WO1998030052A1 - Procede de transfert entre cellules - Google Patents

Procede de transfert entre cellules Download PDF

Info

Publication number
WO1998030052A1
WO1998030052A1 PCT/JP1997/004835 JP9704835W WO9830052A1 WO 1998030052 A1 WO1998030052 A1 WO 1998030052A1 JP 9704835 W JP9704835 W JP 9704835W WO 9830052 A1 WO9830052 A1 WO 9830052A1
Authority
WO
WIPO (PCT)
Prior art keywords
handover
base station
frame
mobile station
delay time
Prior art date
Application number
PCT/JP1997/004835
Other languages
English (en)
French (fr)
Inventor
Tomoyuki Ohtani
Motoshi Tamura
Akiko Nakashima
Hisashi Shimizu
Takaaki Satoh
Original Assignee
Ntt Mobile Communications Network Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Mobile Communications Network Inc. filed Critical Ntt Mobile Communications Network Inc.
Priority to CA 2247357 priority Critical patent/CA2247357C/en
Priority to DE69739757T priority patent/DE69739757D1/de
Priority to JP51452998A priority patent/JP3393141B2/ja
Priority to EP19970949238 priority patent/EP0902594B1/en
Priority to US09/125,924 priority patent/US6470188B1/en
Publication of WO1998030052A1 publication Critical patent/WO1998030052A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2662Arrangements for Wireless System Synchronisation
    • H04B7/2671Arrangements for Wireless Time-Division Multiple Access [TDMA] System Synchronisation
    • H04B7/2678Time synchronisation
    • H04B7/2681Synchronisation of a mobile station with one base station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to a handover method suitable for being applied to a mobile communication system.
  • BACKGROUND ART A so-called diversity handover method in which a mobile station moves between base stations while simultaneously communicating with a plurality of base stations is disclosed in Japanese Patent Application No. Hei 6-16953.
  • a method is disclosed in which reliability information is generated from the state of a radio frame received by a base station, added to the frame, and selectively combined in a network.
  • Japanese Patent Application No. 6-21093 the use of frame identification information between a mobile station and a higher-level device prevents skipping or duplication of frame selection and synthesis due to differences in delay between base stations, and prevents diversity handover. A method for doing so is disclosed.
  • the conventional frame receiving device does not consider that the transmission delay differs depending on the service type, so the maximum transmission delay that occurs in the transmission section regardless of the service type is fixedly set in the system. Was. Therefore, when realizing a transmission method in which the transmission delay differs depending on the service type (for example, Type 5 and Type 2 transmission in ATM), the receiver generates unnecessary delays even for services with small transmission delay. would. (3) In conventional frame receivers, the maximum transmission delay that occurs in the transmission section is fixedly set in the system, so if transmission delays longer than expected due to transmission path or traffic fluctuation occur, synchronization will be lost. You have to disconnect the communication.
  • the communication quality corresponds to the quality of the wireless link to be used on a one-to-one basis, so it was only necessary to monitor the wireless quality used in the wireless receiver.
  • the communication quality is the result after the maximum ratio combining and Z selective combining of all branches during the diversity handover, and it is no longer possible to judge the quality only with the radio receiving unit.
  • the maximum ratio combining is a technique in which a mobile station combines received signals from downlink radio frames arriving from a plurality of base stations by a site diversity effect to improve reception quality. This technique is also used as a technique for combining uplink radio frames arriving from a mobile station by using a plurality of TRXs in the same base station.
  • the maximum ratio combining process is applied in the base station to combine uplink radio frames in diversity handover between a plurality of sectors in the base station (diversity handover between sectors in the cell).
  • selective combining is applied to combining uplink radio frames of diversity handover across base stations.
  • one of the best radio frames is selected by the diversity handover trunk based on the reliability information added to each path.
  • each base station when the base station detects the loss of synchronization, each base station individually uses a control link to notify the processor of the exchange of the loss of synchronization.
  • the transmission power control is used to control the MS uplink transmission power so that it is most efficient at a specific base station, so the base station that is not subject to transmission power control must Can be reported out of sync frequently Therefore, a large amount of control signals are transmitted between the base station and the processor, and a heavy load is applied to the processor. Disclosure of the invention
  • the present invention has been made in view of the above-described circumstances, and provides a handover method capable of performing synchronization recovery even when an out-of-synchronization has occurred, and performing appropriate and efficient quality monitoring and out-of-synchronization notification. It is intended to provide.
  • the present invention provides, in a first aspect,
  • the mobile station receiving a radio channel of the second base station
  • the present invention also provides, in a second aspect,
  • the diversity handover trunk communicates with the mobile station with a delay time equal to or longer than the second delay time, assuming the possibility that the diversity handover trunk will communicate via the second base station in advance via the first base station.
  • FIG. 1 is a block diagram showing a configuration of one embodiment of the present invention.
  • FIG. 2 is a block diagram of a main part of the mobile communication switching center 3.
  • FIG. 3 is a block diagram of a main part of the base station 2.
  • FIG. 4 is a diagram showing a connection management table.
  • FIG. 5 is a diagram showing a delay time management table between MSC and BS.
  • FIG. 6 is a diagram showing an example of quality degradation measurement related parameters and loss of synchronization detection related parameters managed by the switching center processor 32.
  • FIG. 7 is a diagram showing an example of traffic information managed by the exchange processor 32.
  • FIG. 8 is an explanatory diagram of the operation of quality measurement using up / down counting.
  • FIG. 9 is a flow chart of quality measurement using an up / down counter.
  • FIG. 10 is a flowchart of quality measurement using an up / down counter.
  • FIG. 11 is a flowchart of a diversity handover control processing sequence.
  • FIG. 12 is a flowchart of a diversity handover control processing sequence.
  • FIG. 13 is a flowchart of a branch switching handover control processing sequence.
  • FIG. 14 is a flowchart of a branch switching handover control processing sequence.
  • Figure 15 is a flowchart of the quality degradation / out-of-synchronization reporting process at the start / end of communication.
  • FIG. 16 is a flowchart of the quality degradation / out-of-synchronization report process at the end of communication start Z.
  • FIG. 17 is a diagram for explaining details of a transmission frame in each section.
  • FIG. 18 is a diagram for explaining details of a transmission frame in each section.
  • FIG. 19 is an explanatory diagram of the operation of the user frame selective combining process.
  • FIG. 20 is an explanatory diagram of the operation of inter-station diversity.
  • FIG. 21 is a flowchart showing an outline of the uplink processing.
  • FIG. 22 is a diagram showing the classification of handover from the viewpoint of the control range.
  • FIG. 23 is a diagram showing a handover branch state for each handover branch control. (* 1: Multiple Br control (addition, deletion, addition / deletion) is possible simultaneously by one MS DHO start request)
  • FIG. 24 shows an example of the correspondence between handover triggers and handover types activated in mobile communications.
  • FIG. 25 is a diagram showing an example of correspondence between a handover trigger activated in mobile communication and a handover type.
  • FIG. 26 is an operation explanatory diagram showing a method for calculating the radio frame offset value ⁇ F S and the radio frame number F N.
  • FIG. 27 is a processing time chart in each device.
  • FIG. 28 is a processing time chart in each device.
  • FIG. 29 is a diagram illustrating an example of calculating timing-related parameters.
  • FIG. 30 is a diagram illustrating an example of calculating timing-related parameters.
  • FIG. 31 is an explanatory diagram of the operation of the branch switching handover.
  • FIG. 32 is a diagram showing an example of the FN slide processing parameter overnight management table.
  • FIGS. 33 and 34 are explanatory diagrams of the operation of the uplink FN slide processing.
  • FIGS. 35 and 36 are explanatory diagrams of the operation of the uplink FN slide processing.
  • FIG. 37 is an explanatory diagram of the operation of the modification of the embodiment.
  • FIG. 38 is an explanatory diagram of a handover between mobile communication switching centers.
  • FIG. 39 is a block diagram showing the configuration of the mobile communication switching center.
  • 1, 10 are mobile stations (MS), 2, 4 to 9 are base stations (BS), and 3, 11 are mobile communication switching stations (MSC), each forming a node in the mobile communication system.
  • MS mobile stations
  • BS base stations
  • MSC mobile communication switching stations
  • reference numeral 23 denotes an intra-base station MSC interface device (MIF), which is a communication link and a signal link between the base station interface device (BIF) 33 provided in the mobile communication switching center 3 and the MSC interface device.
  • MIF MSC interface device
  • BIF base station interface device
  • Reference numeral 21 denotes a base station radio frame synchronizer (MFC-B) for establishing frame synchronization in the base station 2 and supplying an operation reference clock to each unit in the base station 2.
  • MFC-B base station radio frame synchronizer
  • Reference numeral 25 denotes a radio transceiver (TRX) which transmits and receives radio frames to and from the mobile station 1.
  • Reference numeral 24 denotes a base station modem (MDE), which performs modulation / demodulation and error correction on the radio frame.
  • Reference numeral 22 denotes a base station processor (PRC), which controls each unit in the base station 2 based on a predetermined control program.
  • the other base stations 4 to 9 have the same configuration as the base station 2.
  • reference numeral 38 denotes a switch unit (SW) inside the mobile communication switching center 3, which performs frame switching within the switching center.
  • Reference numeral 31 denotes an exchange radio frame synchronizer (MFC-M), which, like the base station radio frame synchronizer 21, determines radio frame synchronization in the mobile communication exchange 3 and performs various parts in the mobile communication exchange 3. Supply the operation reference clock to.
  • Reference numeral 32 denotes an exchange processor (PRC-M), which controls each unit in the mobile communication exchange 3 in the same manner as the base station processor 22.
  • MFC-M exchange radio frame synchronizer
  • PRC-M exchange processor
  • a CDMA radio system is adopted as a communication system between the mobile stations 1 and 10 and the base stations 2 and 4 to 9.
  • mobile stations 1 and 10 can communicate with multiple base stations using the same frequency, so that diversity maximal ratio combining Z selection combining processing can be performed to improve quality and radio capacity. It is possible. Also, by using this capability, it is possible to realize instantaneous interruption handover (diversity handover) when the mobile station 1 moves over the zones of a plurality of base stations.
  • Over-trunk is a method of selecting and communicating with a radio frame of a base station having a better communication state.
  • Reference numeral 34 denotes a diversity handover trunk (DHT), which performs frame synchronization adjustment and handover control over multiple base stations.
  • the diversity handover trunk 34 performs selective combining after absorbing fluctuations of uplink radio frames in a plurality of paths.
  • Reference numeral 35 denotes a high-efficiency speech coding apparatus (VXC), which performs processing such as transcoding on speech user frames.
  • Reference numeral 36 denotes a data service control device (DSC), which performs processing such as transcoding on a data service frame.
  • a relay network interface device 37 exchanges various signals and signals with a communication relay network (not shown), a signal relay network, a synchronous relay network, and the like.
  • control signals supplied from the base station processor 22 of the base station 2 to the switching center processor 32 of the mobile communication switching center 3 are the base station processor 22, the MSC interface device 23 in the base station, and the MSC The data is transmitted to the exchange processor 32 via the internal base station interface device 33 sequentially.
  • the control signal supplied from the switching center processor 32 to the base station processor 22 is transmitted in the reverse order.
  • the control signal supplied from the mobile station 1 to the base station processor 22 of the base station 2 is transmitted to the base station processor 22 via the mobile station 1, the radio transceiver 25, and the base station modem 24 sequentially. Is done.
  • the control signal supplied from the base station processor 22 to the mobile station 1 is transmitted in the reverse order.
  • the control signals supplied from the mobile station 1 to the switching center processor 32 in the mobile communication switching center 3 include a radio transceiver 25, a base station modem 24, a base station MSC interface device 23, and an MSC It is transmitted to the switching center processor 32 via the internal base station interface device 33 and the diversity handover trunk 34. Information supplied from the switching station processor 32 to the mobile station 1 is transmitted in the reverse order. 2. Operation of the embodiment 2. 1. Wireless frame synchronization setting
  • each communication node (base stations 2, 4 to 9 and mobile switching center 3, 11 in the illustrated example) constituting the mobile communication network, the radio frame synchronizers 21 and 31 in each communication node operate.
  • the mutual radio frame synchronization phase adjustment is performed.
  • the radio frame synchronization phase error between these nodes is 11Z22 It shall be less than. For example, if the radio frame interval is “1 Om sec”, all nodes (base stations 2, 4 to 9 and mobile switching center 3, 1 1) have a radio frame synchronization phase error of less than “5 m sec”. Will be synchronized.
  • the radio frame synchronizers 21 and 31 distribute an operation reference clock to each device in the own node.
  • the operation reference clock has a predetermined clock unit and cycle.
  • the clock unit is “0.625 ms e c” and the cycle is “64 Oms e c”.
  • radio frame number FN The number that is incremented in the range from “0” to “15” for each clock unit in the “1” radio frame clock.
  • radio frame synchronization phase adjustment between each node is realized using a wired transmission line, considering that each base station is installed outdoors where it cannot receive radio waves.
  • radio frame synchronization phase may be adjusted using radio means such as GPS.
  • Synchronization and “synchronization error (or synchronization phase difference)” relating to a clock used in this specification will be described using an example of a clock that is used everyday.
  • the time indicated by the clock at each point is different.
  • the time difference indicated by this clock corresponds to the “synchronization error (or synchronization phase difference)”.
  • this difference is basically maintained at any arbitrary time, depending on the precision of the clock. Therefore, it can be said that these two clocks are "synchronized” while maintaining a certain time difference.
  • the communication link includes a mobile station 1, a radio transceiver 25, a base station modem 24, an MSC interface device 23 within the base station, a base station interface device 33 within the MSC, This link sequentially connects the diversity handover trunk 34, the high-efficiency speech coding device 35, and the relay network interface device 37.
  • the link is a data service control device 36 inserted in place of the high-efficiency speech encoding device 35.
  • the associated control links are: mobile station 1, radio transceiver 25, base station modem 24, MSC interface in base station 23, base station interface in MSC 33, diversity hand This is a link connecting the server trunk 34 and the exchange processor 32.
  • the auxiliary control link is set up in association with the communication link, and is used to set up a second call at the start of communication and during communication, to set up a wireless line between a mobile station and a base station, and to perform call control such as handover. Used for wireless control and mobility control.
  • AAL Type 2 transmission of ATM (specified in the draft ITU-T 1.363.2 recommendation) is used as the transmission method in the wired section between the base station and the mobile switching center, but is proposed in this embodiment. This method can be applied to packet, frame relay, and other A AT Type transmissions of ATM.
  • the transmission frame between the base station and the mobile switching center is referred to as a base station switching center frame.
  • a base station switching center frame When ATM Type 2 transmission is used between the base station and the mobile switching center, one frame of radio (less than 45 oct) is transmitted when a low-speed wireless channel transmits a short user frame length such as voice. Although it can be transmitted in Type 2 CPS packets, wireless frames (more than 45 oct) when transmitting long user frame lengths over high-speed radio lines, such as data communications, cannot fit in a single Type 2 CPS packet. It is divided into a plurality of frames between base station exchanges and transmitted. In the example, one radio frame is divided into three, and each is transmitted in a Type 2 CPS bucket.
  • the received wired frame is selectively synthesized in units of frames between base stations and exchanges, and transmitted as a frame in the MSC to service trunks such as the high-efficiency voice encoder 35 and the data service controller 36. Is done.
  • the MSC frame is restored to a user frame by the service trunk, undergoes processing suitable for each service, and is transmitted as a relay frame in a transmission frame suitable for the relay network.
  • the communication control unit 32-1 in the switching center processor 32 measures the quality degradation with respect to the DHT control unit 34-1 of the diverted diversity handover trunk 34-4 (inserted in the link). Notify related parameters, out of synchronization detection related parameters, evening correction related parameters, DH ⁇ branch information, network side connection identifier, and traffic information.
  • Fig. 6 shows examples of parameters related to quality degradation measurement and parameters related to loss of synchronization detection.
  • Figure 7 shows an example of traffic information.
  • the parameters are parameters such as a quality deterioration measurement cycle and a notification threshold value.
  • the out-of-synchronization detection related parameters are parameters such as the number of consecutive out-of-synchronization cell detections, etc., when it is deemed that out-of-synchronization occurs.
  • the traffic information refers to the intervals at which cells arrive and the number of cells received at one timing when ATM transmission is applied to the wired transmission path between the base station and the mobile switching center. These parameters and information are managed in the exchange processor 32 for each service.
  • the parameter related to the timing correction is composed of an upper Z lower radio frame number correction value and an upper / lower radio frame offset correction value, and is stored in the storage unit 32-2 in “MSC-BS delay time management table” ( It is calculated based on Figure 5). Note that the delay time shown in FIG. 5 includes the maximum radio frame synchronization phase error between nodes (5 ms e c). In the case where another exchange is relayed between the base station 2 and the mobile communication exchange 3, the delay caused by relaying the exchange is also included.
  • the DHT in the MSC considers the offset timing, adds the frame number FN that adds the maximum fluctuation delay to the MFC-M operation reference clock timing, and adds the frame to the BS. Is sent. After the transmitted frame is received by the BS, (2) the MDE in the BS takes out and controls the frame number FN and offset timing according to the MFC-B operation reference clock timing, and controls the radio as the radio frame number. Sent to the section.
  • the radio frame is received in (3) TRX in the BS at an offset timing according to the operation reference clock of MFC-B, and the radio frame number FN of MDC-B is added in MDE And sent to the MSC.
  • the transmitted frame is (4) extracted and controlled by the DHT in the MSC using the frame number FN obtained by subtracting the maximum fluctuation delay from the MFC-M operation reference clock and the offset timing, and transmitted to the subsequent device. .
  • the maximum transmission delay time in the uplink frame extraction control section 34-8 is set to "38 msec".
  • the maximum transmission delay time is set to the maximum value of ⁇ 4 O msec '' in the table. Should be set to.
  • the uplink wireless frame number correction value is set to “3”
  • the uplink wireless frame offset correction value is set to “1 3”.
  • the downlink radio frame number correction value and the downlink radio frame offset correction value are also set to the same value.
  • the upper and lower radio frame number correction values and the upper and lower radio frame number correction values are based on these values because the upper and lower values are stored in the “MSC-BS delay time management table”. Separate values are set for the radio frame offset correction value.
  • the uplink wireless frame number correction value and the uplink wireless frame offset correction value are used for subtraction correction with respect to the operation reference clock output from the switching station wireless frame synchronizer 31.
  • the downlink radio frame number correction value and the downlink radio frame offset correction value are used for addition correction to the operation reference clock.
  • the DHO branch information includes the number of lines connected to the diversity handover trunk 34 and the connection identifier for diversity handover.
  • the above-mentioned network-side connection identifier means a connection identifier on the network side connected to the diversity handover trunk 34.
  • the frame in the downlink MSC divided in consideration of the radio frame unit is supplied from the network side to the diversity handover trunk 34 via the relay network interface device 37, the frame in the MSC is It is received by the downstream frame receiver 34-2.
  • the received frames in the MSC are extracted.
  • the extraction timing at that time follows the evening timing corrected using the downlink radio frame offset correction value notified by the 01 ⁇ controller 34-1.
  • the radio frame number FN to be assigned is obtained by adding a downlink radio frame number correction value (“3” in the above example) to the radio frame number FN of the operation reference clock notified from the exchange radio frame synchronizer 31. It is equal to the value obtained by adding “1”, which was previously corrected as the radio frame offset timing, and then dividing the addition result by “64”.
  • the downlink frame receiving unit 34-2 performs timing correction on the basis of the operation reference clock based on the downlink wireless frame offset correction value, and the downlink frame FN adding unit 34-4 performs wireless correction. Correction is made for each frame clock.
  • the process of extracting the downlink radio frame in the base station is performed by the base station radio frame. Such a process can be easily executed because the operation may be performed at the timing of the radio frame number FN of the operation reference clock notified from the system synchronizer 21 and the radio frame offset correction value “0”.
  • the downlink frame duplication unit 34-4-5 duplicates the number of frames in the MSC corresponding to the number of branches during diversity handover.
  • the copied frame is used as a frame between base stations and exchanges, and a connection identifier corresponding to each branch is added as address information of each user frame.
  • each cell is duplicated once, and one of the original cell and the duplicated cell is provided with the connection identifier of the base station 2.
  • the connection identifier of the base station 4 is given.
  • the frame between base stations and exchanges copied as necessary is supplied to the downstream frame transmitting units 34-6. Then, based on the connection identifier assigned to each wired frame, the frame between the base station exchange stations is transmitted to each wired branch, that is, base stations 2 and 4 via the MSC base station interface device 33.
  • the supplied frame between downlink base stations and exchanges is received by the MSC interface device 23 in the base station, and further received by the downlink frame receiving unit 24-1 in the base station modem 24, and the downlink frame extraction control unit Supplied to 2 4—2.
  • a frame between base station switching stations according to the operation reference clock notified from the base station radio frame synchronizer 21 is extracted from the downlink base station switching station frame.
  • the base station which is the reference for communication synchronization setting at the start of communication
  • the radio frame offset value OFS of the operation reference clock is “0”.
  • the frame is taken out at the timing. If there is no base station exchange frame to be taken out at that evening, the next time (After “1” radio frame clock cycle), and then try to extract the frame between base station exchanges again.
  • the base station (base station 4 in the above example) that accommodates a branch added for diversity handover at the start of communication or during communication is a base station that serves as a reference for setting synchronization with the mobile station (the above example). In such a case, processing is performed such that the timing of the wireless transmission / reception of the subordinate base station is adjusted to the timing of the radio frame transmitted / received to / from the base station 2).
  • the maximum ratio combining of diversity handovers is performed at the mobile station when each communication node constituting the mobile communication network is using a wired transmission path and performing radio frame synchronization phase adjustment with an error of less than 5 msec.
  • the radio frame arriving from each base station during diversity handover varies up to about 5 msec, so it is necessary to provide a receiving buffer for that.
  • the base station that follows the error generated at a maximum of 5 msec moves the radio frame offset value around the reference “0” by The purpose is to reduce the maximum to about 0.625 msec.
  • the radio frame synchronization phase error between the base station and the subordinate base station, which serves as a reference for communication synchronization setting, is measured when the mobile station initiates diversity handover. That is, the synchronization phase error between the radio frame during communication in the mobile station and the radio frame such as the broadcast channel of the base station to be newly added is measured.
  • This measurement result is reported to the subordinate base station via the mobile communication switching center. This allows fine adjustment of the radio frame offset value of the subordinate base station. For this fine adjustment, if the radio frame clock unit is crossed, the radio frame number FN itself in the base station is also shifted.
  • the radio frames from the base stations 2 and 4 are received. Then, the user frame is processed in the mobile station 1 after the maximum ratio combining.
  • the downlink frame receiving section 24-1 monitors the radio frame number FN assigned to the frame between base station switching stations stored in its internal buffer. Then, when it is detected that the frame between base stations and exchanges having the radio frame number FN to be extracted in cooperation with the downlink frame extraction control unit 24-2 is delayed, “frame delay” occurs. It is determined that it has been done. When such a determination is made, a “downlink FN correction request” is supplied to the diversity handover trunk 34 from the base station.
  • the downlink radio frame number correction value is updated in the DHT control unit 34-1.
  • the updated downlink wireless frame number correction value is reported to the downlink frame FN assigning unit 34-4 and is reflected in the wireless frame number FN assigned to the subsequent inter-base-station exchange frame. This processing is called a downward FN slide processing.
  • This processing is performed by the diversity handover trunk 34 when the downlink frame receiving unit 24-1 and the downlink frame extraction control unit 24-2 of the base station constantly detect a frame that arrives with a delay in the extraction timing. This is a process to restore synchronization by changing the radio frame number FN assigned to the downlink.
  • the downlink FN slide processing it is necessary to prevent inconsistency between the downlink radio frame numbers FN in a plurality of base stations and the information transmitted to the radio section. In order to prevent this inconsistency, it is conceivable to provide a procedure for adjusting the awareness of the FN slide amount / sliding time between base stations, but in the present embodiment, the downlink frame receiving unit 2 of each base station is considered.
  • the base station that has detected the delay notifies the diversity handover trunk that is the information distribution source, and the downlink frame FN assigning section of the diversity handover trunk 3 4 — Perform FN slide processing at step 4. Therefore, the operations of both the base station and the diversity handover trunk will be described in detail.
  • the base station extracts a user frame having a predetermined radio frame number FN from the reception buffer according to the operation reference clock supplied from the base station radio frame synchronizer 21.
  • the downlink frame receiving section 24-1 and the downlink frame extraction control section 24-2 detect a user frame that arrives with a delay to the extraction timing, downlink FN correction request notification information is generated, and the uplink frame transmission section 24— From 10, the DHT in the MSC is notified of the FN correction information via the user signal route via the MIF 23.
  • a notification method of another route it is also possible to notify by a control signal route.
  • a downlink FN correction request is transmitted from the MDE in the base station to PRC-B22, and a control signal is transmitted from PRC-B22 to PRC-M32 as a control signal.
  • Downlink FN correction request is notified.
  • the downlink FN correction request is transmitted from the PRC-M32 in the MSC to the DHT control unit 34-1 in the DHT, and finally the downlink slide processing is executed in the downlink frame FN assigning unit 34-14 and the downlink FN is performed.
  • a correction request is output.
  • control signal when the control signal is used, there is a possibility that the delay time in the execution and the load on the control processor are increased.
  • a user signal when a user signal is used, there are a case where a downlink FN slide request is included in an uplink user frame received from a wireless section, and a case where a notification dedicated user frame is used.
  • the downlink wire out-of-sync notification user frame is transmitted independently of the transmission of the uplink user frame.
  • the diversity handover trunk may be notified by including the downlink FN slide amount in the downlink wired out-of-sync notification user frame.
  • the downlink frame FN providing section 34-4 uses this request as a trigger for the downlink FN slide processing.
  • the downlink frame FN assigning unit 34-4 corrects the downlink wireless frame number correction value by a fixed amount (or the notified downlink FN slide amount).
  • downstream FN slide width in one process is limited to a value equal to or less than a predetermined downstream FN slide step width parameter regardless of the detected delay width.
  • the total downstream FN slide width from the start to the end of communication is limited to a value equal to or less than a predetermined maximum downstream FN slide width parameter.
  • the controller 34-1 reports an alarm for exceeding the maximum downstream FN slide width to the switching center processor 32. After the alarm is reported, a response is returned from the exchange processor 32. Until this response is returned, the downlink FN slide processing is not executed even if a downlink FN slide request is received from the base station. That is, during this period, the descending FN slide maximum width excess alarm is stopped.
  • the parameters for the downstream FN slide processing are communicated in the FN slide processing parameter management table stored in the switching center processor 32 by the FN slide width and maximum width for each service type.
  • An appropriate value is managed in consideration of the effect on the medium service, and the downlink frame FN assigning section 34-4 refers to this information to execute the downlink FN slide processing.
  • the FN slide width is set in consideration of the delay absorption capacity in VXC 35 and the ability to replace lost frames
  • the maximum slide width is set in consideration of the effect of delays that occur in calls. do it.
  • the effect of frame loss can be minimized by considering the frame period. it can.
  • FN slide execution at one time is limited to the FN slide width, and if a longer arrival delay occurs on the frame receiving side, the FN slide is executed multiple times. At this time, communication will continue until all FN slides have been executed. It is not interrupted due to the loss of wired synchronization. Even during the FN-slide execution progress, if diversity handover is in progress, communication can be performed via another branch in which wired synchronization has not occurred.
  • Fig. 32 shows an example of the FN slide processing parameter management table.
  • the outline of the operation in the downlink FN slide process will be described with reference to FIG. In FIG. 36, it is assumed that the synchronization phase between the diversity handover trunk 34 and the base station 2 is 0. However, base station 4 has a synchronization phase error with diversity handover trunk 34, and base station 4 operation reference clock is delayed by one clock unit (OFS) with respect to base station 2 operation reference clock. . Also, the maximum fluctuation delay time from the diversity handover trunk 34 to the base stations 2 and 4 is 38 ms ec (corresponding to 23 line frame clock (FN) + 13 clock units (OFS)).
  • a frame was detected at time t3, which was slightly later than time t2.
  • the downlink wired out-of-sync user frame is transmitted from the base station 2 to the diversity handover trunk 34.
  • This is the diversity handover when FN 10 (the user frame for downlink out-of-synchronization notification may be activated at the same time as reception without providing an identifier in the user frame and subjecting it to extraction control according to FN).
  • a slide process is performed on the radio frame number FN assigned to the frame after (time t4).
  • the uplink radio frame is received by the radio transmitting / receiving device 25, and the uplink frame receiving unit 2 in the MDE is received. Sent to 4-5. Then, in the uplink frame extraction control section 24-6, in the base station (base station 2 in the above example) used as a reference for the communication synchronization setting at the start of communication, the radio frame offset value OFS of the operation reference clock is set to “ The radio frame is extracted at a timing of “0”. If there is no radio frame to be extracted at that timing, the system waits until the next timing (after the “1” radio frame clock cycle) and tries to extract the radio frame again.
  • the radio frame synchronization phase difference with the base station 2 (this is measured by the mobile station and notified by the mobile switching center), and the radio frame offset value ⁇ FS corresponding to The radio frame is taken out at a timing adjusted from the operation reference clock timing “0” of the station 4.
  • the wireless frame number F N itself is also shifted.
  • the extracted radio frame is supplied to the upstream frame processing section 24-7, decoding processing for error protection in a radio section and demodulation for radio reception are performed. Is converted into a frame between the base station and the exchange. In the upstream frame processing section 24-7, the reception state of the radio frame is evaluated as a quality parameter. Next, in the uplink frame reliability information adding section 24-8, the previously obtained quality parameter is added to the frame between the base station and the exchange.
  • the radio frame number FN is assigned to the frame between the base station and the exchange.
  • the assigned radio frame number F N is equal to the radio frame number F N of the operation reference clock notified from the base station radio frame synchronizer 21.
  • the radio When the frame number FN is shifted, the shifted radio frame number FN is assigned.
  • the frame between the base station and the exchange to which the radio frame number FN is assigned is supplied to the MSC interface device 23 in the base station via the uplink frame transmission section 24-10, and further supplied to the mobile communication exchange 3. Is done.
  • the upstream frame receiving section 34-7 of the diversity handover trunk 34 receives the inter-base station exchange station frame arriving from each base station.
  • the upstream frame extraction control section 34-8 also has a connection identifier corresponding to each branch based on the DHO branch information (FIG. 4) notified from the upstream frame receiving section to the DHT control section 34-1.
  • the one having the radio frame number FN obtained by correcting the reference clock notified from the exchange radio frame synchronizer 31 in accordance with the radio frame number correction value is taken out and supplied to the upstream frame comparing section 34-9. If the received frame is a downlink wired out-of-synchronization notification user frame, the DHT controller 34-1 is notified.
  • This extraction timing follows the timing calculated using the uplink wireless frame offset correction value notified from the DHT control unit 34-1.
  • the adjustment of the extraction time is performed in order to execute the extraction in consideration of the fluctuation delay between the base station and the mobile communication switching center in addition to the processing of the upstream frame FN providing unit 24-9.
  • the take-out timing of the uplink frame take-out control section 34-8 is the timing corresponding to “13” as the timing of the uplink radio frame offset correction value.
  • the radio frame number FN of the frame to be taken out between the base station and the switching center is determined by the DHT control unit 34-1 in the radio frame number FN of the reference clock notified from the switching center radio frame synchronizer 31. This is the value obtained by subtracting the frame number correction value “3” (Fig. 30).
  • the mobile switching center 3 monitors the radio frame number FN assigned to the inter-base-station switching center frame stored in the buffer of the uplink frame receiving section 34-7. If it is detected that the frame between base station exchanges having the radio frame number FN to be taken out is steadily delayed, the base station exchange frame Judge that a delay has occurred, send a frame synchronization correction report between base stations and exchanges to the DHT control unit, and update the uplink wireless frame number correction value.
  • the subsequent radio frame number FN value to be extracted is changed to an appropriate value.
  • This process is called “upbound FN slide process”. Note that the frequency of taking out frames between base station exchanges (in the case of transmitting frames between base station exchanges via ATM, the number of cells taken out and the cell interval) is determined by the traffic information notified from the DHT control unit 34-1. Is determined according to
  • This processing is performed when the upstream frame receiving section 34-7 and the upstream frame fetch control section 34-8 detect a frame that arrives with a delay in the fetch timing and recover frame synchronization in the subsequent section between base station exchanges. This is the processing to be performed.
  • transmission power control is performed on the assumption that all branches in the section between base stations and exchanges contribute to the combined gain of diversity handover. Therefore, even if one of a plurality of branches is delayed, this is used as a trigger for the FN slide processing. If there are multiple delayed branches, the up-link FN slide processing is executed in accordance with the branch with a large delay width.
  • the parameters used in the upstream FN slide processing include a parameter that limits the upstream FN slide width in a single processing regardless of the detected delay width (an upstream FN slide step width parameter). In addition, a parameter that limits the total upstream FN slide width from the start to the end of communication (a parameter of the maximum upstream FN slide width) is used.
  • the DHT control unit 34-1 reports an upstream maximum FN slide maximum width alarm to the switching center processor 32. After the alarm is reported, a response is returned from the switching center processor 32. Until this response is returned, the uplink FN slide processing is executed even if a frame delay is detected in the subsequent reception frame extraction. Not done. That is, during this period, the upward FN slide maximum width excess alarm is stopped.
  • the parameters for the upstream FN slide processing are managed for each service type in the FN slide processing parameter management table stored in the exchange processor 32, and the upstream frame extraction control unit 34 -8 refers to this information and Executes the load process.
  • FIG. 32 shows an example of the FN slide processing parameter management table.
  • the outline of the operation in the uplink FN slide process is shown in Figs.
  • the thin solid line is the frame flow within the allowable delay from the base station 4 to the diversity handover trunk 34
  • the thick solid line is the frame of the frame that exceeds the allowable delay from the base station 2 to the diversity handover trunk 34. It is a flow.
  • the maximum fluctuation delay condition, the synchronization phase error at each base station, and the FN slide related parameters are as follows:
  • the uplink frame comparing section 34-9 refers to the reliability information added corresponding to the radio frame for the inter-base station switching center frame obtained from each branch during each diversity handover, and Compare and perform selective synthesis. The details will be described with reference to FIG.
  • FIG. 19 shows a radio frame number FN added to the frame between the base station and the exchange corresponding to the radio frame, and a format example of the reliability information.
  • the reliability information includes a radio out-of-synchronization determination bit (Sync), a CRC determination bit (CRC), a received SIR value (Con), a level degradation determination bit (L eve1), and a BER degradation determination bit (BER).
  • the reserved bit (RES) is used for function expansion. For example, it may be used for discrimination between the above-mentioned downlink wired out-of-sync notification user frame and a normal user frame.
  • the selective combining in the upstream frame comparator 34-9 is determined based on the received SIR value and the CRC determination bit. Specifically, if there is CRC OK, the one with the highest received SIR value is selected, and all candidates are CRC NG. In this case, the one with the highest received SIR value is selected.
  • the frame data may be synthesized by comparing bit data between a plurality of frames, performing a majority decision on bit values and performing a logical operation. However, if the out-of-synchronization determination bit is set in the reliability information of all wired frames arriving from the branch, the process of out-of-synchronization is performed.
  • Figure 21 shows the basic operation of this selective synthesis.
  • the upstream frame analysis unit 34-10 statistically calculates the communication quality after the selective combining in units of radio frames, and when the reference FER (frame error rate) is not satisfied, the exchange processor 32. To send a quality deterioration alarm signal.
  • the parameters related to quality degradation measurement ( Figure 6) are notified from the diversity handover trunk 34 at the time of call setup.
  • the wireless frame out-of-synchronization determination bit is monitored. If the out-of-synchronization in the wireless frame exceeds N consecutive times (N natural number), a communication loss alarm signal is transmitted to PRC-M. The number of consecutive out-of-synchronization of the radio frame is notified from the DHT control unit when the connection is set.
  • N N consecutive times
  • PRC-M The number of consecutive out-of-synchronization of the radio frame is notified from the DHT control unit when the connection is set.
  • the basic operation principle will be described with reference to FIG.
  • N or more radio frames transmitted in one or more base station exchange frames are received and M quality frames are included
  • the FER can be represented by MZN.
  • Monitor F ER ⁇ 1 / N by monitoring that no more than two NG frames are included.
  • N 6 is set to monitor F ER ⁇ 1 Z6, when the CRC NG frame is received, add 5 to the counter value, and when the CRC ⁇ K frame is received, subtract 1 from the count value. .
  • Fig. 9 and Fig. 10 show the processing flow considering the above.
  • REPORT FER is the number of protection steps for counting the number of times exceeding the specified FER, and notifying PRC-M of quality deterioration when a certain number of times is reached. This is to increase or decrease the frequency of PRC-M reporting when the quality is degraded frequently.
  • REPORT SOUT is the number of consecutive radio frame de- synchronizations. This is the number of protection steps for notifying communication loss of synchronization when the number of times of selective synthesis loss of synchronization has occurred consecutively.
  • the quality measurement method using the up / down counter is illustrated in FIGS. 8 to 10, the quality measurement / out-of-synchronization may be detected by other methods.
  • a window-sliding method in which a certain window width is set and the quality within the window is measured can be considered (in such a case, the parameters related to the quality degradation measurement are different from those in the above example). This is a different setting method).
  • the upstream frame transmitting section 34-11 attaches the network side connection identifier to the frame in the MSC, and transmits the frame in the MSC to the service trunk.
  • the frame in the MSC is transmitted to a service trunk that performs processing according to the service (for example, a high-efficiency speech coding device 35 for voice, and a data service control device 36 for data service).
  • the MSC frames processed by these service trunks are connected as relay frames to the relay network 12 via the relay network interface device 37 and routed to the destination.
  • processing to bypass the service trunk is performed as necessary for reasons such as quality improvement, delay reduction, and trunk source saving.
  • the switching center processor 32 When a branch is added / deleted by the diversity handover, the switching center processor 32 notifies the connection identifier of the branch to be added / deleted to the DHT control unit 341-1, and the DHT control unit 34-1 further sets the connection identifier of the branch to be added / deleted. Connect The section identifier is notified to the related internal function unit. This updates the processing in the DHT. In the upstream frame analysis unit 34-10, the quality measurement result is reset, and the measurement is started again from the beginning.
  • the frame transmission / reception timing at the base station which is a reference for communication synchronization setting
  • the frame synchronization control described above is similarly possible even when freely set to "0" to "15”.
  • the communication system operator can use the load of the communication device and the transmission path in a distributed manner by randomly or intentionally allocating the reference offset timing from “0” to “15” for each communication call, A statistical multiplexing effect can be obtained. 2.7 Handover control
  • Fig. 22 the types of handovers are broadly classified according to whether the control is closed within the mobile switching center or a handover in which control is performed between mobile switching centers (inter-station).
  • the former handover within a mobile switching center is further classified according to whether it is a handover in which control is closed within a base station (within a cell) or a handover between base stations (between cells).
  • the intra-cell handover when there are multiple sectors in one base station, is subdivided into intra-sector and inter-sector sectors.
  • inter-MSC station handovers handovers between mobile communication switching centers (MSCs) (inter-MSC station handovers) are classified as inter-sector handovers.
  • MSC-A anchor mobile switching center
  • selective combining is performed at the anchor mobile switching center. Will be.
  • Fig. 38 handover between MSC stations is performed, and if communication spans multiple MSCs, the transmission delay increases, and the possibility of exceeding the fluctuation delay absorption range in DHT increases.
  • the FN slide processing described above is performed, and synchronous recovery is measured.
  • Branch switching handover A handover in which all handover branches during communication are disconnected, and communication is resumed on a new branch after a momentary loss of communication.
  • Figure 23 shows the handover branch status for each handover branch control.
  • Handover can be referred to by connecting the classification names (a) to (c) in order. (Example: Different frequency between cells within a cell, B r switching H O, inter cell addition Z deletion D H O, etc.)
  • the reconnection type handover means that when the communication between the mobile station and the base station is out of radio synchronization, the network side suspends the trunk line for a certain period, and the mobile station side searches for the neighboring base station. It is a method to perform. If the mobile station finds a broadcast channel from a new base station (or a base station with which it was previously communicating) before the predetermined hold period has elapsed, this mobile station is connected to the held trunk line. .
  • FIGS. 24 and 25 are tables showing examples of the correspondence between the handover trigger activated in mobile communication and the handover type.
  • the propagation loss measurement is measured at the mobile station for the downlink.
  • the mobile station calculates the propagation loss from the output power of its own and neighboring sectors broadcast on the perch channel of the communicating sector and the received power currently being received at MS. After that, candidates are selected in the order of low propagation loss sectors and reported to the MSC as a cell condition report / handover trigger. (Reporting timing assumes that there is a difference between candidates.)
  • diversity handover is a handover in which a mobile station sets the same frequency band handover destination line without releasing the handover source line and performs site diversity when moving between radio zones. is there.
  • DHO branch addition / deletion is determined by setting a threshold value for the difference between the propagation loss value of the communicating branch and the value of the addition / deletion candidate branch.
  • the thresholds include a DHO addition threshold (DHO-ADD), a DH ⁇ deletion threshold (DHO-DEL), and a branch switching handover threshold (BHO-INI).
  • the diversity handover area is set as shown in FIG. 31 based on the propagation loss between the mobile station and each base station.
  • the diversity handover may be performed because the uplink transmission power does not increase even if the diversity handover is performed.
  • the capacity exceeds the downlink capacity (base station maximum transmission power value), it cannot be implemented.
  • the mobile station does not perform the handover, but enters the candidate area for the handover destination, and induces the degradation of the communication quality of the mobile station located in the candidate area for the handover destination.
  • processing such as limiting outgoing call reception to secure the capacity of handover call reception.
  • diversity handover area When the communication quality deteriorates due to movement outside the zone in communication after passing through the network, and exceeds the branch switching handover threshold, the branch switching handover described later is performed.
  • a branch switching handover is a handover in which the handover source line is released and the handover destination line is set when the quality has deteriorated, or when the DHO cannot be performed and the vehicle passes through the DHO area and exceeds the branch switching handover threshold. is there.
  • the activation conditions of this handover in Fig. 24, Fig. 25 and the explanation of this embodiment, it is assumed that quality degradation occurs and the BHO-INI threshold is exceeded from the viewpoint of the effectiveness of handover execution and reduction of control load. Is described as an AND condition, but as one of the OR conditions, the branch switching handover may be activated when either one is satisfied.
  • the quality degradation measurement is performed by the diversity handover trunk 34 on the uplink and by the mobile station on the downlink.
  • the quality degradation measurement in diversity handover trunk 34 is shown below.
  • Diversity handover trunk 3 4 statistically calculates the NG rate of the CRC check result in the user frame after selective combining, and if the measured FER exceeds the required FER, sends a quality degradation alarm signal to the switching center processor 32 Then, the switching center processor 32 activates the handover using this as a trigger.
  • a specific example of activation is when a communication line of the same frequency band is not allocated due to lack of capacity or the like, and branch switching is performed if reception is possible (capacity is acceptable and free resources are available) in a different frequency band. Perform handover; if not, wait for squelch end or perform release processing.
  • the branch switching handover boundary is set as shown in FIG.
  • a mobile station in a diversity area does not perform diversity handover if there is no available communication channel (TRX) in the destination base station.
  • Diversity handover is performed immediately when the communication channel transitions to idle, but when the boundary of the branch switching handover is exceeded, branch switching handover is performed.
  • the mobile station does not make a request for diversity handover, and performs branch switching handover if it crosses the boundary of branch switching handover.
  • Branch switching handover can be performed even when the boundary of the branch switching handover is not exceeded.
  • Reconnection-type handover activation or call disconnection due to loss of communication detection As a result of continuing communication in a state of degraded quality, if the call quality is significantly degraded for a certain period (detection of loss of synchronization), disconnect the communication. However, if the user wishes, reconnect handover is performed. Reconnection-type handover is control to switch the radio link while holding the call.
  • the out-of-synchronization detection is performed by the diversity handover trunk 34 and 4 on the uplink and by the mobile station 1 on the downlink.
  • the detection of out-of-sync communication in the diversity handover trunk 34 will be described below.
  • the mobile communication switching center 3 In each base station, when the radio frame is out of synchronization on the radio line, the mobile communication switching center 3 is notified of the radio frame out of synchronization after the number of protection steps has elapsed.
  • the notification method is performed by setting the radio frame out-of-synchronization determination bit in the reliability information of the user frame.
  • REPORT SOUT natural number
  • the base station and mobile station have the following functions.
  • the base station constantly measures the uplink interference amount and the total transmission power value, and sets a comparison result between each value and a certain threshold value in broadcast information.
  • thresholds are set for outgoing / incoming calls and for handovers. It is preferable to set a more severe value for outgoing / incoming calls than for handover.
  • the mobile station is provided with a function to monitor the broadcast information during standby and during communication, so that it is possible to judge whether or not call origination / reception and handover can be performed within the mobile station.
  • the mobile station receives a perch channel around the same frequency band as the communication frequency band.
  • a propagation loss taking into account the amount of uplink interference is calculated, and the value of the transmission loss is the smallest. Communicates with the base station. Also, zone transfer is determined by comparing the propagation loss with the amount of uplink interference from the neighboring base stations.
  • FIGs 11 to 12 show the diversity handover control processing sequence
  • Figures 13 to 14 show the branch switching handover control processing sequence.
  • the diversity handover control processing sequence (Figs. 11 to 12) will be described.
  • BSI base station 2
  • BS2 base station 4
  • the MS detects a low propagation loss branch (multiple branches), it measures the synchronization phase difference between the reference branch, that is, the radio frame being communicated at the mobile station, and the additional base station, and issues a branch addition request.
  • the reference branch that is, the radio frame being communicated at the mobile station
  • the additional base station issues a branch addition request.
  • MSC mobile switching center 3
  • the mobile switching center 3 determines the branch to be added from among the candidates, and makes a 'selection' check with the base station 4 (BS 2) accommodating the branch to be added to confirm the presence or absence of resources such as radio lines. Get an answer.
  • BS 2 base station 4
  • This procedure and the procedure in (4) may be integrated.
  • the switching center processor 32 notifies the diversity handover trunk 34 of the order of the branch addition, and sets the diversity handover trunk 34 side.
  • the mobile switching center 3 instructs the base station 4 (BS 2) to set up the wired line between the mobile switching center 3 and the base station 4 and to set up the wireless line.
  • the base station 4 sets up a wired line, starts transmission of the downlink radio line, starts reception of the uplink radio line, and returns a response to the mobile switching center 3.
  • the reference station 4 does not necessarily establish synchronization with the radio frame from the mobile station. (When mobile station uplink transmission power control is performed for base stations other than base station 4)
  • the mobile switching center 3 instructs the mobile station (MS) to add a new branch.
  • the mobile station returns a response to the mobile communication switching center 3's instruction to add a new branch.
  • the mobile station adds the corresponding branch to the maximum ratio combining, and then enters the diversity handover state.
  • the order of (7) and (8) may be reversed.
  • the mobile switching center 3 issues a branch deletion request to the mobile station.
  • the mobile station deletes the corresponding branch.
  • the mobile communication switching center 3 instructs the base station 2 (BSD to request the old radio and the wire to be deleted.
  • Base station 2 releases the wireless and wired lines and reports to the MSC.
  • the mobile switching center 3 notifies the diversity handover trunk 34 of the order for branch deletion.
  • the mobile station When the mobile station detects a low-propagation loss branch or a candidate branch (s) for switching, it measures the loss-synchronous phase difference from the reference branch, and periodically or at times when the conditions change. At irregular timing, the result is notified to the mobile switching center 3 as a cell status report, and the mobile switching center 3 stores it.
  • the branch of the handover destination is determined from the cell state of the mobile station stored in the mobile communication switching station 3.
  • the mobile switching center 3 checks / selects the presence or absence of resources such as wireless lines for the base station 4 accommodating the branch to be switched, and obtains an answer. This procedure may be integrated with the procedure of (5) described later.
  • the switching center processor 32 notifies the diversity handover trunk 34 of the order for adding a branch, and sets the diversity handover rank 34.
  • the mobile switching center 3 instructs the base station 4 to set up a wired line between the mobile switching center 3 and the base station 4 and to set up a wireless line.
  • the base station 4 sets up a wired line, starts transmission of a wireless line, and returns a response to the mobile switching center 3.
  • the mobile switching center 3 instructs the mobile station to switch branches.
  • the mobile station disconnects the old branch and starts communication on the new branch.
  • the base station 4 confirms that communication with the mobile station on the new branch has been established, and reports a synchronization establishment to the mobile communication switching station 3.
  • the mobile switching center 3 Upon receiving the synchronization establishment report from the base station 4, the mobile switching center 3 instructs the base station 2 to issue a request to delete the old radio and the wire.
  • the base station 2 releases the wireless and wired lines and reports to the mobile switching center 3.
  • the mobile switching center 3 notifies the diversity handover trunk 34 of the order of branch deletion.
  • the exchange processor 32 (1) determines the service type, (2) determines the connection identifier, (3) calculates the parameters related to the timing correction, and (4) determines the parameters related to the quality degradation measurement. (5) Determine out-of-synchronization detection related parameters, (6) Determine traffic information, and notify the DHT of the parameters (2) to (6) together with the DHT setting instruction command.
  • Diversity handover rank 34 sets up the inside of the device according to the notified command and parameters, and starts the diversity handover operation.
  • the switching center processor 32 determines (7) the target DHO connection identifier when adding / deleting a wired branch, and notifies the diversity handover trunk 34 with a handover branch addition Z deletion instruction command.
  • the diversity handover trunk 34 updates the state in the device in accordance with the notified command and parameters, and starts the diversity handover operation in the new branch state.
  • the switching center processor 32 When the call is disconnected, the switching center processor 32 notifies the diversity handover trunk 34 of a release instruction.
  • the diversity handover trunk 34 sends an alarm notification to the switching center processor 32, and the switching center processor 32 performs appropriate communication processing according to the content of the alarm.
  • the present embodiment has the following effects.
  • the frame identification information is applied only between the BS and the MSC, and the delay difference that differs for each base station is different from the MSC. Absorb by BS. Also, since the mobile station can receive the radio frame from each BS at a synchronized timing, the number of buffers can be further reduced. Also, the frame identification information is used only between the mobile communication switching center and the base station, and does not need to be set in a radio section, so that the wireless transmission capacity can be used effectively.
  • the communication control unit notifies the frame receiving device of an appropriate transmission delay, and the frame extraction control unit extracts frames according to the service type. Communication with an appropriate delay every time is possible.
  • the frame fetching unit detects out-of-synchronization of the received frame, the frame fetch timing is shifted by a necessary frame period, so that synchronization can be recovered from the subsequent frames. Can be continued without disconnecting communication.
  • each base station notifies a diversity handover trunk of a loss of synchronization using a communication link, and notifies the processor after determining the loss of synchronization in the diversity handover trunk.
  • the amount of signals used for notification of loss of synchronization to the processor and the load on the processor can be reduced.
  • the transmitting device 100 is provided with a clock circuit 101 for generating a clock signal CL1
  • the receiving device 120 is provided with a clock circuit 102 for generating a clock signal CL2.
  • the phases of the clock signals CL1 and CL2 are asynchronous. It is also assumed that the maximum fluctuation delay between transmitting apparatus 100 and receiving apparatus 120 is unknown. In this case, a method of synchronizing a frame transmitted from transmitting apparatus 100 in receiving apparatus 120 will be described.
  • the phase of clock signal CL1 is added to the frame as radio frame number FN.
  • the receiving apparatus 120 receives the transmitted frame, reads out the radio frame number FN added to the received frame, and calculates the difference from the phase of the clock signal CL2. This calculation is repeated one or more times for frames transmitted from past transmitters, and A value obtained by adding a safety value to the maximum difference as necessary is stored as a correction value. For the frames arriving thereafter, the frames are extracted using the clock signal CL2 and this correction value. This correction value can be updated at any time with the latest reception history.
  • the correction value is “9” obtained by adding “2” to “7” which is the maximum value of the two phase differences.
  • FIG. 39 (case 1), an example in which various trunks are arranged in one mobile communication switching center has been described.
  • the present invention is applicable even if the mobile communication switching center is divided into a plurality of blocks and trunks are arranged in each block to disperse the functions, as shown in Case 2 in the figure. Not even.
  • the mobile switching center is divided into MSC-1 and MSC-1.
  • the position and number of the MSC-1 are not particularly limited, and they may be arranged near the base station BS, and a plurality of MSC-1 may be connected to one MSC-2.

Description

明 細
ハンドオーバ方法 技 術 分 野 本発明は、 移動通信システムに適用して好適なハンドオーバ方法に関する。 背 景 技 術 移動局が複数の基地局と同時に通信を行いながら基地局間を移動する、 所謂ダ ィバ一シチハンドオーバ方式が特願平 6— 1 0 6 9 5 3に開示されている。 ここ では、 基地局が受信する無線フレームの状態から信頼度情報を生成してフレーム に付加し、 網内で選択合成する方法が開示されている。 また特願平 6— 2 1 0 1 9 3では移動局と上位装置間でフレーム識別情報を用いることにより、 基地局毎 の遅延の差異によるフレーム選択合成のスキップや重複を防ぎ、 ダイバーシチハ ンドオーバを行うための方法が開示されている。
しかし、 これらの技術においては、 以下のような問題点があった。
( 1 ) 特願平 6— 2 1 0 1 9 3では、 移動局 (M S ) と交換局 (M S C ) 間でフ レーム識別番号を用いて、 基地局毎の遅延の差異をバッファ吸収して、 最大比合成 Z選択合成を行っているが、 下りのフレームについて移動局で遅延の差異を吸収 するためには、 相応のバッファを設ける必要があり、 端末の小型化が困難となる。 また、 フレーム識別情報を無線区間でもやりとりする必要があるため、 無線伝送 容量の有効利用という点からも非効率的である。
( 2 ) 従来技術におけるフレーム受信装置では、 サービス種別によって伝送遅延が 異なることを考慮していなかつたため、 サービス種別とは無関係に伝送区間で生 じる最大伝送遅延をシステムで固定的に設定していた。 そのためサービス種別に よって伝送遅延が異なるような伝送方式 (例えば A T Mにおける T y p e 5 , T y p e 2伝送) を実現したい場合に、 受信装置では、 伝送遅延の少ないサービスにつ いても無駄な遅延を生じてしまう。 ( 3 ) 従来のフレーム受信装置では、 伝送区間で生じる最大伝送遅延をシステム で固定的に設定していたので、 伝達経路やトラヒック変動により想定した以上の 伝送遅延が生じた場合には同期はずれとなり、 通信を切断しなければならない。
( 4 ) 従来のハンドオーバ方法においては、 通信品質は、 使用する無線リンクの品 質に 1対 1で対応しているため、 無線の受信部で使用している無線品質をモニタ すればよかったが、 ダイバーシチハンドオーバ方式では、 通信品質は、 ダイバーシ チハンドオーバ中のすべてのブランチの最大比合成後 Z選択合成後の結果であり、 無線の受信部だけでは品質の判定ができなくなった。
ここに、 最大比合成とは、 移動局において、 サイトダイバーシチ効果により、 複 数基地局から到来する下り無線フレームから受信信号を合成し、 受信品質を向上 する技術である。 この技術は、 同一の基地局において、 複数 T R Xを用いて、 移動 局から到来する上り無線フレームを合成する技術としても用いられる。
すなわち、 基地局内における複数のセクタ間のダイバーシチハンドオーバ (セ ル内セクタ間ダイバ一シチハンドオーバ) の上り無線フレームの合成には、 基地 局内において、 最大比合成処理が適用される。
一方、 選択合成は、 基地局をまたがるダイバーシチハンドオーバの上り無線フ レームの合成に適用される。 複数基地局を経由して到来する上り無線フレームは、 各経路毎に付加される信頼度情報により、 ダイバーシチハンドオーバトランクに て、 最も良い無線フレームの一つが選択される。
基地局をまたがるダイバーシチハンドオーバの上り無線フレームの合成に最大 比合成を適用しない理由は、 最大比合成処理を行うための多大な情報を複数基地 局と移動通信交換局との間の伝送路に送出することを防止し、 トラヒックを増大 させないためである。 選択合成は、 最大比合成に比べて、 合成利得は低いが、 合成 のための信頼度情報が少なくてすむという利点がある。
( 5 ) 従来技術では基地局が同期はずれを検知すると、 各基地局は個別に制御リ ンクを用いて交換機のプロセッサに同期外れ通知を行っている。 しかしダイバ一シ チハンドオーバ方式では送信電力制御により M Sの上り送信電力がある特定の基 地局で最も効率的になるように制御されているので、 送信電力制御の対象となつ ていない基地局からは頻繁に同期はずれが通知されるという状況が起こり得るた め、 基地局〜プロセッサ間に多量の制御信号が送信されるとともにプロセッサに多 大な負荷がかかってしまう。 発明の開示
この発明は上述した事情に鑑みてなされたものであり、 同期外れが発生した場 合においても同期回復させ、 さらに、 適正で効率的な品質監視、 同期外れ通知を行 うことができるハンドオーバ方法を提供することを目的としている。
上記課題を解決するため、 この発明は、 第 1の見地においては、
第 1の基地局を介してダイバーシチハンドオーバトランクと移動局とを結び第 1 の遅延時間を生じさせる第 1の伝送経路と、 第 2の基地局を介して前記ダイバ一シ チハンドオーバトランクと前記移動局とを結び前記第 1の遅延時間よりも長い第 2の遅延時間を生じさせる第 2の伝送経路とを用いるハンドオーバ方法において、 前記ダイバーシチハンドオーバトランクが、 前記第 1の基地局を介して、 前記 第 1の遅延時間で前記移動局と通信する過程と、
前記移動局が前記第 2の基地局の無線チャンネルを受信する過程と、
前記移動局が前記第 2の基地局に係るハンドオーバトリガ信号を前記第 1の基 地局を介して前記ダイバーシチハンドオーバトランクに供給する過程と、
前記第 1の伝送経路における遅延時間を前記第 2の遅延時間に変更する過程と、 前記移動局宛の信号を、 前記第 1および第 2の伝送経路の双方を介して送信す る過程と、
前記移動局が、 前記第 1および第 2の伝送経路を介して供給された信号を合成 または選択して受信する過程と
を有することを特徴とする。
また、 本発明は、 第 2の見地においては、
第 1の基地局を介してダイバ一シチハンドオーバトランクと移動局とを結び第 1の遅延時間を生じさせる第 1の伝送経路と、 第 2の基地局を介して前記ダイ バーシチハンドオーバトランクと前記移動局とを結び前記第 1の遅延時間よりも 長い第 2の遅延時間を生じさせる第 2の伝送経路と、 前記ダイバーシチハンド オーバトランクを制御する制御手段とを用いるハンドォ一バ方法において、 前記ダイバーシチハンドオーバトランクが前記第 1の基地局を介して、 予め第 2の基地局を介して通信する可能性を想定して前記第 2の遅延時間以上の遅延時 間で、 前記移動局と通信する過程
を有することを特徴とする。 図面の簡単な説明
図 1は、 本発明の一実施形態の構成を示すブロック図である。
図 2は、 移動通信交換局 3の要部のブロック図である。
図 3は、 基地局 2の要部のブロック図である。
図 4は、 コネクション管理表を示す図である。
図 5は、 M S C〜B S間遅延時間管理表を示す図である。
図 6は、 交換局プロセッサ 3 2で管理される品質劣化測定関連パラメ一夕およ び同期外れ検出関連パラメ一夕の例を示す図である。
図 7は、 交換局プロセッサ 3 2で管理されるトラヒック情報の例を示す図である。 図 8は、 アップダウンカウン夕を用いた品質測定の動作説明図である。
図 9は、 アップダウンカウンタを用いた品質測定のフローチヤ一トである。 図 1 0は、 アップダウンカウンタを用いた品質測定のフローチャートである。 図 1 1は、 ダイバーシチハンドオーバ制御処理シーケンスのフローチャートで ある。
図 1 2は、 ダイバーシチハンドオーバ制御処理シーケンスのフローチャートで ある。
図 1 3は、 ブランチ切り替えハンドオーバ制御処理シーケンスのフローチヤ一 トである。
図 1 4は、 ブランチ切り替えハンドォ一バ制御処理シーケンスのフローチヤ一 卜である。
図 1 5は、 通信開始/終了時における品質劣化/同期外れ報告処理のフロー チヤ一卜である。
図 1 6は、 通信開始 Z終了時における品質劣化/同期外れ報告処理のフロー チヤ一卜である。 図 1 7は、 各区間における伝送フレームの詳細を説明するための図である。 図 1 8は、 各区間における伝送フレームの詳細を説明するための図である。 図 1 9は、 ユーザフレームの選択合成処理の動作説明図である。
図 2 0は、 局間ダイバーシチ八ンドオーバの動作説明図である。
図 2 1は、 上り処理の概要を示すフローチャートである。
図 2 2は、 制御範囲から見たハンドオーバの分類を示す図である。
図 2 3は、 ハンドオーバブランチ制御別のハンドオーバブランチ状態を示す図 である。 (* 1 : 1回の M Sの D H O起動要求により同時に複数 B r制御 (追加, 削除, 追加削除) が可能
* 2 : M S側では最大同時接続数を 3 B rとした場合に 「削除—追加」 となる) 図 2 4は、 移動通信に於いて起動されるハンドオーバのトリガとハンドオーバ 種類の対応の例を示した図である。
図 2 5は、 移動通信に於いて起動されるハンドオーバのトリガとハンドオーバ 種類の対応の例を示した図である。
図 2 6は、 無線フレームオフセット値〇F Sおよび無線フレーム番号 F Nの算 出方法を示す動作説明図である。
図 2 7は、 各装置における処理タイムチャートである。
図 2 8は、 各装置における処理タイムチャートである。
図 2 9は、 タイミング関連パラメ一夕の算出例を示す図である。
図 3 0は、 タイミング関連パラメ一夕の算出例を示す図である。
図 3 1は、 ブランチ切替ハンドオーバの動作説明図である。
図 3 2は、 F Nスライド処理パラメ一夕管理表の一例を示す図である。
図 3 3 , 3 4は、 上り F Nスライド処理の動作説明図である。
図 3 5, 3 6は、 上り F Nスライド処理の動作説明図である。
図 3 7は、 実施形態の変形例の動作説明図である。
図 3 8は、 移動通信交換局間ハンドオーバの説明図である。
図 3 9は、 移動通信交換局の構成を示すブロック図である。
発明を実施するための最良の形態
1 . 実施形態の構成
差替 え 甩紙(規則 26) 次に、 本発明の実施形態の構成を図 1を参照し説明する。
図において 1, 10は移動局 (MS)、 2, 4〜9は基地局 (BS)、 3, 1 1は 移動通信交換局 (MSC) であり、 各々移動通信システム内におけるノードを形成 している。
基地局 2の内部において 23は基地局内 MS Cインターフェース装置 (M I F) であり、 移動通信交換局 3内に設けられた MS C内基地局インターフェース装置 (B I F) 33との間で通信リンクおよび信号リンクを形成する。 21は基地局無 線フレーム同期装置 (MFC— B) であり、 基地局 2内におけるフレーム同期を確 定し、 基地局 2内の各部に動作基準クロックを供給する。
25は無線送受信装置 (TRX) であり、 移動局 1との間で無線フレームの送受 信を行う。 24は基地局変復調装置 (MDE) であり、 該無線フレームに対する変 復調や誤り訂正等を行う。 22は基地局プロセッサ (PRC) であり、 所定の制御 プログラムに基づいて基地局 2内の各部を制御する。 また、 他の基地局 4〜 9も 基地局 2と同様に構成されている。
次に、 移動通信交換局 3の内部において 38はスィッチ部 (SW) であり、 交換 局内においてフレームのスイッチングを行う。 31は交換局無線フレーム同期装置 (MFC— M) であり、 基地局無線フレーム同期装置 2 1と同様に、 移動通信交換 局 3内における無線フレーム同期を確定し、 移動通信交換局 3内の各部に動作基 準クロックを供給する。 32は交換局プロセッサ (PRC—M) であり、 基地局プ 口セッサ 22と同様に移動通信交換局 3内に各部を制御する。
ところで、 本実施形態においては、 移動局 1, 10と基地局 2, 4〜9との通信 方式として CDMA無線方式を採用している。 CDMA無線方式においては、 移動局 1, 1 0は同一周波数を用いて複数の基地局と通信できるため、 品質向上や無線 容量の向上のために、 ダイバーシチ最大比合成 Z選択合成処理を行うことが可能 である。 また、 この能力を用いて、 移動局 1が複数の基地局のゾーンに亙って移動 した場合に、 無瞬断のハンドオーバ (ダイバーシチハンドオーバ) を実現すること ができる。
これは、 下り無線フレームに関して、 移動局 1が同時に複数の基地局からの電 波を受け、 最大比合成を行う一方、 上り無線フレームに関してダイバ一シチハンド オーバトランクが、 通信状態が良好である方の基地局の無線フレームを選択して 通信を行う方式である。
3 4はダイバーシチハンドオーバトランク (D H T) であり、 フレーム同期調整 および複数基地局にまたがつたハンドオーバ制御を行う。 ダイバーシチハンドォー バトランク 3 4は、 複数経路における上り無線フレームの揺らぎを吸収した後に 選択合成を行うものである。
すなわち、 ダイバーシチハンドオーバトランク 3 4においては、 その内部で設 定された遅延時間に至るまでフレームを待ち合わせて伝送するものであり、 その 遅延時間は各経路における伝送遅延の差を吸収するように逐次設定される。
3 5は高能率音声符号化装置 (V X C ) であり、 音声ユーザフレームに対して卜 ランスコーディング等の処理を行う。 3 6はデータサービス制御装置 (D S C ) で あり、 データサービスフレームに対してトランスコーディング等の処理を行う。 3 7は中継網イン夕一フェース装置であり、 図示しない通信中継網、 信号中継網、 同 期中継網等との間で各種信号および信号のやりとりを行う。
ここで、 基地局 2の基地局プロセッサ 2 2から移動通信交換局 3の交換局プロ セッサ 3 2に供給される制御信号は、 基地局プロセッサ 2 2、 基地局内 M S Cイン ターフェース装置 2 3および M S C内基地局ィン夕一フェース装置 3 3を順次介し て、 交換局プロセッサ 3 2に伝送される。
交換局プロセッサ 3 2から基地局プロセッサ 2 2に供給される制御信号は、 この 逆の順で伝送される。 また、 移動局 1から基地局 2の基地局プロセッサ 2 2に供給 される制御信号は、 移動局 1、 無線送受信装置 2 5、 基地局変復調装置 2 4を順次 介して基地局プロセッサ 2 2に伝送される。 基地局プロセッサ 2 2から移動局 1に 供給される制御信号は、 この逆の順で伝送される。
また、 移動局 1から移動通信交換局 3内の交換局プロセッサ 3 2に供給される 制御信号は、 無線送受信装置 2 5、 基地局変復調装置 2 4、 基地局内 M S Cイン ターフェース装置 2 3 、 M S C内基地局インターフェース装置 3 3, ダイバーシチ ハンドオーバトランク 3 4を介して交換局プロセッサ 3 2に伝送される。 また、 交 換局プロセッサ 3 2から移動局 1に供給される情報は、 この逆の順で伝送される。 2 . 実施形態の動作 2. 1. 無線フレーム同期設定
移動通信網を構成する各通信ノード (図示のものでは、 基地局 2, 4〜9および 移動通信交換局 3, 1 1) においては、 各通信ノード内の無線フレーム同期装置 2 1, 3 1により相互の無線フレーム同期位相調整が行われる。
以下の説明においては、 無線フレームの伝送について不当な遅延が増大しない ように、 これらノード間の無線フレーム同期位相誤差は、 移動局 1〜基地局 2間 の無線フレーム間隔に対して、 「 1Z2」 未満であることとする。 例えば、 無線フ レーム間隔が 「 1 Om s e c」 であれば、 「 5m s e c」 未満の無線フレーム同期 位相誤差で全てのノード (基地局 2, 4〜 9および移動通信交換局 3, 1 1) が同 期することになる。
無線フレーム同期装置 2 1, 3 1は、 自ノード内の各装置に動作基準クロックを 配信する。 動作基準クロックは、 所定のクロック単位と周期とを有している。 ここ では、 クロック単位は 「0. 6 2 5ms e c」、 周期は 「64 Oms e c」 である こととする。 ここで、 クロック単位の 「1 6倍」 (ここでは 0. 62 5 X 1 6 = 1 Oms e c) を無線フレームクロックという。
また、 この無線フレームクロック毎に 「0」 〜 「63」 の範囲で巡回的にインク リメン卜される番号を無線フレーム番号 FNという。 また、 「1」 無線フレームク ロック内でクロック単位毎に 「0」 〜 「1 5」 の範囲で順にインクリメントされる 番号を無線フレームオフセット値 OF Sという。
なお、 図 1においては、 各基地局が屋外の無線電波を受信できない場所に設置 されていることを考慮して、 各ノード間の無線フレーム同期位相調整を有線伝送 路を用いて実現しているが、 例えば GP S等の無線手段を用いて無線フレーム同 期位相調整を行ってもよいことは言うまでもない。
本明細書で使用するクロックに関する 「同期」 と 「同期誤差 (または同期位相 差)」 について、 日常使用している時計の例を用いて説明する。
世界中のあらゆる時計は一日 24時間を刻み、 同一の周期と同一の単位を有す る。 ここで、 基準時刻の異なる二地点における時計を比較した場合、 各々の地点に おける時計の示す時刻は異なっている。 この時計の示す時刻の差が 「同期誤差 (ま たは同期位相差)」 に相当する。 しかし、 この差は、 時計の精度にもよるが、 基本的にどの任意の時刻においても 保たれている。 従って、 この二つの時計は、 一定の時間差を保ちながら 「同期」 し ていると言える。
2 . 2 . 通信開始
2 . 2 . 1 . 発呼およびリンク設定
移動局 1において発呼が行われた場合および内外のネットワーク (図示せず) か ら移動局 1に対する発呼が行われた場合は、 移動局 1、 基地局プロセッサ 2 2およ び交換局プロセッサ 3 2間で制御信号が通信され、 サービス種別により必要とな る通信リソースのハントおよび起動が実行される。
同時に、 それらの通信リソースを結ぶ通信リンクおよび付随制御リンクが移動 通信システム内において設定される。 ここで、 通信リンクは、 音声通信を行う場合 は、 移動局 1、 無線送受信装置 2 5、 基地局変復調装置 2 4、 基地局内 M S Cイン ターフェース装置 2 3、 M S C内基地局インターフェース装置 3 3、 ダイバーシチ ハンドオーバトランク 3 4、 高能率音声符号化装置 3 5および中継網ィンター フエ一ス装置 3 7を順次結ぶリンクである。
一方、 データ通信を行う場合は、 高能率音声符号化装置 3 5に代えてデータサー ビス制御装置 3 6を介挿させたリンクになる。 また、 付随制御リンクは、 移動局 1、 無線送受信装置 2 5、 基地局変復調装置 2 4、 基地局内 M S Cイン夕一フエ一 ス装置 2 3、 M S C内基地局インタ一フェース装置 3 3、 ダイバーシチハンドォ一 バトランク 3 4および交換局プロセッサ 3 2を結ぶリンクである。
この付随制御リンクは、 通信リンクに付随して設定され、 通信開始時および通 信中における第 2コールの設定や、 移動局〜基地局間の無線回線の設定、 ハンド ォ一バ等の呼制御、 無線制御、 モビリティ制御に利用される。
ここで、 図 1 7、 図 1 8を参照し、 各区間における伝送フレームの名称およびそ の形態について説明する。 本実施形態では、 基地局〜移動通信交換局間の有線区間 の伝送方式として、 ATMの AAL Type 2伝送 (ITU-T 1.363.2勧告草案に明示) を 用いているが、 本実施形態において提案する方式は、 パケット、 フレームリレー、 ATMのその他の A AT T ype伝送等にも適用可能である。
ここでは、 各装置における上りフレーム処理を例として説明する。 l O m s e C単位に分割されたユーザフレームは、 移動局において符号化や変調等の無線区 間のための処理が施され、 無線フレームとして出力される。 無線フレームは、 基地 局において復調や復号化等の処理を受けた後、 無線フレーム番号 F Nおよび信頼 度情報が付与される。 付与される無線フレーム番号 F Nおよび信頼度情報の内訳 を図 1 9に示す。
基地局〜移動通信交換局間の伝送フレームを基地局交換局間フレームと呼ぶ。 基地局〜移動通信交換局間で ATMの Type 2伝送を用いた場合、 音声等のユーザフ レーム長が短いものを低速度無線回線で伝送した場合の無線フレーム (4 5 oct以 下) は一つの Type 2 CPSパケットで伝送可能であるが、 データ通信のように ユーザフレーム長が長いものを高速無線回線で伝送した場合の無線フレーム (4 5 octを超える) は一つの Type 2 CPSパケットに収まらず、 複数の基地局交換局間 フレームに分割されて伝送される。 例では、 一つの無線フレームが 3分割され、 そ れぞれが Type 2 CPSバケツトで伝送される。
ダイバーシチハンドオーバトランクにおいては、 受信した有線フレームについ て、 基地局交換局間フレーム単位に選択合成し M S C内フレームとして、 高能率 音声符号化装置 3 5およびデータサービス制御装置 3 6等のサービストランクに 伝送される。 M S C内フレームは、 サービストランクでユーザフレームに復元さ れ、 各サービスに適した処理を受け、 中継フレームとして中継網に適した伝送フ レームで送出される。
2 . 2 . 2 . パラメ一夕設定
ここで、 図 2および図 1 5を参照し、 ダイバ一シチハンドオーバトランク 3 4 における動作の詳細を説明する。
まず、 交換局プロセッサ 3 2における通信制御部 3 2— 1は、 ハントした (リン ク内に介挿した) ダイバ一シチハンドオーバトランク 3 4の D H T制御部 3 4— 1に対して、 品質劣化測定関連パラメ一夕、 同期外れ検出関連パラメ一夕、 夕イミ ング補正関連パラメ一夕、 D H〇ブランチ情報、 網側コネクション識別子、 トラ ヒック情報を通知する。
ここで、 品質劣化測定関連パラメ一夕および同期外れ検出関連パラメータの例 を図 6に示す。 また、 トラヒック情報の例を図 7に示す。 ここに品質劣化測定関連 パラメータとは、 品質劣化の測定周期、 その通知閾値等のパラメ一夕である。 ま た、 同期外れ検出関連パラメ一夕とは、 同期外れであるとみなされる場合の連続 同期外れセル検出数等のパラメ一夕である。
また、 トラヒック情報とは、 基地局〜移動通信交換局間の有線伝送路において、 ATM伝送を適用した場合の、 セルが到達する間隔および一タイミングにおける受 信セル数等である。 これらのパラメ一夕や情報は、 各サービス毎に交換局プロセッ サ 32において管理されている。
また、 タイミング補正関連パラメ一夕とは、 上 Z下無線フレーム番号補正値、 上 /下無線フレームオフセット補正値から成り、 記憶部 32— 2に含まれる 「MSC 〜BS間遅延時間管理表」 (図 5参照) に基づいて算出される。 なお、 図 5に示さ れている遅延時間には、 ノード間の最大無線フレーム同期位相誤差 (5ms e c) も含まれている。 また、 基地局 2と移動通信交換局 3との間で他の交換局を中継 させる場合には、 その交換局を中継するために生ずる遅延も含まれる。
次に、 図 26を参照して、 上/下無線フレーム番号補正値および上 下無線フ レームオフセット補正値の算出方法を説明する。 まず、 下りフレームについては、 (1) MS C内の DHTは、 オフセットタイミングを考慮し、 MF C— Mの動作 基準クロックタイミングに最大揺らぎ遅延分を加算したフレーム番号 FNを付加 し、 B Sにフレームを送出する。 送出されたフレームは、 BSにおいて受信された 後、 (2) B S内の MDEにおいて、 MFC— Bの動作基準クロックタイミングに 従ったフレーム番号 F Nおよびオフセットタイミングで取り出し制御され、 無線フ レーム番号として無線区間に送出される。
また、 上りについては、 無線フレームは、 (3) BS内の TRXにおいて、 MF C— Bの動作基準クロックに従ったオフセットタイミングで受信され、 MDEにお いて MDC— Bの無線フレーム番号 FNを付加して MS Cに送出される。 送出さ れたフレームは、 (4) MS C内の DHTにおいて、 MFC— Mの動作基準クロッ クに最大ゆらぎ遅延分を減算したフレーム番号 FNおよびオフセットタイミング で取り出し制御され、 後段装置に送信される。
次に、 移動局 1が基地局 2, 4を介して、 音声通信のダイバーシチハンドオーバ を実行することを想定し、 これらの具体的な算出例を説明する。 かかる場合、 図 5 の B S 1, 2 (基地局 2 , 4 ) の欄によれば、 遅延時間は 「3 O m s e c」 および 「3 8 m s e c」 であるから、 最大伝送遅延時間として 「3 8 m s e c」 が選択さ れる。
すなわち、 基地局 2, 4を介して到着する無線フレームの揺らぎを吸収するた めに、 上りフレーム取出し制御部 3 4— 8における最大伝送遅延時間が 「3 8 m s e c」 に設定される。 なお、 ダイバーシチハンドオーバの実行想定範囲を限定せ ず、 表中の全ての基地局に対して無線フレームの揺らぎを吸収する場合には、 最大 伝送遅延時間を表中の最大値の 「4 O m s e c」 に設定すればよい。
さて、 「3 8 m s e c」 を無線フレームクロックに換算すると、 「3」 無線フレー ムクロック + 「 1 3」 無線フレームオフセットに相当する。 従って、 上り無線フ レーム番号補正値は 「3」 に、 上り無線フレームオフセット補正値は 「 1 3」 に 各々設定される。 下り無線フレーム番号補正値および下り無線フレームオフセット 補正値も、 同値に設定される。
但し、 上下回線で遅延特性が異なる場合には、 「M S C〜B S間遅延時間管理 表」 において上下別の値が記憶されているため、 これらの値に基づいて、 上下無線 フレーム番号補正値および上下無線フレームオフセット補正値に対して別々の値が 設定される。
上り無線フレーム番号補正値および上り無線フレームオフセット補正値は、 交 換局無線フレーム同期装置 3 1から出力される動作基準クロックに対して減算補 正に用いられる。 一方、 下り無線フレーム番号補正値および下り無線フレームォ フセット補正値は、 動作基準クロックに対して加算補正に用いられる。
また、 上記 D H Oブランチ情報とは、 ダイバ一シチハンドオーバ用としてダイ バ一シチハンドオーバトランク 3 4に接続される回線の数およびコネクション識 別子から成る。 ここで、 上述した網側コネクション識別子とは、 ダイバーシチハン ドオーバトランク 3 4に接続されるネットワーク側のコネクション識別子の意味で ある。 これらは、 コネクション管理表 (図 4 ) として、 交換局プロセッサ 3 2内で 管理されており、 上りの選択合成、 下りの複製分配を行う際のコネクション数ゃフ レームの識別に用いられる。 以降、 図 2 7, 図 2 9を参照して下りフレーム処理の 詳細説明を行う。 2. 3. 移動通信交換局 3内の下りフレーム処理
さて、 ネットワーク側より中継網ィンターフェ一ス装置 37を介してダイバ一シ チハンドオーバトランク 34に無線フレーム単位を考慮して分割された下り MS C内フレームが供給されると、 該 MS C内フレームは下りフレーム受信部 34— 2で受信される。
次に、 下りフレーム取出し制御部 34— 3においては、 受信された MS C内フ レームの取出しが行われる。 その際の取出しタイミングは、 01^丁制御部34— 1通知される下り無線フレームオフセット補正値を用いて補正した夕イミングに 従う。
すなわち、 MSC内フレームは、 「16」 から下り無線フレームオフセット補正 値を減算した夕イミングで取り出される。 例えば下り無線フレームオフセット補 正値が 「 13」 であった場合には、 「16— 1 3 = 3」 となるから、 交換局無線フ レーム同期装置 31から供給される各無線フレームクロックの周期内で 「3」 番目 の動作基準クロックに同期して MS C内フレームが取り出されることになる。 また、 MS C内フレームとして取り出されるセル数やセル間隔はトラヒック情 報に従って設定される。 なお、 このセル間隔は、 基本的には無線フレーム間隔の整 数倍である。 さて、 下りフレーム取出し制御部 34— 3によって MS C内フレーム が取り出されると、 下りフレーム FN付与部 34— 4は該 MS C内フレームに無 線フレーム番号 FNを付与する。
ここで、 付与される無線フレーム番号 FNは、 交換局無線フレーム同期装置 3 1から通知される動作基準クロックの無線フレーム番号 FNに下り無線フレーム 番号補正値 (上記例では 「3」) と、 さらに先に無線フレームオフセットタイミン グとして補正した分の 「1」 を加算し、 しかる後に加算結果を 「64」 で除算した 余に等しい。
このように、 本実施形態においては、 下りフレーム受信部 34— 2においては 下り無線フレームオフセット補正値に基づいて動作基準クロック単位のタイミング 補正が行われ、 下りフレーム FN付与部 34-4においては無線フレームクロッ ク単位の補正が行われる。
そして、 基地局内における下り無線フレームの取出し処理は、 基地局無線フレー ム同期装置 2 1から通知される動作基準クロックの無線フレーム番号 F Nおよび 無線フレームオフセット補正値 「0」 のタイミングで行えばよいため、 かかる処理 を簡易に実行させることができる。
次に、 下りフレーム複製部 3 4— 5は、 D H T制御部 3 4— 1から通知される D H Oブランチ情報 (図 4 ) に基づいて、 ダイバーシチハンドオーバ中のブランチ 相当数分の M S C内フレームを複製し、 複製したフレームを基地局交換局間フ レームとし、 各ユーザフレームのアドレス情報として、 各ブランチに対応したコ ネクシヨン識別子を付与する。
図 1の例にあっては、 基地局 2, 4を介して移動局 1に対するダイバーシチハン ドオーバが行われるから、 ブランチ数は 「2」 である。 さらに、 M S C内フレーム および有線フレームが ATMセルで伝達される場合には、 各セルが 1回複製され、 オリジナルのセルと複製されたセルのうち一方には基地局 2のコネクション識別 子が付与され、 他方には基地局 4のコネクション識別子が付与されることになる。
このように、 必要に応じて複製された基地局交換局間フレームは、 下りフレー ム送出部 3 4— 6に供給される。 そして、 各有線フレームに付与されたコネクショ ン識別子に基づいて、 M S C内基地局インターフェース装置 3 3を介して、 各有線 ブランチすなわち基地局 2 , 4に各基地局交換局間フレームが送出される。
2 . 4 . 基地局内の下りフレーム処理
次に、 M S C内基地局インタ一フェース装置 3 3を介して基地局 2に下り基地 局交換局間フレームが供給された後の動作を図 2 7を参照し説明する。 供給され た下り基地局交換局間フレームは、 基地局内 M S Cインターフェース装置 2 3に よって受信され、 さらに基地局変復調装置 2 4内の下りフレーム受信部 2 4— 1 において受信され、 下りフレーム取出し制御部 2 4— 2に供給される。 ここでは、 該下り基地局交換局間フレームの中から、 基地局無線フレーム同期装置 2 1から 通知される動作基準クロックに従った基地局交換局間フレームが取り出される。 通信開始時の通信同期設定の基準となる基地局 (上記例では基地局 2 ) におけ る基地局交換局間フレームの取出しは、 動作基準クロックの無線フレームオフセッ ト値 O F Sが 「0」 であるタイミングでフレームの取出しが行われる。 その夕イミ ングで取り出すべき基地局交換局間フレームが存在しない場合には、 次のタイミ ング (「1」 無線フレームクロック周期後) まで待機され、 再度基地局交換局間フ レームの取出しが試みられることになる。
通信開始時、 または通信中にダイバーシチハンドオーバ用に追加されたブラン チを収容する従たる基地局 (上記例では基地局 4 ) においては、 移動局と通信同期 設定の基準となる基地局 (上記例では基地局 2 ) との間で送受される無線フレー ムのタイミングに、 該従たる基地局の無線送受信タイミングを合わせるような処 理が行われる。
これは、 移動通信網を構成する各通信ノードが、 有線伝送路を用い、 5 m s e c 未満の誤差で無線フレーム同期位相調整を行っている場合に、 移動局においてダ ィバーシチハンドオーバの最大比合成処理を行うためには、 ダイバーシチハンド オーバ中の各基地局から到達する無線フレームには最大 5 m s e c程度のばらつ きがあるために、 その分だけ受信バッファを設ける必要がある。
しかし、 この受信バッファの増大は、 移動局の小型化の弊害となるために、 この 最大 5 m s e cで生ずる誤差を従たる基地局が無線フレームオフセット値を基準 の 「0」 から前後させることによって、 最大 「0 . 6 2 5 m s e c」 程度まで減少 させることを目的とする。
通信同期設定の基準となる基地局と従たる基地局との無線フレーム同期位相誤 差は、 移動局がダイバーシチハンドオーバを起動する際に測定される。 すなわち、 移動局における通信中の無線フレームと、 新たに追加しょうとする従たる基地局 の報知チャンネル等の無線フレームとの同期位相誤差が測定される。
この測定結果は、 移動通信交換局を介して、 従たる基地局に通知される。 これに より、 従たる基地局の無線フレームオフセット値の微調整が可能である。 この微調 整のために、 無線フレームクロック単位をまたがる場合は、 該基地局における無線 フレーム番号 F N自体もシフトされる。
さて、 図 3に戻り、 取り出された基地局交換局間フレームが下りフレーム処理部 2 4 - 3に供給されると、 無線区間の誤り保護のため符号化処理や無線送信のた めの変調等が行われ、 無線フレームが形成される。 そして、 形成された無線フレー ムは、 無線送受信装置 2 5を介して、 各基地局のゾーン内に送信される。
移動局 1においては、 ダイバーシチハンドオーバが行われている場合は、 複数 の基地局 2 , 4からの無線フレームが受信される。 そして、 最大比合成後に移動局 1内でユーザフレームの処理が行われる。
なお、 下りフレーム受信部 2 4— 1は、 その内部のバッファに格納されている基 地局交換局間フレームに付与されている無線フレーム番号 F Nを監視する。 そし て、 下りフレーム取出し制御部 2 4 - 2と連携して取り出すべき無線フレーム番 号 F Nを有する基地局交換局間フレームが遅れている旨が検出された場合には、 「フレーム遅れ」 が発生したと判定される。 かかる判定がなされた場合には、 該基 地局から、 ダイバーシチハンドオーバトランク 3 4に対して、 「下り F N補正要 求」 が供給される。
この下り F N補正要求がダイバーシチハンドオーバトランク 3 4に供給される と、 D H T制御部 3 4— 1においては下り無線フレーム番号補正値が更新される。 この更新された下り無線フレーム番号補正値は、 下りフレーム F N付与部 3 4— 4に通知され、 以後の基地局交換局間フレームに付与される無線フレーム番号 F Nに反映される。 かかる処理を下り F Nスライド処理という。
以下、 図 3 5を参照して下り F Nスライド処理の詳細について説明する。
この処理は、 基地局の下りフレーム受信部 2 4 — 1および下りフレーム取出し 制御部 2 4 - 2において取り出しタイミングに遅延して到達したフレームを定常 的に検出した場合に、 ダイバーシチハンドオーバトランク 3 4が下り向けに付与 する無線フレーム番号 F Nを変更することにより同期を回復する処理である。 下り F Nスライド処理においては、 複数基地局における下り無線フレーム番号 F Nと無線区間に送出された情報との不一致を防ぐ必要がある。 この不一致を防 止するためには、 基地局間で F Nスライド量ゃスライド夕イミングの意識合わせ の手順を設けることが考えられるが、 本実施形態においては、 個々の基地局の下り フレーム受信部 2 4— 1で下り F Nスライド処理を行うのではなく、 遅延を検出 した基地局から情報配分元のダイバーシチハンドォ一バトランクに通知を行い、 ダイバ一シチハンドオーバトランクの下りフレ一ム F N付与部 3 4— 4において 下り F Nスライド処理を行う。 そこで、 基地局およびダイバーシチハンドオーバト ランクの双方の動作について詳述する。
2 . 4 . 1 . 基地局の動作 基地局においては、 基地局無線フレーム同期装置 2 1から供給される動作基準 クロックに従い、 受信バッファから所定の無線フレーム番号 FNを有するユーザフ レームを取り出す。 下りフレーム受信部 24— 1および下りフレーム取出し制御部 24-2において、 取出しタイミングに遅延して到達したユーザフレームが検出さ れると、 下り FN補正要求通知情報が生成され、 上りフレーム送信部 24— 10か ら M I F 23を介して、 MS C内の DHTに対して、 ユーザ信号ルートで FN補 正情報が通知される。 別ルートの通知方法として、 制御信号ルートで通知するこ とも可能である。 その場合は、 取り出しタイミングに遅延して到達したユーザフ レームが検出されると、 基地局内の MDEから PRC— B 22に下り FN補正要求 が伝えられ、 PRC— B 22から PRC— M32に制御信号として下り F N補正 要求が通知される。 その後、 MS C内で PRC— M32から DHT内の DHT制 御部 34— 1に下り FN補正要求が伝えられ、 最終的に下りフレーム FN付与部 34一 4において下りスライド処理が実行されて下り FN補正要求が出力される。 この下り F N補正要求を制御信号またはユーザ信号を用いてダイバーシチハン ドオーバ卜ランクに通知した場合の得失を述べる。 ここで、 制御信号を用いる場 合は、 その実行における遅延時間や制御プロセッサの負荷が増大する可能性があ る。 また、 ユーザ信号を用いる場合には、 無線区間から受信した上りユーザフレー ムに下り FNスライ ド要求を含ませる場合と、 通知専用ュ一ザフレームを用いる 場合とが考えられる。
前者の場合は、 例えばパケットのようにユーザフレームが間欠的に送出される 時に下り FNスライ ド要求を通知できなくなる可能性がある。 一方、 後者の通知 専用ユーザフレームを用いる場合は、 トラヒックは増大するが、 高速にしかも確実 に必要なタイミングで通知を行うことが可能である。 この通知専用ユーザフレ一 ムを、 「下り有線同期外れ通知ユーザフレーム」 と呼ぶ。 下り有線同期外れ通知 ユーザフレームは、 上りユーザフレームの送出とは独立に送出される。 また、 下り 有線同期外れ通知ユーザフレームに下り FNスライド量を含めて、 ダイバ一シチ ハンドオーバトランクに通知してもよい。
2. 4. 2. ダイバーシチハンドオーバトランクの動作
無線区間においては、 有線区間の全てのブランチがダイバーシチハンドオーバ の合成利得に寄与していることを前提として送信電力制御が行われる。 従って、 複 数のブランチ中の 1ブランチから下り FNスライド要求が供給された場合であつ ても、 下りフレーム FN付与部 34— 4は、 この要求を下り FNスライド処理の トリガにする。 下りフレーム FN付与部 34— 4は、 下り有線同期外れ通知ユー ザフレームすなわち下り FNスライド要求を受信すると、 一定量 (もしくは通知 された下り FNスライド量) だけ、 下り無線フレーム番号補正値を補正する。 但 し、 一回の処理における下り FNスライド幅は、 検出された遅延幅に拘らず、 所定 の下り FNスライド刻み幅パラメ一夕以下の値に制限される。 さらに、 通信開始 から終了までの累計の下り FNスライド幅は、 所定の下り FNスライド最大幅パ ラメ一夕以下の値に制限される。
下り FNスライド幅の累計が下り FNスライド最大幅パラメ一夕を超えた場合 は、 01^丁制御部34— 1は、 下り FNスライド最大幅超過アラームを交換局プ 口セッサ 32に報告する。 アラーム報告後は、 交換局プロセッサ 32から応答が返 送されるが、 この応答が返送されるまでは、 基地局から下り FNスライ ド要求を 受信したとしても下り FNスライ ド処理は実行されない。 すなわち、 この期間中 は下り FNスライド最大幅超過アラームは停止される。
これらの下り FNスライ ド処理のためのパラメ一夕は、 交換局プロセッサ 32 に記憶された F Nスライド処理パラメ一夕管理表でサ一ビス種別毎に F Nスライ ドのスライ ド幅と最大幅が通信中サービスに与える影響を鑑みて、 適した値が管 理されており、 下りフレーム FN付与部 34— 4はこの情報を参照して下り FN スライド処理を実行する。 例えば、 音声サービスであれば、 VXC 35における遅 延吸収能力や、 消失フレーム補充能力を考慮して FNスライ ド幅を設定し、 スラ ィド最大幅は通話に生じる遅延の影響を考慮して設定すればよい。
また、 データサ一ビスであれば、 D S C 36の遅延吸収能力や、 複数フレーム (例えば 8フレーム) にわたる誤り訂正を行っていれば、 そのフレーム周期を考慮 することで、 フレーム欠損の影響を最小限にできる。
尚、 1回の FNスライ ド実行量を FNスライド幅に限定した場合に、 それ以上 の到達遅延がフレーム受信側で生じていた場合には、 複数回にわたって、 FNスラ イドが実行される。 この時、 複数回の FNスライドがすべて実行するまで、 通信が 有線同期外れのために中断している訳ではなく、 FNスライ ド実行経過段階にお いても、 ダイバーシティハンドオーバ中であれば、 有線同期外れの生じていない他 のブランチ経由で通信が可能である。 FNスライド処理パラメータ管理表の一例 を図 32に示す。
下り FNスライド処理における動作の概要を図 36を用いて説明する。 図 36 において、 ダイバ一シチハンドオーバトランク 34と基地局 2との間には同期位 相は 0であるとする。 但し、 基地局 4はダイバーシチハンドオーバトランク 34 との間に同期位相誤差があり、 基地局 4の動作基準クロックは基地局 2の動作基準 クロックに対して、 1クロック単位 (OFS) だけ遅延している。 また、 ダイバ一 シチハンドオーバトランク 34から基地局 2および 4までの最大ゆらぎ遅延時間 は、 各 38ms e c ( 23線フレームクロック (FN) + 13クロック単位 (OF S) に相当する) であるとする。
また、 下り FNスライド刻み幅パラメ一夕は 「1」、 下り FNスライド最大幅パ ラメ一夕は 「5」 であることとする。 最大ゆらぎ遅延時間が 38ms e cであるか ら、 基地局 2で無線フレーム番号 FN= 6, OF S- 0 (時刻 t2) において取り出 されるべきフレームは、 ダイバ一シチハンドオーバトランク 34においては、 F N= 2, OF S = 3のタイミング (時刻 tl) で出力される。 '
しかし、 図示の例においては、 時刻 t2よりも若干遅れた時刻 t3にフレームが検 出された。 なお、 基地局 4においては同フレームが正常なタイミング (FN= 5, OF S= 1 5) で検出されている。 この場合、 基地局 2からダイバ一シチハンド オーバトランク 34に対して、 下り有線同期外れ通知ユーザフレームが送信され る。 これが FN= 10 (下り有線同期外れ通知ユーザフレームは、 ユーザフレーム に識別子を設けて FNに従った取り出し制御の対象とせずに、 受信と同時に処理 を起動させても良い。) においてダイバ一シチハンドオーバ卜ランク 34に受信さ れると、 (時刻 t4) 以降のフレームに付与される無線フレーム番号 FNに対してス ライド処理が施される。 すなわち、 FN二 10, OF S= 3 (時刻 t5) において送 信されるフレームは、 以前であれば無線フレーム番号 FN= 14が付与される害 であったが、 ここでは FN= 1 5が付与される。 これにより、 以後、 ダイバーシチ ハンドオーバトランク 34から基地局 2へのフレーム同期は回復する。 次に図 2 8、 図 3 0を考慮して上りフレーム処理の詳細説明を行う。
2 . 5 . 基地局内の上りフレーム処理
図 3において、 移動局 1から上り無線フレームが送信されると、 ダイバ一シチ ハンドオーバ中の各基地局において、 無線送受信装置 2 5によって該上り無線フ レームが受信され M D E内の上りフレーム受信部 2 4 - 5に送られる。 そして、 上りフレーム取出し制御部 2 4— 6では、 通信開始時に通信同期設定の基準となつ た基地局 (上記例では基地局 2 ) にあっては、 動作基準クロックの無線フレームォ フセット値 O F Sが 「0」 であるタイミングで無線フレームの取出しが行われる。 そのタイミングで取り出すべき無線フレームが存在しない場合には、 次のタイミ ング (「1」 無線フレームクロック周期後) まで待機され、 再度無線フレームの取 出しが試みられることになる。
従たる基地局すなわち基地局 4においては、 基地局 2との無線フレーム同期 位相差 (これは移動局で測定され移動通信交換局より通知される) 相当の無線フ レームオフセット値〇F Sを、 基地局 4の有する動作基準クロックのタイミング 「0」 より調整したタイミングで無線フレームの取出しが行われる。 なお、 この微 調整した無線フレームオフセット値〇F Sが無線フレームクロックに亙る場合は、 無線フレーム番号 F N自体もシフトされる。 (図 2 8 ) これらの位相差に伴う調整 処理は上りのそれと同様である。
さて図 3に戻り、 取り出された無線フレームが上りフレーム処理部 2 4— 7に 供給されると、 無線区間の誤り保護のため復号化処理や無線受信のための復調等 が行われ、 無線フレームが基地局〜交換局間フレームに変換される。 また、 上りフ レーム処理部 2 4— 7においては、 無線フレームの受信状態が品質パラメ一夕と して評価される。 次に、 上りフレーム信頼度情報付与部 2 4— 8においては、 先に 得られた品質パラメ一夕が基地局〜交換局間フレームに付加される。
この基地局〜交換局間フレームが上りフレーム F N付与部 2 4— 9に供給され ると、 該基地局〜交換局間フレームに無線フレーム番号 F Nが付与される。 ここ で、 付与される無線フレーム番号 F Nは、 基地局無線フレーム同期装置 2 1から 通知される動作基準クロックの無線フレーム番号 F Nに等しい。
但し、 従たる基地局において先の無線フレーム同期位相微調整の結果、 無線フ レーム番号 FNをシフトした場合には、 シフトした無線フレーム番号 FNが付与 される。 無線フレーム番号 FNが付与された基地局〜交換局間フレームは、 上り フレーム送信部 24— 1 0を介して基地局内 MS Cインターフエ一ス装置 23に 供給され、 さらに移動通信交換局 3に供給される。
2. 6. 移動通信交換局 3内の上りフレーム処理
次に、 図 2において、 ダイバ一シチハンドオーバトランク 34の上りフレーム 受信部 34- 7においては、 各基地局から到着した基地局交換局間フレームを受 信する。
上りフレーム取出し制御部 34— 8は上りフレーム受信部より、 DHT制御部 34— 1より通知される DHOブランチ情報 (図 4) に基づき、 各ブランチ対応の コネクション識別子をも持つもので、 かつ、 上り無線フレーム番号補正値に従って 交換局無線フレーム同期装置 3 1から通知される基準クロックを補正した無線フ レーム番号 FNを持つものを取出し、 上りフレーム比較部 34— 9に供給する。 また、 受信したフレームが下り有線同期外れ通知ユーザフレームである場合には、 DHT制御部 34— 1に通知を行う。
この取り出しタイミングは、 DHT制御部 34— 1より通知される上り無線フ レームオフセット補正値を用いて算出したタイミングに従う。 この取り出し夕イミ ングの調整は、 先の上りフレーム FN付与部 24— 9の処理に、 基地局一移動通 信交換局間のゆらぎ遅延を加味して取り出しを実行するためのものである。
上記例にあっては、 上りフレーム取出し制御部 34- 8の取り出しタイミング は、 上り無線フレームオフセット補正値のタイミングを 「1 3」 に相当するタイ ミングになる。 また、 取り出し対象の基地局交換局間フレームの無線フレーム番 号 FNは交換局無線フレーム同期装置 31から通知される基準クロックの無線フ レーム番号 FNに DHT制御部 34― 1から通知される下り無線フレーム番号補 正値 「3」 を減じた値である (図 30)。
なお、 移動通信交換局 3は、 上りフレーム受信部 34— 7のバッファに格納され ている基地局交換局間フレームに付与されている無線フレーム番号 FNを監視す る。 そして、 取り出すべき無線フレーム番号 FNを有する基地局交換局間フレー ムが定常的に遅れてきていることを検出した場合には、 基地局交換局間フレーム 遅れが発生したと判断し、 DHT制御部に対して基地局交換局間フレーム同期補 正報告を行うとともに、 上り無線フレーム番号補正値を更新する。
これにより、 以降の取り出し対象の無線フレーム番号 FN値は適正な値に変更 される。 この処理を 「上り FNスライド処理」 と呼ぶ。 なお、 基地局交換局間フ レームの取出し頻度 (基地局交換局間フレームを ATM伝送した場合の例では、 取 出しセル数およびセル間隔) は、 DHT制御部 34— 1より通知されるトラヒック 情報に従って決定される。
ここで、 上り FNスライド処理の詳細を説明する。
この処理は、 上りフレーム受信部 34— 7および上りフレーム取出し制御部 3 4-8において取り出しタイミングに遅延して到達したフレームが検出されると、 以降の基地局交換局間区間のフレーム同期を回復する処理である。
なお、 無線区間においては、 基地局交換局間区間の全てのブランチがダイバーシ チハンドオーバの合成利得に寄与していることを前提として送信電力制御が行われ る。 従って、 複数のブランチ中の 1ブランチが遅延した場合であっても、 これを上 り FNスライド処理のトリガにする。 また、 遅延しているブランチが複数存在する 場合は、 遅延幅の大きいブランチに合わせて上り FNスライド処理が実行される。 上り FNスライド処理で用いられるパラメ一夕には、 検出された遅延幅に関係 せず一回の処理における上り FNスライ ド幅を制限するパラメ一夕 (上り FNス ライド刻み幅パラメ一夕) と、 通信開始から終了までの累計の上り FNスライ ド 幅を制限するパラメ一夕 (上り FNスライド最大幅パラメ一夕) とが用いられる。 なお、 上り FNスライド幅の累計が上り FNスライド最大幅パラメータを超えた 場合には、 DHT制御部 34 - 1は上り FNスライド最大幅超過アラームを交換 局プロセッサ 32に報告する。 アラーム報告後は、 交換局プロセッサ 32から応答 が返送されるが、 この応答が返送されるまでは、 以降の受信フレームの取出しに おいてフレームの遅延を検出したとしても、 上り FNスライド処理は実行されな い。 すなわち、 この期間中は上り FNスライド最大幅超過アラームは停止される。 これらの上り FNスライド処理のためのパラメ一夕は、 交換局プロセッサ 32 に記憶された FNスライド処理パラメ一夕管理表でサ一ビス種別毎に管理されて おり、 上りフレ一ム取出し制御部 34- 8はこの情報を参照して上り FNスライ ド処理を実行する。 FNスライド処理パラメータ管理表の一例を図 32に示す。 上り FNスライド処理における動作の概要を図 33, 図 34に示す。 図 34にお いて、 細実線は基地局 4からダイバーシチハンドオーバトランク 34への許容遅 延内のフレームフローであり、 太実線は基地局 2からダイバーシチハンドオーバ トランク 34への許容遅延を超えたフレームのフレームフローである。
この例における最大ゆらぎ遅延条件および各基地局における同期位相誤差、 F Nスライド関連パラメータは、 下り FNスライドの説明で用いた基地局 2におい て無線フレーム番号 FN== 2が付与されたフレームは許容遅延を超えているため、 仮に正常な制御が行われた場合は、 FN==6, OFS= l 3のタイミングで FN = 3のフレームが取り出されるが、 この場合は 「1」 FNだけスライドしているた め、 このタイミングでは FN=2のフレームが取り出される。 尚、 ここで ダイバ一シチハンドオーバ中であって、 F N = 2のフレームの重複取り出しを望 まない場合には、 取り出しを 1回スキップして、 FN== 3から取り出しを再開して も良い。 これにより、 以後、 基地局 2からダイバ一シチハンドオーバトランク 34 へのフレームの同期は回復する。
次に、 上りフレーム比較部 34— 9は、 各ダイバーシチハンドオーバ中の各ブ ランチから取得した基地局交換局間フレームについて、 無線フレームに対応して 付加されている信頼度情報を参照し、 これらを比較し選択合成を行う。 その詳細を 図 19を参照して説明する。
まず、 図 19に、 無線フレームに対応して基地局〜交換局間フレームに付加され る無線フレーム番号 FNと、 信頼度情報のフォーマット例を示す。 信頼度情報は、 無線同期外れ判定ビット (Syn c)、 CRC判定ビット (CRC)、 受信 S I R値 (Con)、 レベル劣化判定ビット (L e v e 1 )、 BER劣化判定ビット (BER) から成る。 また、 リザ一ブビット (RES) は、 機能拡張に使用される。 例えば、 前述の下り有線同期外れ通知ユーザフレームと通常のュ一ザフレームとの識別に 用いても良い。
上りフレ一ム比較部 34- 9における選択合成は受信 S I R値の大小と CRC 判定ビットに基づいて判定される。 具体的には、 CRC OKがある場合には、 そ の中で受信 S I R値の最も高いものが選択され、 すべての候補が CRC NGの 場合には、 全ての中で受信 S I R値の最も高いものが選択される。 また、 CRC N Gフレームしか存在しないときには、 複数フレーム間のビットデー夕を比較し て、 ビット値の多数決判定や論理演算を行って、 フレーム合成を行ってもよい。 但し、 全てブランチから到達する有線フレームの信頼度情報に無線同期外れ判 定ビットが設定されていた場合には、 通信同期外れの処理を行う。 この選択合成の 基本動作を図 2 1に示す。
次に、 上りフレーム分析部 34— 10は、 選択合成後の通信品質を無線フレー ムをー単位として統計的に算出し、 基準 FER (フレームエラ一レート) を満たさ なくなった場合に交換局プロセッサ 32に品質劣化アラーム信号を送信する。 品質 の劣化測定関連パラメ一夕 (図 6) は、 呼設定時にダイバーシチハンドオーバトラ ンク 34から通知される。
無線区間同期外れについては無線フレーム同期外れ判定ビットを監視し、 無線 フレーム同期外れが連続 N回 (N 自然数) を上回った場合に PRC— Mに通信同 期はずれアラーム信号を送信する。 無線フレーム連続同期外れ回数はコネクショ ン設定時に DHT制御部から通知される。 ここで、 図 8 10を参照して、 アップ ダウンカウンタを用いた簡単な品質測定方法について示す。
まず、 図 8を用いて基本的な動作原理を説明する。 一以上の基地局交換局間フ レームで伝送される無線フレームを N無線フレーム受信した中に品質劣化フレー ムが Mフレーム含まれる場合の F ERは MZNで表すことができる。
図 8では F E R品質測定の方法として、 N無線フレームを受信する中に C R C
NGフレームを 2以上含まないことを監視することによって F E R≤ 1 /Nを 監視する。 F ER≤ 1 Z6を監視するために N= 6と設定した場合に、 CRC NGフレームを受け取った場合にカウンタ値を 5加算し、 CRC 〇Kフレーム を受け取った際のカウン夕値を 1減算する。
この場合に監視部はカウンタ値が 5を越えないことを監視することによって、 FER≤ 1ノ6を監視することができる。 この Nを可変設定可能とすれば、 10 の監視のためには1^= 1 0000フレームと設定すればよい。 但し、 品質規定が 高品質であるために、 Nが非常で大きな数になる場合もある。
例えば N= 1 00000フレームでは 1無線フレームの受信周期が 1 0msで あつたとすると、 10ms X 100000 =約 16分となり、 通信の平均保留時間 を越えて無線フレーム監視周期を設定しても有効に測定できないことが考えられ る。 従って、 N= 0を設定することにより 1回目の CRC NGフレーム受信で品 質劣化アラームカウン夕を加算することができるようにする。
図 9および図 10に以上のことを考慮した処理フローを示す。 REPORTFER は規定 FERを上回った回数をカウントし、 或る回数に達した場合に PRC— M に品質劣化を通知するための保護段数である。 これは品質劣化が頻繁に生じるよ うな特性を持っている場合に、 P R C— Mの報告頻度を加減するためのもである。 また、 REPORTSOUTは連続無線フレーム同期外れの回数である。 選択合成 の同期外れがこの回数分連続で起こった場合に通信同期外れを通知するための保 護段数である。
尚、 図 8〜図 10にはアップダウンカウンタを用いた品質測定方法を例示した が、 それ以外の方法で品質測定 ·同期外れを検出してもよい。 例えば、 一定ウィン ドウ幅を設けて、 そのウィンドウ内の品質測定を行うようなウィンドウスライ ド 方式が考えられる (そのような場合には、 品質劣化測定関連パラメ一夕は、 上述し た例とは異なった設定方法となる)。
次に、 上りフレーム送出部 34— 1 1は、 MS C内フレームに網側コネクション 識別子を付与し、 該 MS C内フレームをサービストランクへ送出する。 MS C内 フレームは、 サービスに応じた処理を行うサービストランク (例えば、 音声の場合 には高能率音声符号化装置 35、 デ一夕サ一ビスの場合にはデータサービス制御 装置 36) に送信される。
これらサービス卜ランクで処理された MS C内フレームは、 中継フレームとし て、 中継網インターフェース装置 37経由で中継網 12に接続され、 目的地にルー チングされる。 但し、 移動局同士で通信を行う場合には、 品質向上、 遅延削減、 ト ランクソース節減等の理由により、 必要に応じてサービストランクをバイパスす る処理が行われる。
ダイバーシチハンドオーバによりブランチを追加/削除する場合には、 交換局 プロセッサ 32は追加削除対象ブランチのコネクション識別子を D H T制御部 3 4一 1に通知し、 さらに DHT制御部 34— 1は追加削除対象ブランチのコネク シヨン識別子を関連内部機能部に通知する。 これにより D H T内における処理が 更新される。 また、 上りフレーム分析部 3 4— 1 0においては、 品質測定結果がリ セットされ、 再度最初から測定が開始される。
さて、 これまで、 下りフレーム処理、 下り F Nスライド処理、 上りフレーム処理、 上り F Nスライド処理の説明の中では説明の簡略化のため、 通信同期設定の基準と なる基地局におけるフレームの送受信タイミングを 「0」 乃至 「1 5」 に自由に設 定した場合であっても、 前述までのフレーム同期制御が同様に可能であることは言 うまでもない。 通信システムの運用者は、 通信呼毎にこの基準オフセットタイミン グについて、 「0」 乃至 「1 5」 でランダムもしくは意図的に割り振ることにより、 通信装置の負荷や伝送路を分散的に使用でき、 統計多重効果を得ることが出来る。 2 . 7 . ハンドォ一バ制御
以降このダイバーシチハンドオーバトランク 3 4を用いた、 移動通信における ハンドオーバについて述べる。
まず、 ハンドオーバの分類について、 (a ) 制御範囲、 (b ) 周波数、 (c ) ハン ドオーバブランチ制御の 3つの観点から説明する。
( a ) 制御範囲から見た分類
-制御範囲から見た分類を図 2 2に示す。
図 2 2において、 まず、 移動通信交換局内に制御が閉じたハンドオーバか、 移動 通信交換局間に制御がまたがる (局間) ハンドオーバかによつてハンドオーバの種 類が大別されている。
前者の移動通信交換局内のハンドオーバについては、 さらに、 基地局内 (セル 内) に制御が閉じたハンドオーバであるか、 基地局間 (セル間) のハンドオーバで あるかによって分類されている。 さらに、 セル内のハンドオーバについては、 一基 地局内に複数のセクタが存在する場合は、 セクタ内かセクタ間かによつて細分さ れている。
尚、 移動通信交換局 (M S C ) 間をまたがるハンドオーバ (M S C局間ハンド オーバ) は、 セクタ間ハンドオーバに分類されるが、 図 2 0に示す接続構成のよう に在圏移動通信交換局 (M S C— V) は、 加入者線延長方式によりアンカ移動通信 交換局 (M S C— A) と接続され、 選択合成はアンカ移動通信交換局で実行される ことになる。
また、 図 3 8に示すように M S C局間ハンドオーバが実行され、 複数の M S C にまたがつた通信が行われると伝送遅延が増大し、 D H Tでの揺らぎ遅延吸収範 囲を超える可能性が高まる。 この場合、 前述した F Nスライド処理を行い、 同期回 復を計る。
( b ) 周波数からみた分類
•同周波ハンドオーバ:同周波間で行うハンドオーバ
•異周波ハンドオーバ:異周波間で行うハンドオーバ
( c ) ハンドオーバブランチ制御から見た分類
•ダイバーシチハンドオーバ (D H〇):ダイバ一シチ状態を保ちながら実 行されるハンドオーバ (ブランチ追加、 削除、 追加削除)
•ブランチ切り替えハンドオーバ:通信中のハンドオーバブランチを全て切 断し、 通信瞬断後新たなブランチで通信を再開するハンドオーバ。
•再接続型ハンドオーバ:通信中のハンドオーバブランチが全て同期外れと なり、 通信中断後、 新たに同期確立した新たなブランチで通信を再開するハンド オーバ。
'ハンドオーバブランチ制御別のハンドオーバブランチ状態を図 2 3に示す。 上記 (a ) 〜 (c ) の各分類名を順につなぎ合わせることにより、 ハンド オーバを呼称することができる。 (例:セル内セクタ間異周波 B r切替 H O、 セル 間追加 Z削除 D H O 等)
ここで、 再接続型ハンドオーバとは、 移動局と基地局との通信が無線同期外れ になった場合に、 ネットワーク側は中継回線を一定期間保留し、 移動局側は周辺基 地局のサーチを行う方式である。 所定の保留期間を経過するまでに移動局が新た な基地局 (または以前に通信していた基地局) からの報知チャンネルを発見する と、 この移動局は保留されていた中継回線に接続される。
また、 これと同様の目的を達成するものとして、 再発呼型ハンドオーバを採用 することもできる。 この方式において再発呼を行う際に、 移動局は、 以前の通信状 態の情報を含む再発呼信号を基地局に送信する。 これにより、 基地局においては、 以前の通信状態を取得することができる。 図 24、 図 25は、 移動通信に於いて起動されるハンドオーバのトリガとハン ドオーバ種類の対応の例を示した表である。
図 24、 図 25の縦のパラメータである。 種別 「狭義」 の大分類の 3つのトリガ について本実施形態との関係を説明する。
(1) 伝搬損失測定による DHO起動
伝搬損失測定は下りについて移動局で測定される。 移動局は通信中のセクタの とまり木チャンネルに報知される自セクタおよび周辺セクタの出力電力と現在 M Sで受信している受信電力から伝搬損失を計算する。 その後、 低伝搬損失セクタ 順に候補を選出しセルコンディションレポート/ハンドオーバトリガとして MS C に報告する。 (報告タイミングは候補に差分が生じた場合を想定)
先に述べたように、 ダイバーシチハンドオーバとは、 移動局が無線ゾーン間を 移動する際に、 ハンドオーバ元回線を解放せずに同周波数帯域ハンドオーバ先 回線を設定し、 サイ トダイバーシチを実行するハンドオーバである。 サイトダイ バ一シチによる通信品質向上分を送信パワーの低減にまわすことにより、 干渉量 を低減して無線区間容量を増加させることが可能である。
ダイバーシチハンドオーバ (DHO) ブランチの追加ノ削除は、 通信中ブランチ の伝搬損失値と追加/削除候補ブランチの値の差に閾値を設けることにより判断 する。 (閾値には、 DHO追加閾値 (DHO— ADD)、 DH〇削除閾値 (DHO— DEL), ブランチ切替ハンドオーバ閾値 (BHO— I N I) がある。)
従って、 ダイバーシチハンドオーバエリアは、 移動局と各基地局の伝搬損失に基 づき、 図 3 1に示すように設定される。
移動先基地局において、 上り干渉量が許容値を越えている場合、 ダイバーシチ ハンドオーバを実施したとしても上りの送信電力はあがらないため、 ダイバーシ チハンドオーバを実施してもよい。 しかし、 下りの容量 (基地局最大送信電力値) を越えている場合は実施不可である。
この場合、 移動局はハンドオーバを実施せず、 ハンドオーバ先候補のエリアに進 入し、 ハンドオーバ先候補エリアに在圏する移動局の通信品質劣化を誘発する。 この状態が頻発しないよう、 ハンドオーバ呼受付の容量を確保するために発信呼 受付を制限する等の処理が必要である。 その後、 ダイバーシチハンドオーバエリ ァを通過し、 通信中のゾーンから外への移動等により、 通信品質が劣化し、 ブラン チ切替ハンドオーバしきい値を超えた場合、 後述のブランチ切替ハンドオーバを 実施する。
( 2 ) ブランチ切替八ンドオーバ起動
ブランチ切替ハンドオーバとは、 品質劣化が発生した場合や、 D H Oを実施で きずに D H Oエリアを通過し、 ブランチ切替ハンドオーバ閾値を超える場合等に、 ハンドオーバ元回線を解放しハンドオーバ先回線を設定するハンドオーバである。 本ハンドオーバの起動条件に関し、 図 2 4、 図 2 5および本実施例の説明では、 ハ ンドオーバ実行の有効性と制御負荷の軽減の観点から品質劣化の発生と B H O— I N I しきい値を超えることを A N D条件で記載しているが、 O R条件として、 どちらか一方を満たした場合にブランチ切替ハンドオーバを起動しても良い。 品質劣化測定は、 上りはダイバーシチハンドオーバトランク 3 4、 下りは移動 局で行われる。 以下にダイバ一シチハンドオーバトランク 3 4における品質劣化 測定について示す。
ダイバ一シチハンドオーバトランク 3 4では選択合成後のユーザフレーム内の C R Cチェック結果 N G率を統計的に計算し、 測定 F E Rが要求 F E Rを上回った 場合、 交換局プロセッサ 3 2に品質劣化アラーム信号を送信し、 これをトリガとし て交換局プロセッサ 3 2がハンドオーバを起動する。
具体的な起動例としては、 同周波数帯域の通信回線が容量不足等で割り当てら れない場合で、 異周波数帯域において、 受付可能 (容量的に許容可能かつ空きリ ソース有り) であればブランチ切替ハンドオーバを実施し、 そうでない場合は、 ス ケルチ終話を待つか、 解放処理を行う。 ブランチ切替ハンドオーバ境界は、 図 3 1 に示すように設定される。
他の例として、 ダイバーシチエリア内の移動局は移行先基地局に通信チャンネ ル (T R X) の空きがない場合には、 その移動局はダイバーシチハンドオーバを実 施しない。 通信チャンネルが空きに遷移すると、 速やかにダイバーシチハンドォ一 バを実施するが、 ブランチ切替ハンドオーバの境界を越える場合、 ブランチ切替 ハンドオーバを実施する。
また、 移行先基地局において同周波通信チャンネルの設定がない場合は、 その移 動局はダイバ一シチハンドオーバの要求を行わず、 ブランチ切替ハンドオーバの 境界を越える場合はブランチ切替ハンドオーバを実施する。
さらに、 上記のようにゾーン移行を伴わない場合であっても、 在圏基地局のサ一 ビスエリア内において容量オーバー (下り送信電力が最大値、 または上り送信電 力が許容値を超える) 場合、 ブランチ切替ハンドオーバの境界を超えていない場 合であってもブランチ切替ハンドオーバを実施可能とする。
( 3 ) 通信同期外れ検出による再接続型ハンドオーバ起動もしくは呼切断 品質劣化状態のまま通信を継続した結果、 通話品質が一定期間著しく劣化 (同 期外れの検出) した場合、 通信の切断を実行するが、 ユーザが希望する場合、 再接 続型ハンドオーバを実施する。 再接続型ハンドオーバとは、 呼を保留したまま、 無 線リンクを切り換える制御である。
通信同期外れ検出は、 上りはダイバ一シチハンドオーバトランク 3 4、 下りは 移動局 1で行われる。 以下にダイバーシチハンドオーバトランク 3 4における上 り通信同期外れ検出について示す。
各基地局においては、 無線回線に無線フレーム同期外れが生じた場合には、 保 護段数経過後、 無線フレーム同期外れが移動通信交換局 3に通知される。 通知方 法はユーザフレームの信頼度情報内の無線フレーム同期外れ判定ビットを設定す ることにより行う。
ダイバーシチハンドオーバトランク 3 4では選択合成後のユーザフレーム内の 無線フレーム同期外れ判定ビットを監視し、 無線フレーム同期外れが連続 R E P O R TSOUT回 (R E P O R TSOUT=自然数) を上回った場合、 交換局プロセッサ 3 2に同期外れアラーム信号を送信し、 これをトリガとして交換局プロセッサ 3 2 が再接続型ハンドオーバを起動もしくは呼切断を行う。
上記のさまざまな状態において適切なハンドオーバを起動するために、 基地局 や移動局に以下の機能を持たせる。
まず、 基地局において、 上り干渉量および総送信電力値を常時測定し、 報知情報 にそれぞれの値とある閾値との比較結果を設定する。 ハンドオーバ呼を発着信よ りも優先するため、 発着信用とハンドオーバ用とにそれぞれ閾値を設定する。 発 着信用はハンドオーバ用よりも厳しい値に設定しておくと好適である。 移動局に対しては、 待ち受け中および通信中に報知情報を監視する機能を設け、 発着信やハンドオーバ実施可否を移動局内で判断可能とする。 移動局は、 通信中 周波数帯域と同じ周波数帯域の周辺とまり木チャンネルの受信を行う。 そして、 報 知情報に設定されたとまり木チャンネル送信電力値および上り干渉量と、 移動局 におけるとまり木チャンネルの受信レベルとに基づいて、 上り干渉量を考慮した 伝搬損失が算出され、 その値の最も小さい基地局と通信を行う。 また、 周辺基地局 から上り干渉量を考慮した伝搬損失と比較して、 ゾーン移行を判定する。
ダイバ一シチハンドオーバ制御処理シーケンスを図 1 1〜図 12、 ブランチ切 替ハンドオーバ制御処理シ一ケンスを図 13〜14に示す。 まず、 ダイバーシチハ ンドオーバ制御処理シーケンス (図 1 1〜12) を説明する。 これは移動局が基地 局 2 (BS I) の配下から基地局 4 (B S 2) の配下のエリアに移動した場合に、 通信に瞬断なくハンドオーバを実行するものである。
<ブランチ追加 >
(1) MSにて低伝搬損失ブランチ (複数可) を検出すると、 基準のブランチすな わち移動局における通信中の無線フレームと、 追加基地局との同期位相差を測定 し、 ブランチ追加要求を移動通信交換局 3 (MSC) に通知する。
(2) 移動通信交換局 3では、 追加するブランチを候補の中から決定し、 追加する ブランチを収容する基地局 4 (B S 2) に対して無線回線等のリソースの有無の 確認'選択を行い回答を得る。 なお、 この手順と(4)での手順を統合してもよい。
(3) 交換局プロセッサ 32はダイバ一シチハンドオーバトランク 34に対してブ ランチ追加のオーダを通知し、 ダイバ一シチハンドオーバトランク 34側の設定 を行う。
(4) 移動通信交換局 3 (MSC) は基地局 4 (BS 2) に対して、 移動通信交換 局 3〜基地局 4間の有線回線の設定と、 無線回線の設定指示を行う。
(5) 基地局 4では有線回線を設定し、 下り無線回線の送出を開始するとともに 上り無線回線の受信を開始し、 移動通信交換局 3に応答を返す。 なお、 基準局 4は この段階で移動局からの無線フレームに関し同期が確立しているとは限らない。 (移動局上り送信電力制御が基地局 4以外を対象に行われている場合)
(6)移動通信交換局 3は移動局 (MS) に対して新規ブランチの追加指示を行う。 (7) 移動局は、 移動通信交換局 3の新規ブランチ追加指示に対する応答を返す。
(8) 移動局は該当ブランチを最大比合成に追加し、 以降ダイバーシチハンドォー バ状態となる。 尚、 (7)、 (8) の順序は逆でも良い。
ぐブランチ削除 >
(9) 移動局にて最大比合成に寄与しなくなったブランチ (複数可) を検出する と、 ブラン削除要求を移動通信交換局 3に送出する。
(10) 移動通信交換局 3は、 移動局に対してブランチ削除要求を指示する。
(1 1) 移動局では該当ブランチの削除処理を行う。
(12) 移動通信交換局 3では、 基地局 2 (BS D に対して旧無線、 有線削除要 求を指示する。
(1 3) 基地局 2では、 無線、 有線回線を解放し、 MS Cに報告する。
(14) 移動通信交換局 3はダイバ一シチハンドオーバトランク 34にブランチ 削除のオーダーを通知する。
次に、 ブランチ切り替えハンドォ一バ制御処理シーケンス (図 13, 図 14) を 説明する。
これは移動局が基地局 2の配下から基地局 4の配下のエリアに移動した場合に、 何等かの理由によりダイバーシチハンドオーバとして実行できず、 品質劣化に至つ た場合もしくは B H〇しきい値を超過した場合に瞬断をともなうハンドオーバと して実行される。
(1) 移動局にて低伝搬損失ブランチ、 あるいは切替候補ブランチ (複数可) を検 出すると、 基準のブランチとの損失同期位相差を測定し、 定期的に、 または条件が 変った倍などのタイミングで不定期に、 その結果をセル状態報告として移動通信 交換局 3に通知し、 移動通信交換局 3ではそれを記憶しておく。
(2) 移動局またはダイバ一シチハンドオーバトランク 34で品質劣化を検出し た場合には、 移動通信交換局 3で記憶していた移動局におけるセル状態から、 ハ ンドオーバ先のブランチを決定する。
(3) 移動通信交換局 3では、 切り替えるブランチを収容する基地局 4に対して 無線回線等のリソースの有無の確認 ·選択を行い、 その回答を得る。 なお、 この手 順を後述の( 5 )の手順に統合してもよい。 (4) 交換局プロセッサ 32はダイバ一シチハンドオーバトランク 34に対してブ ランチ追加のオーダを通知し、 ダイバーシチハンドオーバ卜ランク 34の設定を 行う。
(5) 移動通信交換局 3は基地局 4に対して、 移動通信交換局 3〜基地局 4間の 有線回線の設定と、 無線回線の設定指示を行う。
(6) 基地局 4では有線回線を設定し、 無線回線の送出を開始し、 移動通信交換局 3に応答を返す。
( 7 ) 移動通信交換局 3は移動局に対して切り替えブランチの指示を行う。
(8) 移動局は旧ブランチを切断し、 新ブランチでの通信を開始する。
(9) 基地局 4は、 移動局との新ブランチでの通信が確立したことを確認し、 移動 通信交換局 3に同期確立報告を行う。
(10) 移動通信交換局 3では、 基地局 4から同期確立報告を受信すると、 基地局 2に対して旧無線、 有線削除要求を指示する。
(1 1) 基地局 2では、 無線、 有線回線を解放し、 移動通信交換局 3に報告する。 (1 3) 移動通信交換局 3はダイバ一シチハンドオーバトランク 34にブランチ 削除のオーダ一を通知する。
先の図 1 1〜 14のシーケンスに於いて、 交換局プロセッサ 32〜ダイバ一シ チハンドオーバトランク 34間でブランチ追加 Z削除コマンドのやりとりを行う が、 通信開始/終了時、 品質劣化/同期外れ報告時の情報フローを図 1 5および 図 16に示す。
まず、 通信開始時の情報フローについて説明する。
交換局プロセッサ 32では、 呼を受け付けると、 (1) サービス種別を判定し、 (2) コネクション識別子の決定、 (3) タイミング補正関連パラメ一夕の算出、 (4) 品質劣化測定関連パラメータの決定、 (5) 同期外れ検出関連パラメータ決 定、 (6) トラヒック情報の決定を行い、 (2) 〜 (6) のパラメ一夕を DHTに D HT設定指示コマンドと共に通知する。
ダイバーシチハンドオーバ卜ランク 34では通知されたコマンドとパラメ一夕 に従って、 装置内を設定し、 ダイバーシチハンドオーバ動作を開始する。
次に、 ハンドオーバ起動時の情報フローについて説明する。 交換局プロセッサ 3 2では、 有線ブランチ追加/削除時に、 (7 ) 対象 D H O コネクション識別子を決定し、 ダイバーシチハンドオーバトランク 3 4にハンド ォ一バブランチ追加 Z削除指示コマンドと共に通知する。
ダイバーシチハンドォ一バトランク 3 4では通知されたコマンドとパラメ一タ に従って、 装置内の状態を更新し、 新しいブランチ状態でのダイバ一シチハンド オーバ動作を開始する。
呼切断時には、 交換局プロセッサ 3 2からダイバーシチハンドオーバトランク 3 4に対して開放指示を通知する。
品質劣化発生時/同期外れ発生時においては、 ダイバーシチハンドオーバトラ ンク 3 4は、 アラーム通知を交換局プロセッサ 3 2に行い、 交換局プロセッサ 3 2 はアラームの内容に応じた適切な通信処理を行う。
3 . 実施形態の効果
以上詳述した特徴により、 本実施形態は、 以下のような効果を奏する。
( 1 ) 本実施形態では移動局、 基地局、 交換局間で共通の同期タイミングを保証す ることにより、 フレーム識別情報は B S〜M S C間のみ適用し、 基地局毎に異なる 遅延差を M S Cと B Sで吸収する。 また、 各 B Sからの無線フレームを移動局は 同期したタイミングで受信できるのでバッファをより少なくすることができる。 ま た、 フレーム識別情報は移動通信交換局〜基地局間のみで使用するものであり、 無 線区間に設定する必要がないため、 無線伝送容量を有効に利用することができる。
( 2 ) 本実施形態は、 通信開始時に通信制御部からフレーム受信装置に対して、 適 正な伝送遅延を通知し、 フレーム取出制御部でサービス種別に応じたフレームの 取り出しを行うため、 サービス種別毎の適正な遅延での通信が可能である。
( 3 ) 本実施形態ではフレーム取出部で受信フレームの同期外れを検出した場合 には、 フレームの取り出しタイミングを必要なフレーム周期分ずらすことにより、 以降のフレームから同期回復されることができるため、 通信を切断することなく 継続可能である。
( 4 ) 本実施形態では選択合成後の品質劣化判定を行うことにより、 品質劣化を卜 リガとするハンドオーバを起動させることが可能となり、 通信品質の改善を図る ことができる。
( 5 ) 本実施形態では各基地局は通信リンクを用いて同期外れをダイバーシチハ ンドォ一バ卜ランクに通知し、 ダイバ一シチハンドオーバトランクにおいて同期 はずれを判定させた後にプロセッサに通知するため、 従来方式におけるプロセッサ に対する同期はずれ通知に用いる信号量およびプロセッサに対する負荷を軽減す ることができる。
4 . 変形例
本発明は、 その精神または主要な特徴から逸脱することなく、 他のいろいろな形 で実施することができる。 そのため、 前述の実施形態はあらゆる点で例示に過ぎ ず、 限定的に解釈してはならない。 本発明の範囲は請求の範囲によって示すもので あって、 明細書本文にはなんら拘束されない。 さらに、 請求の範囲の均等範囲に属 する変形や変更は、 全て本発明の範囲内のものである。 例えば、 上記実施形態においては、 各種ノードにおけるクロック誤差や送受信装 置間の遅延時間の揺らぎが既知である場合を想定したが、 本発明は送信側および 受信側のクロックの位相が同期していない場合や、 送受信装置間の遅延時間の揺 らぎが未知である場合も考えられる。
このような場合の動作を説明する。 図 3 7において、 送信装置 1 0 0にはクロッ ク信号 CL1を発生させるクロック回路 1 0 1が設けられており、 受信装置 1 2 0に はクロック信号 CL2を発生させるクロック回路 1 0 2が設けられている。 ここで、 クロック信号 CL1および CL2の位相は非同期である。 また、 送信装置 1 0 0と受 信装置 1 2 0間の最大揺らぎ遅延も未知であることとする。 この場合において、 送信装置 1 0 0から送信されたフレームを受信装置 1 2 0において同期させる方 法を説明する。
まず、 送信装置 1 0 0においては、 フレームを送信する際に、 クロック信号 CL1 の位相を無線フレーム番号 F Nとしてフレームに付加する。 受信装置 1 2 0に おいては、 この送信されたフレームを受信し、 受信フレームに付加された無線フ レーム番号 F Nを読出し、 クロック信号 CL2の位相との差分を算出する。 この算出 は過去の送信装置から送信されたフレームに関して一回以上繰り返えされ、 その 最大差に対して必要に応じて安全値を加算したものが補正値として記憶される。 以降到着するフレームについては、 クロック信号 CL2とこの補正値とを用いて、 フ レームの取出しが行われる。 なお、 この補正値は随時、 最新の受信履歴により更新 可能とすることができる。
次に、 この変形例の具体例について説明する。
送信装置 1 0 0においてクロック信号 CL1の位相 F Nが 「5 5」 であるときにフ レームを送信するのであれば、 無線フレーム番号 F Nを 「5 5」 に設定する。 受信 装置 1 2 0においてこのフレームを受信した時のクロック信号 CL2が 「6 0」 であ れば、 差分は 「6 0— 5 5 = 5」 になる。 同様にして送信時のクロック信号 CL1の 位相 F Nが 「6 2」 であって、 受信時のクロック信号 CL2が 「5」 であれば、 差分 は 「6 4 + 5— 6 2 = 7」 になる (無線フレーム番号 F Nは 「0〜6 3」 の範囲で 巡回するため)。
ここで、 安全値を 「2」 とすれば、 2回の位相差分のうち最大値である 「7」 に 「2」 を加算した 「9」 が補正値になる。 以降の処理においては、 この補正値に基 づいて、 受信装置 1 2 0で取り出される。 例えば、 受信装置 1 2 0におけるクロッ ク信号 CL2が 「6」 であれば、 「6— 9 + 6 4 = 6 1」 であるから、 無線フレーム 番号 F N = 6 1のフレームが取り出され、 クロック信号 CL2が 「7」 であれば無線 フレーム番号 F N - 6 2のフレームが取り出される。 このようにして、 送信装置 1 0 0と受信装置 1 2 0との同期を確保することが可能になる。
また、 上記実施形態においては、 図 3 9 (ケース 1 ) に示すように、 各種トラン ク類を一つの移動通信交換局に配置する例を説明した。 しかし、 本発明は同図の ケース 2に示すように、 移動通信交換局を複数のブロックに分割し、 それぞれのブ ロックに卜ランク類を配置し機能分散させても適用可能であることは言うまでも ない。 なお、 図示の例にあっては、 移動通信交換局は、 M S C— 1, 2に分割され ている。 さらに、 この場合、 M S C— 1の位置および数には特に制限は無く、 基地 局 B Sの近傍に配置してもよく、 一つの M S C― 2に複数の M S C— 1を接続し てもよい。

Claims

請求の範囲
1 . 第 1の基地局を介してダイバーシチハンドオーバトランクと移動局とを結び 第 1の遅延時間を生じさせる第 1の伝送経路と、 第 2の基地局を介して前記ダイ バーシチハンドオーバトランクと前記移動局とを結び前記第 1の遅延時間よりも 長い第 2の遅延時間を生じさせる第 2の伝送経路と、 前記ダイバーシチハンド オーバトランクを制御する制御手段とを用いるハンドオーバ方法において、 前記ダイバ一シチハンドオーバトランクが、 前記第 1の基地局を介して、 前記 第 1の遅延時間で前記移動局と通信する過程と、
前記移動局が前記第 2の基地局の無線チャンネルを受信する過程と、
前記移動局が前記第 2の基地局に係るハンドオーバ卜リガ信号を前記第 1の基 地局を介して前記制御手段に供給する過程と、
前記第 1の伝送経路における遅延時間を前記第 2の遅延時間に変更する過程と、 前記移動局宛の信号を、 前記第 1および第 2の伝送経路の双方を介して送信す る過程と、
前記移動局が、 前記第 1および第 2の伝送経路を介して供給された信号を合成 または選択して受信する過程と
を有することを特徴とするハンドオーバ方法。
2 . 前記第 1または第 2の伝送経路を介して供給された信号が所定のタイミング よりも遅れて到達したことを検出する過程と、
この検出に応答して、 前記第 1および第 2の伝送経路の遅延時間を前記第 2の 遅延時間よりも長い第 3の遅延時間に設定する過程と
を有することを特徴とする請求項 1記載のハンドオーバ方法。
3 . 前記第 1の基地局と前記移動局との間における通信品質を統計的に測定する 過程を具備し、
この通信品質が所定の閾値よりも劣化したことを含む所定の条件が満たされる と、 前記ハンドオーバトリガ信号を供給する過程を実行することを特徴とする請 求項 1記載のハンドオーバ方法。
4 . 第 1の基地局を介してダイバーシチハンドオーバトランクと移動局とを結ぶ 第 1の伝送経路と、 第 2の基地局を介して前記ダイバーシチハンドオーバトラン クと前記移動局とを結ぶ第 2の伝送経路とを用いるハンドオーバ方法において、 前記移動局から前記第 1の基地局に供給された信号の同期外れが検出されたこ とを条件として、 第 1の同期外れ情報を出力する過程と、
前記移動局から前記第 2の基地局に供給された信号の同期外れが検出されたこ とを条件として、 第 2の同期外れ情報を出力する過程と、
前記第 1および第 2の同期外れ情報が共に出力されたことを条件として、 再接 続型ハンドオーバまたは再発呼型ハンドオーバを実行することを特徴とするハン ドオーバ方法。
5 . 第 1の基地局を介してダイバ一シチハンドオーバトランクと移動局とを結び 第 1の遅延時間を生じさせる第 1の伝送経路と、 第 2の基地局を介して前記ダイ バ一シチハンドオーバトランクと前記移動局とを結び前記第 1の遅延時間よりも 長い第 2の遅延時間を生じさせる第 2の伝送経路と、 前記ダイバーシチハンド オーバ卜ランクを制御する制御手段とを用いるハンドオーバ方法において、 前記ダイバーシチハンドオーバトランクが前記第 1の基地局を介して、 予め第 2の基地局を介して通信する可能性を想定して前記第 2の遅延時間以上の遅延時 間で、 前記移動局と通信する過程
を有することを特徴とするハンドオーバ方法。
6 . 前記移動局が第 2の基地局の無線チヤンネルを受信する過程と、
前記移動局が前記第 2の基地局に係る八ンドオーバトリガ信号を前記第 1の基 地局を介して前記制御手段に供給する過程と、
前記第 1の伝送経路における遅延時間を変更することなく通信を継続する過 程と、
前記移動局宛の信号を、 前記第 1および第 2の伝送経路の双方を介して送信す る過程と、
前記移動局が前記第 1および第 2の伝送経路を介して供給された信号を合成ま たは選択して受信する過程と
を有することを特徴とする請求項 5記載のハンドオーバ方法。
7 . 前記ハンドオーバトリガ信号は、 前記第 2の伝送経路の追加を指示する追加 ハンドオーバ卜リガ信号または前記第 2の伝送経路の削除を指示する削除ハンド オーバトリガ信号のうち何れかであり、 前記追加ハンドオーバトリガ信号を出力 する条件を、 前記削除ハンドオーバトリガ信号を出力する条件よりも厳しくした ことを特徴とする請求項 6記載のハンドオーバ方法。
8 . 前記第 2の基地局がハンドオーバを受付可能か否かを示すハンドオーバ受付 情報を、 前記移動局が受信する過程を有し、
このハンドオーバ受付情報が肯定的である場合に限り、 前記ハンドオーバトリ ガ信号を前記制御手段に供給する過程を実行することを特徴とする請求項 1記載 のハンドオーバ方法。
9 . 前記第 2の基地局が新たな呼を受付可能か否かを示す呼受付情報を、 前記移 動局が受信する過程を有し、
前記ハンドオーバ受付情報が肯定的になる条件を、 前記呼受付情報が肯定的に なる条件よりも厳しくしたことを特徴とする請求項 8記載のハンドオーバ方法。
1 0 . 前記第 1または第 2の伝送経路を介して供給された信号が所定のタイミン グよりも遅れて到達したことを検出する過程と、
この検出に応答して、 前記第 1および第 2の伝送経路の遅延時間を前記第 2の 遅延時間よりも長い第 3の遅延時間に設定する過程と
を有することを特徴とする請求項 5記載のハンドオーバ方法。
1 1 . 前記第 1の基地局と前記移動局との間における通信品質を統計的に測定す る過程を具備し、
この通信品質が所定の閾値よりも劣化したことを含む所定の条件が満たされる と、 前記ハンドオーバトリガ信号を供給する過程を実行することを特徴とする請 求項 5記載のハンドオーバ方法。
1 2 . 前記第 2の基地局がハンドオーバを受付可能か否かを示すハンドオーバ受 付情報を、 前記移動局が受信する過程を有し、
このハンドオーバ受付情報が肯定的である場合に限り、 前記ハンドオーバトリ ガ信号を前記制御手段に供給する過程を実行することを特徴とする請求項 5記載 のハンドオーバ方法。
1 3 . 前記第 2の基地局が新たな呼を受付可能か否かを示す呼受付情報を、 前記 移動局が受信する過程を有し、
前記ハンドオーバ受付情報が肯定的になる条件を、 前記呼受付情報が肯定的に なる条件よりも厳しくしたことを特徴とする請求項 1 2記載のハンドオーバ方法。
PCT/JP1997/004835 1996-12-26 1997-12-25 Procede de transfert entre cellules WO1998030052A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA 2247357 CA2247357C (en) 1996-12-26 1997-12-25 Method for handover
DE69739757T DE69739757D1 (de) 1996-12-26 1997-12-25 Weiterreichenverfahren zur verringerung der phasendifferenz zur synchronisation einer mobilstation
JP51452998A JP3393141B2 (ja) 1996-12-26 1997-12-25 ハンドオーバ方法
EP19970949238 EP0902594B1 (en) 1996-12-26 1997-12-25 Hand-over method for reducing synchronisation phase difference at the mobile station
US09/125,924 US6470188B1 (en) 1996-12-26 1997-12-25 Method for handover

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34890096 1996-12-26
JP8/348900 1996-12-26

Publications (1)

Publication Number Publication Date
WO1998030052A1 true WO1998030052A1 (fr) 1998-07-09

Family

ID=18400148

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1997/004835 WO1998030052A1 (fr) 1996-12-26 1997-12-25 Procede de transfert entre cellules
PCT/JP1997/004834 WO1998029970A1 (fr) 1996-12-26 1997-12-25 Emetteur-recepteur en mode trame

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004834 WO1998029970A1 (fr) 1996-12-26 1997-12-25 Emetteur-recepteur en mode trame

Country Status (8)

Country Link
US (5) US6470188B1 (ja)
EP (5) EP1758410B1 (ja)
JP (5) JP3496721B2 (ja)
KR (2) KR100276519B1 (ja)
CN (4) CN1309187C (ja)
CA (2) CA2247357C (ja)
DE (4) DE69738253T2 (ja)
WO (2) WO1998030052A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044926A (ja) * 1999-07-12 2001-02-16 Sk Telecom Kk 移動通信システムの通話品質測定装置及び方法
JP2002539696A (ja) * 1999-03-11 2002-11-19 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Cdmaシステム内で動作している移動体のための適応ハンドオフ・アルゴリズム
JP2003530041A (ja) * 2000-04-05 2003-10-07 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 電気通信同期非同期検出用の制御パラメータ取得
US6714528B1 (en) 1998-08-05 2004-03-30 Samsung Electronics Co., Ltd. Device and method for diversity combining signals on common channel in CDMA communication system
US6728227B1 (en) 1997-06-04 2004-04-27 Ntt Docomo, Inc. Mobile radio communication system, mobile station, and method for controlling diversity hand-over branch
US6819930B1 (en) * 2000-11-03 2004-11-16 Lucent Technologies Inc. Apparatus and method for use in allocating a channel resource in wireless multiple access communications systems
JP2007318241A (ja) * 2006-05-23 2007-12-06 Nec Corp 通信システム、携帯端末、交換局、通信方法及びプログラム
WO2008084622A1 (ja) * 2007-01-09 2008-07-17 Ntt Docomo, Inc. 基地局装置及び通信制御方法
US7643845B2 (en) 2001-07-24 2010-01-05 Ntt Docomo, Inc. Transmission power control device and method, mobile station, and communication device in mobile communication system

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69738253T2 (de) * 1996-12-26 2008-08-07 Ntt Mobile Communications Network Inc. Sender empfänger in rahmenmodus
US6690681B1 (en) 1997-05-19 2004-02-10 Airbiquity Inc. In-band signaling for data communications over digital wireless telecommunications network
US6493338B1 (en) * 1997-05-19 2002-12-10 Airbiquity Inc. Multichannel in-band signaling for data communications over digital wireless telecommunications networks
US6771629B1 (en) 1999-01-15 2004-08-03 Airbiquity Inc. In-band signaling for synchronization in a voice communications network
GB2342008A (en) * 1998-07-28 2000-03-29 Nokia Telecommunications Oy Inter-network call handover
US6539004B1 (en) * 1998-09-17 2003-03-25 Lucent Technologies Inc. Time synchronization of packetized radio signals to base stations
FI106494B (fi) * 1998-11-05 2001-02-15 Nokia Networks Oy Kehystahdistusmekanismi
JP3022530B1 (ja) * 1998-12-07 2000-03-21 日本電気株式会社 Cdma無線通信システムにおけるマルチキャスト通信方式
ATE505047T1 (de) * 1998-12-08 2011-04-15 British Telecomm Verfahren zum betreiben eines zellularen mobiltelefonnetzes mit einer untermenge von basisstationen, die nur einigen teilnehmern zugänglich sind
DE69930569T2 (de) * 1999-04-26 2006-08-31 Hitachi, Ltd. Bearbeitungsgerät zum Diversity-Handover sowie Netzsteuerungssystem, welches dieses Gerät verwendet
US7149193B2 (en) * 1999-12-15 2006-12-12 Nortel Networks Limited Dynamic, dual-mode wireless network architecture with a split layer 2 protocol
CA2330988A1 (en) * 2000-02-22 2001-08-22 Lucent Technologies Inc. System and method for enhancing inter-site forward traffic capacity for a soft hand-off
CA2331110A1 (en) * 2000-02-22 2001-08-22 Lucent Technologies Inc. System and method for enhancing inter-site reverse traffic capacity for a soft hand-off
SE0101169D0 (sv) * 2000-10-17 2001-03-30 Ericsson Telefon Ab L M Method and system of transmission power control
JP2002176666A (ja) * 2000-12-05 2002-06-21 Sony Corp 移動通信システム
WO2002091778A1 (en) * 2001-05-04 2002-11-14 Nokia Corporation Method for providing parameters during a change of access, cellular communications system, user equipment and network element
EP1261149A1 (de) * 2001-05-23 2002-11-27 Siemens Aktiengesellschaft Mobilfunk-Kommunikationssystem mit Referenzsignalgeber
DE50203894D1 (de) * 2001-05-23 2005-09-15 Siemens Ag Mobilfunk-kommunikationssystem mit referenzsignalgeber und verfahren zur basisstationssynchronisierung
EP1395075A1 (en) * 2001-06-06 2004-03-03 Matsushita Electric Industrial Co., Ltd. Cellular radio transmission apparatus and cellular radio transmission method
US7283567B2 (en) 2001-06-22 2007-10-16 Airbiquity Inc. Network delay identification method and apparatus
US7079512B1 (en) * 2001-07-13 2006-07-18 Cisco Technology, Inc. Quality indicator and method for frame selection in wireless network
US6996393B2 (en) * 2001-08-31 2006-02-07 Nokia Corporation Mobile content delivery system
US7215965B2 (en) 2001-11-01 2007-05-08 Airbiquity Inc. Facility and method for wireless transmission of location data in a voice channel of a digital wireless telecommunications network
US20030152110A1 (en) * 2002-02-08 2003-08-14 Johan Rune Synchronization of remote network nodes
JP3959288B2 (ja) * 2002-03-13 2007-08-15 株式会社エヌ・ティ・ティ・ドコモ パケット送信システム、パケット送信方法、パケット送信装置、ホームエージェント、移動端末、及びアクセスルータ
TWI455509B (zh) 2002-08-07 2014-10-01 Intel Corp 支援多媒體廣播及多播服務之頻道切換
KR100495331B1 (ko) * 2002-12-10 2005-06-14 한국전자통신연구원 고속이동통신 시스템의 단말 종단 장치 및 기지국,고속이동통신 시스템에서의 슬롯 할당 및 시작 슬롯 검색방법
US20040116138A1 (en) * 2002-12-11 2004-06-17 Greenspan Steven Lloyd System and method for communication recovery following service interruptions
JP2004229117A (ja) * 2003-01-24 2004-08-12 Ntt Docomo Inc 通信システム、マルチキャスト交換装置、通信方法
JP4102692B2 (ja) * 2003-03-25 2008-06-18 富士通株式会社 無線基地局装置および基地局制御装置
US7310519B2 (en) * 2003-04-22 2007-12-18 Hitachi Communication Technologies, Ltd. Wireless communication apparatus, wireless communication network and software upgrading method
KR20060008977A (ko) * 2003-05-07 2006-01-27 코닌클리케 필립스 일렉트로닉스 엔.브이. 공공 서비스 시스템
EP1665853A1 (en) * 2003-09-12 2006-06-07 NTT DoCoMo Inc. Selection of a target network for a seamless handover from a plurality of wireless networks
GB2408422B (en) * 2003-11-21 2005-11-02 Motorola Inc A method of establishing a communication link in a digital communication system
CN1879320B (zh) * 2003-11-24 2011-09-14 艾利森电话股份有限公司 无线接入网中的帧同步
FR2864389B1 (fr) * 2003-12-23 2006-03-03 Eads Telecom Procede de synchronisation sur la voie montante d'un reseau simulcast
TR200504827T2 (tr) * 2004-01-20 2007-01-22 Qualcomm Incorporated Eşzamanlı yayın/çoğa gönderim iletişimi.
US20050163064A1 (en) * 2004-01-27 2005-07-28 Samsung Electronics Co., Ltd. Synchronization apparatus and method for broadcasting a service stream in a mobile communication system
JP2005236752A (ja) * 2004-02-20 2005-09-02 Japan Science & Technology Agency マルチホップ無線ネットワークシステム
US20050226185A1 (en) 2004-04-07 2005-10-13 Tell Daniel F Method and apparatus for communicating via a wireless local-area network
US20070243414A1 (en) * 2004-05-26 2007-10-18 Hisayuki Miki Positive Electrode Structure and Gallium Nitride-Based Compound Semiconductor Light-Emitting Device
US7668509B2 (en) * 2004-09-24 2010-02-23 Sensor And Antenna Systems, Lansdale, Inc. Frequency selective leveling loop for multi-signal phased array transmitters
US7508810B2 (en) 2005-01-31 2009-03-24 Airbiquity Inc. Voice channel control of wireless packet data communications
CN100442684C (zh) * 2005-04-05 2008-12-10 华为技术有限公司 提高系统全网同步性能的方法
US7110766B1 (en) * 2005-05-31 2006-09-19 Motorola, Inc. Method of generating a handoff candidate list
JP4655870B2 (ja) * 2005-10-18 2011-03-23 日本電気株式会社 パケット送受信システムおよび経過時間測定方法
CN101005348B (zh) * 2006-01-20 2011-07-13 中兴通讯股份有限公司 一种长线传输帧头的方法及其实现装置
KR100818555B1 (ko) * 2006-02-03 2008-04-02 삼성전자주식회사 이동통신 시스템의 티시피아이피 통신에서 지연 관리장치및 방법
US7924934B2 (en) 2006-04-07 2011-04-12 Airbiquity, Inc. Time diversity voice channel data communications
JP4981494B2 (ja) * 2006-05-30 2012-07-18 株式会社日立国際電気 無線通信システム及び張り出し局装置
JP4809148B2 (ja) * 2006-07-10 2011-11-09 富士通株式会社 無線ネットワーク制御装置及び移動端末のハンドオーバー方法
US8064401B2 (en) * 2006-07-14 2011-11-22 Qualcomm Incorporated Expedited handoff
JP4750646B2 (ja) 2006-08-14 2011-08-17 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム及び通信路設定方法
US8014327B2 (en) * 2006-09-05 2011-09-06 Telefonaktiebolaget L M Ericsson (Publ) Optimizing requested downlink data by adjusting frame number by measuring actual transmission delay
US8023446B2 (en) 2006-09-28 2011-09-20 Hang Zhang Systems and methods for facilitating intra-cell-peer-to-peer communication
DE102007037079A1 (de) * 2006-10-25 2008-04-30 Bayer Materialscience Ag Silberhaltige wässrige Formulierung und ihre Verwendung zur Herstellung von elektrisch leitenden oder spiegelnden Beschichtungen
CN101170343B (zh) * 2006-10-26 2011-11-23 华为技术有限公司 实现中继站稳态的方法及传输系统和传输设备
US7899028B2 (en) * 2006-10-27 2011-03-01 Samsung Electronics Co., Ltd. Method and system for synchronizing data transmissions in IP-based networks
EP1931158B1 (en) * 2006-12-08 2013-04-10 Samsung Electronics Co., Ltd. Apparatus and method for selecting frame structure in multihop relay broadband wireless access communication system
US8060076B2 (en) 2007-01-04 2011-11-15 Harris Stratex Networks, Inc. Real-time RSL monitoring in a web-based application
ES2882659T3 (es) * 2007-02-05 2021-12-02 Nec Corp Método para una estación de telefonía móvil, y estación de telefonía móvil
JP4601637B2 (ja) * 2007-03-20 2010-12-22 株式会社エヌ・ティ・ティ・ドコモ 移動局、送信方法及び無線通信システム
US8750248B2 (en) 2007-03-21 2014-06-10 Qualcomm Incorporated Methods and apparatus for RF handoff in a multi-frequency network
US8457064B2 (en) 2007-03-21 2013-06-04 Qualcomm Incorporated Methods and apparatus for RF handoff in a multi-frequency network
US8737353B2 (en) 2007-03-21 2014-05-27 Qualcomm Incorporated Methods and apparatus for RF handoff in a multi-frequency network
US8948757B2 (en) 2007-03-21 2015-02-03 Qualcomm Incorporated Methods and apparatus for RF handoff in a multi-frequency network
WO2008116197A2 (en) * 2007-03-21 2008-09-25 Qualcomm Incorporated Handoff in a multi-frequency network
US8737350B2 (en) 2007-03-21 2014-05-27 Qualcomm Incorporated Methods and apparatus for RF handoff in a multi-frequency network
US8565799B2 (en) 2007-04-04 2013-10-22 Qualcomm Incorporated Methods and apparatus for flow data acquisition in a multi-frequency network
EP2148517B1 (en) * 2007-04-24 2016-11-30 NTT DoCoMo, Inc. Mobile communication method and radio base station
JP5031434B2 (ja) * 2007-04-26 2012-09-19 京セラ株式会社 無線通信装置
WO2008155764A2 (en) * 2007-06-18 2008-12-24 Duolink Ltd. Wireless network architecture and method for base station utilization
US20090047962A1 (en) * 2007-08-14 2009-02-19 Rao Anil M Transfer-of uplink power control parameters during handovers
US8126463B2 (en) * 2007-09-12 2012-02-28 Kabushiki Kaisha Toshiba Mobile communication system, base station control apparatus, mobile terminal and method for controlling handover
JP4992977B2 (ja) * 2007-10-02 2012-08-08 富士通株式会社 ハンドオーバ制御装置、移動局、基地局、ハンドオーバ制御サーバおよびハンドオーバ制御方法
KR101293069B1 (ko) 2007-10-20 2013-08-06 에어비퀴티 인코포레이티드. 차량내 시스템들에 의한 무선 인―밴드 시그널링
US8208498B2 (en) * 2007-10-30 2012-06-26 Qualcomm Incorporated Methods and systems for HFN handling at inter-base station handover in mobile communication networks
CN101436898B (zh) * 2007-11-14 2013-03-13 华为技术有限公司 在时分复用系统中进行时间同步的方法、系统及装置
EP2076068A1 (en) * 2007-12-26 2009-07-01 Alcatel Lucent Handover method and apparatus in a wireless telecommunications network
US8570939B2 (en) 2008-03-07 2013-10-29 Qualcomm Incorporated Methods and systems for choosing cyclic delays in multiple antenna OFDM systems
US20110194432A1 (en) * 2008-06-19 2011-08-11 Sharp Kabushiki Kaisha Communication system, base station apparatus and mobile station apparatus
GB0812089D0 (en) * 2008-07-02 2008-08-06 Nec Corp Mobile road communication device and related method of operation
US7983310B2 (en) 2008-09-15 2011-07-19 Airbiquity Inc. Methods for in-band signaling through enhanced variable-rate codecs
US8594138B2 (en) 2008-09-15 2013-11-26 Airbiquity Inc. Methods for in-band signaling through enhanced variable-rate codecs
US9100135B2 (en) * 2008-10-24 2015-08-04 Telefonaktiebolaget L M Ericsson (Publ) Method and device for packet network synchronization
CN102301776A (zh) * 2009-01-30 2011-12-28 三洋电机株式会社 报知方法以及访问控制装置、无线装置
US8073440B2 (en) 2009-04-27 2011-12-06 Airbiquity, Inc. Automatic gain control in a personal navigation device
JP2011004099A (ja) * 2009-06-18 2011-01-06 Fujitsu Ltd 移動通信システムの移動局、送信タイミング調整装置、送信タイミング調整方法
US8418039B2 (en) 2009-08-03 2013-04-09 Airbiquity Inc. Efficient error correction scheme for data transmission in a wireless in-band signaling system
US8750335B2 (en) * 2009-11-20 2014-06-10 Anue Systems, Inc. Method, system and computer program product for measuring a communication from a first device to a second device
US8249865B2 (en) 2009-11-23 2012-08-21 Airbiquity Inc. Adaptive data transmission for a digital in-band modem operating over a voice channel
WO2011110229A1 (en) * 2010-03-12 2011-09-15 Nokia Siemens Networks Oy Relaying in a communication system
CN101882947B (zh) * 2010-04-22 2013-05-22 中国电子科技集团公司第三十研究所 一种无时差限制跳频同步方法
US8456996B2 (en) * 2010-07-30 2013-06-04 Qualcomm Incorporated Method and apparatus for improved MBMS capacity and link management through robust and performance optimal soft combining
US8848825B2 (en) 2011-09-22 2014-09-30 Airbiquity Inc. Echo cancellation in wireless inband signaling modem
US8831613B2 (en) 2011-09-26 2014-09-09 Telefonaktiebolaget L M Ericsson (Publ) Radio base station; radio network controller and methods therein
US20130148588A1 (en) * 2011-12-12 2013-06-13 Telefonaktiebolaget Lm Ericsson Scheduler and scheduling method for carrier aggregated communications
US20160044623A1 (en) * 2014-08-07 2016-02-11 Electronics And Telecommunications Research Institute Method and apparatus for controlling base station
WO2016061793A1 (zh) * 2014-10-23 2016-04-28 华为技术有限公司 控制相位同步的方法、装置和系统
CN106416391B (zh) * 2015-05-19 2020-03-20 华为技术有限公司 寻呼方法、用户设备、基站及核心网设备
JP2018026662A (ja) 2016-08-09 2018-02-15 ソニー株式会社 通信装置、通信方法、及びプログラム
CN111381487B (zh) * 2018-12-29 2022-01-11 阿里巴巴集团控股有限公司 多传感器同步授时系统、方法、装置及电子设备
CN111757457B (zh) * 2019-03-29 2022-03-29 华为技术有限公司 用于上行定时同步的方法和装置
JP2022049599A (ja) * 2020-09-16 2022-03-29 キオクシア株式会社 通信システム、デバイス及び通信方法
US11776507B1 (en) 2022-07-20 2023-10-03 Ivan Svirid Systems and methods for reducing display latency

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338334A (ja) * 1986-08-01 1988-02-18 Nec Corp 移動通信システム
JPH0414915A (ja) * 1990-05-09 1992-01-20 Mitsubishi Electric Corp 移動体通信システム

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670899A (en) * 1985-05-31 1987-06-02 Northern Telecom Limited Load balancing for cellular radiotelephone system
US4811380A (en) * 1988-01-29 1989-03-07 Motorola, Inc. Cellular radiotelephone system with dropped call protection
US5258980A (en) * 1989-08-25 1993-11-02 Nippon Telegraph And Telephone Corporation Radio channel switching control method
IL95920A0 (en) * 1989-10-24 1991-07-18 Motorola Inc Distributed synchronization method for a wireless fast packet communication system
US5101501A (en) 1989-11-07 1992-03-31 Qualcomm Incorporated Method and system for providing a soft handoff in communications in a cdma cellular telephone system
US5293380A (en) * 1989-12-27 1994-03-08 Nec Corporation Frame synchronization system among multiple radio base stations for TDMA digital mobile communications system
JPH03226071A (ja) 1990-01-30 1991-10-07 Ricoh Co Ltd 画像編集記録装置
US5228029A (en) 1990-02-27 1993-07-13 Motorola, Inc. Cellular tdm communication system employing offset frame synchronization
GB9012044D0 (en) * 1990-05-30 1990-07-18 British Telecomm Cellular radio
US5081679A (en) 1990-07-20 1992-01-14 Ericsson Ge Mobile Communications Holding Inc. Resynchronization of encryption systems upon handoff
JP2874101B2 (ja) 1991-04-22 1999-03-24 日本電信電話株式会社 無瞬断チャネル切り替え方式
US5195090A (en) * 1991-07-09 1993-03-16 At&T Bell Laboratories Wireless access telephone-to-telephone network interface architecture
US5145811A (en) 1991-07-10 1992-09-08 The Carborundum Company Inorganic ceramic papers
US5426633A (en) * 1992-06-02 1995-06-20 Nec Corporation System for processing synchronization signals with phase synchronization in a mobile communication network
JPH0568013A (ja) 1991-09-05 1993-03-19 Toshiba Corp デジタル信号多重通信システム
US5267261A (en) * 1992-03-05 1993-11-30 Qualcomm Incorporated Mobile station assisted soft handoff in a CDMA cellular communications system
JPH05328428A (ja) 1992-05-19 1993-12-10 Fujitsu Ltd 移動無線通信システム
JPH06303750A (ja) 1992-08-12 1994-10-28 Seiko Epson Corp ブラシレスdcモータおよびその回転駆動方法
JPH06118355A (ja) 1992-08-18 1994-04-28 Seiko Epson Corp ソフトコンタクトレンズ用溶液及びソフトコンタクトレンズの洗浄殺菌方法
JPH0678359A (ja) * 1992-08-25 1994-03-18 Fujitsu Ltd 無線回線制御方法
JP3239464B2 (ja) 1992-09-24 2001-12-17 株式会社デンソー 車両用空調装置
JP3012414B2 (ja) * 1992-10-23 2000-02-21 日本電気通信システム株式会社 制御チャネル干渉検出方式
JP3113420B2 (ja) 1992-10-30 2000-11-27 旭化成マイクロシステム株式会社 Gm−Cフィルタ
JPH06164565A (ja) * 1992-11-24 1994-06-10 Nippon Telegr & Teleph Corp <Ntt> 伝送遅延測定方式
US5590160A (en) * 1992-12-30 1996-12-31 Nokia Mobile Phones Ltd. Symbol and frame synchronization in both a TDMA system and a CDMA
JPH06210193A (ja) 1993-01-20 1994-08-02 Sumitomo Metal Ind Ltd 高炉水砕スラグ微粉化における粒鉄の回収方法と装置
GB9303994D0 (en) * 1993-02-26 1993-04-14 Shaye Communications Ltd Improvements relating to duplex communications systems
JPH06338847A (ja) 1993-05-26 1994-12-06 Nec Corp 基地局間同期方式
EP0626769B1 (en) 1993-05-26 2000-02-02 Nec Corporation Network synchronization for cellular TDMA communication using signals from mobile stations in neighboring cells
EP0659326B1 (en) * 1993-06-14 2002-09-04 Telefonaktiebolaget Lm Ericsson Time alignment of transmission in a down-link of a cdma system
US5430724A (en) 1993-07-02 1995-07-04 Telefonaktiebolaget L M Ericsson TDMA on a cellular communications system PCM link
US5473668A (en) 1993-07-21 1995-12-05 Nec Corporation Digital cordless telephone system readily capable of setting up
JPH0787558A (ja) * 1993-07-21 1995-03-31 Nec Corp ディジタルコードレス電話システム
WO1995008899A1 (en) * 1993-09-24 1995-03-30 Nokia Telecommunications Oy Soft handoff in a cellular telecommunications system
EP0720804B1 (en) * 1993-09-24 2004-05-12 Nokia Corporation Control handoff method in a cellular telecommunications system
US6088590A (en) * 1993-11-01 2000-07-11 Omnipoint Corporation Method and system for mobile controlled handoff and link maintenance in spread spectrum communication
ATE200378T1 (de) * 1994-01-27 2001-04-15 Nokia Networks Oy Semi-abrupte verbindungsübergabe in einem zellularen telekommunikationssystem
JP3399623B2 (ja) * 1994-03-16 2003-04-21 富士通株式会社 移動局位置捕捉装置
JP2970989B2 (ja) * 1994-04-07 1999-11-02 沖電気工業株式会社 移動体通信システムの無線フレーム同期方法及び基地局
JPH07298347A (ja) * 1994-04-25 1995-11-10 Oki Electric Ind Co Ltd 基地局従属同期方法及び集中制御局
EP0710425B1 (en) * 1994-05-20 2004-11-24 NTT DoCoMo, Inc. Cellular mobile radiocommunication system soft-handover scheme
JPH07327032A (ja) 1994-05-31 1995-12-12 Matsushita Electric Ind Co Ltd 送信装置と受信装置
KR100383685B1 (ko) 1994-06-28 2003-07-12 코닌클리케 필립스 일렉트로닉스 엔.브이. 시분할다중접속디지털전송시스템및그시스템용스테이션
JP2606590B2 (ja) 1994-06-30 1997-05-07 日本電気株式会社 局間同期方法
JP3111812B2 (ja) 1994-07-04 2000-11-27 三菱電機株式会社 データ通信装置
WO1996005709A1 (en) * 1994-08-09 1996-02-22 Pacific Communication Sciences, Inc. Method and apparatus for efficient handoffs by mobile communication entities
JP2943617B2 (ja) * 1994-08-11 1999-08-30 松下電器産業株式会社 直接スペクトル拡散通信装置
JPH0865201A (ja) 1994-08-18 1996-03-08 Matsushita Electric Ind Co Ltd 移動通信装置
US5586119A (en) * 1994-08-31 1996-12-17 Motorola, Inc. Method and apparatus for packet alignment in a communication system
US5539744A (en) * 1994-10-17 1996-07-23 At&T Corp. Hand-off management for cellular telephony
US5652903A (en) 1994-11-01 1997-07-29 Motorola, Inc. DSP co-processor for use on an integrated circuit that performs multiple communication tasks
US5473612A (en) 1994-11-28 1995-12-05 Motorola, Inc. Method and apparatus for minimizing false detection of packet data in a communication receiver
JPH08154271A (ja) 1994-11-29 1996-06-11 Sharp Corp ディジタルコードレス電話システムにおける基地局間同期装置
JPH08163632A (ja) 1994-12-07 1996-06-21 Canon Inc 無線電話装置
FR2728422A1 (fr) * 1994-12-14 1996-06-21 Trt Telecom Radio Electr Systeme de radio-communication permettant de gerer des retards de transmission variables
JP3334393B2 (ja) 1995-01-12 2002-10-15 富士通株式会社 無線電話通信モード切替え方法
JP2663907B2 (ja) 1995-04-05 1997-10-15 日本電気株式会社 基地局装置および移動無線通信方式およびゾーン切替方法
US5943376A (en) * 1995-04-06 1999-08-24 Motorola, Inc. Method and system for time aligning a frame in a communication system
GB2301734B (en) 1995-05-31 1999-10-20 Motorola Ltd Communications system and method of operation
DE19523489A1 (de) * 1995-06-28 1997-01-02 Sel Alcatel Ag Verfahren und Schaltungsanordnung zur Synchronisation von Impulsrahmen in multizellularen Telekommunikationsanlagen
US5790939A (en) 1995-06-29 1998-08-04 Hughes Electronics Corporation Method and system of frame timing synchronization in TDMA based mobile satellite communication system
US5684791A (en) * 1995-11-07 1997-11-04 Nec Usa, Inc. Data link control protocols for wireless ATM access channels
JP3274337B2 (ja) * 1995-12-27 2002-04-15 株式会社東芝 Cdmaセルラ無線システム
JP3000911B2 (ja) * 1996-01-10 2000-01-17 日本電気株式会社 移動体ファクシミリ通信における自動再送プロトコルの再送待ちフレーム数最適値自動設定方式
US5691981A (en) 1996-01-11 1997-11-25 Motorola, Inc. Method and apparatus for providing roaming instructions to data communication receivers
US5663958A (en) 1996-02-22 1997-09-02 Telefonaktiebolaget Lm Ericsson Method and apparatus for dynamically selecting the length of mobile station burst communications on the reverse digital control channel
US5774812A (en) * 1996-02-23 1998-06-30 Motorola, Inc. Method of voting multiple digital frames simultaneously
US5940381A (en) * 1996-03-14 1999-08-17 Motorola, Inc. Asynchronous transfer mode radio communications system with handoff and method of operation
US5901354A (en) * 1996-04-03 1999-05-04 Motorola, Inc. Method and apparatus for performing soft-handoff in a wireless communication system
SG74018A1 (en) * 1996-07-18 2000-07-18 Matsushita Electric Ind Co Ltd Retransmission control method
US5872820A (en) * 1996-09-30 1999-02-16 Intel Corporation Synchronization in TDMA systems in a non-realtime fashion
JPH10145835A (ja) * 1996-11-15 1998-05-29 Hitachi Ltd 移動通信システムにおけるハンドオーバ方法
EP0845877A3 (en) * 1996-11-28 2002-03-27 Oki Electric Industry Co., Ltd. Mobile communication system for accomplishing handover with phase difference of frame sync signals corrected
US5883888A (en) 1996-12-03 1999-03-16 Telefonaktiebolaget Lm Ericsson Seamless soft handoff in a CDMA cellular communications system
DE69738253T2 (de) * 1996-12-26 2008-08-07 Ntt Mobile Communications Network Inc. Sender empfänger in rahmenmodus
US6307840B1 (en) * 1997-09-19 2001-10-23 Qualcomm Incorporated Mobile station assisted timing synchronization in CDMA communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338334A (ja) * 1986-08-01 1988-02-18 Nec Corp 移動通信システム
JPH0414915A (ja) * 1990-05-09 1992-01-20 Mitsubishi Electric Corp 移動体通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0902594A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7873014B2 (en) 1997-04-06 2011-01-18 Ntt Docomo, Inc. Mobile communication system, mobile station and diversity handover branch control method
US7403777B2 (en) 1997-06-04 2008-07-22 Ntt Docomo, Inc. Mobile communication system, mobile station and diversity handover branch control method
US6728227B1 (en) 1997-06-04 2004-04-27 Ntt Docomo, Inc. Mobile radio communication system, mobile station, and method for controlling diversity hand-over branch
US6807420B2 (en) 1997-06-04 2004-10-19 Ntt Docomo, Inc. Mobile communication system, mobile station and diversity handover branch control method
US7289809B2 (en) 1997-06-04 2007-10-30 Ntt Docomo, Inc. Mobile communication system, mobile station and diversity handover branch control method
USRE43296E1 (en) 1997-06-04 2012-04-03 Ntt Docomo, Inc. Mobile communication system, mobile station and diversity handover branch control method
US8090373B2 (en) 1997-06-04 2012-01-03 Ntt Docomo, Inc. Center for a mobile communication system performing diversity handover
US8064908B2 (en) 1997-06-04 2011-11-22 Ntt Docomo, Inc. Mobile communication system and mobile station performing diversity handover
US7570950B2 (en) 1997-06-04 2009-08-04 Ntt Docomo, Inc. Mobile communication system, mobile station and diversity handover branch control method
US6714528B1 (en) 1998-08-05 2004-03-30 Samsung Electronics Co., Ltd. Device and method for diversity combining signals on common channel in CDMA communication system
JP2002539696A (ja) * 1999-03-11 2002-11-19 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Cdmaシステム内で動作している移動体のための適応ハンドオフ・アルゴリズム
JP2001044926A (ja) * 1999-07-12 2001-02-16 Sk Telecom Kk 移動通信システムの通話品質測定装置及び方法
JP2003530041A (ja) * 2000-04-05 2003-10-07 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 電気通信同期非同期検出用の制御パラメータ取得
JP4668506B2 (ja) * 2000-04-05 2011-04-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 電気通信同期非同期検出用の制御パラメータ取得
US6819930B1 (en) * 2000-11-03 2004-11-16 Lucent Technologies Inc. Apparatus and method for use in allocating a channel resource in wireless multiple access communications systems
US7822421B2 (en) 2000-11-03 2010-10-26 Alcatel-Lucent Usa Inc. Apparatus and method for use in allocating a channel resource in wireless multiple access communications systems
US7643845B2 (en) 2001-07-24 2010-01-05 Ntt Docomo, Inc. Transmission power control device and method, mobile station, and communication device in mobile communication system
JP2007318241A (ja) * 2006-05-23 2007-12-06 Nec Corp 通信システム、携帯端末、交換局、通信方法及びプログラム
JP5166287B2 (ja) * 2007-01-09 2013-03-21 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及び通信制御方法
WO2008084622A1 (ja) * 2007-01-09 2008-07-17 Ntt Docomo, Inc. 基地局装置及び通信制御方法

Also Published As

Publication number Publication date
JP2006254503A (ja) 2006-09-21
JP2002252586A (ja) 2002-09-06
JP2003102047A (ja) 2003-04-04
EP0902594B1 (en) 2010-02-10
US7403489B2 (en) 2008-07-22
CA2247313A1 (en) 1998-07-09
EP0902594A1 (en) 1999-03-17
EP1758410B1 (en) 2010-02-24
CN1135010C (zh) 2004-01-14
KR100276519B1 (ko) 2000-12-15
CA2247313C (en) 2005-10-04
DE69739757D1 (de) 2010-03-25
CN1309187C (zh) 2007-04-04
DE69738253T2 (de) 2008-08-07
CN1216648A (zh) 1999-05-12
KR19990087290A (ko) 1999-12-27
DE69738253D1 (de) 2007-12-13
EP1758410A3 (en) 2007-07-25
US6977903B1 (en) 2005-12-20
US7362715B2 (en) 2008-04-22
EP0896442B1 (en) 2007-10-31
CN1534901A (zh) 2004-10-06
US6591104B2 (en) 2003-07-08
WO1998029970A1 (fr) 1998-07-09
JP3961897B2 (ja) 2007-08-22
EP1755350A3 (en) 2007-05-09
EP1758410A2 (en) 2007-02-28
US20020151306A1 (en) 2002-10-17
CN1216664A (zh) 1999-05-12
JP3393141B2 (ja) 2003-04-07
EP1739861B1 (en) 2009-09-16
EP1755350A2 (en) 2007-02-21
DE69739788D1 (de) 2010-04-08
EP1739861A2 (en) 2007-01-03
CA2247357A1 (en) 1998-07-09
CA2247357C (en) 2003-06-10
KR19990087289A (ko) 1999-12-27
US6470188B1 (en) 2002-10-22
EP0902594A4 (en) 2000-01-19
CN1496147A (zh) 2004-05-12
US20070259666A1 (en) 2007-11-08
CN1154261C (zh) 2004-06-16
EP0896442A4 (en) 1999-09-15
US20060171328A1 (en) 2006-08-03
EP0896442A1 (en) 1999-02-10
KR100298826B1 (ko) 2001-09-06
EP1739861A3 (en) 2007-07-11
CN1269371C (zh) 2006-08-09
DE69739589D1 (de) 2009-10-29
JP3496721B2 (ja) 2004-02-16

Similar Documents

Publication Publication Date Title
JP3961897B2 (ja) 移動通信システム、移動通信方法、受信機および送信機
JP3420252B2 (ja) 無線通信システムの方法並びに装置
US5195090A (en) Wireless access telephone-to-telephone network interface architecture
JP3296822B2 (ja) Cdmaシステムのダウンリンクにおける伝送の時間調整
EP0522774B1 (en) Adaptive synchronization arrangement
JPH06253363A (ja) 移動無線電話端末の呼処理方法、および無線アクセス通信システム
JPH06252908A (ja) 適応同期装置および呼処理装置
MXPA99011032A (en) Methods and arrangements in a radio communications system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97193860.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997949238

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2247357

Country of ref document: CA

Ref document number: 2247357

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09125924

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019980706696

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997949238

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980706696

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980706696

Country of ref document: KR