersing in a diluent such as alcohol and drying as necessary.
  • the thickness of the film formed in the third step is 0.01-1. 0 / im, more preferably 0.01-1. 5xm. If the thickness of the film is less than 0.1 Ol x m, the effect of improving the heat resistance and the adhesiveness of the adhesive becomes poor, which is not preferable. On the other hand, if the thickness of the film exceeds 1.O x m, the rate of covering the uneven surface provided in the second step is undesirably increased. The state of the unevenness of the surface of the slinger obtained by performing the second step or the third step is 0.2-2.0 ⁇ m as the arithmetic average height Ra specified in JIS B 0601 (2001). The maximum height Rz is about 1.5 x 10 xm.
  • the state of the unevenness is less than the lower limit, it is difficult to exhibit the wedge effect.
  • the state of the irregularities exceeds the upper limit, the wedge effect improves accordingly, but it becomes difficult to achieve by the chemical etching method, the practicality decreases, and at the same time, the rubber seal lip with which the back side of the slinger contacts. Is unfavorable because the sealing property of the rubber is reduced.
  • the surface treatment solution used in the first step is treated with zinc ion, nickel ion, cobalt ion, or the like. Containing at least one heavy metal ion selected from the group consisting of ON, calcium ions and manganese ions and a phosphate ion, specifically, a zinc phosphate treatment solution, a manganese phosphate treatment solution, etc.
  • the ferritic stainless steel slinger 25 In the case of using the ferritic stainless steel slinger 25, the Cr 16- 20 mass 0/0, Mo and 0.5 4-2. 5 wt 0/0 containing for corrosion resistance ferritic stainless (SUS434, SUS4 44 etc.) may be used. In this case, the bonding surface of the slinger 25 with the magnetic pole forming ring 27 may be subjected to a chemical conversion treatment or may be subjected to the chemical etching treatment.
  • the surface roughening treatment at the time of press working is such that when a thin plate of an iron-based magnet material is press-formed between dies, only the joint surface of the slinger 25 is formed into fine irregularities provided on the die surface. Pressing and transferring, a fine uneven portion 25c is provided on the joint surface as shown in FIG.
  • the press forming machine 280 includes a base 282 having a cylindrical guide portion 281 having an outer diameter substantially equal to the inner diameter of the cylindrical portion 25a of the slinger 25.
  • An annular surface precision roughing die 283 externally fitted to the guide portion 281 on the base 282, and can be moved vertically above the roughing die 283, and has approximately the same outer diameter as the cylindrical portion 25a.
  • An annular pressing die 284 having an inner diameter of a diameter.
  • fine irregularities 283a are provided on the surface of the rough mold 283.
  • fine irregularities 283a are provided on the surface of the rough mold 283.
  • chemical etching, electric discharge machining, rolling, or cutting knurling is suitable.
  • the pressing die 284 is driven downward, and a thin plate of an iron-based magnet material provided between the roughing die 283 and the pressing die 284 is press-formed, whereby the outer peripheral surface of the guide portion 281 is formed.
  • a cylindrical portion 25a is formed between the cylindrical portion 25a and the inner peripheral surface of the pressing mold 284.
  • the bonding surface of the thin plate forming the slinger 25 is pressed against the unevenness 283a provided on the rough mold 283, so that the relatively high convex portion of the unevenness 283a is actually pressed preferentially.
  • Uneven portions 25c are formed in the smooth portions.
  • the depth of the concave portion of the concave-convex portion 25c is about 11 to 20 ⁇ m, and more preferably about 2 to 10 ⁇ m. If the depth of the recess is less than lzm, the depth is too small to enter the recess and exhibit the anchoring effect of the adhesive. If the depth of the recess exceeds 20 / m, make the projection provided on the mold 283 even deeper. Therefore, when transferring at the time of press molding, the smooth surface on the back side may be affected, which is not preferable.
  • the surface finish state of the smooth surface other than the joint surface is not particularly limited, but is not more than 0.1 lzm in Ra, BA2 (about RaO.06). , BA No. 5 (RaO. 03) or other AP finishes or No. 2B (RaO. 06) or other AP finishes are preferred. Considering the aggressiveness to the sliding seal lip,
  • an adhesive is applied to the magnet joint surface of the slinger 25, and the adhesive enters the unevenness provided by chemical etching or the like, and the adhesive state is firmly bonded to the metal side by the anchor effect.
  • the adhesive layer is an adhesive that undergoes a curing reaction during insert molding.
  • the adhesive layer is semi-cured by the high-pressure plastic magnet material melted during insert molding to such an extent that the adhesive layer is not detached and flows away.
  • the resin is completely cured by secondary heating after molding.
  • Usable adhesives include phenolic resin adhesives and epoxy resin adhesives, which can be diluted with a solvent and undergo a nearly two-step curing reaction, with heat resistance, chemical resistance, and handling properties. It is preferable in consideration of.
  • the phenolic resin-based adhesive is preferably used as a vulcanizing adhesive for rubber, and the composition thereof is not particularly limited.
  • novolak-type phenolic resin or resol-type phenolic resin, and hexamethylene A solution obtained by dissolving a curing agent such as tetramine in methanol or methyl ethyl ketone can be used.
  • a mixture of these with a novolak type epoxy resin may be used.
  • the phenolic resin-based adhesive used in the present embodiment contains at least a resole type phenolic resin and a bisphenol A type epoxy resin, and is cured at, for example, 100 ° C. to 120 ° C. for several minutes to about 30 minutes. Under the conditions, the slinger can be baked in a semi-hardened state to the extent that it is not washed away by the high-temperature and high-pressure molten plastic magnet material during insert molding. In addition, heat from the molten plastic magnet during insert molding and the subsequent heat It is completely cured by the next heating (eg, 130 ° C, about 2 hours). It should be noted that this phenolic resin-based adhesive has an inorganic filler (specifically, an effect of improving hardening distortion resistance).
  • Examples include fused silica powder, quartz glass powder, crystalline glass powder, glass fiber, alumina powder, talc, aluminum powder, titanium oxide), and bridge rubber fine particles (specifically, molecules) to improve flexibility.
  • Acrylonitrile butadiene rubber fine particles having a carboxyl group in the chain and vulcanized and having an average particle diameter of about 30 to 200 nm are the most preferable).
  • the resol-type phenolic resin constituting the phenolic resin-based adhesive is obtained by reacting phenols with formaldehyde in the presence of a basic catalyst.
  • the phenols used as raw materials include phenol, m_cresol, p_talesol, a mixture of m-talesol and o_talesol, p-third butylphenol, p-phenylphenol, bisphenolphenol A, etc. Any one having two or three substitutable nuclear hydrogen atoms at the o- and / or p-positions with respect to the phenolic hydroxyl group can be used.
  • the resol-type phenol resin used in the present embodiment may be a modified resol in which o- or p-alkylphenol is introduced into a phenol resin, for example.
  • o- or p-alkylphenol is introduced into a phenol resin, for example.
  • the introduction of o- or p-alkylphenol will improve the flexibility of the phenolic resin.
  • rosin-modified resole obtained by reaction of resole with butyl etherified resole perrosin obtained by etherifying resole with butyl alcohol may be used.
  • a bisphenol A-type epoxy resin is used as an additive in order to improve the adhesive performance and the curing properties of the adhesive.
  • the bisphenol A type epoxy resin there are liquid or solid at room temperature, and these are liquid resins per 100 parts by weight of the phenol resin contained in the adhesive according to the present invention. About 120 parts by weight, or about 5-30 parts by weight in the case of solid resin.
  • the proportion of bisphenol A-type epoxy resin used increases, the adhesive properties improve, but if antifreeze resistance is required, the performance tends to decrease.
  • a novolak epoxy resin or a novolak phenol resin may be added for the purpose of imparting toughness. These resins react with the resole-type phenol resin in the heating step, so that the higher the content, the higher the toughness. However, the content is desirably 30 parts by weight or less per 100 parts by weight of the resole phenol resin. This is because the use of a novolak type epoxy resin or a novolak type phenol resin in a higher ratio may adversely affect the adhesion to a plastic magnet.
  • the phenolic resin-based adhesive contains at least a resol-type phenolic resin in an organic solvent in which ketones such as acetone and methyl ethyl ketone, and alcohols such as methanol and ethanol are generally used. It is prepared and used as an organic solvent solution in which an adhesive composition containing bisphenol A type epoxy resin is dissolved at a solid content of about 5 to 40% by weight.
  • a magnetic encoder was coated on a stainless steel slinger, allowed to stand at room temperature for 20 to 60 minutes, air-dried, and then dried at about 120 ° C. Perform heat treatment (baking treatment) at C for about 30 minutes. The slinger that has been heated and the adhesive has been baked is set in a mold, and this is used as a core to insert-mold a plastic magnet material. Thereafter, the obtained molded body is heated (secondary curing) at about 130 ° C. for about 2 hours. Further, a magnetic encoder is manufactured by magnetizing the adhesive between the plastic magnet and the slinger obtained by the heat treatment into multiple poles using a yoke coil.
  • epoxy resin-based adhesive a one-pack type epoxy-based adhesive as a stock solution that can be diluted with a solvent is suitable. After evaporating the solvent, this one-part epoxy adhesive becomes a semi-cured state on the slinger surface at an appropriate temperature for a time that is not washed away by the high-temperature, high-pressure molten resin during insert molding. It is completely cured by heat from the resin at that time and secondary heating.
  • the one-pack type epoxy adhesive used in the present embodiment is composed of at least an epoxy resin and a curing agent.
  • the curing agent hardly undergoes a curing reaction near room temperature.
  • the thermosetting reaction is completed by applying high temperature heat of 120-180 ° C.
  • This adhesive includes other epoxy compounds used as a reactive diluent, a curing accelerator that improves the rate of heat curing, an inorganic filler that has the effect of improving heat resistance and curing distortion resistance, and a stress force S. Improves flexibility to deform when applied Crosslinked rubber fine particles to be added may be further added.
  • epoxy resin those having two or more epoxy groups in the molecule are preferable in that a crosslinked structure capable of exhibiting sufficient heat resistance can be formed. Further, those having 4 or less, more preferably 3 or less are preferred from the viewpoint that a low-viscosity resin composition can be obtained. If the number of epoxy groups contained in the molecule is too small, the heat resistance of the cured product tends to be low and the strength tends to be weak.On the other hand, if the number of epoxy groups contained in the molecule is too large, This is because there is a tendency that the curing shrinkage increases as the viscosity of the resin composition increases.
  • the number average molecular weight of the epoxy resin is preferably from 200 to 5500, particularly preferably from 200 to 1000 from the viewpoint of balance of physical properties. If the number average molecular weight is too small, the strength of the cured product tends to be weak and the moisture resistance tends to be low.On the other hand, if the number average molecular weight is too large, the viscosity of the resin composition will increase and the workability will not be adjusted. This tends to increase the use of reactive diluents.
  • the epoxy equivalent of the epoxy resin is preferably from 100 to 2800, particularly preferably from 100 to 500 because the compounding amount of the curing agent falls within an appropriate range. If the epoxy equivalent is too small, the amount of the curing agent becomes too large and the physical properties of the cured product tend to deteriorate.On the other hand, if the epoxy equivalent is too large, the amount of the curing agent decreases and This is because the tendency that the viscosity of the resin composition becomes higher as the molecular weight of the epoxy resin itself becomes larger is caused.
  • Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, glycidylamine type epoxy resin, alicyclic ring.
  • Examples thereof include a copolymer with another polymer such as a formula epoxy resin, a dicyclopentadiene type epoxy resin, a phenol novolak type epoxy resin, a polyester modified epoxy resin, and a silicon modified epoxy resin.
  • an amine-based curing agent As the curing agent, an amine-based curing agent, a polyamide-based curing agent, an acid anhydride-based curing agent, a latent curing agent, and the like can be used.
  • the amine-based curing agent is an amine compound and does not form an ester bond by a curing reaction. Therefore, the amine-based curing agent has excellent moisture resistance as compared with the case where an acid anhydride-based curing agent is used, and is preferred.
  • the amine compound may be any of an aliphatic amine, an alicyclic amine, and an aromatic amine.
  • the aromatic amine has a high storage stability at room temperature of the compound and a high heat resistance of a cured product. So the most preferred Les ,.
  • aromatic amines examples include 3,3, -diethyl-4,4, -diaminodiphenylmethane, 3,5-diethyl-2,6_toluenediamine, 3,5_diethyl-2,4_toluenediamine, And a mixture of 5,5-ethyl-2,6_toluenediamine and 3,5_ethyl-2,4_toluenediamine, and the like.
  • Polyamide-based curing agents also called polyamidoamines, are compounds having a plurality of active amino groups in the molecule and also having one or more amide groups.
  • Polyamide-based curing agents synthesized from polyethylene polyamine are preferred because imidazirine rings are generated by secondary heating, and compatibility with epoxy resins and mechanical properties are improved.
  • the polyamide-based curing agent can be used in the form of an adduct, in which a small amount of epoxy resin is pre-reacted, so that it has good compatibility with the epoxy resin, and has improved curing drying and water resistance. * Chemical resistance is improved. And preferred.
  • a particularly flexible and tough cured resin can be obtained by crosslinking with an epoxy resin, so that the magnetic encoder of the present invention has excellent thermal shock resistance and is suitable.
  • the cured product cured with an acid anhydride-based curing agent has a high heat resistance and excellent mechanical and electrical properties at high temperatures, but tends to be somewhat fragile. It can be improved by combining with a curing accelerator.
  • the acid anhydride-based curing agent include phthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methyleneendmethylenetetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, trimellitic anhydride, etc. Can be.
  • the latent curing agent has excellent storage stability at room temperature in a mixed system with an epoxy resin, and cures rapidly under conditions of a certain temperature or higher.
  • Examples of the latent curing agent include compounds having a high melting point such as 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, eicosannilic acid dihydrazide, adipic acid dihydrazide, dicyandiamide, and 7,11-octactadediene.
  • 1,18-dicarbohydrazide 1,18-dicarbohydrazide.
  • 7,11-octadedecadiene-1,18-dicarbohydrazide can be used as a curing agent to form a particularly flexible and tough cured resin by crosslinking with epoxy resin.
  • the magnetic encoder of the present invention has excellent thermal shock resistance required and is suitable.
  • the reactive diluent use may be made of t-butylphenyldaricidyl ether, 2-ethylhexynoleglycidinoleatenore, arinoleregisidinoleatenole, feninoleglycidinoleatenole, or the like.
  • the cured product can be given appropriate flexibility.
  • these reactive diluents are used in a large amount, they reduce the moisture resistance and heat resistance of the cured product, and therefore are preferably 30% or less, more preferably 30% or less, based on the weight of the main epoxy resin. It is added at a rate of 20% or less.
  • the curing accelerator preferably has sufficient storage stability without accelerating the curing reaction at room temperature, and promptly promotes the curing reaction when the temperature reaches 100 ° C or higher.
  • This compound has, for example, the general formula (I): R 3 [COO-CH (OR 2 ) -CH] (I)
  • R 3 has 2 to 10 carbon atoms and may be an n-valent hydrocarbon group which may contain at least one kind of nitrogen atom, oxygen atom, etc.
  • R 2 has 1 to 6 carbon atoms
  • It is a compound represented by a monovalent hydrocarbon group which may contain at least one kind of nitrogen atom, oxygen atom and the like
  • n is an integer of 16).
  • a specific example is shown in Chemical formula 5. [0079] [Formula 5]
  • R 3 is a divalent phenyl radical compound of R 2 is a propyl group
  • a compound of R 2 is a propyl group in R 3 is a trivalent phenyl group
  • the R 3 is a tetravalent Examples thereof include a phenyl group and a compound in which R 2 is a propyl group. These may be used alone or in combination of two or more. Among them, the compound represented by Chemical Formula 1 is most preferable in terms of balance between curing reactivity and storage stability.
  • imidazole compounds such as 2-methylimidazole, 2-ethynoleic 4-methylimidazole, 2-indesylimidazole, and 2-phenylimidazole may be used as curing accelerators. , Even good.
  • a carboxylic acid such as adipic acid, which is a compound having an active hydrogen that reacts with an epoxy group to cause a ring opening reaction
  • adipic acid As a curing accelerator, it reacts with the epoxy group of the epoxy resin and the amino group of the curing agent, and the resulting cured product becomes more flexible as the added amount of adipic acid is added. become.
  • the content of adipic acid added to the adhesive is 10 to 40% by weight, more preferably 20 to 30% by weight, based on the total amount of the adhesive. If the amount is less than 10% by weight, sufficient flexibility cannot be obtained.
  • adipic acid is also a starting material for a polyamide resin
  • a binder for the magnetic powder is a polyamide-based resin such as polyamide 12 or polyamide 6, it may not be possible to mix a very small amount of monomer or oligomer components remaining in the binder material itself.
  • the adhesive composition has a reactivity, and the adhesive composition containing adipic acid enables stronger adhesion. Further, as a curing accelerator, it acts as a catalyst for accelerating the ring-opening reaction of the epoxy group.
  • Tertiary amines such as dimethyl benzylamine, quaternary ammonium salts such as tetrabutylammonium bromide, 3_ (3 ′ , 4, dichloro mouth phenyl) -Alkyl urea such as 1,1-dimethyl urea may be added.
  • the ⁇ H group generated by the above-described ring-opening reaction forms a hydrogen bond with a hydroxyl group on the surface of the metal as the adherend, and also forms an amide bond of nylon as the binder material. By acting in a joint manner, a strong adhesive state can be maintained.
  • any conventionally used inorganic filler can be used without particular limitation.
  • fused silica powder, quartz glass powder, crystal glass powder, glass fiber, alumina powder, talc, aluminum powder, titanium oxide and the like can be mentioned.
  • crosslinked rubber fine particles those having a functional group capable of reacting with an epoxy group are preferable, and specifically, vulcanized acrylonitrile butadiene rubber having a carboxyl group in the molecular chain is most preferable. Finer particles are preferred, and ultrafine particles having an average particle diameter of about 30 to 20 Onm are most preferred in order to exhibit dispersibility and stable flexibility.
  • the one-component epoxy adhesive described above hardly undergoes a curing reaction at room temperature, for example, enters a semi-cured state at about 80 to 120 ° C, and generates heat at a high temperature of 120 to 180 ° C.
  • the thermosetting reaction proceeds completely.
  • the curing reaction proceeds at a relatively short time at 150 to 180 ° C, and most preferably the one which can be bonded by high-frequency heating at about 180 ° C.
  • the cured product of the above-described phenol resin-based adhesive or epoxy resin-based adhesive after heat curing has a flexural modulus or Young's modulus of 0.02 to 5 GPa, more preferably 0.03 to 4 GPa, as physical properties. Or a hardness (Duemeter D scale; HDD) in the range of 40-90, more preferably 60-85. If the flexural modulus or Young's modulus is less than 0.02 GPa, or the hardness (HDD) is less than 40, the adhesive itself is too soft and is deformed by the vibration during running of an automobile, etc., and the magnet easily moves due to the deformation. Therefore, there is a possibility that the detection accuracy of the rotational speed may be reduced, which is not preferable.
  • a flexural modulus or Young's modulus 0.02 to 5 GPa, more preferably 0.03 to 4 GPa, as physical properties. Or a hardness (Duemeter D scale; HDD) in the range of 40-90, more preferably 60-
  • the one-component epoxy adhesive 1J of the present invention is required to have thermal shock resistance assuming that it is used in automobiles, and more preferably has flexibility (deforms when subjected to stress) in a cured state. .
  • the surface of the slinger is subjected to a surface roughening treatment accompanied by chemical etching in the above-described step, and the surface is roughened as shown in the cross-sectional electron micrographs of FIGS. 4 (a)-(c). You. Then, injection molding (insert molding) of a plastic magnet material having a slinger whose core is baked in a semi-cured state on the surface as a core is performed using a magnetic field injection molding machine 80.
  • the magnetic field injection molding machine 80 includes a mold clamping device 82 and an injection device 83 on a support 81.
  • the mold clamping device 82 includes a movable section 86 movable by a movable mechanism 84 such as a toggle mechanism with respect to a housing 85 fixed to the support 81, a fixed section 87 fixed to the support 81, and a movable section 86. And four tie bars 88 for guiding between the housing 85 and the fixed portion 87.
  • the movable part 86 and the fixed part 87 include a movable mold 89 and a fixed mold 90, respectively.
  • coils 91 and 92 are arranged on the side surfaces of the movable portion 86 and the fixed portion 87, and are energized by a power supply 93.
  • the control device 94 is connected to the movable mechanism 84, the power supply device 91, and the emission device 83, and is configured to control these.
  • the movable-side mold 89 is composed of a plurality of movable-side mold pieces 89a-89c bolted to the abutment plate 95. It comprises a plurality of stationary mold pieces 90a-90c. A cavity 96 and a disk gate 97 are formed between the opposing surfaces of the movable mold 89 and the fixed mold 90. As a result, the molten plastic magnet material injected by the nozzle 98 force of the injection device 83 is filled into the cavity 96 from the spooner part 99 via the disk gate 97. As shown in FIG.
  • an annular space for accommodating the cylindrical fitting portion of the slinger 25 is formed between the movable-side mold pieces 89a and 89b, and the fixed-side mold located at the center is formed.
  • the mold piece 90a projects more toward the movable mold 89 than the fixed mold piece 90b located on the outer diameter side, and the fixed mold piece 90a is Located on top of.
  • the coil current is applied to the coils 91, 92 at both ends of the dies 89, 90. Then, the plastic magnet material is magnetized by the generated magnetic field in one direction (with the same polarity) to orient the magnetic powder. Thereafter, demagnetization occurs in the molds 89 and 90 during cooling, with a magnetic field in the direction opposite to the magnetization direction, and the initial coil current, which is higher than the coil current at the time of magnetization, reverses polarity and the amplitude changes.
  • Demagnetization is performed in at least one of the steps of reversal demagnetization in which a plurality of gradually decreasing pulse currents are applied to the coils 91 and 92 at both ends of the mold.
  • the adhesive is completely cured by heating at a constant temperature and a constant time in a constant temperature bath or the like. In some cases, it may be completely cured by heating at a high temperature for a short time by high frequency heating or the like.
  • the magnetic flux is further demagnetized to a magnetic flux density of 2 mT or less, more preferably lmT or less, using a well-known oil condenser type demagnetizer.
  • the magnet is superposed on a well-known magnetized yoke and magnetized in multiple poles to complete the manufacture of the magnet part.
  • the number of poles of the magnet part is about 70 to 130 poles, preferably 90 to 120 poles. If the number of poles is less than 70, the number of poles is too small, and it becomes difficult to accurately detect the number of rotations. On the other hand, when the number of poles exceeds 130 poles, each pitch becomes too small, and it is difficult to suppress a single pitch error to a small degree, and the practicality is low.
  • the encoder portion is formed by a disk gate method in which the plastic magnet material melted from the inner diameter thick portion simultaneously flows into the mold at a high pressure and is rapidly cooled and solidified in the mold.
  • Injection molding insert molding
  • the molten resin spreads in a disk shape it flows into the mold corresponding to the thickness portion of the inner diameter, whereby the flake-shaped magnetic powder contained therein is oriented parallel to the surface.
  • the portion between the inner diameter portion and the outer diameter portion, which is detected by the rotating sensor, near the inner diameter thickness portion is very close to the axial anisotropy oriented in the thickness direction, which has higher orientation. I have.
  • the anisotropy becomes closer to perfect.
  • the gate is formed of a material other than the disk gate, for example, a side gate, the resin viscosity gradually increases toward solidification. It is difficult to completely anisotropy, and as a result, the magnetic properties deteriorate. In addition, cracks and the like may occur due to long-term use in the weld portion where the mechanical strength decreases, which is not preferable. Therefore, in the present embodiment, insert molding is performed using a disk gate in a state where a magnetic field is applied in the thickness direction using the slinger as a core.
  • the color of the magnetic pole forming ring 27 of the formed magnetic encoder 26 is black due to the ferrite powder contained therein, but slightly changes depending on the additive. Further, as shown in FIG. 2, the magnetic material also goes around the outer peripheral portion of the flange portion of the slinger 25 and is mechanically joined.
  • the magnet portion is configured to contain the magnetic material and the resin, a relatively large amount of magnetic material powder can be mixed into the rubber magnet.
  • the magnet portion is made of a plastic magnet material having a binder of a thermoplastic resin containing 86 to 92% by weight of a magnetic substance powder, and the magnet portion is formed at the time of insert molding.
  • the magnet part is chemically bonded to the slinger made of magnetic material by the adhesive that progresses in the curing reaction, so the magnet part has good magnetic characteristics and enables multi-pole magnetization in the circumferential direction at a fine pitch. At the same time, the strength of the entire magnet can be secured.
  • the magnet portion is made of a magnet material containing a ferrite-based magnetic powder and a thermoplastic resin, and the magnet portion is integrally joined to a slinger made of the magnetic material. Since the magnet part has a thickness of 3. Omm and a bending deflection at 23 ° C in the range of 2-10 mm, the bending deflection is increased and the crack resistance is improved. Therefore, even when the slinger is used as a core and mechanically joined by insert molding, stresses such as high temperature, low temperature, and thermal shock at the transition between high and low temperatures that expose the undercarriage of the vehicle are magnetic. It is possible to effectively prevent cracks from being generated in the magnet part when hitting the stone part, and it is possible to significantly improve the reliability.
  • the amount of flexure is given by containing a modified polyamide 12 resin as a binder.
  • the slinger performs the chemical etching process. Since it is made of a roughened iron-based magnetic material, the adhesive between the slinger and the magnet is improved by the wedge effect of the adhesive.
  • the method for manufacturing a magnetic encoder according to the present embodiment it is possible to manufacture a highly reliable magnetic encoder that does not peel off from the slinger and fall off even under severe use conditions. .
  • the magnetic powder in the plastic magnet obtained by the manufacturing method of the present embodiment is highly oriented in the thickness direction of the annular magnet, the magnetic properties of the encoder obtained by its magnetization are extremely good. It will be. For this reason, depending on the content of the magnetic substance powder in the magnet, it is possible to improve the magnetic flux density from about 20 mT in the past to 26 mT or more.
  • the gap between the magnetic encoder and the sensor is set to lmm as before, the multipole magnetized in the past was multipole magnetized to 96 poles, while maintaining the magnetic flux per pole to 120 poles or more. It is possible to do.
  • the single pitch error can be less than ⁇ 2%. That is, according to the magnetic encoder of this embodiment, when the air gap is the same as the conventional one, the force S can be increased to increase the number of poles and improve the detection accuracy of the rotational speed of the wheel. Further, when the number of poles of the plastic magnet according to the present embodiment is the same as the conventional number, the air gap can be increased, and the degree of freedom in arranging the sensors can be improved.
  • the joint may be joined only to the surface of the flange portion.
  • a moisture-proof coating 290 is provided on the joined slinger 25 and the magnetic pole forming ring 27 so as to cover at least the joining boundaries a and b of each other. moisture May be suppressed to a minimum.
  • the material for forming the moisture-proof coating 290 includes an amorphous fluorine resin, a curable urethane resin, a curable acrylic resin, a curable epoxy resin, and a polyparaxylylene derivative.
  • an amorphous fluororesin film and a polyparaxylylene derivative which have a water repellency S on the resin itself, are particularly preferable because of their high effect of suppressing moisture permeation.
  • the moisture barrier coating 290 only needs to cover at least the joint boundaries a and b of each other from the viewpoint of cost and cost covering the entire slinger 25 and the magnetic pole forming ring 27. It is preferable that there is no moisture-proof coating on the sliding part.
  • the opening end on the side where the magnetic encoder 26 is provided (the opening end on the vehicle side) is sealed by the hub cap 29 fitted inside the outer ring 5a, so that the slinger
  • the slinger 25 used alone can be used as a fixing member of the pole forming ring 27 without the necessity of providing a separate sealing member for sliding contact with 25.
  • the opening end is sealed by the hub cap 29, the function of a slinger that prevents oil and dirt from flying out due to centrifugal force and acts as a pump to prevent oil from flowing out and dirt from entering is not necessarily required. do not need. Therefore, the fixing member of the magnetic pole forming ring 27 is not limited to the slinger.
  • the magnetic encoder 26 and the sensor 28 are of a type that faces in the axial direction.
  • the hub unit bearing 30 of the present embodiment as shown in FIG.
  • the sensor 32 faces in the radial direction.
  • an annular slinger 33 which is a fixing member, is externally fitted and fixed to the outer peripheral surface of the inner end portion of the inner ring 16a, and the inside of the slinger 33 extending in the axial direction from the inner ring 16a.
  • a magnetic pole forming ring 34 which is a magnet part, is attached to the peripheral surface.
  • a cover member 35 which is a stationary member, is fixed on the outer peripheral surface of the outer ring 5a so as to cover an axial end of the hub unit bearing 2a.
  • a sensor 32 is provided in an opening formed in the cover member 35. It is mounted so as to face the magnetic pole forming ring 34 in the radial direction.
  • composition and molding method of the magnetic encoder 31 are the same as those of the first embodiment.
  • the diameter of the surface to be detected can be made larger with respect to the same space as compared with the magnetic encoder facing in the axial direction.
  • Each pitch width can be made large and easy to manufacture.
  • the rolling bearing unit 40 including the magnetic encoder includes an outer ring 41 as a fixed ring, an inner ring 42 as a rotating ring (rotary body), and an outer ring.
  • a plurality of balls 43 which are rolling elements rotatably arranged in an annular gap defined by an inner ring 41 and an inner ring 42 and held at equal intervals in a circumferential direction by a retainer 44, and an opening end of the annular gap;
  • a sealing device 45, a magnetic encoder 46, and a sensor 47 are provided.
  • the sealing device 45 has a seal member 50 mounted on the inner peripheral surface of the outer ring 41, and a slinger 60 disposed outside the bearing with respect to the seal member 50 and fixed to the outer peripheral surface of the inner ring 42.
  • the seal member 50 and the slinger 60 close the opening end of the annular gap to prevent foreign matter such as dust from entering the inside of the bearing and to leak the lubricant filled in the bearing. Has been prevented.
  • the magnetic encoder 46 includes a slinger 60 and a magnet unit 70 attached to the slinger 60.
  • the magnet unit 70 is fixed to the inner ring 42 using the slinger 60 as a fixing member.
  • the seal member 50 is configured by reinforcing an elastic material 52 also formed in an annular shape having a substantially L-shaped cross section with a core metal 51 formed in an annular shape having a substantially L-shaped cross section. It is fitted inside.
  • the distal end of the elastic member 52 is branched into a plurality of sliding contact portions, and each sliding contact portion is entirely formed on the end face of the flange portion 62 of the slinger 60 facing the inside of the bearing or the outer peripheral surface of the fitting portion 61. They are in sliding contact with each other over the circumference. Thereby, a high sealing force is obtained.
  • the slinger 60 is formed in an annular shape having an L-shaped cross section, and is externally fitted to the outer peripheral surface of the inner ring 42.
  • a substantially cylindrical fitting portion 61, a flange-shaped flange portion 62 radially expanded from one end of the fitting portion 61, and a flange portion 62 by bending one end of the fitting portion 61 are formed.
  • a protrusion 63 protruding axially outward from the flange 62 on the inner diameter side.
  • Notches 64 formed at a plurality of positions in the circumferential direction are provided on the outer peripheral surface of the protrusion 63.
  • a magnet portion 70 that changes a nearby magnetic field (for example, magnetic flux density) in synchronization with the rotation of the inner ring 42 is joined to an end surface (hereinafter, referred to as a joint surface) 62a of the flange portion 62 that faces the outside of the bearing. Have been. At the same time, the magnet part 70 is also mechanically joined to the notch part 64 and the outer peripheral part of the flange part 62.
  • composition and molding method of the magnetic encoder 46 are the same as those of the first embodiment.
  • a plurality of molten magnet materials are provided in the circumferential direction of the protrusion 63 provided on the inner diameter side. It also flows into the notch portion 64 and is mechanically joined. As a result, the shrinkage of the magnet material is also received by the protruding portion 63 on the inner diameter side that is not limited to the outer diameter portion of the flange portion 62, and the frequency of cracking of the magnet portion caused by thermal shock or the like is further reduced. be able to.
  • the magnetic encoder 46 of the present embodiment can also be used by being incorporated in a hub unit bearing as shown in FIG.
  • the rolling bearing unit 100 rolls into an outer ring 41 which is a fixed ring, an inner ring 42 which is a rotating ring, and an annular gap defined by the outer ring 41 and the inner ring 42.
  • Balls 43 which are a plurality of rolling elements movably arranged and held at equal intervals in a circumferential direction by a retainer 44, a sealing device 45 disposed at an opening end of the annular gap, and an inner ring 42.
  • a magnetic encoder 120 for detecting the number of rotations and a sensor 47 are provided.
  • the sealing device 45 is fixed to the inner peripheral surface of the outer race 41 and includes a seal member 50 having a cored bar 51 and an elastic material 52, and an inner race that is disposed outside the opening end of the seal member 50. 42 outer circumference
  • the slinger 110 is fixed to the inside of the bearing, and the seal member 50 and the slinger 110 close the opening end of the annular gap to prevent foreign matter such as dust from entering the inside of the bearing and to fill the inside of the bearing. This prevents the leaked lubricant from leaking out of the bearing.
  • the magnetic encoder 120 is configured by joining an annular magnet part 121 to a slinger 110 as a fixing member, and rotates together with the inner ring 42.
  • the slinger 110 is formed by forming a magnetic material into an annular shape having an L-shaped cross section.
  • the slinger 110 has a substantially cylindrical fitting portion 112 fitted on the outer peripheral surface of the inner ring 42, and the opening end of the fitting portion 112. And a substantially disk-shaped flange portion 111 extending in the radial direction from one end of the portion.
  • a plurality of locking portions 113 which are notched in a concave shape are provided on the outer peripheral edge of the flange portion 111 at equal intervals in the circumferential direction, and the flange portion 111 is provided at equal intervals in the circumferential direction.
  • a through hole 114 is formed.
  • a magnetic encoder 120 that changes a nearby magnetic field (for example, magnetic flux density or the like) in synchronization with the rotation of the inner ring 42 is joined to an end face outside the open end of the flange portion 111.
  • the magnet portion 121 includes an annular magnetized portion 122 having a substantially rectangular cross section, a plurality of locking pieces that engage with the locking portion 113 of the slinger 110, and a connecting portion that connects the plurality of locking pieces. 123 is provided. Therefore, the locking portion 113 and the locking piece are engaged with each other, and the flange portion 111 is sandwiched between the magnetized portion 122 and the connecting portion 123 of the encoder 120, so that the magnet portion 121 and the slinger 110 are mechanically connected. Joined. Further, the molten magnet material is also filled in the through hole 114 of the flange 111, and the magnet 121 and the slinger 110 are mechanically joined.
  • the magnet portion 121 is formed by injection-molding a magnet material containing a magnetic powder appropriately in the range of 86 to 92% by weight and using a thermoplastic resin as a binder.
  • the core is insert molded.
  • the molten magnet material is filled into the locking portion 113 of the slinger 110 to form a locking piece, and the flange portion 111 is adjacent to the inner end face of the flange at the opening end.
  • An annular space in a mold provided to connect the locking pieces is also filled to form a connecting portion 123. Since the locking portion 113 and the locking piece are engaged, and the magnetized portion 122 and the connecting portion 123 of the magnet portion 121 sandwich the flange portion 111, the magnet portion 121 and the slinger 110 are mechanically connected. Are joined.
  • the magnetized portion 122 has S poles and N poles alternately (ie, multipole) at equal intervals in the circumferential direction. Magnetized. Inner ring 42 rotates Meanwhile, the magnetic flux density at one point near the magnetic encoder 120 changes periodically with the number of peaks corresponding to the number of poles of the magnetized portion 122. Then, a change in the magnetic flux density is detected by a sensor 47 disposed opposite to the axial end face of the magnet portion 121 facing the outside of the bearing, and the rotation speed of the inner ring 42 is detected.
  • magnet section 121 of magnetic encoder 120 has movable mold plate 131, core 132, fixed Tsukuda J-shaped plate 133, ejector pin 134a for spnole, and ejector pin 134b. Molded using an injection molding machine.
  • the movable mold plate 131 has a nozzle hole 135 formed at the center of the upper side surface to which a nozzle of an injection molding machine is connected and into which molten magnetic material is injected.
  • the sprue 136 is formed to penetrate to the lower surface.
  • the sprue 136 is an inflow path of the magnetic material from the nozzle of the injection molding machine to the runner 137, and is formed in a tapered shape having a larger diameter on the runner 137 side than the nose hole 135. This facilitates the removal of the magnet material (compact) solidified by the sprue 136.
  • the runner 137 is a resin inflow path from the sprue 136 to the gate 138, and is a space defined by a substantially disk-shaped recess provided in the fixed mold plate 133 and a lower surface of the movable mold plate 131. .
  • a reverse tapered sprue lock is provided at the center of the bottom surface of the runner 137 as a stopper in the direction of taking out the molded body.
  • the template 131 and the molded body can be separated smoothly.
  • a sprue ejector pin 134a is provided below the sprue lock, and pushes up the molded body from below to separate the molded body from the
  • the gate 138 is an inlet for the magnet material to flow from the runner 137 into the cavity 139, and the cavity 139 is a space for shaping the shape of the magnet 121.
  • the cavity 139 includes an annular concave portion corresponding to the shape of the magnet portion 121 provided on the core 132 holding a slinger (not shown), a peripheral surface of the fixed-side mold plate 133, and a lower surface of the movable-side mold plate 131. It is a space defined by.
  • a plurality of ejector pins 134b are provided on the bottom surface of the cavity 139 in the circumferential direction. After injection molding, the magnet portion 121 is pushed up from below to separate the magnet portion 121 from the core 132.
  • the gate 138 is an annular space that connects the outer periphery of the runner 137 and the inner periphery of the cavity 139 over the entire circumference so that the runner 137 and the cavity 139 communicate with each other. is there.
  • the magnet portion 121 is configured such that the molten magnet material flows into the runner 137 from the nozzle port 135 through the spooner 136, is injected from the disk gate 138 into the cavity 139 at high pressure, and It is formed by quenching and solidifying.
  • the magnetic material injected from the disk gate 138 at high pressure spreads radially from the inner periphery of the cavity 139 and is uniformly filled in the cavity 139, so that the molten magnet materials do not collide with each other.
  • Each of the scaly (plate-like crystal) magnetic powders contained in the magnet material has a direction normal to the surface (that is, an easy magnetization direction) parallel to a thickness direction (in other words, an axial direction) of the magnetic encoder 120. Are aligned and oriented. In particular, the vicinity of the inner peripheral portion (that is, the magnetized portion) scanned by the sensor exhibits magnetic characteristics very close to axial anisotropy, which has a high degree of orientation. By performing injection molding in a state where a magnetic field is applied in the thickness direction, the magnetic powder in the magnet material can be more completely oriented.
  • the magnetic material containing the magnetic powder in the range of 86 to 92% by weight as appropriate with the thermoplastic resin as the binder is used for the inner periphery by the disk gate method. Since the magnet portion 121 is formed into a ring shape by radial injection molding from the portion, the degree of orientation of the magnetic powder contained in the magnet portion 121 can be increased, and the magnetic characteristics of the magnetic encoder 120 can be improved. Can be. As a result, the gap between the magnetic encoder 120 and the sensor can be increased, and the magnetized portion 122 of the magnet portion 121 can be magnetized with more poles. In addition, the rotation speed of the inner ring 42 can be detected with high accuracy.
  • the magnet portion 121 does not have a weld portion that is solidified by collision of molten magnet materials, and it is difficult for cracks to occur with high mechanical strength. Furthermore, since the magnet part 121 is insert-molded using the slinger 110 as a core, the encoder 120 and the magnet part 121 can be mechanically joined, and the magnet part 121 is reliably prevented from falling off the slinger 110. Thus, reliability can be improved.
  • composition of the magnetic encoder 120 of the present embodiment can be the same as that described in the first embodiment.
  • silane coupling agent having an epoxy group such as glycidoxypropyl triethoxysilane
  • silane coupling agent having an epoxy group such as glycidoxypropyl triethoxysilane
  • the silanol group (Si-OH) generated by the hydrolysis of the methoxy group contained in the hydroxyl group causes a dehydration condensation reaction with the hydroxyl group (OH) on the surface of the slinger to form a new bond, and the epoxy group binds to the binder. Reacts with the amide bond to form a new bond.
  • the magnet portion and the slinger are chemically joined completely, and the magnet portion is reliably prevented from dropping off from the slinger, and reliability can be improved.
  • the structure of the flange portion 111 of the slinger 110 is not limited to that shown in Fig. 13.
  • the through-holes and the engaging recesses are formed at equal intervals in the circumferential direction on the circumference at the center in the radial direction.
  • a plurality may be provided.
  • the magnet part 121 is insert-molded so that the through-hole or the engaging concave part is filled with the molten magnet material, and is mechanically joined to the slinger 110.
  • a film-like elastic member such as rubber may be interposed therebetween.
  • the magnetic encoder 120 of the present embodiment is also applicable to a hub unit bearing, and the magnet unit 121 may be joined to a slinger constituting a sealing device as in the first embodiment, or As such, it may be disposed between two parallel rows of inner raceway surfaces and fixed to the rotating body via an attachment member.
  • the sensor is arranged so as to face the outer peripheral surface of the magnet section 121, and is held by the outer ring.
  • the slinger mounting member may have a simple annular shape without a flange portion.
  • the magnet portion 121 may be formed separately from the slinger mounting member and joined to the slinger mounting member using an adhesive. Further, the magnet part 121 may be pressed and fixed to the slinger mounting member or the rotating body, or the magnet part 121 may be fixed by using both the bonding with an adhesive and the fixing by press-fitting.
  • a rolling bearing 150 to which a magnetic encoder according to a fifth embodiment of the present invention is assembled includes an outer ring 41 that is a fixed ring, an inner ring 42 that is a rotating body, an outer ring 41 and an inner ring.
  • a plurality of balls 43 which are rotatably arranged in an annular gap defined by 42 and are held at equal intervals in a circumferential direction by a retainer 44, and are arranged at an open end of the annular gap.
  • a sealing device 45, a magnetic encoder 160 for detecting the rotation speed of the inner ring 42, and a sensor 47 are provided.
  • the sealing device 45 is fixed to the inner peripheral surface of the outer ring 41, and includes a seal member 50 including a cored bar 51 and a flexible material 52, and an outer peripheral surface of the inner ring 42 which is disposed outside the open end of the seal member 50. And a slinger 151 fixed to the inside of the bearing. The open end of the annular gap is closed by the sheathing member 50 and the slinger 151 to prevent foreign substances such as dust from entering the inside of the bearing and to fill the inside of the bearing. The leaked lubricant is prevented from leaking out of the bearing.
  • the slinger 151 is formed by forming a magnetic metal material into an annular shape having an L-shaped cross section.
  • the slinger 151 has a substantially cylindrical fitting portion 153 fitted on the outer peripheral surface of the inner ring 42, and an opening end of the fitting portion 153. And a substantially disk-shaped flange portion 152 extending in the radial direction from one end on the side.
  • An annular magnet part 161 that changes a nearby magnetic field (for example, magnetic flux density) in synchronization with the rotation of the inner ring 42 is adhered to an end face of the flange part 152 facing the outside of the bearing.
  • the magnetic encoder 160 is constituted by the and the magnet part 161.
  • magnet portion 161 is a plastic magnet injection-molded into an annular shape having a substantially rectangular cross section.
  • One end surface in the axial direction of the magnet portion 161 (hereinafter, referred to as a magnetized surface) has S and N poles at equal intervals in the circumferential direction, similarly to the magnetic pole forming ring 27 of FIG. 3 of the first embodiment.
  • a magnetized surface has S and N poles at equal intervals in the circumferential direction, similarly to the magnetic pole forming ring 27 of FIG. 3 of the first embodiment.
  • the adhesive surface 162 bonded to the flange portion 152 of the slinger 151 and the adhesive applied to the bonding surface 162 in the bonding process overflow to the outside on the axial end surface opposite to the magnetized surface of the magnet portion 161.
  • Grooves 163 and 163 are provided to prevent the occurrence of pits.
  • a magnetic field is applied in the axial direction of the magnet part 161 during injection molding (that is, the magnetic field is oriented)
  • the degree of orientation of the magnetic powder can be increased, and the magnetic properties of the magnet part 161 can be improved.
  • the grooves 163, 163 of the magnet portion 161 are formed in an annular shape having a substantially trapezoidal cross section over the entire circumference at the outer peripheral side and the inner peripheral side of the bonding surface 162, respectively.
  • the adhesive surface 16 2 has an uneven surface so that it has an appropriate surface roughness in the range of 0.8 to 5. O x mRa. Part is formed. An adhesive is applied to an intermediate portion between the grooves 163 and 163 of the bonding surface 162 (that is, a circumference at a radially central portion of the bonding surface 162), and the bonding surface 162 is bonded to the end surface of the flange portion 152. Have been.
  • the magnet part 161 is fixed to the slinger 151 with the magnetized surface facing the outside of the bearing, and rotates together with the inner ring 162. While the inner ring 162 rotates in the negative direction, the magnetic flux density at one point near the magnet part 161 changes periodically with the number of peaks corresponding to the number of poles of the magnet part 161. Then, a change in the magnetic flux density is detected by a sensor 47 disposed opposite to the magnetized surface of the magnet part 161 to detect the rotation speed of the inner ring 42.
  • the magnet portion 161 is formed so that the bonding surface 162 has an appropriate surface roughness in the range of 0.8 to 5.0 ⁇ mRa, and the inner diameter of the bonding surface 162 is Grooves 163 and 163 are formed on the peripheral edge portions on the outer side and the outer diameter side, respectively, but are not limited thereto. 5. It is acceptable to simply form the surface with an appropriate surface roughness in the range of O / i mRa, or set the bonding surface 162 as a smooth surface (approximately 0.4 ⁇ mRa achieved by normal die surface finishing). Alternatively, grooves 163, 163 may be formed only on the inner and outer peripheral edges of the bonding surface 162, respectively. Further, as shown in FIG.
  • the groove 163 may be formed in a spiral shape so that one groove 163 covers the entire bonding surface 162.
  • the uneven portion formed on the bonding surface 162 is preferably formed on at least a part of the bonding surface 162 formed on the entire surface of the bonding surface 162.
  • it may be formed so as to be uniformly scattered over the entire area of the bonding surface 162, or may be formed over the entire circumference on the inner peripheral side and / or the outer peripheral side of the bonding surface 162.
  • the magnetic encoder 160 of the present embodiment is also applicable to a hub unit bearing similarly to the fourth embodiment, and the magnet part 161 may be joined to a slinger constituting a sealing device as in the first embodiment. Alternatively, as will be described later, it may be arranged between two rows of inner ring raceways parallel to each other and fixed to the rotating body via a fixing member.
  • the spindle device 200 accommodates a main shaft 215, which is a rotating body, inside a housing 216.
  • the main shaft 215 is a rolling bearing arranged in the gap between the housing 216 and the main shaft 215 in the axial direction parallel to each other. It is rotatably supported by 210 and 210.
  • the rolling bearing 210 includes an outer ring 211, an inner ring 212, a plurality of balls 213 that are rotatably arranged in an annular gap defined by the outer ring 211 and the inner ring 212, and open ends on both axial sides of the annular gap.
  • the seal members 214, 214 for closing the parts are formed respectively.
  • the base end of the main shaft 215 is formed so as to protrude in the axial direction from the rolling bearing 210, and a fixing member 220 for fixing the magnet part 221 to the main shaft 215 is provided at the protruding end thereof.
  • a magnetic encoder 222 is constituted by the magnet section 221.
  • the fixing member 220 may be formed in a substantially cylindrical shape integrally with the main shaft 215, or may be formed in a ring shape as a member separate from the main shaft 215, and externally fitted to and fixed to the main shaft 215.
  • An annularly formed magnet portion 221 that changes a nearby magnetic field (for example, magnetic flux density or the like) in synchronization with the rotation of the main shaft 215 is fitted and adhered to the outer peripheral surface of the fixing member 220. I have.
  • magnet portion 221 is a plastic magnet formed by injection molding in an annular shape having a substantially rectangular cross section, and the outer peripheral surface of magnet portion 221 is formed at equal intervals in the circumferential direction.
  • the poles and N poles are alternately (ie, multi-pole) magnetized.
  • the inner peripheral surface of the magnet portion 221 has an adhesive surface 223 bonded to the outer peripheral surface of the fixing member 220 and a groove 224 for preventing the adhesive applied to the adhesive surface 223 from overflowing in the bonding process. , 224 are provided.
  • the grooves 224, 224 of the magnet part 221 are formed in an annular shape having a substantially trapezoidal cross section over the entire circumference at the peripheral edges at both ends in the axial direction of the bonding surface 223. Further, the bonding surface 223 is formed with an appropriate surface roughness in the range of 0.8-5 Oz mRa.
  • An adhesive is applied to the entire intermediate portion of the grooves 224 on the bonding surface 223, and the outer peripheral surface of the fixing member 220 and the bonding surface 223 are bonded.
  • the magnet part 221 is fixed to the fixing member 220 and rotates together with the main shaft 215.
  • composition of the magnetic encoder 222 is similar to that of the fifth embodiment described above. It is.
  • the sensor 227 is held via a holding member 218 in a through hole 217 of a housing 216 provided on a radially outward extension of the magnetic encoder 222.
  • the Hall element 228 is arranged to face the outer peripheral surface of the magnetic encoder 222 with a slight gap.
  • the rotation speed of the main shaft 215 is detected by detecting a change in the magnetic flux density by the sensor 227.
  • the fixing member 220 and the magnet part 221 may be arranged between the rolling bearings 210, 210 arranged in parallel with each other and fixed to the main shaft 215. . Further, the magnetic encoder 222 of the present embodiment may be applied to a hub unit bearing.
  • a rolling bearing unit 230 provided with a magnetic encoder includes an outer ring 41 as a fixed wheel, an inner ring 42 as a rotating wheel, and an outer ring 41 as an outer ring.
  • a ball array 43 as a plurality of rolling elements arranged at equal intervals in the circumferential direction in the annular gap defined by the ring 41 and the inner ring 42 and rotatably held by the retainer 44; It has a sealing device 45 disposed at the open end between them, and a magnetic encoder 240 for detecting the rotation speed of the inner ring 12.
  • the sealing device 45 includes a slinger 242 and a seal member 50 that is disposed on the bearing inner side of the slinger 242 and includes a metal core 51 and a resilient material 52.
  • the seal member 50 slides on the slinger 242. By doing so, the opening end of the annular gap is closed, foreign matter such as dust is prevented from entering the inside of the bearing, and the lubricant filled in the bearing is prevented from leaking outside the bearing.
  • magnetic encoder 240 includes magnet part 241 and slinger 242 as a fixing member.
  • the magnet part 241 contains magnetic powder and a thermoplastic resin as a binder of the magnetic powder, and contains the magnetic powder in a range of 86 to 92% by weight as appropriate.
  • the magnet material contained is injection-molded into a cylindrical shape, and the N and S poles are alternately (ie, multipolar) magnetized in the circumferential direction.
  • a magnetic field is applied in the thickness direction (axial direction), and the magnetic powder in the magnet part 241 is oriented in the axial direction. Therefore, the magnet part 241 has axial anisotropy, and has a pair of magnetic pole faces on both end faces in the axial direction.
  • the slinger 242 is formed by forming a magnetic material into an annular shape having an L-shaped cross section as a whole, and has a flange-like flange portion 244 that extends radially from the inner ring 42 toward the outer ring 41 in the annular gap. And a cylindrical portion that is bent substantially at right angles from the inner peripheral edge of the flange portion 244 and extends in the axial direction, and is bent approximately 180 degrees toward the inner ring 42 from the end of the cylindrical portion and extends in the axial direction. And a cylindrical fitting portion 243.
  • a cylindrical outer frame 245 which is bent substantially at right angles in the opposite direction to the cylindrical portion and extends in the axial direction is provided on the outer peripheral edge of the flange portion 244.
  • a plurality of notches are provided at equal intervals in the circumferential direction, and a plurality of locking claws 247 are formed to protrude in the axial direction.
  • a plurality of notches are provided at equal intervals in the circumferential direction at an end portion (hereinafter, referred to as an inner frame) 246 of the fitting portion 243 facing the outer frame 245 in the radial direction.
  • the inner diameter of the outer frame 245 is substantially equal to the outer diameter of the magnet part 241
  • the outer diameter of the inner frame 246 is substantially equal to the inner diameter of the magnet part 241.
  • the magnet portion 241 fits into a cylindrical concave portion defined by the flange portion 244, the outer frame 245, and the inner frame 246, and connects one of the pair of magnetic pole surfaces to the flange portion 244 ( That is, it is provisionally supported in a state of being in close contact with the support portion.
  • the locking claws 247 of the outer frame 245 and the locking claws 248 of the inner frame 246 are bent so as to engage with the peripheral edge of the other magnetic pole surface of the pair of magnetic pole surfaces of the magnet portion 241, respectively. Caulked.
  • the magnet portion 241 is sandwiched between the flange portion 244 of the slinger 242 and the locking pawls 247, 248, and the magnet portion 241 and the slinger 242 are mechanically joined.
  • the slinger 242 integrated with the magnet part 241 has an inner ring at the opening end of the annular gap so as to expose the magnetic pole surface of the magnet part 241 engaging with the locking claws 247, 248 to the outside of the bearing. It is fixed to the outer peripheral surface of 42 and rotates together with the inner ring 42. Therefore, while the inner ring 42 rotates, The magnetic flux density at one point near the stone part 241 changes periodically with the number of peaks corresponding to the number of poles of the magnet part 241. Then, a change in magnetic flux density is detected by a sensor 47 disposed opposite to the magnetic pole surface of the magnet part 241 to detect the rotation speed of the inner ring 42.
  • the magnet portion 241 is crimped so as to be held by the flange portion 244 of the slinger 242 and the locking claws 247, 248, and is mechanically joined to the slinger 242. Therefore, the magnet portion 241 can be easily and reliably prevented from falling off from the slinger 242, and the reliability of the encoder 240 can be improved. Further, the adhesion between the magnetic pole surface of the magnet part 241 and the flange part 244 may be increased by using the adhesion of the magnet part 241 and the flange part 244 together, and the holding strength of the slinger 242 may be improved.
  • the slinger 242 constituting the sealing device as a fixing member for the magnet part 241, a separate fixing member for rotating the magnet part 241 together with the inner ring 42 is not required, and the slinger 242 is formed of a magnetic material. By doing so, it is possible to prevent the magnetic properties of the magnet part 241 from being reduced, and it is possible to detect the rotation speed (rotation speed) of the inner ring 42 with high accuracy.
  • a plurality of locking claws 247, 248 are formed by providing notches at equal intervals in the circumferential direction of the cylindrical outer frame 245 and the inner frame 246, respectively.
  • the present invention is not limited to this.
  • the outer frame 245 and the inner frame The tip may be plastically deformed gradually by the method described above, and may be folded toward the permanent magnet over the entire circumference.
  • the locking portions 249 and 250 formed at the protruding ends of the outer frame 245 and the inner frame 246 are engaged with the peripheral portion of the magnetic pole surface of the magnet portion 241 over the entire circumference, and cooperate with the flange portion 244.
  • the magnet part 241 and the slinger 242 can be more firmly and mechanically joined because the magnet part 241 is crimped so as to hold it.
  • the slinger 242 which is a fixing member, is configured as a single member.
  • a first slinger member 242a having a flange portion 244, an outer frame 245, a locking claw 247 and the cylindrical portion, and a second slinger member 242b having a fitting portion 243, an inner frame 246 and a locking claw 248. It may be constituted by individual members.
  • the fitting portion 24 A bent portion where the cylinder 3 and the cylindrical portion continue is eliminated, and the perpendicularity of the flange 244 and the magnet 241 to the axis can be easily secured. Therefore, the formability of the fixing member can be improved, and the rotation speed (rotation speed) of the inner ring 42 can be detected with high accuracy.
  • the protruding end of the inner frame 246 is roughly A flange-shaped locking portion 250 that is bent at a right angle and deployed outward in the radial direction may be formed.
  • the magnet part 241 is fitted to the outer frame 245 in a state where one magnetic pole surface is closely attached to the flange part 244 of the first slinger member 242a.
  • the locking claw 247 of the outer frame 245 is bent and crimped so as to engage with the outer peripheral edge of the other magnetic pole surface of the magnet portion 241.
  • the second slinger member 242b is press-fitted, and the engaging portion 250 of the inner frame 246 engages with the inner peripheral edge of the other magnetic pole surface of the magnet portion 241. Therefore, the locking claw 247 and the locking portion 250 cooperate with the flange portion 244 so as to clamp the magnet portion 241, and the magnet portion 241 and the slinger 242 are mechanically joined. This improves the formability of the second slinger member 242b, which does not require a plurality of notches in the inner frame 246 to form the locking claws 248.
  • the first slinger member 242a is bent substantially at a right angle from the axial end of the cylindrical portion and radially inward.
  • a deployed flange-shaped stopper 251 may be provided.
  • the axial length of the fitting portion 243 of the second slinger member 242b is determined when the second slinger member 242b is press-fitted and the locking portion 250 is engaged with the inner peripheral edge of the magnetic pole surface of the magnet portion 241.
  • the protruding end of the fitting portion 243 of the second slinger member 242b is set to abut on the stopper portion 251.
  • excessive press-fitting of the second slinger member 242b can be prevented, and damage to the magnet portion 241 can be prevented.
  • an axial end continuous with the flange portion 244 is cut or the like.
  • a cylindrical step 252 is provided on the inner peripheral surface, and the fitting portion 243 of the second slinger member 242b has an outer diameter substantially equal to the outer diameter of the step 252.
  • the thickness may be substantially equal to the radial width of the portion 251.
  • the axial length of the fitting portion 243 of the second flange portion 242b is such that the second slinger member 242b is press-fitted, and the locking portion 250 becomes the magnetic pole surface of the magnet portion 241.
  • the fitting portion 243 comes into contact with the step portion 252 when it engages with the inner peripheral edge portion of the inner portion. This can prevent excessive press-fitting of the second slinger member 242b, prevent damage to the magnet part 241 and, at the same time, space for mounting the encoder 240 (in other words, the inner diameter of the outer ring 41 and the outer diameter of the inner ring 42). Is limited, the radial width (area) of the magnet part 241 can be increased.
  • one axial end connected to the flange portion 244 is formed to be thin by cutting or the like in the seventh embodiment, as described above.
  • a step portion 252 is formed by stepping by drawing or the like so that the axial end connected to the flange portion 244 has a large diameter. You may.
  • the magnet section 241 may be held only by the first slinger member 242a. That is, the magnet part 241 is sandwiched and held by the flange part 244 of the first slinger member 242a and the locking claw 247.
  • only one fixing member is required, and only the outer peripheral edge of the magnet part 241 needs to be tightened with the locking claw, so that the magnet part 241 and the fixing member can be easily integrated and the encoder 240
  • the radial width (area) of the magnet part 241 can be further increased.
  • one magnetic pole surface of magnet portion 241 and flange portion 244 are joined using an adhesive or the like.
  • the slinger 242 is fixed to the magnet part 241 to constitute the magnetic encoder 240. Therefore, the slinger 242 is shared by the sealing device 45 and the magnetic encoder 240 so that the rolling bearing is shared. The number of parts can be reduced.
  • the magnetic encoder 240 of the present embodiment can be used by being incorporated in a hub unit bearing as shown in FIG. Further, the composition of the magnet part 241 and the slinger 242 constituting the magnetic encoder 240 of the present embodiment may be the same as that of the above embodiment, since the joining method is different from that of the above embodiment. It may be changed as appropriate.
  • FIGS. 8-10 a hub unit bearing as a wheel bearing provided with a magnetic encoder according to an eighth embodiment of the present invention will be described in detail with reference to FIGS.
  • the first implementation The same reference numerals are given to the same parts as the hub unit bearing of the embodiment, and the description is omitted or simplified.
  • the hub unit 260 rotatably supports a wheel (not shown) fixed to the mounting flange 12 of the hub 7a.
  • Two rows of outer raceways 10a, 10b parallel to each other are formed on the inner periphery of the outer race 5a, and the outer raceways 10a, 10b are formed on the outer periphery of the hub 7a and the inner race member 16a, which are rotating bodies.
  • Opposing inner raceways 14a, 14b are formed.
  • a plurality of ball rows 17a, 17a held at equal intervals in the circumferential direction by retainers 18, 18 are provided. Each is arranged so that it can roll freely.
  • a magnetic encoder 270 is arranged on the outer peripheral surface of the hub 7a.
  • the magnetic encoder 270 is composed of a magnet part 271 and a fixing member 272.
  • the magnet part 271 contains magnetic powder and a thermoplastic resin as a binder for the magnetic powder, and contains the magnetic powder in an amount of 86 to 92 wt. % Of the magnet material, which is appropriately injection-molded in a cylindrical shape. As shown in FIG. 40, N and S poles are alternately (ie, multi-pole) magnetized in the circumferential direction. ing .
  • a magnetic field is applied in the radial direction from the center, and the magnetic powder in the magnet part 271 is oriented in the radial direction. Therefore, the magnet portion 271 is radially anisotropic, and has a pair of magnetic pole surfaces on the inner and outer peripheral surfaces.
  • the fixing member 272 is formed of a magnetic metal material in a cylindrical shape, and is fitted to the outer peripheral surface of the hub 7a on the inner peripheral surface at the center in the axial direction and to the magnet portion 271 on the outer peripheral surface. It has a fitting portion 273 that fits with the inner peripheral surface.
  • a plurality of notches are provided at both ends in the axial direction of the fixing member 272 at equal intervals in the circumferential direction, and a plurality of locking claws 274 and 275 are formed so as to protrude in the axial direction. ing.
  • the magnet part 271 is inserted from one axial end of the fixing member 272, and is temporarily supported by the fixing member 272 in a state where the inner magnetic pole surface is in close contact with the outer peripheral surface of the fitting part 273. You. Then, the locking claws 274, 275 are bent so as to be engaged with the outer peripheral edge of the magnetic pole surface on the outer diameter side of the magnet portion 271 and further crimped. Thus, the magnet portion 271 is sandwiched between the fitting portion 73 of the fixing member 272 and the locking claws 274 and 275, and the magnet portion 271 and the fixing portion 272 are mechanically joined.
  • the fixing member 272 integrated with the magnet portion 271 has the fitting portion 273 fitted on the outer peripheral surface of the hub 7a and rotates together with the hub 7a. Therefore, while the hub 7a rotates, the magnetic flux density at one point near the magnet part 271 changes periodically with the number of peaks corresponding to the number of poles of the magnet part 271. Then, a change in the magnetic flux density is detected by a sensor 28 arranged radially opposite to the magnetic pole surface on the outer peripheral side of the magnet portion 271 to detect the rotation speed of the hub 7a (or wheels).
  • notches are provided at both ends in the axial direction of the fixing member 272 at equal intervals in the circumferential direction to form a plurality of locking claws 274 and 275, respectively.
  • the present invention is not limited to this.
  • one axial end of the fixing member 272 is bent 180 degrees outward in the radial direction in advance to form an annular shape having a substantially U-shaped cross section, and one axial direction end of the magnet portion 271 is formed in the annular concave portion. The ends may be fitted and temporarily supported, and then the locking claw formed at the other axial end of the fixing member 272 may be bent.
  • one axial end formed in a substantially U-shaped cross section of the fixing member 272 may not be provided with a notch.
  • FIGS. As shown in 42, without forming a notch at the other axial end, the tip is gradually plastically deformed by rocking caulking or the like, and folded over to the permanent magnet side over the entire circumference. Is also good.
  • both ends in the axial direction of the fixing member 272 are engaged with the outer periphery of the magnetic pole surface on the outer diameter side of the magnet portion 271 over the entire circumference, and cooperate with the fitting portion 273 to form the magnet portion 271. , So that the magnet part 271 and the fixing member 272 can be more mechanically joined to each other.
  • composition of the magnetic encoder 270 of the present embodiment is the same as that of the seventh embodiment.
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified, improved, and the like.
  • the magnetic encoder is used with the magnet unit attached to a fixed member such as a slinger, but the present invention is also applicable to a configuration in which the magnet unit is attached directly to the rotating body.
  • the hub unit bearing, the rolling bearing unit, and the spindle device incorporating the magnetic encoder have been described.
  • the magnetic encoder of each embodiment is applicable to any of the hub unit bearing, the rolling bearing unit, and the spindle device. It is possible. Further, the magnetic encoder of the present invention can be used in combination with the magnetic encoder of each embodiment.
  • Example 14 manufactured according to the present invention.
  • the magnetic encoder of the rolling bearing used in Example 14 was manufactured by insert molding magnetic material while holding the slinger in the mold, and by orienting the magnetic field while applying a magnetic field in the axial direction. It has axial anisotropy, and then N-poles and S-poles are alternately multipole magnetized to a total of 96 poles.
  • the encoder is a PA (polyamide) 12 based axial anisotropic plastic magnet 75 volume 0/0 containing strontium ferrite, a 2. 3 MGOe at maximum energy product.
  • the slinger is made of SUS430, and high frequency welding between the encoder and slinger has not been performed.
  • the rubber material of the seal lip was NBR (acrylonitrile butadiene rubber) containing carbon black or sagging.
  • the encoder is a PPS-based axially anisotropic bonded magnet containing 75% by volume of SmFeN (samarium-iron-nitrogen), and has a maximum energy product of 7.2MGOe.
  • the slinger is made of SUS430, and the high frequency fusion between the encoder and slinger is not performed.
  • the rubber material of the seal lip was FKM (fluoro rubber) containing carbon black or diatomaceous earth.
  • Example 3 the encoder NdFeB (Neojiumu - iron - boron) to a PA12 system axial anisotropic bonded magnet having 75 volume 0/0 containing a maximum energy product 11. 9MG ⁇ e.
  • the slinger is made of SUS430, and the high frequency welding between the encoder and slinger has not been performed.
  • the rubber material of the seal lip was NBR containing carbon black or clay.
  • the encoder is PA1 2 system axial anisotropic plastic magnet 75 volume 0/0 containing strontium ferrite, Ru 2. 3MG_ ⁇ _E der in maximum energy product.
  • the slinger was made of SUS430 force, and high-frequency fusion between the encoder and slinger was performed.
  • ⁇ _glycidoxypropyltrimethoxysilane is used as a silane coupling agent, and a slinger is immersed in a methanol solution containing 10% by weight of the above silane coupling agent, and after drying, encoder insert molding is performed. After that, fusion was performed by heating to 200 ° C. for 30 seconds by high frequency heating.
  • the rubber material of the seal lip was NBR containing carbon black or clay. Table 1 shows the configuration of the above-described embodiment 114.
  • the number of poles of the magnetic encoder is increased and the detection accuracy of the rotational speed of the wheel is improved when the air gap is the same as the conventional one. Can be improved. Also, when the magnetic encoder has the same number of poles as the conventional one, the air gap can be enlarged, and the degree of freedom in arranging the sensors can be improved.
  • the magnetic flux density can be set to 26mT or more depending on the content of the magnetic powder. When the distance (air gap) between the magnetic encoder and the sensor is set to lmm as before, the magnetic encoder must be 120 poles or more. Can be magnetized into multiple poles. At this time, the single pitch error can be less than ⁇ 2%.
  • a phenolic resin-based adhesive (Metalok N-15, manufactured by Toyo Kagaku Kenkyusho) is applied on a SUS430 plate (width: 40 mm, length: 100 mm, thickness: lmm) whose surface is roughened with sandpaper. After air-drying for 30 minutes, heat treatment was performed at 120 ° C. for 30 minutes.
  • a SUS430 plate with this adhesive baked is set in a mold, and the core is used as a plastic magnet material (12-nylon anisotropic plastic magnet compound containing strontium ferrite manufactured by Toda Kogyo Co., Ltd. FEROTOP TP-A27N) 75 volume 0/0)) was carried out of the insert over door molding.
  • the size of the plastic magnet is molded width 20 mm, length 30 mm, a thickness of 3 mm, the portion to be injection molded on the SUS430 plate, that is, the junction area of the plastic magnet and SUS430 plate 200 mm 2 (20 mm X 10mm). Thereafter, the joined body was subjected to a heating (secondary curing) treatment at 130 ° C. for 2 hours to obtain a test body of Example 5.
  • Example 6 A test piece of Example 6 was obtained in the same manner as in (Example 5), except that the phenolic resin-based adhesive used was METALOK N-23 manufactured by Toyo Chemical Laboratory.
  • a phenolic resin adhesive (Metalok N-15, manufactured by Toyo Chemical Research Laboratories) on a SUS430 plate (40 mm wide, 100 mm long, lm m thick) whose surface has been roughened with sandpaper, and leave it at room temperature for about 30 minutes. After air drying, a heat treatment was performed at 120 ° C for 30 minutes.
  • a plastic magnet (12-nylon anisotropic plastic magnet compound containing strontium ferrite manufactured by Toda Kogyo FEROTOP TP-A27N ( Strike Chiu Muhu We content 75 vol 0/0 write)) test piece (width 20 mm, length 30 mm, thickness 3mm) bonding area is fixed with fixing jig or the like so that the 200 mm 2, after which it was subjected to a heat treatment at 130 ° C. for 2 hours to obtain a test piece of Example 7.
  • Example 8 A test piece of Example 8 was obtained by the same method as in (Example 7), except that the phenolic resin-based adhesive used was METALOK N-23 manufactured by Toyo Chemical Laboratory.
  • One-part epoxy resin adhesive (Henkel Japan LOCTITE Hysol 94 32NA) is applied to SUS430 plate (width 40mm, length 100mm, thickness lmm) whose surface is roughened with sandpaper.
  • plastic magnet Toda made Sutoronchi Umuferaito containing 12 nylon anisotropic plastic magnet compound EROTOP TP one A27N (content 75 vol 0/0 strike Chi um ferrite)
  • test piece (width 20 mm, length 30 mm, thickness 3mm ) bonding area is fixed with fixing jig or the like so that the 200 mm 2, then, this heat treatment is performed for 120 ° C, 1 hour, allowed to fully cure the adhesive, the test of example 9 Obtained.
  • An adhesive was used in the same manner as in Example 9 except that the adhesive used was a two-part epoxy resin adhesive (LOCTI TE E-20HP manufactured by Henkel Japan) and no heat treatment was required. Ten specimens were obtained.
  • LOCTI TE E-20HP manufactured by Henkel Japan
  • Example 11 Example 5
  • Example 6 Example 7
  • Example 8 Example 9
  • Example 10 10 nylon 12 nylon.
  • Magnetic powder Todae Magnetic powder (Todae Magnetic powder (Todae Magnetic powder (Todae Magnetic powder (Todae) Magnetic powder (Todae Magnetic powder (Todae Composition
  • I-resin-based adhesive F-resin-based adhesive Phenol-resin-based adhesive I-resin-based adhesive —Liquid-type i-xy resin Two-part I-type pheasant resin agent (Toyo Chemical Research (Toyo Chemical) Chemical research agent (Toyo Kagaku research agent (Toyo Kagaku research adhesive (Kelshi 'adhesive)
  • Irregularities were formed by chemically etching the iron oxalate film formed on the surface of SUS430.
  • the arithmetic mean height Ra of the irregularities was 0.9 x m, and the maximum height Rz was 4.5 / im.
  • a 30% solids phenolic resin adhesive (Metalloc N-15, manufactured by Toyo Kagaku Kenkyusho) containing a resole type phenolic resin as the main component is further diluted three times with methylethyl ketone, and immersed. It was applied to the slinger surface. Then, after drying at room temperature for 30 minutes, it was left in a dryer at 120 ° C. for 30 minutes to obtain a semi-cured state.
  • a SUS430 sheet material with this adhesive baked is set in a mold, and this is used as a core to make a plastic magnet material (12-nylon anisotropic plastic magnet compound containing strontium ferrite manufactured by Toda Kogyo ⁇ FER TOP TP-A27NJ (a product of stotium ferrite).
  • the insert molding with a content of 91% by weight)) was also performed with a disc gate for the inner peripheral partial force.After molding, the gate was cut immediately, and the adhesive was further heated at 130 ° C for 1 hour by secondary heating. The test piece of Example 11 was completely cured.
  • the surface of SUS430 was shot blasted to form irregularities, and the arithmetic mean height Ra of the irregularities was set to 0.8 xm, and the maximum height Rz was set to 5. O xm.
  • the specimen of Example 12 was obtained.
  • Table 3 below shows the result of using a pliers to pull the hooked portion of the cured outer peripheral portion of the encoder.
  • a 30% solids phenolic resin adhesive (Metalloc N-15, manufactured by Toyo Chemical Laboratories) whose main component is a resole type phenolic resin is further diluted three times with methylethyl ketone, followed by immersion treatment. was applied to the slinger surface. Then, after drying at room temperature for 30 minutes, it was left in a dryer at 120 ° C. for 30 minutes to obtain a semi-cured state.
  • the SUS 430 plate material to which the adhesive was baked was set in a mold, and the core material was used as a core to perform insert molding of the above-described magnet material from the inner peripheral portion with a disk gate. Immediately after molding, gate cutting was performed, and secondary heating was performed at 150 ° C. for 1 hour to completely cure the adhesive.
  • the encoder part (inner diameter 66 mm, outer diameter 76 mm, magnet part thickness 0.9 mm) obtained by molding and integrating with the slinger was used alone at 120 ° C for 30 minutes and at 140 ° C. A thermal shock test was repeated for 30 minutes. Ten samples of each of Examples 13 to 15 were placed, and cracks generated in the magnet portion were observed every 50 cycles.
  • the magnetic properties according to the presence or absence of a magnetic field were measured using a magnetic field injection molding machine.
  • the shape of the magnetic encoder was as shown in FIG. 2, and was the same size as the above.
  • the coil current during magnetization was set to a value that was sufficiently saturated (sufficient for blending), reverse demagnetization was performed during cooling, and the magnetic flux density was demagnetized to lmT or less using an oil condenser demagnetizer.
  • the magnetic flux density and the pitch error were measured with an air gap of lmm while superimposing the magnetized yoke having a polarity of 96 poles (NS alternately) at 1000 V and 1000 x F and rotating the magnetized magnet. Table 5 shows the results.
  • the encoders of Embodiments 16-19 are formed by injection molding into an annular shape, It is magnetized in the circumferential direction.
  • the magnet material of the magnet portion used in the magnetic encoders of Examples 16 to 19 is shown below.
  • strontium ferrite containing 12 nylon anisotropic plastic magnet con pound "FEROT_ ⁇ _P TP_A27N" (the content of strontium ferrite: 75 vol 0/0) [0197] (Example 16)
  • the encoder in Example 16 was molded by a disk gate type injection molding machine, and the magnetic field was not oriented at the time of molding.
  • the encoder according to the seventeenth embodiment is formed by a disk gate type injection molding machine, and has a magnetic field orientation at the time of molding.
  • the encoder in Example 18 was molded by a four-point pin gate type injection molding machine, and the magnetic field was not oriented at the time of molding.
  • the encoder of the nineteenth embodiment is formed by a four-point pin gate type injection molding machine, and has a magnetic field orientation at the time of molding.
  • Table 6 shows the measurement results of the magnetic characteristics (maximum energy consumption BHmax) of the magnetic encoders of Examples 16 to 19 using the BH tracer. The measured values in Examples 18 and 19 were obtained by measuring the magnetic properties in the welded portion.
  • the encoder injection-molded by the disk gate method has better magnetic properties than the one molded by the four-point pin gate method, regardless of the presence or absence of magnetic field orientation. That is, according to the disk gate method, the direction of easy magnetization of each magnetic powder is By aligning the directions, a high degree of orientation can be obtained, and thus excellent magnetic properties can be obtained. On the other hand, in the four-point pin gate method, the magnetic powder in the molten magnet material collides with each other in the weld portion, and the direction of easy magnetization becomes random (isotropic), so that the magnetic characteristics are significantly reduced.
  • the magnet parts of Examples 20 and 21 each contained strontium ferrite as magnetic powder and polyamide 12 as a magnetic powder, and the magnetic material having a magnetic powder content of 70% by volume was stirred with a Henschel mixer. Then, an encoder having an inner diameter of 60 mm, an outer diameter of 70 mm, and a thickness of 0.9 mm was injection-molded from the raw material pellets produced by kneading with a twin-screw extruder. The molding conditions were a resin heating temperature of 270 ° C and an injection time of 1.5 seconds.
  • annular groove having a substantially trapezoidal cross section is formed over the entire circumference on the outer peripheral side and the inner peripheral side of one end surface (that is, the bonding surface) in the axial direction.
  • the surface roughness of the bonding surface is set to 0.8 ⁇ mRa by subjecting a mold used for injection molding to a graining process.
  • the encoder according to the twenty-first embodiment is formed to have the same dimensions as the encoder according to the twentieth embodiment, and no groove is formed on the bonding surface.
  • the surface roughness of the bonding surface is 0.4 ⁇ mRa, which is achieved by normal die surface finishing.
  • the adhesive is uniformly applied on the circumference at the radially central portion of the bonding surface (that is, the intermediate portion between the two grooves), and the mounting member is applied with a predetermined pressure. It was attached to. Also in the encoder of Example 21, the same amount of adhesive was attached to the same location as in Example 20. The agent was applied uniformly and adhered to the mounting member by applying a predetermined pressure. In the encoder of Example 21, the excess adhesive overflowed from the bonding surface to the outside on both the inner diameter side and the outer diameter side.
  • the adhesive strength between the encoder and the adhesive based on the surface roughness of the adhesive surface of the encoder was evaluated.
  • Test pieces having a width of 24 mm, a length of 100 mm, and a thickness of 3 mm were injection-molded from the raw material pellets of Examples 20 and 21.
  • the surface roughness of a plane defined by the width direction and the length direction was changed for each test piece by subjecting a mold used for injection molding to crimping.
  • An acrylic adhesive (Loctite 648, manufactured by Henkel Co.) was uniformly applied to the bonding surface, and bonded to a SUS430 flat plate as a mounting member by applying a predetermined pressure.
  • Example 22 is a normal mold surface finished product, and its surface roughness is 0.4 ⁇ mRa.
  • the tensile strength of each test piece is a relative value when the tensile strength of Example 22 is set to 100.
  • Fig. 43 shows a graph of the results shown in Table 7.
  • the tensile strength is increasing with the increase in the surface roughness of the test piece.
  • the surface roughness of the bonded surface of the test piece becomes less than 0.8 xmRa, the tensile strength sharply increases. It can be seen that it has decreased. Therefore, the surface roughness of the adhesion surface of the encoder is preferably 0.8 zmRa or more.
  • Table 8 shows the configuration of the magnetic encoder of Examples 26-29.
  • the magnet part of the magnetic encoder of Examples 26-29 was injection-molded in a cylindrical shape with a magnetic field applied in the thickness direction, was made axially anisotropic, and had N poles in the circumferential direction. And S poles are alternately magnetized to a total of 96 poles. Then, with the configuration of the fixing member shown in the seventh embodiment, the magnet part and the fixing member are formed as a body.
  • Example 26 Example 27
  • Example 28 Example 29 Magnet part Storm ferrite Sm FeN 75 bodies Nd—Fe—B 75
  • Storm ferrite PPS system containing 75% by volume of PPS system containing 75% by volume of PA1
  • PA1 system containing 75% by volume of PA1
  • PA2 based axially anisotropic Anisotropic plastic magnets (BHmax: 7. Bond magnets (BHma x anisotropic plastic magnets (BHmax: 2.2 MGO: 11.9 GO magnets) (BHm: 2.3 MGO e) 96 (48 x 2) pole 96 (48 x 2) pole 3MGO e)
  • the permanent magnet of the encoder of Example 31 is injection-molded in a cylindrical shape while applying a magnetic field in the radial direction, has radial anisotropy, and has an N pole and an S pole in the circumferential direction. It is alternately magnetized to a total of 96 poles. Then, with the configuration of the fixing member shown in the seventh embodiment, the magnet portion and the fixing member are integrated.
  • Example 26 to Example 31 the permanent magnet did not fall off the fixed member in the rotation test.
  • 20mT It is possible to improve the magnetic flux density from about 26 mT or more. Therefore, if the air gap between the permanent magnet and the sensor is set to 1 mm as in the past, the permanent magnet that had previously been multipole magnetized to 96 poles can be maintained at 120 poles or more while maintaining the magnetic flux per pole. Multipolar magnetization is possible.
  • the single pitch error can be ⁇ 2% or less. That is, according to the encoder of the present invention, when the air gap is the same as that of the related art, the number of poles of the permanent magnet can be increased to improve the detection accuracy of the rotational speed of the wheel. In addition, when the number of permanent magnets is the same as that of the conventional magnet, the air gap can be increased, and the degree of freedom in disposing the sensor can be improved.
  • the present invention provides a highly reliable magnetic encoder whose magnetic characteristics enable high-accuracy rotation speed detection, and reduces the rotation speed of a rotating body in a rolling bearing unit, a spindle device, a hub unit bearing, and the like. Used to detect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

磁気エンコーダ26の磁石部27は、磁性体と樹脂とを含有し、磁気特性が高く、高精度な回転数検出を可能にした信頼性の高い磁気エンコーダ26、及びハブユニット軸受2aを提供する。また、樹脂は、好ましくは熱可塑性樹脂であり、より好ましくは分子中にソフトセグメントを有する熱可塑性樹脂を含有する。さらに、磁気エンコーダ26は、磁石部27が取り付けられる、磁性材料からなる固定部材25をさらに備え、磁石部27と固定部材25とは、フェノール樹脂系とエポキシ樹脂系の少なくとも一方を含む接着剤によって接合される。

Description

明 細 書
磁気エンコーダ及び軸受
技術分野
[0001] 本発明は、回転体の回転数を検出するために用いられる磁気エンコーダ、及び軸 受に関する。
背景技術
[0002] 従来、 自動車のスキッド(車輪が略停止状態で滑る現象)を防止するためのアンチ スキッド、又は有効に駆動力を路面に伝えるためのトラクションコントロール (発進や 加速時に生じやすい駆動輪の不要な空転の制御)などに用いられる回転数検出装 置としては、 N極と S極とを円周方向に交互に着磁された円環状のエンコーダと、ェ ンコーダの近傍における磁場の変化を検出するセンサとを有し、車輪を支持する軸 受を密封するための密封装置にエンコーダを併設して配置することにより車輪の回 転と共にエンコーダを回転せしめ、車輪の回転に同期した磁場変化をセンサにより 検出するものが知られている(例えば、特許文献 1、 2参照。)。
[0003] 特許文献 1に記載のシール付回転数検出装置は、図 47に示すように、外輪 30 la に取り付けられたシール部材 302と、内輪 301bに嵌合されたスリンガ 303と、スリン ガ 303の外側面に取り付けられて磁気パルスを発生するエンコーダ 304と、ェンコ一 ダ 304に近接して配置されて磁気ノ^レスを検出するセンサ 305とから構成されている 。このシール付回転数検出装置が取付けられた軸受ユニットでは、シール部材 302 とスリンガ 303とにより、埃、水等の異物が軸受内部に侵入することを防止し、軸受内 部に充填された潤滑剤が軸受外部に漏洩することを防止している。また、エンコーダ 304は、内輪 301bが 1回転する間に、極数に対応した数の磁気パルスを発生させ、 この磁気パルスをセンサ 305により検出することで内輪 301bの回転数を検出してい る。
[0004] 従来、車輪用軸受に使用する磁気エンコーダには、ゴムに磁性体粉を混入させた ゴム磁石が用いられる。ゴム磁石からなる磁気エンコーダは、加硫接着によりスリンガ と好適に接合されているため、過酷な温度環境下 (一 40°C— 120°C)において生じる スリンガとの熱伸縮差を、その弾性変形により吸収することができる。このため、上記 のような温度環境下においてもスリンガに対する固着性が維持され、剥れの問題が 生じ難い。一般的に、エンコーダ用として用いられるのは、磁性体粉としてフェライト を含有した二トリルゴムが用いられており、ロールで練られることで、機械的に磁性体 粉が配向された状態になっている。
特許文献 1:特開 2001 - 255337号公報
特許文献 2:特開 2003—57070号公報
発明の開示
発明が解決しょうとする課題
[0005] 近年、車輪の回転数をより正確に検出するために、磁気エンコーダの磁石部を円 周方向にさらに多極化する傾向にある。し力しながら、従来の機械配向法によるフエ ライト含有ゴム磁石エンコーダでは、一極あたりの磁束密度が小さくなり、回転数を精 度よく検出するためには、センサと磁石との隙間(即ち、エアギャップ)を小さくする必 要があるため組立てが困難となる虞がある。このため、組立て性の面からエアギヤッ プを大きくとるためには、磁石の磁気特性を向上させる必要がある。
[0006] し力 ながら、ゴム磁石の磁気特性を向上させるために、磁性体粉の混入量を多く した場合、強度の低下と共に弾性が低下するため、優れた耐熱衝撃性が著しく損な われることになる。このため、ゴム磁石とスリンガとの間の熱伸張差の吸収作用が損な われるので、ゴム磁石がスリンガから剥離して脱落、或いはゴム磁石に亀裂やひび割 れが発生する虞がある。
[0007] 本発明は、上記課題を解決するためになされたものであり、その目的は、磁気特性 が高ぐ高精度な回転数検出を可能にした信頼性の高い磁気エンコーダ、及び軸受 を提供することにある。また、本発明の目的は、過酷な使用条件においても磁石部に 亀裂が発生したり、磁石部が固定部材であるスリンガから脱落することを防止すること ができる磁気エンコーダ、及び軸受を提供することにある。
課題を解決するための手段
[0008] 本発明の上記目的は、以下の構成により達成される。
(1) 円周方向に多極着磁された略円環状の磁石部を備える磁気ェンコーダであつ て、
前記磁石部は、磁性体と樹脂とを含有することを特徴とする磁気エンコーダ。
(2) 前記樹脂は、熱可塑性樹脂であることを特徴とする(1)に記載の磁気ェンコ一 ダ。
(3) 前記熱可塑性樹脂は少なくとも、分子中にソフトセグメントを有する熱可塑性樹 脂を含有することを特徴とする(2)に記載の磁気エンコーダ。
(4) 前記磁石部が取り付けられる、磁性材料からなる固定部材をさらに備え、 前記磁石部と前記固定部材とは、フエノール樹脂系とエポキシ樹脂系の少なくとも 一方を含む接着剤によって接合されることを特徴とする(1)に記載の磁気エンコーダ
(5) 前記磁石部は、射出成形により形成されることを特徴とする(2)—(4)のいずれ かに記載の磁気エンコーダ。
(6) 前記射出成形は、ディスクゲート方式であることを特徴とする(5)に記載の磁気 ェン 3ータ。
(7) 固定輪と、回転輪と、前記固定輪と前記回転輪との間で周方向に転動自在に 配設された複数の転動体と、前記固定部材が前記回転輪に固定される(1)一(6)の いずれかに記載の磁気エンコーダとを備えたことを特徴とする軸受。
(8) 前記軸受は車輪用軸受であることを特徴とする(7)に記載の軸受。
発明の効果
本発明の磁気エンコーダによれば、磁石部は、磁性体と樹脂とを含有する構成とし たので、ゴム磁石に対して比較的多量の磁性体粉を混入することが可能となり、優れ た磁気特性を有する磁気エンコーダを提供することができ、また、磁界をかけた状態 での射出成形 (磁場成形)が容易であり、優れた磁気特性発現に不可欠な異方性磁 石を得ることができる。
また、本発明の磁気エンコーダによれば、樹脂は、好ましくは熱可塑性樹脂であり、 より好ましくは分子中にソフトセグメントを有する熱可塑性樹脂を含有するので、磁石 部に亀裂が発生するのを防止でき、信頼性を向上することができる。
さらに、本発明の磁気エンコーダによれば、磁石部が取り付けられる、磁性材料か らなる固定部材をさらに備え、磁石部と固定部材とは、フエノール樹脂系とエポキシ 樹脂系の少なくとも一方を含む接着剤によって接合されるので、接着部に剥れが発 生し難ぐ信頼性を向上することができる。
また、本発明の磁気エンコーダによれば、磁石部がディスクゲート方式の射出成形 により成形されるので、磁石材料が放射円状に射出成形されウエルド部を生じること のない機械的強度の高いものとなり、また、エンコーダに含有される磁性体の配向度 の高い、磁気特性に優れたものとなる。
図面の簡単な説明
[図 1]本発明の第 1実施形態の転がり軸受ユニットを示す断面図である。
[図 2]本発明の第 1実施形態の磁気エンコーダを備えたシール装置を示す断面図で ある。
[図 3]磁気エンコーダの円周方向に多極磁化された例を示す斜視図である。
[図 4(a)]顕微鏡で観察した化学エッチング処理されたスリンガの表面を示す。
[図 4(b)]顕微鏡で観察した化学エッチング処理されたスリンガの表面を示す。
[図 4(c)]顕微鏡で観察した化学エッチング処理されたスリンガと磁石部の接合状態を 示す断面である。
[図 5]磁場射出成形機を示す模式図である。
[図 6(a)]キヤビティを形成する可動側金型と固定側金型の断面図である。
[図 6(b)]図 6 (a)の VI拡大断面図である。
[図 7]磁石部の形状が異なる第 1実施形態の変形例の磁気エンコーダを備えたシー ル装置を示す断面図である。
[図 8]第 1実施形態の磁気エンコーダを備えたハブユニット軸受の変形例を示す断面 図である。
[図 9]本発明の第 2実施形態の転がり軸受ユニットを示す拡大断面図である。
[図 10]本発明の第 3実施形態の転がり軸受ユニットを示す断面図である。
[図 11]本発明の第 3実施形態の磁気エンコーダを備えたシール装置を示す断面図 である。
[図 12]本発明の第 4実施形態である磁気エンコーダが組み付けられた転がり軸受ュ ニットの断面図である。
[図 13]図 12に示すスリンガの正面図である。
[図 14]図 13に示すスリンガの XIV— XIV矢視断面と同一平面における図 12に示す転 がり軸受ユニットの要部断面図である。
[図 15]図 13に示すスリンガの XV— XV矢視断面と同一平面における図 12に示す転が り軸受ユニットの要部断面図である。
園 16]図 13に示すエンコーダの射出成形に用いられる金型の断面図である。
園 17]本発明に係る第 5実施形態である磁気エンコーダが組み付けられた転がり軸 受ユニットの断面図である。
園 18]磁気エンコーダの磁石部の接着面を示す斜視図である。
[図 19]図 18における XIX-XIX矢視断面図である。
園 20]第 5実施形態の変形例である磁気エンコーダの磁石部を示す斜視図である。 園 21]本発明の第 6実施形態である磁気エンコーダが組み付けられた主軸装置の断 面図である。
園 22]図 21に示す磁気エンコーダの磁石部の斜視図であり、且つ磁石部の着磁パ ターンを示す模式図である。
[図 23]図 22における XXIII— XXIII矢視断面図である。
園 24]本発明に係る第 7実施形態である磁気エンコーダを備えた転がり軸受ユニット の断面図である。
[図 25]図 24における点線円 XXVで囲まれた部分の拡大断面図である。
[図 26]図 24に示す磁気エンコーダの平面図である。
[図 27]図 26における XXVn-XXVn矢視断面図である。
園 28]第 7実施形態の第 1の変形例の磁気エンコーダの平面図である。
[図 29]図 28における ΧΧΙΧ-ΧΧΙΧ矢視断面図である。
園 30]第 7実施形態の第 2の変形例の磁気エンコーダの断面図である。
園 31]第 7実施形態の第 3の変形例の磁気エンコーダの断面図である。
[図 32]図 31における ΧΧΧΠ-ΧΧΧΠ矢視断面図である。
園 33]第 7実施形態の第 4の変形例の磁気エンコーダの断面図である。 園 34]第 7実施形態の第 5の変形例の磁気エンコーダの断面図である。
園 35]第 7実施形態の第 6の変形例の磁気エンコーダの断面図である。
園 36]第 7実施形態の第 7の変形例の磁気エンコーダの断面図である。
園 37]本発明に係る第 8実施形態であるエンコーダを備えたハブユニット軸受の断面 図である。
[図 38]図 37おけるエンコーダの平面図である。
[図 39]図 38における XXXIX-XXXIX矢視断面図である。
[図 40]図 37における磁気エンコーダの磁石部の斜視図であり且つ永久磁石の着磁 パターンを示す模式図である。
園 41]第 8実施形態の変形例である磁気エンコーダの平面図である。
[図 42]図 41における XXXXII-XXXXII矢視断面図である。
[図 43]プレス加工によって粗面化処理されたスリンガを示す斜視図である。
[図 44]スリンガがプレス加工される状態を示す断面図である。
園 45]防湿被膜を備える第 1実施形態の他の変形例の磁気エンコーダを備えたシー ル装置を示す断面図である。
園 46]エンコーダの接着面の表面粗さとエンコーダおよび接着剤の引張強度との関 係を示すグラフである。
[図 47]従来の転がり軸受ユニットを示す断面図である。
符号の説明
2a, 30, 260 ハブユニット軸受(軸受)
5a 外輪(固定輪)
7a ハブ(回転輪)
11 結合フランジ
12 取付フランジ
16a 内輪(回転輪)
17a 玉(転動体)
21a, 21b シールリング
22a, 22b 弾性材 24a, 24b 芯金
25, 33, 60, 110, 151 , 242 スリンガ(固定部材)
26 31 , 46, 120, 160, 222, 240, 270 磁気エンコーダ
27 34 磁気形成リング (磁石部)
28 32, 47, 227 センサ
40 100, 150, 230 転力 Sり軸受ユニット
41 外輪 (固定輪)
42 内輪 (回転輪)
43 玉 (転動体)
45
50 シーノレ部材
70, 121 , 161 , 221 , 241 , 271 磁石部
200 主軸装置
220, 272 固定部材
242a 第 1スリンガ部材(固定部材)
242b 第 2スリンガ部材(固定部材)
発明を実施するための最良の形態
[0012] 以下、本発明の磁気エンコーダ及び軸受の各実施形態について図面を参照して 詳細に説明する。
[0013] (第 1実施形態)
図 1は、本発明の実施形態の一例として、独立懸架式のサスペンションに支持する 、非駆動輪を支持するための車輪用軸受であるハブユニット軸受 2aに、本発明を適 用した場合について示している。尚、本発明の特徴以外の構成及び作用については 、従来から広く知られている構造と同等であるから、説明は簡略にし、以下、本発明 の特徴部分を中心に説明する。
[0014] ハブユニット軸受 2aは、固定輪である外輪 5aと、車輪(図示せず)を固定するため の取付フランジ 12と一体回転する回転輪(回転体)であるハブ 7a及び内輪 16aと、外 輪 5aとハブ 7a及び内輪 16との間で周方向に転動自在に配設された複数の転動体 である玉 17a, 17aと、磁気ェン ーダ 26とを含む。
[0015] ハブ 7aの内端部に形成した小径段部 15に外嵌した内輪 16aは、このハブ 7aの内 端部を径方向外方にかしめ広げる事により形成したかしめ部 23によりその内端部を 抑え付ける事で、ハブ 7aに結合固定されている。また、車輪は、このハブ 7aの外端 部で、固定輪である外輪 5aの外端部から突出した部分に形成した取付フランジ 12に 円周方向に所定間隔で植設されたスタッド 8によって、結合固定自在としている。これ に対して外輪 5aは、その外周面に形成した結合フランジ 11により、懸架装置を構成 する、図示しないナックル等に結合固定自在としている。外輪 5aとハブ 7a及び内輪 1 6aとの間には、保持器 18によって案内される複数の玉 17a, 17aが周方向に転動自 在に配置されている。
[0016] 更に、外輪 5aの両端部内周面と、ハブ 7aの中間部外周面及び内輪 16aの内端部 外周面との間には、それぞれシールリング 21a、 21bが設けられる。これら各シールリ ング 21a、 21bは、外輪 5aの内周面とハブ 7a及び内輪 16aの外周面との間で、各玉 17a, 17aを設けた空間と外部空間とを遮断している。
[0017] 各シールリング 21a、 21bは、それぞれ軟鋼板を曲げ形成して、断面 L字形で全体 を円環状とした芯金 24a、 24bにより、弹性材 22a、 22bを補強してなる。この様な各 シールリング 21 a、 21bは、それぞれの芯金 24a、 24bを外輪 5aの両端部に締り嵌め で内嵌し、それぞれの弾性材 22a、 22bが構成するシールリップの先端部を、ハブ 7a の中間部外周面、或は内輪 16aの内端部外周面に外嵌固定したスリンガ 25に、それ ぞれの全周に亙り摺設させている。
[0018] また、図 2に示すように、磁気エンコーダ 26は、固定部材であるスリンガ 25と、スリン ガ 25の側面に一体接合された磁石部である磁極形成リング 27とで構成される。図 3 に示すように、磁極形成リング 27は多極磁石であり、その周方向には、交互に N極と S極が形成されている。そして、この磁極形成リング 27に磁気センサ 28が対面配置さ れる(図 1参照。)。
[0019] 本発明では、磁気エンコーダ 26の磁極形成リング 27の磁石材料としては、異方性 用の磁性体粉を 86— 92重量% (60— 80体積%)含有し、熱可塑性樹脂をバインダ 一とした異方性磁石コンパウンドを好適に用いることができる。磁性体粉としては、スト ロンチウムフヱライトやバリウムフェライト等のフェライト、ネオジゥム—鉄—ボロン、サマリ ゥム—コバルト、サマリウム一鉄等の希土類磁性体粉を用いることができる。なお、希土 類系の磁性体粉を使用した場合には、フェライト系に比べて耐酸化性が低いので、 長期間に渡り安定した磁気特性を維持するために、電気ニッケルメツキ、無電解ニッ ケルメツキ、エポキシ樹脂塗膜、シリコン樹脂塗膜、またはフッ素樹脂塗膜等の表面 処理層をエンコーダ表面に設けてもよい。
[0020] また、磁性体粉としては、耐侯性を考慮すると、ストロンチウムフヱライト等のフェライ トが最も好適であり、更にフェライトの磁気特性を向上させるためにランタンとコバルト 等を混入させたり、フェライトの一部をネオジゥム一鉄 ボロン、サマリウム コバルト、 サマリウム -鉄等の希土類磁性体粉に置き換えても良い。磁性体粉の含有量が 86重 量%未満の場合は、従来から用いられているフェライト系ゴム磁石と同等以下の磁気 特性になると共に、細かいピッチで円周方向に多極磁化させるのが困難になり、好ま しくない。それに対して、磁性体粉の含有量が 92重量%を越える場合は、樹脂バイ ンダー量が少なくなりすぎて、磁石全体の強度が低くなると同時に、成形が困難にな り、実用性が低下する。
[0021] ノ インダ一としては、射出成形可能な熱可塑性樹脂が好適であり、ポリアミド 6、ポリ アミド 12、ポリアミド 612、ポリアミド 11のようなポリアミド系樹脂およびポリフエ二レンサ ルファイド(PPS)を用いることができる。これにより、エンコーダを磁場中で射出成形 することが可能となり、エンコーダ中の磁性粉を磁場配向することができる。一般に、 磁場配向は機械配向に比べ磁性体の配向度を高くすることができ、磁気特性を向上 させることができる。なお、エンコーダに融雪剤として使用される塩化カルシウムが水 と一緒に力かる可能性があるので、吸水性が少ないポリアミド 12、ポリアミド 612、ポリ アミド 11、 PPSを樹脂バインダーとするのが特に好ましレ、。
[0022] また、温度変化など様々な環境で発生する亀裂を防止するために、分子中にソフト セグメントを有する熱可塑性樹脂、具体的には、ポリアミド 12等のポリアミドからなるハ ードセグメントとポリエーテル成分のソフトセグメントを持つブロック共重合体である変 性ポリアミド樹脂を主要な構成成分とし、引張強度 ·耐熱性等とのバランスを保っため に、ポリアミド 12、ポリアミド 11、ポリアミド 612の群力ら選ば、れる少ヽなくとも一種類の通 常のポリアミドを更に混合した混合物としてもよい。
[0023] ポリアミド 12をハードセグメントとした変性ポリアミド 12樹脂としては、式 (A1)で表わ されるアミノカルボン酸化合物及び/又は式 (A2)で表わされるラタタム化合物、式( B)で表わされるトリブロックポリエーテルジァミンィ匕合物、そして式(C)で表わされる ジカルボン酸化合物を重合して得られるものが挙げられる。
[0024] [化 1]
(A1) 1
H2N— R1— C〇〇H
[0025] (但し、 R1は炭化水素鎖を含む連結基を表わす。 )
[0026] [化 2]
(A2) , \
ご R2― CONH-1
[0027] (但し、 R2は炭化水素鎖を含む連結基を表わす。 )
[0028] [化 3]
Figure imgf000012_0001
[0029] (但し、 xは 1一 20の数値、 yは 4一 50の数値、そして zは 1一 20の数値を表わす。)
[0030] [化 4]
HOOC— (R3) COOH
[0031] (但し、 R3は炭化水素鎖を含む連結基を表わし、 mは 0または 1である。 ) [0032] ここで、式 (A1)の化合物、式 (A2)の化合物、式(B)の化合物及び式(C)の化合 物の総量に対して、アミノカルボン酸化合物及び Z又はラタタム化合物が 10乃至 95 質量%の量にて用いられることが好ましい。
[0033] また、式 (A1)の化合物及び/又は式 (A2)の化合物が 15乃至 70質量%、そして 式 (B)の化合物と式(C)の化合物との合計量が 30— 85質量%の量にて用いられる ことが好ましい。
[0034] さらに、式 (A1)の R1が炭素原子数 2— 20のアルキレン基を含んでもよぐ式 (A2) の R2が炭素原子数 3— 20のアルキレン基を含んでもよい。
[0035] また、式(B)の Xが 2— 6の数値、 yは 6— 12の数値、そして zは 1一 5の数値を表わ す力、或いは、式(B)の Xが 2— 10の数値、 yは 13— 28の数値、そして zは 1一 9の数 値を表わすことが好ましい。
[0036] 変性ポリアミド 12樹脂は、融点で 145— 176°C、曲げ弾性率で 60— 500MPaの範 囲に入るものを好適に用いることができる。耐熱性、亀裂発生防止を考慮すると、より 好ましくは、融点で 150— 162°C、曲げ弾性率で 65— 250MPaの範囲である。融点 力 S145°C未満、あるいは曲げ弾性率が 60未満の変性ポリアミド 12樹脂を用いると、 磁石材料全体としては、柔軟性は向上するが、耐熱性、引張強度等が低下すること が想定され、好ましくなレ、。それに対して、曲げ弾性率が 500MPaを越える場合は、 柔軟性の改善効果が低ぐ亀裂発生防止に効果を発揮するレベルまで、曲げたわみ 量を向上させることが難しくなる。
[0037] また、本発明で用いられるプラスチック磁石材料は、リング状磁石の厚み方向に磁 区配向(アキシアル異方性)したものが好ましく、磁気特性としては最大エネルギー積 (BHmax)で 1. 3— 15MG〇e、より好ましくは 1. 8— 12MG〇eの範囲である。最大 エネルギー積が 1. 3MG〇e未満の場合は、磁気特性が低すぎるため、回転数を検 知するためにセンサとの距離をかなり接近させて配設する必要があり、従来のフェラ イト含有ゴム磁石と大差がな 性能向上が望めない。最大エネルギー積が 15MGO eを越える場合は、過剰な磁気特性を有すると共に、比較的安価なフェライトを中心と した組成では達成不可能であり、ネオジゥム一鉄一ボロン等の希土類磁性体粉を多量 に配合する必要があるので、非常に高価で、尚且つ成形性も悪く実用性が低い。 [0038] さらに、本発明で用いられる磁極形成リング 27の磁石材料は、ゴム系フェライト磁石 より高い最大エネルギー積 BHmaxを有し、好ましくは、 1. 63—2. 38MG〇e ( 13— 19kj/m3)の範囲のフェライト系磁石として高い磁気特性を保持すると同時に、 23 °Cでの曲げたわみ量(厚さ t = 3. Omm、 ASTM D790;スパン間距離 50mm)が 2 一 10mmの範囲に入る、たわみ性に優れたものとし、耐亀裂性が高いものとなってい る。
[0039] 上記磁気特性、曲げたわみ量等を達成するために、本発明の磁石材料は、主材料 の構成として、異方性用ストロンチウムフェライトが 86— 92重量%、変性ポリアミド 12 樹脂が 1一 7重量%、ポリアミド 12が 1一 13重量%となる。また、曲げたわみ量を達成 すると共に、耐亀裂性を向上させるために、ベンゼンスルホン酸アルキルアミド類、ト ルエンスルホン酸アルキルアミド類、及びヒドロキシ安息香酸アルキルエステル類から 選ばれる少なくとも 1種類の特定の可塑剤を、全重量の中で、 0. 1一 4重量%程度含 有してもよい。
[0040] ベンゼンスルホン酸アルキルアミド類としては、具体的には、ベンゼンスルホン酸プ 口ピノレアミド、ベンゼンスルホン酸ブチルアミド、及びベンゼンスルホン酸 2—ェチルへ キシルアミドなどを挙げることができる。トルエンスルホン酸アルキルアミド類としては、 具体的には、 N—ェチノレー o_または N—ェチルー p—トルエンスルホン酸ブチルアミド、 N—ェチノレ _o_または N—ェチノレ— p—トノレエンスルホン酸 2_ェチルへキシルアミドな どを挙げることができる。ヒドロキシ安息香酸アルキルエステル類としては、具体的に は、 o_または p—ヒドロキシ安息香酸ェチルへキシル、 o_または p—ヒドロキシ安息香 酸へキシルデシル、 o_または p—ヒドロキシ安息香酸ェチルデシル、 o_または p—ヒド ロキシ安息香酸オタチル、 o_または p—ヒドロキシ安息香酸デシルドデシル、 o—また は p—ヒドロキシ安息香酸ドデシノレなどを挙げることができる。上記の中で、樹脂への 相溶性、低ブリードアウト性、耐熱性から、ベンゼンスルホン酸ブチルアミド、 p—ヒドロ キシ安息香酸ェチルへキシル、 p—ヒドロキシ安息香酸へキシノレデシノレが特に好まし レ、。更に、上記配合材料の他に、フェライトの分散性とポリアミド類との密着性を改良 するシランカップリング剤や酸化防止剤等各種添加剤を加えてもよい。
[0041] 尚、本発明に係る、磁気エンコーダを構成するプラスチック組成物には、靭性を付 与させるために、例えばカルボキシル化スチレン一ブタジエンゴム加硫体の微粒子を 、また、スリンガに対する接着性を高めるために、例えばグリシジルメタタリレートを一 成分とする共重合体のような接着性改質剤を、適宜添加しても良い。
[0042] さらに、熱可塑性樹脂は少なくとも、ポリブチレンテレフタレート、又はポリブチレン ナフタレートのどちらか一方のハードセグメントと、ポリエーテル成分又はポリエステル 成分の少なくとも一方のソフトセグメントを持つブロック共重合体である変性ポリエステ ル樹脂で構成されるものであってもよぐこのようなバインダーを使用することでも、所 望の曲げたわみ量(厚さ t = 3. Omm、 23°C、 ASTM D790;スパン距離 50mmで 2 一 15mm)や所望の磁気特性(最大エネルギー積 BHmax : l . 63—2. 38MGOe ( 13— 19kj/m3) )を達成することができる。
[0043] また、スリンガ 25の材質としては、磁気エンコーダの磁気特性を低下させず、尚且 つ使用環境から鉄系磁性材料が用いられ、スリンガ 25の取り付け位置によって、耐 食性、コストを鑑みて適宜選択可能である。鉄系磁性材料としては、一定レベル以上 の耐食性を有するフェライト系ステンレス(SUS430等)、マルテンサイト系ステンレス (SUS410、 SUS420等)等の磁性材料が最も好ましい。また、このステンレス鋼製 のスリンガ表面は、接着剤の選定を行えば、 BA5号等の光輝仕上げを行ったものや 、表面に微細な凹凸が残る No. 2B等の仕上げを行ったものを使用可能であるが、 磁石材料との接合性を向上させるために、ショットブラスト等の機械的粗面化処理や 以下の工程で行われる化学エッチング処理を伴う粗面化処理、或いは、以下に示す プレス加工時の粗面化処理を行うことが好適である。
[0044] 化学エッチング処理を伴う粗面化処理の第一の工程では、スリンガ 25の表面をァ ルカリ脱脂剤にて清浄した後、常温の希塩酸等中に数分間浸漬して酸洗後、少なく ともシユウ酸イオンとフッ素化合物イオンを含有するシユウ酸鉄処理液に数分間浸漬 して、表面にシユウ酸鉄皮膜が形成される。第二の工程では、このシユウ酸鉄皮膜が 形成された磁性ステンレス鋼製のバックヨークを、常温で硝酸一フッ化水素酸混酸の 水溶液などに数分間浸漬し、下地のステンレス鋼が浸されないレベルまで、シユウ酸 鉄皮膜の大部分が除去され、バックヨーク表面に化学エッチングされた凹凸が形成さ れる。この凹凸は化学的に形成されるので、ショットブラスト法などによる機械的凹凸 に比べて、形状依存性がな 全表面に均一に形成され、部分的に凹部の内側空間 が広くなつたようなシャープな(角のある)窪み状の凹凸となる。このスリンガの凹凸に は、接着剤が入り込みやすぐ接着剤をスリンガに塗布後半硬化状態で焼き付けたも のをコアにしてインサート成形し、必要に応じて二次加熱することで、凹凸がないスリ ンガを用いたものに比べて強固な接着状態を達成することができる。
[0045] また更に防鲭性あるいは接着剤の密着性を向上させる第三の工程を行ってもよい 。防鲭性を向上させる処理の具体例としては、第二工程で使用したシユウ酸鉄皮膜 処理である力 S、第二工程でせつ力べ形成された凹凸表面を覆い尽くさないような微細 な結晶で形成される薄膜が好ましい。この微細結晶を得る手段としては、処理前に表 面調整液に浸漬処理して、結晶核を形成しておく方法が効果的である。
[0046] 接着剤の密着性を向上させる処理としては、シランカップリング剤処理が効果的で ある。シランカップリング剤皮膜は接着剤のプライマーとして働き、片末端に接着剤の 官能基と反応性が高いアミノ基、エポキシ基等を有するものが好ましぐ具体的には、 γ—ァミノプロピルトリエトキシシラン、 γ—グリシドキシプロピルトリエトキシシラン等で あり、アルコール等の希釈液に浸漬後、必要に応じて乾燥することで形成される。
[0047] 第三工程で形成される皮膜の厚みは、 0. 01-1. 0 /i m、より好ましくは 0. 01— 0 . 5 x mである。皮膜の厚みが 0. Ol x m未満であると、防鲭性、接着剤密着性の改 善効果が乏しくなり、好ましくない。それに対して、皮膜の厚みが 1. O x mを越えると 、第二工程で設けた凹凸表面が覆い尽くす割合が増えるので好ましくない。第二ェ 程、あるいは第三工程まで行って得られたスリンガの表面の凹凸の状態は、 JIS B 0601 (2001)で規定される算術平均高さ Raで 0. 2—2. 0 μ m、最大高さ Rzで 1. 5 一 10 x m程度である。凹凸の状態が下限値未満であると、くさび効果を発現させる のが困難になる。またそれに対して、凹凸の状態が上限値を越えるとそれだけくさび 効果は向上するが、化学エッチング法で達成するのが難しくなり、実用性が低下する と共に、スリンガの裏面部が接触するゴムシールリップとのシール性が低下し好ましく ない。
[0048] また、磁性ステンレス以外の鉄系磁性材料、例えば、 SPCC等の冷延鋼板等の場 合は、第一工程で用いられる表面処理液を、亜鉛イオン、ニッケルイオン、コバルトィ オン、カルシウムイオン及びマンガンイオンからなる群から選ばれる少なくとも一種の 重金属イオンと、リン酸イオンとを含有するもの、具体的にはリン酸亜鉛処理液、リン 酸マンガン処理液等に変更して同様に他の工程を実施することで化学エッチングに よる凹凸が形成される。
[0049] なお、スリンガ 25にフェライト系ステンレスを用いる場合には、 Crを 16— 20質量0 /0 、Moを 0. 4—2. 5質量0 /0含有する耐食性フェライト系ステンレス(SUS434, SUS4 44等)を使用してもよい。この場合、スリンガ 25の磁極形成リング 27との接合面は、 化成処理が施されてもよぐ或いは、上記化学エッチング処理が施されてもよい。
[0050] また、プレス加工時における粗面化処理は、鉄系磁石材料の薄板を金型間でプレ ス成形する際、スリンガ 25の接合面のみを金型表面に設けられた微細な凹凸に押し 付けて転写し、図 43に示されるような、微細な凹凸部 25cを接合面に設ける。
[0051] 具体的に、プレス成形機 280は、図 44に示されるように、スリンガ 25の円筒部 25a の内径と略同径の外径を有する円柱状のガイド部 281を有する基台 282と、基台 28 2上でガイド部 281に外嵌される環状の面精度荒加工金型 283と、荒加工金型 283 の上方で上下方向に移動可能で、円筒部 25aの外径と略同径の内径を有する環状 の押し型 284とを備える。荒カ卩ェ金型 283の表面には、微細な凹凸 283aが設けられ ている。この微細な凹凸 283aを設ける方法としては、化学的エッチング、放電加工、 転造あるいは切削式ローレット加工等が好適である。
[0052] そして、押し型 284を下方に駆動し、荒加工金型 283と押し型 284との間に設けら れた鉄系磁石材料の薄板をプレス成形することで、ガイド部 281の外周面と押し型 2 84の内周面との間に円筒部 25aが形成される。この際、荒カ卩ェ金型 283に設けられ た凹凸 283aにスリンガ 25を形成する薄板の接合面が押し付けられることによって、 実際には凹凸 283aの比較的高い凸部が優先的に押し付けられ、平滑だった部分に 凹凸部 25cが形成される。
[0053] 凹凸部 25cの凹部の深さは、 1一 20 μ m程度、より好ましくは 2— 10 μ m程度であ る。凹部の深さが l z m未満の場合には、この凹部に入り込んで、接着剤のアンカー 効果を発現させるには、深さが浅すぎて、接合力の向上があまり見られず実用性が 低い。凹部の深さが 20 / mを越える場合には、金型 283に設ける凸部を更に深くす る必要があるため、プレス成形時にて転写する際、裏側の平滑面にも影響する虞が あり、好ましくない。
[0054] また、鉄系磁石材料からなるスリンガ 25において、接合面以外の平滑面の表面仕 上げ状態としては、特に限定されないが、 Raで 0. l z m以下の、 BA2号(RaO. 06 程度)、 BA5号 (RaO. 03程度)等の BA仕上げ、あるいは、 No. 2B (RaO. 06程度) 等の AP仕上げされたもの力 摺接するシールリップへの攻撃性を考慮して好ましレ、
[0055] 本実施形態のエンコーダでは、スリンガ 25の磁石接合面に接着剤が塗布され、化 学エッチング等によって設けられた凹凸に接着剤が入り込み、アンカー効果により金 属側と強固に接着状態を維持している。この接着剤層は、インサート成形時に硬化 反応が進む接着剤であり、インサート成形時に溶融した高圧のプラスチック磁石材料 によって、脱着して流失しない程度まで半硬化状態になっており、溶融樹脂からの熱 、あるいはそれに加えて成形後の二次加熱によって完全に硬化状態となる。使用可 能な接着剤としては、溶剤での希釈が可能で、 2段階に近い硬化反応が進むフエノ ール樹脂系接着剤やエポキシ樹脂系接着剤等が、耐熱性、耐薬品性、ハンドリング 性を考慮して好ましい。
[0056] フエノール樹脂系接着剤は、ゴムの加硫接着剤として用いられているものが好適で あり、組成としては特に限定されないが、ノボラック型フエノール樹脂やレゾール型フ ェノール樹脂と、へキサメチレンテトラミンなどの硬化剤を、メタノールやメチルェチル ケトンなどの溶解させたものが使用できる。また、接着性を向上させるために、これら にノボラック型エポキシ樹脂を混合したものであってもよい。
[0057] 例えば、本実施形態で用いるフエノール樹脂系接着剤は、少なくともレゾール型フ ェノール樹脂とビスフエノール A型エポキシ樹脂を含み、例えば 100°C— 120°C、数 分一 30分程度の硬化条件で、インサート成形時の高温高圧の溶融プラスチック磁石 材料によって流失されない程度の半硬化状態でスリンガに焼き付けることができ、更 に、インサート成形時の溶融プラスチック磁石からの熱、更には、それに引き続く二次 加熱 (例えば 130°C、 2時間程度)によって完全に硬化するものである。尚、このフエ ノール樹脂系接着剤には、耐硬化歪み性を向上させる効果がある無機充填材 (具体 例としては、例えば溶融シリカ粉末、石英ガラス粉末、結晶ガラス粉末、ガラス繊維、 アルミナ粉末、タルク、アルミニウム粉末、酸化チタン)、可撓性を向上させるため、架 橋ゴム微粒子(具体的には分子鎖中にカルボキシル基を有する加硫された、平均粒 子径で 30— 200nm程度のアクリロニトリルブタジエンゴム微粒子が最も好適)等を更 に添加しても良い。
[0058] 尚、フヱノール樹脂系接着剤を構成するレゾール型フヱノール樹脂は、フヱノール 類とホルムアルデヒドとを塩基性触媒の存在下で反応させることによって得られる。ま た、その原料となるフエノール類としては、例えばフエノール、 m_クレゾール、 p_タレ ゾール、 m—タレゾールと o_タレゾールの混合物、 p—第 3プチルフエノール、 p—フエ ニルフエノール、ビスフエノーノレ A等のフエノール性水酸基に対して、 o—および/ま たは p—位に 2個または 3個の置換可能な核水素原子を有するものであれば任意のも のを使用することができる。
[0059] 更に、本実施形態に用いられるレゾール型フエノール樹脂は、例えばフエノール榭 脂に o—または p_アルキルフエノールを導入した変性レゾールであっても良レ、。通常 、 o—または p—アルキルフエノールの導入により、フエノール樹脂の可撓性が改善され ることになる。同様の理由から、レゾールをブチルアルコールでエーテル化したブチ ルエーテル化レゾールゃロジンとレゾールとの反応により得られるロジン変性レゾー ル等を使用しても良い。
[0060] 尚、本実施形態に係るフエノール樹脂系接着剤には、その接着性能および接着剤 としての硬化特性を向上させるために、ビスフエノール A型エポキシ樹脂が添カ卩して 用いられる。尚、ビスフエノール A型エポキシ樹脂としては、室温条件下で液状、ある いは固形のものがあるが、それらが、本発明に係る接着剤に含まれるフヱノール樹脂 100重量部当り、液状樹脂の場合には約 1一 20重量部、または固形樹脂の場合に は約 5— 30重量部の割合で用レヽられる。用レヽられるビスフエノール A型エポキシ樹脂 の割合が多い程、接着特性は向上するが、耐不凍液性等が求められる場合、その性 能が低下する傾向にある。
[0061] 更に、本実施形態に係るフエノール樹脂系接着剤には、強靭性の付与を目的とし て、ノボラック型エポキシ樹脂あるいはノボラック型フエノール樹脂を添加しても良い。 これらの樹脂は、加熱工程でレゾール型フヱノール樹脂と反応するため、その含有量 が増大するほど強靭性が向上することになる。ただし、その含有量は、レゾール型フ ヱノール樹脂 100重量部当り、 30重量部以下であることが望ましい。これは、ノボラッ ク型エポキシ樹脂あるいはノボラック型フエノール樹脂がこれ以上の割合で使用され ると、プラスチック磁石に対する接着性に悪影響を及ぼす恐れがあるためである。
[0062] 尚、本実施形態に係るフエノール樹脂系接着剤は、アセトン、メチルェチルケトン等 のケトン類、メタノーノレ、エタノール等のアルコール類が一般に用いられる有機溶媒 中に、少なくともレゾール型フエノール樹脂とビスフエノール A型エポキシ樹脂を含む 接着剤組成物を約 5— 40重量%の固形分濃度で溶解させた有機溶媒溶液として調 整され、使用される。
[0063] フエノール樹脂系接着剤を用いての磁気エンコーダの製作は、ステンレススチーノレ 製のスリンガ上にこれを塗布し、室温条件下で 20— 60分放置して風乾させた後、約 120°Cで約 30分間程度の条件で加熱処理 (焼付け処理)を行う。加熱処理して接着 剤を焼き付けたスリンガを金型にセットし、それをコアとしてプラスチック磁石材料をィ ンサート成形を行う。その後、得られた成形体を、約 130°Cで約 2時間程、加熱(二次 硬化)させる。さらに、加熱処理して得られるプラスチック磁石とスリンガの接着物を、 ヨークコイルを用いて多極に着磁することで、磁気エンコーダが製作される。
[0064] エポキシ樹脂系接着剤としては、原液としては一液型エポキシ系接着剤で、溶剤へ の希釈が可能なものが好適である。この一液型エポキシ系接着剤は、溶剤を蒸発さ せた後、適当な温度 '時間でスリンガ表面に、インサート成形時の高温高圧の溶融樹 脂によって流失されない程度の半硬化状態となり、インサート成形時の樹脂からの熱 、及び二次加熱によって完全に硬化状態となるものである。
[0065] 本実施形態で用いる一液型エポキシ系接着剤は、少なくともエポキシ樹脂と硬化 剤とからなり、硬化剤は室温近辺ではほとんど硬化反応が進まず、例えば 80— 120 °C程度で半硬化状態となり、 120— 180°Cの高温の熱を加えることによって完全に熱 硬化反応が進むものである。この接着剤には、反応性希釈剤として使用されるその 他のエポキシ化合物、熱硬化速度を向上させる硬化促進剤、耐熱性ゃ耐硬化歪み 性を向上させる効果がある無機充填材、応力力 Sかかった時に変形する可撓性を向上 させる架橋ゴム微粒子等を更に添加しても良い。
[0066] 前記エポキシ樹脂としては、分子中に含まれるエポキシ基の数が 2個以上のものが 、充分な耐熱性を発揮し得る架橋構造を形成することができるなどの点から好ましい 。また、 4個以下、さらに 3個以下のものが低粘度の樹脂組成物を得ることができるな どの点から好ましい。分子中に含まれるエポキシ基の数が少なすぎると、硬化物の耐 熱性が低くなると共に強度が弱くなるなどの傾向が生じ、一方、分子中に含まれるェ ポキシ基の数が多すぎると、樹脂組成物の粘度が高くなると共に硬化収縮が大きくな るなどの傾向が生じるためである。
[0067] また、前記エポキシ樹脂の数平均分子量は、 200— 5500、特に 200— 1000力 物性のバランスの面から好ましい。数平均分子量が少なすぎると、硬化物の強度が 弱くなると共に耐湿性が小さくなるなどの傾向が生じ、一方、数平均分子量が大きす ぎると、樹脂組成物の粘度が高くなると共に作業性調整のために反応性希釈剤の使 用が多くなるなどの傾向が生じるためである。
[0068] さらに、前記エポキシ樹脂のエポキシ当量は、 100— 2800、特に 100— 500力 硬化剤の配合量が適正範囲になるなどの点から好ましい。エポキシ当量が小さすぎ ると、硬化剤の配合量が多くなりすぎると共に硬化物の物性が悪くなるなどの傾向が 生じ、一方、エポキシ当量が大きすぎると、硬化剤の配合量が少なくなると共にェポ キシ樹脂自体の分子量が大きくなつて樹脂組成物の粘度が高くなるなどの傾向が生 じるためである。
[0069] 前記エポキシ樹脂としては、例えばビスフエノール A型エポキシ樹脂、ビスフエノー ル F型エポキシ樹脂、ビスフエノール AD型エポキシ樹脂、ナフタレン型エポキシ樹脂 、ビフエニル型エポキシ樹脂、グリシジルァミン型エポキシ樹脂、脂環式エポキシ樹 脂、ジシクロペンタジェン型エポキシ樹脂、フエノールノボラック型エポキシ樹脂、ポリ エステル変性エポキシ樹脂、シリコン変性エポキシ樹脂のような他のポリマーとの共 重合体などが挙げられる。このうち、ビスフエノール A型エポキシ樹脂、ビスフエノール F型エポキシ樹脂、ビスフエノール AD型エポキシ樹脂、ナフタレン型エポキシ樹脂、 フエノールノボラック型エポキシ樹脂などが、比較的低粘度で、硬化物の耐熱性と耐 湿性に優れるので好ましレ、。 [0070] 前記硬化剤としては、アミン系硬化剤、ポリアミド系硬化剤、酸無水物系硬化剤、潜 在性硬化剤等を用いることができる。
[0071] アミン系硬化剤は、ァミン化合物であり、硬化反応によりエステル結合を生成しない ため、酸無水物系硬化剤を用いた場合に比べて、優れた耐湿性を有するようになり 好ましレ、。ァミン化合物としては、脂肪族ァミン、脂環族ァミン、芳香族ァミンのどれで もよいが、芳香族ァミンが配合物の室温での貯蔵安定性が高いと共に、硬化物の耐 熱性が高レ、ので最も好ましレ、。
[0072] 芳香族ァミンとしては、 3, 3,-ジェチル -4, 4,-ジアミノジフエニルメタン、 3, 5—ジ ェチルー 2, 6_トルエンジァミン、 3, 5_ジェチルー 2, 4_トルエンジァミン、 3, 5—ジェ チルー 2, 6_トルエンジァミンと 3, 5_ジェチルー 2, 4_トルエンジァミンとの混合物、 等を例示することができる。
[0073] ポリアミド系硬化剤は、ポリアミドアミンとも呼ばれ、分子中に複数の活性なアミノ基 を持ち、同様にアミド基を一個以上持つ化合物である。ポリエチレンポリアミンから合 成されるポリアミド系硬化剤は、二次的な加熱によりイミダジリン環を生じ、エポキシ榭 脂との相溶性や機械的性質が向上するので好ましい。ポリアミド系硬化剤は、少量の エポキシ樹脂を予め反応させたァダクト型のものでもよぐァダクト型にすることで、ェ ポキシ樹脂との相溶性に優れ、硬化乾燥性や耐水 *耐薬品性が向上し好ましい。こ のポリアミド系硬化剤を用いることで、エポキシ樹脂との架橋により特に可撓性に富ん だ強靭な硬化樹脂となるので、本発明の磁気ェンコーダに求められる耐熱衝撃性に 優れ、好適である。
[0074] 酸無水物系硬化剤で硬化した硬化物は、耐熱性が高ぐ高温での機械的 ·電気的 性質が優れている一方でやや脆弱な傾向があるが、第三級ァミン等の硬化促進剤と 組み合わせることで改善が可能である。酸無水物系硬化剤としては、無水フタル酸、 メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチレンェン ドメチレンテトラヒドロ無水フタル酸、メチルへキサヒドロ無水フタル酸、無水トリメリット 酸等を例示することができる。
[0075] 潜在性硬化剤は、エポキシ樹脂との混合系において、常温での貯蔵安定性に優れ 、一定温度以上の条件下にて速やかに硬化するものであり、実際の形態としては、ェ ポキシ樹脂の硬化剤たり得る酸性または塩基性化合物の中性塩又は錯体で加熱時 に活性化するもの、マイクロカプセル中に硬化剤が封入され圧力により破壊するもの 、結晶性で高融点かつ室温でエポキシ樹脂と相溶性がなレ、物質で加熱溶解するも の等がある。
[0076] 潜在性硬化剤としては、高融点の化合物である 1, 3_ビス(ヒドラジノカルボェチル) _5—イソプロピルヒダントイン、エイコサンニ酸ジヒドラジド、アジピン酸ジヒドラジド、ジ シアンジアミド、 7, 11—ォクタデカジエン一 1, 18—ジカルボヒドラジド等を例示するこ とができる。このうち、 7, 11-ォクタデカジエンー 1, 18-ジカルボヒドラジドは、硬化剤 として使用することで、エポキシ樹脂との架橋により特に可撓性に富んだ強靭な硬化 樹脂となるので、本発明の磁気エンコーダに求められる耐熱衝撃性に優れ、好適で ある。
[0077] 前記反応性希釈剤としては、 t一ブチルフエニルダリシジルエーテル、 2—ェチルへ キシノレグリシジノレエーテノレ、ァリノレグリシジノレエーテノレ、フエニノレグリシジノレエーテノレ 等を用いることができ、反応性希釈剤を添加することで硬化物に適度な可撓性を付 与することができる。ただし、これらの反応性希釈剤は、多量に使用すると、硬化物の 耐湿性や耐熱性を低下させるので、主体となるエポキシ樹脂の重量に対して、好まし くは 30%以下、より好ましくは 20%以下の割合で添加される。
[0078] 前記硬化促進剤としては、常温では硬化反応を促進させせずに充分な保存安定 性を有し、 100°C以上の高温になったときに速やかに硬化反応を進行させるものが 好ましぐ例えば、分子内の 1_アルコキシエタノールとカルボン酸の反応により生じる エステル結合を一個以上有する化合物等がある。この化合物は、例えば一般式 (I): R3[COO-CH (OR2)-CH ] (I)
3 n
(式中、 R3は炭素数 2— 10個で、窒素原子、酸素原子などの 1種以上が含まれてい てもよい n価の炭化水素基、 R2は炭素数 1一 6個で、窒素原子、酸素原子などの 1種 以上が含まれていてもよい 1価の炭化水素基、 nは 1一 6の整数)で表される化合物で ある。その具体例を化 5に示す。 [0079] [化 5]
Figure imgf000024_0001
[0080] 他の具体例としては、 R3が 2価のフエニル基で R2がプロピル基の化合物、 R3が 3価 のフエニル基で R2がプロピル基の化合物、 R3が 4価のフエニル基で R2がプロピル基 の化合物などが挙げられる。これらは単独で用いてもよぐ 2種以上を組み合わせて 用いても良い。このうち、化 1で表される化合物が硬化反応性と貯蔵安定性のバラン スの点から、最も好ましい。
[0081] また、上記した化合物以外に、 2—メチルイミダゾール、 2—ェチノレー 4—メチルイミダゾ ール、 2—ゥンデシルイミダゾール、 2_フエ二ルイミダゾール等のイミダゾール化合物 を硬化促進剤として用レ、ても良レ、。
[0082] また、硬化促進剤として、エポキシ基と反応して開環反応を引き起こすような活性水 素を有する化合物である、例えばアジピン酸等のカルボン酸類を使用してもよい。硬 化促進剤としてアジピン酸を使用することで、エポキシ樹脂のエポキシ基及び硬化剤 のァミノ基と反応し、得られた硬化物はアジピン酸の添カ卩量が増えるに従って可撓性 を有するようになる。可撓性を発現させるためには、アジピン酸の添カ卩量は、接着剤 全量に対して、 10— 40重量%、より好ましくは 20— 30重量%である。添加量が 10 重量%未満の場合は、充分な可撓性が発現しない。それに対して、添加量が 40重 量%を越えると、その分エポキシ樹脂の接着剤中での全体量が減り、接着力、機械 的強度が低下して好ましくない。尚、アジピン酸は、ポリアミド樹脂の出発原料でもあ るので、磁性体粉のバインダーをポリアミド 12、ポリアミド 6などのポリアミド系樹脂とし た場合、バインダー材料自体に極微量残存するモノマーやオリゴマー成分との反応 性も有し、アジピン酸を含有する接着剤組成とすることで、より強固な接着が可能で ある。 [0083] 更に硬化促進剤として、エポキシ基の開環反応を促進する触媒として働 ジメチ ノレベンジルァミン等の 3級ァミン、テトラプチルアンモニゥムブロマイド等の 4級アンモ ニゥム塩、 3_(3 ', 4,ージクロ口フエ二ル)— 1, 1—ジメチル尿素等のアルキル尿素な どを添加しても良い。
[0084] 上記したアミン類等も含めて、上記の開環反応で生成した〇H基は、被着材である 金属表面の水酸基と水素結合を作り、また、バインダー材料であるナイロンのアミド結 合等に作用して強固な接着状態を保つことができる。
[0085] 前記無機充填材としては、従来力 使用されているものであれば特に限定なく使用 することができる。例えば溶融シリカ粉末、石英ガラス粉末、結晶ガラス粉末、ガラス 繊維、アルミナ粉末、タルク、アルミニウム粉末、酸化チタンなど挙げられる。
[0086] 前記架橋ゴム微粒子としては、エポキシ基と反応しうる官能基を有するものが好まし ぐ具体的には分子鎖中にカルボキシル基を有する加硫されたアクリロニトリルブタジ ェンゴムが最も好ましい。粒子径はより細かいものが好ましぐ平均粒子径で 30— 20 Onm程度の超微粒子のものが、分散性と安定した可撓性を発現させるために最も好 ましい。
[0087] 以上説明した一液型エポキシ接着剤は、常温ではほとんど硬化反応進が行せず、 例えば 80— 120°C程度で半硬化状態となり、 120— 180°Cの高温の熱をカロえること によって完全に熱硬化反応が進むものである。より好ましくは、 150— 180°Cで比較 的短時間で硬化反応が進むものが好まし 180°C程度の高周波加熱での接着が 可能なものが最も好ましい。
[0088] 以上説明したフエノール樹脂系接着剤、エポキシ樹脂系接着剤の熱硬化後の硬化 物は、物性として、曲げ弾性率あるいはヤング率が 0. 02— 5GPa、より好ましくは 0. 03— 4GPaの範囲であり、あるいは硬度(デュ口メータ Dスケール; HDD)が 40— 90 、より好ましくは 60— 85の範囲であることが好ましレ、。曲げ弾性率あるいはヤング率 が 0. 02GPa未満、あるいは硬度(HDD)が 40未満の場合は、接着剤自体が柔らか 過ぎて自動車等の走行時の振動によって変形しやすぐそれにより磁石部が動き易 いため、回転数の検出精度が低下する虞があり好ましくなレ、。一方、曲げ弾性率ある いはヤング率が 5GPaを越える、あるいは硬度(HDD)が 90を越える場合は、接着剤 自体が硬すぎて、磁気エンコーダの磁石と固定部材との熱伸縮差 (即ち、両者の線 膨張係数の差による伸縮量の差)を吸収するように変形するのは難しぐ最悪の場合 、磁石に亀裂等が発生する虞があり好ましくない。本発明の一液型エポキシ系接着 斉 1Jは、自動車での使用を前提とすると耐熱衝撃性が求められ、硬化状態で可撓性( 応力力かかったときに変形する)を有するものがより好ましい。
[0089] 以下、上記材料を用いた本発明の磁気エンコーダの製造方法について詳細に説 明する。まず、スリンガの表面に、上述した工程で化学エッチング処理を伴う粗面化 処理が行なわれ、図 4 (a)—(c)の断面電子顕微鏡写真に示されるように、表面が粗 面化される。そして、この表面に接着剤を半硬化状態で焼き付けたスリンガをコアに したプラスチック磁石材料の射出成形 (インサート成形)を、磁場射出成形機 80を用 いて行なう。
[0090] 磁場射出成形機 80は、図 5に示されるように、支持台 81上に型締め装置 82と射出 装置 83とを備える。型締め装置 82は、トグル機構等の可動機構 84により、支持台 81 に固定されたハウジング 85に対して移動可能な可動部 86と、支持台 81に固定され た固定部 87と、可動部 86をハウジング 85と固定部 87間で案内する 4本のタイバー 8 8とを有する。可動部 86と固定部 87は、可動側金型 89と固定側金型 90をそれぞれ 備える。また、可動部 86及び固定部 87の側面には、コイル 91 , 92が配置されており 、電源装置 93によって通電される。制御装置 94は、可動機構 84、電源装置 91、射 出装置 83に接続されており、これらを制御するように構成される。
[0091] 図 6 (a)に示されるように、可動側金型 89は、当板 95にボルト固定された複数の可 動側金型片 89a— 89cからなり、固定側金型 90も、複数の固定側金型片 90a— 90c かゝらなる。そして、可動側金型 89と固定側金型 90との対向面間には、キヤビティ 96と ディスクゲート 97が形成される。これにより、射出装置 83のノズル 98力 射出された 溶融したプラスチック磁石材料は、スプノレ一部 99からディスクゲート 97を介してキヤ ビティ 96内に充填される。図 6 (b)に示されるように、可動側金型片 89a, 89b間には 、スリンガ 25の円筒状の嵌合部を収容する環状空間が構成されており、中央に位置 する固定側金型片 90aは、その外径側に位置する固定側金型片 90bよりも可動側金 型 89に向けて突出しており、固定側金型片 90aは、収容されたスリンガ 25と径方向 に重なって位置する。
[0092] また、磁場射出成形機 80に取り付けられた金型 89, 90中で溶融したプラスチック 磁石材料の射出時に併せて、コイル電流を金型 89, 90の両端のコイル 91, 92に印 加して、発生する一方向(極性同一)の磁界でプラスチック磁石材料を着磁し、磁性 体粉を配向させる。その後、金型 89, 90中で冷却時に着磁方向と逆方向の磁界で 脱磁する脱磁と、着磁時のコイル電流より高い初期コイル電流に始まって極性が交 互に反転し振幅が徐々に小さくなる複数のパルス電流を金型両端のコイル 91 , 92に 印加して脱磁する反転脱磁の少なくとも一方の工程により脱磁を行なう。次に、ゲート 部を除去してから、恒温槽等で一定温度、一定時間加熱することで、接着剤を完全 に硬化させる。なお、場合によっては、高周波加熱等で高温、短時間加熱することで 、完全に硬化させても良い。その後、周知のオイルコンデンサ式等の脱磁機を用いて 、 2mT以下、より好ましくは lmT以下の磁束密度まで、更に脱磁する。その後のェ 程で、周知の着磁ヨークと重ね合わせて多極着磁し、磁石部の製造を完了する。磁 石部の極数は 70— 130極程度、好ましくは 90— 120極である。極数が 70極未満の 場合は、極数が少なすぎて回転数を精度良く検出することが難しくなる。それに対し て、極数が 130極を越える場合は、各ピッチが小さくなりすぎて、単一ピッチ誤差を小 さく抑えることが難しぐ実用性が低い。
[0093] なお、エンコーダ部の成形は、上述したように、内径厚み部から溶融したプラスチッ ク磁石材料が同時に金型中に高圧で流れ込み、金型中で急冷され固形化する、デ イスクゲート方式の射出成形 (インサート成形)が好ましい。溶融樹脂はディスク状に 広がってから、内径厚み部にあたる部分の金型に流入することで、中に含有する燐 片状の磁性体粉が面に対して平行に配向する。特に、内径厚み部近傍の、回転セン サの検出する内径部と外径部との間の部分はより配向性が高ぐ厚さ方向に配向さ せたアキシアル異方性に非常に近くなつている。成形時に金型に、厚さ方向に磁場 をかけるようにすると、異方性はより完全に近いものとなる。
[0094] 尚、磁場成形を行なっても、ゲートをディスクゲート以外の、例えばサイドゲートとし た場合、徐々に固形化に向かって樹脂粘度が上がってレ、く過程で、ウエルド部での 配向を完全に異方化するのは困難であり、それによつて、磁気特性が低下すると共 に、機械的強度が低下するウエルド部に長期間の使用によって、亀裂等が発生する 可能性があり好ましくなレ、。従って、本実施形態では、スリンガをコアにして厚み方向 に磁界をかけた状態で、ディスクゲートによるインサート成形が行われる。
[0095] なお、成形された磁気エンコーダ 26の磁極形成リング 27の色は、フェライト粉を入 れるため黒色であるが、添加剤によって若干変化する。また、図 2に示されるように、 磁石材料は、スリンガ 25のフランジ部の外周部分にも回りこみ、機械的にも接合され ている。
[0096] 本実施形態の磁気エンコーダによれば、磁石部は、磁性体と樹脂とを含有する構 成としたので、ゴム磁石に対して比較的多量の磁性体粉を混入することが可能となり 、優れた磁気特性を有する磁気エンコーダを提供することができ、また、磁界をかけ た状態での射出成形 (磁場成形)が容易であり、優れた磁気特性発現に不可欠な異 方性磁石を得ることができる。
[0097] また、本実施形態の磁気エンコーダによれば、磁石部は、磁性体粉を 86— 92重量 %含有した熱可塑性樹脂をバインダーとするプラスチック磁石材料からなり、磁石部 は、インサート成形時に硬化反応が進む接着剤によって、磁性材料からなるスリンガ と化学的に接合されているので、磁石部は、良好な磁気特性を持った、細かいピッチ での円周方向への多極磁化を可能にすると共に、磁石全体の強度を確保することが できる。
[0098] また、本実施形態の磁気エンコーダによれば、磁石部はフェライト系磁性体粉と熱 可塑性樹脂とを含有する磁石材料からなり、磁石部は磁性材料からなるスリンガにー 体接合されており、磁石部は、厚さが 3. Ommで、 23°Cでの曲げたわみ量が 2— 10 mmの範囲にあるので、曲げたわみ量を大きくして、耐亀裂性を向上している。したが つて、スリンガをコアにしてインサート成形で機械的に接合された構造としても、 自動 車の足回り部が晒される高温、低温、高温と低温間の移行時の熱衝撃等の応力が磁 石部に掛かったとき、磁石部に亀裂が発生するのを効果的に防止し、信頼性を格段 に向上することができる。また、この曲げたわみ量は、バインダーとして変性ポリアミド 12樹脂を含有することで与えられる。
[0099] また、本実施形態の磁気エンコーダによれば、スリンガは、化学エッチング処理を 伴う粗面化された鉄系磁性材料からなるので、接着剤のくさび効果で、スリンガと磁 石部の接着性を向上してレ、る。
[0100] さらに、接着剤として、フエノール系接着剤あるいはエポキシ系接着剤を用いること で、 自動車の足回り部が晒される高温、低温、高温と低温間の移行時の熱衝撃、ダリ ースゃオイル等の各種薬剤によって、接着部に剥れ等が発生する可能性が低 信 頼性を向上している。また、この 2段階の硬化が可能な接着剤を用い、半硬化状態の 接着剤を焼き付けた状態でインサート成形することで、機械的及び化学的に、スリン ガと磁石部の接合が可能になり、生産性、信頼性も一層向上する。
[0101] また、本実施形態に係る磁気エンコーダの製造方法によれば、過酷な使用条件下 においても、スリンガより剥離して脱落することがない、高信頼性の磁気エンコーダの 作製が可能である。また、本実施形態の製造方法によって得られるプラスチック磁石 中の磁性体粉は、円環状の磁石の厚み方向に高度に配向しているため、その着磁 により得られるエンコーダの磁気特性は極めて良好なものとなる。このため、磁石中 の磁性体粉の含有量によっては、従来では 20mT程度であった磁束密度を 26mT 以上に向上させることが可能である。よって磁気エンコーダとセンサとのギャップを従 来と同様に lmmとした場合に、従来では 96極に多極磁化されていた物を、一極当り の磁束を維持して 120極以上に多極磁化することが可能である。この時、単一ピッチ 誤差は ± 2%以下とできる。即ち、本実施形態に係る磁気エンコーダによれば、従来 と同等のエアギャップとした場合に、極数を増加させて車輪の回転速度の検出精度 を向上させること力 Sできる。また、本実施形態に係るプラスチック磁石を従来と同数の 極数とした場合に、エアギャップを大きくとることができ、センサを配置する際の自由 度を向上させることができる。
[0102] なお、本実施形態のハブユニット軸受では、磁極形成リング 27がスリンガ 25から剥 れることが防止されればよ 図 2のように、磁極形成リング 27がスリンガ 25のフランジ 部表面とフランジ部外周部分とで接合されてもよぐ図 7に示すように、フランジ部表 面のみで接合されても良い。
[0103] また、図 45に示されるように、接合されたスリンガ 25と磁極形成リング 27に、少なく とも互いの接合境界部分 a, bを覆うように防湿被膜 290を設け、接着剤層への水分 の浸透を最小限に抑制するようにしてもよい。なお、防湿被膜 290を形成する材料と しては、非晶性フッ素樹脂、硬化型ウレタン樹脂、硬化型アクリル樹脂、硬化型ェポ キシ樹脂、ポリパラキシリレン誘導体などがある。この中で、特に樹脂自体に撥水性 力 Sある非晶性フッ素樹脂被膜、ポリパラキシリレン誘導体が水分の透過を抑える効果 が高く特に好適である。また、図 45では、防湿被膜 290は、スリンガ 25と磁極形成リ ング 27の全体を覆っている力 コスト面から少なくとも互いの接合境界部分 a, bを覆 つていればよぐ特に、シールリップが摺動する部分には防湿被膜がないほうが好ま しい。
[0104] さらに、図 8に示すように、磁気エンコーダ 26が設けられた側の開口端部(車両側 の開口端部)は、外輪 5aに内嵌したハブキャップ 29により密封されるので、スリンガ 2 5に摺接するシール部材を別途設ける必要がなぐ単独で使用されるスリンガ 25を磁 極形成リング 27の固定部材としてもよレ、。さらには、開口端部がハブキャップ 29によ り密封されるので、遠心力により油やごみを飛ばし、且つポンプの作用をして油の流 出とごみの侵入を防ぐというスリンガの機能を必ずしも必要としない。よって、磁極形 成リング 27の固定部材は、スリンガに限定されるものではない。
[0105] (第 2実施形態)
次に、本発明の第 2実施形態に係る、独立懸架式のサスペンションに支持する、非 駆動輪を支持するための車輪用軸受であるハブユニット軸受について、詳細に説明 する。なお、第 1実施形態と同等部分については同一符号を付し、説明を省略或い は簡略化する。
[0106] 第 1実施形態では、磁気エンコーダ 26とセンサ 28がアキシアル方向に対向するタ イブであつたが、本実施形態のハブユニット軸受 30では、図 9に示されるように、磁気 エンコーダ 31とセンサ 32とがラジアル方向に対向してレ、る。
[0107] 本実施形態の磁気エンコーダ 31では、内輪 16aの内端部外周面に固定部材であ る円環状のスリンガ 33が外嵌固定されており、内輪 16aから軸方向に延びるスリンガ 33の内周面には、磁石部である磁極形成リング 34が取り付けられている。また、外輪 5aの外周面には、静止部材であるカバー部材 35がハブユニット軸受 2aの軸方向端 部を覆うように固定されており、カバー部材 35に形成された開口部にはセンサ 32が 磁極形成リング 34とラジアル方向に対向するようにして取り付けられている。
なお、磁気エンコーダ 31の組成、成形方法については、第 1実施形態のものと同 様である。
[0108] 従って、本実施形態の磁気エンコーダ 31によれば、アキシアル方向に対向する磁 気エンコーダに比べて、同一スペースに対して被検出面の径を大きくできるので、ピ ツチ数が同一の場合、各ピッチ幅を大きくでき、製作しやすい。
[0109] (第 3実施形態)
次に、本発明の第 3実施形態に係る磁気エンコーダ付シール装置が組み付けられ た転がり軸受ユニットについて詳細に説明する。
[0110] 図 10および図 11に示すように、本実施形態である磁気エンコーダを備えた転がり 軸受ユニット 40は、固定輪である外輪 41と、回転輪(回転体)である内輪 42と、外輪 41及び内輪 42により画成された環状隙間に転動自在に配置され且つ保持器 44に より円周方向に等間隔に保持された複数の転動体である玉 43と、前記環状隙間の 開口端部に配設された密封装置 45と、磁気エンコーダ 46と、センサ 47とを備えてい る。
[0111] 密封装置 45は、外輪 41の内周面に装着されたシール部材 50と、シール部材 50よ りも軸受外方に配置され且つ内輪 42の外周面に固定されたスリンガ 60とを有してお り、シール部材 50とスリンガ 60とによって前記環状隙間の開口端部を塞ぎ、埃等の 異物が軸受内部に進入することを防止すると共に軸受内部に充填された潤滑剤が 漏洩することを防止している。そして、磁気エンコーダ 46は、スリンガ 60とこのスリンガ 60に取付けられた磁石部 70と、から構成されており、磁石部 70はスリンガ 60を固定 部材として内輪 42に固定されている。
[0112] シール部材 50は、断面略 L字形の円環状に形成された芯金 51により、同じく断面 略 L字形の円環状に形成された弾性材 52を補強して構成されており、外輪 41に内 嵌して装着されている。弾性材 52の先端部は複数の摺接部に分岐しており、各摺接 部は、スリンガ 60のフランジ部 62の軸受内方に面する端面、または嵌合部 61の外周 面に、全周に亙ってそれぞれ摺接している。これにより高い密封力を得ている。
[0113] スリンガ 60は断面 L字形の円環状に形成されており、内輪 42の外周面に外嵌する 略円筒状の嵌合部 61と、嵌合部 61の片側端部から半径方向に展開した鍔状のフラ ンジ部 62と、嵌合部 61の片側端部を折り曲げることで、フランジ部 62の内径側でフ ランジ部 62より軸方向外方に突出する突き出し部 63と、を有している。また、突き出 し部 63の外周面には、周方向の複数ケ所に形成されたノッチ部 64が設けられている 。フランジ部 62の軸受外方に面する端面 (以後、接合面と称する。) 62aには、内輪 4 2の回転に同期して近傍の磁場 (例えば、磁束密度)を変化させる磁石部 70が接合 されている。そして、同時に、磁石部 70は、ノッチ部 64とフランジ部 62の外周部分と も機械的に接合されている。
なお、磁気エンコーダ 46の組成、成形方法については、第 1実施形態のものと同 様である。
[0114] 従って、本実施形態の磁気エンコーダによれば、溶融した磁石材料は、スリンガ 60 のフランジ部 62の外径部に加えて、内径側に設けた突き出し部 63の周方向に複数 設けたノッチ部 64にも流れ込んで、機械的に接合される。これにより、磁石材料の収 縮は、フランジ部 62の外径部だけでなぐ内径側の突き出し部 63でも受けることにな り、熱衝撃等で発生する磁石部の亀裂発生の頻度をより低減することができる。 なお、本実施形態の磁気エンコーダ 46は、図 1に示すようなハブユニット軸受に組 み込んで使用することもできる。
[0115] (第 4実施形態)
次に、本発明の第 4実施形態に係る磁気エンコーダが組み付けられた転がり軸受 ユニットについて詳細に説明する。なお、第 3実施形態の転がり軸受ユニットと同等 部分については、同一符号を付して説明を省略或いは簡略化する。
[0116] 図 12—図 15に示すように、転がり軸受ユニット 100は、固定輪である外輪 41と、回 転輪である内輪 42と、外輪 41及び内輪 42により画成された環状隙間に転動自在に 配置され且つ保持器 44により円周方向に等間隔に保持された複数の転動体である 玉 43と、前記環状隙間の開口端部に配設された密封装置 45と、内輪 42の回転数を 検出するための磁気エンコーダ 120と、センサ 47とを備えている。
[0117] 密封装置 45は、外輪 41の内周面に固定され、芯金 51及び弾性材 52とを備えたシ 一ル部材 50と、シール部材 50よりも開口端部外側に配置され且つ内輪 42の外周面 に固定されたスリンガ 110とを有しており、シール部材 50とスリンガ 110とによって環 状隙間の開口端部を塞ぎ、埃等の異物が軸受内部に進入することを防止すると共に 軸受内部に充填された潤滑剤が軸受外部に漏洩することを防止している。そして、磁 気エンコーダ 120は、円環状の磁石部 121が固定部材であるスリンガ 110に接合さ れることで構成され、内輪 42と共に回転する。
[0118] スリンガ 110は磁性材料を断面 L字形の円環状に形成したものであり、内輪 42の外 周面に外嵌する略円筒状の嵌合部 112と、嵌合部 112の前記開口端部側の一端か ら半径方向に伸びる略円板状のフランジ部 111とを有している。そして、フランジ部 1 11の外周縁部には、凹状に切欠かれた係止部 113が円周方向に等間隔に複数設 けられていると共に、フランジ部 111には、周方向に等間隔に貫通孔 114が形成され ている。フランジ部 111の開口端部外方の端面には、内輪 42の回転に同期して近傍 の磁場 (例えば、磁束密度等)を変化させる磁気エンコーダ 120が接合されている。
[0119] 磁石部 121は、断面略矩形の円環状の着磁部 122と、スリンガ 110の係止部 113と 係合する複数の係止片と、該複数の係止片を連結する連結部 123とが設けられてい る。従って、係止部 113と係止片とが係合し、且つエンコーダ 120の着磁部 122と連 結部 123とによりフランジ部 111を挟持することにより、磁石部 121とスリンガ 110とが 機械的に接合される。さらに、フランジ部 111の貫通孔 114にも溶融した磁石材料が 充填され、磁石部 121とスリンガ 110とが機械的に接合される。
[0120] 磁石部 121は、磁性粉を 86— 92重量%の範囲内で適宜含有すると共に熱可塑性 樹脂をバインダとした磁石材料を射出成形して形成されており、金型中のスリンガ 11 0をコアとしてインサート成形されている。インサート成形とすることにより、溶融した磁 石材料がスリンガ 110の係止部 113に充填されて係止片が形成されると共に、フラン ジ部 111の開口端部内方の端面に隣接して、前記係止片を連結するように設けられ た金型中の円環状の空間にも充填されて連結部 123が形成される。係止部 113と係 止片とが係合し、且つ磁石部 121の着磁部 122と連結部 123とがフランジ部 111を 狭持することにより、磁石部 121とスリンガ 110とが機械的に接合されている。
[0121] 着磁部 122は、第 1実施形態の図 3に示す磁極形成リング 27と同様に、円周方向 に等間隔に S極と N極とが交互に(即ち、多極に)着磁されている。内輪 42がー回転 する間に、磁気エンコーダ 120近傍の一点における磁束密度が、着磁部 122の極数 に対応したピーク数を有して周期的に変化する。そして、軸受外方に面する磁石部 1 21の軸方向端面に対向して配置されたセンサ 47により前記磁束密度の変化を検出 して内輪 42の回転数を検出している。
[0122] 磁気エンコーダ 120の磁石部 121は、図 16を参照して、可動側型板 131と、コア 1 32と、固定佃 J型板 133と、スプノレ用ェジェクタピン 134aと、ェジヱクタピン 134bとを 有する射出成形機を用いて成形されている。可動側型板 131は、射出成形機のノズ ルが接続されて溶融した磁石材料を注入されるノズノレ口 135が上側面中央部に形 成されおり、ノズル口 135に連続して断面略円形状のスプル 136が下側面まで貫通 して形成されている。スプル 136は射出成形機の前記ノズルからランナ 137に至る磁 石材料の流入経路であり、ノズノレ口 135よりもランナ 137側を大径としたテーパ状に 形成されている。これにより、スプル 136で固化した磁石材料 (成形体)を抜き易くし ている。ランナ 137はスプル 136からゲート 138に至る樹脂の流入経路であり、固定 側型板 133に設けられた略円盤状の凹部と、可動側型板 131の下側面とにより画成 された空間である。また、ランナ 137の底面中央部には、成形体の取り出し方向に対 してストッパとなる逆テーパ状のスプルロックが設けられており、射出成形後、可動側 型板 131を取り外す際に可動側型板 131と成形体とをスムーズに分離することができ る。そして、スプルロックの下方にはスプル用ェジェクタピン 134aが設けられており、 成形体を下方から突き上げて成形体を固定側型板 133から分離する。
[0123] ゲート 138は磁石材料がランナ 137からキヤビティ 139に流入する流入口であり、キ ャビティ 139は磁石部 121の形状を成形するための空間である。キヤビティ 139は、 不図示のスリンガを保持するコア 132に設けられた磁石部 121の形状に対応した円 環状の凹部と、固定側型板 133の周面と、可動側型板 131の下側面とにより画成さ れた空間である。またキヤビティ 139の底面には周方向に複数のェジェクタピン 134b が設けられており、射出成形後、磁石部 121を下方から突き上げて磁石部 121をコ ァ 132力ら分離する。ゲート 138は、ランナ 137とキヤビティ 139とを連通させるように 、ランナ 137の外周部とキヤビティ 139の内周部とを全周に亙って接続する円環状の 空間であって、所謂ディスクゲートである。 [0124] 磁石部 121は、上記の射出成形機において、溶融した磁石材料がノズル口 135か らスプノレ 136を経てランナ 137に流入し、ディスクゲート 138から高圧でキヤビティ 13 9に射出され、そして、急冷されて固化することにより成形されている。ディスクゲート 1 38から高圧で射出された磁石材料は、キヤビティ 139の内周部から放射円状に広が つて均一にキヤビティ 139内に充填されるため、溶融した磁石材料同士が衝突するこ とも無ぐ磁石材料中に含有された燐片状 (板状結晶)の各磁性粉が、面の法線方向 (即ち、磁化容易方向)を磁気エンコーダ 120の厚み方向(言い換えれば、軸方向)と 平行に整列させて配向されている。特に、センサによって走査される内周部近傍 (即 ち、着磁部)は配向度が高ぐアキシアル異方性に非常に近い磁気特性を示す。尚、 前記厚み方向に磁場をかけた状態で射出成形を行うことにより、磁石材料中の磁性 粉をより完全に配向させることができる。
[0125] 前述の磁気エンコーダ 120を組み付けられた転がり軸受ユニット 100によれば、熱 可塑性樹脂をバインダとして磁性粉を 86— 92重量%の範囲で適宜含有した磁石材 料をディスクゲート方式により内周部から放射円状に射出成形して磁石部 121を円 環状に成形したので、磁石部 121に含有される磁性粉の配向度を高くすることができ 、磁気エンコーダ 120の磁気特性を向上させることができる。これにより、磁気ェンコ ーダ 120とセンサとの隙間を大きくとることができ、且つ磁石部 121の着磁部 122をよ り多極に着磁させることができるので、センサとの組み付けを容易にすると共に内輪 4 2の回転数を高精度に検出することができる。また、磁石部 121は溶融した磁石材料 同士が衝突して固化したウエルド部を有しておらず、機械的強度が高ぐ亀裂等が生 じ難レ、。さらに、スリンガ 110をコアとして磁石部 121をインサート成形したので、ェン コーダ 120と磁石部 121とを機械的に接合することができ、磁石部 121がスリンガ 11 0から脱落することを確実に防止して信頼性を向上させることができる。
[0126] なお、本実施形態の磁気エンコーダ 120の組成は、第 1実施形態で説明したものを 適用できる。
また、ポリアミド 6やポリアミド 12等のポリアミド樹脂を用いた場合に、スリンガと磁石 部との接合面に Ί—グリシドキシプロピルトリエトキシシラン等のエポキシ基を有するシ ランカップリング剤を塗布した後に高周波加熱を行うことにより、シランカップリング剤 に含有されるメトキシ基の加水分解によって生成されるシラノール基(Si— OH)がスリ ンガ表面のヒドロキシノレ基(OH)と脱水縮合反応を起こして新たな結合を形成すると 共に、エポキシ基がバインダーのアミド結合と反応を起こして新たな結合を形成する 。これにより、磁石部とスリンガとが化学的に完全に接合され、磁石部がスリンガから 脱落することを確実に防止して、信頼性を向上させることができる。
[0127] また、スリンガ 110のフランジ部 111の構造は、図 13に示すものに限られず、例え ば、半径方向中央部の円周上において円周方向に等間隔に貫通孔ゃ係合凹部を 複数設けてもよい。この場合に、磁石部 121は、前記貫通孔又は係合凹部に溶融し た磁石材料が充填されるようにインサート成形されて、スリンガ 110と機械的に接合さ れる。さらに、比較的硬質な樹脂系の磁石部 121とフランジ部 111との密着性を向上 させるために、間にゴム等のフィルム状の弾性部材を介在させてもよい。
[0128] また、本実施形態の磁気エンコーダ 120も、ハブユニット軸受に適用可能であり、 磁石部 121は、第 1実施形態同様、密封装置を構成するスリンガに接合されてもよく 、或いは、後述するように、互いに平行な 2列の内輪軌道面との間に配置され、取り 付け部材を介して回転体に固定されてもよい。この場合、センサは、磁石部 121の外 周面と対向するように配置され、外輪に保持される。また、スリンガゃ取り付け部材は フランジ部のない単純な円環形状としてもよい。そして、磁石部 121をスリンガゃ取り 付け部材とは別個に形成し、接着剤を用いてスリンガゃ取り付け部材と接合してもよ レ、。また、磁石部 121を、スリンガゃ取り付け部材、又は回転体に圧入して固定しても よ 接着剤による接合と圧入による固定とを併用して磁石部 121を固定してもよい。
[0129] (第 5実施形態)
次に、本発明の第 5実施形態に係る磁気エンコーダが組み込まれた転がり軸受ュ ニットについて詳細に説明する。なお、第 3実施形態の転がり軸受ユニットと同等部 分については、同一符号を付して説明を省略或いは簡略化する。
[0130] 図 17に示すように、本発明の第 5実施形態である磁気エンコーダが組み付けられ た転がり軸受 150は、固定輪である外輪 41と、回転体である内輪 42と、外輪 41及び 内輪 42により画成された環状隙間に転動自在に配置され且つ保持器 44により円周 方向に等間隔に保持された複数の玉 43と、前記環状隙間の開口端部に配設された 密封装置 45と、内輪 42の回転数を検出するための磁気エンコーダ 160と、センサ 4 7とを備えている。密封装置 45は、外輪 41の内周面に固定され、芯金 51と弹性材 5 2とを備えるシール部材 50と、シール部材 50よりも開口端部外側に配置され且つ内 輪 42の外周面に固定されたスリンガ 151とを有しており、シーノレ部材 50とスリンガ 15 1とによって環状隙間の開口端部を塞ぎ、埃等の異物が軸受内部に進入することを 防止すると共に軸受内部に充填された潤滑剤が軸受外部に漏洩することを防止して いる。
[0131] スリンガ 151は磁性金属材料を断面 L字形の円環状に形成したものであり、内輪 42 の外周面に外嵌する略円筒状の嵌合部 153と、嵌合部 153の開口端部側の一端か ら半径方向に伸びる略円盤状のフランジ部 152とを有している。軸受外方に面するフ ランジ部 152の端面には、内輪 42の回転に同期して近傍の磁場 (例えば、磁束密度 等)を変化させる円環状の磁石部 161が接着されており、スリンガ 151と磁石部 161と で磁気エンコーダ 160を構成している。尚、磁石部 161の固定部材であるスリンガ 15 8を磁性材料から形成することにより、磁石部 161の磁気特性が低下することを防止 することができ、これにより、内輪 42の回転数の検出精度を向上させることができる。
[0132] さらに図 18及び図 19を参照して、磁石部 161は断面略矩形の円環状に射出成形 されたプラスチック磁石である。磁石部 161の軸方向の片側端面(以後、着磁面と称 する。)は、第 1実施形態の図 3の磁極形成リング 27と同様、円周方向に等間隔に S 極と N極とが交互に(即ち、多極に)着磁されている。磁石部 161の着磁面とは他方 の軸方向端面には、スリンガ 151のフランジ部 152と接着される接着面 162と、接着 工程において接着面 162に塗布された接着剤が外部に溢れ出すことを防止する溝 1 63, 163とが設けられている。尚、射出成形時に、磁石部 161の軸方向に磁場をか けるようにする(即ち、磁場配向する)と、磁性粉の配向度を高め、磁石部 161の磁気 特性を向上させることができ、これにより、内輪 42の回転数の検出精度を向上させる こと力 Sできる。
[0133] 磁石部 161の溝 163, 163は、接着面 162の外径側および内径側の周縁部におい て、それぞれ全周に亙って断面略台形の円環状に形成されている。また、接着面 16 2は 0. 8— 5. O x mRaの範囲において適宜な表面粗さを有するように、全面に凹凸 部を形成されている。接着面 162の溝 163, 163の中間部(即ち、接着面 162の径方 向中央部における円周)には接着剤が塗布されており、接着面 162とフランジ部 152 の前記端面とが接着されている。従って、磁石部 161は、前記着磁面を軸受外方に 向けた状態でスリンガ 151に固定され、内輪 162と共に回転する。内輪 162がー回 転する間に、磁石部 161近傍の一点における磁束密度は、磁石部 161の極数に対 応したピーク数を有して周期的に変化する。そして、磁石部 161の前記着磁面に対 向して配置されたセンサ 47により磁束密度の変化を検出して内輪 42の回転数を検 出する。
尚、前述した第 5実施施形態において、磁石部 161は、接着面 162を 0. 8— 5. 0 μ mRaの範囲において適宜な表面粗さに形成されていると共に、接着面 162の内 径側および外径側の周縁部にそれぞれ溝 163, 163が形成されているが、これに限 定されるものではなく、 f列えば、溝 163を設けずに、接着面 162を 0. 8— 5. O /i mRa の範囲において適宜な表面粗さに形成するのみでもよぐ若しくは、接着面 162を平 滑な面(通常の金型面仕上げにより達成される 0. 4 μ mRa程度)として、接着面 162 の内径および外径周縁部にそれぞれ溝 163, 163を形成するのみでもよい。また、 図 20に示すように、溝 163を螺旋状に形成して、 1本の溝 163により接着面 162全域 をカバーするようにしてもよレ、。また、接着面 162に形成される凹凸部は、好ましくは 接着面 162の全面に形成される力 接着面 162の少なくとも一部に形成されていれ ばよレ、。例えば、接着面 162全域に均一に点在するように形成してもよいし、接着面 162の内径側および/または外径側の周縁部に全周に亙って形成されてもよい。 また、本実施形態の磁気エンコーダ 160も、第 4実施形態同様、ハブユニット軸受 に適用可能であり、磁石部 161は、第 1実施形態のような密封装置を構成するスリン ガに接合されてもよぐ或いは、後述するように、互いに平行な 2列の内輪軌道との間 に配置され、固定部材を介して回転体に固定されてもよい。
さらに、本実施形態の磁気エンコーダ 160は、磁石部 161とスリンガ 151との接合 方法が上記実施形態と異なることから、接着剤は第 1実施形態のものに限らず種々 のものが適用でき、また、磁石部 161ゃスリンガ 151の組成もそれに応じて適宜変更 可能である。 [0135] (第 6実施形態)
次に、図 21を参照して、本発明の第 6実施形態である磁気エンコーダを組み込ん だ主軸装置を説明する。
[0136] 主軸装置 200は、ハウジング 216の内部に、回転体である主軸 215を収容しており 、主軸 215は、ハウジング 216と主軸 215との隙間において軸方向に互いに平行に 配置された転がり軸受 210, 210とにより回転自在に支持されている。転がり軸受 21 0は、外輪 211と、内輪 212と、外輪 211及び内輪 212により画成された環状隙間に 転動自在に配置された複数の玉 213と、前記環状隙間の軸方向両側の開口端部を 塞ぐシール部材 214, 214とにより、それぞれ構成されている。主軸 215の基端部は 転がり軸受 210から軸方向に突出するように形成されており、その突端には磁石部 2 21を主軸 215に固定するための固定部材 220が設けられ、固定部材 220と磁石部 2 21とで磁気エンコーダ 222を構成している。固定部材 220は主軸 215と一体に略円 柱状に形成されてもよぐまた、主軸 215とは別個の部材として円環状に形成されて 主軸 215に外嵌して固定されてもよレ、。そして、固定部材 220の外周面には、主軸 2 15の回転に同期して近傍の磁場 (例えば、磁束密度等)を変化させる円環状に形成 された磁石部 221が外嵌して接着されている。
[0137] さらに図 22および図 23を参照して、磁石部 221は断面略矩形の円環状に射出成 形されたプラスチック磁石であり、磁石部 221の外周面は円周方向に等間隔に S極と N極とが交互に(即ち、多極に)着磁されている。磁石部 221の内周面には、固定部 材 220の外周面と接着される接着面 223と、接着工程において接着面 223に塗布さ れた接着剤が外部に溢れ出すことを防止する溝 224, 224とが設けられている。そし て、磁石部 221の溝 224, 224は、接着面 223の軸方向両端の周縁部において、そ れぞれ全周に亙って、断面略台形の円環状に形成されている。また、接着面 223は 0. 8— 5. O z mRaの範囲において適宜な表面粗さに形成されている。接着面 223 の溝 224, 224の中間部全体には接着剤が塗布され、固定部材 220の外周面と接 着面 223とが接着されている。これにより、磁石部 221は固定部材 220に固定され、 主軸 215と共に回転する。
なお、磁気エンコーダ 222の組成については、上述した第 5実施形態のものと同様 である。
[0138] そして、センサ 227は、磁気エンコーダ 222の径方向外方の延長上に設けられたハ ウジング 216の貫通孔 217に、保持部材 218を介して保持されており、その先端に設 けられたホール素子 228を磁気エンコーダ 222の外周面に僅かな隙間をおいて対 向するように配置されている。センサ 227により磁束密度の変化を検出することにより 主軸 215の回転数を検出している。
[0139] 尚、前述した第 6実施形態において、固定部材 220および磁石部 221は互いに平 行に配置された転がり軸受 210, 210の間に配置されて、主軸 215に固定されてもよ レ、。また、本実施形態の磁気エンコーダ 222は、ハブユニット軸受に適用されても良 い。
[0140] (第 7実施形態)
次に、図 24—図 36を参照して、本発明の第 7実施形態である磁気エンコーダを組 み込んだ転がり軸受ユニットについて詳細に説明する。なお、第 3実施形態の転がり 軸受ユニットと同等部分については、同一符号を付して説明を省略或いは簡略化す る。
[0141] 図 24および図 25に示すように、本発明の第 7実施形態である磁気エンコーダを備 えた転がり軸受ユニット 230は、固定輪である外輪 41と、回転輪である内輪 42と、外 輪 41及び内輪 42により画成された円環状隙間に円周方向に等間隔に配置され且 つ保持器 44により転動自在に保持された複数の転動体である玉列 43と、円環状隙 間の開口端部に配設された密封装置 45と、内輪 12の回転数を検出するための磁気 エンコーダ 240とを備えている。密封装置 45は、スリンガ 242と、スリンガ 242よりも軸 受内方側に配置され、芯金 51と弹性材 52とを備えるシール部材 50から構成されて おり、シール部材 50をスリンガ 242に摺接させることにより円環状隙間の開口端部を 塞ぎ、埃等の異物が軸受内部に進入することを防止すると共に軸受内部に充填され た潤滑剤が軸受外部に漏洩することを防止している。
[0142] さらに図 26から図 28を参照して、磁気エンコーダ 240は、磁石部 241と、固定部材 であるスリンガ 242とを備えて構成されている。磁石部 241は、磁性粉と該磁性粉の ノ インダ一として熱可塑性樹脂とを含み且つ磁性粉を 86— 92重量%の範囲で適宜 含有した磁石材料を円筒状に射出成形したものであり、円周方向に N極と S極とが交 互に(即ち、多極に)着磁されている。磁石部 241の射出成形の際には、厚み方向( 軸方向)に磁場がかけられており、磁石部 241中の磁性粉は軸方向に配向されてい る。よって、磁石部 241はアキシャル異方性とされており、軸方向の両端面に一対の 磁極面を有している。
[0143] スリンガ 242は、磁性材料を全体として断面 L字形の円環状に形成したものであり、 円環状隙間において内輪 42側から外輪 41側に向けて半径方向に展開する鍔状の フランジ部 244と、フランジ部 244の内径側周縁部から略直角に屈曲して軸方向に 延設された円筒部と、円筒部の端部から内輪 42側に略 180度屈曲して軸方向に延 設された円筒状の嵌合部 243と、力 構成されている。また、フランジ部 244の外径 側周縁部には、前記円筒部とは逆方向に略直角に屈曲して軸方向に延設された円 筒状の外枠 245が設けられており、さらに外枠 245の端部には、円周方向に等間隔 に複数の切欠きが設けられており、複数の係止爪 247が軸方向に突出して形成され ている。また、外枠 245と半径方向に対向する嵌合部 243の端部(以後、内枠と称す る。) 246には、円周方向に等間隔に複数の切欠きが設けられており、複数の係止爪 248が軸方向に突出して形成されている。外枠 245の内径は、磁石部 241の外径と 略等しい径とされており、内枠 246の外径は、磁石部 241の内径と略等しい径とされ ている。
[0144] 磁石部 241は、フランジ部 244と外枠 245と内枠 246とにより画成された円筒状の 凹部に嵌合し、前記一対の磁極面のうち一方の磁極面をフランジ部 244 (即ち、支持 部)に密着させた状態で仮支持される。そして、外枠 245の係止爪 247および内枠 2 46の係止爪 248力 磁石部 241の前記一対の磁極面のうち他方の磁極面の周縁部 にそれぞれ係合するように折り曲げられ、さらに加締められる。これにより、磁石部 24 1はスリンガ 242のフランジ部 244とィ系止爪 247, 248とにより狭持され、磁石部 241 とスリンガ 242とが機械的に接合されている。
[0145] 磁石部 241と一体とされたスリンガ 242は、係止爪 247, 248と係合する磁石部 24 1の磁極面を軸受外方に露出させるように、環状隙間の開口端部において内輪 42の 外周面に固定され、内輪 42と共に回転する。よって、内輪 42がー回転する間に、磁 石部 241近傍の一点における磁束密度は、磁石部 241の極数に対応したピーク数 を有して周期的に変化する。そして、磁石部 241の磁極面に対向して配置されたセ ンサ 47により磁束密度の変化を検出して内輪 42の回転数を検出する。
[0146] 上述の転がり軸受 240によれば、磁石部 241は、スリンガ 242のフランジ部 244と係 止爪 247, 248とにより狭持されるように加締められて、スリンガ 242に機械的に接合 されているので、磁石部 241がスリンガ 242から脱落することを容易に且つ確実に防 止することができ、エンコーダ 240の信頼性を高めることができる。さらに磁石部 241 とフランジ部 244との接着を併用して、磁石部 241の磁極面とフランジ部 244の密着 度を高め、スリンガ 242による保持強度を向上させてもよい。また、密封装置を構成 するスリンガ 242を磁石部 241の固定部材とすることにより、磁石部 241を内輪 42と 共に回転させるための固定部材を別途必要とせず、さらに、スリンガ 242を磁性材料 力 形成することにより、磁石部 241の磁気特性が低下することを防止することができ 、内輪 42の回転数(回転速度)を高精度に検出することができる。
[0147] 尚、上述した転がり軸受 240において、円筒状の外枠 245および内枠 246に、それ ぞれ円周方向に等間隔に切欠きを設けて複数の係止爪 247, 248を形成し、係止爪 247, 248を折り曲げてカ卩締める構成としている力 これに限定されるものではない。 例えば、第 7実施形態の第 1の変形例として、図 28および図 29に示すように、外枠 2 45および内枠 246に切欠きを設けずに単なる円筒状としておき、揺動加締め等の方 法によりその突端を徐々に塑性変形させ、全周に亘つて永久磁石側に折りこむように してもよレ、。この場合、外枠 245および内枠 246の突端に形成される係止部 249, 25 0が磁石部 241の前記磁極面の周縁部に全周に亘つて係合し、フランジ部 244と協 働して磁石部 241を狭持するように加締められるので、磁石部 241とスリンガ 242とを より強固に機械的に接合することができる。
[0148] また、上述した転がり軸受 240において、固定部材であるスリンガ 242は 1個の部材 として構成されているが、第 7実施形態の第 2の変形例として、図 30に示すように、フ ランジ部 244と外枠 245と係止爪 247と前記円筒部とを有する第 1スリンガ部材 242a 、および嵌合部 243と内枠 246と係止爪 248とを有する第 2スリンガ部材 242b、の別 個の部材カ 構成するようにしてもよい。これにより、スリンガ 242において嵌合部 24 3と前記円筒部とが連続する屈曲部をなくし、フランジ部 244および磁石部 241の軸 に対する垂直度を容易に確保することができる。よって、固定部材の成形性を高める と共に、内輪 42の回転数(回転速度)を高精度に検出することができる。
[0149] さらに、第 7実施形態の第 3の変形例として、図 31および図 32に示すように、第 2ス リンガ部材 242bの係止爪 248の代替として、内枠 246の突端を予め略直角に折り曲 げて半径方向外方に展開する鍔状の係止部 250を形成しておいてもよい。この場合 、磁石部 241が、まず、第 1スリンガ部材 242aのフランジ部 244に一方の磁極面を密 着させた状態で外枠 245に嵌合する。そして、外枠 245の係止爪 247が磁石部 241 の他方の磁極面の外径側周縁部に係合するように折り曲げられて加締められる。そ の後、第 2スリンガ部材 242bが圧入され、内枠 246の係止部 250が磁石部 241の他 方の磁極面の内径側周縁部に係合する。よって、係止爪 247および係止部 250がフ ランジ部 244と協働して磁石部 241を狭持するように加締められ、磁石部 241とスリン ガ 242とが機械的に接合される。これにより、係止爪 248を形成するために内枠 246 に複数の切欠きを設ける必要がなぐ第 2スリンガ部材 242bの成形性を向上させるこ とがでさる。
[0150] また、第 7実施形態の第 4の変形例として、図 33に示すように、第 1スリンガ部材 24 2aの円筒部の軸方向端部から略直角に折り曲がって半径方向内方に展開する鍔状 のストッパ部 251を設けてもよい。この場合、第 2スリンガ部材 242bの嵌合部 243の 軸方向長さは、第 2スリンガ部材 242bが圧入され、係止部 250が磁石部 241の磁極 面の内径側周縁部に係合した際に、第 2スリンガ部材 242bの嵌合部 243の突端が ストッパ部 251に当接するように設定される。これにより、第 2スリンガ部材 242bの過 度の圧入を防ぎ、磁石部 241の破損を防止することができる。
[0151] また、第 7実施形態の第 5の変形例として、図 34に示すように、第 1スリンガ部材 24 2aの前記円筒部において、フランジ部 244に連続する軸方向端部を切削加工等に より肉薄に成形して、内周面に円筒状の段部 252を設け、また、第 2スリンガ部材 24 2bの嵌合部 243を、段部 252の外径と略等しい外径とし且つ段部 251の半径方向 の幅と略等しい肉厚としてもよい。この場合、第 2フランジ部 242bの嵌合部 243の軸 方向長さは、第 2スリンガ部材 242bが圧入され、係止部 250が磁石部 241の磁極面 の内径側周縁部に係合した際に、嵌合部 243の突端が段部 252に当接するように設 定される。これにより、第 2スリンガ部材 242bの過度の圧入を防ぎ、磁石部 241の破 損を防止することができると共に、エンコーダ 240の取り付け空間(換言すれば、外輪 41の内径および内輪 42の外径)が制限される場合に、磁石部 241の半径方向の幅 (面積)を大きくすることができる。
[0152] また、第 1スリンガ部材 242aの前記円筒部において、上述のようにフランジ部 244と 接続する一方の軸方向端部を切削加工等により肉薄に形成することに替えて、第 7 実施形態の第 6の変形例として、図 35に示すように、フランジ部 244と接続する軸方 向端部が大径となるように、絞り加工等により段付きに成形して段部 252を形成しても よい。
[0153] また、第 7実施形態の第 7の変形例として、図 36に示すように、第 1スリンガ部材 24 2aのみで磁石部 241を保持してもよい。即ち、磁石部 241は、第 1スリンガ部材 242a のフランジ部 244と係止爪 247とにより狭持されて、保持されている。これにより、固定 部材が 1個で済み、係止爪の加締も磁石部 241の外径側周縁部のみでよいため、磁 石部 241と固定部材との一体化が容易となると共に、エンコーダ 240の取り付け空間 が制限される場合に、磁石部 241の半径方向の幅(面積)をさらに大きくすることがで きる。好ましくは、磁石部 241の一方の磁極面とフランジ部 244とは接着剤等を用い て接合される。
[0154] 上述した実施形態においては、スリンガ 242を磁石部 241の固定部材として磁気ェ ンコーダ 240を構成するようにしたので、密封装置 45と磁気エンコーダ 240とでスリン ガ 242を共有して転がり軸受の部品点数を削減することができる。
なお、本実施形態の磁気エンコーダ 240は、図 1に示すようなハブユニット軸受に 組み込んで使用することもできる。また、本実施形態の磁気エンコーダ 240を構成す る磁石部 241とスリンガ 242の組成は、上記実施形態のものであってもよぐこれらの 接合方法が上記実施形態と異なることから、それに応じて適宜変更されてもよい。
[0155] (第 8実施形態)
次に、図 37から図 40を参照して、本発明の第 8実施形態である磁気エンコーダを 備えた車輪用軸受であるハブユニット軸受について詳細に説明する。尚、第 1実施 形態のハブユニット軸受と同等部分については同一符号を付し、説明を省略或いは 簡略化する。
[0156] ハブユニット 260は、ハブ 7aの取り付けフランジ 12に固定された車輪(図示せず)を 回転自在に支持するものである。外輪 5aの内周面には、互いに平行な 2列の外輪軌 道 10a, 10bが形成されており、また回転体であるハブ 7a及び内輪部材 16aの外周 面には、外輪軌道 10a, 10bにそれぞれ対向する内輪軌道 14a, 14bが形成されて いる。外輪軌道 10aと内輪軌道 14aとの隙間、および外輪軌道 10bと内輪軌道 14bと の隙間には、保持器 18, 18によって円周方向に等間隔に保持された複数の玉列 17 a, 17aがそれぞれ転動自在に配置されている。玉列 17a, 17aの間において、磁気 エンコーダ 270がハブ 7aの外周面に配置されている。
[0157] 磁気エンコーダ 270は、磁石部 271と固定部材 272から構成されており、磁石部 2 71は、磁性粉と該磁性粉のバインダとして熱可塑性樹脂とを含み且つ磁性粉を 86 一 92重量%の範囲で適宜含有した磁石材料を円筒状に射出成形したものであり、 図 40に示すように、円周方向に N極と S極とが交互に(即ち、多極に)着磁されている 。磁石部 271の射出成形の際には、中心から半径方向に磁場がかけられており、磁 石部 271中の磁性粉は半径方向に配向されている。よって、磁石部 271はラジアル 異方性とされており、内周面および外周面に一対の磁極面を有している。
[0158] 固定部材 272は、磁性金属材料を円筒状に形成したものであり、軸方向中央部に は、内周面においてハブ 7aの外周面と嵌合し、且つ外周面において磁石部 271の 内周面と嵌合する嵌合部 273を有している。また、固定部材 272の軸方向両側の端 部にはそれぞれ円周方向に等間隔に複数の切欠きが設けられており、複数の係止 爪 274, 275が軸方向に突出するように形成されている。
[0159] 磁石部 271は、固定部材 272の一方の軸方向端部から揷入され、内径側の磁極 面を嵌合部 273の外周面に密着させた状態で、固定部材 272に仮支持される。そし て、係止爪 274, 275が、磁石部 271の外径側の磁極面の周縁部にそれぞれ係合 するように折り曲げられ、さらに加締められる。これにより、磁石部 271は固定部材 27 2の嵌合咅 73と係止爪 274, 275とにより狭持され、磁石部 271と固定咅附 272と が機械的に接合されている。 [0160] 磁石部 271と一体とされた固定部材 272は、嵌合部 273をハブ 7aの外周面に嵌着 させて、ハブ 7aと共に回転する。よって、ハブ 7aがー回転する間に、磁石部 271近 傍の一点における磁束密度は、磁石部 271の極数に対応したピーク数を有して周期 的に変化する。そして、磁石部 271の外周側の磁極面と半径方向に対向して配置さ れたセンサ 28により磁束密度の変化を検出してハブ 7a (または、車輪)の回転数を 検出する。
[0161] 尚、上述したハブユニット軸受 260において、固定部材 272の軸方向両側の端部 に、円周方向に等間隔に切欠きを設けて複数の係止爪 274, 275をそれぞれ形成し 、係止爪 274, 275を折り曲げて加締める構成としている力 これに限定されるもので はない。例えば、固定部材 272の一方の軸方向端部を、予め半径方向外方に 180 度屈曲させ断面略 U字形の円環状に形成しておき、円環状の凹部に磁石部 271の 一方の軸方向端部を嵌合させて仮支持し、その後、固定部材 272の他方の軸方向 端部に形成された係止爪を折り曲げてもよい。これにより、仮支持における磁石部 27 1の位置決めが容易となる。尚、この場合、固定部材 272の断面略 U字形の円環状 に形成される一方の軸方向端部には切欠きを設けなくともよぐさらに、第 8実施形態 の変形例として、図 41および図 42に示すように、他方の軸方向端部にも切欠きを設 けずに、揺動加締め等の方法によりその突端を徐々に塑性変形させ、全周に亘つて 永久磁石側に折りこむようにしてもよい。この場合、固定部材 272の軸方向両側の端 部が、磁石部 271の外径側の磁極面の周縁部に全周に亘つて係合し、嵌合部 273 と協働して磁石部 271を狭持するように加締められるので、磁石部 271と固定部材 2 72とをより強固に機械的に接合することができる。
なお、本実施形態の磁気エンコーダ 270の組成は、第 7実施形態のものと同様であ る。
[0162] なお、本発明は、前述した実施形態に限定されるものでなぐ適宜、変形、改良、等 が可能である。
本実施形態では、磁気エンコーダは、磁石部がスリンガ等の固定部材に取り付けら れて使用されているが、本発明は、磁石部が直接回転体に取り付けられるような構成 にも適用可能である。 本実施形態では、磁気エンコーダが組み込まれたハブユニット軸受、転がり軸受ュ ニット、主軸装置について説明したが、各実施形態の磁気エンコーダは、いずれのハ ブユニット軸受、転がり軸受ユニット及び主軸装置にも適用可能である。また、本発明 の磁気エンコーダは、各実施形態の磁気エンコーダを組み合わせて使用することも 可能である。
[実施例]
[0163] 以下に、実施例を挙げて本発明をさらに説明するが、本発明はこれによって何ら制 限されるものではない。
[0164] まず、本発明に基づいて製作した実施例 1一 4の転がり軸受の構成を説明する。実 施例 1一 4に用いられた転がり軸受の磁気エンコーダは、金型中にスリンガを保持し た状態で磁石材料をインサート成形すると共に、軸方向に磁場をかけた状態で磁場 配向することによりアキシャル異方性を持たせ、その後、 N極と S極とを交互に計 96 極に多極磁化したものである。
[0165] (実施例 1)
実施例 1において、エンコーダはストロンチウムフェライトを 75体積0 /0含有する PA ( ポリアミド) 12系アキシャル異方性プラスチック磁石であり、最大エネルギー積で 2. 3 MGOeである。また、スリンガは SUS430力ら形成し、エンコーダとスリンガとの高周 波融着は行っていなレ、。また、シールリップ部のゴム材質はカーボンブラック又はタレ 一等を含有する NBR (アクリロニトリルブタジエンゴム)とした。
[0166] (実施例 2)
実施例 2において、エンコーダは SmFeN (サマリウム一鉄一窒素)を 75体積%含有 する PPS系アキシャル異方性ボンド磁石であり、最大エネルギー積で 7. 2MGOeで ある。また、スリンガは SUS430力 形成し、エンコーダとスリンガとの高周波融着は 行っていない。また、シールリップ部のゴム材質はカーボンブラック又は珪藻土等を 含有する FKM (フッ素ゴム)とした。
[0167] (実施例 3)
実施例 3において、エンコーダは NdFeB (ネオジゥム—鉄—ボロン)を 75体積0 /0含 有する PA12系アキシャル異方性ボンド磁石であり、最大エネルギー積で 11. 9MG 〇eである。また、スリンガは SUS430力ら形成し、エンコーダとスリンガとの高周波融 着は行っていなレ、。また、シールリップ部のゴム材質はカーボンブラック又はクレー等 を含有する NBRとした。
[0168] (実施例 4)
実施例 4において、エンコーダはストロンチウムフェライトを 75体積0 /0含有する PA1 2系アキシャル異方性プラスチック磁石であり、最大エネルギー積で 2. 3MG〇eであ る。また、スリンガは SUS430力 形成し、エンコーダとスリンガとの高周波融着を行 つた。尚、高周波融着は、 γ _グリシドキシプロピルトリメトキシシランをシランカツプリ ング剤とし、上記シランカップリング剤を 10重量%含有するメタノール溶液にスリンガ を浸漬し、乾燥後にエンコーダのインサート成形を行レ、、その後、高周波加熱により 2 00°Cまで 30秒で加熱して融着を行った。また、シールリップ部のゴム材質はカーボ ンブラック又はクレー等を含有する NBRとした。上記実施例 1一 4の構成を表 1に示 す。
[0169] [表 1]
Figure imgf000049_0001
実施例 1一 4に係る転がり軸受の磁気エンコーダによれば、従来と同等のエアギヤ ップとした場合に、磁気エンコーダの極数を増加させ、車輪の回転数の検出精度を 向上させることができる。また、磁気エンコーダを従来と同数の極数とした場合に、ェ ァギャップを拡大することができ、センサを配置する際の自由度を向上させることがで きる。尚、磁性粉の含有量によっては磁束密度を 26mT以上とすることも可能であり、 磁気エンコーダとセンサとの間隔(エアギャップ)を従来と同様に lmmとした場合に、 磁気エンコーダを 120極以上の多極に着磁することが可能である。この時、単一ピッ チ誤差は ± 2%以下とできる。
[0171] 次に、接合方法と接着剤の違いに基づく接着力差を以下の方法によって評価した
[0172] (実施例 5)
表面をサンドペーパーで荒らした SUS430板材(幅 40mm、長さ 100mm、厚さ lm m)上にフエノール樹脂系接着剤 (東洋化学研究所製メタロック N-15)を塗付し、室 温で約 30分間風乾させた後、 120°Cで 30分間の加熱処理を行った。この接着剤を 焼き付けた SUS430板材を金型にセットし、これをコアとしてプラスチック磁石材料( 戸田工業製ストロンチウムフェライト含有 12ナイロン系異方性プラスチック磁石コンパ ゥンド FEROTOP TP-A27N (ストチウムフェライトの含有量 75体積0 /0) )のインサ ート成形を行った。ただし、成形されるプラスチック磁石のサイズは幅 20mm、長さ 30 mm、厚さ 3mmであり、 SUS430板材上に射出成形させる部分、つまりはプラスチッ ク磁石と SUS430板の接合面積は 200mm2 (20mm X 10mm)である。その後、この 接合体を 130°C、 2時間、加熱(二次硬化)処理し、実施例 5の試験体を得た。
[0173] (実施例 6)
使用されるフエノール樹脂系接着剤が、東洋化学研究所製メタロック N— 23である 以外は、(実施例 5)と同様の方法により実施例 6の試験体を得た。
[0174] (実施例 7)
表面をサンドペーパーで荒らした SUS430板材(幅 40mm、長さ 100mm、厚さ lm m)上にフヱノール樹脂系接着剤 (東洋化学研究所製メタロック N-15)を塗布し、室 温で約 30分間風乾させた後、 120°Cで 30分間の加熱処理を行った。この接着剤を 焼き付けた SUS430板材上に、プラスチック磁石(戸田工業製ストロンチウムフェライ ト含有 12ナイロン系異方性プラスチック磁石コンパウンド FEROTOP TP-A27N ( ストチウムフヱライトの含有量 75体積0 /0) )試験片(幅 20mm、長さ 30mm、厚さ 3mm )を接合面積が 200mm2となるように固定治具等で固定し、その後、これに 130°C、 2 時間の加熱処理を施し、実施例 7の試験体を得た。
[0175] (実施例 8)
使用されるフエノール樹脂系接着剤が、東洋化学研究所製メタロック N— 23である 以外は、(実施例 7)と同様の方法により実施例 8の試験体を得た。
[0176] (実施例 9)
表面をサンドペーパーで荒らした SUS430板材(幅 40mm、長さ 100mm、厚さ lm m)上に一液型エポキシ樹脂系接着剤(ヘンケルジャパン製 LOCTITE Hysol 94 32NA)を塗布し、この SUS430板材上に、プラスチック磁石(戸田工業製ストロンチ ゥムフェライト含有 12ナイロン系異方性プラスチック磁石コンパウンド EROTOP TP 一 A27N (ストチウムフェライトの含有量 75体積0 /0) )試験片(幅 20mm、長さ 30mm、 厚さ 3mm)を接合面積が 200mm2となるように固定治具等で固定し、その後、これに 120°C、 1時間の加熱処理を施し、接着材を完全に硬化させ、実施例 9の試験体を 得た。
[0177] (実施例 10)
使用される接着剤が、二液型エポキシ樹脂系接着剤(ヘンケルジャパン製 LOCTI TE E— 20HP)であり、加熱処理が不要である以外は、 (実施例 9)と同様の方法に より実施例 10の試験体を得た。
[0178] 以上、実施例 5— 10の 6種類の接着試験片について、各 2個ずつ、引張速度 5mm Zminで引張試験を行い、各接着剤のせん断接着強度 (平均値)を評価した。実験 結果を以下の表 2に示す。
[0179] [表 2] 一 一一 実施例 5 実施例 6 実施例 7 実施例 8 実施例 9 実施例 1 0 ナイロン 12 ナイ。ン 12 ナイロン 12 ナイロン 12 ナイロン 12 ナイロン 12
+ストロンチウムフ Iライト +ス hロンチウムフ Iライト +ストロンチウムフ Iライト +ストロンチウムフ Iライト +ストロンチウムフェラ +ストロンチウムフ Iライト フ'ラスチック磁石の
磁性体粉 (戸田ェ 磁性体粉 (戸田ェ 磁性体粉 (戸田ェ 磁性体粉 (戸田ェ 磁性体粉 (戸田ェ 磁性体粉 (戸田ェ 組成
業製 FEROTOP TP- 業製 FEROTOP TP- 業製 FEROTOP TP- 業製 FEROTOP TP- 業製 FEROTOP TP- 業製 FEROTOP TP- A27N) A27N) A27N) A27N) A27N) A27N)
フ Iノ-ル樹脂系接着 フ -ル樹脂系接着 フエノ-ル樹脂系接着 フ Iノ-ル樹脂系接着 —液型 i キシ樹脂 二液型 Iホ'キジ樹脂 剤 (東洋化学研究 剤 (東洋化学研究 剤 (東洋化学研究 剤 (東洋化学研究 系接着剤 ( ケルシ' 系接着剤 (ヘンケルシ' 接着剤の系統
所製!タ Πクク N-15) 所製/タ [^ク N-23) 所製メタ ク N-15) 所製メタ卩ック N-23) ャ /、。ン製 L0CTITE ャ Λ。ン製 LOGTITE
Hysol 9432NA) E-20HP)
射出成形による 射出成形による
接合方法 接着 接着 接着 接着
接合 +接着 接合 +接着
12. 6MPa以上 13. 1MPa以上
(接着部で剥れ (接着部で剥れ
接着せん断強度 0. 3MPa 0. 3MPa 4. 6MPa 3. 2MPa
発生せず、 先に磁 発生せず、 先に磁
石材料が破断) 石材料が破断)
[0180] 表 2より、プラスチック磁石試験片と SUS材板の接合面が、成形接着されている実 施例 5及び実施例 6は、フエノール樹脂系接着剤の二次硬化のみの作用で接着力を 確保しょうとした実施例 7及び実施例 8、あるいは、一液型エポキシ及び二液型ェポ キシ接着剤を用いて単純に接着した実施例 9及び実施例 10に比べて、より高い接着 強さが確保されてレ、ることがわかった。
[0181] 次に、本発明に係るスリンガをコアとしたインサート成形によって製造される磁気ェ ンコーダにおいて、表面処理の違いによる接着状態について試験を行った。
[0182] (実施例 11)
SUS430の表面に形成したシユウ酸鉄皮膜を化学エッチングすることで、凹凸を形 成した。凹凸の算術平均高さ Raは 0. 9 x m、最大高さ Rzは 4. 5 /i mとなった。そし て、レゾール型フエノール樹脂を主成分とする固形分 30%のフエノール樹脂系接着 剤(東洋化学研究所製メタロック N— 15)を、更にメチルェチルケトンで 3倍希釈し、浸 漬処理でスリンガ表面に塗布した。その後、室温で 30分乾燥してから、 120°Cで 30 分乾燥器中に放置することで半硬化状態とした。この接着剤を焼き付けた SUS430 板材を金型にセットし、これをコアとしてプラスチック磁石材料 (戸田工業製ストロンチ ゥムフェライト含有 12ナイロン系異方性プラスチック磁石コンパウンド「FER〇TOP TP-A27NJ (ストチウムフェライトの含有量 91重量%) )のインサート成形を内周部分 力もディスクゲートで行った。成形後、直ちにゲートカットを行レ、、更に、 130°Cで 1時 間、二次加熱で、接着剤を完全に硬化させたものを実施例 11の試験体とした。
[0183] (実施例 12)
SUS430の表面をショットブラストで凹凸を形成し、凹凸の算術平均高さ Raを 0. 8 x m、最大高さ Rzを 5. O x mとした以外は、(実施例 11)と同様の方法により実施例 12の試験体を得た。
[0184] 硬化後のエンコーダ外周部の引っ掛かり部分をペンチで引っ張った結果を、以下 の表 3に示す。
[0185] [表 3] 擀
ショ子
分な充
持保れそ;、
X
AJ o
'ヽ
Λ
rH 'ヽ
Η
AJ
Ή
S
H
u 0
n m
Λ
'ヽ 。く 照 鋰
表 3から明らかなように、凹凸処理によって表面粗さがほとんど違わないにも係らず 、化学エッチング処理による凹凸は凹部の内部が広がった形状になっている(図 4 (a )及び図 4 (b) )ことで、くさび効果で、金属側に強固に接着剤が付着するようになった ことが判る。
Figure imgf000055_0002
Figure imgf000055_0001
0871 で、凹凸を形成した。凹凸の算術平均高さ Raは 0. 2-0. 3 x m、最大高さ Rzは 1. 8 一 3. 1 μ mどなった。
[0190] そして、レゾール型フエノール樹脂を主成分とする固形分 30%のフエノール樹脂系 接着剤(東洋化学研究所製メタロック N— 15)を、更にメチルェチルケトンで 3倍希釈 し、浸漬処理でスリンガ表面に塗布した。その後、室温で 30分乾燥してから、 120°C で 30分乾燥器中に放置することで半硬化状態とした。この接着剤を焼き付けた SUS 430板材を金型にセットし、これをコアとして上記磁石材料のインサート成形を内周 部分からディスクゲートで行った。成形後、直ちにゲートカットを行い、更に、 150°Cで 1時間、二次加熱し、接着剤を完全に硬化させた。
[0191] その後、成形でスリンガと一体化して得られたエンコーダ部(内径 66mm、外径 76 mm、磁石部厚さ 0. 9mm)を単体で、 120°Cで 30分と一 40°Cで 30分を繰り返す熱 衝撃試験を行なった。実施例 13— 15のサンプルを各 10個入れ、 50サイクルごとに 磁石部に発生する亀裂を観察した。
[0192] 表 4から明らかなように、変性 PA12樹脂をバインダーとして含有させることで、材料 自体の曲げたわみ量が大きくなり、耐亀裂性が向上することが分かった。
[0193] 次に、実施例 14の組成の磁石材料について、磁場射出成形機を用いて、磁場発 生有無による磁気特性を測定した。なお、磁気エンコーダの形状は、図 2に示すもの とし、上記のものと同じサイズとした。また、着磁時のコイル電流は、充分飽和(配合に 充分)な値とし、冷却時に反転脱磁を行ない、更にオイルコンデンサ式脱磁機で磁束 密度 lmT以下まで脱磁した。その後、 96極 (NS交互)の着磁ヨークと重ね合わせて 、 1000V、 1000 x Fで着磁を行なレ、、回転させながら、エアギャップ lmmで磁束密 度、ピッチ誤差を測定した。この結果を表 5に示す。
[0194] [表 5] 磁場生発 度極磁束密()均平NT m、
CO CO
镞 単)差(最大%チ誤ピッ;一
卜 寸
CO
[0195] 表 5の結果より、磁場成形を行なう事で、磁気特性が向上することが確認された。
[0196] 次に、磁気エンコーダを異なる射出成形方式で製作した際の磁気特性の変化につ いて試験を行った。実施例 16— 19のエンコーダは、円環状に射出成形した後、円 周方向に着磁されたものである。尚、実施例 16— 19の磁気エンコーダに用いた磁 石部の磁石材料を下記に示す。
試験用磁石材料:
戸田工業製ストロンチウムフェライト含有 12ナイロン系異方性プラスチック磁石コン パウンド「FEROT〇P TP_A27N」(ストロンチウムフェライトの含有量: 75体積0 /0) [0197] (実施例 16)
実施例 16におけるエンコーダは、ディスクゲート方式の射出成形機により成形され たものであって、成形時に磁場配向はされていない。
[0198] (実施例 17)
実施例 17におけるエンコーダは、ディスクゲート方式の射出成形機により成形され たものであって、成形時に併せて磁場配向がされている。
[0199] (実施例 18)
実施例 18におけるエンコーダは、 4点ピンゲート方式の射出成形機により成形され たものであって、成形時に磁場配向はされていない。
[0200] (実施例 19)
実施例 19におけるエンコーダは、 4点ピンゲート方式の射出成形機により成形され たものであって、成形時に併せて磁場配向がされている。
[0201] BHトレーサーを用いて実施例 16— 19の磁気エンコーダの磁気特性(最大工ネル ギ一積 BHmax)を測定した結果を表 6に示す。尚、実施例 18及び 19の測定値に ついてはウエルド部における磁気特性を測定したものである。
[0202] [表 6] 実施例実施実施施例例実例 91871161
点ゲ点ゲデゲデゲゲ方式ピ卜トピク卜ト卜ク 4ン 4ンススィィーー CT5
ーーー —1
磁場向配
00
镞 o
00
X
d
X
表 6によれば、ディスクゲート方式により射出成形されたエンコーダは、磁場配向の 有無にかかわらず、 4点ピンゲート方式により射出成形されたものよりも優れた磁気特 性を有することが判る。即ち、ディスクゲート方式によれば、各磁性粉の磁化容易方 向を整列させて高い配向度を得ることができ、よって優れた磁気特性を得ることがで きる。一方、 4点ピンゲート方式については、前記ウエルド部において、溶融した磁石 材料中の磁性粉が互いに衝突し磁化容易方向がランダムとなる(等方性となる)ため 、磁気特性が格段に低下する。また、 4点ピンゲート方式による射出成形に磁場配向 を併せて行った場合にも、前記ウエルドにおける磁性粉の配向を完全に行うことは困 難であり、磁場配向せずにディスクゲート方式による射出成形のみで成形したェンコ ーダの磁気特性に及ばないことが判る。尚、 SmFeN (サマリウム一鉄一窒素)等の希 土類系の磁性粉を含有するプラスチック磁石材料を用いた場合にも、同様の結果と なる。
[0204] 次に、磁石部の接着面に溝を形成した際の効果を確認するため、以下の試験を行 つた。実施例 20及び 21の磁石部は、磁性粉としてストロンチウムフェライトと、ノくイン ダ一としてポリアミド 12とを含有し、前記磁性粉の含有量が 70体積%である磁石材 料をヘンシェルミキサで攪拌し、 2軸押出し機で混練りして作成した原料ペレットから 、内径 60mm,外径 70mm,厚さ 0. 9mmのエンコーダを射出成形した。成形条件 は、樹脂の加熱温度 270°C、射出時間 1. 5秒である。
[0205] (実施例 20)
実施例 20におけるエンコーダは、その軸方向の片側端面(即ち、接着面)の外径 側および内径側の周縁部に、それぞれ全周に亙って、断面略台形の円環状の溝を 形成した。
また、前記接着面の表面粗さは、射出成形に使用する金型にシボ加工を施すこと により、 0. 8 x mRaとされてレヽる。
[0206] (実施例 21)
実施例 21におけるエンコーダは、実施例 20のエンコーダと同一寸法に形成された ものであり、前記接着面に溝は形成されていなレ、。また、前記接着面の表面粗さは、 通常の金型面仕上げにより達成される 0. 4 μ mRaである。
[0207] 実施例 20のエンコーダにおいて、前記接着面の径方向中央部の円周上 (即ち、 2 本の溝の中間部)に接着剤を均一に塗布し、所定の圧力をかけて取り付け部材に接 着した。また実施例 21のエンコーダにおいても、実施例 20と同一箇所に同量の接着 剤を均一に塗布し、所定の圧力をかけて取り付け部材に接着した。実施例 21のェン コーダにおいては、内径側および外径側のいずれにおいても前記接着面から外部 に余剰な接着剤が溢れ出した。一方、実施例 20のエンコーダにおいては、前記接着 面から外部に溢れ出す接着剤は認められず、また、前記溝を越えた接着面卿ち、 外径側の周縁部においては、前記溝に半径方向外側に隣接して設けられた平面部 であり、内径側の周縁部においては、前記溝に半径方向内側に隣接して設けられた 平面部)にも毛細管現象により接着剤が浸透していた。
[0208] (実施例 22— 25)
次に、実施例 22— 25の磁気エンコーダについて、エンコーダの接着面の表面粗さ によるエンコーダと接着剤との接着強度を評価した。実施例 20及び 21の原料ペレツ トカら、幅 24mm、長さ 100mm、厚さ 3mmの試験片を射出成形した。幅方向および 長さ方向により規定される平面(即ち、接着面)の表面粗さを、射出成形に使用する 金型にシボ加工を施すことにより、試験片毎に変化させた。アクリル系接着剤(ヘンケ ル社製ロックタイト 648)を前記接着面に均一に塗布し、取り付け部材である SUS43 0の平板に所定の圧力をかけて接着した。その後、前記接着面に垂直な引張荷重を かけ、引張速度 5mm/minで引張強度を測定した。その結果を表 7に示す。尚、実 施例 22は通常の金型面仕上げ品であり、その表面粗さは 0. 4 x mRaである。
また、各試験片の引張強度は、実施例 22の引張強度を 100とした場合の相対的な 数値である。表 7に示す結果をグラフにしたものを図 43に示す。
[0209] [表 7]
Figure imgf000062_0001
表 7および図 46によれば、試験片の表面粗さの増大に伴って引張強度が向上して いる力 試験片の接着面の表面粗さが 0.8 xmRa未満となると急激に引張強度が 低下していることが判る。従って、エンコーダの接着面の表面粗さは 0. 8 z mRa以上 が好ましい。
[0211] (実施例 26— 29)
次に、実施例 26— 29の磁気エンコーダの保持強度について、試験を行った。 実 施例 26— 29の磁気エンコーダの構成を表 8に示す。実施例 26— 29の磁気ェンコ ーダの磁石部は、厚さ方向に磁場をかけた状態で円筒状に射出成形されたもので、 アキシャル異方性とされており、円周方向に N極と S極とを交互に計 96極に着磁され ている。そして、第 7実施形態に示した固定部材の構成により、磁石部と固定部材と がー体とされている。
[0212] [表 8]
実施例 26 実施例 27 実施例 28 実施例 29 磁石部 ス ト口ンチウムフェラ S m F e Nを 7 5体 N d— F e— Bを 7 5 ス ト口ンチゥムフェラ
Figure imgf000064_0001
イ トを 75体積%含有 積%含有する P P S系 体積%含有する P A 1 イ トを 75体積%含有 する PA1 2系アキシ アキシャル異方性ボン 2系アキシャル異方性 する PA 1 2系アキシ ャル異方性プラスチッ ド磁石(BHma x: 7. ボンド磁石 (BHm a ャル異方性プラスチッ ク磁石(BHma x: 2. 2MGO : 1 1. 9 GO ク磁石(B Hm : 2. 3MGO e) 96 (48 X 2) 極 96 (48 X 2) 極 3MGO e)
96 (48 X 2) 極 96 (48 X 2) 極 スリンガ SUS 430 SUS 430 SU S 430 SU S 430 高周波融着 なし なし なし あり
シールリップ カーボンブラック、クレ カーボンブラック、珪藻 カーボンブラック、クレ カーボンブラック、クレ 部ゴム材質 一等を含有する NBR 土等を含有する F KM 一等を含有する NBR 一等を含有する NB R 保持強度 〇 O 〇 〇
び実施例 31のエンコーダの永久磁石は、半径方向に磁場をかけた状態で円筒状に 射出成形されたもので、ラジアル異方性とされており、円周方向に N極と S極とを交互 に計 96極に着磁されている。そして、第 7実施形態に示した固定部材の構成により、 磁石部と固定部材とが一体とされている。
[表 9]
施実実施例例 3130
含体有ジ含有磁部積す系体を%トウを積%すチイト石るララる 75 Sアム 5 S N P P 7Fスンフロm eェ
方(ボ磁ジ方(異性系異性プ磁ドチ石ラク石 72GOラBHM P A 12アルンルBス:m Xッa.
)) H 23GOMm: e a x e.
極 () ()極 9648296482 X X
0 ε
ガリ S S 430Uスン
強度保持
Figure imgf000066_0001
実施例 26から実施例 31のいずれにおいても、回転試験において永久磁石が固定 部材から脱落することはなかった。尚、磁性粉の含有量によっては、従来では 20mT 程度であった磁束密度を 26mT以上に向上させることが可能である。よって、永久磁 石とセンサとのエアギャップを従来と同様に lmmとした場合に、従来では 96極に多 極磁化されていた永久磁石を、一極当たりの磁束を維持して 120極以上に多極磁化 することが可能である。この時、単一ピッチ誤差は ± 2%以下とできる。即ち、本発明 に係るエンコーダによれば、従来と同等のエアギャップとした場合に、永久磁石の極 数を増加させて車輪の回転速度の検出精度を向上させることができる。また、永久磁 石を従来と同数の極数とした場合に、エアギャップを大きくとることができ、センサを配 置する際の自由度を向上させることができる。
[0216] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正をカ卩えることができることは当業者にとって明ら かである。
本出願は、 2004年 1月 22日出願の日本特許出願(特願 2004— 014033)、 2004年 1月 30日出願の日本特許出願(特願 2004— 024111)、
2004年 5月 19日出願の日本特許出願(特願 2004— 148741)、
2004年 10月 1日出願の日本特許出願(特願 2004— 289967)、
に基づくものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0217] 本発明は、磁気特性が高 高精度な回転数検出を可能にした信頼性の高い磁気 エンコーダを提供し、転がり軸受ユニット、主軸装置、ハブユニット軸受等において、 回転体の回転数を検出するものとして利用される。

Claims

請求の範囲
[1] 円周方向に多極着磁された略円環状の磁石部を備える磁気エンコーダであって、 前記磁石部は、磁性体と樹脂とを含有することを特徴とする磁気エンコーダ。
[2] 前記樹脂は、熱可塑性樹脂であることを特徴とする請求項 1に記載の磁気ェンコ一 ダ。
[3] 前記熱可塑性樹脂は少なくとも、分子中にソフトセグメントを有する熱可塑性樹脂を 含有することを特徴とする請求項 2に記載の磁気エンコーダ。
[4] 前記磁石部が取り付けられる、磁性材料からなる固定部材をさらに備え、
前記磁石部と前記固定部材とは、フエノール樹脂系とエポキシ樹脂系の少なくとも 一方を含む接着剤によって接合されることを特徴とする請求項 1に記載の磁気ェンコ ーダ。
[5] 前記磁石部は、射出成形により形成されることを特徴とする請求項 2— 4のいずれ かに記載の磁気エンコーダ。
[6] 前記射出成形は、ディスクゲート方式であることを特徴とする請求項 5に記載の磁 気エンコーダ。
[7] 固定輪と、回転輪と、前記固定輪と前記回転輪との間で周方向に転動自在に配設 された複数の転動体と、前記固定部材が前記回転輪に固定される請求項 1一 6のい ずれかに記載の磁気エンコーダとを備えたことを特徴とする軸受。
[8] 前記軸受は車輪用軸受であることを特徴とする請求項 7に記載の軸受。
PCT/JP2005/000526 2004-01-22 2005-01-18 磁気エンコーダ及び軸受 WO2005071362A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/586,990 US7592798B2 (en) 2004-01-22 2005-01-18 Magnetic encoder and bearing
EP18190038.2A EP3495782B1 (en) 2004-01-22 2005-01-18 Magnetic encoder and bearing
US16/437,837 USRE48526E1 (en) 2004-01-22 2005-01-18 Magnetic encoder and bearing
EP14193662.5A EP2865999B1 (en) 2004-01-22 2005-01-18 Magnetic encoder and bearing
EP05703763.2A EP1707923B1 (en) 2004-01-22 2005-01-18 Magnetic encoder and bearing

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004-014033 2004-01-22
JP2004014033 2004-01-22
JP2004-024111 2004-01-30
JP2004024111A JP2005214874A (ja) 2004-01-30 2004-01-30 エンコーダ及び当該エンコーダを備えた転がり軸受
JP2004148741 2004-05-19
JP2004-148741 2004-05-19
JP2004289967A JP4178412B2 (ja) 2004-08-23 2004-10-01 磁気エンコーダ及びその製造方法並びに転がり軸受ユニット
JP2004-289967 2004-10-01

Publications (1)

Publication Number Publication Date
WO2005071362A1 true WO2005071362A1 (ja) 2005-08-04

Family

ID=34812175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000526 WO2005071362A1 (ja) 2004-01-22 2005-01-18 磁気エンコーダ及び軸受

Country Status (4)

Country Link
US (2) USRE48526E1 (ja)
EP (3) EP1707923B1 (ja)
DE (1) DE202005021477U1 (ja)
WO (1) WO2005071362A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057479A (ja) * 2005-08-26 2007-03-08 Nsk Ltd 磁気エンコーダ及び転がり軸受ユニット
EP1798558A1 (en) * 2005-12-16 2007-06-20 JTEKT Corporation Magnetized pulsar ring
JP2007205770A (ja) * 2006-01-31 2007-08-16 Nsk Ltd 磁気エンコーダ及び前記磁気エンコーダを備える転がり軸受ユニット
JP2007309686A (ja) * 2006-05-16 2007-11-29 Nsk Ltd 磁気エンコーダ及び前記磁気エンコーダを備える転がり軸受ユニット
JP2010014688A (ja) * 2008-06-04 2010-01-21 Jtekt Corp 着磁パルサリング及びこれを用いたセンサ付き転がり軸受装置
JP2011117609A (ja) * 2005-11-18 2011-06-16 Nsk Ltd 玉軸受用冠型保持器及びその製造方法並びに玉軸受
CN102470694A (zh) * 2009-06-29 2012-05-23 罗伯特·博世有限公司 安装到车轮轴承上的罩、具有这种罩的车轮轴承模块及制造安装到车轮轴承上的罩的方法
JP2016530445A (ja) * 2013-08-29 2016-09-29 スネクマ ブレードのための補強縁部を製造する方法、及びこの方法によって得られる補強縁部
CN109298200A (zh) * 2017-07-24 2019-02-01 斯凯孚公司 用于车轮轮毂组件的编码器轮

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257817A (ja) * 2003-02-25 2004-09-16 Ntn Corp 磁気エンコーダおよびそれを備えた車輪用軸受
JP2005257584A (ja) * 2004-03-15 2005-09-22 Uchiyama Mfg Corp 磁気エンコーダ及びそれを装着した回転体
US8044544B2 (en) * 2005-09-15 2011-10-25 Ntn Corporation Rolling bearing, spindle support structure of main motor for railway vehicle, and bearing structure
JP4889094B2 (ja) * 2006-01-11 2012-02-29 内山工業株式会社 トーンホイール
US7997391B2 (en) * 2006-10-26 2011-08-16 Performance Friction Corporation Anti-lock brake device for use with a brake rotor disc
EP2094767A1 (fr) * 2006-12-01 2009-09-02 Arkema France Copolymere greffe par du polyamide, materiau le contenant, procede de fabrication et utilisations
WO2008075456A1 (ja) * 2006-12-18 2008-06-26 Ntn Corporation センサホルダおよびこれを内蔵した回転速度検出装置付き車輪用軸受装置
EP1965090B1 (en) * 2007-03-01 2013-04-10 JTEKT Corporation Magnetized pulsar ring, and rolling bearing device with sensor using the same
DE102007014709A1 (de) * 2007-03-23 2008-09-25 Carl Freudenberg Kg Membranpumpe zur Förderung eines Fluids
JP4859772B2 (ja) * 2007-07-04 2012-01-25 株式会社ジェイテクト 磁気エンコーダ
JP5036045B2 (ja) * 2007-07-18 2012-09-26 内山工業株式会社 磁気エンコーダ
JP2009047562A (ja) * 2007-08-21 2009-03-05 Nok Corp 磁気エンコーダのパルサーリング
JP2009065027A (ja) * 2007-09-07 2009-03-26 Daido Electronics Co Ltd ヨーク一体型磁石体
WO2009033127A2 (en) * 2007-09-07 2009-03-12 Joral Devices, Llc Rotary magnetic encoder assembly, chip and method
JP5097489B2 (ja) 2007-09-21 2012-12-12 Ntn株式会社 磁気エンコーダおよび転がり軸受
JP4978413B2 (ja) * 2007-10-15 2012-07-18 パナソニック株式会社 回転操作部品及びこれを用いた入力装置
JP5370941B2 (ja) * 2008-10-01 2013-12-18 内山工業株式会社 密封装置
DE102008052804A1 (de) * 2008-10-22 2010-04-29 Windhorst Beteiligungsgesellschaft Mbh Magnetischer Drehgeber und Verfahren zu seiner Herstellung
JP5452199B2 (ja) * 2009-12-07 2014-03-26 株式会社ショーワ プロペラシャフト装置
US8947076B2 (en) 2010-01-18 2015-02-03 Bourns, Inc. High resolution non-contacting multi-turn position sensor
US8390276B2 (en) * 2010-09-27 2013-03-05 Bourns Incorporated Target magnet assembly for a sensor used with a steering gear
JP2012163092A (ja) 2011-01-20 2012-08-30 Nissan Motor Co Ltd 内燃機関の出力特性制御装置
WO2014174615A1 (ja) 2013-04-24 2014-10-30 三菱電機株式会社 磁気エンコーダ
DE102013104832A1 (de) * 2013-05-10 2014-11-13 Ic - Haus Gmbh Maßverkörperung für eine Positionsmessvorrichtung und Verfahren zu seiner Herstellung
JP6432125B2 (ja) * 2013-10-24 2018-12-05 中西金属工業株式会社 磁気エンコーダ、及び磁気エンコーダを備えた軸受装置
JP2015108573A (ja) * 2013-12-05 2015-06-11 中西金属工業株式会社 リング形状インサート成形品
JP6197226B2 (ja) 2014-03-03 2017-09-20 内山工業株式会社 磁性ゴム組成物、それを架橋させてなる磁性ゴム成形品、及び磁気エンコーダ
JP5979733B2 (ja) 2014-07-24 2016-08-31 住友金属鉱山株式会社 ボンド磁石用組成物及びボンド磁石、並びに一体成形部品
EP3098051B1 (en) * 2015-05-27 2020-06-24 Nakanishi Metal Works Co., Ltd. Injection molding die and manufacturing method of insert molded article
CN105003544B (zh) * 2015-07-22 2018-07-13 如皋市非标轴承有限公司 一种密封轴承及其制造方法
US20180299294A1 (en) 2015-12-02 2018-10-18 Schaeffler Technologies AG & Co. KG Abrasion-resistant and hydrolysis-resistant encoder, bearing unit with encoder and method for producing the encoder
DE102015223978B4 (de) 2015-12-02 2021-06-02 Schaeffler Technologies AG & Co. KG Verfahren zur Herstellung eines Encoders
JP2018204642A (ja) * 2017-05-31 2018-12-27 中西金属工業株式会社 回転用シール
US11092467B2 (en) * 2018-10-30 2021-08-17 Stm Corporation Elastic encoder and manufacturing method thereof
CA3101342C (en) 2018-06-18 2023-07-04 Crown Equipment Corporation Wheel assembly with sensor for measuring wheel movement
JP2020003026A (ja) * 2018-06-29 2020-01-09 中西金属工業株式会社 回転用シール
IT201900010791A1 (it) * 2019-07-03 2021-01-03 Skf Ab Anello di impulso magnetico, unità di cuscinetti e macchina elettrica rotante comprendente un anello di impulso magnetico, e metodo per ottenere un anello di impulso magnetico.
DE102019134246B3 (de) * 2019-12-13 2021-04-29 Schaeffler Technologies AG & Co. KG Kodierer für ein Radlager sowie Radlager mit einem solchen Kodierer
DE102022107234B3 (de) 2022-03-28 2023-08-31 Schaeffler Technologies AG & Co. KG Dichtungsanordnung für Radlager und Radlager mit Dichtungsanordnung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060080A (ja) * 1998-06-01 2000-02-25 Sumitomo Metal Mining Co Ltd 永久磁石型モ―タその他の永久磁石応用装置
JP2000195714A (ja) * 1998-10-23 2000-07-14 Sumitomo Metal Mining Co Ltd 極異方性希土類ボンド磁石とその製造方法及び永久磁石型モ―タ
JP2003222150A (ja) * 2002-01-31 2003-08-08 Ntn Corp 磁気エンコーダおよびそれを備えた車輪用軸受

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004167A (en) * 1975-01-29 1977-01-18 Magna Motors Corporation Permanent magnet stators
US4549157A (en) * 1982-05-27 1985-10-22 Xolox Corporation Plastic bonded magnet with circumferentially spaced poles having substantially uniform magnetic properties
JPS6055054A (ja) 1983-09-06 1985-03-29 Dainippon Ink & Chem Inc 熱可塑性樹脂組成物
JPH0611014B2 (ja) 1985-01-16 1994-02-09 セイコーエプソン株式会社 円筒状磁石の製造方法
JPS61237405A (ja) 1985-04-12 1986-10-22 Kanegafuchi Chem Ind Co Ltd 多極着磁磁石
JPS6225267A (ja) * 1985-07-26 1987-02-03 Honda Motor Co Ltd 磁気信号発生リング
JPH0515100Y2 (ja) 1985-07-31 1993-04-21
JPH0727833B2 (ja) 1986-08-26 1995-03-29 住友ベ−クライト株式会社 プラスチツク磁石の製造方法
JPS6425716U (ja) 1987-08-04 1989-02-13
JPH03136821A (ja) * 1989-10-23 1991-06-11 Nitto Boseki Co Ltd 熱可塑性樹脂成形体及びその製造方法
TW203079B (ja) * 1991-03-27 1993-04-01 Japan Synthetic Rubber Co Ltd
JPH0797530B2 (ja) 1991-06-27 1995-10-18 愛知製鋼株式会社 磁石組立部品
JPH05135932A (ja) * 1991-11-08 1993-06-01 Kawasaki Steel Corp ボンド磁性体用組成物およびボンド磁性体
JPH05315115A (ja) * 1992-05-01 1993-11-26 Asahi Chem Ind Co Ltd 磁性材樹脂複合材料
JPH0639876A (ja) * 1992-05-22 1994-02-15 Fujitsu Ltd インモールド成形方法とそれを用いた薄肉筐体
JPH05340950A (ja) * 1992-06-05 1993-12-24 Nissan Motor Co Ltd 車輪回転速度計測用回転体及び回転速度計測用回転体の製作法
JPH06182808A (ja) * 1992-12-22 1994-07-05 Fujitsu Ltd インモールド成形方法
JP3257149B2 (ja) * 1993-05-20 2002-02-18 大同特殊鋼株式会社 環状マグネットのホィール配設構造
JPH07130523A (ja) * 1993-11-05 1995-05-19 Tonen Chem Corp 磁性体
JP2622813B2 (ja) 1994-02-25 1997-06-25 三ツ星ベルト株式会社 金属ボス付きポリアミド樹脂の製造方法
JPH0837106A (ja) 1994-05-19 1996-02-06 Bridgestone Corp ボンド磁石用磁性粉,ボンド磁石用組成物及びその製造方法
JPH08227819A (ja) 1995-02-21 1996-09-03 Bridgestone Corp プラスチックボンド磁石の成形方法
JP2003130684A (ja) 1995-04-28 2003-05-08 Sumitomo Metal Mining Co Ltd 磁気式エンコーダ
JP3729904B2 (ja) 1995-11-06 2005-12-21 セイコーエプソン株式会社 希土類ボンド磁石の製造方法
JP3735915B2 (ja) * 1995-12-07 2006-01-18 住友金属鉱山株式会社 樹脂結合型磁石用組成物及びそれを用いた樹脂結合型磁石
JPH109402A (ja) * 1996-06-19 1998-01-13 Uchiyama Mfg Corp 回転エンコーダ付シール
JPH10285895A (ja) 1997-03-31 1998-10-23 Kusatsu Denki Kk ブラシレスモ−タのロ−タ
IT1295465B1 (it) * 1997-10-03 1999-05-12 Skf Ind Spa Dispositivo per il rilevamento della velocita' di rotazione relativa tra gli anelli di un cuscinetto di rotolamento.
JP3404286B2 (ja) * 1998-04-16 2003-05-06 日本パーカライジング株式会社 金属の表面処理方法、および該表面処理方法により得られた表面を有する金属部材
JP2000158476A (ja) 1998-11-30 2000-06-13 Ibiden Co Ltd インサート成形品
JP4018289B2 (ja) * 1999-03-19 2007-12-05 キヤノン株式会社 現像ブレードの製造方法
JP2001028313A (ja) * 1999-07-15 2001-01-30 Bridgestone Corp プラスチック磁石の製造方法およびこの方法に用いる押出機の口金
EP1081721A3 (en) * 1999-09-01 2001-07-25 Toda Kogyo Corporation Magnetic sheet
US6593444B2 (en) * 2000-02-29 2003-07-15 Shell Oil Company Thermoplastic polyurethane elastomers (TPUs) prepared with polytrimethylene carbonate soft segment
JP4018313B2 (ja) 2000-03-01 2007-12-05 Ntn株式会社 磁気エンコーダの製造方法
JP2001255337A (ja) 2000-03-09 2001-09-21 Uchiyama Mfg Corp パックシール
JP2001272250A (ja) 2000-03-24 2001-10-05 Seiko Precision Inc 磁化パターンを有する被検出体および磁気エンコーダ
JP4169139B2 (ja) 2000-05-18 2008-10-22 Ntn株式会社 密封装置
US6559633B1 (en) * 2000-09-18 2003-05-06 Freudenberg-Nok General Partnership Speed sensor with a seal
JP2002228675A (ja) 2001-02-02 2002-08-14 Nsk Ltd エンコーダ及びエンコーダ付転がり軸受ユニット
US20020141673A1 (en) * 2001-03-28 2002-10-03 Hiroyoshi Ito Rolling bearing with rotation sensor
JP2003051405A (ja) * 2001-06-01 2003-02-21 Mate Co Ltd 耐熱ボンド磁石コンパウンド及びこれを用いた成型体
JP4024496B2 (ja) 2001-07-25 2007-12-19 Ntn株式会社 磁気エンコーダおよびこれを具備する車輪用軸受
JP4596701B2 (ja) 2001-08-17 2010-12-15 Ntn株式会社 車輪用軸受の磁気エンコーダ付きシ−ル装置の製造方法
US6789948B2 (en) * 2001-09-25 2004-09-14 Ntn Corporation Magnetic encoder and wheel bearing assembly using the same
JP3982252B2 (ja) 2001-12-14 2007-09-26 Nok株式会社 ゴム組成物
JP2003297621A (ja) 2002-02-04 2003-10-17 Bridgestone Corp 高密度圧縮ボンド磁石とその製造方法
US6787059B2 (en) * 2002-03-19 2004-09-07 Toda Kogyo Corporation Resin composition for bonded magnet and bonded magnet using the same
JP2003280394A (ja) 2002-03-20 2003-10-02 Ricoh Co Ltd 現像マグネットローラの製造方法、現像装置、及び電子写真式画像形成装置
JP2004011827A (ja) 2002-06-10 2004-01-15 Ntn Corp 車輪用軸受の磁気エンコーダ付きシールド構造
JP2004019827A (ja) 2002-06-18 2004-01-22 Uchiyama Mfg Corp エンコーダ付組合せシール
US6872325B2 (en) * 2002-09-09 2005-03-29 General Electric Company Polymeric resin bonded magnets
JP4222000B2 (ja) * 2002-10-29 2009-02-12 Nok株式会社 磁気エンコーダ
JP2004037441A (ja) 2003-01-08 2004-02-05 Ntn Corp 磁気エンコーダおよびそれを備えた車輪用軸受
US20050275565A1 (en) * 2003-01-23 2005-12-15 Daniel Nachtigal Magnetizable polymeric compositions
JP2004257817A (ja) * 2003-02-25 2004-09-16 Ntn Corp 磁気エンコーダおよびそれを備えた車輪用軸受
JP4372438B2 (ja) * 2003-03-11 2009-11-25 Ntn株式会社 車輪用軸受
AU2003264418A1 (en) * 2003-09-12 2005-04-06 Nok Corporation Magnetic encoder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060080A (ja) * 1998-06-01 2000-02-25 Sumitomo Metal Mining Co Ltd 永久磁石型モ―タその他の永久磁石応用装置
JP2000195714A (ja) * 1998-10-23 2000-07-14 Sumitomo Metal Mining Co Ltd 極異方性希土類ボンド磁石とその製造方法及び永久磁石型モ―タ
JP2003222150A (ja) * 2002-01-31 2003-08-08 Ntn Corp 磁気エンコーダおよびそれを備えた車輪用軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1707923A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706392B2 (ja) * 2005-08-26 2011-06-22 日本精工株式会社 磁気エンコーダ及びその製造方法並びに転がり軸受ユニット
JP2007057479A (ja) * 2005-08-26 2007-03-08 Nsk Ltd 磁気エンコーダ及び転がり軸受ユニット
US8303192B2 (en) 2005-11-18 2012-11-06 Nsk Ltd. Resin cage and rolling bearing
JP2011117609A (ja) * 2005-11-18 2011-06-16 Nsk Ltd 玉軸受用冠型保持器及びその製造方法並びに玉軸受
EP1798558A1 (en) * 2005-12-16 2007-06-20 JTEKT Corporation Magnetized pulsar ring
JP2007205770A (ja) * 2006-01-31 2007-08-16 Nsk Ltd 磁気エンコーダ及び前記磁気エンコーダを備える転がり軸受ユニット
JP2007309686A (ja) * 2006-05-16 2007-11-29 Nsk Ltd 磁気エンコーダ及び前記磁気エンコーダを備える転がり軸受ユニット
JP2010014688A (ja) * 2008-06-04 2010-01-21 Jtekt Corp 着磁パルサリング及びこれを用いたセンサ付き転がり軸受装置
CN102470694A (zh) * 2009-06-29 2012-05-23 罗伯特·博世有限公司 安装到车轮轴承上的罩、具有这种罩的车轮轴承模块及制造安装到车轮轴承上的罩的方法
JP2016530445A (ja) * 2013-08-29 2016-09-29 スネクマ ブレードのための補強縁部を製造する方法、及びこの方法によって得られる補強縁部
US10487671B2 (en) 2013-08-29 2019-11-26 Safran Aircraft Engines Method of fabricating a reinforcing edge for a blade and reinforcing edge obtained by the method
CN109298200A (zh) * 2017-07-24 2019-02-01 斯凯孚公司 用于车轮轮毂组件的编码器轮
CN109298200B (zh) * 2017-07-24 2022-10-18 斯凯孚公司 用于车轮轮毂组件的编码器轮

Also Published As

Publication number Publication date
EP1707923A4 (en) 2012-12-19
EP2865999A1 (en) 2015-04-29
USRE48526E1 (en) 2021-04-20
EP3495782A1 (en) 2019-06-12
EP3495782B1 (en) 2023-06-14
DE202005021477U1 (de) 2008-04-10
US7592798B2 (en) 2009-09-22
EP1707923B1 (en) 2015-01-07
EP2865999B1 (en) 2018-08-22
EP1707923A1 (en) 2006-10-04
US20070152657A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
WO2005071362A1 (ja) 磁気エンコーダ及び軸受
JP4189696B2 (ja) 磁気エンコーダの製造方法
CN100567904C (zh) 磁编码器和轴承
EP1881300B3 (en) Magnetic encoder and rolling bearing unit comprising magnetic encoder
JP4993017B2 (ja) 磁気エンコーダ及び前記磁気エンコーダを備える転がり軸受ユニット
JP2008309717A (ja) 磁気エンコーダ、及び該磁気エンコーダを備えた転がり軸受ユニット
JP4432764B2 (ja) 磁気エンコーダの製造方法及び車輪支持用転がり軸受ユニットの製造方法
JP4178412B2 (ja) 磁気エンコーダ及びその製造方法並びに転がり軸受ユニット
JP4968374B2 (ja) 磁気エンコーダ及び前記磁気エンコーダを備える転がり軸受ユニット
JP2005321307A (ja) 磁気エンコーダ及び当該磁気エンコーダを備えた転がり軸受ユニット
JP2009198420A (ja) 磁気エンコーダ及び前記磁気エンコーダを備える転がり軸受ユニット
JP2006170308A (ja) 車輪用転がり軸受ユニット
JP2006017654A (ja) エンコーダとその製造方法及び転がり軸受ユニット
JP5958171B2 (ja) 磁気エンコーダ及び前記磁気エンコーダを備える転がり軸受ユニット
JP5152273B2 (ja) 磁気エンコーダ及び前記磁気エンコーダを備える転がり軸受
JP4946172B2 (ja) 磁気エンコーダ及び前記磁気エンコーダを備える転がり軸受ユニット
JP4706271B2 (ja) 磁気エンコーダ及び転がり軸受ユニット
JP4899500B2 (ja) 磁気エンコーダ及び前記磁気エンコーダを備える転がり軸受ユニット
JP2008304354A (ja) 磁気エンコーダ、及び該磁気エンコーダを備えた転がり軸受ユニット
JP4639936B2 (ja) 磁気エンコーダ及び前記磁気エンコーダを備える転がり軸受ユニット
JP2014098680A (ja) 磁気エンコーダ及び前記磁気エンコーダを備える転がり軸受ユニット

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10586990

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005703763

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580009096.7

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005703763

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10586990

Country of ref document: US