WO2016061793A1 - 控制相位同步的方法、装置和系统 - Google Patents

控制相位同步的方法、装置和系统 Download PDF

Info

Publication number
WO2016061793A1
WO2016061793A1 PCT/CN2014/089319 CN2014089319W WO2016061793A1 WO 2016061793 A1 WO2016061793 A1 WO 2016061793A1 CN 2014089319 W CN2014089319 W CN 2014089319W WO 2016061793 A1 WO2016061793 A1 WO 2016061793A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
phase difference
phase
station
acquiring
Prior art date
Application number
PCT/CN2014/089319
Other languages
English (en)
French (fr)
Inventor
胡军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/089319 priority Critical patent/WO2016061793A1/zh
Priority to CN201480030919.3A priority patent/CN105766035B/zh
Priority to EP14904606.2A priority patent/EP3182769A4/en
Publication of WO2016061793A1 publication Critical patent/WO2016061793A1/zh
Priority to US15/493,280 priority patent/US9999014B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • Embodiments of the present invention relate to wireless communication technologies, and in particular, to a method, apparatus, and system for controlling phase synchronization.
  • each base station transmits the same cell signal, and the user equipment at the edge of each base station (English: User Equipment; UE for short) receives the useful signals of multiple base stations at the same time, so that it can be better.
  • the signal quality which improves the user's throughput.
  • phase synchronization needs to be implemented between base stations of the same cell.
  • the base station uses GPS to acquire the current absolute time, and presets a time for each base station, for example, January 1, 2010.
  • the system frame number English: System Frame Number; SFN
  • SFN System Frame Number
  • each base station according to the preset time and the current absolute time acquired.
  • the current transmitted SFN and its subframe number are calculated, thereby realizing phase synchronization of signals between the base stations.
  • Embodiments of the present invention provide a method, apparatus, and system for controlling phase synchronization, which are used to solve the problem of high system cost when implementing phase synchronization between stations in a single frequency network system.
  • an embodiment of the present invention provides a method for controlling phase synchronization, including:
  • the method further includes:
  • the determining the non-reference base station to the pre- Before setting the path of the base station it also includes:
  • the base stations in the non-measurement mode are allocated different measurement reference signals according to the second PCI.
  • the method further includes:
  • the first base station is set as a transmitting station, and the second base station is set as a receiving station;
  • the measurement reference signal is a symbol domain and a subcarrier domain Obtained by different combinations.
  • an embodiment of the present invention provides a central controller, including:
  • a first acquiring module configured to determine a path of the non-reference base station to the preset reference base station, and acquire each first phase difference between each neighboring base station on the path;
  • a second acquiring module configured to acquire a second phase difference between the reference base station and the non-reference base station according to each of the first phase differences
  • a processing module configured to adjust a non-reference phase of the non-reference base station to a reference phase of the reference base station according to the second phase difference.
  • the first acquiring module includes:
  • a third phase difference acquiring unit configured to set a first base station of the neighboring base stations in the path to a measurement mode, and obtain the first base station to calculate and report the measurement reference signal sent by the second base station in the neighboring base station a third phase difference, the third phase difference being a phase difference of the second base station relative to the first base station;
  • a fourth phase difference acquiring unit configured to set a second base station to a measurement mode, and acquire a fourth phase difference calculated and reported by the second base station according to the measurement reference signal sent by the first base station, where the fourth phase difference is a phase difference of the first base station relative to the second base station;
  • a first phase difference acquiring unit configured to acquire a first phase difference between the first base station and the second base station according to the third phase difference and the fourth phase difference.
  • the method further includes:
  • phase delay acquisition module configured to acquire an inter-station phase delay between the first base station and the second base station according to the third phase difference and the fourth phase difference.
  • the method further includes:
  • a receiving module configured to receive a first physical cell identifier PCI reported by a base station in a measurement mode
  • the measurement reference signal module is configured to allocate different measurement reference signals to the base stations in the non-measurement mode according to the second PCI.
  • the method further includes:
  • a setting module configured to: when the predetermined period arrives, set the first base station as a transmitting station, and set the second base station as a receiving station;
  • a third acquiring module configured to acquire a fifth phase difference T4 calculated and reported by the receiving station according to the measurement reference signal sent by the transmitting station, where the fifth phase difference is that the transmitting station is opposite to the receiving station Phase difference
  • a fourth acquiring module configured to acquire, according to the fifth phase difference, an inter-station phase delay between the first base station and the second base station, between the transmitting station and the receiving station Six phase difference;
  • a fifth acquiring module configured to acquire, according to each of the sixth phase differences, a seventh phase difference between the reference base station and the non-reference base station;
  • an adjusting module configured to adjust a non-reference phase of the non-reference base station to a reference phase of the reference base station according to the seventh phase difference.
  • the measurement reference signal is a symbol domain and a subcarrier domain Obtained by different combinations.
  • an embodiment of the present invention provides a system for controlling phase synchronization, including: at least two adjacent base stations, such as the second aspect, the first aspect of the second aspect, and the fifth one of the fifth aspect
  • the controller CC is configured to perform information interaction with the at least two adjacent base stations.
  • the method, device and system for controlling phase synchronization provided by the present invention, by determining a path from a non-reference base station to a preset reference base station, and acquiring first phase differences between adjacent base stations on the path, according to each first phase
  • the second phase difference between the reference base station and the non-reference base station is obtained by the difference, and the non-reference phase of the non-reference base station is adjusted to the reference phase of the reference base station by the obtained second phase difference, so in the single frequency network system,
  • the phase between the base stations is the same. Steps, which reduces system costs.
  • FIG. 1 is a schematic diagram of an application scenario of a method for controlling phase synchronization according to the present invention
  • FIG. 2 is a schematic flow chart of a method for controlling phase synchronization according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a single frequency network communication system
  • FIG. 4 is a schematic flow chart of a method for controlling phase synchronization according to another embodiment of the present invention.
  • 5 is a pattern of resource elements of a CRS under a single antenna port
  • FIG. 7 is a schematic flowchart diagram of a method for controlling phase synchronization according to still another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a central controller according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a central controller according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a central controller according to still another embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a central controller according to still another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an embodiment of a control phase synchronization system according to the present invention.
  • FIG. 1 is a schematic diagram of an application scenario of a method for controlling phase synchronization according to the present invention.
  • a plurality of different cells are usually included, and the specific number of cells in the present invention is not particularly limited.
  • eight cells are used, and one base station is used as one cell.
  • the eight different cells are respectively cell 1, cell 2, and cell 8, that is, There are 8 different base stations in the communication system, and the signals transmitted by the base stations are different from each other.
  • the signals sent by other base stations are interference signals for the UE, so The UE at the edge of the base station will be interfered by multiple base stations at the same time, and the signal quality at the edge of the base station is very poor.
  • a plurality of base stations simultaneously transmit the same signal in the same frequency band in a certain geographical area, and therefore, the cells in the common communication system can be merged.
  • the signals transmitted by the base stations to which the cell 1, the cell 2, and the cell 4 belong are the same, and they can be combined into the cell 1', and the other cells are merged in a similar manner, so that a single-frequency network communication system can be formed.
  • each base station transmits the same cell signal. Therefore, the UE at the edge of each base station receives the useful signals of multiple base stations at the same time, thereby improving the signal quality of the base station edge and improving the user throughput. It can be seen that in the single frequency network communication system, how to realize the phase synchronization of the signals between the base stations is a very important problem.
  • FIG. 2 is a schematic flow chart of a method for controlling phase synchronization according to an embodiment of the present invention.
  • the embodiment of the invention provides a method for controlling phase synchronization.
  • the execution body of the method is a central controller (English: Central Controller; CC), and the CC can exchange information with each base station.
  • CC Central Controller
  • the method in this embodiment may include:
  • Step 201 Determine a path from the non-reference base station to the preset reference base station, and obtain each first phase difference between each adjacent base station on the path.
  • a reference base station is preset to acquire a path of each non-reference base station to the reference base station. If it is known that the non-reference base station cannot reach the reference base station, the non-reference base station is prompted to be an isolated station.
  • the application scenario in this embodiment is a scenario in which all base stations can reach the reference base station.
  • FIG. 3 is a schematic structural diagram of a single frequency network communication system.
  • first base station 0 is used as a reference base station
  • other base stations are non-reference base stations, and any one is not
  • the path of the base station to the base station 0 may be multiple.
  • the path of the base station 1 to the base station 0 may include: base station 1---> base station 2---> base station 0, base station 1---> base station 4-- -> Base station 0, base station 1---> base station 20---> base station 4---> base station 0 and the like.
  • a shortest path is generally selected among multiple paths as a path from the non-reference base station to the reference base station.
  • the manner of obtaining the path of the other non-reference base station to the base station 0 is similar to the manner of acquiring the path of the base station 1 to the base station 0, and details are not described herein again.
  • the present invention is not particularly limited herein for the selection of the number and path of base stations on the path.
  • each first phase difference between all neighboring base stations on the path can be acquired. For example, after determining that the path of the base station 1 to the base station 0 is the base station 1-->> base station 2--> base station 0, the first phase difference between the base station 1 and the base station 2 can be acquired, between the base station 2 and the base station 0. The first phase difference.
  • the foregoing method for acquiring the first phase differences between adjacent base stations is also applicable to the case where there is only one non-reference base station in the path from the non-reference base station to the reference base station, or there are two or more non-reference base stations.
  • the specific acquisition mode is similar to that obtained when there are two non-reference base stations on the path, and is not mentioned here.
  • Step 202 Acquire a second phase difference between the reference base station and the non-reference base station according to each first phase difference.
  • the non-reference base station and the non-reference base station can be obtained.
  • a second phase difference between the reference base stations For example, after acquiring the first phase difference between the base station 1 and the base station 2, and the first phase difference between the base station 2 and the base station 0, the second phase difference between the base station 0 and the base station 1 can be obtained.
  • Step 203 Adjust a non-reference phase of the non-reference base station to a reference phase of the reference base station according to the second phase difference.
  • the non-reference phase of the non-reference base station is adjusted to be consistent with the reference phase of the reference base station according to the reference phase of the reference base station based on the obtained second phase difference between the non-reference base station and the reference base station.
  • the phase of the base station 1 is adjusted according to the phase of the base station 0, so that the phase of the base station 1 coincides with the phase of the base station 0, thereby realizing the phase between the base stations. Synchronization.
  • the method for controlling phase synchronization obtained by the embodiment of the present invention obtains a path of a non-reference base station to a preset reference base station, and acquires first phase differences between adjacent base stations on the path, and acquires according to each first phase difference. a second phase difference between the reference base station and the non-reference base station, obtained by the second The phase difference adjusts the non-reference phase of the non-reference base station to the reference phase of the reference base station. Therefore, in the single-frequency network system, phase synchronization between the base stations is realized without installing a GPS antenna, thereby reducing system cost.
  • FIG. 4 is a schematic flow chart of a method for controlling phase synchronization according to another embodiment of the present invention.
  • Embodiments of the present invention provide a method of controlling phase synchronization. As shown in FIG. 4, the method in this embodiment may include:
  • Step 401 Receive a first PCI reported by a base station in a measurement mode.
  • the CC sets the base stations that it can control to the measurement mode.
  • the base station in the measurement mode can detect the cell signals of other base stations in the non-measurement mode, and the other detected ones are in the non-measurement.
  • the physical cell identifier (English: Physical Cell Identity; PCI) of the mode is reported to the CC.
  • the non-measurement mode in this embodiment is the normal working mode.
  • the base station in the normal working mode can send the downlink signal and receive the uplink signal.
  • Step 402 Allocating a second PCI different from the first PCI for the base station in the non-measurement mode.
  • the value of the PCI is in the range of 0 to 503, and is used to distinguish signals from cells of different Long Term Evolution (LTE) systems.
  • PCI can be used to distinguish different base stations. After the CC receives the first PCI reported by the base station in the measurement mode, the base station that can be controlled is set to the non-measurement mode at this time, and the CC allocates the second PCI different from the first PCI to the base station in the non-measurement mode. Used to distinguish all base stations.
  • Step 403 Allocate mutually different measurement reference signals to the base stations in the non-measurement mode according to the second PCI.
  • the base station in the non-measurement mode is allocated a second PCI corresponding to the second PCI, and the base station in the non-measurement mode is allocated a measurement reference signal corresponding to the second PCI according to the second PCI. It is used to distinguish which base station the measurement reference signal is sent by.
  • CRS Cell Reference Signal
  • FIG. 5 is a pattern of resource elements of a CRS under a single antenna port
  • FIG. 6 is a pattern of resource elements of a CRS under a dual antenna port.
  • the horizontal axis represents a symbol domain
  • the vertical axis represents a subcarrier domain.
  • the reference signal (English: Reference Signal; abbreviation: RS) has 7 offsets in the symbol domain and 3 offsets in the subcarrier domain. Therefore, the generated measurement reference signal is on the single antenna port.
  • the generated measurement reference signals are numbered, such as 1, 2, 3..., this number is called the measurement reference signal identity (English: Measure Reference Signal identity; referred to as: MRSid).
  • RS 0 and RS 1 For dual antenna ports, RS 0 and RS 1 have 7 offsets in the symbol domain and 3 offsets in the subcarrier domain. Therefore, the measurement reference signal also has 21 patterns in the case of dual antenna ports.
  • C int is the initial value of the cyclic shift register of the sequence parameter
  • n s is the slot number
  • l is the time domain number.
  • the N CP is a cyclic prefix.
  • the specific meaning of the parameter refer to the formula of 6.10.1.1 of the 36.211 protocol in the 3rd Generation Partnership Project (3GPP).
  • Step 404 Determine a path of the non-reference base station to the reference base station.
  • Step 405 Set a first base station of the neighboring base stations in the path to a measurement mode, and acquire a third phase difference calculated and reported by the first base station according to the measurement reference signal sent by the second base station in the neighboring base station, and third.
  • the phase difference is the phase difference of the second base station relative to the first base station.
  • the first base station and the second base station form a neighboring station pair
  • the CC sets the first base station to the measurement mode
  • the second base station is set to the non-measurement mode, that is, the normal working mode.
  • the first base station may receive the measurement reference signal sent by the second base station, and the first base station compares the received measurement reference signal with the measurement reference signal that is to be sent by itself, to obtain the second base station relative to the first base station.
  • the third phase difference T1 is the difference between the phase of the measurement reference signal of the first base station and the phase of the measurement reference signal of the second base station. It should be noted that the third phase difference includes a phase delay Delay between the first base station and the second base station.
  • Step 406 Set the second base station to the measurement mode, and obtain the second base station according to the first base station.
  • the measured reference signal is sent and the fourth phase difference is calculated, and the fourth phase difference is the phase difference of the first base station relative to the second base station.
  • the second base station is set to the measurement mode, and the first base station is set to the non-measurement mode, thereby obtaining the fourth phase difference T2 of the first base station relative to the second base station, where the fourth phase difference T2 is the second base station.
  • the phase of the measurement reference signal is subtracted from the phase of the measurement reference signal of the first base station.
  • the fourth phase difference includes a phase delay Delay between the first base station and the second base station.
  • Step 407 Acquire a first phase difference between the first base station and the second base station according to the third phase difference and the fourth phase difference.
  • the phase offset of the first base station signal is I1
  • the phase offset of the second base station signal is I2
  • the phase difference T1 of the second base station relative to the first base station is I2
  • the phase delay Delay between the first phase difference T3 between the first base station and the second base station and the first base station and the second base station can be obtained:
  • Step 408 Acquire a second phase difference between the reference base station and the non-reference base station according to each first phase difference.
  • the non-reference base station and the reference may be obtained according to the first phase difference between neighboring base stations on the path.
  • Step 409 Adjust the non-reference phase of the non-reference base station to the reference phase of the reference base station according to the second phase difference.
  • Step 409 is similar to step 103, and details are not described herein again.
  • the method for controlling phase synchronization obtained by the embodiment of the present invention obtains a path of a non-reference base station to a preset reference base station, and acquires first phase differences between adjacent base stations on the path, and acquires according to each first phase difference.
  • a second phase difference between the reference base station and the non-reference base station, and the non-reference phase of the non-reference base station is adjusted to the reference phase of the reference base station by the obtained second phase difference, and therefore
  • phase synchronization between base stations is realized without installing a GPS antenna, thereby reducing system cost.
  • FIG. 7 is a schematic flow chart of a method for controlling phase synchronization according to still another embodiment of the present invention.
  • the embodiment of the present invention provides a method for controlling phase synchronization.
  • the method in this embodiment may include:
  • Step 701 When the predetermined period arrives, set the first base station as a transmitting station, and set the second base station as a receiving station.
  • phase between the base stations may be deviated after a period of time due to the influence of the base station devices themselves or external factors. Therefore, the phase synchronization synchronization is required.
  • the base station performs signal transmission through a radio frame
  • the period of one radio frame is 10 ms, which includes 10 subframes.
  • a predetermined period may be set.
  • one subframe in the radio frame is extracted as a measurement reference signal, and the other subframes are normal working subframes, for example, 1 ms is extracted in a predetermined period.
  • Phase tracking synchronization in this way, since only one subframe in the radio frame is occupied during tracking synchronization, the impact on normal signal transmission can be minimized.
  • the predetermined period may be selected according to actual needs, such as 15s, 16s, etc.
  • an appropriate predetermined period may be selected according to experience or the number of base stations. For example, when the number of base stations is large, 16s is selected, and the number of base stations is selected. When less, choose 15s.
  • the embodiment is not particularly limited herein.
  • the first base station in the neighboring base station is set as the transmitting station, and the second base station is set as the receiving station.
  • the settings of the transmitting station and the receiving station can also be set according to the following principles: (1) fixing the reference base station as a transmitting station; (2) setting at least one of the neighboring base stations of the transmitting station for any one transmitting station.
  • the receiving station receives the signal it transmits; (3) for any one of the receiving stations, the neighboring base station of the receiving station includes at least two transmitting stations.
  • the present embodiment is not particularly limited herein for the specific settings of the transmitting station and the receiving station.
  • Step 702 Acquire a fifth phase difference calculated and reported by the receiving station according to the measurement reference signal sent by the transmitting station, where the fifth phase difference is a phase difference of the transmitting station relative to the receiving station.
  • the receiving station receives the measurement reference signal sent by the transmitting station, and according to the received The phase of the measurement reference signal is compared to the phase of the signal to be transmitted by itself, and a fifth phase difference T4 of the transmitting station with respect to the receiving station is calculated.
  • Step 703 Acquire, according to the fifth phase difference and the inter-station phase delay between the first base station and the second base station, the sixth phase difference between the transmitting station and the receiving station.
  • the sixth phase difference T5 between the transmitting station and the receiving station may also be acquired here according to the phase difference of the transmitting station relative to the receiving station and the phase difference of the receiving station with respect to the transmitting station.
  • it is generally used to perform phase tracking synchronization by extracting only 1 ms in a predetermined period. If the phase difference between the transmitting station and the receiving station and the phase difference of the receiving station relative to the transmitting station are required, multiple calculations are required, and the phenomenon that the phase is not synchronized after 1 ms may occur. Therefore, in phase tracking synchronization, a manner of calculating a sixth phase difference between the transmitting station and the receiving station based on the phase difference of the transmitting station with respect to the receiving station and the inter-station phase delay is preferably employed.
  • Step 704 Acquire a seventh phase difference between the reference base station and the non-reference base station according to each sixth phase difference.
  • the transmitting station and the receiving station are adjacent base stations, after acquiring the sixth phase difference between the transmitting station and the receiving station, the reference base station and any one of the non-reference base stations can be obtained.
  • the seventh phase difference between For example, in FIG. 3, base station 0 is preset as a reference base station, and base station 0 and base station 1 are set as transmitting stations according to the setting principle of the transmitting station and the receiving station, and base station 4 is set as a receiving station, and the base station is acquired.
  • the seventh phase difference between the base station 0 and the base station 1 can be known.
  • Step 705 Adjust the non-reference phase of the non-reference base station to the reference phase of the reference base station according to the seventh phase difference.
  • the non-reference phase of the non-reference base station is adjusted to be consistent with the reference phase of the reference base station by using the reference phase of the reference base station as a standard. In order to achieve phase tracking synchronization between the base stations.
  • the method for controlling phase synchronization provided by the embodiment of the present invention, after reaching a predetermined period, the root Obtaining a sixth phase difference between the transmitting station and the receiving station according to the phase difference of the transmitting station relative to the receiving station and the phase delay between the stations, and obtaining the seventh between the reference base station and the non-reference base station according to the sixth phase difference
  • the phase difference adjusts the non-reference phase of the non-reference base station to the reference phase of the reference base station according to the seventh phase difference, thereby achieving phase tracking synchronization and improving synchronization accuracy.
  • FIG. 8 is a schematic structural diagram of a central controller according to an embodiment of the present invention.
  • the central controller provided by the embodiment of the present invention includes a first obtaining module 801, a second obtaining module 802, and a processing module 803.
  • the first obtaining module 801 is configured to determine a path of the non-reference base station to the preset reference base station, and obtain each first phase difference between the neighboring base stations on the path; the second acquiring module 802 is configured to use each The first phase difference acquires a second phase difference between the reference base station and the non-reference base station; the processing module 803 is configured to adjust the non-reference phase of the non-reference base station to the second phase difference to The reference phase of the reference base station.
  • the central controller provided by the embodiment of the present invention obtains a reference base station according to each first phase difference by determining a path of the non-reference base station to the preset reference base station, and acquiring first phase differences between adjacent base stations on the path.
  • the second phase difference with the non-reference base station, the non-reference phase of the non-reference base station is adjusted to the reference phase of the reference base station by the obtained second phase difference, so in the single frequency network system, the GPS antenna is not required to be installed In this case, phase synchronization between base stations is achieved, thereby reducing system cost.
  • FIG. 9 is a schematic structural diagram of a central controller according to another embodiment of the present invention.
  • the first acquisition module 801 includes: a third phase difference acquisition unit 8011, a fourth phase difference acquisition unit 8012, and a first phase difference acquisition. Unit 8013.
  • the third phase difference obtaining unit 8011 is configured to set a first base station of the neighboring base stations in the path to a measurement mode, and acquire, by the first base station, a measurement reference signal sent by the second base station in the neighboring base station to perform calculation. And reporting a third phase difference, the third phase difference is a phase difference of the second base station relative to the first base station;
  • the fourth phase difference acquiring unit 8012 is configured to set the second base station to a measurement mode, and obtain a fourth phase difference calculated and reported by the second base station according to the measurement reference signal sent by the first base station, where the fourth phase difference is a phase difference of the first base station relative to the second base station;
  • the difference obtaining unit 8013 is configured to acquire a first phase difference between the first base station and the second base station according to the third phase difference and the fourth phase difference.
  • the central controller further includes a phase delay acquisition module 804, where the phase is acquired
  • the extension module 804 is configured to acquire an inter-station phase delay between the first base station and the second base station according to the third phase difference and the fourth phase difference.
  • the central controller further includes a receiving module 805, an allocating PCI module 806, and an allocation measurement reference signal module 807.
  • the receiving module 805 is configured to receive the first physical cell identifier PCI reported by the base station in the measurement mode, and the allocation PCI module 806 is configured to allocate a second PCI different from the first PCI to the base station in the non-measurement mode;
  • the reference signal module 807 is configured to allocate different measurement reference signals to the base stations in the non-measurement mode according to the second PCI.
  • the central controller provided by the embodiment of the present invention obtains a reference base station according to each first phase difference by determining a path of the non-reference base station to the preset reference base station, and acquiring first phase differences between adjacent base stations on the path.
  • the second phase difference with the non-reference base station, the non-reference phase of the non-reference base station is adjusted to the reference phase of the reference base station by the obtained second phase difference, so in the single frequency network system, the GPS antenna is not required to be installed In this case, phase synchronization between base stations is achieved, thereby reducing system cost.
  • FIG. 10 is a schematic structural diagram of a central controller according to still another embodiment of the present invention. As shown in FIG. 10, on the basis of the foregoing embodiments, the central controller further includes: a setting module 1001, a third obtaining module 1002, a fourth obtaining module 1003, a fifth obtaining module 1004, and an adjusting module. 1005.
  • the setting module 1001 is configured to: when the predetermined period arrives, set the first base station as a transmitting station, and the second base station as a receiving station; and the third obtaining module 1002 is configured to acquire the receiving station according to the a fifth phase difference calculated and reported by the measurement reference signal sent by the transmitting station, wherein the fifth phase difference is a phase difference of the transmitting station relative to the receiving station; and the fourth obtaining module 1003 is configured to use the fifth phase difference a phase difference between the phase difference and the inter-station phase delay between the first base station and the second base station, acquiring a sixth phase difference between the transmitting station and the receiving station; the fifth obtaining module 1004 is configured to And the sixth phase difference acquires a seventh phase difference between the reference base station and the non-reference base station; the adjustment module 1005 is configured to adjust the non-reference phase of the non-reference base station according to the seventh phase difference The reference phase to the reference base station.
  • the method for controlling phase synchronization acquires the sixth phase difference between the transmitting station and the receiving station according to the phase difference of the transmitting station relative to the receiving station and the phase delay between the stations after the predetermined period arrives. And obtaining, according to the sixth phase difference, a seventh phase difference between the reference base station and the non-reference base station, and adjusting the non-reference phase of the non-reference base station to the reference base station according to the seventh phase difference
  • the reference phase is used to achieve phase tracking synchronization, which improves the accuracy of synchronization.
  • FIG. 11 is a schematic structural diagram of a central controller according to still another embodiment of the present invention.
  • the central controller provided in this embodiment includes a receiver 10 and a processor 11.
  • the receiver 10 is configured to determine a path of the non-reference base station to the preset reference base station, and acquire each first phase difference between neighboring base stations on the path; the receiver 10 is further configured to use according to each Determining, by the first phase difference, a second phase difference between the reference base station and the non-reference base station; the processor 11 is configured to adjust the non-reference phase of the non-reference base station to the second phase difference according to the second phase difference The reference phase of the reference base station.
  • the central controller provided by the embodiment of the present invention can perform the foregoing technical solution of the method for controlling the phase synchronization, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the receiver 10 is specifically configured to: set a first base station of the neighboring base stations in the path to a measurement mode, and acquire, by the first base station, the second base station according to the second base station in the neighboring base station. Measuring, by the reference signal, a third phase difference calculated and reported, the third phase difference being a phase difference of the second base station relative to the first base station; setting the second base station to a measurement mode, acquiring the second a fourth phase difference calculated and reported by the base station according to the measurement reference signal sent by the first base station, where the fourth phase difference is a phase difference of the first base station relative to the second base station; Obtaining, according to the third phase difference and the fourth phase difference, acquiring a first phase difference between the first base station and the second base station.
  • the central controller provided by the embodiment of the present invention can perform the foregoing technical solution of the method for controlling the phase synchronization, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the receiver 10 is specifically configured to: acquire an inter-station phase between the first base station and the second base station according to the third phase difference and the fourth phase difference Delay.
  • the receiver 10 is specifically configured to: receive a first physical cell identifier PCI reported by a base station in a measurement mode; and the processor 11 is specifically configured to: allocate, by the base station in a non-measurement mode, the first PCI Different second PCIs, and according to the second PCI, the base stations in the non-measurement mode are allocated mutually different measurement reference signals.
  • the central controller provided by the embodiment of the present invention can perform the foregoing technical solution of the method for controlling the phase synchronization, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the processor 11 is specifically configured to: when the predetermined period arrives, set the first base station as a transmitting station, and set the second base station as a receiving station; the receiver 10 has The method is configured to: obtain a fifth phase difference calculated and reported by the receiving station according to the measurement reference signal sent by the transmitting station, where the fifth phase difference is a phase difference of the transmitting station relative to the receiving station; The processor 11 is specifically configured to: acquire, according to the fifth phase difference, an inter-station phase delay between the first base station and the second base station, between the transmitting station and the receiving station a sixth phase difference; acquiring the seventh phase difference between the reference base station and the non-reference base station according to the sixth phase difference; the processor 11 is further configured to: according to the seventh phase Poor, adjusting the non-reference phase of the non-reference base station to the reference phase of the reference base station.
  • the central controller provided by the embodiment of the present invention can perform the foregoing technical solution of the method for controlling the phase synchronization, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of an embodiment of a control phase synchronization system according to the present invention.
  • the system includes at least two adjacent base stations 12 and a central controller 13, wherein the number of base stations 12 is at least two, and The central controller 13 is configured to perform information interaction with at least two adjacent base stations 12.
  • the central controller involved in the embodiment of the control phase synchronization system may adopt the central controller provided in the foregoing device embodiments, and the specific structure and function thereof are not described herein again.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. You can choose some of them according to actual needs or All units are used to achieve the objectives of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例涉及一种控制相位同步的方法、装置和系统,该方法包括:确定非基准基站到预设的基准基站的路径,并获取路径上各相邻基站之间的各第一相位差,根据各第一相位差获取基准基站与非基准基站之间的第二相位差,根据第二相位差,将非基准基站的非基准相位调整到基准基站的基准相位。本发明实施例提供的控制相位同步的方法、装置和系统在单频网系统中,在不需要安装GPS天线的情况下,实现基站间的相位同步,从而降低了系统的成本。

Description

控制相位同步的方法、装置和系统 技术领域
本发明实施例涉及无线通信技术,特别涉及一种控制相位同步的方法、装置和系统。
背景技术
在单频网无线通信系统中,各个基站发送相同的小区信号,处于各基站边缘的用户设备(英文:User Equipment;简称:UE),会同时接收多个基站的有用信号,这样可以获得更好的信号质量,从而提升用户的吞吐率。在单频网系统中,同一个小区的各个基站之间需要实现相位同步。
现有技术中,通过在各基站配置全球定位系统(英文:Global Positioning System;简称:GPS),基站采用GPS获取当前的绝对时刻,并为每个基站预设一个时刻,例如2010年1月1日中午12点,作为小区中系统帧号(英文:System Frame Number;简称:SFN)为0、子帧号为0的子帧的起始时刻,各基站根据预设时刻和获取的当前绝对时刻,计算出当前发送的SFN及其子帧号,以此实现各基站间信号的相位同步。
然而,现有技术中,实现各基站间信号的相位同步时,需要安装GPS天线,使得成本较高。
发明内容
本发明实施例提供一种控制相位同步的方法、装置和系统,用于解决单频网系统中通过GPS实现站间相位同步时系统成本较高的问题。
第一方面,本发明实施例提供一种控制相位同步的方法,包括:
确定非基准基站到预设的基准基站的路径,并获取所述路径上各相邻基站之间的各第一相位差;
根据各所述第一相位差获取所述基准基站与所述非基准基站之间的第二相位差;
根据所述第二相位差,将所述非基准基站的非基准相位调整到所述基准 基站的基准相位。
结合第一方面,在第一方面的第一种可能的实现方式中,所述获取所述路径上各相邻基站之间的各第一相位差包括:
将路径上的相邻基站中的第一基站设置为测量模式,获取所述第一基站根据相邻基站中的第二基站发送的测量参考信号进行计算并上报的第三相位差,所述第三相位差为所述第二基站相对于所述第一基站的相位差;
将第二基站设置为测量模式,获取所述第二基站根据第一基站发送的测量参考信号进行计算并上报的第四相位差,所述第四相位差为所述第一基站相对于所述第二基站的相位差;
根据所述第三相位差和所述第四相位差,获取所述第一基站和所述第二基站之间的第一相位差。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述方法还包括:
根据所述第三相位差和所述第四相位差,获取所述第一基站和所述第二基站之间的站间相位时延。
结合第一方面、第一方面的第一种至第一方面的第二种任一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述确定非基准基站到预设的基准基站的路径之前,还包括:
接收处于测量模式的基站上报的第一物理小区标识PCI;
为处于非测量模式的基站分配与所述第一PCI不同的第二PCI;
根据所述第二PCI为处于非测量模式的基站分配互不相同的测量参考信号。
结合第一方面的第二种可能的实现方式,在第一方面的第四种可能的实现方式中,所述方法还包括:
当预定周期到达时,将所述第一基站设置为发射站,将所述第二基站设置为接收站;
获取所述接收站根据所述发射站发送的测量参考信号进行计算并上报的第五相位差,所述第五相位差为所述发射站相对于所述接收站的相位差;
根据所述第五相位差与所述第一基站和所述第二基站之间的站间相位时延,获取所述发射站和所述接收站之间的各第六相位差;
根据各所述第六相位差获取所述基准基站与所述非基准基站之间的所述第七相位差;
根据所述第七相位差,将所述非基准基站的非基准相位调整到所述基准基站的基准相位。
结合第一方面的第三种至第一方面的第四种任一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述测量参考信号是通过符号域和子载波域的不同组合获得的。
第二方面,本发明实施例提供一种中央控制器,包括:
第一获取模块,用于确定非基准基站到预设的基准基站的路径,并获取所述路径上各相邻基站之间的各第一相位差;
第二获取模块,用于根据各所述第一相位差获取所述基准基站与所述非基准基站之间的第二相位差;
处理模块,用于根据所述第二相位差,将所述非基准基站的非基准相位调整到所述基准基站的基准相位。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第一获取模块包括:
第三相位差获取单元,用于将路径上的相邻基站中的第一基站设置为测量模式,获取所述第一基站根据相邻基站中的第二基站发送的测量参考信号进行计算并上报的第三相位差,所述第三相位差为所述第二基站相对于所述第一基站的相位差;
第四相位差获取单元,用于将第二基站设置为测量模式,获取所述第二基站根据第一基站发送的测量参考信号进行计算并上报的第四相位差,所述第四相位差为所述第一基站相对于所述第二基站的相位差;
第一相位差获取单元,用于根据所述第三相位差和所述第四相位差,获取所述第一基站和所述第二基站之间的第一相位差。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,还包括:
相位时延获取模块,用于根据所述第三相位差和所述第四相位差,获取所述第一基站和所述第二基站之间的站间相位时延。
结合第二方面、第二方面的第一种至第二方面的第二种任一种可能的实 现方式,在第二方面的第三种可能的实现方式中,还包括:
接收模块,用于接收处于测量模式的基站上报的第一物理小区标识PCI;
分配PCI模块,用于为处于非测量模式的基站分配与所述第一PCI不同的第二PCI;
分配测量参考信号模块,用于根据所述第二PCI为处于非测量模式的基站分配互不相同的测量参考信号。
结合第二方面的第二种可能的实现方式,在第二方面的第四种可能的实现方式中,还包括:
设置模块,用于当预定周期到达时,将所述第一基站设置为发射站,与所述第二基站设置为接收站;
第三获取模块,用于获取所述接收站根据所述发射站发送的测量参考信号进行计算并上报的第五相位差T4,所述第五相位差为所述发射站相对于所述接收站的相位差;
第四获取模块,用于根据所述第五相位差与所述第一基站和所述第二基站之间的站间相位时延,获取所述发射站和所述接收站之间的各第六相位差;
第五获取模块,用于根据各所述第六相位差获取所述基准基站与所述非基准基站之间的第七相位差;
调整模块,用于根据所述第七相位差,将所述非基准基站的非基准相位调整到所述基准基站的基准相位。
结合第二方面的第三种至第二方面的第四种任一种可能的实现方式,在第二方面的第五种可能的实现方式中,所述测量参考信号是通过符号域和子载波域的不同组合获得的。
第三方面,本发明实施例提供一种控制相位同步的系统,包括:至少两个相邻的基站如第二方面、第二方面的第一种至第二方面的第五种任一种中央控制器CC,所述CC用于和所述至少两个相邻的基站进行信息交互。
本发明提供的控制相位同步的方法、装置和系统,通过确定非基准基站到预设的基准基站的路径,并获取路径上各相邻基站之间的各第一相位差,根据各第一相位差获取基准基站与非基准基站之间的第二相位差,通过获得的第二相位差,将非基准基站的非基准相位调整到基准基站的基准相位,因此在单频网系统中,在不需要安装GPS天线的情况下,实现基站间的相位同 步,从而降低了系统成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明控制相位同步的方法的应用场景示意图;
图2为本发明一实施例的控制相位同步的方法的流程示意图;
图3为单频网通信系统的结构示意图;
图4为本发明另一实施例的控制相位同步的方法的流程示意图;
图5为单天线端口下CRS的资源元素的样式;
图6为双天线端口下CRS的资源元素的样式;
图7为本发明又一实施例的控制相位同步的方法的流程示意图;
图8为本发明一实施例的中央控制器的结构示意图;
图9为本发明另一实施例的中央控制器的结构示意图;
图10为本发明又一实施例的中央控制器的结构示意图;
图11为本发明再一实施例的中央控制器的结构示意图;
图12为本发明控制相位同步系统实施例的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明控制相位同步的方法的应用场景示意图,如图1所示,在普通的通信系统中,通常包含有多个不同的小区,本发明中对小区的具体数量不作特别限制。本实施例中以8个小区,并以一个基站为一个小区为例进行说明,其中,这8个不同的小区分别为小区1、小区2……小区8,也即, 在通信系统中有8个不同的基站,而且各基站发送的信号互不相同,由于UE仅接收服务基站发送的有用信号,而其它基站发送的信号对于该UE来说,都属于干扰信号,因此,处于基站边缘的UE将会同时受到多个基站的干扰,因而基站边缘的信号质量非常差。为了改善基站边缘的信号质量,同时扩大信号的覆盖范围,通常采用在一定地理区域内,若干基站同时在同一频段上发射同样的信号的方式,因此,可以通过将普通通信系统中的小区进行合并,例如小区1、小区2和小区4所属的基站发射的信号相同,可以将它们合并为小区1’,其它小区的合并方式类似,这样即可形成单频网通信系统。在单频网通信系统中,各个基站由于发送相同的小区信号,因此,处于各基站边缘的UE会同时接收多个基站的有用信号,因而能够提高基站边缘的信号质量,提升用户吞吐率。由此可见,在单频网通信系统中,如何实现各基站间信号的相位同步,是一个非常重要的问题。
图2为本发明一实施例的控制相位同步的方法的流程示意图。本发明实施例提供了一种控制相位同步的方法,该方法的执行主体为中央控制器(英文:Central Controller;简称:CC),CC可以和每个基站进行信息交互。如图2所示,本实施例的方法可以包括:
步骤201、确定非基准基站到预设的基准基站的路径,并获取路径上各相邻基站之间的各第一相位差。
在本实施例中,首先预设一个基准基站,获取各非基准基站到达基准基站的路径。若获知非基准基站不能到达基准基站,则提示该非基准基站为孤立站。本实施例中的应用场景为所有基站都可以到达基准基站的情形。
图3为单频网通信系统的结构示意图,如图3所示,在单频网通信系统中有多个基站,首先将基站0作为基准基站,其它基站均为非基准基站,则任意一个非基准基站到达基站0的路径均可以有多个,例如:基站1到达基站0的路径可以包括:基站1--->基站2--->基站0、基站1--->基站4--->基站0、基站1--->基站20--->基站4--->基站0等。在具体的实现过程中,一般在多个路径中选择一条最短的路径,作为非基准基站到基准基站的路径。另外,获取其它非基准基站到基站0的路径的方式,与获取基站1到基站0的路径的方式相类似,此处不再赘述。对于路径上基站的数量和路径的选取,本发明在此不作特别限制。
具体地,在确定了非基准基站到基准基站的路径之后,便可以获取路径上所有相邻基站之间的各第一相位差。例如,确定基站1到达基站0的路径为基站1--->基站2--->基站0之后,可以获取基站1与基站2之间的第一相位差,基站2与基站0之间的第一相位差。
需要说明的是,上述获取相邻基站之间的各第一相位差的方法,同样适用于非基准基站到基准基站的路径上只有一个非基准基站,或者存在两个以上的非基准基站的情形,具体的获取方式与路径上有两个非基准基站时获取的方式类似,此处不再赘述。
步骤202、根据各第一相位差获取基准基站与非基准基站之间的第二相位差。
在本实施例中,对于任意一个非基准基站,在确定了该非基准基站到基准基站的路径之后,根据该路径上各相邻基站之间的第一相位差,可以获得该非基准基站与基准基站之间的第二相位差。例如:获取到基站1与基站2之间的第一相位差,基站2与基站0之间的第一相位差之后,继而可以获知基站0与基站1之间的第二相位差。
需要说明的是,在确定了非基准基站到基准基站的路径之后,若该路径上只有一个非基准基站,也即只存在一个第一相位差,或者有两个以上的非基准基站,也即存在两个以上的第一相位差时,此时,根据各第一相位差获取基准基站与非基准基站之间的第二相位差的方法,与根据两个第一相位差获取第二相位差时的方法类似,此处不再赘述。
步骤203、根据第二相位差,将非基准基站的非基准相位调整到基准基站的基准相位。
具体地,根据获取到的任一非基准基站与基准基站之间的第二相位差,以基准基站的基准相位为标准,将非基准基站的非基准相位调整到与基准基站的基准相位相一致,以此实现各基站之间的相位同步。例如:获知基站0与基站1之间的第二相位差之后,根据基站0的相位,将基站1的相位进行调整,以使基站1的相位与基站0的相位一致,以此实现基站间相位的同步。
本发明实施例提供的控制相位同步的方法,通过确定非基准基站到预设的基准基站的路径,并获取路径上各相邻基站之间的各第一相位差,根据各第一相位差获取基准基站与非基准基站之间的第二相位差,通过获得的第二 相位差,将非基准基站的非基准相位调整到基准基站的基准相位,因此在单频网系统中,在不需要安装GPS天线的情况下,实现基站间的相位同步,从而降低了系统成本。
图4为本发明另一实施例的控制相位同步的方法的流程示意图。本发明实施例提供了一种控制相位同步的方法。如图4所示,本实施例的方法可以包括:
步骤401、接收处于测量模式的基站上报的第一PCI。
在本步骤中,CC将其所能控制的基站均设置为测量模式,此时,处于测量模式的基站可以检测到其它处于非测量模式的基站的小区信号,同时将检测到的其它处于非测量模式的基站的物理小区标识(英文:Physical Cell Identity;简称:PCI)上报给CC,本实施例的非测量模式即正常工作模式,处于正常工作模式的基站可以发送下行信号,接收上行信号。
步骤402、为处于非测量模式的基站分配与第一PCI不同的第二PCI。
其中,PCI的取值范围为0~503,用来区分来自不同长期演进(英文:Long Term Evolution,简称:LTE)系统的小区的信号。本实施例中,可以使用PCI来区分不同的基站。当CC接收到处于测量模式的基站上报的第一PCI之后,此时将其所能控制的基站均设置为非测量模式,CC为处于非测量模式的基站分配与第一PCI不同的第二PCI,用于区分所有的基站。
步骤403、根据第二PCI为处于非测量模式的基站分配互不相同的测量参考信号。
在本实施例中,由于CC为处于非测量模式的基站均分配了各自所对应的第二PCI,根据第二PCI为处于非测量模式的基站分配与第二PCI一一对应的测量参考信号,用于区分该测量参考信号由哪一个基站发送。
具体地,为了避免不同基站之间的信号相互干扰,通常通过符号域和子载波域的不同组合来生成不同的测量参考信号。本领域技术人员可以理解,测量参考信号是在小区对应的小区参考信号(英文:Cell Reference Signal;简称:CRS)的基础上,将符号域和子载波域进行偏移而获得,下面主要以单天线端口和双天线端口为例进行说明。
图5为单天线端口下CRS的资源元素的样式,图6为为双天线端口下CRS的资源元素的样式,如图5和图6所示,横轴代表符号域,纵轴代表子 载波域,对于单天线端口,参考信号(英文:Reference Signal;简称:RS)在符号域有7个偏移量,在子载波域有3个偏移量,因此,生成的测量参考信号在单天线端口的情形下共有21种样式,同时对生成的测量参考信号进行编号,如1、2、3…,将此编号称为测量参考信号序列(英文:Measure Reference Signal identity;简称:MRSid)。对于双天线端口,RS0和RS1在符号域分别有7个偏移量,在子载波域分别有3个偏移量,因此,测量参考信号在双天线端口的情形下也有21种样式,同样对生成的测量参考信号进行编号,得到双天线端口下的MRSid。当获得RS在符号域和子载波域的偏移量后,则MRSid=子载波域的偏移量*7+符号域的偏移量。
本领域技术人员可以理解,当各基站间的时间偏移过大,例如达到一个符号时,会导致不同的参考测量信号在符号域发生重叠,此时可以将符号域的偏移量放到Gold序列生成的公式中,以区分不同的符号域偏移量所对应的测量参考信号。在具体的实现过程中,可以通过公式(1.1)来实现。
Figure PCTCN2014089319-appb-000001
其中,Cint为序列参数的循环移位寄存器初始值,ns为时隙编号,l为时域编号,
Figure PCTCN2014089319-appb-000002
为小区ID,NCP为循环前缀,参数的具体含义可参考第三代合作伙伴计划(英文:3rd Generation Partnership Project;简称:3GPP)中36.211协议的6.10.1.1的公式。
步骤404、确定非基准基站到基准基站的路径。
步骤405、将路径上的相邻基站中的第一基站设置为测量模式,获取第一基站根据相邻基站中的第二基站发送的测量参考信号进行计算并上报的第三相位差,第三相位差为第二基站相对于第一基站的相位差。
在本步骤中,第一基站与第二基站组成邻站对,CC将第一基站设置为测量模式,第二基站设置为非测量模式,即正常工作模式。此时,第一基站可以接收第二基站发送的测量参考信号,第一基站将接收到的测量参考信号与自身即将要发送的测量参考信号进行比较,可以获得第二基站相对于第一基站的第三相位差T1,该第三相位差T1即为第一基站的测量参考信号的相位减去第二基站的测量参考信号的相位的差值。需要说明的是,此第三相位差中包含有第一基站与第二基站之间的相位时延Delay。
步骤406、将第二基站设置为测量模式,获取第二基站根据第一基站发 送的测量参考信号进行计算并上报的第四相位差,第四相位差为第一基站相对于第二基站的相位差。
本步骤中,将第二基站设置为测量模式,第一基站设置为非测量模式,以此获得第一基站相对于第二基站的第四相位差T2,该第四相位差T2即第二基站的测量参考信号的相位减去第一基站的测量参考信号的相位的差值。同样,此第四相位差中包含有第一基站与第二基站之间的相位时延Delay。
步骤407、根据第三相位差和第四相位差,获取第一基站和第二基站之间的第一相位差。
具体地,假设第一基站信号的相位偏移为I1,第二基站信号的相位偏移为I2,根据第二基站相对于第一基站的相位差T1和第一基站相对于第二基站的相位差T2,可以获得以下公式:
I2+Delay-I2=T1  (1.2)
I1+Delay-I2=T2  (1.3)
根据公式(1.2)和公式(1.3),可以获得第一基站和第二基站之间的第一相位差T3与第一基站和第二基站之间的相位时延Delay:
Delay=(T1+T2)/2  (1.4)
T3=I2-I1=(T1-T2)/2  (1.5)
通过获得Delay,可以补偿站间相位时延对同步精度的影响。
步骤408、根据各第一相位差获取基准基站与非基准基站之间的第二相位差。
在本步骤中,对于任意一个非基准基站,在确定了该非基准基站到基准基站的路径之后,根据该路径上各相邻基站之间的第一相位差,可以获得该非基准基站与基准基站之间的第二相位差。
步骤409、根据第二相位差,将非基准基站的非基准相位调整到基准基站的基准相位。
步骤409与步骤103类似,此处不再赘述。
本发明实施例提供的控制相位同步的方法,通过确定非基准基站到预设的基准基站的路径,并获取路径上各相邻基站之间的各第一相位差,根据各第一相位差获取基准基站与非基准基站之间的第二相位差,通过获得的第二相位差,将非基准基站的非基准相位调整到基准基站的基准相位,因此在单 频网系统中,在不需要安装GPS天线的情况下,实现基站间的相位同步,从而降低了系统成本。
图7为本发明又一实施例的控制相位同步的方法的流程示意图。本发明实施例提供了一种控制相位同步的方法,本实施例在上述各实施例的基础上,对将非基准基站的非基准相位调整到基准基站的基准相位之后的实施例,做详细说明。如图7所示,本实施例的方法可以包括:
步骤701、当预定周期到达时,将第一基站设置为发射站,将第二基站设置为接收站。
在本实施例中,当基站间实现相位同步之后,由于受到各基站器件本身或者外部因素的影响,一段时间之后,基站间的相位有可能会出现偏差。因此,需要对相位进行跟踪同步。
具体地,本领域技术人员可以理解,基站间通过无线帧进行信号的传输,一个无线帧的周期为10ms,其包括10个子帧。在基站正常工作之后,可以设定一个预定周期,当预定周期到达时,抽取无线帧中的一个子帧作为测量参考信号,其它子帧为正常工作子帧,例如在预定周期中抽取1ms时间进行相位的跟踪同步,采用这种方式,由于在跟踪同步时只占用了无线帧中的一个子帧,可以尽可能减小对正常的信号传输造成的影响。其中,预定周期可以根据实际需要选取15s、16s等,在具体的实现过程中,可根据经验或者基站的数量选取合适的预定周期,例如,当基站的数量较多时,选取16s,当基站的数量较少时,选取15s。对于预定周期的具体值的选取,本实施例在此不作特别限制。
当预定周期到达时,将相邻基站中的第一基站设置为发射站,将第二基站设置为接收站。另外,对于发射站和接收站的设置,还可以根据以下原则进行设置:(1)将基准基站固定为发射站;(2)对于任意一个发射站,该发射站的相邻基站中至少设置一个接收站接收其发射的信号;(3)对于任意一个接收站,该接收站的相邻基站中至少包括两个发射站。对于发射站和接收站的具体设置,本实施例在此不作特别限制。
步骤702、获取接收站根据发射站发送的测量参考信号进行计算并上报的第五相位差,第五相位差为发射站相对于接收站的相位差。
在本步骤中,接收站接收发射站发送的测量参考信号,并根据接收到的 该测量参考信号的相位与自身即将要发送的信号的相位相比较,计算出发射站相对于接收站的第五相位差T4。
步骤703、根据第五相位差与第一基站和第二基站之间的站间相位时延,获取发射站和接收站之间的各第六相位差:。
具体地,根据发射站相对于接收站的第五相位差T4和步骤407中获取的第一基站和第二基站之间的相位时延,也即接收站和发射站之间的相位时延Delay,获得发射站和接收站之间的第六相位差T5,在具体的实现过程中,可以根据公式T5=T4-Delay,计算获得各第六相位差。
需要说明的是,此处也可以根据发射站相对于接收站的相位差和接收站相对于发射站的相位差,获取发射站和接收站之间的第六相位差T5。但是,在实际应用过程中,为了不影响正常信号的传输,一般均采用在预定周期内只抽取1ms时间进行相位的跟踪同步。若根据发射站相对于接收站的相位差和接收站相对于发射站的相位差,需要进行多次计算,此时会出现1ms之后相位还未同步的现象。因此,在相位跟踪同步时,优选地采用根据发射站相对于接收站的相位差和站间相位时延计算发射站和接收站之间的第六相位差的方式。
步骤704、根据各第六相位差获取基准基站与非基准基站之间的第七相位差。
在本实施例中,由于发射站与接收站为相邻的基站,因此,在获取到发射站和接收站之间的各第六相位差之后,即可以获得基准基站与任意一个非基准基站之间的第七相位差。例如:在图3中,将基站0预设为基准基站,并根据发射站和接收站的设置原则,将基站0和基站1设置为发射站,将基站4设置为接收站,在获取到基站1和基站4之间的第六相位差、基站4和基站0之间的第六相位差之后,即可获知基站0和基站1之间的第七相位差。
步骤705、根据第七相位差,将非基准基站的非基准相位调整到基准基站的基准相位。
具体地,获取到的任一非基准基站与基准基站之间的第六相位差之后,以基准基站的基准相位为标准,将非基准基站的非基准相位调整到与基准基站的基准相位相一致,以此实现各基站之间的相位跟踪同步。
本发明实施例提供的控制相位同步的方法,通过在预定周期到达后,根 据发射站相对于接收站的相位差和站间相位时延,获取发射站和接收站之间的各第六相位差,根据第六相位差可以获取基准基站与非基准基站之间的第七相位差,根据该第七相位差,将非基准基站的非基准相位调整到基准基站的基准相位,以此实现了相位的跟踪同步,提高了同步的精确度。
图8为本发明一实施例的中央控制器的结构示意图。如图8所示,本发明实施例提供的中央控制器包括第一获取模块801、第二获取模块802和处理模块803。
其中,第一获取模块801用于确定非基准基站到预设的基准基站的路径,并获取所述路径上各相邻基站之间的各第一相位差;第二获取模块802用于根据各所述第一相位差获取所述基准基站与所述非基准基站之间的第二相位差;处理模块803用于根据所述第二相位差,将所述非基准基站的非基准相位调整到所述基准基站的基准相位。
本发明实施例提供的中央控制器,通过确定非基准基站到预设的基准基站的路径,并获取路径上各相邻基站之间的各第一相位差,根据各第一相位差获取基准基站与非基准基站之间的第二相位差,通过获得的第二相位差,将非基准基站的非基准相位调整到基准基站的基准相位,因此在单频网系统中,在不需要安装GPS天线的情况下,实现基站间的相位同步,从而降低了系统成本。
图9为本发明另一实施例的中央控制器的结构示意图。如图9所示,本实施例在图8所示实施例的基础上,所述第一获取模块801包括:第三相位差获取单元8011、第四相位差获取单元8012和第一相位差获取单元8013。
其中,第三相位差获取单元8011用于将路径上的相邻基站中的第一基站设置为测量模式,获取所述第一基站根据相邻基站中的第二基站发送的测量参考信号进行计算并上报的第三相位差,所述第三相位差为所述第二基站相对于所述第一基站的相位差;第四相位差获取单元8012用于将第二基站设置为测量模式,获取所述第二基站根据第一基站发送的测量参考信号进行计算并上报的第四相位差,所述第四相位差为所述第一基站相对于所述第二基站的相位差;第一相位差获取单元8013用于根据所述第三相位差和所述第四相位差,获取所述第一基站和所述第二基站之间的第一相位差。
可选地,所述中央控制器还包括相位时延获取模块804,该获取相位时 延模块804用于根据所述第三相位差和所述第四相位差,获取所述第一基站和所述第二基站之间的站间相位时延。
可选地,所述中央控制器还包括接收模块805、分配PCI模块806和分配测量参考信号模块807。
其中,接收模块805用于接收处于测量模式的基站上报的第一物理小区标识PCI;分配PCI模块806用于为处于非测量模式的基站分配与所述第一PCI不同的第二PCI;分配测量参考信号模块807用于根据所述第二PCI为处于非测量模式的基站分配互不相同的测量参考信号。
本发明实施例提供的中央控制器,通过确定非基准基站到预设的基准基站的路径,并获取路径上各相邻基站之间的各第一相位差,根据各第一相位差获取基准基站与非基准基站之间的第二相位差,通过获得的第二相位差,将非基准基站的非基准相位调整到基准基站的基准相位,因此在单频网系统中,在不需要安装GPS天线的情况下,实现基站间的相位同步,从而降低了系统成本。
图10为本发明又一实施例的中央控制器的结构示意图。如图10所示,本实施例在上述各实施例的基础上,所述中央控制器还包括:设置模块1001、第三获取模块1002、第四获取模块1003、第五获取模块1004和调整模块1005。
其中,设置模块1001用于当预定周期到达时,将所述第一基站设置为发射站,与所述第二基站设置为接收站;第三获取模块1002用于获取所述接收站根据所述发射站发送的测量参考信号进行计算并上报的第五相位差,所述第五相位差为所述发射站相对于所述接收站的相位差;第四获取模块1003用于根据所述第五相位差与所述第一基站和所述第二基站之间的站间相位时延,获取所述发射站和所述接收站之间的各第六相位差;第五获取模块1004用于根据各所述第六相位差获取所述基准基站与所述非基准基站之间的第七相位差;调整模块1005用于根据所述第七相位差,将所述非基准基站的非基准相位调整到所述基准基站的基准相位。
本发明实施例提供的控制相位同步的方法,通过在预定周期到达后,根据发射站相对于接收站的相位差和站间相位时延,获取发射站和接收站之间的各第六相位差,根据第六相位差可以获取基准基站与非基准基站之间的第七相位差,根据该第七相位差,将非基准基站的非基准相位调整到基准基站 的基准相位,以此实现了相位的跟踪同步,提高了同步的精确度。
图11为本发明再一实施例的中央控制器的结构示意图,如图11所示,本实施例提供的中央控制器包括接收器10和处理器11。
其中,接收器10用于确定非基准基站到预设的基准基站的路径,并获取所述路径上各相邻基站之间的各第一相位差;所述接收器10还用于根据各所述第一相位差获取所述基准基站与所述非基准基站之间的第二相位差;处理器11用于根据所述第二相位差,将所述非基准基站的非基准相位调整到所述基准基站的基准相位。
本发明实施例提供的中央控制器,可以执行上述控制相位同步的方法的技术方案,其实现原理和技术效果类似,在此不再赘述。
在本发明实施例中,所述接收器10具体用于:将路径上的相邻基站中的第一基站设置为测量模式,获取所述第一基站根据相邻基站中的第二基站发送的测量参考信号进行计算并上报的第三相位差,所述第三相位差为所述第二基站相对于所述第一基站的相位差;将第二基站设置为测量模式,获取所述第二基站根据第一基站发送的测量参考信号进行计算并上报的第四相位差,所述第四相位差为所述第一基站相对于所述第二基站的相位差;所述处理器11具体用于:根据所述第三相位差和所述第四相位差,获取所述第一基站和所述第二基站之间的第一相位差。
本发明实施例提供的中央控制器,可以执行上述控制相位同步的方法的技术方案,其实现原理和技术效果类似,在此不再赘述。
在本发明实施例中,所述接收器10具体用于:根据所述第三相位差和所述第四相位差,获取所述第一基站和所述第二基站之间的站间相位时延。
进一步地,所述接收器10具体用于:接收处于测量模式的基站上报的第一物理小区标识PCI;所述处理器11具体用于:为处于非测量模式的基站分配与所述第一PCI不同的第二PCI,并根据所述第二PCI为处于非测量模式的基站分配互不相同的测量参考信号。
本发明实施例提供的中央控制器,可以执行上述控制相位同步的方法的技术方案,其实现原理和技术效果类似,在此不再赘述。
在本发明实施例中,所述处理器11具体用于:当预定周期到达时,将所述第一基站设置为发射站,将所述第二基站设置为接收站;所述接收器10具 体用于:获取所述接收站根据所述发射站发送的测量参考信号进行计算并上报的第五相位差,所述第五相位差为所述发射站相对于所述接收站的相位差;所述处理器11具体用于:根据所述第五相位差与所述第一基站和所述第二基站之间的站间相位时延,获取所述发射站和所述接收站之间的各第六相位差;根据所述各第六相位差获取所述基准基站与所述非基准基站之间的所述第七相位差;所述处理器11还用于:根据所述第七相位差,将所述非基准基站的非基准相位调整到所述基准基站的基准相位。
本发明实施例提供的中央控制器,可以执行上述控制相位同步的方法的技术方案,其实现原理和技术效果类似,在此不再赘述。
图12为本发明控制相位同步系统实施例的结构示意图,如图12所示,该系统包括至少两个相邻的基站12和中央控制器13,其中,基站12的数量为至少两个,而且是相邻设置的,中央控制器13用于和至少两个相邻的基站12进行信息交互。本控制相位同步系统实施例中涉及的中央控制器,可以采用上述各装置实施例中所提供的中央控制器,其具体结构和功能此处不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种控制相位同步的方法,其特征在于,包括:
    确定非基准基站到预设的基准基站的路径,并获取所述路径上各相邻基站之间的各第一相位差;
    根据各所述第一相位差获取所述基准基站与所述非基准基站之间的第二相位差;
    根据所述第二相位差,将所述非基准基站的非基准相位调整到所述基准基站的基准相位。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述路径上各相邻基站之间的各第一相位差包括:
    将路径上的相邻基站中的第一基站设置为测量模式,获取所述第一基站根据相邻基站中的第二基站发送的测量参考信号进行计算并上报的第三相位差,所述第三相位差为所述第二基站相对于所述第一基站的相位差;
    将第二基站设置为测量模式,获取所述第二基站根据第一基站发送的测量参考信号进行计算并上报的第四相位差,所述第四相位差为所述第一基站相对于所述第二基站的相位差;
    根据所述第三相位差和所述第四相位差,获取所述第一基站和所述第二基站之间的第一相位差。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    根据所述第三相位差和所述第四相位差,获取所述第一基站和所述第二基站之间的站间相位时延。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述确定非基准基站到预设的基准基站的路径之前,还包括:
    接收处于测量模式的基站上报的第一物理小区标识PCI;
    为处于非测量模式的基站分配与所述第一PCI不同的第二PCI;
    根据所述第二PCI为处于非测量模式的基站分配互不相同的测量参考信号。
  5. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    当预定周期到达时,将所述第一基站设置为发射站,将所述第二基站设置为接收站;
    获取所述接收站根据所述发射站发送的测量参考信号进行计算并上报的第五相位差,所述第五相位差为所述发射站相对于所述接收站的相位差;
    根据所述第五相位差与所述第一基站和所述第二基站之间的站间相位时延,获取所述发射站和所述接收站之间的各第六相位差;
    根据各所述第六相位差获取所述基准基站与所述非基准基站之间的第七相位差;
    根据所述第七相位差,将所述非基准基站的非基准相位调整到所述基准基站的基准相位。
  6. 根据权利要求4或5所述的方法,其特征在于,所述测量参考信号是通过符号域和子载波域的不同组合获得的。
  7. 一种中央控制器,其特征在于,包括:
    第一获取模块,用于确定非基准基站到预设的基准基站的路径,并获取所述路径上各相邻基站之间的各第一相位差;
    第二获取模块,用于根据各所述第一相位差获取所述基准基站与所述非基准基站之间的第二相位差;
    处理模块,用于根据所述第二相位差,将所述非基准基站的非基准相位调整到所述基准基站的基准相位。
  8. 根据权利要求7所述的中央控制器,其特征在于,所述第一获取模块包括:
    第三相位差获取单元,用于将路径上的相邻基站中的第一基站设置为测量模式,获取所述第一基站根据相邻基站中的第二基站发送的测量参考信号进行计算并上报的第三相位差,所述第三相位差为所述第二基站相对于所述第一基站的相位差;
    第四相位差获取单元,用于将第二基站设置为测量模式,获取所述第二基站根据第一基站发送的测量参考信号进行计算并上报的第四相位差,所述第四相位差为所述第一基站相对于所述第二基站的相位差;
    第一相位差获取单元,用于根据所述第三相位差和所述第四相位差,获取所述第一基站和所述第二基站之间的第一相位差。
  9. 根据权利要求8所述的中央控制器,其特征在于,还包括:
    相位时延获取模块,用于根据所述第三相位差和所述第四相位差,获取 所述第一基站和所述第二基站之间的站间相位时延。
  10. 根据权利要求7-9任一项所述的中央控制器,其特征在于,还包括:
    接收模块,用于接收处于测量模式的基站上报的第一物理小区标识PCI;
    分配PCI模块,用于为处于非测量模式的基站分配与所述第一PCI不同的第二PCI;
    分配测量参考信号模块,用于根据所述第二PCI为处于非测量模式的基站分配互不相同的测量参考信号。
  11. 根据权利要求9所述的中央控制器,其特征在于,还包括:
    设置模块,用于当预定周期到达时,将所述第一基站设置为发射站,将所述第二基站设置为接收站;
    第三获取模块,用于获取所述接收站根据所述发射站发送的测量参考信号进行计算并上报的第五相位差,所述第五相位差为所述发射站相对于所述接收站的相位差;
    第四获取模块,用于根据所述第五相位差与所述第一基站和所述第二基站之间的站间相位时延,获取所述发射站和所述接收站之间的各第六相位差;
    第五获取模块,用于根据各所述第六相位差获取所述基准基站与所述非基准基站之间的第七相位差;
    调整模块,用于根据所述第七相位差,将所述非基准基站的非基准相位调整到所述基准基站的基准相位。
  12. 根据权利要求10或11所述的中央控制器,其特征在于,所述测量参考信号是通过符号域和子载波域的不同组合获得的。
  13. 一种控制相位同步的系统,其特征在于,包括:至少两个相邻的基站和如权利要求7-12任一项所述的中央控制器,所述中央控制器用于和所述至少两个相邻的基站进行信息交互。
PCT/CN2014/089319 2014-10-23 2014-10-23 控制相位同步的方法、装置和系统 WO2016061793A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/089319 WO2016061793A1 (zh) 2014-10-23 2014-10-23 控制相位同步的方法、装置和系统
CN201480030919.3A CN105766035B (zh) 2014-10-23 2014-10-23 控制相位同步的方法、装置和系统
EP14904606.2A EP3182769A4 (en) 2014-10-23 2014-10-23 Method and device for controlling phase synchronisation, and system
US15/493,280 US9999014B2 (en) 2014-10-23 2017-04-21 Method and system for controlling phase synchronization, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/089319 WO2016061793A1 (zh) 2014-10-23 2014-10-23 控制相位同步的方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/493,280 Continuation US9999014B2 (en) 2014-10-23 2017-04-21 Method and system for controlling phase synchronization, and apparatus

Publications (1)

Publication Number Publication Date
WO2016061793A1 true WO2016061793A1 (zh) 2016-04-28

Family

ID=55760080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089319 WO2016061793A1 (zh) 2014-10-23 2014-10-23 控制相位同步的方法、装置和系统

Country Status (4)

Country Link
US (1) US9999014B2 (zh)
EP (1) EP3182769A4 (zh)
CN (1) CN105766035B (zh)
WO (1) WO2016061793A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455037A (zh) * 2016-09-30 2017-02-22 Tcl集团股份有限公司 增强网络信号的方法、主机设备及路由器
CN110121208A (zh) * 2019-05-14 2019-08-13 东南大学 基于多基站定位的交叉互验时钟同步方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10084537B2 (en) * 2017-01-17 2018-09-25 Nokia Solutions And Networks Oy Method and apparatus for synchronization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080152059A1 (en) * 2005-02-01 2008-06-26 Mitsubishi Electric Corporation Inter-Base Station Synchronization System, Synchronization Control Device, and Base Station
CN101478341A (zh) * 2009-02-12 2009-07-08 华为技术有限公司 实现基站时钟同步的方法及装置
WO2010054546A1 (zh) * 2008-11-12 2010-05-20 深圳华为通信技术有限公司 同步方法、基站、网络服务器以及通信系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896442B1 (en) * 1996-12-26 2007-10-31 Ntt Mobile Communications Network Inc. Frame transmitter-receiver
ITMI990796A1 (it) * 1999-04-16 2000-10-16 Italtel Spa Metodo e sistema per sincronizzare le stazioni radio base nelle reti di telecomunicazione digitale
US7305012B1 (en) * 2000-07-24 2007-12-04 Siemens Information And Communication Networks S.P.A. Method and system to synchronize mobile units to a base transceiver station
US7587017B2 (en) * 2001-05-17 2009-09-08 Ut-Battelle, Llc Carrier phase synchronization system for improved amplitude modulation and television broadcast reception
DE10354468A1 (de) * 2003-11-21 2005-06-23 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur Überwachung der Trägerfrequenzstabilität von Sendern in einem Gleichwellennetz
US7821249B2 (en) * 2005-09-28 2010-10-26 Nec Corporation Phase difference measuring device and phase comparison circuit adjusting method
US7183821B1 (en) * 2005-10-24 2007-02-27 Silicon Integrated Systems Corp. Apparatus and method of controlling clock phase alignment with dual loop of hybrid phase and time domain for clock source synchronization
US20100207820A1 (en) * 2006-09-05 2010-08-19 Radio Communication Systems Ltd. Distance measuring device
US7925253B2 (en) * 2006-09-08 2011-04-12 Qualcomm Incorporated Radiated performance of a wireless device
DE112009000703T5 (de) * 2008-03-27 2011-02-17 Advantest Corp. Messvorrichtung, Parallelmessvorrichtung, Testvorrichtung, elektronische Anordnung
JP5559142B2 (ja) * 2009-02-27 2014-07-23 古野電気株式会社 位相測定装置、および周波数測定装置
KR101489882B1 (ko) * 2009-05-04 2015-02-05 노키아 솔루션스 앤드 네트웍스 오와이 사용자 장비에 허용된 액세스 권리들에 관하여 셀 및 셀을 서빙하는 라디오 기지국을 사용자 장비에 알림
US8891668B2 (en) * 2011-06-30 2014-11-18 Intel IP Corporation System and method for estimating and correcting phase shift in a wireless communication device
US20140335861A1 (en) * 2013-05-08 2014-11-13 Nokia Siemens Networks Oy Methods and Apparatus for Handover Management

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080152059A1 (en) * 2005-02-01 2008-06-26 Mitsubishi Electric Corporation Inter-Base Station Synchronization System, Synchronization Control Device, and Base Station
WO2010054546A1 (zh) * 2008-11-12 2010-05-20 深圳华为通信技术有限公司 同步方法、基站、网络服务器以及通信系统
CN101478341A (zh) * 2009-02-12 2009-07-08 华为技术有限公司 实现基站时钟同步的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3182769A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455037A (zh) * 2016-09-30 2017-02-22 Tcl集团股份有限公司 增强网络信号的方法、主机设备及路由器
CN110121208A (zh) * 2019-05-14 2019-08-13 东南大学 基于多基站定位的交叉互验时钟同步方法及系统
CN110121208B (zh) * 2019-05-14 2021-04-06 东南大学 基于多基站定位的交叉互验时钟同步方法及系统

Also Published As

Publication number Publication date
US20170223647A1 (en) 2017-08-03
US9999014B2 (en) 2018-06-12
EP3182769A1 (en) 2017-06-21
CN105766035B (zh) 2019-05-17
CN105766035A (zh) 2016-07-13
EP3182769A4 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
TWI680691B (zh) 通道狀態資訊參考訊號無線資源管理測量方法及使用者設備
EP3668205B1 (en) Positioning and measurement reporting method and apparatus
CN106559207B (zh) 移动终端设备、移动处理电路和处理信号的方法
US9106276B2 (en) Method and apparatus for reference signal transmission and reception
EP2911462B1 (en) Time offset acquisition for dual connectivity
EP3353973A1 (en) Mobile terminal device, mobile processing circuit and method of processing signals
US11796625B2 (en) Provision of positioning reference signals
JP6283110B2 (ja) セル同期および同期セルインジケーション
US20150365178A1 (en) System, method, and apparatus for signaling intefering cell information
US9497003B2 (en) Common reference signal configuration for carrier aggregation
US10284393B2 (en) Receiver and method for estimating large-scale channel properties
GB2582788A (en) Methods and apparatus for configuring 5G new radio uplink positioning reference signals
WO2016046771A1 (en) Discovery signal design
CN111480375A (zh) 用于无线网络中的多往返时间(rtt)估计的系统和方法
CN114830737A (zh) 用于使减少带宽的无线设备能够接入小区的方法
WO2016061793A1 (zh) 控制相位同步的方法、装置和系统
CN114208253B (zh) 用于检测交叉链路干扰的设备、方法、装置和计算机可读介质
CN113227819A (zh) 用于异步装置和无时间帧结构的装置处的信号检测的系统和方法
US11985087B2 (en) Methods, systems and antenna reference points of a wireless communication network for synchronizing transmission of signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904606

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014904606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014904606

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE