US20230023414A1 - Methods and devices for treating a disease with biotherapeutics - Google Patents

Methods and devices for treating a disease with biotherapeutics Download PDF

Info

Publication number
US20230023414A1
US20230023414A1 US17/295,275 US201917295275A US2023023414A1 US 20230023414 A1 US20230023414 A1 US 20230023414A1 US 201917295275 A US201917295275 A US 201917295275A US 2023023414 A1 US2023023414 A1 US 2023023414A1
Authority
US
United States
Prior art keywords
psig
ingestible device
dispensable substance
jet
tract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/295,275
Other languages
English (en)
Inventor
Jeffrey A. Shimizu
Mitchell Lawrence Jones
Mark Sasha Drlik
Iman Niknia
Nathan John Muller
Tuyen Nguyen
Christopher Loren Wahl
Edward Mudge
Nicholas Mark Salt
Nia Eleri Stevens
Stuart Robert Abercrombie
Christopher Ian Bunce
Nelson Quintana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biora Therapeutics Inc
Original Assignee
Biora Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biora Therapeutics Inc filed Critical Biora Therapeutics Inc
Priority to US17/295,275 priority Critical patent/US20230023414A1/en
Assigned to TEAM CONSULTING LIMITED reassignment TEAM CONSULTING LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SALT, Nicholas Mark, MUDGE, Edward, ABERCROMBIE, STUART ROBERT, BUNCE, Christopher Ian, STEVENS, Nia Eleri
Assigned to PROGENITY, INC. reassignment PROGENITY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TEAM CONSULTING LIMITED
Assigned to PROGENITY, INC. reassignment PROGENITY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TEAM CONSULTING LIMITED
Assigned to PROGENITY, INC. reassignment PROGENITY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUDGE, Edward, SALT, NICOLAS MARK, ABERCROMBIE, STUART ROBERT, DRLIK, Mark Sasha, BUNCE, Christopher Ian, NIKNIA, Iman, SCHIMIZU, JEFFREY A., STEVENS, Nia Eleri, MULLER, Nathan John, NGUYEN, TUYEN, QUINTANA, NELSON, WAHL, Christopher Loren, JONES, MITCHELL LAWRENCE
Assigned to BIORA THERAPEUTICS, INC. reassignment BIORA THERAPEUTICS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PROGENITY, INC.
Publication of US20230023414A1 publication Critical patent/US20230023414A1/en
Assigned to GLAS TRUST COMPANY LLC, AS COLLATERAL AGENT reassignment GLAS TRUST COMPANY LLC, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIORA THERAPEUTICS, INC.
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • A61M31/002Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/4035Isoindoles, e.g. phthalimide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/69Boron compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/727Heparin; Heparan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/02Sprayers or atomisers specially adapted for therapeutic purposes operated by air or other gas pressure applied to the liquid or other product to be sprayed or atomised
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/241Tumor Necrosis Factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8218Gas operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8275Mechanical
    • A61M2205/8281Mechanical spring operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1042Alimentary tract
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1042Alimentary tract
    • A61M2210/1053Stomach
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1042Alimentary tract
    • A61M2210/106Small intestine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1042Alimentary tract
    • A61M2210/1064Large intestine

Definitions

  • the disclosure generally relates to ingestible devices capable of delivering a dispensable substance, such as a therapeutic agent, as well as related components, systems and methods.
  • the gastrointestinal (GI) tract generally provides a therapeutic medium for an individual's body. At times, it is desirable to dispense therapeutic agents to the GI tract to treat a medical condition.
  • the disclosure provides ingestible devices that can directly deliver therapeutic agents to desired tissue(s) of the GI tract of a subject, such as the submucosa, the mucosa, and/or the mucus layer of the GI tract, and methods of using the same.
  • the ingestible devices can deliver therapeutic agents in a safe, effective, and reliable manner.
  • the disclosure also provides pharmaceutical compositions for use in methods of treating a disease or condition in a subject in need thereof.
  • Ingestible devices of the present disclosure are configured to provide at least three different modes of direct delivery of therapeutic agents to the GI tract of a subject, referred to herein as trans-epithelial, epithelial, and topical delivery.
  • Direct delivery refers to a force-driven delivery mechanism.
  • this disclosure relates to trans-epithelial delivery of a therapeutic agent to the GI tract of a subject.
  • the disclosure provides an ingestible device that can directly deliver a therapeutic agent past the epithelial cell layer of the mucosa of the GI tract of a subject to yield systemic exposure of the therapeutic agent to the subject.
  • the ingestible device is configured to directly deliver the therapeutic agent past the epithelial cell layer of the mucosa and into the submucosa and/or into a region of the mucosa beneath the epithelial layer (e.g., into the lamina limba) of the GI tract, where it is available for systemic uptake.
  • systemic exposure of the therapeutic agent is achieved by trans-epithelial delivery of the therapeutic agent into the submucosa and/or into a region of the mucosa beneath the epithelial layer (e.g., into the lamina basement) of the small intestine, for example, in the duodenum, the jejunum, and/or the ileum.
  • the trans-epithelial delivery directly delivers the therapeutic agent into the submucosa submucosa and/or into a region of the mucosa beneath the epithelial layer (e.g., into the lamina basement) of the GI tract such that the percent systemic uptake of the trans-epithelial delivery relative to intravenous or subcutaneous administration is at least about 10% (e.g., at least about 15%, at least about 20%, at least about 25% or more).
  • trans-epithelial delivery to the submucosa and/or into a region of the mucosa beneath the epithelial layer (e.g., into the lamina propria) of the GI tract is achieved by using an appropriate value for one or more performance parameters associated with the ingestible device configured for such use.
  • Such performance parameters include, for example, internal pressure of the ingestible device, peak fluid pressure of the ingestible device, nozzle pressure of the ingestible device, peak jet power of the dispensable substance (e.g., a pharmaceutical formulation containing the therapeutic agent) delivered from the ingestible device, peak jet velocity of the dispensable substance (e.g., a pharmaceutical formulation containing the therapeutic agent) delivered from the ingestible device, peak jet pressure of the dispensable substance (e.g., a pharmaceutical formulation containing the therapeutic agent) delivered from the ingestible device, peak jet force of the dispensable substance (e.g., a pharmaceutical formulation containing the therapeutic agent) delivered from the ingestible device, peak jet stable length of the dispensable substance (e.g., a pharmaceutical formulation containing the therapeutic agent) delivered from the ingestible device, nozzle shape, nozzle length and nozzle diameter.
  • the ingestible device is configured for trans-epithelial delivery and may provide/exhibit one or more of the following properties.
  • the ingestible device is configured to deliver the dispensable substance to tissue of the GI tract of a subject at a peak jet power of from about one Watt to about three Watts.
  • the ingestible device has a drive force generator that provides an internal pressure of from about 225 psig to about 400 psig.
  • the ingestible device contains the dispensable substance at a peak fluid pressure of from about 200 psig to about 375 psig.
  • the ingestible device is configured to deliver the dispensable substance at a peak jet velocity of from about 25 meters per second to about 45 meters per second.
  • the ingestible device is configured to deliver the dispensable substance as a jet having jet stable length of at least about one millimeter.
  • the ingestible device is configured to deliver the dispensable substance to tissue of the GI tract of a subject at a peak jet pressure of from about 100 psig to about 250 psig.
  • the ingestible device is configured to deliver the dispensable substance to tissue of the GI tract of a subject at a peak jet force of from about 0.09 N to about 0.15 N.
  • the ingestible device has one or more nozzles, each having a diameter of from about 0.1 millimeter to about two millimeters and/or a length of from about one millimeter to about five millimeters.
  • this disclosure relates to epithelial delivery of a therapeutic agent to the GI tract of a subject.
  • the disclosure provides an ingestible device configured to directly deliver the therapeutic agent into the mucus and/or onto the epithelial layer, but not past the epithelial layer of the mucosa, of the small or large intestine, from which it can act locally, and in some cases away from the site of direct delivery.
  • the device is configured so that the therapeutic agent is delivered from the device with sufficient force to provide the epithelial delivery, the force being lower than that required for trans-epithelial delivery.
  • this disclosure relates to topical delivery of a therapeutic agent to the GI tract of a subject.
  • the disclosure provides an ingestible device configured to deliver the therapeutic agent into the lumen and/or onto the mucus or other surface of the GI tract facing the lumen of the small or large intestine, from which it can act locally, and in some cases away from the site of delivery.
  • the device is configured so that the therapeutic agent is delivered from the device with sufficient force so that the therapeutic agent is delivered topically, the force being lower than that required for the epithelial or the trans-epithelial delivery.
  • the ingestible device can have a streamlined and/or relatively simple mechanical design, be relatively small, and/or be inexpensive to manufacture.
  • the device protects a dispensable substance (e.g., a therapeutic agent, or a pharmaceutical formulation comprising the therapeutic agent) until the device reaches a desired location of the subject.
  • a dispensable substance e.g., a therapeutic agent, or a pharmaceutical formulation comprising the therapeutic agent
  • the device can be designed to deliver dispensable substance to a desired location in the GI tract of a subject, and the device can be designed so that the dispensable substance is not subject to constituents of the GI tract (e.g., acids, enzymes) prior to reaching the desired location in the GI tract.
  • the device can be designed to deliver dispensable substance such that the therapeutic properties of the dispensable substance are not altered during delivery (e.g., the dispensable substance is a therapeutic agent that binds its therapeutic target after delivery).
  • the present disclosure provides ingestible devices that can directly deliver therapeutic agents to desired tissue(s) of the GI tract of a subject (such as the submucosa, the mucosa, and/or the mucus layer of the GI tract), e.g., to treat a particular class of disease, or a specific disease.
  • desired tissue(s) of the GI tract of a subject such as the submucosa, the mucosa, and/or the mucus layer of the GI tract
  • methods of using the device to deliver the therapeutic agents to desired tissue(s) of the GI tract e.g., to treat a particular class of disease, or a specific disease.
  • disclosures also inherently provide disclosures of corresponding medical uses—that is, disclosures of the recited therapeutic agents for use in a method of treating the recited class of disease, or specific disease, by using the device to deliver the recited agents to desired tissue(s) of the GI tract of a subject.
  • the disclosure provides an ingestible device, comprising: a housing configured to contain a dispensable substance comprising a therapeutic agent; and an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, wherein the ingestible device is configured to directly deliver the dispensable substance to the GI tract of a subject via trans-epithelial delivery.
  • the ingestible device may be configured to directly deliver the dispensable substance into the lamina intestinal of the GI tract of the subject, and/or the ingestible device may be to directly deliver the dispensable substance into the submucosa of the GI tract of the subject.
  • the disclosure provides an ingestible device, comprising: a housing configured to contain a dispensable substance comprising a therapeutic agent; and an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, wherein the ingestible device is configured to deliver the dispensable substance to tissue of the GI tract of a subject as a jet with a peak jet power of from about one Watt to about three Watts.
  • the peak jet power may be from about 1.3 Watts to about 2.8 Watts, from about 1.5 Watts to about 2.5 Watts, or about 2.3 Watts.
  • the disclosure provides an ingestible device, comprising: a housing configured to contain a dispensable substance comprising a therapeutic agent; and an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, wherein the ingestible device is configured to provide an internal pressure of from about 225 psig to about 425 psig.
  • the internal pressure may be from about 250 psig to about 400 psig, or from about 300 psig to about 375 psig.
  • the disclosure provides an ingestible device, comprising: a housing configured to contain a dispensable substance comprising a therapeutic agent; and an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, wherein the ingestible device is configured to contain the dispensable substance at a peak fluid pressure of from about 200 psig to about 400 psig.
  • the ingestible device may be configured to deliver the dispensable substance at a mean jet velocity of from about 25 m/s to about 35 m/s.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of: from about 200 psig to about 375 psig; at least about 220 psig; from about 220 psig to about 375 psig; from about 220 psig to about 350 psig; at least about 225 psig; from about 225 psig to about 375 psig; from about 225 psig to about 350 psig; from about 225 psig to about 325 psig; at least about 250 psig; from about 250 psig to about 375 psig; from about 250 psig to about 350 psig; from about 250 psig to about 325 psig; at least about 275 psig; from about 275 psig to about 375 psig; from about 275 psig to about 350 psig; from about 275 psig to about 325 psig; from about 280 psig to about 320 psig; at least about 300 psig;
  • the ingestible device may be configured to deliver the dispensable substance at a mean jet velocity of from about 20 m/s to about 30 m/s, from about 25 m/s to about 30 m/s, or from about 27 m/s to about 30 m/s or from about 28 m/s to about 30 m/s.
  • the opening in the ingestible device may comprise a nozzle opening having a diameter of from about 0.1 mm to about 2 mm, from about 0.1 mm to about 1 mm, from about 0.2 mm to about 0.8 mm, from about 0.3 mm to about 0.5 mm, from about 0.3 mm to about 0.4 mm, or about 0.35 mm.
  • the ingestible device may be 1 to 5 nozzles, 2 to 4 nozzles or 2 nozzles.
  • the ingestible device may be configured to release a dispensable substance volume ranging from about 50 microliters to about 500 microliters, from about 100 microliters to about 450 microliters, from about 200 microliters to about 400 microliters, from 250 microliters to about 400 microliters, or from about 300 microliters to about 400 microliters.
  • the disclosure provides an ingestible device, comprising: a housing configured to contain a dispensable substance comprising a therapeutic agent; and an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, wherein the ingestible device is configured to contain the dispensable substance at a peak fluid pressure of from about 150 psig to about 350 psig.
  • the ingestible device may be configured to deliver the dispensable substance at a mean jet velocity of from about 20 m/s to about 30 m/s, about 20 m/s, 21 m/s, 22 m/s 23 m/s, 24 m/s, 25 m/s, 26 m/s, 27 m/s, 28 m/s, 29 m/s or 30 m/s.
  • the disclosure provides an ingestible device, comprising: a housing configured to contain a dispensable substance comprising a therapeutic agent; and an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, wherein the ingestible device is configured to deliver the dispensable substance at a peak jet velocity of from about 25 meters per second to about 45 meters per second.
  • the peak jet velocity may be from about 30 meters per second to about 42 meters per second, or from about 34 meters per second to about 39 meters per second.
  • the disclosure provides an ingestible device, comprising: a housing configured to contain a dispensable substance comprising a therapeutic agent; and an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, wherein the ingestible device is configured to deliver the dispensable substance as a jet having jet stable length of at least about 0.5 millimeter.
  • the jet stable length may be from 0.5 millimeter to 20 millimeters, from about 2 millimeters to 20 millimeters, or from about 5 millimeters to 20 millimeters.
  • the disclosure provides an ingestible device, comprising: a housing configured to contain a dispensable substance comprising a therapeutic agent; and an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, wherein the ingestible device is configured to deliver the dispensable substance to tissue of the GI tract of a subject at a peak jet pressure of from about 100 psig to about 250 psig.
  • the peak jet pressure may be from about 140 psig to about 225 psig, or from about 180 psig to about 205 psig.
  • the disclosure provides an ingestible device, comprising: a housing configured to contain a dispensable substance comprising a therapeutic agent; and an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, wherein the ingestible device is configured to deliver the dispensable substance to tissue of the GI tract of a subject at a peak jet force of from about 0.09 N to about 0.15 N.
  • the ingestible device may be configured to deliver the dispensable substance to tissue of the GI tract of a subject at a peak jet force of from about 0.1 N to about 0.14 N, or from about 0.11 N to about 0.14 N.
  • the ingestible device may comprises a nozzle, and the opening may comprise a nozzle opening.
  • the nozzle may have a nozzle diameter of from about 0.1 millimeter to about two millimeters, and/or a nozzle length of from about one millimeter to about five millimeters.
  • the ingestible device may comprise a plurality of nozzles.
  • the nozzles may be directed perpendicular to a longitudinal axis of the ingestible device.
  • the nozzles may be uniformly distributed relative to a circumference of the ingestible device.
  • the plurality of nozzles may comprise an even number of nozzles or an odd number of nozzles.
  • the plurality of nozzles comprises two nozzles.
  • the ingestible device may be configured to deliver from about 20 microliters to about 800 microliters of the dispensable substance through each nozzle.
  • the ingestible device may further include the dispensable substance, wherein the dispensable substance comprises a fluid.
  • the ingestible device may further include the dispensable substance, wherein the dispensable substance comprises a fluid.
  • the dispensable substance may comprise a therapeutic agent.
  • the dispensable substance may comprise a solution.
  • the dispensable substance may comprise a suspension.
  • the dispensable substance may have a viscosity of less than or equal to 10 cP.
  • the dispensable substance may have a viscosity of at least about 0.8 cP.
  • the dispensable substance may a viscosity of at most about 8 cP or at most about 9 cP.
  • the jet may have an average jet diameter of from about 0.1 millimeter to about two millimeters.
  • the jet may have a jet stable length of at least about 0.5 millimeter.
  • the ingestible device may contain from about 50 microliters to about 800 microliters of the dispensable substance.
  • the ingestible device may be configured to deliver from about 50 microliters to about 800 microliters of the dispensable substance.
  • the ingestible device may further comprise a drive force generator configured to apply a force to the dispensable substance to force the dispensable substance out of the ingestible device via the opening.
  • the drive force generator may comprise a member selected from the group consisting of a spring, a gas cell, a compressed gas, and a liquid-gas mixture.
  • the ingestible device may comprise chemicals configured to react to provide a gas as the drive force generator.
  • the drive force generator may be configured to provide an internal pressure of from about 225 psig to about 400 psig.
  • the ingestible device may further comprise a drive coupling configured to transfer force from the drive force generator to the dispensable substance.
  • the drive coupling may comprise a member selected from the group consisting of a piston and a membrane.
  • the ingestible device may further comprise a restraining mechanism having a first state and a second state, wherein, when the restraining mechanism is in its first state, the restraining mechanism prevents the dispensable substance from being delivered out of the ingestible device. In some embodiments, when the restraining mechanism is in its second state, the restraining mechanism does not prevent the dispensable substance from being delivered out of the ingestible device.
  • the ingestible device may be configured so that, when the restraining mechanism is in its first state, the drive force generator does not apply an internal pressure to the dispensable substance.
  • the ingestible device may be configured so that, when the restraining mechanism is in its first state, the drive force generator applies an internal pressure to the dispensable substance.
  • the restraining mechanism may comprise a material selected from the group consisting of a degradable material, an erodible material and a dissolvable material.
  • the restraining mechanism may comprise an enteric material.
  • the restraining mechanism may comprise at least one member selected from the group consisting of a seal, a pin, a dowel, a clasp, a clamp, a flange, and a rivet.
  • the restraining mechanism may comprise a cap. The cap may be located at a distal end of the ingestible device.
  • the ingestible device may be configured to directly deliver the dispensable substance to the GI tract of a subject via trans-epithelial delivery.
  • the ingestible device may be configured to deliver the dispensable substance to tissue of the GI tract of a subject as a jet with a peak jet power of from about one Watt to about three Watts.
  • the ingestible device may be configured to provide an internal pressure of from about 225 psig to about 425 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 200 psig to about 375 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 150 psig to about 350 psig.
  • the ingestible device may be configured to deliver the dispensable substance at a peak jet velocity of from about 25 meters per second to about 45 meters per second.
  • the ingestible device may be configured to deliver the dispensable substance as a jet having jet stable length of at least about 0.5 millimeter.
  • the ingestible device may be configured to deliver the dispensable substance at a peak jet pressure of from about 100 psig to about 250 psig.
  • the ingestible device may be configured to deliver the dispensable substance to tissue of the GI tract of a subject at a peak jet force of from about 0.09 N to about 0.15.
  • the housing has a length of from about 20 mm to about 28 mm.
  • the housing may have a diameter of from about 7 mm to about 12 mm.
  • the housing may comprise a wall having a wall thickness of from about 0.5 mm to about 1 mm.
  • a ratio of the length of the housing to the width of the housing may be selected from the group consisting of: from about 0.75 to about 4; from about 1 to about 3; and from about 1 to about 2.
  • the housing comprises end regions that are spline-shaped; the housing comprises end regions that are spherical; the housing comprises an end round of from about 1 mm to about 2 mm; the housing comprises an end round of from about 4 mm to about 4.5 mm; the housing comprises an end round that is from about 4.9 to about 5 mm; and the housing comprises an end round of from about 5.4 mm to about 5.6 mm.
  • the housing may have an internal volume of from about 700 ⁇ L to about 1700 ⁇ L.
  • the housing may have a fluid volume from about 50 ⁇ L to about 800 ⁇ L.
  • the disclosure provides an ingestible device, comprising: a housing;
  • an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening; a drive force generator configured to provide a force to the dispensable substance to deliver the dispensable substance through the opening; a drive force coupling configured to transfer the force from the drive force generator to the dispensable substance; and a restraining mechanism having a first state in which the restraining mechanism prevents the dispensable substance from being delivered out of the ingestible device.
  • the drive force generator may comprise a member selected from the group consisting of a spring, a gas cell, a compressed gas, and a liquid-gas mixture.
  • the ingestible device may comprise chemicals configured to react to provide a gas as the drive force generator.
  • the drive force generator may be configured to provide an internal pressure of from about 225 psig to about 400 psig.
  • the drive coupling may comprise a member selected from the group consisting of a piston and a membrane.
  • the drive force generator when the restraining mechanism is in its first state, the drive force generator does not apply an internal pressure to the dispensable substance. In certain embodiments, when the restraining mechanism is in its first state, the drive force generator applies an internal pressure to the dispensable substance.
  • the restraining mechanism may have second state different from its first state, and, when the restraining mechanism is in its second state, the restraining mechanism does not prevent the dispensable substance from being delivered out of the ingestible device.
  • the restraining mechanism may comprise a material selected from the group consisting of a degradable material, an erodible material and a dissolvable material.
  • the restraining mechanism may comprise an enteric material.
  • the restraining mechanism may comprise at least one member selected from the group consisting of a seal, a pin, a band, a dowel, a clasp, a clamp, a flange, and a rivet.
  • the restraining mechanism may comprise a cap. The cap may be located at a distal end of the ingestible device.
  • the housing may have a length of from about 20 mm to about 28 mm, from about 21 mm to about 27 mm, about 26 mm, or about 23.3 mm.
  • the housing may have a diameter of from about 7 mm to about 12 mm, from about 8 mm to about 11 mm, about 11 mm, about 9.9 mm, or about 8.5 mm.
  • a ratio of the length of the housing to the width of the housing may be from about 0.75 to about 4, from about 1 to about 3, or from about 1 to about 2.
  • the housing may comprise a wall having a wall thickness of from about 0.5 mm to about 1 mm, from about 0.6 mm to about 0.9 mm, about 0.8 mm, or about 0.7 m.
  • the housing may have end regions that are spline-shaped or that are spherical.
  • the housing may comprise an end round of from about 1 mm to about 2 mm, about 1.5 mm, from about 4 mm to about 4.5 mm, about 4.25 mm, from about 4.9 to about 5 mm, about 4.95 mm, from about 5.4 mm to about 5.6 mm, or about 5.5 mm.
  • the housing may comprise an internal volume of from about 700 ⁇ L to about 1700 ⁇ L, from about 750 ⁇ L to about 1650 ⁇ L, from about 800 ⁇ L to about 1600 ⁇ L, or from about 850 ⁇ L to about 1550 ⁇ L.
  • the housing may comprise a fluid volume of from about 50 ⁇ L to about 800 ⁇ L, from about 100 ⁇ L to about 600 ⁇ L, or from about 200 ⁇ L to about 400 ⁇ L.
  • the ingestible device may comprise a plurality of openings in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening.
  • the plurality of openings may comprise an even number of openings or an odd number of openings.
  • the plurality of openings may comprise a member selected from group consisting of 2 openings, 3 openings, 4 openings, 5 openings, 6 openings, 7 openings and 8 openings.
  • Each opening may comprise a nozzle opening.
  • the opening may comprise a nozzle opening having a diameter from about 0.1 mm to about 2 mm, from about 0.1 mm to about 1 mm, from about 0.2 mm to about 0.8 mm, or from about 0.3 mm to about 0.4 mm.
  • the ingestible device may comprise a nozzle having a length of from about 1 mm to about 5 mm, from about 2 mm to about 5 mm, or from about 3 mm to about 5 mm.
  • the ingestible device may comprise a plurality of openings in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, and the ingestible device is configured to provide a delivered fluid volume per opening for delivery of dispensable substance of from about 25 ⁇ L to about 400 ⁇ L.
  • the ingestible device may comprise a plurality of openings in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, and the ingestible device is configured to provide a delivered fluid volume per opening for delivery of dispensable substance of from about 25 ⁇ L to about 300 ⁇ L.
  • the ingestible device may comprise a plurality of openings in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, and the ingestible device may be configured to provide a delivered fluid volume per opening for delivery of dispensable substance of from about 100 ⁇ L to about 300 ⁇ L.
  • the ingestible device may further comprise the dispensable substance.
  • the dispensable substance may comprise a fluid.
  • the dispensable substance may comprise a liquid.
  • the dispensable substance may comprise a therapeutic agent.
  • the dispensable substance may comprise a solution.
  • the dispensable substance may comprise a suspension.
  • the ingestible device may be configured to directly deliver the dispensable substance to the GI tract of a subject via trans-epithelial delivery.
  • the ingestible device may be configured to deliver the dispensable substance to tissue of the GI tract of a subject as a jet with a peak jet power of from about one Watt to about three Watts.
  • the ingestible device may be configured to ingestible device is configured to provide an internal pressure of from about 225 psig to about 425 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 200 psig to about 375 psig.
  • the ingestible device may be configured to deliver the dispensable substance at a peak jet velocity of from about 25 meters per second to about 45 meters per second.
  • the ingestible device may be configured to deliver the dispensable substance as a jet having jet stable length of at least about 0.5 millimeter.
  • the ingestible device may be configured to deliver the dispensable substance at a peak jet pressure of from about 100 psig to about 250 psig.
  • the ingestible device may be configured to deliver the dispensable substance to tissue of the GI tract of a subject at a peak jet force of from about 0.09 N to about 0.15.
  • the disclosure provides an ingestible device, comprising: a housing configured to contain a dispensable substance comprising a therapeutic agent, wherein the dispensable substance is a fluid; and an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, wherein the ingestible device is configured for trans-epithelial delivery of the dispensable subject to the GI tract of a subject as a jet.
  • the ingestible device may be configured to provide an internal pressure of from about 220 psig to about 420 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 200 psig to about 400 psig.
  • the ingestible device may be configured to provide an internal pressure of from about 220 psig to about 395 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 200 psig to about 375 psig.
  • the ingestible device may be configured to provide an internal pressure of from about 220 psig to about 350 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 200 psig to about 330 psig.
  • the ingestible device may be configured to provide an internal pressure of from about 225 psig to about 400 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 205 psig to about 380 psig.
  • the ingestible device may be configured to provide an internal pressure of from about 230 psig to about 370 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 210 psig to about 350 psig.
  • the ingestible device may be configured to provide an internal pressure of from about 240 psig to about 370 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 220 psig to about 350 psig.
  • the ingestible device may be configured to provide an internal pressure of from about 250 psig to about 375 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 230 psig to about 355 psig.
  • the ingestible device may be configured to provide an internal pressure of from about 250 psig to about 350 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 230 psig to about 330 psig.
  • the ingestible device may be configured to provide an internal pressure of from about 270 psig to about 370 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 250 psig to about 350 psig.
  • the ingestible device may be configured to provide an internal pressure of from about 270 psig to about 350 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 250 psig to about 330 psig.
  • the ingestible device may be configured to provide an internal pressure of from about 300 psig to about 340 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 280 psig to about 320 psig.
  • the ingestible device may be configured to provide an internal pressure of from about 310 psig to about 340 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 290 psig to about 320 psig.
  • the ingestible device may be configured to provide an internal pressure of from about 320 psig to about 340 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of from about 300 psig to about 320 psig.
  • the ingestible device may be configured to provide an internal pressure of about 220 psig, about 230 psig, about 240 psig, about 250 psig, about 260 psig, about 270 psig, about 280 psig, about 290 psig, about 300 psig, about 310 psig, about 320 psig, about 330 psig, about 340 psig or about 350 psig.
  • the ingestible device may be configured to contain the dispensable substance at a peak fluid pressure of about 200 psig, about 210 psig, about 220 psig, about 230 psig, about 240 psig, about 250 psig, about 260 psig, about 270 psig, about 280 psig, about 290 psig, about 300 psig, about 310 psig, about 320 psig or about 330 psig.
  • the ingestible device may be configured to deliver the dispensable substance as the jet with a peak jet velocity of from about 25 m/s to about 45 m/s, from about 25 m/s to about 40 m/s, from about 30 m/s to about 40 m/s, from about 32 m/s to about 40 m/s, or from about 35 m/s to about 40 m/s.
  • the ingestible device may be configured to deliver the dispensable substance to the GI tract of the subject as the jet with a peak jet power of from about 1 Watt to about 3 Watts.
  • the ingestible device may be configured to contain the dispensable substance as the jet with a peak fluid pressure of from about 200 psig to about 375 psig.
  • the ingestible device may be configured to deliver the dispensable substance to the GI tract of the subject as the jet with a peak jet pressure of from about 100 psig to about 250 psig, or with a peak jet force of from about 0.09 N to about 0.15 N.
  • the ingestible device of claim 191 or claim 194 wherein the ingestible device is configured may be configured to deliver the dispensable substance to the GI tract of the subject as the jet with a peak jet power of from about 1.3 Watts to about 2.8 Watts.
  • the ingestible device may be configured to contain the dispensable substance as the jet with a peak fluid pressure of from about 220 psig to about 350 psig.
  • the ingestible device may be configured to deliver the dispensable substance to the GI tract of the subject as the jet with a peak jet pressure of from about 140 psig to about 225 psig, or with a peak jet force of from about 0.1 N to about 0.14 N.
  • the ingestible device o may be configured to deliver the dispensable substance to the GI tract of the subject as the jet with a peak jet power of from about 1.5 Watts to about 2.5 Watts.
  • the ingestible device may be configured to contain the dispensable substance as the jet with a peak fluid pressure of from about 280 psig to about 320 psig.
  • the ingestible device may be configured to deliver the dispensable substance to the GI tract of the subject as the jet with a peak jet pressure of from about 180 psig to about 205 psig, or with a peak jet force of from about 0.11 N to about 0.14 N.
  • the ingestible device may be configured to deliver the dispensable substance as the jet with a mean jet velocity of from about 18 m/s to about 30 m/s, from about 19 m/s to about 30 m/s, from about 20 m/s to about 30 m/s, from about 21 m/s to about 30 m/s, from about 22 m/s to about 30 m/s, from about 23 m/s to about 30 m/s, from about 24 m/s to about 30 m/s, from about 25 m/s to about 30 m/s, from about 25 m/s to about 28 m/s, about 20 m/s, 21 m/s, 22 m/s 23 m/s, 24 m/s, 25 m/s, 26 m/s, 27 m/s, 28 m/s, 29 m/s or 30 m/s.
  • the ingestible device may be configured to deliver the dispensable substance as the jet with a mean jet velocity of from about 25 m/s to about 35 m/s.
  • the opening in the housing is a plurality of openings, each opening comprising a nozzle, or the opening in the housing comprises a plurality of nozzles; and each nozzle has an orifice to fluidly connect the dispensable substance to the environment outside the housing and to release the dispensable substance from the ingestible device as a jet.
  • Each nozzle orifice may be directed perpendicular to a longitudinal axis of the ingestible device.
  • Each nozzle orifice may have a diameter of from about 0.1 mm to about 2 mm, each jet when dispensed from each nozzle orifice has a diameter of from about 0.1 mm to about 2 mm, or both.
  • Each nozzle orifice may have a diameter of from about 0.1 mm to about 1 mm, each jet when dispensed from each nozzle orifice has a diameter of from about 0.1 mm to about 1 mm, or both.
  • Each nozzle orifice may have a diameter of from about 0.2 mm to about 0.8 mm, each jet when dispensed from each nozzle has a diameter of from about 0.2 mm to about 0.8 mm, or both.
  • Each nozzle orifice may have a diameter of from about 0.3 mm to about 0.5 mm, each jet when dispensed from each nozzle may have a diameter of from about 0.3 mm to about 0.5 mm, or both.
  • Each nozzle orifice may have a diameter of from about 0.3 mm to about 0.4 mm, each jet when dispensed from each nozzle may have a diameter of from about 0.3 mm to about 0.4 mm, or both.
  • Each nozzle orifice may have a diameter of about 0.35 mm, each jet when dispensed from each nozzle may have a diameter of about 0.35 mm, or both.
  • the ingestible device may be configured to deliver the dispensable substance as the jet with a jet stable length of at least about 0.5 mm.
  • the ingestible device may be configured to deliver the dispensable substance as the jet with a jet stable length of from about 0.5 mm to about 20 mm.
  • the ingestible device may be configured to deliver the dispensable substance as the jet with a jet stable length of from about 2 mm to about 20 mm.
  • the ingestible device may be configured to deliver the dispensable substance as the jet with a jet stable length of from about 5 mm to about 20 mm.
  • the ingestible device may comprise at least two nozzles, and the at least two nozzles may be uniformly distributed relative to a circumference of the ingestible device.
  • the ingestible device may comprise an even number of nozzles or an odd number of nozzles.
  • the ingestible device may comprise 2 nozzles, 3 nozzles, 4 nozzles, 5 nozzles, 6 nozzles, 7 nozzles or 8 nozzles.
  • Each nozzle may have a length of from about 0.5 mm to about 5 mm, about 1 mm to about 5 mm, about 2 mm to about 5 mm, or about 3 mm to about 5 mm.
  • Each nozzle may have a length of from about 1 mm to about 4 mm.
  • Each nozzle may have a length of from about 1 mm to about 3 mm.
  • the ingestible device may be configured to release a dispensable substance volume ranging from about 50 microliters to about 800 microliters, about 50 microliters to about 500 microliters, from about 100 microliters to about 450 microliters, from about 200 microliters to about 400 microliters, from 250 microliters to about 400 microliters, or from about 300 microliters to about 400 microliters.
  • the ingestible device may be configured to release a dispensable substance volume ranging from about 200 microliters to about 400 microliters.
  • the ingestible device may comprise: a drive force generator configured to provide a force to the dispensable substance to deliver the dispensable substance through the opening or nozzle orifice; a drive force coupling configured to transfer the force from the drive force generator to the dispensable substance; and a restraining mechanism having a first state in which the restraining mechanism prevents the dispensable substance from being delivered out of the ingestible device; and a second state in which the restraining mechanism does not prevent the dispensable substance from being delivered out of the ingestible device.
  • the drive force generator when the restraining mechanism is in its first state, the drive force generator does not apply an internal pressure to the dispensable substance.
  • the drive force generator when the restraining mechanism is in its first state, applies an internal pressure to the dispensable substance.
  • the drive force generator may comprise a member selected from the group consisting of a spring, a gas cell, a compressed gas, and a liquid-gas mixture.
  • the ingestible device may comprise chemicals configured to react to provide a gas as the drive force generator.
  • the drive force generator may be configured to provide the internal pressure.
  • the drive coupling may comprise a member selected from the group consisting of a piston and a membrane.
  • the restraining mechanism may have second state different from its first state, and, when the restraining mechanism is in its second state, the restraining mechanism does not prevent the dispensable substance from being delivered out of the ingestible device.
  • the restraining mechanism may comprise a material selected from the group consisting of a degradable material, an erodible material and a dissolvable material.
  • the restraining mechanism may comprise an enteric material.
  • the restraining mechanism may comprise at least one member selected from the group consisting of a seal, a pin, a band, a dowel, a clasp, a clamp, a flange, and a rivet.
  • the restraining mechanism may comprise a cap. The cap may be located at a distal end of the ingestible device.
  • the housing may have a length of from about 20 mm to about 28 mm, from about 21 mm to about 27 mm, about 26 mm, or about 23.3 mm.
  • the housing may have a diameter of from about 7 mm to about 12 mm, from about 8 mm to about 11 mm, about 11 mm, about 9.9 mm, or about 8.5 mm.
  • the housing may comprise a wall having a wall thickness of from about 0.5 mm to about 1 mm, from about 0.6 mm to about 0.9 mm, about 0.8 mm, or about 0.7 mm.
  • the housing may have end regions that are spline-shaped or that are spherical.
  • the housing may have an end round of from about 1 mm to about 2 mm, about 1.5 mm, from about 4 mm to about 4.5 mm, about 4.25 mm, from about 4.9 to about 5 mm, about 4.95 mm, from about 5.4 mm to about 5.6 mm, or about 5.5 mm.
  • the housing has end regions that are spline-shaped; the housing has end regions that are spherical; the housing has an end round of from about 1 mm to about 2 mm; the housing has an end round of from about 4 mm to about 4.5 mm; the housing has an end round that is from about 4.9 to about 5 mm; and the housing has an end round of from about 5.4 mm to about 5.6 mm.
  • the housing may have an internal volume of from about 700 microliters to about 1700 microliters, from about 750 microliters to about 1650 microliters, from about 800 microliters to about 1600 microliters, or from about 850 microliters to about 1550 microliters.
  • the ingestible device may have a fluid volume from about 50 microliters to about 800 microliters, from about 100 microliters to about 600 microliters, or from about 200 microliters to about 400 microliters.
  • the ingestible device may be configured to deliver from about 20 microliters to about 800 microliters of the dispensable substance through each opening or nozzle orifice, from about 25 microliters to about 400 microliters of the dispensable substance through each opening or nozzle orifice, from about 25 microliters to about 300 microliters of the dispensable substance through each opening or nozzle orifice, or from about 100 microliters to about 300 microliters of the dispensable substance through each nozzle.
  • a ratio of the length of the housing to the width of the housing may be from about 0.75 to about 4, from about 1 to about 3, or from about 1 to about 2.
  • the ingestible device may be configured as a 00 capsule.
  • the ingestible device may be configured as a 000 capsule.
  • the disclosure provides a method, comprising: using an ingestible device to deliver a dispensable substance to the GI tract of the subject.
  • the disclosure provides a method, comprising: using an ingestible device to directly deliver a dispensable substance to the GI tract of a subject via trans-epithelial delivery.
  • the method may comprise using the ingestible device to directly deliver the dispensable substance into the lamina intestinal of the GI tract of the subject, and/or using the ingestible device to directly deliver the dispensable substance into the submucosa of the GI tract of the subject.
  • the disclosure provides a method, comprising: using an ingestible device to directly deliver a dispensable substance to tissue of the GI tract of a subject as a jet with a peak jet power of from about one Watt to about three Watts.
  • the peak jet power may be from about 1.3 Watts to about 2.8 Watts, from about 1.5 Watts to about 2.5 Watts, or about 2.3 Watts.
  • the disclosure provides a method, comprising: using an ingestible device to deliver a dispensable substance to the GI tract of a subject as a jet having a peak jet velocity of from about 25 meters per second to about 45 meters per second.
  • the peak jet velocity may of the jet be from about 30 meters per second to about 42 meters per second, or from about 34 meters per second to about 39 meters per second.
  • the disclosure provides a method, comprising: using an ingestible device to deliver a dispensable substance to the GI tract of a subject as a jet having a jet stable length of at least about 0.5 millimeter.
  • the jet may have jet stable length of from 0.5 millimeter to 20 millimeters, from about 2 millimeters to 20 millimeters, or from about 5 millimeters to 20 millimeters.
  • the disclosure provides a method, comprising: using an ingestible device to deliver a dispensable substance to the GI tract of a subject as a jet having a peak jet pressure of from about 100 psig to about 250 psig.
  • the peak jet pressure may be from about 140 psig to about 225 psig, or from about 180 psig to about 205 psig.
  • the disclosure provides a method, comprising: using an ingestible device to deliver a dispensable substance to the GI tract of a subject as a jet having a peak jet force of from about 0.09 N to about 0.15 N.
  • the peak jet force may be from about 0.1 N to about 0.14 N, or from about 0.11 N to about 0.14 N.
  • the dispensable substance may have a viscosity of less than or equal to 10 cP, at least about 0.8 cP, at most about 8 cP, and/or or at most about 9 cP.
  • the device may be configured as a 00 capsule, or the device may be configured as a 000 capsule.
  • the disclosure provides an ingestible device, comprising: a housing; an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening; a drive force generator configured to provide a force to the dispensable substance to deliver the dispensable substance through the opening; a drive force coupling configured to transfer the force from the drive force generator to the dispensable substance; and a restraining mechanism having a first state in which the restraining mechanism prevents the dispensable substance from being delivered out of the ingestible device, wherein at least one of the following holds: the drive force generator is configured to provide an internal pressure of from about 3.62 psig to about 21.76 psig; and the housing comprises at least 25 openings configured to fluidly connect the dispensable substance to an environment outside the housing via the opening.
  • the drive force generator may comprise a member selected from the group consisting of a spring, a gas cell, a compressed gas, and a liquid-gas mixture.
  • the ingestible device may comprise chemicals configured to react to provide a gas as the drive force generator.
  • the drive force generator may be to provide an internal pressure of from about 3.62 psig to about 21.76 psig.
  • the drive coupling may comprise a member selected from the group consisting of a piston and a membrane.
  • the drive force generator when the restraining mechanism is in its first state, the drive force generator does not apply an internal pressure to the dispensable substance. In certain embodiments, when the restraining mechanism is in its first state, the drive force generator applies an internal pressure to the dispensable substance.
  • the restraining mechanism may have a second state different from its first state, and, when the restraining mechanism is in its second state, the restraining mechanism does not prevent the dispensable substance from being delivered out of the ingestible device.
  • the restraining mechanism may comprise a material selected from the group consisting of a degradable material, an erodible material and a dissolvable material.
  • the restraining mechanism may comprise an enteric material.
  • the restraining mechanism may comprise at least one member selected from the group consisting of a seal, a pin, a band, a dowel, a clasp, a clamp, a flange, and a rivet.
  • the restraining mechanism may comprise a cap. The cap may be located at a distal end of the ingestible device.
  • the housing may have a length of from about 20 mm to about 28 mm. from about 21 mm to about 27 mm, about 26 mm or about 23.3 mm.
  • the housing may have a diameter of from about 7 mm to about 12 mm, from about 8 mm to about 11 mm, about 11 mm, about 9.9 mm, or about 8.5 mm.
  • a ratio of the length of the housing to the width of the housing may be from about 0.75 to about 4, from about 1 to about 3, or from about 1 to about 2.
  • the housing may comprise a wall having a wall thickness of from about 0.5 mm to about 1 mm, from about 0.6 mm to about 0.9 mm, about 0.8 mm, or about 0.7 mm.
  • the housing may comprise end regions that are spline-shaped or end regions that are spherical.
  • the housing may comprise an end round of from about 1 mm to about 2 mm, about 1.5 mm, from about 4 mm to about 4.5 mm, about 4.25 mm, from about 4.9 to about 5 mm, about 4.95 mm, from about 5.4 mm to about 5.6 mm, or about 5.5 mm.
  • the housing may comprise an internal volume of from about 700 ⁇ L to about 1700 ⁇ L, from about 750 ⁇ L to about 1650 ⁇ L, from about 800 ⁇ L to about 1600 ⁇ L, or from about 850 ⁇ L to about 1550 ⁇ L.
  • the housing may comprise a fluid volume from about 50 ⁇ L to about 800 ⁇ L, from about 100 ⁇ L to about 600 ⁇ L, or from about 200 ⁇ L to about 400 ⁇ L.
  • the ingestible may comprise a plurality of openings in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening.
  • the plurality of openings may comprise an even number of openings or an odd number of openings.
  • the plurality of openings may at least 25 openings, and/or the plurality of openings may comprise at most 50 openings.
  • Each opening may comprise a nozzle opening.
  • the opening may comprise a nozzle opening having a diameter from about 1 mm to about 3 mm, at least about 1.5 mm, at least about 2 mm, and/or at most about 2.5 mm.
  • the ingestible device may comprise a nozzle having a length of from about 1 mm to about 5 mm, from about 2 mm to about 5 mm, or from about 3 mm to about 5 mm.
  • the ingestible may comprise a plurality of openings in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, and the ingestible device is configured to provide a delivered fluid volume per opening for delivery of dispensable substance of from about 25 ⁇ L to about 400 ⁇ L.
  • the ingestible device may comprise a plurality of openings in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, and the ingestible device is configured to provide a delivered fluid volume per opening for delivery of dispensable substance of from about 25 ⁇ L to about 300 ⁇ L.
  • The may comprise a plurality of openings in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening, and the ingestible device is configured to provide a delivered fluid volume per opening for delivery of dispensable substance of from about 100 ⁇ L to about 300 ⁇ L.
  • the ingestible may further comprise the dispensable substance.
  • the dispensable substance may comprise a fluid.
  • the dispensable substance may comprise a liquid.
  • the dispensable substance may comprise a therapeutic agent.
  • the dispensable substance may comprise a solution.
  • the dispensable substance may comprise a suspension.
  • the dispensable substance may have a viscosity of less than or equal to 10 cP, of at least about 0.8 cP, of at most about 8 cP, and/or at most about 9 cP.
  • the ingestible may be configured to directly deliver the dispensable substance to the GI tract of a subject via epithelial delivery.
  • the ingestible device may be configured to deliver the dispensable substance to tissue of the GI tract of a subject as a jet with a peak jet power of from about 1 mW to about 4 mW.
  • the ingestible d may be configured to contain the dispensable substance at a peak fluid pressure of from about 3.62 psig to about 21.76 psig.
  • the ingestible device may be configured to deliver the dispensable substance as a jet having a peak jet velocity of from about 2 meters per second to about 20 meters per second.
  • the ingestible device may be configured to deliver the dispensable substance as a jet having a peak jet pressure of from about 2 psig to about 10 psig.
  • the ingestible device o may be configured to deliver the dispensable substance to tissue of the GI tract of a subject as a jet having a peak jet force of from about 0.05 mN to about 2 mN.
  • the ingestible device configured as a 00 capsule.
  • the ingestible device may be configured as a 000 capsule.
  • the disclosure provides a method, comprising: using an ingestible device to directly deliver a dispensable substance to the GI tract of a subject via epithelial delivery.
  • the disclosure provides a method, comprising: using an ingestible device to directly deliver a dispensable substance to tissue of the GI tract of a subject as a jet with a peak jet power of from about 1 mW to about 4 mW.
  • the disclosure provides a method, comprising: using an ingestible device to deliver a dispensable substance to the GI tract of a subject as a jet having a peak jet velocity of from about 2 meters per second to about 20 meters per second.
  • the disclosure provides a method, comprising: using an ingestible device to deliver a dispensable substance to the GI tract of a subject as a jet having a peak jet force of from about 0.05 mN to about 2 mN.
  • the disclosure provides a method, comprising: using an ingestible device to directly deliver a dispensable substance to the GI tract of a subject via epithelial delivery, wherein the ingestible device comprises: a housing; an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening; a drive force generator configured to provide a force to the dispensable substance to deliver the dispensable substance through the opening; a drive force coupling configured to transfer the force from the drive force generator to the dispensable substance; and a restraining mechanism having a first state in which the restraining mechanism prevents the dispensable substance from being delivered out of the ingestible device.
  • the drive force generator may comprise a member selected from the group consisting of a spring, a gas cell, a compressed gas, and a liquid-gas mixture.
  • the ingestible device may comprise chemicals configured to react to provide a gas as the drive force generator.
  • the drive coupling may comprise a member selected from the group consisting of a piston and a membrane.
  • the drive force generator when the restraining mechanism is in its first state, the drive force generator does not apply an internal pressure to the dispensable substance. In certain embodiments, when the restraining mechanism is in its first state, the drive force generator applies an internal pressure to the dispensable substance.
  • the restraining mechanism may have second state different from its first state, and, when the restraining mechanism is in its second state, the restraining mechanism does not prevent the dispensable substance from being delivered out of the ingestible device.
  • the restraining mechanism may comprise a material selected from the group consisting of a degradable material, an erodible material and a dissolvable material.
  • the restraining mechanism may comprise an enteric material.
  • the restraining mechanism may comprise at least one member selected from the group consisting of a seal, a pin, a band, a dowel, a clasp, a clamp, a flange, and a rivet.
  • the restraining mechanism may comprise a cap. The cap may be located at a distal end of the ingestible device.
  • the housing may have a length of from about 20 mm to about 28 mm, from about 21 mm to about 27 mm, about 26 mm, or about 23.3 mm.
  • the housing may have a diameter of from about 7 mm to about 12 mm, from about 8 mm to about 11 mm, about 11 mm, about 9.9 mm, or about 8.5 mm.
  • the housing may comprise a wall having a wall thickness of from about 0.5 mm to about 1 mm, from about 0.6 mm to about 0.9 mm, about 0.8 mm, about 0.7 mm.
  • the housing may comprise end regions that are spline-shaped or that are spherical.
  • the housing may comprise an end round of from about 1 mm to about 2 mm, about 1.5 mm, from about 4 mm to about 4.5 mm, about 4.25 mm, from about 4.9 to about 5 mm, about 4.95 mm, from about 5.4 mm to about 5.6 mm, or about 5.5 mm.
  • the housing may comprise an internal volume of from about 700 ⁇ L to about 1700 ⁇ L, from about 750 ⁇ L to about 1650 ⁇ L, from about 800 ⁇ L to about 1600 ⁇ L, or from about 850 ⁇ L to about 1550 ⁇ L.
  • the housing may comprise a fluid volume from about 50 ⁇ L to about 800 ⁇ L, from about 100 ⁇ L to about 600 ⁇ L, or from about 200 ⁇ L to about 400 ⁇ L.
  • the ingestible device may comprise a plurality of openings in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening.
  • the plurality of openings may comprise an even number of openings or an odd number of openings.
  • the plurality of openings may comprise at least 25 openings, and/or at most 50 openings.
  • Each opening may comprise a nozzle opening.
  • the opening may comprise a nozzle opening having a diameter from about 1 mm to about 3 mm, at least about 1.5 mm, at least about 2 mm, and/or at most about 2.5 mm.
  • the ingestible device may comprise a nozzle having a length of from about 1 mm to about 5 mm, from about 2 mm to about 5 mm, or from about 3 mm to about 5 mm.
  • the dispensable substance may comprise a fluid.
  • the dispensable substance may comprise a liquid.
  • the dispensable substance may comprise a therapeutic agent.
  • the dispensable substance may comprise a solution.
  • the dispensable substance may comprise a suspension.
  • the dispensable substance may have a viscosity of less than or equal to 10 cP, at least about 0.8 cP, at most about 8 cP, and/or or at most about 9 cP.
  • the ingestible device may be configured as a 00 capsule.
  • the ingestible device may be configured as a 000 capsule.
  • the disclosure provides an ingestible device, comprising: a housing comprising first and second housing parts; and a restraining mechanism comprising a material having at least one property selected from the group consisting of selected being degradable, being erodible and being dissolvable, wherein the ingestible device is configured so that: when the restraining mechanism is in a first state, the restraining mechanism has sufficient strength so that the first and second housing parts are connected such that a dispensable substance is storable in the housing at a fluid pressure that is greater than 0 psig; and when the restraining mechanism is in a second state in which the material is at least partially degraded, eroded and/or dissolved, the restraining mechanism has reduced strength such that the first and second housing parts are sufficiently disconnected so that at least a portion of the dispensable substance leaves the ingestible device.
  • the fluid pressure may be greater than 5 psig.
  • the fluid pressure may be at most about 50 psig.
  • the fluid pressure may be from about 5 psig to about 50 psig, from about 5 psig to about 30 psig, from about 5 psig to about 20 psig, from about 8 psig to about 20 psig, or from about 10 psig to about 15 psig.
  • the second material may change from its first state to its second state in response to at least one condition selected from the group consisting of temperature, pH, presence of one or more enzymes, and time.
  • the restraining mechanism may comprise an enteric material.
  • the restraining mechanism may comprise at least one member selected from the group consisting of a seal, a pin, a band, a dowel, a clasp, a clamp, a flange, and a rivet.
  • the ingestible device may further comprise a drive force generator configured to provide an internal pressure.
  • the drive force generator may comprise a gas.
  • the gas may comprise a member selected from the group consisting of air, nitrogen, oxygen, carbon dioxide and a noble gas.
  • the drive force generator may comprise a spring.
  • the ingestible device may further comprise a drive coupling configured to transfer the internal pressure to the dispensable fluid.
  • the drive coupling may comprise a member selected from the group consisting of a piston and a membrane.
  • the internal pressure may be greater than 5 psig.
  • the internal pressure may be at most about 50 psig.
  • the internal pressure may be from about 5 psig to about 50 psig, from about 5 psig to about 30 psig, from about 5 psig to about 20 psig, from about 8 psig to about 20 psig, or from about 10 psig to about 15 psig.
  • the housing may have a length of from about 20 mm to about 28 mm, from about 21 mm to about 27 mm, about 26 mm, or about 23.3 mm.
  • the housing may have a diameter of from about 7 mm to about 12 mm, from about 8 mm to about 11 mm, about 11 mm, about 9.9 mm, or about 8.5 mm.
  • a ratio of the length of the housing to the width of the housing may be from about 0.75 to about 4, from about 1 to about 3, or from about 1 to about 2.
  • the ingestible device may be configured as a 00 capsule.
  • the ingestible device may be configured as a 000 capsule.
  • the housing may comprise a wall having a wall thickness of from about 0.5 mm to about 1 mm, from about 0.6 mm to about 0.9 mm, about 0.8 mm, or about 0.7 mm.
  • the housing may comprise end regions that are spline-shaped or that are spherical.
  • the housing may comprise an end round of from about 1 mm to about 2 mm, about 1.5 mm, from about 4 mm to about 4.5 mm, about 4.25 mm, from about 4.9 to about 5 mm, about 4.95 mm, from about 5.4 mm to about 5.6 mm, or about 5.5 mm.
  • the ingestible device may be configured to deliver at least 50% of the dispensable substance into the lumen of the GI tract of a subject.
  • the ingestible device may further comprise the dispensable substance.
  • the dispensable substance may comprise a fluid.
  • the dispensable substance may comprise a liquid.
  • the dispensable substance may comprise a therapeutic agent.
  • the dispensable substance may comprise a solution.
  • the dispensable substance may comprise a suspension.
  • the dispensable substance may have a viscosity of less than or equal to 10 cP, at least about 0.8 cP, at most about 8 cP, or/or at most about 9 cP.
  • the ingestible device may be configured to deliver the dispensable substance to the lumen of the GI tract of a subject via topical delivery.
  • the disclosure provides a method, comprising: using an ingestible to deliver a dispensable substance to the GI tract of the subject.
  • the disclosure provides a method, comprising: using an ingestible device to deliver a dispensable substance to the lumen of the GI tract of a subject via topical delivery, wherein the ingestible device comprises: a housing; an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening; a drive force generator configured to provide a force to the dispensable substance to deliver the dispensable substance through the opening; a drive force coupling configured to transfer the force from the drive force generator to the dispensable substance; and a restraining mechanism having a first state in which the restraining mechanism prevents the dispensable substance from being delivered out of the ingestible device.
  • the drive force generator may comprise a member selected from the group consisting of a spring, a gas cell, a compressed gas, and a liquid-gas mixture.
  • the ingestible device may comprise chemicals configured to react to provide a gas as the drive force generator.
  • the drive coupling may comprise a member selected from the group consisting of a piston and a membrane.
  • the drive force generator when the restraining mechanism is in its first state, the drive force generator does not apply an internal pressure to the dispensable substance. In certain embodiments, when the restraining mechanism is in its first state, the drive force generator applies an internal pressure to the dispensable substance.
  • the restraining mechanism may have second state different from its first state, and, when the restraining mechanism is in its second state, the restraining mechanism does not prevent the dispensable substance from being delivered out of the ingestible device.
  • the restraining mechanism may comprise a material selected from the group consisting of a degradable material, an erodible material and a dissolvable material.
  • the restraining mechanism may comprise an enteric material.
  • the restraining mechanism may comprise at least one member selected from the group consisting of a seal, a pin, a band, a dowel, a clasp, a clamp, a flange, and a rivet.
  • the restraining mechanism may comprise a cap. The cap may be located at a distal end of the ingestible device.
  • the housing may have a length of from about 20 mm to about 28 mm, from about 21 mm to about 27 mm, about 26 mm, or about 23.3 mm.
  • the housing may have a diameter of from about 7 mm to about 12 mm, from about 8 mm to about 11 mm, about 11 mm, about 9.9 mm, or of about 8.5 mm.
  • a ratio of the length of the housing to the width of the housing may be from about 0.75 to about 4, from about 1 to about 3, or from about 1 to about 2.
  • the ingestible device may be configured as a 00 capsule.
  • the ingestible device may be configured as a 000 capsule.
  • the housing may comprise a wall having a wall thickness of from about 0.5 mm to about 1 mm, from about 0.6 mm to about 0.9 mm, about 0.8 mm, or about 0.7 mm.
  • the housing may comprise end regions that are spline-shaped or that are spherical.
  • the housing may comprise an end round of from about 1 mm to about 2 mm, about 1.5 mm, from about 4 mm to about 4.5 mm, about 4.25 mm, from about 4.9 to about 5 mm, about 4.95 mm, from about 5.4 mm to about 5.6 mm, or about 5.5 mm.
  • the housing may have an internal volume of from about 700 ⁇ L to about 1700 ⁇ L, from about 750 ⁇ L to about 1650 ⁇ L, from about 800 ⁇ L to about 1600 ⁇ L, or from about 850 ⁇ L, to about 1550 ⁇ L.
  • the housing may have a fluid volume from about 50 ⁇ L to about 800 ⁇ L, from about 100 ⁇ L to about 600 ⁇ L, or from about 200 ⁇ L to about 400 ⁇ L.
  • the ingestible device may comprise a plurality of openings in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening.
  • the plurality of openings may comprise an even number of openings or an odd number of openings.
  • the plurality of openings may comprise at least 25 openings and/or at most 50 openings.
  • Each opening may comprise a nozzle opening.
  • the opening may comprise a nozzle opening having a diameter from about 1 mm to about 3 mm, at least about 1.5 mm, at least about 2 mm, and/or at most about 2.5 mm.
  • the ingestible device may comprise a nozzle having a length of from about 1 mm to about 5 mm, from about 2 mm to about 5 mm, or from about 3 mm to about 5 mm.
  • the dispensable substance may comprise a fluid.
  • the dispensable substance may comprise a liquid.
  • the dispensable substance may comprise a therapeutic agent.
  • the dispensable substance may comprise a solution.
  • the dispensable substance may comprise a suspension.
  • the dispensable substance may have a viscosity of less than or equal to 10 cP, at least about 0.8 cP, at most about 8 cP, and/or at most about 9 cP.
  • the disclosure provides a method of treating a disease or condition in a subject in need thereof, the method including: trans-epithelially administering a dispensable substance to the gastrointestinal (GI) tract of the subject, where the trans-epithelial administration includes: orally administering an ingestible device containing the dispensable substance to the subject, where the ingestible device is configured for trans-epithelial delivery of the dispensable substance to the GI tract of the subject, and the dispensable substance contains a pharmaceutical formulation containing a therapeutically effective amount of a therapeutic agent; and releasing the dispensable substance from the ingestible device as at least one jet to a desired location of the GI tract of the subject.
  • GI gastrointestinal
  • the trans-epithelial administration directly delivers the dispensable substance to the submucosa of the GI tract of the subject. In some embodiments, the trans-epithelial administration directly delivers at least a portion of the dispensable substance to the mucosa of the GI tract of the subject. In further embodiments, the direct delivery of the portion of the dispensable substance to the mucosa of the GI tract of the subject further includes direct delivery of at least some of the portion of the dispensable substance to the lamina intestinal.
  • the desired location of the GI tract is the small intestine. In some embodiments, the desired location of the GI tract is selected from the group consisting of duodenum, jejunum, and ileum. In some embodiments, the desired location of the GI tract is the duodenum. In some embodiments, the desired location of the GI tract is the jejunum. In some embodiments, the desired location of the GI tract is the ileum. In some embodiments, the desired location of the GI tract is the proximal small intestine. In some embodiments, the desired location of the GI tract is the duodenum or jejunum. In some embodiments, the desired location of the GI tract is the distal small intestine. In some embodiments, the desired location of the GI tract is the jejunum or ileum.
  • the trans-epithelial administration provides systemic uptake of the therapeutic agent.
  • the systemic uptake of the therapeutic agent is at least about 10%, at least about 15%, at least about 20%, at least about 25%, or at least about 30% relative to intravenous or subcutaneous administration of the same amount of the therapeutic agent.
  • the trans-epithelial administration provides an area under the curve (AUC) of the therapeutic agent in systemic circulation over time (AUC TE ) that is at least about 10%, at least about 15%, at least about 20%, at least about 25%, or at least about 30% of the AUC in systemic circulation over time provided by intravenous administration of the same amount of the therapeutic agent (AUC IV ).
  • AUC area under the curve
  • the trans-epithelial administration provides an area under the curve (AUC) of the therapeutic agent in systemic circulation over time (AUC TE ) that is at least about 10%, at least about 15%, at least about 20%, at least about 25%, or at least about 30% of the AUC in systemic circulation over time provided by subcutaneous administration of the same amount of the therapeutic agent (AUC SC ).
  • AUC area under the curve
  • the trans-epithelial administration provides a maximum plasma concentration (C max ) of the therapeutic agent in systemic circulation ((C max ) TE ) that is at least about 10%, at least about 15%, at least about 20%, at least about 25%, or at least about 30% of the C max in systemic circulation provided by intravenous administration of the same amount of the therapeutic agent ((C max ) IV ).
  • the trans-epithelial administration provides a maximum plasma concentration (C max ) of the therapeutic agent in systemic circulation ((C max ) TE ) that is at least about 10%, at least about 15%, at least about 20%, at least about 25%, or at least about 30% of the C max in systemic circulation provided by subcutaneous administration of the same amount of the therapeutic agent ((C max ) SC ).
  • the disease or condition is responsive to treatment with the therapeutic agent.
  • the therapeutic agent is a CD20 inhibitor.
  • the CD20 inhibitor is selected from the group consisting of rituximab, IBI301, HLX01, PF-05280586, ocrelizumab, ofatumumab, PF-05280586, obinutuzumab, ocaratuzumab, GP2013, veltuzumab, ibritumomab tiuxetan and tositumomab; and biosimilars thereof.
  • the therapeutic agent is a CD25 inhibitor.
  • the CD25 inhibitor is selected from the group consisting of basiliximab, daclizumab, IMTOX-25 and ADCT-301; and biosimilars thereof.
  • the therapeutic agent is a CD28 inhibitor.
  • the CD28 inhibitor is selected from the group consisting of abatacept and AB103; and biosimilars thereof optionally, the CD28 inhibitor is abatacept or a biosimilar thereof.
  • the therapeutic agent is a CD40/CD40L inhibitor.
  • the CD40/CD40L inhibitor is selected from the group consisting of bleselumab (ASKP1240), BI 655064, ruplizumab, dapirolizumab (CDP7657), letolizumab (BMS-986004), dacetuzumab, lucatumumab and PG102 (FFP104); and biosimilars thereof.
  • the therapeutic agent is a CD49 inhibitor.
  • the therapeutic agent is a CD89 inhibitor.
  • the therapeutic agent is an integrin inhibitor.
  • the integrin inhibitor is selected from the group consisting of PF-547659, AJM300, etrolizumab, vedolizumab, abciximab, eptifibatide, tirofiban, natalizumab, vitaxin, etaracizumab, intetumumab, efalizumab, STX-100, abrilumab, SAN-300 (hAQC2), DI176E6 (EMD 5257) and PTG-100; and biosimilars thereof.
  • the integrin inhibitor is vedolizumab; or a biosimilar thereof.
  • the therapeutic agent is a CXCL10 (IP-10) inhibitor.
  • the CXCL10 inhibitor is selected from the group consisting of eldelumab (MDX-1100 or BMS-936557), BMS-986184, and NI-0801; and biosimilars thereof.
  • the therapeutic agent is a CCL11 inhibitor.
  • the therapeutic agent is a CCR2 inhibitor; optionally, the CCR2 inhibitor is selected from the group consisting of 38MLN1202, C775, STI-B0201, STI-B0211, STI-B0221, STI-B0232 and carlumab; and biosimilars thereof.
  • the therapeutic agent is a CCR9 inhibitor; optionally, the CCR9 inhibitor is 91R; or a biosimilar thereof.
  • the therapeutic agent is an ELR chemokine inhibitor; optionally, the ELR chemokine inhibitor is TAB-099MZ; or a biosimilar thereof.
  • the therapeutic agent is a PDE4 inhibitor.
  • the PDE4 inhibitor is selected from the group consisting of apremilast, crisaborole, ibudilast, roflumilast and tetomilast; and pharmaceutically acceptable salts thereof.
  • the therapeutic agent is a non-oral small molecule.
  • the non-oral small molecule is selected from the group consisting of enoxaparin sodium, hydroxyprogesterone caproate, plerixafor, ferumoxytol, bortezomib, pemetrexed disodium, fulvestrant, carfilzomib, azacitidine, bendamustine, cabazitaxel, oxaliplatin, eribulin mesylate, docetaxel, sugammadex, cefoperazone sodium, rotigotine, caspofungin, iron sucrose, piperacillin+tazobactam, dexmedetomidine, dalteparin sodium, bupivacaine, imipenem+cilastatin, tigecycline, meropenem, ceftaroline fosamil and gemcitabine; and pharmaceutically acceptable salts thereof.
  • the method is selected from the group consisting of enoxaparin
  • the therapeutic agent is a JAK inhibitor.
  • the JAK inhibitor is tofacitinib or a pharmaceutically acceptable salt thereof; optionally, the JAK inhibitor is tofacitinib citrate.
  • the therapeutic agent is an S1P modulator.
  • the S1P inhibitor is selected from the group consisting of fingolimod, KRP203, siponimod, ponesimod, cenerimod, ozanimod, ceralifimod, amiselimod, and etrasimod, and pharmaceutically acceptable salts thereof.
  • the therapeutic agent is a long acting growth differentiation factor 15 (GDF15).
  • the therapeutic agent is a proprotein convertase PC9 (PCSK9) inhibitor.
  • the PCSK9 inhibitor is selected from the group consisting of alirocumab, evolocumab, bococizumab, frovocimab, 1D05-IgG2, evinacumab, lodelcizumab, SHR-1209, IBI-306, LIB-003, JS-002, AK-102, ATH-06, ATH-04, C-8304, UBP-1214, BCD-096 and CiVi-007; and biosimilars thereof.
  • the PCSK9 inhibitor is alirocumab; or a biosimilar thereof.
  • the PCSK9 inhibitor is evolocumab; or a biosimilar thereof.
  • the therapeutic agent is a recombinant human parathyroid hormone; optionally, the hormone is teriparatide; or a biosimilar thereof.
  • the therapeutic agent promotes the production of granulocytes or antigen presenting cells (APC).
  • the therapeutic agent is a granulocyte colony stimulating factor (GCSF) receptor agonist; optionally, the GCSF is pegfilgrastim; or a biosimilar thereof.
  • the therapeutic agent is a granulocyte/macrophage colony stimulating factor (GM-CSF); optionally, the GM-CSF is sargramostim; or a biosimilar thereof.
  • the therapeutic agent is a TNFSF11 inhibitor; optionally, the TNFSF11 inhibitor is denosumab or QL-1206; or a biosimilar thereof.
  • the therapeutic agent is an interferon beta ligand; optionally, interferon beta-la; or a biosimilar thereof.
  • the therapeutic agent is an IL-1 inhibitor.
  • the IL-1 inhibitor is selected from the group consisting of canakinumab, anakinra, gevokizumab, LY2189102, MABp1, rilonacept and EBI-005; and biosimilars thereof.
  • the therapeutic agent is an IL-6 receptor inhibitor.
  • the IL-6 receptor inhibitor is selected from the group consisting of tocilizumab, clazakizumab, sarilumab, MR-16, rhPM-1, EBI-029 and olokizumab; and biosimilars thereof; optionally, the IL-6 receptor inhibitor is tocilizumab; or a biosimilar thereof.
  • the therapeutic agent is an IL-10 receptor agonist.
  • the IL-10 receptor agonist is recombinant IL-10, F8-IL10 or rhuIL-10; and biosimilars thereof.
  • the therapeutic agent is an IL-12/IL-23 inhibitor.
  • the IL-12/IL-23 inhibitor is selected from the group consisting of ustekinumab, briakinumab, guselkumab, tildrakizumab, brazikumab, FM-303, LY-2525623, mirikizumab, risankizumab and PTG-200; and pharmaceutically acceptable salts thereof; and biosimilars thereof.
  • the IL-12/IL-23 inhibitor is ustekinumab; or a biosimilar thereof.
  • the therapeutic agent is an IL-13 inhibitor.
  • the IL-13 inhibitor is selected from the group consisting of QAX576, ABT-308, CNTO-5825, dupilumab, AMG317, lebrikizumab, GSK679586, tralokinumab and anrukinzumab; and pharmaceutically acceptable salts thereof; and biosimilars thereof.
  • the therapeutic agent is an IL-17 inhibitor.
  • the IL-17 inhibitor is selected from the group consisting of secukinumab, netakimab, vunakizumab and CJM-112; and biosimilars thereof; optionally, the IL-17 inhibitor is secukinumab or a biosimilar thereof.
  • the therapeutic agent is a CD3 inhibitor.
  • the CD3 inhibitor is selected from the group consisting of visiluzumab, muromonab-CD3, otelixizumab, foralumab, teplizumab, catumaxomab, JNJ-63709178, JNJ-64007957, MGD009, duvortuxizumab, R06958688, blinatumomab and REGN1979; and pharmaceutically acceptable salts thereof; and biosimilars thereof.
  • the therapeutic agent is an immune modulator.
  • the immune modulator is useful for treating a liver disease or disorder.
  • the immune modulator is selected from the group consisting of elafibranor (GFT 505), obeticholic acid (OCA), cenicriviroc (CVC), selonsertib (formerly GS-4997), pumpuzumab (formerly GS 6624), GS-9450, GS-9674, GS-0976 (formerly NDI-010976), emricasan, arachidyl-amido cholanoic acid, AKN-083, TGFTX4, TGFTX5, TGFTX1, LYC-55716, elobixibat, GSK2330672, A4250, stem cells, bardoxolone methyl, a bone morphogenetic protein-7 (BMP-7) mimetic, THR-123, fresolimumab, pirfen
  • BMP-7 bone morphogenetic protein-7
  • the immune modulator is an IL-12/IL-23 inhibitor, an IL-6 receptor inhibitor, a CD40/CD40L inhibitor, an IL-1 inhibitor, an IL-13 inhibitor, an IL-10 receptor agonist, a chemokine/chemokine receptor inhibitor, an integrin inhibitor, a PDE4 inhibitor, an S1P modulator or a TNF-alpha inhibitor.
  • the IL-12/IL-23 inhibitor, the IL-6 receptor inhibitor, the CD40/CD40L inhibitor, the IL-1 inhibitor, the IL-13 inhibitor, the IL-10 receptor agonist, the chemokine/chemokine receptor inhibitor, the integrin inhibitor, the PDE4 inhibitor, the S1P modulator, or the TNF-alpha inhibitor is a therapeutic agent as disclosed herein.
  • the disease or condition is fibrosis.
  • the therapeutic agent is selected from the group consisting of rituximab, abatacept, tocilizumab, rilonacept, pirfenidone, BB-3, ensifentrine, GSK-3008348, PLN-74809, AVID-200, 8-(1-hydroxyethyl)-2-methoxy-3-((4-methoxybenzyl)oxy)-6H-benzo[c]chromen-6-one (RES-529), restorgenex, fulvestrant, sodium pyruvate, glutathione/ascorbic acid/bicarbonate combination, (R)-2-(5-cyano-2-(6-(methoxycarbonyl)-7-methyl-3-oxo-8-(3-(trifluoromethyl)phenyl)-2,3,5,8-tetrahydro-[1,2,
  • the disease or condition is rheumatoid arthritis.
  • the therapeutic agent is selected from the group consisting of 99m Tc labelled annexin V-128, abatacept, adalimumab, AMG-592, anakinra, ASP-5094, AT-132, BCD-089, canakinumab, cartistem, certolizumab pegol, cibinetide, cyclosporin, corticotropin, creavax-ra, CX-611, E-6011, etanercept, GABA+antigen based therapy, golimumab, infliximab, interferon gamma follow-on biologic, interleukin-2, INV-103, itolizumab, ka shu ning, MPC-300-iv, NI-0101, ocaratuzumab, olokizumab
  • the disease or condition is non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver disease (NAFLD), or both.
  • the therapeutic agent is selected from the group consisting of a diacylglycerol-O-acyltransferase-2 (DGAT2) inhibitor (IONIS-DGAT2Rx), IMM-124-E, insulin, IONIS-ANGPTL3-LRx, NGM-282, pegbelfermin (BMS-986036), semaglutide, selonsertib, cenicriviroc, elafibranor, ocaliva, tropifexor, firocostat, cilofexor, aramchol, ARX618, BI 1467335, DS 102, EDP-305, emricasan, gemcabene, GR-MD-02, GRI-0621, GS-0976,
  • DGAT2 diacylglycerol-O-acyltransferase-2
  • the therapeutic agent is selected from the group consisting of IONIS-DGAT2Rx, insulin, pegbelfermin (BMS-986036) and semaglutide; and biosimilars thereof; optionally, the therapeutic agent is semaglutide or a biosimilar thereof.
  • the therapeutic agent is selected from the group consisting of selonsertib, cenicriviroc, elafibinor, ocaliva, tropifexor, firsocostat and cilofexor; and pharmaceutically acceptable salts thereof.
  • the disease or condition is an inflammatory, immune or autoimmune disease or disorder.
  • the disease or condition is an inflammatory bowel disease (IBD).
  • IBD inflammatory bowel disease
  • the IBD is ulcerative colitis.
  • the IBD is Crohn's disease.
  • the Crohn's disease is ileal Crohn's disease.
  • the therapeutic agent is a TNF-alpha inhibitor.
  • the TNF-alpha inhibitor is selected from the group consisting of certolizumab pegol, etanercept, golimumab, infliximab, opinercept, ozoralizumab and tulinercept; and biosimilars thereof.
  • the TNF-alpha inhibitor is adalimumab, or a biosimilar thereof.
  • the therapeutic agent is an integrin inhibitor.
  • the integrin inhibitor is selected from the group consisting of PF-547659, AJM300, etrolizumab, vedolizumab, abciximab, eptifibatide, tirofiban, natalizumab, vitaxin, etaracizumab, intetumumab, efalizumab, STX-100, abrilumab, SAN-300 (hAQC2), DI176E6 (EMD 5257) and PTG-100; and pharmaceutically acceptable salts or biosimilars thereof.
  • the integrin inhibitor is vedolizumab, or a biosimilar thereof.
  • the therapeutic agent is a JAK inhibitor.
  • the JAK inhibitor is tofacitinib or a pharmaceutically acceptable salt thereof; optionally, the JAK inhibitor is tofacitinib citrate.
  • the therapeutic agent is an IL-12/IL-23 inhibitor.
  • the IL-12/IL-23 inhibitor is selected from the group consisting of ustekinumab, briakinumab, guselkumab, tildrakizumab, brazikumab, FM-303, LY-2525623, mirikizumab, risankizumab and PTG-200; and pharmaceutically acceptable salts or biosimilars thereof.
  • the IL-12/IL-23 inhibitor is ustekinumab, or a biosimilar thereof.
  • the therapeutic agent is selected from the group consisting of AbGn-168H, adalimumab, adipose-derived stem cell therapy, adrenomedullin, AEVI-002, alicaforsen, anakinra, Bacillus licheniformis , BBT-401, bertilimumab, BI-655130, bimekizumab, brazikumab, certolizumab pegol, cyclosporin, Clostridium butyricum , cobitolimod, E-6011, etrolizumab, FFP-104, golimumab, guselkumab, IBP-9414, infliximab, KHK-4083, midismase, mirikizumab, molgramostim follow-on biologic+fosfomycin+carbapenem, natalizumab, o
  • the therapeutic agent is selected from the group consisting of adalimumab, alicaforsen, anakinra, brazikumab, Clostridium butyricum , mirikizumab and vedolizumab; and biosimilars thereof; optionally, adalimumab or a biosimilar thereof.
  • the therapeutic agent is NN-9499 or a biosimilar thereof.
  • the inflammatory, immune or autoimmune disease or disorder is allergy, asthma, coeliac disease, glomerulonephritis, chronic peptic ulcer, tuberculosis, rheumatoid arthritis, juvenile rheumatoid arthritis, spondylarthritis, psoriasis, psoriatic arthritis, hidradenitis suppurativa, pyoderma gangrenosum, ankylosing spondylitis, periodontitis, ulcerative colitis and Crohn's disease, sinusitis, active hepatitis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), liver fibrosis, liver cirrhosis, alcoholic fatty liver disease, alcoholic hepatitis, alcoholic liver disease, systemic lupus erythematosus (MS), transplant rejection, graft
  • NAFLD non-alcoholic fatty liver disease
  • NASH non-alcoholic steato
  • the inflammatory and immune conditions and disease is selected from the group consisting of rheumatoid arthritis, psoriasis, psoriatic arthritis, ankylosing spondylitis, ulcerative colitis and Crohn's disease, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), liver fibrosis and/or liver cirrhosis.
  • NAFLD non-alcoholic fatty liver disease
  • NASH non-alcoholic steatohepatitis
  • liver fibrosis and/or liver cirrhosis.
  • the disease or condition is an infection.
  • the infection is a bacterial infection, bacterial meningitis, bacterial respiratory tract infection, bacterial urinary tract infection, bone and joint infection, cholangitis, complicated skin and skin structure infection, Neisseria gonorrhoeae infection, peritonitis, sepsis, abdominal abscess, Aspergillus infection, Candida infection, fungal infection, Acinetobacter infection, appendicitis, Escherichia coli infection, febrile neutropenia, Haemophilus influenzae infection, Klebsiella pneumoniae infection, lower respiratory tract infection or pelvic inflammatory disease.
  • the disease or condition is a musculoskeletal disease or condition.
  • the musculoskeletal disease or condition is bone resorption, joint injury, osteogenesis imperfecta, osteoporosis, male osteoporosis or postmenopausal osteoporosis.
  • the disease or condition is a respiratory disease or condition.
  • the respiratory disease or condition is idiopathic pulmonary fibrosis.
  • the disease or condition is a cancer.
  • the cancer is acute myelogenous leukemia; anal tumor; niliary cancer; bladder cancer; bone tumor; breast tumor; central nervous system tumor; chronic lymphocytic leukemia; chronic myelocytic leukemia; diffuse large B-cell lymphoma; endometrioid carcinoma; esophagus tumor; fallopian tube cancer; follicle center lymphoma; germ cell and embryonic cancer; glioblastoma; gonad tumor; head and neck tumor; hematological neoplasm; hepatitis C virus infection; hepatocellular carcinoma; Hodgkins disease; hormone dependent prostate cancer; Kaposis sarcoma; leukoplakia; liver tumor; melanoma; Merkel cell carcinoma; mesothelioma; metastatic bladder cancer; metastatic breast cancer; metastatic esophageal cancer; metastatic head and neck cancer; metastatic liver cancer; metastatic liver cancer; metastatic liver cancer; meta
  • the disease or condition is hepatocellular carcinoma.
  • the therapeutic agent is selected from the group consisting of nivolumab, lenvatinib, sorafenib, regorafenib, and carbozantinib; and pharmaceutically acceptable salts thereof.
  • the disease or condition arises in a tissue or organ originating from the endoderm.
  • the tissue or organ originating from the endoderm is gastrointestinal tract, respiratory tract, endocrine glands and organs, auditory system and urinary system.
  • the tissue or organ is stomach, colon, liver, pancreas, urinary bladder, epithelial parts of trachea, lungs, pharynx, thyroid, parathyroid, intestines or gallbladder.
  • the tissue or organ is the liver.
  • the disease or condition arising in a tissue or organ originating from the endoderm is an inflammatory disease or condition.
  • the therapeutic agent is an immune modulator.
  • the immune modulator is an immune modulator as disclosed herein.
  • the disease or condition arising in the liver is an inflammatory disease or condition
  • the therapeutic agent is an immune modulator.
  • the immune modulator is an immune modulator as disclosed herein.
  • the disease or condition is gastritis, celiac disease, hepatitis, alcoholic lever disease, fatty liver disease (hepatic steatosis), non-alcoholic fatty liver disease (NASH), cirrhosis, primary schlerosing cholangitis, pancreatitis, insterstitial cystitits, asthma, chronic obstructic pulmonary disease, pulmonary fibrosis, pharyngitis, thyroiditis, hyperthyroidism, parathyroiditis, nephritis, Hashimoto's disease, Addison's disease, Graves' disease, Sjögren syndrome, type 1 diabetes, pelvic inflammatory disease, auditory canal inflammation, tinnitus, vestibular neuritis, otitis media, auditory canal inflammation, tracheitis, cholestatic liver disease, primary biliary schlerosis, liver parenchyma, an inherited metabolic disorder of the liver, Byler syndrome, cerebroten
  • the disease or condition is a cardiovascular disease.
  • the therapeutic agent is selected from the group consisting of abatacept, teriparatide, emicizumab, pegfilgrastim, semaglutide, dulaglutide, sargramostim, ustekinumab, secukinumab, tocilizumab, vedolizumab, natalizumab, interferon beta-la, denosumab, adalimumab, etanercept, golimumab, and certolizumab pegol; and biosimilars thereof.
  • the therapeutic agent is adalimumab, or a biosimilar thereof.
  • the therapeutic agent has a molecular weight of at least about 20 kDa, at least about 30 kDa, at least about 40 kDa, at least about 50 kDa or at least about 60 kDa; optionally, at least about 20 kDa.
  • the pharmaceutical formulation is a fluid.
  • the fluid is a liquid.
  • the pharmaceutical formulation is a solution or suspension.
  • the pharmaceutical formulation has a viscosity of less than or equal to 10 cP, or at least about 0.8 cP, or at most about 8 cP or at most about 9 cP.
  • the dispensable substance has a peak fluid pressure of about 200 psig to about 400 psig, at least about 250 psig, at least about 275 psig, at least about 300 psig, at least about 325 psig, about 275 psig to about 375 psig, about 275 psig to about 350 psig, or about 275 psig to about 325 psig.
  • the at least one jet is a plurality of jets.
  • each said jet released from the ingestible device has a diameter of about 0.1 mm to about 2 mm, about 0.1 mm to about 1 mm, about 0.2 mm to about 0.8 mm, about 0.3 mm to about 0.5 mm, about 0.3 mm to about 0.4 mm, or about 0.35 mm.
  • each said jet has a mean jet velocity of about 20 m/s to about 30 m/s, about 20 m/s, about 21 m/s, about 22 m/s, about 23 m/s, about 24 m/s, about 25 m/s, about 26 m/s, about 27 m/s, about 28 m/s, about 29 m/s or 30 m/s.
  • the volume of the dispensable substance released from the ingestible device is about 50 microliters to about 800 microliters, about 50 microliters to about 500 microliters, from about 100 microliters to about 450 microliters, from about 200 microliters to about 400 microliters, from 250 microliters to about 400 microliters, or from about 300 microliters to about 400 microliters.
  • the dispensable substance has a peak fluid pressure of about 275 psig to about 325 psig; and the at least one jet is a plurality of jets, where each said jet released from the ingestible device has a diameter of from about 0.1 mm to about 1 mm. In some embodiment, each said jet released from the ingestible device has a diameter of from about 0.3 mm to about 0.5 mm. In some embodiments, each said jet released from the ingestible device has a diameter of from about 0.3 mm to about 0.4 mm. In some embodiments, each said jet has a mean jet velocity of from about 20 m/s to about 30 m/s.
  • each said jet has a mean jet velocity of from about 25 m/s to about 30 m/s.
  • the volume of the dispensable substance released from the ingestible device is from about 50 microliters to about 500 microliters, from about 100 microliters to about 450 microliters, from about 200 microliters to about 400 microliters, from 250 microliters to about 400 microliters, or from about 300 microliters to about 400 microliters.
  • the volume of the dispensable substance released from the ingestible device is from about 200 microliters to about 400 microliters.
  • the dispensable substance has a peak fluid pressure of at least about 300 psig.
  • the ingestible device includes: a housing configured to contain the dispensable substance; and an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening.
  • the opening in the housing is a plurality of openings, where each said opening comprises a nozzle; or the opening in the housing contains a plurality of nozzles; and each said nozzle has an orifice to fluidly connect the dispensable substance to the environment outside the housing and to release the dispensable substance from the ingestible device as the at least one jet.
  • the ingestible device further contains: a drive force generator configured to provide a force to the dispensable substance to deliver the dispensable substance through the opening or the plurality of openings; and a drive force coupling configured to transfer the force from the drive force generator to the dispensable substance.
  • the ingestible device further contains: a restraining mechanism having a first state in which the restraining mechanism prevents the dispensable substance from being delivered out of the ingestible device; and a second state in which the restraining mechanism does not prevent the dispensable substance from being delivered out of the ingestible device.
  • the ingestible device is configured as a 00-sized capsule. In some embodiments, the ingestible device is configured as a 000-sized capsule.
  • the disclosure provides a method of treating a disease or condition in a subject in need thereof, the method including: trans-epithelially administering a dispensable substance to the gastrointestinal (GI) tract of the subject, where the trans-epithelial administration includes: orally administering an ingestible device containing the dispensable substance to the subject, where the ingestible device is configured for trans-epithelial delivery of the dispensable substance to the GI tract of the subject, and the dispensable substance contains a pharmaceutical formulation containing a therapeutically effective amount of a tumor necrosis factor alpha (TNF-alpha) inhibitor; and releasing the dispensable substance from the ingestible device as at least one jet to a desired location of the GI tract of the subject.
  • TNF-alpha tumor necrosis factor alpha
  • the trans-epithelial administration directly delivers the dispensable substance to the submucosa of the GI tract of the subject. In some embodiments, the trans-epithelial administration directly delivers at least a portion of the dispensable substance to the mucosa of the GI tract of the subject. In further embodiments, the direct delivery of the portion of the dispensable substance to the mucosa of the GI tract of the subject further comprises direct delivery of at least some of the portion of the dispensable substance to the lamina intestinal.
  • the desired location of the GI tract is the small intestine. In some embodiments, the desired location of the GI tract is selected from the group consisting of duodenum, jejunum, and ileum. In some embodiments, the desired location of the GI tract is the duodenum. In some embodiments, the desired location of the GI tract is the jejunum. In some embodiments, the desired location of the GI tract is the ileum. In some embodiments, the desired location of the GI tract is the proximal small intestine. In some embodiments, the desired location of the GI tract is the duodenum or jejunum. In some embodiments, the desired location of the GI tract is the distal small intestine. In some embodiments, the desired location of the GI tract is the jejunum or ileum.
  • the trans-epithelial administration provides systemic uptake of the TNF-alpha inhibitor.
  • the systemic uptake of the therapeutic agent is at least about 10%, at least about 15%, at least about 20%, at least about 25%, or at least about 30% relative to intravenous or subcutaneous administration of the same amount of the TNF-alpha inhibitor.
  • the trans-epithelial administration provides an area under the curve (AUC) of the TNF-alpha inhibitor in systemic circulation over time (AUC TE ) that is at least about 10%, at least about 15%, at least about 20%, at least about 25%, or at least about 30% of the AUC in systemic circulation over time provided by intravenous administration of the same amount of the TNF-alpha inhibitor (AUC IV ).
  • AUC area under the curve
  • the trans-epithelial administration provides an area under the curve (AUC) of the TNF-alpha inhibitor in systemic circulation over time (AUC TE ) that is at least about 10%, at least about 15%, at least about 20%, at least about 25%, or at least about 30% of the AUC in systemic circulation over time provided by subcutaneous administration of the same amount of the TNF-alpha inhibitor (AUC SC ).
  • AUC area under the curve
  • AUC SC subcutaneous administration of the same amount of the TNF-alpha inhibitor
  • the trans-epithelial administration provides a maximum plasma concentration (C max ) of the TNF-alpha inhibitor in systemic circulation ((C max ) TE ) that is at least about 10%, at least about 15%, at least about 20%, at least about 25%, or at least about 30% of the C max in systemic circulation provided by intravenous administration of the same amount of the TNF-alpha inhibitor ((C max ) IV ).
  • the trans-epithelial administration provides a maximum plasma concentration (C max ) of the TNF-alpha inhibitor in systemic circulation ((C max ) TE ) that is at least about 10%, at least about 15%, at least about 20%, at least about 25%, or at least about 30% of the C max in systemic circulation provided by subcutaneous administration of the same amount of the TNF-alpha inhibitor ((C max ) SC ).
  • the disease or condition is responsive to treatment with the TNF-alpha inhibitor.
  • the disease or condition is selected from the group consisting of gastrointestinal, respiratory, musculoskeletal, inflammatory, dermatologic, ocular, neurologic, psychiatric, cardiovascular, immune, autoimmune, infection, hematologic, genitourinary/sexual function, cancer, endocrine, metabolic, and combinations thereof.
  • the disease or condition is selected from the group consisting of ankylosing spondylitis, asthma, Behcet's disease, hidradenitis suppurativa, an inflammatory disease, an inflammatory bowel disease, multiple sclerosis, insulin-dependent (type 1) diabetes, type 2 diabetes, juvenile rheumatoid arthritis, Kawasaki disease, lower back pain, osteoarthritis, pouchitis, psoriasis, psoriatic arthritis, pyoderma gangrenosum, rheumatoid arthritis, spondylarthritis, uveitis, and combinations thereof.
  • ankylosing spondylitis asthma
  • Behcet's disease hidradenitis suppurativa
  • an inflammatory disease an inflammatory bowel disease
  • multiple sclerosis multiple sclerosis
  • insulin-dependent diabetes type 2 diabetes
  • juvenile rheumatoid arthritis Kawasaki disease
  • lower back pain osteoarthritis
  • pouchitis psori
  • the disease or condition is inflammatory bowel disease.
  • the inflammatory bowel disease is ulcerative colitis.
  • the inflammatory bowel disease is Crohn's disease.
  • the Crohn's disease is ileal Crohn's disease.
  • the disease or condition is a metabolic or endocrine disease or condition.
  • the metabolic or endocrine disease or condition is diabetes.
  • the diabetes is type I or type II diabetes.
  • the diabetes is selected from the group consisting of diabetes with Alzheimer's disease, diabetes with dementia, diabetes with Alzheimer's disease and dementia, diabetes with obesity, diabetes with NAFLD, diabetes with NASH, diabetes with NAFLD and NASH, and diabetes with a cardiovascular disease.
  • the diabetes is diabetes with obesity.
  • the metabolic or endocrine disease or condition is obesity.
  • the TNF-alpha inhibitor is selected from the group consisting of certolizumab pegol, etanercept, golimumab, infliximab, opinercept, ozoralizumab and tulinercept; and biosimilars thereof.
  • the TNF-alpha inhibitor is adalimumab, or a biosimilar thereof.
  • the TNF-alpha inhibitor is not adalimumab, or a biosimilar thereof.
  • the TNF-alpha inhibitor is selected from the group consisting of AT-132, V-565, SAR252067, MDGN-002, PF-06480605, DLCX105, DLX-105, r-TBP-I, C87, LMP-420, TMI-005 and BMS-561392; and pharmaceutically acceptable salts thereof; and biosimilars thereof.
  • the TNF-alpha inhibitor has a molecular weight of at least about 20 kDa, at least about 30 kDa, at least about 40 kDa, at least about 50 kDa or at least about 60 kDa; optionally, at least about 20 kDa.
  • the pharmaceutical formulation is a fluid.
  • the fluid is a liquid.
  • the pharmaceutical formulation is a solution or suspension.
  • the pharmaceutical formulation has a viscosity of less than or equal to 10 cP, at least about 0.8 cP, or at most about 8 cP or at most about 9 cP.
  • the dispensable substance has a peak fluid pressure of about 200 psig to about 400 psig, at least about 250 psig, at least about 275 psig, at least about 300 psig, at least about 325 psig, about 275 psig to about 375 psig, about 275 psig to about 350 psig, or about 275 psig to about 325 psig.
  • the at least one jet is a plurality of jets.
  • each said jet released from the ingestible device has a diameter of about 0.1 mm to about 2 mm, about 0.1 mm to about 1 mm, about 0.2 mm to about 0.8 mm, about 0.3 mm to about 0.5 mm, about 0.3 mm to about 0.4 mm, or about 0.35 mm.
  • each said jet has a mean jet velocity of from about 20 m/s to about 30 m/s, about 20 m/s, about 21 m/s, about 22 m/s, about 23 m/s, about 24 m/s, about 25 m/s, about 26 m/s, about 27 m/s, about 28 m/s, about 29 m/s or about 30 m/s.
  • the volume of the dispensable substance released from the ingestible device is from about 50 microliters to about 800 microliters, about 50 microliters to about 500 microliters, from about 100 microliters to about 450 microliters, from about 200 microliters to about 400 microliters, from 250 microliters to about 400 microliters, or from about 300 microliters to about 400 microliters.
  • the dispensable substance has a peak fluid pressure of about 275 psig to about 325 psig; and the at least one jet is a plurality of jets, where each said jet released from the ingestible device has a diameter of about 0.1 mm to about 1 mm, about 0.3 mm to about 0.5 mm, or about 0.3 mm to about 0.4 mm.
  • each said jet has a mean jet velocity of about 20 m/s to about 30 m/s or about 25 m/s to about 30 m/s.
  • the volume of the dispensable substance released from the ingestible device is from about 50 microliters to about 500 microliters, from about 100 microliters to about 450 microliters, from about 200 microliters to about 400 microliters, from 250 microliters to about 400 microliters, or from about 300 microliters to about 400 microliters.
  • the dispensable substance has a peak fluid pressure of at least about 300 psig.
  • the ingestible device contains: a housing configured to contain the dispensable substance; and an opening in the housing configured to fluidly connect the dispensable substance to an environment outside the housing via the opening.
  • the opening in the housing is a plurality of openings, wherein each said opening comprises a nozzle; or the opening in the housing comprises a plurality of nozzles; and each said nozzle has an orifice to fluidly connect the dispensable substance to the environment outside the housing and to release the dispensable substance from the ingestible device as the at least one jet.
  • the ingestible device further includes: a drive force generator configured to provide a force to the dispensable substance to deliver the dispensable substance through the opening or the plurality of openings; and a drive force coupling configured to transfer the force from the drive force generator to the dispensable substance.
  • the ingestible device further includes: a restraining mechanism having a first state in which the restraining mechanism prevents the dispensable substance from being delivered out of the ingestible device; and a second state in which the restraining mechanism does not prevent the dispensable substance from being delivered out of the ingestible device.
  • the ingestible device is configured as a 00-sized capsule. In some embodiments, the ingestible device is configured as a 000-sized capsule.
  • the disclosure provides a method of treating a disease or condition in a subject in need thereof, the method including: topically administering a dispensable substance to the gastrointestinal (GI) tract of the subject, where the topical administration includes: orally administering an ingestible device containing the dispensable substance to the subject, where the ingestible device is configured to topically deliver the dispensable substance to the GI tract of the subject, and the dispensable substance contains a pharmaceutical formulation containing a therapeutically effective amount of a therapeutic agent; and releasing the dispensable substance from the ingestible device to a desired location of the GI tract of the subject.
  • GI gastrointestinal
  • the dispensable substance is delivered to the lumen of the GI tract, a surface of the GI tract facing the lumen, or both.
  • the surface of the GI tract facing the lumen is a mucous membrane of the GI tract, a lining of the GI tract, or both.
  • the surface, mucous membrane or lining contains one or more disease sites.
  • the one or more disease sites is one or more mucosal lesions.
  • the desired location of the GI tract is the small intestine. In some embodiments, the desired location of the GI tract is selected from the group consisting of duodenum, jejunum, and ileum. In some embodiments, the desired location of the GI tract is the duodenum. In some embodiments, the desired location of the GI tract is the jejunum. In some embodiments, the desired location of the GI tract is the ileum. In some embodiments, the desired location of the GI tract is the proximal small intestine. In some embodiments, the desired location of the GI tract is the duodenum or jejunum. In some embodiments, the desired location of the GI tract is the distal small intestine. In some embodiments, the desired location of the GI tract is the jejunum or ileum.
  • the desired location of the GI tract is the large intestine. In some embodiments, the desired location of the GI tract is the proximal large intestine. In some embodiments, the desired location of the GI tract is the cecum, ascending colon, transverse colon, or a combination thereof. In some embodiments, the desired location of the GI tract is the distal large intestine. In some embodiments, the desired location of the GI tract is the distal large intestine is the transverse colon, the descending colon, or a combination thereof.
  • the topical administration provides a systemic uptake of the therapeutic agent of less than about 20%, less than about 10%, less than about 5%, less than about 4%, less than about 3%, less than about 2% or less than about 1% relative to intravenous or subcutaneous administration of the same amount of the therapeutic agent.
  • the topical administration provides an area under the curve (AUC) of the therapeutic agent in systemic circulation over time (AUC TOP ) that is less than about 20%, less than about 10%, less than about 5%, less than about 4%, less than about 3%, less than about 2% or less than about 1% of the AUC in systemic circulation over time provided by intravenous administration of the same amount of the therapeutic agent (AUC IV ).
  • AUC area under the curve
  • the topical administration provides an area under the curve (AUC) of the therapeutic agent in systemic circulation over time (AUC TOP ) that is less than about 20%, less than about 10%, less than about 5%, less than about 4%, less than about 3%, less than about 2% or less than about 1% of the AUC in systemic circulation over time provided by subcutaneous administration of the same amount of the therapeutic agent (AUC SC ).
  • AUC area under the curve
  • the topical administration provides a maximum plasma concentration (C max ) of the therapeutic agent in systemic circulation ((C max ) TOP ) that is less than about 20%, less than about 10%, less than about 5%, less than about 4%, less than about 3%, less than about 2% or less than about 1% of the C max in systemic circulation provided by intravenous administration of the same amount of the therapeutic agent ((C max ) IV ).
  • the topical administration provides a maximum plasma concentration (C max ) of the therapeutic agent in systemic circulation ((C max ) TOP ) that is less than about 20%, less than about 10%, less than about 5%, less than about 4%, less than about 3%, less than about 2% or less than about 1% of the C max in systemic circulation provided by subcutaneous administration of the same amount of the therapeutic agent ((C max ) SC ).
  • the disease or condition is responsive to treatment with the therapeutic agent.
  • the disease or condition is an inflammatory bowel disease.
  • the inflammatory bowel disease is ulcerative colitis.
  • the desired location of the GI tract is the large intestine.
  • the inflammatory bowel disease is Crohn's disease.
  • the Crohn's disease is ileal Crohn's disease.
  • the therapeutic agent is a TNF-alpha inhibitor.
  • the TNF-alpha inhibitor is selected from the group consisting of certolizumab pegol, etanercept, golimumab, infliximab, opinercept, ozoralizumab and tulinercept; and biosimilars thereof.
  • the TNF-alpha inhibitor is adalimumab, or a biosimilar thereof.
  • the therapeutic agent is an integrin inhibitor.
  • the integrin inhibitor is selected from the group consisting of PF-547659, AJM300, etrolizumab, vedolizumab, abciximab, eptifibatide, tirofiban, natalizumab, vitaxin, etaracizumab, intetumumab, efalizumab, STX-100, abrilumab, SAN-300 (hAQC2), DI176E6 (EMD 5257) and PTG-100; and pharmaceutically acceptable salts or biosimilars thereof.
  • the integrin inhibitor is vedolizumab, or a biosimilar thereof.
  • the therapeutic agent is a JAK inhibitor.
  • the JAK inhibitor is tofacitinib or a pharmaceutically acceptable salt thereof; optionally, the JAK inhibitor is tofacitinib citrate.
  • the therapeutic agent is an IL-12/IL-23 inhibitor.
  • the IL-12/IL-23 inhibitor is selected from the group consisting of ustekinumab, briakinumab, guselkumab, tildrakizumab, brazikumab, FM-303, LY-2525623, mirikizumab, risankizumab and PTG-200; and pharmaceutically acceptable salts or biosimilars thereof.
  • the IL-12/IL-23 inhibitor is ustekinumab, or a biosimilar thereof.
  • the therapeutic agent is an immune modulator.
  • the therapeutic agent is an IL-6 receptor inhibitor, a CD40/CD40L inhibitor, an IL-1 inhibitor, an IL-13 inhibitor, an IL-10 receptor agonist, a chemokine/chemokine receptor inhibitor, a PDE4 inhibitor or an S1P modulator.
  • the therapeutic agent is selected from the group consisting of abatacept, sargramostim, ustekinumab, secukinumab, tocilizumab, vedolizumab, natalizumab, interferon beta-la, adalimumab, etanercept, golimumab and certolizumab pegol; and biosimilars thereof.
  • the therapeutic agent has a molecular weight of at least about 20 kDa, at least about 30 kDa, at least about 40 kDa, at least about 50 kDa or at least about 60 kDa; optionally, at least about 20 kDa.
  • the pharmaceutical formulation is a fluid.
  • the fluid is a liquid.
  • the pharmaceutical formulation is a solution or suspension.
  • the pharmaceutical formulation has a viscosity of less than or equal to 10 cP, at least about 0.8 cP, or at most about 8 cP or at most about 9 cP.
  • the ingestible device is configured as a 00-sized capsule.
  • FIG. 1 A is a schematic cross section of the different regions of healthy intestinal tissue.
  • FIG. 1 B is a schematic cross section corresponding to FIG. 1 A but for diseased intestinal tissue.
  • FIG. 2 is a cross section of an ingestible device.
  • FIG. 3 is a cross section of an ingestible device.
  • FIG. 4 A shows the exterior surface of an ingestible device.
  • FIG. 4 B is a top view cross section of the ingestible device in an open position.
  • FIG. 4 C is a front view cross section of the ingestible device in the open position.
  • FIG. 5 A is a top view cross section of the ingestible device in the closed position.
  • FIG. 5 B is a front view cross section of the ingestible device of in the closed position.
  • FIGS. 6 A- 6 L shows exemplary nozzle cross sections for the ingestible device.
  • FIG. 7 shows an exemplary histology slide resulting from a bolus of therapeutic agent in situ.
  • FIG. 8 shows an exemplary process flow chart for use of an ingestible device in which pressure is applied to the dispensable substance before the subject swallows the ingestible device.
  • FIG. 9 A shows an ingestible device.
  • FIG. 9 B shows certain elements of the ingestible device of FIG. 9 A .
  • FIG. 10 A shows an ingestible device.
  • FIG. 10 B shows an exploded view of the ingestible device of FIG. 10 A .
  • FIG. 10 C shows aspects of steps in assembling the ingestible device of FIG. 10 A .
  • FIG. 10 D shows an ingestible device with aspects similar to those shown in FIG. 10 A .
  • FIG. 10 E shows an ingestible device with aspects similar to those shown in FIG. 10 A .
  • FIG. 11 shows an ingestible device.
  • FIG. 12 shows an ingestible device.
  • FIG. 13 shows an ingestible device.
  • FIG. 14 shows an ingestible device.
  • FIG. 15 A shows an ingestible device.
  • FIG. 15 B shows an exploded view of the ingestible device of FIG. 15 A .
  • FIG. 15 C shows aspects of steps in assembling the ingestible device of FIG. 15 A .
  • FIG. 16 shows an exemplary process flow chart for use of an ingestible device in which pressure is not applied to the dispensable substance before the subject swallows the ingestible device.
  • FIG. 17 shows an ingestible device.
  • FIG. 18 shows an ingestible device.
  • FIG. 19 A shows an ingestible device.
  • FIG. 19 B shows an exploded view of the ingestible device of FIG. 19 A .
  • FIG. 19 C shows aspects of steps in assembling the ingestible device of FIG. 19 A .
  • FIG. 19 D shows an ingestible device with aspects similar to those shown in FIG. 19 A .
  • FIG. 19 E shows an ingestible device with aspects similar to those shown in FIG. 19 A .
  • FIG. 19 F shows an ingestible device with aspects similar to those shown in FIG. 19 A .
  • FIG. 19 G shows an ingestible device with aspects similar to those shown in FIG. 19 A .
  • FIG. 19 H shows an ingestible device with aspects similar to those shown in FIG. 19 A .
  • FIGS. 191 and 19 J show aspects of states of an ingestible device.
  • FIGS. 19 K and 19 L show aspects of states of an ingestible device.
  • FIGS. 20 A and 20 B show an ingestible device.
  • FIGS. 21 A and 21 B show an ingestible device.
  • FIG. 22 shows an ingestible device.
  • FIG. 23 A shows an ingestible device.
  • FIG. 23 B shows an exploded view of the device of FIG. 23 A .
  • FIG. 24 shows an ingestible device.
  • FIG. 25 shows an ingestible device.
  • FIG. 26 A shows an ingestible device.
  • FIG. 26 B shows an exploded view of the device of FIG. 26 A .
  • FIG. 26 C shows aspects of states of the ingestible device of FIG. 26 A .
  • FIG. 27 shows an ingestible device.
  • FIG. 28 A shows an ingestible device.
  • FIG. 28 B shows an exploded view of the device of FIG. 28 A .
  • FIG. 29 A shows an ingestible device.
  • FIG. 29 B shows an exploded view of the device of FIG. 29 A .
  • FIG. 29 C shows aspects of states of the ingestible device of FIG. 29 A .
  • FIG. 30 shows an ingestible device.
  • FIG. 31 A shows an ingestible device.
  • FIG. 31 B shows aspects of states of the ingestible device of FIG. 31 A .
  • FIG. 32 shows an ingestible device.
  • FIGS. 33 - 37 are graphs showing modelling results for ingestible devices having two nozzles.
  • FIGS. 38 - 47 are graphs showing modelling results for ingestible devices having two or four nozzles.
  • FIG. 48 shows blood insulin levels in swine after subcutaneous (SC) administration.
  • FIG. 49 shows blood insulin levels in swine after jejunum (IJ) administration.
  • FIG. 50 shows blood insulin levels and dextrose infusion rates in the SC administration group.
  • FIG. 51 shows blood insulin levels and dextrose infusion rates in the IJ administration group.
  • FIG. 52 shows adalimumab concentration in swine plasma over 10 days after: ID administration via the endoscopically placed ingestible device having an internal pressure of 220 psig, 270 psig or 320 psig; SC administration; and IV administration.
  • FIGS. 53 A- 53 C show dulaglutide concentration in blood over time after: ID administration via the endoscopically placed ingestible device an internal pressure of 320 psig ( FIG. 53 A ); SC administration ( FIG. 53 B ); and IV administration ( FIG. 53 C ).
  • FIG. 54 shows the plasma concentration of dulaglutide over time via ID administration relative to IV or SC administration.
  • FIGS. 55 A- 55 B show the plasma concentration of adalimumab over time in individual animals.
  • FIG. 55 A represents animals treated with adalimumab after ID administration via the endoscopically placed ingestible device having 4 nozzles and an internal pressure of 320 psig.
  • FIG. 55 B represents animals treated with adalimumab after ID administration via the endoscopically placed ingestible device having 4 nozzles and an internal pressure of 350 psig.
  • FIG. 56 shows the mean plasma concentration of adalimumab (ng/mL ⁇ SEM) over time (0-240 hours) after ID administration via the endoscopically placed ingestible device having: 4 nozzles and an internal pressure of 320 psig (Group 1); 4 nozzles and an internal pressure of 350 psig (Group 2); 2 nozzles and an internal pressure of 320 psig.
  • FIGS. 57 A- 57 B illustrate the general principle of a competitive inhibition assay.
  • FIG. 57 A shows binding of anti-TNF ⁇ to the TNF ⁇ receptor without drug, where uninhibited binding brings the Donor and Acceptor beads into close proximity for singlet oxygen transfer detection.
  • FIG. 57 B shows binding of anti-TNF ⁇ to TNF ⁇ that is inhibited by drug binding to TNF ⁇ , thus preventing binding to anti-TNF ⁇ antibodies and proximity oxygen singlet transfer detection.
  • FIGS. 58 A- 58 B are dose response curves of adalimumab binding to TNF-alpha.
  • FIG. 58 A shows the dose response curve after 10,000 pg/mL of adalimumab was dispensed into collection tubes under various conditions as described in Example 8.
  • FIG. 58 B is an enlarged view of a section of the graph shown in FIG. 58 A .
  • FIG. 59 is a flow chart of the experimental design.
  • FIG. 60 shows the assay principle of negative control (NC) production.
  • FIG. 61 shows the results of a gel analysis.
  • FIGS. 62 A- 62 B show mean plasma ( FIG. 62 A ) and colon tissue ( FIG. 62 B ) concentrations of tofacitinib (free base) over a 24-hour period post-treatment with tofacitinib citrate or vehicle in a DSS-induced colitis mouse model. Dashed lines indicate in vitro IC 50 values for JAK1/3, JAK1/2 and JAK2/2 in whole blood. Error bars represent standard deviation.
  • FIGS. 63 A- 63 C show plasma ( FIG. 63 A ), colon content ( FIG. 63 B ) and colon tissue ( FIG. 63 C ) tofacitinib exposure (AUC 0-24 h ) after treatment with vehicle or tofacitinib citrate via per oral (PO) or intracecal (IC) administration in a DSS-induced colitis mouse model.
  • FIGS. 64 A- 64 B show IL-6 concentrations in colon tissue over a 24-hour period post-treatment with vehicle or tofacitinib citrate via per oral (PO) or intracecal (IC) administration in a DSS-induced colitis mouse model on Study Day 12.
  • FIG. 64 A shows IL-6 concentrations in colon tissue at various timepoints on Study Day 12.
  • FIG. 64 B shows the relationship between tofacitinib concentration in colon tissue (open shapes and dotted lines; right y-axis) and % IL-6 in colon tissue after treatment with tofacitinib citrate, normalized to DSS vehicle control (Group 2) (solid shapes and solid lines; left y-axis).
  • FIG. 65 is a graph showing the Disease Activity Index (DAI) of na ⁇ ve mice (Group 1), mice administered vehicle only both intraperitoneally (IP) and intra-cecally (IC) (Group 2), mice administered an anti-TNF ⁇ antibody IP and vehicle IC (Group 7), and mice administered an anti-TNF ⁇ antibody IC and vehicle IP (Group 8) at Day 28 and Day 42 of the study described in Example 10.
  • DAI Disease Activity Index
  • FIG. 66 is a set of graphs showing the colonic tissue concentration of TNF ⁇ , IL-17A, IL-4, and IL-22 in mice administered vehicle only both IP and IC (Group 2), mice administered IgG control antibody IP and vehicle IC (Group 3), mice administered IgG control IC and vehicle IP (Group 4), mice administered anti-TNF ⁇ antibody IP and vehicle IC (Group 7), and mice administered anti-TNF ⁇ antibody IC and vehicle IP (Group 8) at Day 42 of the study described in Example 10.
  • FIG. 67 is a graph showing the Disease Activity Index (DAI) of na ⁇ ve mice (Group 1), mice administered vehicle only both IP and IC (Group 2), mice administered an anti-IL12 p40 antibody IP and vehicle IC (Group 5), and mice an anti-IL12 p40 antibody IC and vehicle IP (Group 6) at Day 28 and Day 42 of the study described in Example 10.
  • DAI Disease Activity Index
  • FIG. 68 is a set of graphs showing the colonic tissue concentration of IFN-gamma, IL-6, IL-17A, TNF ⁇ , IL-22, and IL-1b in na ⁇ ve mice (Group 1), mice administered vehicle only both IP and IC (Group 2), mice administered anti-IL12 p40 antibody IP and vehicle IC (Group 5), and mice administered anti-IL12 p40 antibody IC and vehicle IP (Group 8) at Day 42 of the study described in Example 10.
  • FIGS. 69 A- 69 B show body weight changes (mean % SEM).
  • FIG. 69 A shows the influence of anti-TNF-alpha;
  • FIG. 69 B shows the influence of anti-IL12p40.
  • FIG. 70 shows total histopathology score (mean % ⁇ SEM) in ileum, proximal colon and distal colon tissues after targeted IC anti-TNF-alpha treatment compared with vehicle and IP treatment groups. Pair-wise comparisons by two-tailed Mann-Whitney U-Test for treatment effects; p ⁇ 0.05*.
  • FIGS. 71 A- 71 D show mean lymphocyte counts from luminal to external submucosa of proximal colon and represented images of H&E stains and IHC stains of the proximal colon.
  • FIG. 71 A shows the mean lymphocyte count from most inner lumen to submucosal of the proximal colon in groups treated with Vehicle controls, anti-TNF ⁇ (IP) and anti-TNF ⁇ (IC), Group mean+/ ⁇ SEM. Kruskal-Wallis Test with Dunn's multiple comparison for treatment effects; p ⁇ 0.05*.
  • FIG. 71 B is a representative image of H&E stain of proximal colon in proximal colon of anti-TNF ⁇ (IC) group.
  • FIGS. 71 C and 71 D are representative images of IHC stain of CD4 marker for lymphocytes in proximal colon of anti-TNF ⁇ (IC) ( FIG. 71 C ) or anti-TNF ⁇ (IP) ( FIG. 71 D ) group.
  • IC anti-TNF ⁇
  • IP anti-TNF ⁇
  • FIGS. 72 A- 72 C show semaglutide concentration in blood over time after: ID administration via the endoscopically placed ingestible jet delivery device ( FIG. 72 A ); SC administration ( FIG. 72 B ); and IV administration ( FIG. 72 C ).
  • FIG. 73 shows the (AUC) T0-T10 d observed after administration of adalimumab intraduodenally (ID) via an ingestible jet delivery device having an internal pressure of 320 psig (Example 5, Group 3), ID via an endoscopic injection needle (Example 12), subcutaneously (Example 5, Group 4) and intravenously (Example 5, Group 5).
  • ID adalimumab intraduodenally
  • “Ingestible,” as used herein in reference to the device, means that the device can be swallowed whole.
  • an “antibody” is an immunoglobulin molecule capable of specific binding to a target, such as a carbohydrate, polynucleotide, lipid, polypeptide, etc., through at least one antigen recognition site, located in the variable region of the immunoglobulin molecule.
  • a target such as a carbohydrate, polynucleotide, lipid, polypeptide, etc.
  • antigen recognition site located in the variable region of the immunoglobulin molecule.
  • antibody and “immunoglobulin” are used interchangeably in the broadest sense.
  • the terms encompass monoclonal antibodies (for example, full length or intact monoclonal antibodies), polyclonal antibodies (for example, full length or intact polyclonal antibodies), and fragments thereof (such as Fab, Fab′, F(ab′)2, Fv), single chain (ScFv) and domain antibodies), fusion proteins including an antibody portion, multivalent antibodies, multispecific antibodies (e.g., bispecific, trispecific, etc. antibodies so long as they exhibit the desired biological activity), and any other modified configuration of the immunoglobulin molecule that includes an antigen recognition site.
  • An antibody can be human, humanized and/or affinity matured.
  • antibody includes antibody fragments (e.g., antigen-binding fragments) such as an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment.
  • antibody fragments comprise only a portion of an intact antibody, where in certain embodiments, the portion retains at least one, and typically most or all, of the functions normally associated with that portion when present in an intact antibody.
  • an antibody fragment comprises an antigen binding site of the intact antibody and thus retains the ability to bind antigen.
  • an antibody fragment for example one that comprises the Fc region, retains at least one of the biological functions normally associated with the Fc region when present in an intact antibody, such as FcRn binding, antibody half-life modulation, ADCC function and complement binding.
  • an antibody fragment is a monovalent antibody that has an in vivo half-life substantially similar to an intact antibody.
  • such an antibody fragment may comprise an antigen binding arm linked to an Fc sequence capable of conferring in vivo stability to the fragment.
  • antigen-binding fragments include an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized Ig
  • An antibody includes an antibody of any class, such as IgG, IgA, or IgM (or sub-class thereof), and the antibody need not be of any particular class.
  • immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2.
  • the heavy-chain constant domains that correspond to the different classes of immunoglobulins are called alpha, delta, epsilon, gamma, and mu, respectively.
  • the subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.
  • the term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigen or antigenic site. Furthermore, in contrast to polyclonal antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
  • the modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
  • the monoclonal antibodies to be used in accordance with the present disclosure may be made by the hybridoma method first described by Kohler and Milstein, 1975, Nature 256:495, or may be made by recombinant DNA methods such as described in U.S. Pat. No. 4,816,567.
  • the monoclonal antibodies may also be isolated from phage libraries generated using the techniques described in McCafferty et al., 1990, Nature 348:552-554, for example.
  • the monoclonal antibodies herein specifically include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al, Proc. Natl. Acad. Sci. USA 81:6851-6855 (1984)).
  • variable region of an antibody refers to the variable region of the antibody light chain or the variable region of the antibody heavy chain, either alone or in combination.
  • variable regions of the heavy and light chain each consist of four framework regions (FR) connected by three complementarity determining regions (CDRs) that contain hypervariable regions.
  • FR framework regions
  • CDRs complementarity determining regions
  • CDRs There are at least two techniques for determining CDRs: (1) an approach based on cross-species sequence variability (i.e., Kabat et al., Sequences of Proteins of Immunological Interest, (5th ed., 1991, National Institutes of Health, Bethesda Md.)); and (2) an approach based on crystallographic studies of antigen-antibody complexes (Al-Lazikani et al., 1997, J. Molec. Biol. 273:927-948).
  • a CDR may refer to CDRs defined by either approach or by a combination of both approaches.
  • a “constant region” of an antibody refers to the constant region of the antibody light chain or the constant region of the antibody heavy chain, either alone or in combination.
  • Bioavailability may be reported based on the ratio of the area under a curve (AUC) of the therapeutic agent concentration in systemic circulation versus time that is achieved when the drug is administered by another form of administration (e.g., trans-epithelial administration [hereinafter, AUC) TE ] or topical administration [hereinafter, AUC) TOP ], respectively) versus the AUC of the therapeutic agent concentration in systemic circulation versus time that is achieved when the same amount of the drug is administered intravenously [hereinafter, (AUC) IV ], or subcutaneously [hereinafter, (AUC) SC ], expressed as a percentage.
  • AUC area under a curve
  • the AUC is a mean AUC.
  • the mean is a geometric mean.
  • drug exposure may be reported based on a different pharmacokinetic parameter.
  • drug exposure may be reported as a ratio of maximum therapeutic agent concentration (C max ) in systemic circulation that is achieved when the drug is administered by another form of administration (e.g., trans-epithelial administration [hereinafter, (C max ) TE ] or topical administration [hereinafter, (Cmax) TOP ]), versus the C max of the therapeutic agent concentration in systemic circulation that is achieved when the same amount of the drug is administered intravenously [hereinafter, (C max ) IV ], or subcutaneously [hereinafter, (C max ) SC ], expressed as a percentage.
  • C max maximum therapeutic agent concentration
  • non-oral when used in reference to a therapeutic suitable for use with the devices and methods of the present disclosure, refers to a therapeutic or active agent that has poor bioavailability and/or is not administered by an oral route of administration.
  • chemokine/chemokine receptor inhibitors refers to an agent which decreases the ability of a chemokine to bind to its receptor, where the chemokine is one of CXCL10 (IL-10), CCL11, or an ELR chemokine, or the chemokine receptor is CCR2 or CCR9.
  • Effective amount refers to an amount of therapeutic agent that offers beneficial response to a patient receiving the treatment.
  • an effective amount may be a Human Equivalent Dose (HED).
  • HED Human Equivalent Dose
  • therapeutically effective amount refers to the amount of the therapeutic agent that is effective for producing a desired therapeutic effect.
  • a therapeutically effective amount treats or prevents a disease or condition disclosed herein.
  • MALT melatonin-associated lymphoid tissue
  • gastrointestinal tract a diffuse system of small concentrations of lymphoid tissue found in various submucosal membrane sites of the body, such as the gastrointestinal tract, oral passage, nasopharyngeal tract, thyroid, breast, lung, salivary glands, eye, and skin.
  • GALT Gut-associated lymphoid tissue
  • Peyer's patches refers to aggregated lymphoid modules organized into follicles and are important part of GALT. Peyer's patches are mainly present in the distal jejunum and the ileum.
  • Mesenteric lymph nodes refers to part of the paraaortic lymph node system that is a group of lymph nodes that lie between the layers of the mesentery and drain the gut tissues and deliver lymph to the thoracic duct.
  • Mesenteric lymph nodes include the “superior mesenteric lymph nodes” which receive afferents from the jejunum, ileum, cecum, and the ascending and parts of the transverse colon.
  • Mesenteric lymph nodes also include “inferior mesenteric lymph nodes” which are lymph nodes present throughout the hindgut.
  • the hindgut e.g., includes the distal third of the transverse colon and the splenic flexure, the descending colon, sigmoid colon, and the rectum.
  • the lymph nodes drain into the superior mesenteric lymph nodes and ultimately to the preaortic lymph nodes.
  • Paraaortic lymph nodes refers to a group of mesenteric lymph nodes that lie in front of the lumbar vertebrae near the aorta. The paraaortic lymph nodes receive drainage from the gastrointestinal tract and the abdominal organs. Paraaortic lymph nodes include, e.g., retroaortic lymph nodes, lateral aortic lymph nodes, preaortic lymph nodes (e.g., Celiac, gastric, hepatic, and splenic lymph nodes), superior mesenteric lymph nodes (e.g., mesenteric, ileocolic, and mesocolic lymph nodes), and inferior mesenteric lymph nodes (e.g., pararectal lymph nodes).
  • retroaortic lymph nodes e.g., retroaortic lymph nodes, lateral aortic lymph nodes, preaortic lymph nodes (e.g., Celiac, gastric, hepatic, and splenic lymph nodes), superior mes
  • a drug's international nonproprietary name is to be interpreted as including generic, bioequivalent and biosimilar versions of that drug, including but not limited to any drug that has received abbreviated regulatory approval by reference to an earlier regulatory approval of that drug.
  • all drugs disclosed herein optionally include the pharmaceutically acceptable salts and solvates of the drugs thereof, and the biosimilars thereof, and/or glycosylation variants thereof, in the case of biologics such as antibodies, unless expressly indicated otherwise.
  • each listed small molecule, peptide or nucleic acid agent optionally includes a pharmaceutically acceptable salt thereof, whether or not such a form is expressly indicated.
  • Each listed antibody agent optionally includes a biosimilar thereof, or a glycosylation variant thereof, whether or not such a biosimilar or glycosylation variant is expressly indicated.
  • Dispensable refers to any substance that may be released from an ingestible device as disclosed herein, or from a component of the device such as a reservoir.
  • a dispensable substance may be a therapeutic agent as disclosed herein, and/or a formulation that includes a therapeutic agent as disclosed herein.
  • a dispensable substance may be a fluid, such as a liquid, a suspension or a semi-solid.
  • a dispensable substance can be a liquid in the form of a solution, such as an aqueous solution.
  • a substance when disposed in an ingestible device, a substance is a non-fluid, such as a solid.
  • the substance may be converted to a fluid prior to being delivered from the ingestible device.
  • the therapeutic agent is a small molecule.
  • the therapeutic agent is a large molecule, such as a biologic drug.
  • biologic drugs include antibodies (including monoclonal antibodies), proteins (including fusion proteins), peptides (including cyclic peptides), cells (including stem cells), and nucleic acids (including inhibitory nucleic acids, antisense nucleic acids, siRNA, ribozymes).
  • the dispensable substance is a pharmaceutical formulation comprising a therapeutic agent and a liquid carrier.
  • the pharmaceutical formulation comprising the therapeutic agent and the liquid carrier is a solution formulation.
  • the pharmaceutical formulation comprising the therapeutic agent and the liquid carrier is a suspension formulation, or an emulsion formulation.
  • a dispensable substance delivered as described herein is particularly well-suited for treatment of diseases and conditions of the endoderm, for example, it may be more efficacious in gut-associated lymphoid tissue (GALT) or the hepatic system as compared to subcutaneous or intravenous administration.
  • GALT gut-associated lymphoid tissue
  • the viscosity of a dispensable substance can be selected as appropriate.
  • the dispensable substance has a viscosity of at least about 0.5 centiPoise (cP) (e.g., at least about 0.8 cP, at least about 1 cP, at least about 2 cP, at least about 3 cP, at least about 4 cP, at least about 5 cP) and/or at most about 10 cP (e.g., at most about 9 cP, at most about 8 cP, at most about 7 cP).
  • the dispensable substance has a viscosity of from about 0.5 cP to about 10 cP (e.g., from about 0.8 cP to about 9 cP, from about 0.8 cP to about 8 cP).
  • enteric refers a material that permits transition to a desired location in the GI tract (e.g., through the stomach to the intestine) before being dissolved/degraded/eroded due to exposure of certain conditions (e.g., pH, temperature, enzymes) of the GI tract.
  • An enteric material may prevent a drug from degradation by gastric fluid and enzymes.
  • an enteric composition e.g., when formed as a coating on the housing of an ingestible device
  • An enteric material can be an enteric polymer.
  • an enteric polymer can remain insoluble in the stomach, but dissolve at the higher pH of the intestine (e.g., small intestine or large intestine), and are used to deliver drugs to the intestine.
  • Examples include Colorcon's Opadry Enteric 91 series Polyvinyl Acetate Phthalate, Opadry Enteric 94 series Methacrylic Acid, Opadry Enteric 95 series Methacrylic Acid, Sureteric PVAP (Polyvinyl Acetate Phthalate), Nutrateric Ethylcellulose Evonik Acryl-EZE (Colorcon & Evonik collaboration—Eudragit L 100-55 Mixture Methacrylic copolymers); Evonik's Eudragit L 100-55 Methacrylic copolymers, Eudragit L 30 D-55 Methacrylic copolymers (30%), EudragitL 100 Methacrylic copolymers, EudragitL 12,5 Methacrylic copolymers (12.5%), Eudragit S 100 Methacrylic copo
  • an enteric material dissolves in the small intestine and is suitable for small intestine release.
  • enteric materials include, but are not limited to, cellulose derivatives, e.g., cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate (HPMCP), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and RL100 (e.g., HP-55), malic acid-propane 1,2-diol, polyvinyl acetate phthalate, anionic polymers of methacrylic acid and methyl methacrylate, hydroxypropylcellulose acetate phthalate, polyvinyl acetate phthalate, methacrylate-methacrylic acid copolymers, styrol, maleic acid copolymers, shellac, and others.
  • cellulose derivatives e.g., cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate (HPMCP), hydroxypropylmethylcellulose acetate succinate (H
  • enteric material is a water emulsion of ethylacrylate methylacrylic acid copolymer, or hydroxypropyl methyl cellulose acetate succinate (HPMAS).
  • HPMAS hydroxypropyl methyl cellulose acetate succinate
  • an enteric material dissolves in the large intestine and is suitable for colonic release. Enteric materials suitable for large intestine (e.g., colonic) release are known to one of skill in the art.
  • degradation of the coating is microbially triggered, e.g., the bacteria in the colon enzymatically trigger degradation of the coating (see, e.g., Archana et al., Int. J. Pharm.
  • the coating is a pH-dependent polymer that is insoluble at low pH but becomes increasingly soluble as pH increases.
  • the coating is a polymethacrylates with a pH-dependent dissolution threshold of about pH 6.0 to about 7.0.
  • enteric materials include, but are not limited to, chitosan, alginates (e.g., as calcium salts), Eudragit® L (e.g., Eudragit® 100), Eudragit® S (e.g., Eudragit® S 100), Eudragit® L (e.g., Eudragit® L-30D), Eudragit® FS (e.g., Eudragit® FS 30D), hydroxypropylmethylcellulose phthalate 50, hydroxypropylmethylcellulose phthalate 55, and cellulose acetate trimellate.
  • an enteric material is a material described in U.S. Pat. No. 10,226,430; Sethi et al., Int. J. Pharm. Sci. Res.
  • the colon-specific degradation of an enteric material can be based on the presence of microorganisms that reside only in the colon, more particularly, biodegradable enzymes produced by these microorganisms.
  • microorganisms are anaerobic bacteria, e.g., Bacteroides, Bifidobacteria, Enterobacteria, Eubacteria, Clostridia, Enterococci, and Ruminococcus, etc.
  • micro floras fulfill their energy needs by fermenting various types of substrates that have been left undigested in the small intestine, e.g., polysaccharides, di- and tri-saccharides, etc. These polymers are stable in the environments of the stomach and small intestine. On reaching the colon, the polymers undergo degradation by the enzyme or break down of the polymer backbone leads to a subsequent reduction in their molecular weight and thereby loss of the mechanical strength.
  • jet refers to a collimated stream of fluid, e.g., liquid or suspension, that is stable without breaking up into a spray.
  • a jet may be formed by forcing the fluid, e.g., liquid or suspension, through an opening in an ingestible device.
  • a jet maintains a stable form and is capable of achieving its intended purpose by maintaining appropriate properties (e.g., to penetrate a surface), such as its diameter and/or velocity.
  • jet diameter is the cross-sectional diameter of a jet at a given location.
  • average jet diameter refers to the average cross-sectional diameter of a jet between the location where the jet is formed (e.g., a nozzle opening through which the dispensable substance is delivered from the ingestible device) and the location where the jet impacts the GI tissue of the subject.
  • Jet stable length refers to the distance from an opening (e.g., nozzle opening) of an ingestible device that a dispensable substance delivered through the opening remains in the form of a jet.
  • Jet velocity is the average fluid velocity across the cross-section of a jet at a given point in time.
  • peak jet velocity refers to the maximum jet velocity of a jet at the interface of the lumen and the surface of the GI tract facing the lumen. In general, the peak jet velocity is achieved at the time of initial delivery of the dispensable substance from the ingestible device.
  • minimum jet velocity refers to the minimum velocity of a jet at the interface of the lumen and the surface of the GI tract facing the lumen. In general, the minimum jet velocity is achieved at the end of delivery of the dispensable substance from the ingestible device.
  • Mean jet velocity and “average jet velocity,” as used herein, refer to the average velocity of a jet at the interface of the lumen and the surface of the GI tract facing the lumen as determined over the time that the ingestible device delivers the dispensable substance.
  • peak jet power refers to the maximum power of a jet at the interface of the lumen and the surface of the GI tract facing the lumen. In general, the peak jet power is achieved at the time of initial delivery of the dispensable substance from the ingestible device.
  • minimum jet power refers to the minimum power of a jet at the interface of the lumen and the surface of the GI tract facing the lumen. In general, the minimum jet power is achieved at the end of delivery of the dispensable substance from the ingestible device.
  • Mean jet power and “average jet power,” as used herein, refer to the average power of a jet at the interface of the lumen and the surface of the GI tract facing the lumen as determined over the time that the ingestible device delivers the dispensable substance.
  • Jet power during delivery refers to the power of a jet at the interface of the lumen and the mucosa of the GI tract of a subject.
  • Jet pressure refers to the pressure of a jet at the interface of the lumen and the surface of the GI tract facing the lumen.
  • the jet pressure can be the pressure by the jet measured at the intestinal wall.
  • jet pressure is referred to herein as “impact pressure.”
  • Peak jet pressure refers to the maximum pressure of a jet at the interface of the lumen and the surface of the GI tract facing the lumen. In general, the peak jet pressure is achieved at the time of initial delivery of the dispensable substance from the ingestible device.
  • minimum jet pressure refers to the minimum pressure of a jet at the interface of the lumen and the surface of the GI tract facing the lumen. In general, the minimum jet pressure is achieved at the end of delivery of the dispensable substance from the ingestible device.
  • Mean jet pressure and “average jet pressure,” as used herein, refer to the average pressure of a jet at the interface of the lumen and the surface of the GI tract facing the lumen as determined over the time that the ingestible device delivers the dispensable sub stance.
  • Jet force refers to the force of a jet at the interface of the lumen and the surface of the GI tract facing the lumen. In some embodiments, jet force is referred to herein as “impact force.”
  • Peak jet force refers to the maximum force of a jet at the interface of the lumen and the surface of the GI tract facing the lumen. In general, the peak jet force is achieved at the time of initial delivery of the dispensable substance from the ingestible device. In some embodiments, peak jet force is referred to herein as “impact force.”
  • minimum jet force refers to the minimum force of a jet at the interface of the lumen and the mucosa of the GI tract of a subject. In general, the minimum jet force is achieved at the end of delivery of the dispensable substance from the ingestible device.
  • Mean jet force and “average jet force,” as used herein, refer to the average pressure of a jet at the interface of the lumen and the surface of the GI tract facing the lumen as determined over the time that the ingestible device delivers the dispensable sub stance.
  • fluid volume refers to the volume of the dispensable substance contained in the ingestible device.
  • “Initial fluid volume,” as used herein, refers to the volume of the dispensable substance contained in the ingestible device just prior to delivery of the dispensable substance from the ingestible device.
  • Fluid volume refers to the volume of the dispensable substance contained in the ingestible device just after delivery of the dispensable substance from the ingestible device has ended.
  • delivered fluid volume refers to the volume of dispensable substance delivered from the ingestible device. In some embodiments, the delivered fluid volume is less than the fluid volume.
  • End round is the radius on the curve at the end of the housing of the ingestible device.
  • Fluid pressure refers to the pressure in the fluid volume.
  • peak fluid pressure refers to maximum pressure generated in the fluid volume. Generally, the peak fluid pressure is achieved at initial delivery of the dispensable substance from the ingestible device. In some embodiments, peak fluid pressure is referred to herein as “internal pressure on the pharmaceutical formulation in the device, prior to release from the device.”
  • minimum fluid pressure refers to minimum pressure generated in the fluid volume. Generally, the minimum fluid pressure is achieved at the end of delivery of the dispensable substance from the ingestible device.
  • Fluid pressure during delivery refers to the pressure in the fluid volume as it decreases during the delivery process.
  • nozzle refers to a channel between a fluid reservoir space and an external environment.
  • pressure in the fluid volume generates a high speed flow of fluid through the nozzle to produce a fluid jet at the opening of the nozzle through which the dispensable substance leaves the ingestible device and enters an environment exterior to the ingestible device.
  • Nozzle diameter refers to the diameter of the opening of the nozzle at the opening of the nozzle through which the dispensable substance leaves the ingestible device and enters an environment exterior to the ingestible device.
  • nozzle length refers to the length of the opening of the nozzle.
  • Nozzle stand-off distance refers to the distance between: 1) the opening of the nozzle through which the dispensable substance leaves the ingestible device and enters an environment exterior to the ingestible device; and 2) the interface of the lumen and the surface of the GI tract facing the lumen.
  • the “internal pressure” of an ingestible device refers to the pressure applied to a dispensable substance, such as a therapeutic agent, or a formulation containing a therapeutic agent, contained in the ingestible device prior to delivery of the dispensable substance from the ingestible device.
  • the internal pressure is provided by the drive force generator of the ingestible device.
  • the internal pressure is greater than the fluid pressure. This may be due, for example, to friction, such as O-ring friction, acting on the drive coupling of the ingestible device. This friction is referred to herein as the “piston friction.”
  • Nozzle pressure refers to the pressure of a dispensable substance at a nozzle opening as measured at the surface facing the interior of the nozzle as the dispensable substance is delivered from the ingestible device. In general, for a given ingestible device at a given point in time, the nozzle pressure is approximately the same as the fluid pressure.
  • Topical delivery refers to a route of administration of a dispensable substance (for example, a therapeutic agent or a pharmaceutical formulation containing a therapeutic agent) where the dispensable substance is delivered to a localized area of the body or to the surface of a body part, regardless of the location of the effect; more particularly, the topical administration of the dispensable substance comprises releasing the dispensable substance to the lumen of the GI tract, a surface of the GI tract facing the lumen, a mucous membrane and/or a lining of the gastrointestinal tract of a subject, including, but not limited to, a surface, mucous membrane or lining containing one or more disease sites, such as gastrointestinal mucosal lesions.
  • the effect of the topical delivery or topical administration of the dispensable substance may be local to, or away from (e.g., distal to), the site of the topical administration.
  • Epithelial delivery or “epithelial administration,” as used herein, refers to a route of administration of a dispensable substance (for example, a therapeutic agent or a pharmaceutical formulation containing a therapeutic agent) where the dispensable substance is directly delivered into the mucus or onto the epithelium, but not past the epithelial layer, of the GI tract of a subject, such as the small or large intestine, from which the dispensable substance can act locally or peripherally.
  • the therapeutic agent can move deeper into the GI tissue (i.e., past the epithelial layer) away from the site of direct delivery, such as, for example, via diffusion or active transport.
  • Trans-epithelial delivery or “trans-epithelial administration,” as used herein, refers to a route of administration of a dispensable substance (for example, a therapeutic agent or a pharmaceutical formulation containing a therapeutic agent) where the dispensable substance is directly delivered through the epithelial layer of the mucosa of the GI tract to the submucosa of the GI tract of a subject; optionally, at least a portion of the dispensable substance is directly delivered past the epithelial layer to a region of the mucosa beneath the epithelial layer.
  • a dispensable substance for example, a therapeutic agent or a pharmaceutical formulation containing a therapeutic agent
  • trans-epithelial delivery in which a portion of the dispensable substance is directly delivered to a region of the mucosa beneath the epithelial layer, at least some (e.g., all) of the portion of the dispensable substance is directly delivered to the lamina propria.
  • response refers to a measurable response, including complete response (CR) and partial response (PR).
  • “Complete response” or “CR” as used herein refers to the disappearance of all signs of disease or remission in response to treatment. This does not necessarily mean the disease has been cured.
  • Partial response refers to a decrease of at least 50% in the severity of disease in response to treatment.
  • “Beneficial response” of a patient to treatment with a therapeutic agent refers to the clinical or therapeutic benefit imparted to a patient at risk for or suffering from a disease or condition. Such benefit includes cellular or biological responses, a complete response, a partial response, a stable disease (without progression or relapse), or a response with a later relapse of the patient from or as a result of the treatment with the agent.
  • a patient's response can be assessed using any endpoint indicating a benefit to the patient, including, without limitation, (1) inhibition, to some extent, of disease progression, including slowing down and complete arrest; (2) reduction in the number of disease episodes and/or symptoms; (3) reduction in lesional size; (4) inhibition (i.e., reduction, slowing down or complete stopping) of disease cell infiltration into adjacent peripheral organs and/or tissues; (5) inhibition (i.e., reduction, slowing down or complete stopping) of disease spread; (6) decrease of auto-immune response, which may, but does not have to, result in the regression or ablation of the disease lesion; (7) relief, to some extent, of one or more symptoms associated with the disorder; (8) increase in the length of disease-free presentation following treatment; and/or (9) decreased mortality at a given point of time following treatment.
  • FIG. 1 A schematically describes the different regions of healthy intestinal tissue, presented in a cross section.
  • the regions include the lumen of the GI tract, the mucus of the GI tissue, the mucosa of the GI tissue and the submucosa of the GI tissue.
  • the mucosa of the GI tissue includes the epithelial layer and the lamina muscular.
  • the muscularis mucosae separates the mucosa from the submucosa.
  • the muscularis extrema is below the submucosa.
  • FIG. 1 B schematically describes corresponding regions of diseased intestinal tissue, presented in a cross section.
  • An ingestible device described herein can deliver a therapeutic agent via topical delivery (without being directly delivered to the mucus, mucosa or submucosa), epithelial delivery (directly delivered to the mucus or epithelium without being directly delivered past the epithelial layer to the mucosa or submucosa) or trans-epithelial delivery (directly delivered to the submucosa and/or into a region of the mucosa beneath the epithelial layer, such as the lamina limbal, a, or trans-epithelial delivery (directly delivered to the submucosa and/or into a region of the mucosa beneath the epithelial layer, such as the lamina limbal, a, etc.
  • topical delivery without being directly delivered to the mucus, mucosa or submucosa
  • epithelial delivery directly delivered to the mucus or epithelium without being directly delivered past the epithelial layer to the muco
  • the form of delivery may depend on the design of the ingestible device and parameters used with the device (e.g., internal pressure, fluid pressure, number of nozzles, design of nozzles). Holding other parameters constant, at relatively low fluid pressures and/or internal pressures, the therapeutic agent may be topically delivered, while higher fluid pressures and/or internal pressures may result in epithelial delivery, and still higher fluid pressures and/or internal pressure may result in trans-epithelial delivery.
  • a bolus of the therapeutic agent initially contained in the dispensable substance may form within the submucosa and/or into a region of the mucosa beneath the epithelial layer, such as the lamina limbal, a a fibroblasts, a bolus of the therapeutic agent initially contained in the dispensable substance may form within the submucosa and/or into a region of the mucosa beneath the epithelial layer, such as the lamina limbal, a fibroblasts, a fibroblasts
  • the ingestible device is designed to deliver a dispensable substance, for example, a therapeutic agent or a pharmaceutical formulation containing a therapeutic agent through the epithelial layer of the mucosa of the GI tract.
  • the dispensable substance is a solution formulation; optionally, a suspension.
  • the dispensable substance enters the submucosa and/or into a region of the mucosa beneath the epithelial layer, such as the lamina intestinal, of the small intestine, where it can be absorbed systemically. After the patient swallows the device, it passes through the GI tract and eventually reaches the small intestine.
  • the device includes a restraining mechanism, an optionally a triggering mechanism (e.g., a degradable and/or erodible coating, such as an enteric coating, that partially or completely degrades and/or erodes when the device reaches the desired location in the GI tract).
  • a triggering mechanism e.g., a degradable and/or erodible coating, such as an enteric coating, that partially or completely degrades and/or erodes when the device reaches the desired location in the GI tract.
  • the desired location can be the small intestine or the large intestine.
  • the preferred location can be the small intestine.
  • a component With the restraining element is removed, relative movement between certain components (e.g., sliding of a component) occurs such that one or more openings in the ingestible device (e.g., in a compartment containing the dispensable substance, such as a reservoir, sometimes referred to herein as the “drug reservoir,” “storage reservoir” or “substance reservoir”) become aligned with one or more additional openings (e.g., one or more nozzles) in the ingestible device (e.g., in the housing).
  • a compartment containing the dispensable substance such as a reservoir, sometimes referred to herein as the “drug reservoir,” “storage reservoir” or “substance reservoir”
  • additional openings e.g., one or more nozzles
  • a force forces the dispensable substance from the drug reservoir out of the device via the one or more openings (e.g., the one or more nozzles).
  • the dispensable substance is delivered as a jet of fluid (e.g., liquid) through the epithelial layer of the mucosa and directly into the submucosa and/or into a region of the mucosa beneath the epithelial layer, such as the lamina intestinal, of the GI tract in the form of single or multiple boluses.
  • the device After swallowing the device, the device travels through the GI tract (mouth, esophagus, stomach, duodenum, jejunum, ileum, cecum and colon), ultimately exiting the GI tract via the anus.
  • the ingestible devices disclosed herein provide delivery of therapeutic agent to the GI tract of a subject.
  • the disclosure relates to trans-epithelial delivery of a dispensable substance (e.g., a therapeutic agent or a formulation comprising a therapeutic agent) to the GI tract of a subject.
  • a dispensable substance e.g., a therapeutic agent or a formulation comprising a therapeutic agent
  • the disclosure provides an ingestible device that can directly deliver a dispensable substance (e.g., a therapeutic agent or a formulation comprising a therapeutic agent) to the submucosa and/or into a region of the mucosa beneath the epithelial layer, such as the lamina intestinal, of the GI tract of a subject, which may result in systemic exposure of the therapeutic agent to the subject.
  • the ingestible device is configured to directly deliver the dispensable substance past the epithelial cell layer of the mucosa and into the submucosa and/or into a region of the mucosa beneath the epithelial layer, such as the lamina intestinal, of the GI tract, where the therapeutic agent so delivered is available for systemic uptake.
  • systemic exposure of the therapeutic agent is achieved by trans-epithelial delivery of the dispensable substance into the submucosa and/or into a region of the mucosa beneath the epithelial layer, such as the lamina limbal, of the small intestine, for example, in the duodenum, the jejunum, and/or the ileum.
  • the trans-epithelial delivery directly delivers the dispensable substance into the submucosa and/or into a region of the mucosa beneath the epithelial layer, such as the lamina intestinal, of the GI tract such that the percent systemic uptake of the therapeutic agent via the trans-epithelial delivery relative to intravenous or subcutaneous administration is at least about 10% (e.g., at least about 15%, at least about 20%, at least about 25% or more).
  • the direct delivery of the therapeutic agent to the submucosa and/or into a region of the mucosa beneath the epithelial layer, such as the lamina basement, via trans-epithelial delivery may also or alternatively provide therapeutic effects locally and/or away from (e.g., distal to) the site of the direct delivery.
  • the trans-epithelial delivery may directly deliver a first portion of the dispensable substance to the submucosa of the GI tract, and a second portion of the dispensable substance to the mucosa, all or a further portion of which may be directly delivered to the lamina intestinal.
  • the second portion of the dispensable substance delivered to the mucosa, such as the lamina intestinal, of the GI tract via the trans-epithelial delivery may provide therapeutic effects locally and/or away from (e.g., distal to) the site of the direct delivery.
  • the disclosure relates to epithelial delivery of a dispensable substance (e.g., a therapeutic agent or a formulation comprising a therapeutic agent) to the GI tract of a subject.
  • a dispensable substance e.g., a therapeutic agent or a formulation comprising a therapeutic agent
  • the disclosure provides an ingestible device configured to directly deliver a dispensable substance (e.g., a therapeutic agent or a formulation comprising a therapeutic agent) into the mucus, but not past the epithelial layer of the mucosa, of the small or large intestine, from which it may provide therapeutic effects locally and/or away from (e.g., distal to) the site of the direct delivery.
  • the ingestible device directly delivers the dispensable substance such that it contacts the surface of the epithelial cell layer of the mucosa facing the lumen, but as previously noted, the epithelial delivery does not directly delivery the dispensable substance past the epithelial layer of the mucosa.
  • the device is configured so that the dispensable substance is delivered from the device with sufficient force to provide the epithelial delivery, the force being lower than that required for trans-epithelial delivery to the GI tract.
  • the epithelial delivery directly delivers the dispensable substance into the mucus of the GI tract such that the percent systemic uptake of the therapeutic agent via the epithelial delivery relative to intravenous or subcutaneous administration is greater than that for topical delivery, but less than for trans-epithelial delivery. In other embodiments, the epithelial delivery directly delivers the dispensable substance into the mucus of the GI tract such that the percent systemic uptake of the therapeutic agent via the epithelial delivery relative to intravenous or subcutaneous administration is about 0.5% to about 10% or more (e.g., about 0.5%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, or more).
  • the therapeutic agent directly delivered into the mucus of the GI tract via the epithelial delivery may undergo active or passive transport or diffusion past the epithelial layer.
  • the therapeutic agent may provide therapeutic effects locally and/or away from (e.g., distal to) the site of the direct delivery.
  • the therapeutic agent binds to a therapeutic target present in the GI epithelial layer or elicits other pharmacodynamic effects locally or away from the site of delivery via immune cells or tissue in the GI tract (e.g., dendritic cells, lymphocytes, mucosa-associated lymphoid tissue).
  • this disclosure relates to topical delivery of a dispensable substance (e.g., a therapeutic agent or a formulation comprising a therapeutic agent) to the GI tract of a subject.
  • a dispensable substance e.g., a therapeutic agent or a formulation comprising a therapeutic agent
  • the disclosure provides an ingestible device configured to deliver the dispensable substance (e.g., a therapeutic agent or a formulation comprising a therapeutic agent) into the lumen and/or onto the mucus or other surface (e.g., a diseased surface) of the GI tract facing the lumen of the small or large intestine, from which it may provide therapeutic effects locally and/or away from (e.g., distal to) the site of delivery.
  • the device is configured so that the dispensable substance is delivered from the device with sufficient force so that the dispensable substance is delivered topically, the force being lower than that required for the epithelial or the trans-epithelial delivery to the GI tract.
  • the topical delivery to the GI tract results in reduced systemic uptake of the therapeutic agent compared to trans-epithelial delivery to the GI tract, intravenous or subcutaneous delivery.
  • topical delivery delivers the dispensable substance into the lumen and/or onto the mucus or the other surface facing the lumen of the GI tract such that the percent systemic uptake of the therapeutic agent via the topical delivery relative to intravenous or subcutaneous administration is less than about 20%, less than about 10%, less than about 5%, less than about 4%, less than about 3%, less than about 2% or less than about 1%.
  • the topical delivery to the GI tract results in negligible or no systemic uptake of the therapeutic agent compared to trans-epithelial delivery to the GI tract, intravenous or subcutaneous delivery.
  • the topically delivered dispensable substance may spread over the mucus or other surface facing the lumen of the GI tract, thereby coating the surface of the GI tract at or away from (e.g., distal to) the site of delivery.
  • the therapeutic agent may undergo transport (e.g., diffusion) from the surface of the mucus into the mucus, and optionally, active or passive transport or diffusion past the epithelial layer of the mucosa.
  • the mucus and/or epithelial layer of the mucosa may be disrupted or even absent, such as in a patient having a disease or condition of the GI tract.
  • the topical delivery of the dispensable substance to the GI tract of the patient may provide direct delivery of the dispensable substance to the surface of the GI tract facing the lumen, such as mucosal tissue exposed by said disruption and/or absence (e.g., both the mucus layer and/or epithelial layer are completely or partially absent or compromised in portions of the GI tract due to a disease or condition).
  • the topical delivery of the dispensable substance to the GI tract of the patient may provide topical delivery to one or more lesions of the GI tract.
  • the disease or condition is an inflammatory bowel disease.
  • the inflammatory bowel disease is ulcerative colitis.
  • the inflammatory bowel disease is Crohn's disease.
  • CMOS complementary metal-oxide-semiconductor
  • SC subcutaneous
  • IM intramuscular
  • IV bolus intravenous
  • SC subcutaneous
  • IM intramuscular
  • IV bolus intravenous
  • the devices and methods described herein provide an alternative route of administration to current injectable medications, which can lead to greater convenience and compliance since they minimize or avoid the logistical challenges, patient compliance and adherence challenges, pain, and discomfort associated with traditional routes of administration.
  • the devices and methods described herein are particularly well-suited for treatment of diseases and conditions of the endoderm, including the liver.
  • the pharmaceutical composition is an ingestible device, that includes: a housing; a drug reservoir located within the housing and containing the therapeutic; a pre-pressurized air reservoir; a sliding mechanism; and an exit nozzle configured to allow the therapeutic agent to be released out of the housing from the reservoir and into the submucosa and/or the mucosa (e.g., into the lamina intestinal) of the gastrointestinal tract.
  • the therapeutic is released at a location in the large intestine of the subject. In some embodiments of any of the devices or methods described herein, the location is in the proximal portion of the large intestine. In some embodiments of any of the devices or methods described herein, the location is in the distal portion of the large intestine.
  • the therapeutic is released at a location in the ascending colon of the subject. In some embodiments of any of the devices or methods described herein, the location is in the proximal portion of the ascending colon. In some embodiments of any of the devices or methods described herein, the location is in the distal portion of the ascending colon.
  • the therapeutic is released at a location in the cecum of the subject. In some embodiments of any of the devices or methods described herein, the location is in the proximal portion of the cecum. In some embodiments of any of the devices or methods described herein, the location is in the distal portion of the cecum.
  • the therapeutic is released at a location in the sigmoid colon of the subject. In some embodiments of any of the devices or methods described herein, the location is in the proximal portion of the sigmoid colon. In some embodiments of any of the devices or methods described herein, the location is in the distal portion of the sigmoid colon.
  • the therapeutic is released at a location in the transverse colon of the subject. In some embodiments of any of the devices or methods described herein, the location is in the proximal portion of the transverse colon. In some embodiments of any of the devices or methods described herein, the location is in the distal portion of the transverse colon.
  • the therapeutic is released at a location in the descending colon of the subject. In some embodiments of any of the devices or methods described herein, the location is in the proximal portion of the descending colon. In some embodiments of any of the devices or methods described herein, the location is in the distal portion of the descending colon.
  • the therapeutic is released at a location in the small intestine of the subject. In some embodiments of any of the devices or methods described herein, the location is in the proximal portion of the small intestine. In some embodiments of any of the devices or methods described herein, the location is in the distal portion of the small intestine.
  • the therapeutic is released at a location in the duodenum of the subject. In some embodiments of any of the devices or methods described herein, the location is in the proximal portion of the duodenum. In some embodiments of any of the devices or methods described herein, the location is in the distal portion of the duodenum.
  • the therapeutic is released at a location in the jejunum of the subject. In some embodiments of any of the devices or methods described herein, the location is in the proximal portion of the jejunum. In some embodiments of any of the devices or methods described herein, the location is in the distal portion of the jejunum.
  • the therapeutic is released at a location in the ileum of the subject. In some embodiments of any of the devices or methods described herein, the location is in the proximal portion of the ileum. In some embodiments of any of the devices or methods described herein, the location is in the distal portion of the ileum.
  • the ingestible device is suitable for swallowing by a patient and for safely and effectively passing through the GI tract of the patient.
  • the device can be in the shape of a capsule, a pill or any other swallowable form that may be orally consumed by the subject.
  • the ingestible device can be swallowed voluntarily under medical supervision or in a home use environment with instruction provided ahead of subsequent ingestion.
  • ingestible devices are intended for single subject, single use.
  • the ingestible device can have a density high enough to cause the ingestible device to sink within human stomach fluid, e.g., the unfilled ingestible device can have a density of greater than 1.01 g/cm 3 .
  • the ingestible device can have maximum dimensions that allow the ingestible device to pass through an average human GI tract.
  • the ingestible device is configured to prevent tumbling in the small intestine of a human.
  • the ingestible device is of sufficient length whereby it will not tumble in the small intestine of a human before, during, or after the dispensable substance is released.
  • the ingestible device is configured to deliver a sufficient amount of therapeutic agent contained in the dispensable substance to be effective for its intended purpose.
  • the ingestible device's patient-contacting portions (e.g., exterior surface) and dispensable substance-contacting portions are biocompatible.
  • the device can withstand an indirect bite force without damaging the housing damage or resulting in leakage.
  • the ingestible device when containing the dispensable substance, can withstand a bite force of at least about 60 Newtons (N).
  • N the number of Newtons
  • components of the ingestible device can withstand exposure to a pH range expected in the human GI tract without substantial loss of functionality, substantial structural damage, or substantial leakage.
  • the ingestible device can withstand submersion in a pH 1.5 ⁇ 0.5 fluid environment for at least about 24 hours without substantial loss of functionality, substantial structural damage, or substantial leakage.
  • the ingestible device can maintain an external fluid barrier between the inside of the ingestible device and the GI tract of the subject during transit therethrough.
  • the ingestible device can withstand external fluid pressures to which it is exposed during use without substantial loss of functionality, substantial structural damage, or substantial leakage.
  • the ingestible device undergoes no substantial loss of functionality, substantial structural damage, or substantial leakage when exposed to a sustained pressure of at least about 2 psig for at least about 24 hours and/or when exposed to a momentary pressure of at least about 5 psig momentary pressure for at least about 1 minute.
  • an ingestible device disclosed herein includes the following features.
  • the ingestible device comprises a housing configured to maintain its mechanical integrity during use of the ingestible device.
  • the housing has a first portion and a second portion.
  • the housing has a first actuation component on the housing, and a second actuation component within the housing.
  • a storage reservoir is located within the housing, wherein the storage reservoir is configured to store a dispensable substance.
  • the housing has an opening in fluid communication with the storage reservoir.
  • the ingestible device employs an electrolytic mechanism for creating one or more openings in the ingestible device, wherein a substance can be dispensed through said opening as described in PCT Application Number PCT/US2019/021814, which published as WO2019178071, and which is incorporated by reference herein.
  • the housing may comprise an external electrolytic circuit (electrolytically erodible surface being on the exterior of the device), whereby the surrounding gastric fluids are the electrolyte that completes an electrolytic circuit between anode and cathode.
  • an ingestible device includes an enteric coating on the housing.
  • the enteric coating covers only certain regions of the housing. The housing may be designed to withstand the chemical and mechanical environment of the GI tract (e.g., effects of muscle contractile forces and concentrated hydrochloric acid in the stomach).
  • thermoplastics examples include, but are not limited to, thermoplastics, fluoropolymers, elastomers, stainless steel, and glass complying with ISO 10993 and USP Class VI specifications for biocompatibility; and any other suitable materials and combinations thereof.
  • these materials may further include liquid silicone rubber material with a hardness level of 10 to 90 as determined using a durometer (e.g., MED-4942TM manufactured by NuSilTM), a soft biocompatible polymer material such as, but not limited to, polyvinyl chloride (PVC), polyethersulfone (PES), polyethylene (PE), polyurethane (PU) or polytetrafluoroethylene (PTFE), and a rigid polymer material coated with a biocompatible material that is soft or pliable (e.g., a poly(methyl methacrylate) (PMMA) material coated with silicone polymer).
  • a durometer e.g., MED-4942TM manufactured by NuSilTM
  • PVC polyvinyl chloride
  • PES polyethersulfone
  • PE polyethylene
  • PU polyurethane
  • PTFE polytetrafluoroethylene
  • PMMA poly(methyl methacrylate)
  • Teflon® may be used as a material in the ingestible device for movable components in order to reduce friction between these components.
  • Other example materials may include other materials commonly used in micro-fabrication, such as polydimethylsiloxane (PDMS), borosilicate glass, and/or silicon.
  • PDMS polydimethylsiloxane
  • borosilicate glass and/or silicon.
  • specific materials may be referred to herein as being used to construct the device for illustrative purposes, the materials recited are not intended to be limiting, and one skilled in the art may easily adapt the device to use any number of different materials without affecting the overall operation or functionality of the device.
  • the housing of the ingestible device may be manufactured from a type of plastic, such as a photosensitive acrylic polymer material or an inert polycarbonate material.
  • the housing may also be formed using material that can be sterilized by chemicals.
  • the wall of the housing may have a thickness of, for example, from about 0.5 millimeter to about 1 millimeter.
  • the material from which the housing is made is non-ferric and non-magnetic. Such materials include various plastics (e.g., PVC, or polycarbonate).
  • the housing can include a metal-based material, such as an alloy, stainless steel or a substantially pure metal. Such materials can be sterilized without affecting the mechanical workings of the ingestible device or the exterior surface of the ingestible device.
  • the metal-based material is compatible with the dispensable substance over long duration of storage.
  • the stainless steel grade is approved for use as a surgical implant material, such as ASTM grades F138, F1314, F1586, F2229, or F2581.
  • the walls of the housing of the ingestible device generally are sufficiently thick to withstand internal and external pressures to which they are exposed without substantial loss of functionality, substantial structural damage, or substantial leakage. In general, the walls of the housing are desirably as thin as possible to enhance the volume available for containing dispensable substance.
  • the walls are from about 0.05 mm to about 0.5 mm thick (e.g., if made of metal-based material, such as stainless steel) or from about 0.1 to about 1 mm thick (e.g., if made of plastic, such as polycarbonate).
  • the housing is made of material with a thermal expansion coefficient low enough that the device does not substantially deform at temperatures encountered during shipping and storage, or within the GI tract.
  • the walls of the housing are made of an electrolytically erodible surface as described in PCT/US2019/021814, which published as WO2019178071.
  • the housing includes an electrolytically erodible valve coupled to a nozzle for exposing the liquid volume to its surrounding environment.
  • the exposed metal anode material acting as valve can include a metal alloy or substantially pure metal that is acceptable for human ingestion from consideration of its biocompatibility in the amounts electrolyzed during opening of the valve.
  • the metal portion of the drug container can be 0.025 mm thick across a diameter that matches or slightly exceeds the diameter of the coupled nozzle (e.g., 0.60 mm).
  • the thickness of the metal in the valve area can be in the range 0.002 mm to 0.200 mm.
  • the housing of an ingestible device is assembled from multiple modules.
  • the housing is assembled from two modules.
  • one of the modules can contain the dispensable substance (“drug module”), and the other module can contain the drive force generator and the drive coupling (“drive module”).
  • the drug module includes a housing part of appropriate size, shape and material(s) as discussed herein.
  • the housing part is sterilized, and dispensable substance is subsequently disposed within the housing under aseptic conditions.
  • a sterile seal e.g., a sterile foil seal
  • a sterile seal is incorporated into the drug module.
  • the components of the drug module e.g., a housing part, a drive force generator, a drive coupling
  • the drug module and the drive module are subsequently combined to form the ingestible device.
  • Representative examples of modules, their separate assembly, and their combination to form an ingestible device, are provide elsewhere herein.
  • an ingestible device is sized and shaped for relatively safe and effective movement and intended use within the GI tract of the subject.
  • an ingestible device is a capsule having an industry standard size.
  • an ingestible device is configured as a 00 capsule or a 000 capsule.
  • the housing of an ingestible device has a length of at least about 20 mm (e.g., at least about 21 mm, at least about 22 mm, at least about 23 mm) and/or at most about 28 mm (e.g., at most about 27 mm, at most about 26 mm).
  • the housing of an ingestible device has a diameter of at least about 7 mm (e.g., at least about 7.5 mm, at least about 8 mm, at least about 8.5 mm, at least about 9 mm, at least about 9.5 mm) and/or at most about 12 mm (e.g., at most about 11.5 mm, at most about 11 mm, at most about 10.5 mm, at most about 10 mm, at most about 9.5 mm, at most about 9 mm).
  • the housing of an ingestible device has an aspect ratio (ratio of length to width) of at least about 0.75 (e.g. at least about 1) and/or at most about 4 (e.g., at most about 3, at most about 2). In some embodiments, the housing of an ingestible device has an aspect ratio of from about 0.75 to 4 (e.g., from about 1 to about 3, from about 1 to about 2). For example, in some embodiments, the housing aspect ratio is about 1.5:1 (length:diameter). In some other embodiments, the housing aspect ratio is about 2:1 (length: diameter).
  • the housing of an ingestible device has a wall thickness of at least about 0.05 mm (e.g., at least about 0.5 mm, at least about 0.6 mm, at least about 0.7 mm) and/or at most about 1 mm (e.g., at most about 0.9 mm, at most about 0.8 mm).
  • an ingestible device has a wall thickness of from about 0.05 mm to about 0.5 mm.
  • an ingestible device has a wall thickness of from about 0.1 mm to about 1 mm.
  • one region of the housing of an ingestible device may have a wall thickness that is different from that of a different region of the housing of the ingestible device.
  • the housing of an ingestible device has an end round that is spline-shaped or that is spherical.
  • an ingestible device has an end round that is from about 1 mm to about 2 mm (e.g., about 1.5 mm).
  • an ingestible device has an end round that is from about 4 mm to about 4.5 mm (e.g., about 4.25 mm).
  • an ingestible device has an end round that is from about 4.9 to about 5 mm (e.g., about 4.95 mm).
  • an ingestible device has an end round that is from about 5.4 mm to about 5.6 mm (e.g., about 5.5 mm).
  • the housing of an ingestible device has an internal volume of at least about 700 ⁇ L (e.g., at least about 750 ⁇ L, at least about 800 ⁇ L, at least about 850 ⁇ L) and/or most about 1700 ⁇ L (e.g., at most about 1650 ⁇ L, at most about 1600 ⁇ L, at most about 1500 ⁇ L, at most about 1400 ⁇ L, at most about 1300 ⁇ L, at most about 1200 ⁇ L).
  • the housing of an ingestible device has a diameter of about 11 mm, a length of about 26 mm, a wall thickness of about 0.8 mm, an end round of about 1.5 mm, and an internal volume of about 1685 ⁇ L.
  • the housing of an ingestible device has a diameter of about 11 mm, a length of about 26 mm, a wall thickness of about 0.8 mm, an end round of about 5.5 mm (spherical), and an internal volume of about 1475 ⁇ L.
  • the housing of an ingestible device has a diameter of about 9.9 mm, a length of about 26 mm, a wall thickness of about 0.8 mm, an end round of about 1.5 mm, and an internal volume of about 1315 ⁇ L.
  • the housing of an ingestible device has a diameter of about 9.9 mm, a length of about 26 mm, a wall thickness of about 0.8 mm, an end round of about 4.95 mm (spherical), and an internal volume of about 1177 ⁇ L.
  • the housing of an ingestible device has a diameter of about 8.5 mm, a length of about 23.3 mm, a wall thickness of about 0.7 mm, an end round of about 1.5 mm, and an internal volume of about 861 ⁇ L.
  • the housing of an ingestible device has a diameter of about 8.5 mm, a length of about 23.3 mm, a wall thickness of about 0.7 mm, an end round of about 4.25 mm (spherical), and an internal volume of about 773 ⁇ L.
  • the housing of an ingestible device has a diameter of about 8.5 mm, a length of about 23.3 mm, a wall thickness of about 0.7 mm, an end round that is spline-shaped, and an internal volume of about 820 ⁇ L.
  • the ingestible device includes a fluid volume to contain a dispensable substance (e.g., a liquid, a suspension).
  • a dispensable substance e.g., a liquid, a suspension
  • the fluid volume is completely disposed within the housing.
  • the fluid volume can be defined by a storage reservoir.
  • a storage reservoir can be a component that can be prepared separately from the housing.
  • the dispensable substance can be disposed in the storage reservoir before the storage reservoir is associated with the ingestible device.
  • the device may include one or more dispensable substances, with each dispensable substance including one or more therapeutic agents and/or one or more pharmaceutical formulations including one or more therapeutic agents.
  • an ingestible device includes one or more nozzles in fluid communication with the one or more openings in the ingestible device.
  • the nozzle(s) is(are) configured so that the dispensable substance through the nozzle(s) when the dispensable substance is delivered from the ingestible device.
  • a nozzle can have any desired size and shape appropriate for the desired type of delivery of a dispensable substance from the ingestible device.
  • a nozzle has a shape and/or size appropriate for trans-epithelial delivery, epithelial delivery or topical delivery.
  • an ingestible device includes more than one nozzle.
  • an ingestible device can include, for example, up to 50 nozzles (e.g., up to 40 nozzles, up to 35 nozzles, up to 30 nozzles, up to 25 nozzles, up to 20 nozzles, up to 15 nozzles, 10 nozzles).
  • an ingestible device includes from 2 nozzles to 50 nozzles.
  • an ingestible device includes 2 nozzles, three nozzles, four nozzles, five nozzles, six nozzles, seven nozzles, eight nozzles, 10 nozzles, 20 nozzles, 30 nozzles, 36 nozzles, 40 nozzles, 50 nozzles).
  • the nozzles are arranged at even intervals (optionally pair-wise if an even number of nozzles are used) around the circumference of the device.
  • the ingestible device comprises a restraining mechanism.
  • a restraining mechanism has a first state in which it is configured to prevent the dispensable substance from exiting the ingestible device via the opening(s), and a second state in which it is configured so that it does not prevent the dispensable substance from exiting the ingestible device via the opening(s).
  • the restraining mechanism can be configured to transition from its first state to its second state when it is exposed to a triggering condition.
  • the restraining mechanism may be provided by one or more restraining elements.
  • the restraining elements can have a first state in which they are configured to prevent the dispensable substance from exiting the ingestible device via the openings, and a second state in which they are configured to allow the dispensable substance to exit the ingestible device via the openings.
  • the restraining elements can be configured to transition from the first state to the second state when the restraining elements are exposed to a triggering condition.
  • the restraining elements comprise a first type of restraining element and a second type of restraining element different from the first type of restraining element.
  • the first type of restraining element can be configured to transition to its second state before the second type of restraining element transitions to its second state.
  • a restraining elements comprises a lid, a pin, a band, a plug, a dowel, a clasp, a clamp, a flange, a rivet, or any combination thereof.
  • the restraining elements comprise a plasticizer such as triethyl citrate (TEC).
  • the restraining elements comprise a degradable and/or erodible material, such as, for example, an enteric material.
  • the enteric material may be degradable and/or erodible in the small intestine of the GI tract, or may be degradable and/or erodible in the large intestine of the GI tract, for example, the colon.
  • a restraining mechanism can be a mechanism that prevents the dispensable substance from being delivered from the ingestible device even when the drive force generator (or optionally the drive coupling) applies an internal force.
  • a restraining can be an element (e.g., a pin, a band, a plug) in the opening (e.g., nozzle opening) through which the dispensable substance can be delivered from the ingestible device.
  • a restraining element can be formed, for example, of a material that degrades and/or erodes as discussed above.
  • the ingestible device comprises a triggering mechanism.
  • a triggering mechanism is configured to cause the dispensable substance within the fluid volume to be released under one or more triggering conditions.
  • a triggering mechanism initiates a drive force generator.
  • a triggering mechanism incorporates a mechanical feature like a restraining mechanism. As an example, one or more restraining elements degrade and/or erode in the presence of certain GI tract conditions (e.g., pH greater than 5), thereby triggering a drive force generator, such as a compressed spring.
  • a spring may have a piercing element that pierces a cylinder with compressed gas, whereby the released gas acts as a force applied to a dispensable substance.
  • a triggering mechanism incorporates an electrical feature.
  • an enteric coating degrades and/or erodes in the presence of certain GI tract conditions (e.g., pH greater than 5), thereby exposing conductors to intestinal fluid, which acts as a liquid conductor to triggering the drive force generator.
  • a triggering condition relates to a condition of the GI tract.
  • the condition of the GI tract comprises at least one condition selected from the group consisting of temperature, pH, presence of one or more enzymes, and time.
  • condition of the GI tract is a pH of greater than 5.
  • the triggering mechanism is configured so that the release mechanism is autonomously triggered (e.g., due to degradation, dissolution and/or erosion of the restraining mechanism due to conditions in the GI tract).
  • the releasing of the therapeutic is triggered by one or more of: a pH in the jejunum of about 6.1 to about 7.2, a pH in the mid small bowel of about 7.0 to about 7.8, a pH in the ileum of about 7.0 to about 8.0, a pH in the right colon of about 5.7 to about 7.0, a pH in the mid colon of about 5.7 to about 7.4, or a pH in the left colon of about 6.3 to about 7.7, such as about 7.0.
  • the drive force generator is configured to provide the requisite force to the dispensable substance such that, when the restraining mechanism is removed, the dispensable substance is delivered from the ingestible device as desired.
  • the drive force generator can apply force using different mechanisms, including, for example, a compressed gas, a gas generated by chemical reaction, a spring, a liquid-gas mixture, an impact ram, a sudden expansion caused by a controlled exothermic reaction, or the like.
  • the spring can have one or more of the following properties: the outer diameter of the spring is smaller than the inner diameter of the ingestible device; the compressed length of the spring is minimized to leave more space for dispensable substance; the spring is of a conical shape, potentially with a reduction in the solid length of the spring; the free length of the spring is maximized and larger than the free length of the inner cavity of the ingestible device to ensure an acceptable driving pressure is provided throughout the entire time step of delivery; and the spring rate is large enough to provide acceptable pressure from the beginning until the end of delivery of the dispensable substance.
  • springs include parallel springs, wave springs and conical springs.
  • Examples of chemical reactants include an airbag inflator, a hydrogen cell (e.g., a Varta hydrogen cell), sodium bicarbonate and acid (e.g., alka seltzer and water on board the ingestible device, alka seltzer and GI tract fluid).
  • Examples of compressed gas include a gas charged within the ingestible device, and a container (e.g., cylinder) of compressed gas.
  • the compressed gas is a gas cylinder from Picocyl.
  • Exemplary gas cylinders are disclosed, for example, in US 2017-0258583, which is incorporated by reference herein.
  • An example of a liquid-gas mixture is liquid nitrogen/HFA (hexafluoroacetone)/propane.
  • An example of an impact ram is a two-phase spring/ram.
  • Other examples of drive force generators include a wax actuator, heat generated by electric power (Peltier effect-based mechanism), and a mechanical puncture of tissue followed by delivery.
  • the drive force coupling transfers a force from the drive force generator to the dispensable substance.
  • a drive coupling include a piston and a membrane.
  • membranes include balloons and elastomeric materials.
  • An example of a piston is an O-ring sealed piston.
  • a piston is provided by a gas cylinder, e.g., with added O-rings or a custom housing.
  • a drive coupling is a vein, such as a rotating vein.
  • a drive coupling is a double piston configured to counteract cap impact.
  • a drive coupling is a collapsing bag, such as a collapsing foil bag.
  • a drive coupling is a collapsing bellows.
  • an ingestible device includes a storage reservoir configured to store a dispensable substance.
  • the storage reservoir stores the dispensible substance.
  • the storage reservoir is completely disposed within the housing.
  • FIG. 2 is a schematic representation of an ingestible device 200 which includes a housing 202 , a fluid volume 204 containing a dispensable substance, a nozzle 206 with a nozzle opening 208 , a restraining mechanism 210 , a triggering mechanism 212 , a drive force generator 214 and drive coupling 216 .
  • ingestible device 200 is swallowed by a subject and traverses the GI tract.
  • the triggering mechanism 212 is triggered, allowing the drive force generator to apply pressure to the drive coupling 216 , which then applies pressure to the fluid volume such that at least some of the dispensable substance is delivered out of fluid volume 204 , through the nozzle 206 , and out of the device 200 via the nozzle opening 208 .
  • the internal pressure is applied, even before the triggering mechanism 212 is triggered.
  • the triggering mechanism 212 is triggered, allowing the drive coupling 216 to apply pressure to the fluid volume 204 .
  • the internal pressure is not applied until the triggering mechanism 212 is triggered.
  • trans-epithelial delivery can be achieved at any desired location within the GI tract of a subject.
  • trans-epithelial delivery is achieved in the small intestine of the subject, such as, for example, in the duodenum, the jejunum and/or the ileum.
  • trans-epithelial delivery is achieved in the large intestine of the subject, such as, for example, the cecum or the colon.
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet power of from at least about 1 Watt (e.g., at least about 1.1 Watts, at least about 1.2 Watts, at least about 1.3 Watts, at least about 1.4 Watts, at least about 1.5 Watts, at least about 1.6 Watts, at least about 1.7 Watts, at least about 1.8 Watts) and/or at most about 3 Watts (e.g., at most about 2.9 Watts, at most about 2.8 Watts, at most about 2.7 Watts, at most about 2.6 Watts, at most about 2.5 Watts, at most about 2.4 Watts, at most about 2.3 Watts, at most about 2.2 Watts, at most about 2.1 Watts).
  • a peak jet power of from at least about 1 Watt (e.g., at least about 1.1 Watts, at least about 1.2 Watts, at least about 1.3 Watts, at least about 1.4 Watts, at least about 1.5 Watts,
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet power of from about 1 Watt to about 3 Watts (e.g., of from about 1.3 Watts to about 2.8 Watts, of from about 1.5 Watts to about 2.5 Watts).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a minimum jet power of at least about 0.1 W (e.g., at least about 0.2 W, at least about 0.3 W) and/or at most about 0.6 W (e.g., at most about 0.5 W, at most about 0.4 W).
  • a device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a minimum jet power of from about 0.1 W to about 0.6 W (e.g., from about 0.2 W to about 0.5 W, from about 0.3 W to about 0.4 W).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having an average jet power of at least about 0.5 W (e.g., about 0.8 W, about 1 W) and/or at most about 2 W (e.g., at most about 1.7 W, at most about 1.5 W).
  • a device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having an average jet power of from about 0.5 W to about 2 W (e.g., from about 0.8 W to about 1.7 W, from about 1 W to about 1.5 W).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet pressure of at least about 100 psig (e.g., at least about 110 psig, at least about 120 psig, at least about 130 psig, at least about 140 psig, at least about 150 psig, at least about 160 psig, at least about 170 psig, at least about 180 psig, at least about 190 psig) and/or at most about 250 psig (e.g., at most about 240 psig, at most about 230 psig, at most about 220 psig, at most about 210 psig).
  • psig e.g., at least about 110 psig, at least about 120 psig, at least about 130 psig, at least about 140 psig, at least about 150 psig, at least about 160 psig, at least about 170 psig, at least about 180 psig, at least about 190
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet pressure of from about 100 psig to about 250 psig (e.g., from about 140 psig to about 225 psig, from about 180 psig to about 205 psig).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a minimum jet pressure of at least about 30 psig (e.g., at least about 40 psig, at least about 50 psig) and/or at most about 80 psig (e.g., at most about 70 psig, at most about 60 psig.
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a minimum jet pressure of from about 30 psig to about 80 psig (e.g., from about 40 psig to about 70 psig, from about 50 psig to about 60 psig).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having an average jet pressure of 60 psig (e.g., at least about 80 psig, at least about 100 psig) and/or at most about 160 psig (e.g., at most about 140 psig, at most about 120 psig).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having an average jet pressure of from about 60 psig to about 160 psig (e.g., from about 80 psig to about 140 psig, from about 100 psig to about 120 psig).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet force of at least about 0.09 Newton (N) (e.g., at least about 0.1 N, at least about 0.11 N, at least about 0.12 N, at least about 0.13N) and/or at most about 0.15 N (e.g., at most about 0.14 N).
  • N 0.09 Newton
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet force of from about 0.09 N to about 0.15 N (e.g., from about 0.1 N to about 0.14 N, from about 0.11 N to about 0.14 N).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a minimum jet force of at least about 0.01 N (e.g., at least about 0.02 N, at least about 0.03 N) and/or at most about 0.06 N (e.g., at most about 0.05 N at most about 0.04 N).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a minimum jet force of from about 0.01 N to about 0.06 N (e.g., from about 0.02 N to about 0.05 N, from about 0.03 N to about 0.04 N).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having an average jet force of at least about 0.05 N (e.g., at least about 0.06 N, at least about 0.07 N) and/or at most about 0.1 N (e.g., at most about 0.09 N, at most about 0.08 N).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having an average jet force of from about 0.05 N to about 0.1 N (e.g., from about 0.06 N to about 0.09 N, from about 0.07 N to about 0.08 N).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet velocity of at least about 25 meters per second (m/s) (e.g., at least about 26 m/s, at least about 27 m/s, at least about 28 m/s, at least about 29 m/s, at least about 30 m/s, at least about 31 m/s, at least about 32 m/s, at least about 34 m/s, at least about 35 m/s, at least about 36 m/s) and/or at most about 45 m/s (e.g., at most about 44 m/s, at most about 43 m/s, at most about 42 m/s, at most about 41 m/s, at most about 40 m/s, at most about 39 m/s, at most about 38 m/s, at most about 37 m/s).
  • m/s e.g., at least about 26 m/s, at least
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet velocity of from about 25 m/s to about 45 m/s (e.g., from about 30 m/s to about 42 m/s, from about 34 m/s to about 39 m/s, about 36.5 m/s).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a minimum jet velocity of at least about 15 m/s (e.g., at least about 16 m/s, at least about 17 m/s) and/or at most about 22 m/s (e.g., at most about 21 m/s, at most about 20 m/s).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having a minimum jet velocity of from about 15 m/s to about 22 m/s (e.g., from about 16 m/s to about 21 m/s, from about 17 m/s to about 20 m/s).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of the dispensable substance having an average jet velocity of at least about 20 m/s (e.g., at least about 25 m/s) and/or at most about 35 m/s (e.g., at most about 30 m/s).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of dispensable substance having an average jet velocity of from about 20 m/s to about 30 m/s (e.g., about 20 m/s, about 21 m/s, about 22 m/s, about 23 m/s, about 24 m/s, about 25 m/s, about 26 m/s, about 27 m/s, about 28 m/s about 29 m/s, about 30 m/s).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of dispensable substance having an average jet velocity of from about 25 m/s to about 35 m/s (e.g., about 25 m/s, about 26 m/s, about 27 m/s, about 28 m/s, about 29 m/s, about 30 m/s, about 31 m/s, about 32 m/s, about 33 m/s about 34 m/s, about 35 m/s).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of a dispensable substance having a jet stable length of at least about 0.5 millimeter (mm) (e.g., at least about 1 mm, at least about 1.5 mm, at least about 2 mm, at least about 2.5 mm, at least about 3 mm, at least about 3.5 mm, at least about 4 mm, at least about 4.5 mm, at least about 5 mm) and/or at most about 20 mm (e.g., at most about 15 mm, at most about 10 mm).
  • mm millimeter
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of a dispensable substance having a jet stable length of from about 0.5 mm to about 20 mm (e.g., from about 2 mm to about 20 mm, from about 5 mm to about 20 mm).
  • an ingestible device for trans-epithelial delivery is configured to deliver a jet of a dispensable substance having a jet diameter of at least about 0.1 mm (e.g., at least about 0.2 mm, at least about 0.3 mm, at least about 0.4 mm) and/or at most about 2 mm (e.g., at most about 1.5 mm, at most about 1 mm, at most about 0.9 mm, at most about 0.8 mm, at most 0.7 mm, at most about 0.6 mm, at most about 0.5 mm).
  • such an ingestible device for trans-epithelial delivery is configured to deliver a jet of a dispensable substance having a jet diameter of from about 0.1 mm to about 2 mm (e.g., from about 0.2 mm to about 0.5 mm, from about 0.3 mm to about 0.4 mm, from about 0.3 mm to about 0.5 mm, about 0.35 mm).
  • an ingestible device for trans-epithelial delivery is configured to provide an internal pressure of at least about 225 psig (e.g., at least about 235 psig, at least about 245 psig, at least about 255 psig, at least about 265 psig, at least about 275 psig, at least about 285 psig, at least about 295 psig, at least about 305 psig, at least about 315 psig) and/or at most about 425 psig (e.g., at most about 400 psig, at most about 390 psig, at most about 380 psig, at most about 375 psig, at most about 370 psig, at most about 360 psig, at most about 350 psig, at most about 340 psig, at most about 330 psig).
  • at most about 225 psig e.g., at least about 235 psig, at least about 245 psig, at least about 255 psig
  • an ingestible device for trans-epithelial delivery is configured to provide an internal pressure of from about 225 psig to about 400 psig (e.g., from about 250 psig to about 375 psig, from about 300 psig to about 340 psig).
  • an ingestible device for trans-epithelial delivery is configured to have a nozzle pressure at least about 150 psig (e.g., at least about 175 psig, at least about 200 psig, at least about 210 psig, at least about 220 psig, at least about 225 psig, at least about 230 psig, at least about 240 psig, at least about 250 psig, at least about 260 psig, at least about 270 psig, at least about 275 psig, at least about 280 psig, at least about 290 psig, at least about 300 psig, at least about 325 psig) and/or at most about 400 psig (e.g., at most about 375 psig, at most about 365 psig, at most about 355 psig, at most about 350 psig, at most about 345 psig, at most about 335 psig, at most about 325 psig, at most about 315 psig
  • an ingestible device for trans-epithelial delivery is configured to have a nozzle pressure of from about 150 psig to about 400 psig (e.g., from about 150 psig to about 300 psig, from about 180 psig to about 400 psig, from about 190 psig to about 400 psig, from about 200 psig to about 400 psig, from about 200 psig to about 375 psig, from about 210 psig to about 400 psig, from about 220 psig to about 400 psig, from about 220 psig to about 375 psig, from about 220 psig to about 350 psig, from about 225 psig to about 400 psig, from about 225 psig to about 375 psig, from about 225 psig to about 350 psig, from about 225 psig to about 325 psig, from about 230 psig to about 400 psig, from about 235 psig to about 250 p
  • an ingestible device for trans-epithelial delivery is configured to have a nozzle pressure of between about 220-350 psig (e.g., about 225-350 psig, about 230-350 psig, about 235-350 psig, about 240-350 psig, about 245-350 psig, about 250-350 psig, about 255-350 psig, about 260-350 psig, about 265-350 psig, about 270-350 psig, about 275-350 psig, about 280-350 psig, about 285-350 psig, about 290-350 psig, about 300-350 psig, about 220-325 psig, about 225-325 psig, about 230-325 psig, about 235-325 psig, about 240-325 psig, about 245-325 psig, about 250-325 psig, about 255-325 psig, about 260-325 psig
  • an ingestible device for trans-epithelial delivery has a nozzle pressure of about 200 psig, about 210 psig, about 220 psig, about 230 psig, about 240 psig, about 250 psig, about 260 psig, about 270 psig, about 280 psig, about 290 psig, about 300 psig, about 310 psig or about 320 psig.
  • an ingestible device for trans-epithelial delivery is configured to contain a dispensable substance at a peak fluid pressure of at least about 150 psig (e.g., at least about 175 psig, at least about 200 psig, at least about 210 psig, at least about 220 psig, at least about 225 psig, at least about 230 psig, at least about 240 psig, at least about 250 psig, at least about 260 psig, at least about 270 psig, at least about 275 psig, at least about 280 psig, at least about 290 psig, at least about 300 psig, at least about 325 psig) and/or at most about 400 psig (e.g., at most about 375 psig, at most about 365 psig, at most about 355 psig, at most about 350 psig, at most about 345 psig, at most about 335 psig, at most about 325 psig
  • an ingestible device for trans-epithelial delivery is configured to contain a dispensable substance at a peak fluid pressure of from about 150 psig to about 400 psig (e.g., from about 150 psig to about 300 psig, from about 180 psig to about 400 psig, from about 190 psig to about 400 psig, from about 200 psig to about 400 psig, from about 200 psig to about 375 psig, from about 210 psig to about 400 psig, from about 220 psig to about 400 psig, from about 220 psig to about 375 psig, from about 220 psig to about 350 psig, from about 225 psig to about 400 psig, from about 225 psig to about 375 psig, from about 225 psig to about 350 psig, from about 225 psig to about 325 psig, from about 230 psig to about 400 psig, from about 235
  • an ingestible device for trans-epithelial delivery is configured to contain a dispensable substance at a peak fluid pressure of between about 220-350 psig (e.g., about 225-350 psig, about 230-350 psig, about 235-350 psig, about 240-350 psig, about 245-350 psig, about 250-350 psig, about 255-350 psig, about 260-350 psig, about 265-350 psig, about 270-350 psig, about 275-350 psig, about 280-350 psig, about 285-350 psig, about 290-350 psig, about 300-350 psig, about 220-325 psig, about 225-325 psig, about 230-325 psig, about 235-325 psig, about 240-325 psig, about 245-325 psig, about 250-325 psig, about 255-325 psig, about 220-350
  • an ingestible device for trans-epithelial delivery is configured to contain a dispensable substance at a peak fluid pressure of about 200 psig, about 210 psig, about 220 psig, about 230 psig, about 240 psig, about 250 psig, about 260 psig, about 270 psig, about 280 psig, about 290 psig, about 300 psig, about 310 psig or about 320 psig.
  • an ingestible device for trans-epithelial delivery is configured to contain a dispensable substance at a minimum fluid pressure of at least about 50 psig (e.g., at least about 60 psig, at least about 70 psig) and/or at most about 100 psig (e.g., at most about 90 psig, at most about 80 psig).
  • an ingestible device for trans-epithelial delivery is configured to contain a dispensable substance at a minimum fluid pressure from about 50 psig to about 100 psig (e.g., from about 60 psig to about 90 psig, from about 70 psig to about 80 psig).
  • an ingestible device for trans-epithelial delivery is configured to have a piston friction of at least about 1 N (e.g., at least about 2 N, at least about 3 N) and/or at most about 20 N (e.g., at most about 15 N, at most about 12 N).
  • an ingestible device for trans-epithelial delivery is configured to have a piston friction of from 1 N to 20 N (e.g., from 2 N to 15 N, from about 3N to about 12N).
  • an ingestible device for trans-epithelial delivery contains the dispensable substance at an initial fluid volume of at least about 50 microliters ( ⁇ L) (e.g., at least about 100 ⁇ L, at least about 150 ⁇ L, at least about 200 ⁇ L, at least about 250 ⁇ L) and/or at most about 800 ⁇ L (e.g., at most about 700 ⁇ L, at most about 600 ⁇ L, at most about 500 ⁇ L, at most about 400 ⁇ L).
  • ⁇ L microliters
  • an ingestible device for trans-epithelial delivery contains the dispensable substance at an initial fluid volume of from about 50 ⁇ L to about 800 ⁇ L (e.g., from about 100 ⁇ L to about 600 ⁇ L, from about 200 ⁇ L to about 400 ⁇ L).
  • an ingestible device for trans-epithelial delivery is configured to provide a delivered fluid volume of dispensable substance of at least about 50 microliters ( ⁇ L) (e.g., at least about 100 ⁇ L, at least about 150 ⁇ L, at least about 200 ⁇ L, at least about 250 ⁇ L) and/or at most about 800 ⁇ L (e.g., at most about 700 ⁇ L, at most about 600 ⁇ L, at most about 500 ⁇ L, at most about 400 ⁇ L).
  • ⁇ L microliters
  • an ingestible device for trans-epithelial delivery has a fluid volume of dispensable substance of from about 50 ⁇ L to about 800 ⁇ L (e.g., from about 50 ⁇ L to about 500 ⁇ L, from about 100 ⁇ L to about 450 ⁇ L, from about 100 ⁇ L to about 600 ⁇ L, from about 200 ⁇ L to about 400 ⁇ L, from about 250 ⁇ L to about 400 ⁇ L, from about 300 ⁇ L to about 400 ⁇ L).
  • an ingestible device for trans-epithelial delivery contains the dispensable substance at a final fluid volume of at most about 100 microliters ( ⁇ L) (e.g., at least about 90 ⁇ L, at least about 80 ⁇ L, at least about 70 ⁇ L, at least about 60 ⁇ L) and/or at most least 5 ⁇ L (e.g., at most about 10 ⁇ L, at most about 20 ⁇ L, at most about 30 ⁇ L, at most about 40 ⁇ L).
  • ⁇ L microliters
  • an ingestible device for trans-epithelial delivery contains the dispensable substance at a fluid volume of from about 30 ⁇ L, to about 70 ⁇ L (e.g., from about 40 ⁇ L, to about 60 ⁇ L, from about 45 ⁇ L, to about 55 ⁇ L).
  • an ingestible device for trans-epithelial delivery is configured to directly deliver at least about 50% (e.g., at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%) of the dispensable substance from the ingestible device to the submucosa and/or the mucosa (e.g., into the lamina limbal).
  • an ingestible device for trans-epithelial delivery has at least 1 opening for delivery of dispensable substance (e.g. at least 2 openings for delivery of dispensable substance, at least 3 openings for delivery of dispensable substance, at least 4 openings for delivery of dispensable substance) and/or most about 8 openings for delivery of dispensable substance (e.g., at most 7 openings for delivery of dispensable substance, at most 6 openings for delivery of dispensable substance, at most 5 openings for delivery of dispensable substance, at most 4 openings for delivery of dispensable substance).
  • dispensable substance e.g. at least 2 openings for delivery of dispensable substance, at least 3 openings for delivery of dispensable substance, at least 4 openings for delivery of dispensable substance
  • most about 8 openings for delivery of dispensable substance e.g., at most 7 openings for delivery of dispensable substance, at most 6 openings for delivery of dispensable substance, at most 5 openings for delivery of dispensable substance, at most 4
  • an ingestible device for trans-epithelial delivery has from 1 to 8 openings for delivery of dispensable substance (e.g., from 2 to 4 openings for delivery of dispensable substance, 2 opening for delivery of dispensable substance). In some embodiments, an ingestible device for trans-epithelial delivery has one or more nozzles, with each nozzle having a nozzle opening for delivering dispensable substance.
  • the ingestible device can have at least 1 nozzle (e.g., at least 2 nozzles, at least 3 nozzles, at least 4 nozzles) and/or at most 8 nozzles (e.g., at most 7 nozzles, at most 6 nozzles, at most 5 nozzles, at most 4 nozzles).
  • the ingestible device can have from 1 to 8 nozzles (e.g., from 1 to 5 nozzles, from 2 to 4 nozzles, 2 nozzles).
  • each nozzle can have a nozzle length of at least about 1 mm (e.g., at least about 2 mm, at least about 3 mm) and/or at most about 5 mm (e.g., at most about 4 mm). In some embodiments, each nozzle can have a nozzle length of from about 1 mm to about 5 mm.
  • each nozzle can have a nozzle diameter of at least about 0.1 mm (e.g., at least about 0.2 mm, at least about 0.3 mm) and/or at most about 2 mm (e.g., at most about 1 mm, at most about 0.8 mm, at most bout 0.5 mm, at most about 0.4 mm).
  • each nozzle can have a nozzle diameter of from about 0.1 mm to about 2 mm (e.g., from about 0.1 mm to about 1 mm, from about 0.15 mm to about 0.5 mm, from about 0.2 mm to about 0.8 mm, from about 0.25 mm to about 0.45 mm, from about 0.3 mm to about 0.4 mm, from about 0.3 mm to about 0.5 mm, from about 0.34 mm to about 0.36 mm, about 0.35 mm).
  • a nozzle diameter of from about 0.1 mm to about 2 mm (e.g., from about 0.1 mm to about 1 mm, from about 0.15 mm to about 0.5 mm, from about 0.2 mm to about 0.8 mm, from about 0.25 mm to about 0.45 mm, from about 0.3 mm to about 0.4 mm, from about 0.3 mm to about 0.5 mm, from about 0.34 mm to about 0.36 mm, about 0.35 mm).
  • each nozzle can have a nozzle diameter independently selected from to the group consisting of about 0.15 mm, about 0.16 mm, about 0.17 mm, about 0.18 mm, about 0.19 mm, about 0.20 mm, about 0.21 mm, about 0.22 mm, about 0.23 mm, about 0.24 mm, about 0.25 mm, about 0.26 mm, about 0.27 mm, about 0.28 mm, about 0.29 mm, about 0.30 mm, about 0.31 mm, about 0.32 mm, about 0.33 mm, about 0.34 mm, about 0.35 mm, about 0.36 mm, about 0.37 mm, about 0.38 mm, about 0.39 mm, about 0.40 mm, about 0.41 mm, about 0.42 mm, about 0.43 mm, about 0.44 mm, about 0.45 mm, about 0.46 mm, about 0.47 mm, about 0.48 mm, about 0.49 mm, and about 0.50 mm; or more particularly, about 0.30 mm, about 0.31 mm, about 0.
  • an ingestible device for trans-epithelial delivery is configured to provide a delivered fluid volume per opening for delivery of dispensable substance (e.g., per nozzle) of at least about 20 microliters ( ⁇ L) (e.g., at least about 25 ⁇ L, at least about ⁇ L, at least about 50 ⁇ L, at least about 75 ⁇ L, at least about 100 ⁇ L) and/or at most about 800 ⁇ L (e.g., at most about 700 ⁇ L, at most about 600 ⁇ L, at most about 500 ⁇ L, at most about 400 ⁇ L, at most about 300 ⁇ L).
  • ⁇ L microliters
  • 800 ⁇ L e.g., at most about 700 ⁇ L, at most about 600 ⁇ L, at most about 500 ⁇ L, at most about 400 ⁇ L, at most about 300 ⁇ L.
  • an ingestible device for trans-epithelial delivery is configured to provide a delivered fluid volume per opening for delivery of dispensable substance (e.g., per nozzle) of from about 25 ⁇ L to about 400 ⁇ L (e.g., from about 25 ⁇ L to about 300 ⁇ L, from about 100 ⁇ L to about 300 ⁇ L).
  • an ingestible device with a nozzle having a nozzle diameter of 0.35 mm diameter and containing a dispensable substance at a peak fluid pressure of 150 psig can deliver a jet of the dispensable substance at an average jet velocity of about 20 m/s and at an average jet impact pressure of about 29 psig.
  • an ingestible device having a nozzle pressure of 300 psig can deliver a dispensable substance at an average jet velocity of about 27 m/s and an average jet impact pressure of about 58 psig. In some embodiments, such an arrangement results in piercing of the intestinal wall.
  • an ingestible device having a nozzle with a nozzle diameter of 0.35 mm diameter and containing a dispensable substance at a peak fluid pressure of 320 psig can deliver a jet of the dispensable substance having an average jet velocity of about 28 m/s and an average jet impact pressure of about 62.4 psig.
  • FIG. 3 shows cross sectional views of a representative ingestible device 400 for trans-epithelial delivery, schematically illustrating certain parameters and components of action for the device 400 .
  • These include a drive force generator 42 which applies a force (resulting in an internal pressure) to a drive coupling 44 .
  • the drive coupling 44 transfers force from the force generator 42 to a fluid volume 46 containing a dispensable substance (e.g., a liquid, a suspension).
  • the force applied to the fluid volume 46 by the drive coupling 44 generates pressure in the fluid volume 46 (fluid pressure).
  • the pressure in the fluid volume 46 generates high-speed flow through an open nozzle 48 to produce a jet 50 of fluid at the nozzle outlet 52 that has a nozzle diameter 72 and the nozzle has a nozzle length 74 .
  • the fluid jet 50 has a jet stable length 54 that is sufficient for the fluid jet 50 to travel across a nozzle stand-off distance 56 to reach the interface of the lumen of the GI tract and the surface of the GI tract facing the lumen.
  • the fluid e.g., liquid, suspension
  • the mucosal layer of the GI tract e.g., the epithelial layer and any mucus that may be present on the epithelial layer
  • the jet 50 has a jet diameter 76 that can vary in the manner discussed above with respect to the average jet diameter.
  • the fluid volume 46 experiences a peak fluid pressure 60 that generates the fluid jet 50 that exits the device 40 with a peak jet velocity, and impacts the interface of the lumen of the GI tract and the surface of the GI tract facing the lumen with a peak jet power, peak jet pressure and peak jet force.
  • the pressure in the fluid volume 46 decreases during delivery so that the fluid pressure during delivery 70 varies, as does the jet power, jet force, and jet pressure.
  • the fluid pressure during delivery 70 maintains the fluid jet 50 at sufficient jet impact force during delivery to continue fluid (dispensable substance including one or more therapeutic agents) delivery from the fluid volume 46 into the submucosal and/or mucosal tissue 58 .
  • the surrounding tissue can then absorb the delivered therapeutic agents for systemic delivery of the therapeutic agent.
  • the drive coupling 44 transmits force from the force generator 42 to the fluid volume 46 .
  • the drive coupling 44 is prevented from moving by a restraining mechanism 80 (e.g., a pin or plug that selectively degrades and/or selectively erodes) until movement of the drive coupling is triggered by a triggering mechanism, and/or an opening becomes open.
  • a restraining mechanism 80 e.g., a pin or plug that selectively degrades and/or selectively erodes
  • FIGS. 4 A- 5 B show cross sections of an example ingestible device 100 .
  • FIG. 4 A shows an exterior view of the ingestible device 100 .
  • the device 100 is generally cylindrical with a longitudinal axis and a generally smooth exterior surface 102 .
  • the exterior surface 102 includes a bottom housing 104 with an inlet 106 at one end, and a slider 108 (shown transparent) at the opposite end from the inlet 106 (e.g., a pressurization inlet port).
  • the device 100 is a purely mechanical device for the delivery of a therapeutic agent to the GI tract, and does not contain any electronics.
  • FIG. 4 B shows an embodiment of the device 100 .
  • the device 100 includes a gas reservoir 112 , a dispensable substance reservoir 114 that contains the substance to be dispensed (e.g., a pharmaceutical formulation), a slider 108 , degradable and/or erodible elements 116 (e.g., shear pins), and structural elements 118 (e.g., structural shear pins).
  • degradable and/or erodible elements 116 are configured to degrade and/or erode under certain conditions, while the structural elements 118 are configured to provide additional mechanical strength beyond that provided by the degradable and/or erodible elements 116 .
  • the degradable and/or erodible elements 116 and structural elements 118 are able to hold back the force of the force generator (e.g., a pressurized gas within the gas reservoir 112 ).
  • the force generator e.g., a pressurized gas within the gas reservoir 112
  • the structural elements 118 cannot alone hold back the force of the force generator (e.g., the pressurized gas), and the slider 108 moves to the open position.
  • the degradable and/or erodible elements 116 and structural elements 118 are placed in pairs with like elements on opposite sides of the device.
  • the degradable and/or erodible elements 116 are made of an enteric material.
  • the enteric material may be degradable and/or erodible in the small intestine of the GI tract, or the enteric material may be degradable and/or erodible in the large intestine of the GI tract, such as the colon.
  • the device 100 includes the degradable and/or erodible elements 116 but does not include the structural elements 118 .
  • FIGS. 4 A- 5 B show cross sections of an embodiment of the device 100 , which includes gas reservoir 112 , a dispensable substance reservoir 114 that contains the substance to be dispensed (e.g., a pharmaceutical formulation), a slider 108 , degradable and/or erodible elements 116 (e.g., shear pins), and structural elements 118 (e.g., structural shear pins).
  • the degradable and/or erodible elements 116 are configured to degrade and/or erode under certain conditions, while the structural elements 118 are configured to provide additional mechanical strength beyond that provided by the degradable and/or erodible elements 116 .
  • the degradable and/or erodible elements 116 and structural elements 118 are able to hold back the force of the force generator (e.g., a pressurized gas within the gas reservoir 112 ).
  • the force generator e.g., a pressurized gas within the gas reservoir 112
  • the structural elements 118 cannot alone hold back the force of the force generator (e.g., the pressurized gas), and the slider 108 moves to the open position.
  • the degradable and/or erodible elements 116 and structural elements 118 are placed in pairs with like elements on opposite sides of the device.
  • the degradable and/or erodible elements 116 are made of an enteric material.
  • the enteric material may be degradable and/or erodible in the small intestine of the GI tract, or the enteric material may be degradable and/or erodible in the large intestine of the GI tract, such as the colon.
  • the device 100 includes the degradable and/or erodible elements 116 but does not include the structural elements 118 .
  • the ingestible device 100 is encased by a coating 120 , such as a degradable and/or erodible coating, for example, an enteric coating, that covers the exterior surface 102 .
  • a coating 120 such as a degradable and/or erodible coating, for example, an enteric coating
  • the ingestible device 120 does not include the coating 120 .
  • only certain portions of the ingestible device 100 include the coating 120 .
  • only the pockets 124 are coated, e.g., coated with a degradable and/or erodible material, for example, an enteric material.
  • FIGS. 4 B and 4 C show the device 100 in its open position, where the substance reservoir 114 is fluidly connected to the outside of the device via the nozzles 122 (visible in FIG. 3 C ).
  • the dispensable substance e.g., a therapeutic agent or a pharmaceutical formulation containing a therapeutic agent
  • the slider 108 is shut by sliding it axially, disconnecting the nozzles 122 from the exterior of the device so that the device 100 is in its closed position. Note that the location of the structural elements 118 and elements 116 are depicted in FIGS.
  • the device 100 may also include a guide pin that provides alignment of nozzles 122 to the hole provided by the slider 108 , and may also prevent the slider from continuing to translate axially.
  • FIGS. 5 A and 5 B show the device in its closed position in which the slider 108 is held in place by a number of elements 116 and 118 that mate with pockets (e.g., pin pockets) 124 .
  • the location of elements 116 extend through the housing at the positions indicated while the device 100 is in the closed position.
  • a single nozzle 122 is shown in the view of FIG. 5 A and two nozzles are shown in the view of FIG. 5 B .
  • One or more top housing seals (e.g., sealing O-rings) 126 assist in containing the dispensable substance behind the slider 108 so that the dispensable substance does not leak to the environment external to the device 100 .
  • a piston 130 and a seal (e.g., sealing O-ring) 132 assist in separating the gas in the gas reservoir 112 from the dispensable substance in the substance reservoir 114 .
  • the piston 130 surrounds the gas reservoir 112 and is configured to slide axially within the bottom housing 104 .
  • the slider 108 is not an external sliding mechanism as shown, but is an internal slider.
  • the slider 108 With the dispensable substance loaded within the substance reservoir 114 , the slider 108 is held in place with respect to the top housing 134 with the elements 116 and structural elements 118 within the pockets 124 .
  • the pockets 124 each have a through-portion 124 A piercing the slider 108 , and a blind hole portion 124 B within the top housing 134 .
  • the through-portion 124 A and the blind hole portion 124 B of each of the pockets 124 align, allowing the elements 116 and/or 118 to be inserted through the slider 108 and fasten it to the top housing 134 .
  • the gas reservoir 112 is charged with pressurized gas up to a predetermined pressure (e.g., about 300 psig) via the inlet 106 .
  • the inlet 106 includes a valve 128 that allows gas to flow into the gas reservoir 112 , but prevents the pressurized gas from travelling back out through the inlet 106 .
  • any appropriate valve may be used. Examples of valves include check valves, ball check valves, umbrella valves, duckbill valves, or the like.
  • the valve 128 is replaced by a static plug (e.g., an adhesive applied to the inlet 106 ) that can withstand the pressure of the pressurized gas reservoir 112 .
  • the elements 116 and 118 are generally made of materials and are sized and shaped such that they, in combination, provide enough rigidity to hold the slider 108 in the closed position under the internal pressure of the pressurized air in the gas reservoir 112 , e.g., in the range of about 150-400 psig. Upon dissolution, degradation and or erosion of the elements 116 , the maximum pressure that the remaining structural elements 118 can withstand without breaking drops below the internal pressure within the gas reservoir 112 .
  • the structural elements 118 are made from a relatively brittle material, and thereby fail and release the slider 108 and allow the dispensable substance to forcefully leave the device via the nozzles 122 .
  • the device 100 can include more than one (e.g., two, three, four, etc.) elements 116 , and/or more than one (e.g., two, three, four, etc.) elements 118 .
  • there is an even number of elements 116 and of structural elements 118 and the elements 116 and 118 are arranged in an alternating configuration around the longitudinal axis of the device 100 .
  • elements 116 and of structural elements 118 there is an even number of elements 116 and of structural elements 118 , and the elements 116 and 118 are arranged such that elements 116 are opposite other elements 116 and structural elements 118 are opposite other structural elements 118 around the longitudinal axis of the device 100 .
  • elements 116 and 118 are co-located within the same pocket 124 and may comprise a matrix of materials such as 118 consisting of fibers, or consisting of a coaxial pin 118 surrounded by an annulus of element 116 .
  • the coating 120 may be placed only in the region of the elements 116 and/or 118 , e.g., in an annulus.
  • enteric material may be in the pocket portions 124 A and/or 124 B as a plug separating the elements 116 and/or 118 from the exterior environment.
  • the properties of the elements 116 can be varied to select the desired performance. For example, their effective force-restraining area can be increased by increasing the diameter and thus the cross section of each element 116 , and/or by increasing the number of the elements 116 . Increasing the area allows for a safety factor to permit longer periods of storage and shipping, variation in dissolvability, degradability and or erodability between batches of elements 116 and/or 118 , and variations in the pressure within the gas reservoir 112 , or the like.
  • elements 116 and 118 are pins having a diameter of about 0.9 mm, but can be thinner (e.g., about 0.8 mm) or wider.
  • the elements 116 and/or the structural elements 118 have configurations other than straight pins.
  • one or more elements 116 can be an annular member that fits within a grooved pocket (rather than the discrete pockets 124 shown) that encircles the circumference of the slider 108 .
  • the element(s) can be cotters, shear pins, linchpins, split pins, straight pins, dowels, biscuits, clasps, clamps, flanges, rivets, or the like.
  • one or more of the elements 116 is a restraining device other than a pin, such as a clamp, a spacer, or the like.
  • the gas reservoir 112 contains pressurized gas.
  • the gas is air, however gases other than air are possible.
  • compressed gases include, nitrogen (N 2 ), oxygen (O 2 ), argon (Ar), krypton (Kr), helium (He) or other inert or noble gases that do not interact or are compatible with the GI tract, with preference to higher molecular weight gasses that would decrease any permeation of the drive gas out of the device and therefore increase shelf life.
  • the gas is carbon dioxide (CO 2 ).
  • the device 100 maintains a gas/fluid barrier internally, and the gas reservoir 112 can keep pressurized gas from interacting with a fluid dispensable substance (e.g., dispensable substance in the substance reservoir 114 ).
  • the substance reservoir 114 may have a residual volume of ⁇ 0.050 mL after the dispensing period is complete, and does not induce agglomeration that would prevent therapeutic agent delivery.
  • the device 100 also can have several characteristics that make it safe to be stored and transported before being swallowed by a patient.
  • the device 100 can maintain an internal pressure of about 350 psig over the shelf life of the device, e.g., hold a pressure of about 350 psig for about 6 months.
  • the dispensable substance-contacting substance reservoir 114 does not have an effect on the therapeutic agent contained within, and the device and the therapeutic agent are not affected (in efficacy, safety, consistency, or bioavailability) by each other during device storage, transit, and dispensing (e.g., with a storage time up to about six months, or up to about 12 months).
  • the substance reservoir 114 can resist contamination from outside sources prior to dispensing.
  • the diameter of a nozzle as measured at the point of interface with the dispensable substance reservoir can be the same as, smaller than, or larger than the diameter as measured at the nozzle opening (location of delivery of the dispensable substance from the ingestible device).
  • Table 1 provides nozzle diameter (in millimeters) and nozzle length (in millimeters) for the nozzle designs shown in FIG. 6 .
  • FIG. 6 Nozzle diameter Nozzle length A 0.35 0.5 B 0.35 0.5 C 0.35 1.5 D 0.35 1.5 E 0.35 1 F 0.35 1 G 0.5 0.5 H 0.5 0.5 I 0.5 1.5 J 0.5 1.5 K 0.5 1
  • a tapered nozzle may exhibit enhanced jetting properties.
  • a non-tapered nozzle relatively may be relatively inexpensive and simple to manufacture.
  • a small reducing in certain jet properties with a relatively simplified (e.g., non-tapered) nozzle can be compensated with variation of more easily controlled parameters such as the internal pressure and/or fluid pressure.
  • the length of the nozzle may be selected based on mechanical design constraints and required thickness of the ingestible devices.
  • a smaller nozzle diameter (e.g., about 0.35 millimeter) is can result in longer dispensing time ( ⁇ 120 milliseconds), which can better align with achievable opening times of ⁇ 10 milliseconds and higher velocity for a given peak internal pressure.
  • a smaller nozzle diameter can also provide actual dispensing times and jet velocities that are closer to the predicted values.
  • FIG. 6 shows exemplary cross sections of the nozzles 122 within the slider 108 (although nozzles depicted in FIG. 6 may be used in one or more of other embodiments of ingestible devices disclosed herein).
  • the nozzles are about 0.15-0.5 mm in diameter and about 0.3-1.5 mm in length.
  • the throat (e.g., the narrowing portion) of the nozzle can be rounded (as in the top right) or sharp (as in the bottom left) and the neck can have varying lengths.
  • Each of these parameters have an effect on the jet(s) generated by the nozzle, modulating, for example, average jet diameter, jet velocity, peak jet power, peak jet pressure, peak jet force, and average dispensing time. These characteristics can affect the efficacy of delivery and/or subject uptake of the therapeutic agent.
  • FIG. 7 shows a histologic example of a jetted fluid in situ. This result was achieved with a 0.35 mm nozzle and jetting pressure of 250 psig, and an estimated 181 ⁇ L bolus volume. The fluid passed through the mucosa and is within the submucosal region. In this example, the complete bolus was not delivered, possibly due to the physical volume constraints of the region. This indicates that multiple nozzles each delivering a smaller bolus of therapeutic agent may be preferred to maximize the bioavailability of the therapeutic agent.
  • the ingestible device 100 has a triggering mechanism that causes the device 100 to release the dispensable substance within the substance reservoir 114 when the ingestible device reaches the desired location within the GI tract.
  • the trigger that initiates dispensable substance release can have two parts: the enteric coating 120 enrobing the exterior surface 102 of the device 100 , and the elements 116 .
  • the elements 116 are either covered with an enteric coating or are themselves are made of an enteric material.
  • the enteric material may be degradable and/or erodible in the small intestine of the GI tract, or may be degradable and/or erodible in the large intestine of the GI tract, for example, the colon.
  • Such a two-stage release mechanism allows the device 100 to transit through the GI tract to the desired location intact before releasing the therapeutic agent.
  • the enteric coating 120 dissolves, degrades and/or erodes while the device 100 is within a desired portion of the GI tract, e.g., the small intestine or the large intestine.
  • the enteric coating 120 is chosen such that it is stable in the acidic environment of the stomach and dissolves, degrades and/or erodes only when exposed to the more neutral environment of the small intestines (e.g., pH >5) or the slightly acidic to neutral environment of the large intestine (e.g., pH 5.5-7).
  • the thickness of the coating 120 is chosen such that it dissolves, degrades and/or erodes (either entirely, or enough to expose the elements 116 ) when the swallowed device 100 is predicted to have transited through the stomach and be within the small intestine or large intestine.
  • the elements 116 of the device 100 are exposed to the GI tract.
  • the elements 116 are configured to dissolve, degrade and/or erode upon exposure to the environment of the small intestine (e.g., a water soluble material). Generally, the elements 116 dissolve, degrade and/or erode more rapidly than does the enteric coating 120 .
  • the elements 116 can dissolve, for example, within about 1 minute of the enteric coating 120 dissolving, degrading and/or eroding and exposing the elements 116 to the small intestine environment, compared to, for example, about 30 minutes for the enteric coating 120 to degrade. It is not necessary that the enteric coating 120 dissolves, degrades and/or erodes in its entirety. As the enteric coating 120 starts to degrade water or other luminal contents may pass through it and cause the elements 116 to dissolve and thereby lose their mechanical holding strength.
  • Materials for the elements 116 can be isomalt, sugars like maltose or sucrose, or degrading materials of different sorts.
  • the elements 116 and the structural elements 118 can be made of materials and are sized and shaped such that they, in combination, provide enough rigidity to hold the slider 108 in the closed position under the pressure of the pressurized gas in the gas reservoir 112 , which can be in the range of 150-400 psig.
  • the elements 116 and the structural elements 118 can be designed to hold back 300 psig of pressure.
  • the retaining strength of the elements 116 is 80 psig
  • the retaining strength of the structural elements 118 is 220 psig.
  • the structural elements 118 Upon dissolution, degradation and/or erosion of the elements 116 , the structural elements 118 are exposed to the pressure of 260 psig within the gas reservoir 112 . As the 260 psig within the gas reservoir 112 exceeds the reduced restraining strength of 220 psig, the remaining structural elements 118 break. The combination of the dissolution, degradation and/or erosion of the elements 116 followed by the breaking of the structural elements 118 releases the slider 108 .
  • the elements 116 and the structural elements 118 are made of the same material.
  • the elements 116 have a smaller cross sectional area than the structural elements 118 and thus fail more quickly than the structural elements 118 .
  • the elements 116 and the structural elements 118 are made of different materials, where the structural elements 118 are stronger but more brittle than the elements 116 .
  • only elements 116 are present, without structural elements 118 .
  • the elements 116 are configured to break and release the piston 130 and slider 108 in a single step (following dissolving, degrading and/or eroding of the enteric coating 120 ).
  • the device 100 moves from the closed position in FIGS. 5 A and 5 B back to the open position of FIGS. 3 B and 3 C where the substance reservoir 114 is fluidly connected to the outside of the device (in this instance, with the GI tract).
  • the piston 130 is released to slide axially within the bottom housing 104 , and the slider 108 slides relative to the top housing 134 .
  • the motion of the slider 108 positions the nozzles 122 such that the portion of the nozzles 122 within the top housing 134 aligns with the fluid outlet portion of the nozzles 122 within the slider 108 .
  • the movement of the piston 130 driven by the now-unrestrained pressure within the air reservoir 122 , forces the therapeutic within the substance reservoir 114 out through the nozzles 122 .
  • the elements 116 and 118 may remain only in the blind hole portion 124 B of the pockets 124 .
  • the dispensing time is approximately 120 ms. In some embodiments, the time for the slider 108 to move from the closed to the open position is approximately 10 ms.
  • FIG. 8 shows an exemplary process flow chart 800 for use of an ingestible device in which pressure is applied to the dispensable substance before the subject swallows the ingestible device.
  • the process begins at step 802 , when the patient swallows the ingestible device.
  • a triggering condition e.g., pH, change in pH, presence of certain enzyme, concentration of certain enzyme
  • the release mechanism actuates the delivery mechanism at the intended location of the GI tract, whereby the opening(s) of the ingestible device become open.
  • step 808 force applied to the dispensable substance by the drive mechanism generates high-speed flow of the dispensable substance through the opening(s) in the ingestible device, resulting in delivery of a jet of the dispensable substance from the ingestible device for each opening.
  • the jet has a sufficient jet stable length for the jet to impact the GI tissue of the subject.
  • the peak jet power of the jet is sufficient to achieve trans-epithelial delivery of the therapeutic agent contained in the dispensable substance.
  • step 814 the fluid pressure of the dispensable substance decreases during delivery but is sufficiently so that the peak jet power continues to be sufficient to achieve trans-epithelial delivery of the therapeutic agent contained in the dispensable substance.
  • FIG. 9 A shows an embodiment of an ingestible device 900 for trans-epithelial delivery.
  • the device 900 includes housing parts 902 A and 902 B, a fluid volume 904 containing a dispensable substance, nozzles 906 with nozzle openings 908 , pressurized gas as a drive force generator 910 , a drive coupling 912 with an O-ring 913 seal, a ring 914 and a valve 915 (inlet for compressed gas). Similar to the device shown in FIGS. 4 A- 5 B , when the device 900 is swallowed by the subject, the dispensable substance in the device is already pressurized.
  • the ring 914 prevents the pressure of the drive force generator 910 and the drive coupling 912 from forcing the dispensable substance in the fluid volume 904 through the nozzle openings 908 .
  • the ring 914 erodes, degrades and/or dissolves.
  • the pressure of the drive force generator 910 and the drive coupling 912 is applied to the dispensable substance 904 , forcing the cap to move to expose openings 908 .
  • the housing part 902 B has a slot 903 into which a portion of housing part 902 A fits such that the motion of the housing part 902 A is both axial and rotational (e.g., a track and cam arrangement). This arrangement can result in relatively reduced axial movement of the housing part 902 B during delivery of the dispensable substance, which can result in maintenance of a relatively high internal pressure during delivery of the dispensable sub stance.
  • FIG. 10 A shows an embodiment of an ingestible device 1000 for trans-epithelial delivery.
  • FIG. 10 B is an exploded view of the ingestible device 1000 .
  • the ingestible device 1000 has housing parts 1002 A and 1002 B, a fluid volume 1004 containing a dispensable substance, nozzles 1006 , nozzle openings 1008 , parallel springs 1010 A and 1010 B, a piston 1012 , a pin 1014 , a pin 1016 , a spring 1018 and a cap 1020 . Similar to the device shown in FIGS. 4 A- 5 B , when the device 1000 is swallowed by the subject, the dispensable substance in the device is already pressurized.
  • the pins 1014 and 1016 prevent the pressure of the springs 1010 A and 1010 B and the piston 1012 from forcing the dispensable substance in the fluid volume 1004 through the nozzle openings 1008 .
  • the pin 1014 erodes, degrades and/or dissolves, and the pin 1016 is not sufficient to hold back the pressure from the springs 1010 A and 1010 B and the piston 1012 .
  • the pressure of the springs 1010 A an 1010 B and the piston 1012 is applied to the dispensable substance, forcing the spring 1020 to quickly move the cap 1018 forward.
  • the housing of the ingestible device 1000 has a diameter of about 11 mm, a length of about 26 mm, a wall thickness of about 0.8 mm, an end round of about 1.5 mm and an internal volume of about 1685 ⁇ L.
  • the fluid volume 1004 can be about 325 ⁇ L.
  • FIG. 10 C shows aspects of steps in assembling the ingestible device 1000 .
  • the cap 1020 and spring 1018 are combined with the housing part 1002 B and pins 1014 and 1016 , and this module is sterilized.
  • the dispensable substance 1004 is disposed in the housing part 1002 B in an aseptic environment and then sealed within the housing part 1002 B via the piston 1012 .
  • the housing part 1002 A and its components are assembled in a clean environment.
  • the resulting modules are joined together in a clean environment to compress the springs 1010 A and 1010 B to provide the ingestible device 1000 .
  • the assembly process can include using a jig to hold the housing part 1002 A to prevent over-loading of the cap 1020 /spring 1018 /pin 1014 /pin 1016 combination.
  • FIG. 10 D shows an embodiment of an ingestible device 10001 for trans-epithelial delivery.
  • the ingestible device 10001 has housing parts 1002 A 1 and 1002 B 1 , a fluid volume 10041 containing a dispensable substance, nozzles 10061 , nozzle openings 10081 , parallel springs 1010 A 1 and 1010 B 1 , a piston 10121 , a pin 10141 , a pin 10161 , a spring 10181 and a cap 10201 . Similar to the device shown in FIGS. 4 A- 5 B , when the device 10001 is swallowed by the subject, the dispensable substance in the device is already pressurized.
  • the pins 10141 and 10161 prevent the pressure of the springs 1010 A 1 and 1010 B 1 and the piston 10121 from forcing the dispensable substance in the fluid volume 10041 through the nozzle openings 10081 .
  • the pin 10141 erodes, degrades and/or dissolves, and the pin 10161 is not sufficient to hold back the pressure from the springs 1010 A 1 and 1010 B 1 and the piston 10121 .
  • the pressure of the springs 1010 A 1 an 1010 B 1 and the piston 10121 is applied to the dispensable substance, forcing the spring 10201 to quickly remove move the cap 10181 forward.
  • the spring force of the spring 10181 has a force of about 30 Newtons
  • the parallel springs 1010 A 1 and 1010 B 1 have a force of 110 Newtons to provide an internal pressure of about 320 psig with about 50 Newtons of force at the end of the stroke
  • the fluid volume 10041 is about 225 ⁇ L.
  • the housing of the ingestible device 10001 has a diameter of about 11 mm, a length of about 26 mm, a wall thickness of about 0.8 mm, an end round of about 5.5 mm (spherical) and an internal volume of about 1475 ⁇ L.
  • the fluid volume 10041 can be about 225 ⁇ L.
  • FIG. 10 E shows an embodiment of an ingestible device 10002 for trans-epithelial delivery.
  • the ingestible device 10002 has housing parts 1002 A 2 and 1002 B 2 , a fluid volume 10042 containing a dispensable substance, nozzles 10062 , nozzle openings 10082 , parallel springs 1010 A 2 and 1010 B 2 , a piston 10122 , a pin 10142 , a pin 10162 , a spring 10182 and a cap 10202 . Similar to the device shown in FIGS. 4 A- 5 B , when the device 10002 is swallowed by the subject, the dispensable substance in the device is already pressurized.
  • the pins 10142 and 10162 prevent the pressure of the springs 1010 A 2 and 1010 B 2 and the piston 10122 from forcing the dispensable substance in the fluid volume 10042 through the nozzle openings 10082 .
  • the pin 10142 erodes, degrades and/or dissolves, and the pin 10162 is not sufficient to hold back the pressure from the springs 1010 A 2 and 1010 B 2 and the piston 10122 .
  • the pressure of the springs 1010 A 2 an 1010 B 2 and the piston 10122 is applied to the dispensable substance, forcing the spring 10202 to quickly remove move the cap 10182 forward.
  • the spring force of the spring 10182 has a force of about 12 Newtons
  • the parallel springs 1010 A 2 and 1010 B 2 have a force of 58 Newtons to provide an internal pressure of about 320 psig with about 25 Newtons of force at the end of the stroke
  • the fluid volume 10042 is about 120 ⁇ L.
  • the housing of the ingestible device 10002 has a diameter of about 8.5 mm, a length of about 23.3 mm, a wall thickness of about 0.75 mm, an end round of about 4.25 mm (spherical) and an internal volume of about 775 ⁇ L.
  • the fluid volume 10042 can be about 120 ⁇ L.
  • FIG. 11 shows an ingestible device 1100 which includes a housing 1102 , a fluid volume 1104 , a liquid-gas reservoir (drive force generator) 1106 , a drive coupling 1108 , a seal 1109 , a pin 1114 and a pin 1116 .
  • the ingestible device 1100 is configured so that, before the subject swallows the device, the dispensable substance in fluid volume 1104 is under pressure from the liquid-gas reservoir 1106 via the drive coupling 1108 , but the pins 1114 and 1116 prevent the dispensable substance in fluid volume 1004 from being delivered from the device 1100 via nozzle(s) with nozzle opening(s) (not shown).
  • the pin 1114 erodes, degrades and/or dissolves (e.g., due to pH, change in pH, presence of certain enzyme, and/or concentration of certain enzyme), and the pin 1116 is no longer sufficient to hold back the pressure from the liquid-gas reservoir 1106 and the drive coupling 1108 .
  • this pressure is applied to the dispensable substance in the fluid volume 1104 , forcing the dispensable substance out of the nozzle openings (not shown) in the form of a jet. This results in in trans-epithelial delivery of the therapeutic agent contained in the dispensable substance.
  • FIG. 12 shows an ingestible device 1200 which includes a first housing part 1202 A, a second housing part 1202 B, a fluid volume 1204 , a drive force generator 1206 , nozzles 1208 with nozzle openings 1210 , plugs 1212 , a seal 1214 , a seal 1216 and a membrane 1218 .
  • the ingestible device 1200 is configured so that, before the subject swallows the device, the dispensable substance in fluid volume 1204 is under pressure from the drive force generator 1206 , but the plugs 1212 prevent the dispensable substance in fluid volume 1204 from being delivered from the device 1200 via nozzle openings 1210 .
  • the plugs 1212 erode, degrade and/or dissolve (e.g., due to pH, change in pH, presence of certain enzyme, and/or concentration of certain enzyme), so that the pressure from the drive force generator 1206 breaks the seal 1216 (made of a relatively low mechanical strength material, such as a seal), which causes the membrane 1218 to expand into the fluid volume 1204 , forcing the dispensable substance out of the nozzle openings 1210 in the form of a jet. This results in in trans-epithelial delivery of the therapeutic agent contained in the dispensable substance.
  • the housing parts 1202 A and are initially separate from each other.
  • the plugs are disposed in the nozzles 1210 , the dispensable substance is disposed in the fluid volume 1204 , and the seal 1216 is added.
  • the dispensable substance (including the therapeutic agent) is first sterilized, and then disposed in the fluid volume 1204 under aseptic conditions.
  • the drive force generator 1206 is manufactured in a clean environment and then incorporated with the housing part 1202 B, after which the membrane 1218 is added. Subsequently, the housing parts 1202 A and 1202 B are joined in a clean environment to produce the ingestible device 1200 .
  • FIG. 13 shows an embodiment of an ingestible device 1300 for trans-epithelial delivery.
  • the device 1300 has a housing 1302 with a fluid volume 1304 containing a dispensable substance, nozzles 1306 , nozzle openings 1308 , a tensioned spring 1310 , a drive force generator 1312 , a band 1314 around the device, a seal 1315 , a cap 1318 , a membrane 1317 and a seal 1320 .
  • the dispensable substance in the device is already pressurized.
  • the band 1314 prevents the pressure of the drive force generator 1312 from relieving the tension in the spring 1310 so that the dispensable substance in the fluid volume 1304 is prevented from going through the nozzle openings 1308 .
  • the band 1314 erodes, degrades and/or dissolves.
  • the tension in the spring 1310 is relieved, and the spring moves to where the band 1314 was located, thereby rapidly exposing the nozzle openings 1308 to the environment exterior to the device 1300 so that the dispensable substance is delivered out of the openings 1308 in the form of a jet. This results in in trans-epithelial delivery of the therapeutic agent contained in the dispensable substance.
  • FIG. 14 shows an embodiment of an ingestible device 1400 for trans-epithelial delivery.
  • the device 1400 has a housing 1402 with a fluid volume 1404 containing a dispensable substance, a membrane 1405 defining the fluid volume 1404 , an opening 1407 leading to nozzles 1406 , nozzle openings 1408 , a tensioned spring 1410 , a pressurized gas (drive force generator) 1412 , a band 1414 , a cap 1418 and a seal 1420 .
  • the dispensable substance in the device is already pressurized.
  • the band 1414 keeps the spring 1410 tensioned so that the dispensable substance in the fluid volume 1404 is prevented from going through the nozzle openings 1408 .
  • the band 1414 erodes, degrades and/or dissolves, relieving the tension in the spring 1410 , which moves to where the band 1414 had been located, thereby rapidly exposing the nozzle openings 1408 to the environment exterior to the device 1400 so that the dispensable substance is delivered out of the openings 1408 in the form of a jet. This results in in trans-epithelial delivery of the therapeutic agent contained in the dispensable substance.
  • the dispensable substance is not under pressure when the subject swallows the ingestible device.
  • the following are illustrative examples of such ingestible devices.
  • FIG. 15 A shows an embodiment of an ingestible device 1500 for trans-epithelial delivery.
  • FIG. 15 B shows an exploded view of the ingestible device 1500 .
  • the ingestible device 1500 has housing parts 1502 A and 1502 B, a fluid volume 1504 containing a dispensable substance, nozzles 1506 , nozzle openings 1508 , parallel springs 1510 A and 1510 B, a plunger 1511 , a piston 1512 , a piston 1513 , a pin 1514 and a pin 1516 .
  • the pins 1514 and 1516 prevent the dispensable substance in fluid volume 1504 from being under pressure from the springs 1510 A and 1510 B, the plunger 1511 and the piston 1512 .
  • the pins 1514 and 1516 prevent the pressure of the springs 1510 A and 1510 B, the plunger 1511 and the piston 1512 from forcing the dispensable substance in the fluid volume 1504 through the openings 1508 .
  • the pin 1514 erodes, degrades and/or dissolves (e.g., due to pH, change in pH, presence of certain enzyme, and/or concentration of certain enzyme), and the pin 1516 is no longer sufficient to hold back the pressure from the springs 1510 A and 1510 B, the plunger 1511 and the piston 1512 .
  • the pressure of the springs 1510 A and 1510 B, the plunger 1511 and the piston 1512 is applied to the dispensable substance in the fluid volume 1504 , forcing the dispensable substance out of the nozzle openings 1508 in the form of a jet. This results in in trans-epithelial delivery of the therapeutic agent contained in the dispensable substance.
  • FIG. 15 C shows aspects of a process of assembling the ingestible device of 1500 .
  • steps 1520 and 1522 the housing part 1502 B and piston 1513 are combined and sterilized, the dispensable substance 1504 is added to the housing part 1502 B in an aseptic environment, and drive piston 1511 is added to the housing part 1502 B to seal the dispensable substance 1504 in the housing part 1502 B.
  • step 1524 the housing part 1502 A and its components are assembled in a clean environment.
  • the drive plunger 1512 is used to compress the springs 1510 A and 1510 B, and the drive plunger 1512 is held in place via the pins 1514 and 1516 .
  • step 1526 the resulting modules are assembled in a clean environment to produce the ingestible device 1500 .
  • FIG. 16 shows an exemplary process flow chart 1600 for use of an ingestible device in which pressure is not applied to the dispensable substance before the subject swallows the ingestible device.
  • the process beings at step 1602 , when the patient swallows the ingestible device.
  • a triggering condition e.g., pH, change in pH, presence of certain enzyme, concentration of certain enzyme
  • the drive force mechanism applies pressure to the dispensable substance, resulting delivery of a jet of the dispensable substance from the ingestible device for each opening.
  • the jet has a sufficient jet stable length for the jet to impact the GI tissue of the subject.
  • step 1610 the peak jet power of the jet is sufficient to achieve trans-epithelial delivery of the therapeutic agent contained in the dispensable substance.
  • step 1612 the fluid pressure of the dispensable substance decreases during delivery but is sufficiently so that the peak jet power continues to be sufficient to achieve trans-epithelial delivery of the therapeutic agent contained in the dispensable substance.
  • FIG. 17 shows an embodiment of an ingestible device 1700 for trans-epithelial delivery, which contains a dispensable substance that is not under pressure when the subject swallows the ingestible device.
  • the device 1700 has a housing 1702 with a fluid volume 1704 containing a dispensable substance, nozzles 1706 , nozzle openings 1708 , coverings 1709 over openings 1708 , a spring 1710 , a piston 1712 , a fluid barrier 1713 (to prevent the dispensable substance from contacting the piston 1712 or the spring 1710 ), a pin 1714 and a pin 1716 .
  • the pins 1714 and 1716 prevent the dispensable substance in fluid volume 1704 from being under pressure from the spring 1710 and the piston 1712 , and the coverings 1709 prevent the dispensable substance from exiting the device via openings 1708 .
  • the pin 1714 erodes, degrades and/or dissolves (e.g., due to pH, change in pH, presence of certain enzyme, and/or concentration of certain enzyme), and the pin 1716 is no longer sufficient to hold back the pressure from the spring 1710 and the piston 1712 .
  • the pressure of the spring 1710 and the piston 1712 is applied to the dispensable substance in the fluid volume 1704 , forcing the seals 1709 , which are made of a relatively low mechanical strength material (e.g., a foil or a film) to break so that the dispensable substance is delivered out of the nozzle openings 1708 in the form of a jet.
  • a relatively low mechanical strength material e.g., a foil or a film
  • FIG. 18 shows an embodiment of an ingestible device 1800 for trans-epithelial delivery, which contains a dispensable substance that is not under pressure when the subject swallows the ingestible device.
  • the device 1800 has a housing 1802 with a fluid volume 1804 containing a dispensable substance, nozzles 1806 , nozzle openings 1808 , coverings ix) 1809 over openings 1808 , a spring 1810 , a piston 1812 , a pin 1814 and a pin 1816 .
  • the pins 1814 and 1816 prevent the dispensable substance in fluid volume 1804 from being under pressure from the spring 1810 and the piston 1812 , and the coverings 1809 prevent the dispensable substance from exiting the device via openings 1808 .
  • the pin 1814 erodes, degrades and/or dissolves (e.g., due to pH, change in pH, presence of certain enzyme, and/or concentration of certain enzyme), and the pin 1816 is no longer sufficient to hold back the pressure from the spring 1810 and the piston 1812 .
  • the pressure of the spring 1810 and the piston 1812 is applied to the dispensable substance in the fluid volume 1804 , forcing the seals 1809 , which are made of a relatively low mechanical strength material (e.g., a foil or a film) to break so that the dispensable substance is delivered out of the nozzle openings 1808 in the form of a jet.
  • a relatively low mechanical strength material e.g., a foil or a film
  • FIG. 19 A shows an embodiment of an ingestible device 1900 for trans-epithelial delivery, which contains a dispensable substance that is not under pressure when the subject swallows the ingestible device.
  • FIG. 19 B is an exploded view of the ingestible device 1900 .
  • the ingestible device 1900 has a cap 1901 , housing parts 1902 A and 1902 B with a fluid volume 1904 containing a dispensable substance, nozzles 1906 , nozzle openings 1908 , coverings 1909 over openings 1908 , a seal 1913 , a spring 1910 , a gas cylinder 1911 , a membrane 1915 surrounding the gas cylinder 1911 , a piercer 1912 , a pin 1914 , a pin 1916 , and an O-ring 1919 .
  • the cap 1901 is removed before the subject swallows the ingestible device 1900 .
  • the pins 1914 and 1916 prevent the dispensable substance in fluid volume 1904 from being under pressure by holding the spring 1910 and the piercer 1912 in place.
  • the pin 1914 erodes, degrades and/or dissolves (e.g., due to pH, change in pH, presence of certain enzyme, and/or concentration of certain enzyme), and the pin 1916 is no longer sufficient to hold back the pressure from the spring 1910 .
  • the spring forces the piercer 1912 into the gas cylinder 1911 , puncturing the gas cylinder 1911 and causing gas at elevated pressure to leave the cylinder 1911 . This causes the cylinder to press against the membrane 1915 , which expands against the seal 1913 .
  • the seal 1913 is made of a relatively low mechanical strength material (e.g., a foil or a film), which breaks when pressed against by the expanding membrane 1915 . This causes the expanding membrane 1915 to apply pressure against the dispensable substance in the fluid volume 1904 . This causes the coverings 1909 , which are made of a relatively low mechanical strength material (e.g., a foil or a film), to break so that the dispensable substance is delivered out of the nozzle openings 1908 in the form of a jet. This results in in trans-epithelial delivery of the therapeutic agent contained in the dispensable substance.
  • a relatively low mechanical strength material e.g., a foil or a film
  • the housing of the ingestible device 1900 is about 26 millimeters long, has a diameter of about 11 mm, a wall thickness of about 0.8 mm Newtons, an end round of about 1.5 mm, an internal volume of about 1685 ⁇ L.
  • the fluid volume 1904 can be about 425 ⁇ L.
  • the ingestible device 1900 does not include coverings 1909 .
  • FIG. 19 C schematically shows certain aspects of a process for the assembly of the ingestible device 1900 .
  • the housing part 1902 is combined with the cap 1901 and coverings 1909 .
  • the dispensable substance 1904 is added to the housing part 1902 B in an aseptic environment, and the seal 1913 is added.
  • the housing part 1902 A and its components are assembled in a clean environment.
  • the piercer 1912 is held in place by pins 1914 and 1916 , and the gas cylinder 1911 is held in place by components of this assembly.
  • the resulting modules are combined to provide the ingestible device 1900 .
  • FIG. 19 D shows an ingestible device 19001 for trans-epithelial delivery, which contains a dispensable substance that is not under pressure when the subject swallows the ingestible device.
  • the ingestible device 19001 has housing parts 1902 A 1 and 1902 B 1 with a fluid volume 19041 containing a dispensable substance, nozzles 19061 , nozzle openings 19081 , coverings 19091 over openings 19081 , a spring 19101 , a gas cylinder 19111 , a piston 19151 , a piercer 19121 , and an O-ring 19191 .
  • the pins used as the triggering mechanism are not shown in FIG. 19 D but are similarly configured as pins 1914 and 1916 in FIG. 19 A .
  • the pins prevent the dispensable substance in fluid volume 19041 from being under pressure by holding the spring 19101 and the piercer 19121 in place.
  • the device 19001 reaches the appropriate location in the GI tract, one of the pins erodes, degrades and/or dissolves (e.g., due to pH, change in pH, presence of certain enzyme, and/or concentration of certain enzyme), and the other pin is no longer sufficient to hold back the pressure from the spring 19101 .
  • the spring forces the piercer 19121 into the gas cylinder 19111 , puncturing the gas cylinder 19111 and causing gas at elevated pressure to leave the cylinder 19111 .
  • the gas cylinder 19111 press against the piston 19151 and apply pressure to the fluid volume 19041 .
  • the housing of the ingestible device 19001 has a diameter of about 11 mm, a length of about 26 mm, a wall thickness of about 0.8 mm, an end round of about 5.5 mm (spherical), and an internal volume of about 1475 ⁇ L.
  • a fluid volume 19041 can be about 400 ⁇ L
  • a gas volume in the gas cylinder 19111 can be about 255 ⁇ L.
  • FIG. 19 E shows an ingestible device 19002 for trans-epithelial delivery, which contains a dispensable substance that is not under pressure when the subject swallows the ingestible device.
  • the ingestible device 19002 has housing parts 1902 A 2 and 1902 B 2 with a fluid volume 19042 containing a dispensable substance, nozzles 19062 , nozzle openings 19082 , coverings 19092 over openings 19082 , a spring 19102 , a gas cylinder 19112 , a piston 19152 , a piercer 19122 , and an O-ring 19192 .
  • the pins used as the triggering mechanism are not shown in FIG. 19 E but are similarly configured as pins 1914 and 1916 in FIG. 19 A .
  • the pins prevent the dispensable substance in fluid volume 19042 from being under pressure by holding the spring 19102 and the piercer 19122 in place.
  • the device 19002 reaches the appropriate location in the GI tract, one of the pins erodes, degrades and/or dissolves (e.g., due to pH, change in pH, presence of certain enzyme, and/or concentration of certain enzyme), and the other pin is no longer sufficient to hold back the pressure from the spring 19102 .
  • the spring forces the piercer 19122 into the gas cylinder 19112 , puncturing the gas cylinder 19112 and causing gas at elevated pressure to leave the cylinder 19112 .
  • the housing of the ingestible device 19002 has a diameter of about 9.9 mm, a length of about 26.1 mm, a wall thickness of about 0.7 mm, a fluid volume 19042 of about 445 ⁇ L, a gas volume in the gas cylinder 19112 of about 193 ⁇ L.
  • FIG. 19 F shows an ingestible device 19003 for trans-epithelial delivery, which contains a dispensable substance that is not under pressure when the subject swallows the ingestible device.
  • the ingestible device 19003 has housing parts 1902 A 3 and 1902 B 3 with a fluid volume 19043 containing a dispensable substance, nozzles 19063 , nozzle openings 19083 , coverings 19093 over openings 19083 , a spring 19103 , a gas cylinder 19113 , a pin 19143 , a pin 19163 , a piston 19153 , a piercer 19123 , and an O-ring 19193 .
  • the pins 19143 and 19163 prevent the dispensable substance in fluid volume 19043 from being under pressure by holding the spring 191033 and the piercer 19123 in place.
  • the pin 19143 erodes, degrades and/or dissolves (e.g., due to pH, change in pH, presence of certain enzyme, and/or concentration of certain enzyme), and the pin 19163 is no longer sufficient to hold back the pressure from the spring 19103 .
  • the spring forces the piercer 19123 into the gas cylinder 19113 , puncturing the gas cylinder 19113 and causing gas at elevated pressure to leave the cylinder 19113 .
  • the housing of the ingestible device 19003 has a diameter of about 8.5 mm, a length of about 23.3 mm, a wall thickness of about 0.7 mm, an end round of about 4.25 mm (spherical), and an internal volume of about 775 ⁇ L.
  • the fluid volume 19043 can be about 205 ⁇ L
  • a gas volume in the gas cylinder 19113 can be about 160 ⁇ L.
  • FIG. 19 G shows an ingestible device 19004 for trans-epithelial delivery, which contains a dispensable substance that is not under pressure when the subject swallows the ingestible device.
  • the ingestible device 19004 has housing parts 1902 A 4 and 1902 B 4 with a fluid volume 19044 containing a dispensable substance, nozzles 19064 , nozzle openings 19084 , coverings 19094 over openings 19084 , a spring 19104 , a gas cylinder 19114 , a pin 19144 , a pin 19164 , a gas cylinder 19114 , a seal 19134 , a membrane 19154 , a piercer 19124 , a pin 19144 , and a pin 19164 , and an O-ring 19194 .
  • the pins 19144 and 19164 prevent the dispensable substance in fluid volume 19044 from being under pressure by holding the spring 19104 and the piercer 19124 in place.
  • the pin 19144 erodes, degrades and/or dissolves (e.g., due to pH, change in pH, presence of certain enzyme, and/or concentration of certain enzyme), and the pin 19164 is no longer sufficient to hold back the pressure from the spring 19104 .
  • the spring forces the piercer 19124 into the gas cylinder 19114 , puncturing the gas cylinder 19114 and causing gas at elevated pressure to leave the cylinder 19114 .
  • the seal 19134 is made of a relatively low mechanical strength material (e.g., a foil or a film), which breaks when pressed against by the expanding membrane 19154 .
  • This causes the expanding membrane 19154 to apply pressure against the dispensable substance in the fluid volume 19044 .
  • This causes the coverings 19094 , which are made of a relatively low mechanical strength material (e.g., a foil or a film), to break so that the dispensable substance is delivered out of the nozzle openings 19084 in the form of a jet. This results in in trans-epithelial delivery of the therapeutic agent contained in the dispensable substance.
  • the housing of the ingestible device 19004 is about 26 millimeters long, has a diameter of about 11 mm, and a wall thickness of about 0.8 mm Newtons.
  • the fluid volume 19044 can be about 410 ⁇ L.
  • the gas volume of the gas cylinder 19114 can be about 216 ⁇ L, and the spring 19104 can provide a force of about 80 Newtons.
  • FIG. 19 H shows an ingestible device 19005 for trans-epithelial delivery, which contains a dispensable substance that is not under pressure when the subject swallows the ingestible device.
  • the ingestible device 19005 has housing parts 1902 A 5 and 1902 B 5 with a fluid volume 19045 containing a dispensable substance, nozzles 19065 , nozzle openings 19085 , coverings 19095 over openings 19085 , a spring 19105 , a gas cylinder 19115 , a pin 19145 , a pin 19165 , a gas cylinder 19115 , a membrane 19155 , a piercer 19125 , a pin 19145 , and a pin 19165 , and O-rings 19195 .
  • the pins 19145 and 19165 prevent the dispensable substance in fluid volume 19045 from being under pressure by holding the spring 19105 and the piercer 19125 in place.
  • the pin 19145 erodes, degrades and/or dissolves (e.g., due to pH, change in pH, presence of certain enzyme, and/or concentration of certain enzyme), and the pin 19165 is no longer sufficient to hold back the pressure from the spring 19105 .
  • the spring forces the piercer 19125 into the gas cylinder 19115 , puncturing the gas cylinder 19115 and causing gas at elevated pressure to leave the cylinder 19115 .
  • the housing of the ingestible device 19005 is about 23.3 millimeters long, has a diameter of about 8.5 mm, and a wall thickness of about 0.7 mm.
  • the fluid volume 19045 can be about 300 ⁇ L.
  • the gas volume of the gas cylinder 19115 can be about 247 ⁇ L.
  • FIG. 19 I shows a portion of an ingestible device including a housing part 19028 , a gas cylinder 19118 with a membrane 19018 , a piercer 19128 that is held in place via an enteric material 19148 , and a biased diaphragm 19039 .
  • FIG. 19 J shows corresponding portions of the ingestible device after the enteric material 19148 degrades/dissolves/erodes.
  • the diaphragm 19038 has moved so that the piercer 19126 has pierced the membrane 19016 , causing the gas in the gas cylinder 19116 to escape.
  • the gas pressure causes another housing part (e.g., the housing part of the drug module) to move, to expose nozzle openings so that the dispensable substance leaves the ingestible device in the form jets for trans-epithelial delivery.
  • another housing part e.g., the housing part of the drug module
  • FIG. 19 K shows a portion of an ingestible device including a housing part 19026 , a gas cylinder 19116 with a membrane 19016 , a piercer 19126 that is held in place via an enteric material 19146 , stabilizing elements 19036 A and 19036 B, and a biasing element 19038 (e.g., a disc spring).
  • FIG. 19 K shows corresponding portions of the ingestible device after the enteric material 19146 degrades/dissolves/erodes.
  • the spring biasing element 19038 has moved so that the piercer 19126 has pierced the membrane 19016 , causing the gas in the gas cylinder 19116 to escape.
  • the gas pressure causes another housing part (e.g., the housing part of the drug module) to move, to expose nozzle openings so that the dispensable substance leaves the ingestible device in the form jets for trans-epithelial delivery.
  • another housing part e.g., the housing part of the drug module
  • FIG. 20 A shows an embodiment of an ingestible device 2000 for trans-epithelial delivery, containing a dispensable substance that is not under pressure when the subject swallows the ingestible device.
  • the device 2000 has housing parts 2002 A and 2002 B with a fluid volume 2004 containing a dispensable substance, nozzles 2006 , nozzle openings 2008 , seals 2009 over openings 2008 , a seal 2013 , a gas cylinder 2011 , a membrane 2015 between the seal 2013 and the gas cylinder 2011 , a biased piercer 2012 , and a plug 2013 .
  • the plug 2013 keeps the piercer in its biased position as shown in FIG. 20 A .
  • the plug 2013 erodes, degrades and/or dissolves (e.g., due to pH, change in pH, presence of certain enzyme, and/or concentration of certain enzyme), and the piercer 2012 moves axially to pierce the gas cylinder 2011 and cause gas at elevated pressure to leave the cylinder 2011 .
  • This causes the coverings 2009 which are made of a relatively low mechanical strength material (e.g., a foil or a film), to break so that the dispensable substance is delivered out of the nozzle openings 2008 in the form of a jet. This results in trans-epithelial delivery of the therapeutic agent contained in the dispensable substance.
  • FIG. 20 B schematically shows certain aspects of the assembly of the ingestible device 2000 .
  • the housing parts 2002 A (including the seal 2013 ) and 2002 B (including the membrane 2015 , the gas cylinder 2011 and the piercer 2012 ) are initially separate from each other.
  • the dispensable substance (including the therapeutic agent) is first sterilized, and then disposed in the fluid volume 2004 under aseptic conditions.
  • the components in housing part 2002 B are assembled in a clean environment. Subsequently, the housing parts 2002 A and 2002 B are joined in a clean environment to produce the ingestible device 2000 .
  • FIG. 21 A shows an embodiment of an ingestible device 2100 for trans-epithelial delivery, containing a dispensable substance that is not under pressure when the subject swallows the ingestible device.
  • the device 2100 has housing parts 2102 A and 2102 B with a fluid volume 2104 containing a dispensable substance, nozzles 2106 , nozzle openings 2108 , a bellows 2110 , a gas cylinder 2111 , a biased piercer 2112 , and a plug 2113 .
  • the plug 2113 keeps the piercer in its biased position as shown in FIG. 20 A .
  • the plug 2113 erodes, degrades and/or dissolves (e.g., due to pH, change in pH, presence of certain enzyme, and/or concentration of certain enzyme), and the piercer 2112 moves axially to pierce the gas cylinder 2111 and cause gas at elevated pressure to leave the cylinder 2111 .
  • This gas pressure is applied against press against the bellows 2110 , causing the bellows 2110 such that holes in the bellows 21120 (not shown) align with the nozzles 2106 so that the dispensable substance is delivered out of the nozzle openings 2008 in the form of a jet. This results in trans-epithelial delivery of the therapeutic agent contained in the dispensable substance.
  • FIG. 21 B schematically shows certain aspects of the assembly of the ingestible device 2100 .
  • the housing parts 2102 A including the bellows 2110 ) and 2102 B (including the gas cylinder 2111 and the piercer 2112 ) are initially separate from each other.
  • the dispensable substance including the therapeutic agent
  • the components in housing part 2102 B are assembled in a clean environment. Subsequently, the housing parts 2102 A and 2102 B are joined in a clean environment to produce the ingestible device 2100 .
  • epithelial delivery can be achieved at any desired location within the GI tract of a subject.
  • epithelial delivery is achieved in the small intestine of the subject, such as, for example, in the duodenum, the jejunum and/or the ileum.
  • epithelial delivery is achieved in the large intestine of the subject, such as, for example, the cecum or the colon.
  • epithelial delivery can be achieved using any one of the ingestible devices described above with respect to epithelial delivery.
  • the relevant parameters are usually modified accordingly.
  • this modification involves modifying the values for the relevant parameters. Examples are provided in the following paragraphs.
  • an ingestible device for epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet power of at least about 1 mW (e.g., at least about 1.5 mW, at least about 2 mW, at least about 2.5 mW) and/or at most about 4 mW (e.g., at most about 3.5 mW, at most about 3 mW).
  • an ingestible device for epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet power of from about 1 mW to about 4 mW (e.g., from about 1 mW to about 3.5 mW, from about 2 mW to about 3 mW).
  • an ingestible device for epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet pressure of about 2 psig (e.g., about 2.5 psig, about 3 psig, about 3.5 psig, about 4 psig) and/or at most about 10 psig (e.g., at most about 8 psig, at most about 6 psig, at most about 5 psig).
  • an ingestible device for epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet pressure of from about 2 psig to about 10 psig (e.g., from about 2.5 psig to about 8 psig, from about 3 psig to about 6 psig, from about 3.5 psig to about 5 psig, from about 4 psig to about 5 psig).
  • an ingestible device for epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet force of at least about 0.5 mN (e.g., at least about 0.6 mN, at least about 0.7 mN, at least about 0.8 mN, at least about 0.9 mN) and/or at most about 2 mN (e.g., at most about 1.8 mN, at most about 1.6 mN, at most about 1.4 mN, at most about 1.2 mN).
  • 0.5 mN e.g., at least about 0.6 mN, at least about 0.7 mN, at least about 0.8 mN, at least about 0.9 mN
  • 2 mN e.g., at most about 1.8 mN, at most about 1.6 mN, at most about 1.4 mN, at most about 1.2 mN.
  • an ingestible device for epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet force of from about 0.5 mN to about 2 mN (e.g., from about 0.6 mN to about 1.8 mN, from about 0.7 mN to about 1.6 mN, from about 0.8 mN to about 1.4 mN, from about 0.9 mN to about 1.2 mN).
  • an ingestible device for epithelial delivery is configured to deliver a jet of the dispensable substance having a minimum jet velocity of from at least about 2 m/s (e.g., at least about 3 m/s, at least about 4 m/s, at least about 5 m/s) and/or at most about 20 m/s (e.g., at most about 15 m/s, at most about 10 m/s, at most about 8 m/s).
  • an ingestible device for epithelial delivery is configured to deliver a jet of the dispensable substance having a peak jet velocity of from about 2 m/s to about 20 m/s (e.g., from about 3 m/s to about 15 m/s, from about 4 m/s to about 10 m/s, from about 5 m/s to about 8 m/s).
  • an ingestible device for epithelial delivery is configured to provide an internal pressure of from about 3.62 psig to about 21.76 psig (e.g., from about 3.62 psig to about 18.13 psig, from about 3.62 psig to about 14.50 psig, from about 3.62 psig to about 10.88 psig, from about 3.62 psig to about 7.25 psig, from about 4.35 psig to about 7.25 psig, about 4.35 psig).
  • an ingestible device for epithelial delivery is configured to provide a nozzle pressure of from about 3.62 psig to about 21.76 psig (e.g., from about 3.62 psig to about 18.13 psig, from about 3.62 psig to about 14.50 psig, from about 3.62 psig to about 10.88 psig, from about 3.62 psig to about 7.25 psig, from about 4.35 psig to about 7.25 psig, about 4.35 psig).
  • an ingestible device for epithelial delivery is configured to contain a dispensable substance at a peak fluid pressure from 3.62 psig to about 21.76 psig (e.g., from about 3.62 psig to about 18.13 psig, from about 3.62 psig to about 14.50 psig, from about 3.62 psig to about 10.88 psig, from about 3.62 psig to about 7.25 psig, from about 4.35 psig to about 7.25 psig, about 4.35 psig).
  • a peak fluid pressure from 3.62 psig to about 21.76 psig (e.g., from about 3.62 psig to about 18.13 psig, from about 3.62 psig to about 14.50 psig, from about 3.62 psig to about 10.88 psig, from about 3.62 psig to about 7.25 psig, from about 4.35 psig to about 7.25 psig, about 4.35 psig).
  • an ingestible device for epithelial delivery contains the dispensable substance at an initial fluid volume of at least about 50 microliters ( ⁇ L) (e.g., at least about 100 ⁇ L, at least about 150 ⁇ L, at least about 200 ⁇ L, at least about 250 ⁇ L) and/or at most about 800 ⁇ L (e.g., at most about 700 ⁇ L, at most about 600 ⁇ L, at most about 500 ⁇ L, at most about 400 ⁇ L).
  • ⁇ L microliters
  • an ingestible device for epithelial delivery contains the dispensable substance at an initial fluid volume of from about 50 ⁇ L to about 800 ⁇ L (e.g., from about 100 ⁇ L to about 600 ⁇ L, from about 200 ⁇ L to about 400 ⁇ L).
  • an ingestible device for epithelial delivery is configured to provide a delivered fluid volume of dispensable substance of at least about 50 microliters ( ⁇ L) (e.g., at least about 100 ⁇ L, at least about 150 ⁇ L, at least about 200 ⁇ L, at least about 250 ⁇ L) and/or at most about 800 ⁇ L (e.g., at most about 700 ⁇ L, at most about 600 ⁇ L, at most about 500 ⁇ L, at most about 400 ⁇ L).
  • ⁇ L microliters
  • an ingestible device for epithelial delivery has a fluid volume of dispensable substance of from about 50 ⁇ L to about 800 ⁇ L (e.g., from about 100 ⁇ L to about 600 ⁇ L, from about 200 ⁇ L to about 400 ⁇ L).
  • an ingestible device for epithelial delivery contains the dispensable substance at a final fluid volume of at most about 100 microliters ( ⁇ L) (e.g., at least about 90 ⁇ L, at least about 80 ⁇ L, at least about 70 ⁇ L, at least about 60 ⁇ L) and/or at most least 5 ⁇ L (e.g., at most about 10 ⁇ L, at most about 20 ⁇ L, at most about 30 ⁇ L, at most about 40 ⁇ L).
  • ⁇ L microliters
  • an ingestible device for epithelial delivery contains the dispensable substance at a fluid volume of from about 30 ⁇ L to about 70 ⁇ L (e.g., from about 40 ⁇ L to about 60 ⁇ L, from about 45 ⁇ L to about 55 ⁇ L).
  • an ingestible device for epithelial delivery is configured to directly deliver at least about 50% (e.g., at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%) of the dispensable substance from the ingestible device to the mucus.
  • an ingestible device for epithelial delivery is configured to provide a delivered fluid volume per opening for delivery of dispensable substance (e.g., per nozzle) of at least about 20 microliters ( ⁇ L) (e.g., at least about 25 ⁇ L, at least about ⁇ L, at least about 50 ⁇ L, at least about 75 ⁇ L, at least about 100 ⁇ L) and/or at most about 800 ⁇ L (e.g., at most about 700 ⁇ L, at most about 600 ⁇ L, at most about 500 ⁇ L, at most about 400 ⁇ L, at most about 300 ⁇ L).
  • ⁇ L microliters
  • 800 ⁇ L e.g., at most about 700 ⁇ L, at most about 600 ⁇ L, at most about 500 ⁇ L, at most about 400 ⁇ L, at most about 300 ⁇ L.
  • an ingestible device for epithelial delivery is configured to provide a delivered fluid volume per opening for delivery of dispensable substance (e.g., per nozzle) of from about 25 ⁇ L to about 400 ⁇ L (e.g., from about 25 ⁇ L to about 300 ⁇ L, from about 100 ⁇ L to about 300 ⁇ L).
  • an ingestible device for epithelial delivery is configured as disclosed in the above-discussion regarding trans-epithelial delivery, but with a relatively large number of nozzles and a relatively large nozzle diameter such that performance properties for epithelial delivery (discussed above) can be achieved.
  • an ingestible device for epithelial delivery has at least 25 nozzles (e.g., at least 30 nozzles, at least 40 nozzles, 50 nozzles).
  • such an ingestible device for epithelial delivery has 30 nozzles, 31 nozzles, 32 nozzles, 33 nozzles, 34 nozzles, 35 nozzles, 36 nozzles, 37 nozzles, 38 nozzles or 40 nozzles.
  • Each nozzle can have a diameter, for example, of at least about 1 mm (e.g., at least about 1.5 mm, at least about 2 mm) and/or at most about 3 mm (e.g., at most about 2.5 mm).
  • each nozzle can have a diameter of from about 1 mm to about 3 mm (e.g., from about 1 mm to about 2.5 mm, from about 2 to 2.5 mm).
  • topical delivery can be achieved at any desired location within the GI tract of a subject.
  • topical delivery is achieved in the small intestine of the subject, such as, for example, in the duodenum, the jejunum and/or the ileum.
  • topical delivery is achieved in the large intestine of the subject, such as, for example, the cecum or the colon.
  • an ingestible device for topical delivery is configured to provide an internal pressure of at least about 5 psig (e.g., at least about 8 psig, at least about 10 psig) and/or at most about 50 psig (e.g., at most about 40 psig, at most about 30 psig, at most about 20 psig, at most about 15 psig).
  • an ingestible device for topical delivery is configured to provide an internal pressure of from about 5 psig to about 50 psig (e.g., from about 5 psig to about 30 psig, from about 5 psig to about 20 psig, from about 8 psig to about 20 psig, from about 10 psig to about 15 psig).
  • an ingestible device for topical delivery is configured to contain a dispensable substance at a peak fluid pressure of at least about 5 psig (e.g., at least about 8 psig, at least about 10 psig) and/or at most about 50 psig (e.g., at most about 40 psig, at most about 30 psig, at most about 20 psig, at most about 15 psig).
  • a peak fluid pressure of at least about 5 psig (e.g., at least about 8 psig, at least about 10 psig) and/or at most about 50 psig (e.g., at most about 40 psig, at most about 30 psig, at most about 20 psig, at most about 15 psig).
  • an ingestible device for topical delivery is configured to deliver a jet of the dispensable substance having a peak fluid pressure of from about 5 psig to about 50 psig (e.g., from about 5 psig to about 30 psig, from about 5 psig to about 20 psig, from about 8 psig to about 20 psig, from about 10 psig to about 15 psig).
  • an ingestible device for topical delivery is configured to deliver at least about 50% (e.g., at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%) of the dispensable substance from the ingestible device into the lumen of the GI tract.
  • an ingestible device for topical delivery contains the dispensable substance at an initial fluid volume of at least about 50 microliters ( ⁇ L) (e.g., at least about 100 ⁇ L, at least about 150 ⁇ L, at least about 200 ⁇ L, at least about 250 ⁇ L) and/or at most about 800 ⁇ L (e.g., at most about 700 ⁇ L, at most about 600 ⁇ L, at most about 500 ⁇ L, at most about 400 ⁇ L).
  • ⁇ L microliters
  • an ingestible device for topical delivery contains the dispensable substance at an initial fluid volume of from about 50 ⁇ L to about 800 ⁇ L (e.g., from about 100 ⁇ L to about 600 ⁇ L, from about 200 ⁇ L to about 400 ⁇ L).
  • an ingestible device for topical delivery contains the dispensable substance at a final fluid volume of at most about 100 microliters ( ⁇ L) (e.g., at least about 90 ⁇ L, at least about 80 ⁇ L, at least about 70 ⁇ L, at least about 60 ⁇ L) and/or at most least 5 ⁇ L (e.g., at most about 10 ⁇ L, at most about 20 ⁇ L, at most about 30 ⁇ L, at most about 40 ⁇ L).
  • ⁇ L microliters
  • an ingestible device for topical delivery contains the dispensable substance at a fluid volume of from about 30 ⁇ L to about 70 ⁇ L (e.g., from about 40 ⁇ L to about 60 ⁇ L, from about 45 ⁇ L to about 55 ⁇ L).
  • FIG. 23 A shows an embodiment of an ingestible device 2300 for topical delivery.
  • FIG. 23 B is an exploded view of the ingestible device 2300 .
  • the ingestible device 2300 has housing parts 2302 A and 2302 B, a fluid volume 2304 containing a dispensable substance, an O-ring 2305 , and a band 2306 .
  • the device 2300 has a head space pressure in the housing part 2302 B, but the band 2306 holds the components of device 2300 in place when the device 2300 is swallowed by the subject.
  • the band 2306 erodes, degrades and/or dissolves, and the head space pressure causes the housing part 2302 B to leave device 2300 , resulting in the therapeutic agent in the dispensable substance being topically delivered to the GI tract of the subject.
  • the head space pressure is provided by a gas, such as, for example, air nitrogen (N 2 ), oxygen (O 2 ), an inert gas (e.g., argon (Ar), krypton (Kr), helium (He)), and/or carbon dioxide (CO 2 ).
  • the head space pressure can correspond to the internal pressure of the ingestible device. In embodiments having a design substantially similar to the ingestible device 2300 , the head space pressure can correspond to the fluid pressure of the ingestible device.
  • FIG. 24 shows an embodiment of an ingestible device 2400 for topical delivery.
  • the ingestible device 2400 has housing parts 2402 A and 2402 B, a fluid volume 2404 containing a dispensable substance, an O-ring 2405 , and pins 2406 and 2408 .
  • the device 2400 has a head space pressure in the housing part 2402 B, but the pins 2406 and 2408 hold the components of device 2400 in place when the device 2400 is swallowed by the subject.
  • the head space pressure is provided by a gas, such as, for example, air nitrogen (N 2 ), oxygen (O 2 ), an inert gas (e.g., argon (Ar), krypton (Kr), helium (He)), and/or carbon dioxide (CO 2 ).
  • a gas such as, for example, air nitrogen (N 2 ), oxygen (O 2 ), an inert gas (e.g., argon (Ar), krypton (Kr), helium (He)), and/or carbon dioxide (CO 2 ).
  • the head space pressure can correspond to the internal pressure of the ingestible device. In embodiments having a design substantially similar to the ingestible device 2400 , the head space pressure can correspond to the fluid pressure of the ingestible device.
  • FIG. 25 shows an embodiment of an ingestible device 2500 for topical delivery.
  • the ingestible device 2500 has housing parts 2502 A and 2502 B, a fluid volume 2504 containing a dispensable substance, and a partial coating 2506 .
  • the device 2500 has a head space pressure within the housing part 2502 A, but the partial coating 2506 holds the components of device 2500 in place when the device 2500 is swallowed by the subject.
  • the partial coating 2506 erodes, degrades and/or dissolves, and the head space pressure causes the housing parts 2502 A and 2502 B to separate from each other, resulting in the therapeutic agent in the dispensable substance being topically delivered to the GI tract of the subject.
  • the head space pressure is provided by a gas, such as, for example, air nitrogen (N 2 ), oxygen (O 2 ), an inert gas (e.g., argon (Ar), krypton (Kr), helium (He)), and/or carbon dioxide (CO 2 ).
  • a gas such as, for example, air nitrogen (N 2 ), oxygen (O 2 ), an inert gas (e.g., argon (Ar), krypton (Kr), helium (He)), and/or carbon dioxide (CO 2 ).
  • the head space pressure can correspond to the internal pressure of the ingestible device.
  • the head space pressure can correspond to the fluid pressure of the ingestible device.
  • FIG. 26 A shows an ingestible device 2600 that can be used for topical delivery.
  • FIG. 26 B is an exploded view of the device 2600 .
  • the device 2600 includes a first housing part 2602 A, a second housing part 2602 B and a third housing part 2602 C.
  • the device 2600 further includes a fluid volume 2604 containing a dispensable substance, a spring 2606 , a plunger 2608 , a piston 2610 , an O-ring 2609 , and a stopper pin 2612 which holds the components of the device 2600 when the subject swallows the device 2600 .
  • the pin 2612 erodes, degrades and/or dissolves.
  • the pressure of the spring 2606 is applied to the plunger 2608 , which moves the piston 2610 axially.
  • This pressure is transferred to the dispensable substance in the fluid volume 2604 , which forces the housing part 2602 C to be removed from the device 2600 , and the therapeutic agent in the dispensable substance is topically delivered.
  • FIG. 26 C shows aspects of steps in assembling the ingestible device 2600 .
  • step 2620 the housing parts 2602 B and 2602 C are combined and then sterilized.
  • step 2622 the dispensable substance 2604 is disposed in the housing parts 2602 B and 2602 C in an aseptic environment and then sealed within the piston 2610 .
  • step 2624 the housing part 2602 A and its components are assembled in a clean environment.
  • step 2626 the resulting modules are joined together in a clean environment to provide the ingestible device 2600 .
  • FIG. 27 shows an ingestible device 2700 that can be used for topical delivery.
  • the device 2700 includes a first housing part 2702 A and a second housing part 2702 B.
  • the device 2700 further includes a fluid volume 2704 containing a dispensable substance, a spring 2706 , a seal 2708 (e.g., a foil or a film) and a partial coating 2710 which holds the components of the device 2700 when the subject swallows the device 2700 .
  • the partial coating 2710 erodes, degrades and/or dissolves.
  • the spring 2706 then exerts a pressure axially against the dispensable substance 2704 , breaking the seal 2708 and also causing the housing parts 2702 A and 2702 B to separate, which results in topical delivery of the therapeutic agent in the dispensable substance.
  • FIG. 28 A shows an ingestible device 2800 that can be used for topical delivery.
  • the device 2800 includes a first housing part 2802 A and a second housing part 2802 B.
  • the device 2800 further includes a fluid volume 2804 containing a dispensable substance, a spring 2806 , a seal 2808 , an O-ring 2809 , and a partial coating 2810 which holds the components of the device 2800 when the subject swallows the device 2800 .
  • the partial coating 2810 erodes, degrades and/or dissolves.
  • this causes the spring 2806 to expand so that housing parts 2802 A and 2802 B separate, resulting in topical delivery of the therapeutic agent in the dispensable substance.
  • FIG. 29 A shows an ingestible device 2900 for topical delivery.
  • FIG. 29 B is an exploded view of the device 2900 .
  • the device 2900 includes housing parts 2902 A, 2902 B and 2902 C.
  • the device also includes a fluid volume 2904 containing a dispensable substance, an O-ring 2906 , a piston 2908 a gas cell 2910 (e.g., a hydrogen cell), a potting material 2911 , an electrical contact 2912 , and a plug 2914 .
  • the subject swallows the device 2900 , and, when the device 2900 reaches an appropriate location in the GI tract of the subject, the plug 2914 erodes, degrades and/or dissolves.
  • FIG. 29 C shows aspects of steps in assembling the ingestible device 2900 .
  • step 2920 the housing parts 2902 B and 2902 C are combined and then sterilized.
  • step 2922 the dispensable substance 2904 is disposed in the housing parts 2902 B and 2902 C in an aseptic environment and then sealed within the piston 2908 .
  • step 2924 the housing part 2902 A and its components are assembled in a clean environment.
  • step 2926 the resulting modules are joined together in a clean environment to provide the ingestible device 2900 .
  • FIG. 30 shows an ingestible device 3000 that can be used for topical delivery.
  • the device 3000 includes housing parts 3002 A, 3002 B and 3002 C.
  • the device 2800 further includes a fluid volume 3004 containing a dispensable substance, a spring 3006 , a plunger 3008 with piercing elements 3009 , an O-Ring 3011 , a sealed compartment 3010 containing separated reactants A and B, a piston 3010 , and O-ring 3013 , and a stopper pin 3012 which holds the components of the device 3000 when the subject swallows the device 3000 .
  • the pin 3012 erodes, degrades and/or dissolves.
  • FIG. 31 A shows an ingestible device 3100 for topical delivery.
  • the device 3100 includes housing parts 3102 A and 3102 B, a joint 3103 , a pressurized fluid volume 3104 containing a dispensable substance, a membrane 3106 (e.g., balloon) containing the dispensable substance, a seal 3108 located in an opening 3103 of the housing part 3102 B, and a plug 3110 in an opening 3112 of the housing part 3102 A.
  • the subject swallows the ingestible device 3100 .
  • the plug 3110 erodes, degrades and/or dissolves. This causes the pressurized fluid 3104 in the membrane 3104 to leave the device 3100 via the opening 3112 so that the therapeutic agent in the dispensable substance is topically delivered.
  • FIG. 31 B shows aspects of steps in assembling the ingestible device 3100 .
  • the plug 3112 is formed in the opening 3112 of the housing part 3102 A
  • the membrane 3104 is put inside the housing part 3102 A
  • the dispensable substance is disposed in the membrane 3104 under aseptic conditions.
  • the housing part 3102 B is combined with the housing part 3102 A, and the open portion of the membrane 3104 is sealed (e.g., hot sealed) within the opening 3103 , thereby forming the ingestible device 3100 .
  • FIG. 32 shows an ingestible device 3200 for topical delivery.
  • the device 3200 includes housing parts 3202 A and 3202 B.
  • the housing part 3202 B includes a seal 3203 .
  • the housing part 3202 A is made from a flexible material that is biased against the housing part 3202 B and joined to the housing part 3202 B by a partial coating 3206 such that housing.
  • the device 3200 also includes a fluid volume 3204 containing a dispensable substance.
  • the subject swallows the ingestible device 3200 .
  • the partial coating 3206 erodes, degrades and/or dissolves. This causes the flexible housing part 3202 A to expand radially so that the housing parts 3202 A and 3202 B are separated, resulting in topical delivery of the therapeutic agent in the dispensable substance.
  • FIG. 32 B shows aspects of steps in assembling the ingestible device 3200 .
  • the housing plug 3212 is formed in the opening 3212 of the housing part 3202 A
  • the membrane 3204 is put inside the housing part 3202 A
  • the dispensable substance is disposed in the membrane 3204 under aseptic conditions.
  • the housing part 3202 B is combined with the housing part 3202 A, and the open portion of the membrane 3204 is sealed (e.g., hot sealed) within an opening 3203 in the housing part 3202 B, thereby forming the ingestible device 3200 .
  • an ingestible device for topical delivery is configured as disclosed in the above-discussion regarding trans-epithelial delivery, but with a relatively large number of nozzles and a relatively large nozzle diameter such that performance properties for topical delivery (discussed above) can be achieved.
  • an ingestible device for topical delivery has at least 25 nozzles (e.g., at least 30 nozzles, at least 40 nozzles, 50 nozzles).
  • such an ingestible device for topical delivery has 30 nozzles, 31 nozzles, 32 nozzles, 33 nozzles, 34 nozzles, 35 nozzles, 36 nozzles, 37 nozzles, 38 nozzles or 40 nozzles.
  • Each nozzle can have a diameter, for example, of at least about 1 mm (e.g., at least about 1.5 mm, at least about 2 mm) and/or at most about 3 mm (e.g., at most about 2.5 mm).
  • each nozzle can have a diameter of from about 1 mm to about 3 mm (e.g., from about 1 mm to about 2.5 mm, from about 2 to 2.5 mm).
  • ingestible devices and methods that deliver therapeutic agents into the intestinal lumen, mucus, mucosa and/or submucosa by topical, epithelial or trans-epithelial administration to the GI tract of a subject.
  • Current methods of administration for most large molecule therapeutic agents or small molecule therapeutic agents with poor oral bioavailability are subcutaneous (SC), intramuscular (IM), or bolus intravenous (IV) injection targeting the systemic circulation.
  • SC subcutaneous
  • IM intramuscular
  • IV bolus intravenous
  • the devices and methods described herein provide an alternative route of administration to current injectable medications, which can lead to greater convenience and compliance since they minimize or avoid the logistical challenges, patient compliance and adherence challenges, pain, and discomfort associated with traditional routes of administration.
  • the therapeutic is released at a location in the small intestine of the subject. In some embodiments of any of the devices or methods described herein, the location is in the proximal portion of the small intestine (e.g., duodenum or jejunum). In some embodiments of any of the devices or methods described herein, the location is in the distal portion of the small intestine (e.g., jejunum or ileum). In some embodiments of the devices or methods described herein, the therapeutic is released at a location in the large intestine of the subject.
  • the location is in the proximal portion of the large intestine (e.g., cecum, ascending colon, or transverse colon). In some embodiments of any of the devices or methods described herein, the location is in the distal portion of the large intestine (e.g., transverse colon or descending colon).
  • the devices and methods described herein are particularly well-suited for treatment of diseases and conditions of the endoderm, including the liver.
  • the releasing of the therapeutic is triggered by one or more of: a pH in the jejunum of about 6.1 to about 7.2, a pH in the mid small bowel of about 7.0 to about 7.8, a pH in the ileum of about 7.0 to about 8.0, a pH in the right colon of about 5.7 to about 7.0, a pH in the mid colon of about 5.7 to about 7.4, or a pH in the left colon of about 6.3 to about 7.7, such as about 7.0.
  • the releasing of the therapeutic is triggered by degradation of a release component located in the device. In some embodiments of any of the devices or methods described herein, the releasing of the therapeutic is dependent on enzymatic activity at or in the vicinity of the location. In some embodiments of any of the devices or methods described herein, the composition includes a plurality of electrodes including a coating, and releasing the therapeutic is triggered by an electric signal by the electrodes resulting from the interaction of the coating with an intended site of release of the therapeutic. In some embodiments of any of the devices or methods described herein, the release of the therapeutic is triggered by a remote electromagnetic signal.
  • the release of the therapeutic is triggered by generation in the composition of a gas in an amount sufficient to expel the therapeutic. In some embodiments of any of the devices or methods described herein, the release of the therapeutic is triggered by an electromagnetic signal generated within the device according to a pre-determined drug release profile.
  • Therapeutics suitable for use with the devices and methods described herein include both small molecules and large molecules.
  • the therapeutic agent is a large molecule.
  • large molecules include, but are not limited to, biologic drugs, proteins including fusion proteins, peptides including cyclic peptides, cells including stem cells, and nucleic acids such as inhibitory nucleic acids, antisense nucleic acids, siRNA, ribozymes, and the like.
  • the therapeutic agent is a large molecule with a molecular weight of at least about 60 kilodaltons (kDa), or about 60 kDa to about 200 kDa, about 60 kDa to about 175 kDa, or about 60 kDa to about 150 kDa. In some other embodiments, the therapeutic agent has a molecular weight of at least about 20 kDa, at least about 30 kDa, at least about 40 kDa, or at least about 50 kDa, or from about 20 kDa to about 200 kDa, about 20 kDa to about 175 kDa or about 20 kDa to about 150 kDa.
  • kDa kilodaltons
  • the therapeutic agent is a molecule with a molecular weight of greater than about 1.5 kDa and less than about 20 kDa, less than about 30 kDa, less than about 40 kDa, less than about 50 kDa or less than about 60 kDa. In some other embodiments, the therapeutic agent has a molecular weight of from about 5 kDa to about 10 kDa, 20 kDa, 30 kDa, 40 kDa or 50 kDa. In some embodiments, the therapeutic agent is a molecule with a molecular weight of about 5 kDa to about 10 kDa, such as about 6 kDa. In some embodiments, the therapeutic agent is a protein or peptide. In some embodiments, the therapeutic agent is insulin.
  • the therapeutic agent is a small molecule.
  • a “small molecule,” as used herein, is a compound, typically an organic compound, having a molecular weight of about 50 Da to about 1500 Da, about 60 Da to about 1500 Da, about 500 Da to about 1000 Da, or no more than about 1500 Da, about 1000 Da, about 750 Da, or about 500 Da.
  • the therapeutic agent is a small molecule with a molecular weight of about 50 Da to about 1500 Da.
  • the therapeutic agent is a small molecule with a molecular weight of about 150 Da to about 1500 Da.
  • Exemplary therapeutic agents for use in the devices and methods provided herein include, but are not limited to abatacept, teriparatide, emicizumab, pegfilgrastim, semaglutide, dulaglutide, sargramostim, ustekinumab, secukinumab, tocilizumab, vedolizumab, natalizumab, interferon beta-1a, denosumab, alirocumab, evolocumab, adalimumab, etanercept, golimumab, and certolizumab pegol; and biosimilars thereof; and glycosylation variants thereof.
  • Additional exemplary drugs for delivery using any of the devices or methods described herein include those listed in Table 2.
  • Avastin ® (bevacizumab) 5 mg IFU: Do not administer NA 2-8° C. as bolus, IV Entyvio ® (Vedolizumab) 300 mg IFU: Do not administer NA as bolus, IV Fragmin ® (Dalteparin) 2500-18000 IU 5000 IU 0.6 mL Room Temp 1.5 Capsules Rocephin ® (Ceftriaxone)(or 1 g ⁇ 350 mg/mL other antimicrobials) Interferon alfa-2b 3-30 million IU ⁇ 50 million IU/mL 0.12-1.2 mL 2-8° C., up to seven days at room temp ⁇ 1-3 Capsules Natpara ® (Parathyroid 50-100 mcg ⁇ 1 mg/mL ⁇ 1 Capsules 2-8° C.
  • Hormone (PTH) Genotropin ® Human Growth 0.2-2 mg ⁇ 5.3 mg/mL ⁇ 1 Capsule 2-8° C. 4 weeks Hormone (HGH) after reconstitution a Number of capsules assumes a drug reservoir of about 400 microliters sq: subcutaneous IFU: Instructions for use IU: International Unit
  • the therapeutic suitable for use with the devices and methods described herein is a therapeutic for treating a growth disorder.
  • the growth disorder is a growth hormone deficiency or disorder (GHD).
  • the GHD is acquired, congenital or idiopathic; or a combination thereof.
  • the GHD is a result of trauma, infection, radiation therapy or tumor growth.
  • the GHD is adult-onset GHD.
  • Exemplary therapeutics for treating growth disorders include, but are not limited to, growth hormones, including, but not limited to, somatropin, lonapegsomatropin, YPEG-somatropin, efpegsomatropin, a human growth hormone (HGH), a recombinant HGH (rHGH), a PEGylated rHGH, somapacitan, somatrogon, genotropin, humatrope, norditropin, nutropin, omnitrope, serostim, TJ-101, ALT-P1, and JR-142; and biosimilars and follow-on biologics thereof.
  • the growth hormone is an rHGH.
  • rHGHs include, but are not limited to, recombinant somatropin, e.g., genotropin, humatrope, norditropin, nutropin, omnitrope, serostim, Zomacton®, and Saizen®.
  • somatropin e.g., genotropin, humatrope, norditropin, nutropin, omnitrope, serostim, Zomacton®, and Saizen®.
  • the therapeutic suitable use with the devices and methods described herein for treating a growth disorder is somatropin or biosimilar or follow-on biologic thereof.
  • the therapeutic suitable use with the devices and methods described herein for treating a growth disorder is somapacitan or biosimilar or follow-on biologic thereof.
  • the therapeutic suitable for use with the devices and methods described herein is a therapeutic for treating fibrosis.
  • the therapeutic is a biological therapeutic.
  • the therapeutic is a small molecule.
  • the therapeutic is a non-oral therapeutic.
  • the fibrosis is idiopathic pulmonary fibrosis. In some embodiments, the fibrosis is cystic fibrosis.
  • Exemplary therapeutics for treating fibrosis for delivery using any of the devices or methods described herein include those listed in Table 3.
  • the therapeutic suitable for use with the devices and methods described herein is a therapeutic for treating a metabolic or endocrine disease or condition.
  • metabolic or endocrine diseases or conditions include, but are not limited to, diabetes, insulin resistance, hyperglycemia, hyperlipidemia, obesity, hepatic steatosis, hyperinsulinemia, obstructive sleep apnea, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), liver fibrosis, liver cirrhosis, hypertension, pulmonary artery hypertension, primary sclerosing cholangitis, hyperlipoproteinemia type I, familial hypercholesterolemia, hypercholesterolemia, lipodystrophy, acromegaly, myocardial infarction, and thromboembolism; and combinations thereof.
  • the metabolic or endocrine disease or condition is obesity.
  • Therapeutics suitable for treating a metabolic or endocrine disease or condition include, but are not limited to, abatacept, aldesleukin, allogeneic human islets of langerhans, alogliptin, alpha-1 antitrypsin, anagliptin, benaglutide, berberine, bermekimab, bimagrumab, cibinetide, cotadutide, diabecell, diamyd, dutogliptin ebenatide, efpeglenatide, evogliptin, FSI-965, gemigliptin, glutazumab, gosogliptin, hinsbet, LAI-287, linagliptin, mecasermin, omarigliptin, otelixizumab, pegapamodutide, peg-loxenatide, pramlintide acetate, prolastin, protrans, rexmyelocel-t,
  • therapeutic suitable for treating a metabolic or endocrine disease or condition is selected from bortezomib, fulvestrant, bendamustine, itolizumab, golimumab, canakinumab, Trichuris suis ova, NNC-0385-0434, NGM-282, BMS-986036, and remestemcel-L; and biosimilars thereof.
  • the therapeutic suitable for treating a metabolic or endocrine disease or condition is a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor.
  • the PCSK9 inhibitor is alirocumab or evolocumab.
  • Other exemplary PCSK9 inhibitors for treating a metabolic or endocrine disease or disorder include those listed in Table 10.
  • the metabolic or endocrine disease or condition is diabetes.
  • the diabetes is type I or type II diabetes.
  • the diabetes is an insulin dependent diabetes.
  • the diabetes is a non-insulin dependent diabetes.
  • the diabetes is gestational diabetes.
  • the metabolic or endocrine disease or condition is diabetes in combination with another disease or condition, including, but not limited to, diabetes with Alzheimer's disease, diabetes with dementia, diabetes with Alzheimer's disease and dementia, diabetes with obesity, diabetes with NAFLD, diabetes with NASH, diabetes with NAFLD and NASH, and diabetes with a cardiovascular disease.
  • the diabetes is diabetes with obesity.
  • Therapeutics suitable for treating a metabolic or endocrine disease or condition include, but are not limited to, an insulin, a glucagon receptor agonist or a glucagon-like peptide-1 (GLP-1) receptor agonist, peptide YY ligand, and an amylin analong.
  • GLP-1 glucagon-like peptide-1
  • the therapeutic suitable for use with the devices and methods described herein is a peptide YY ligand.
  • the gut hormone peptide YY also known as peptide tyrosine tyrosine, is a 36-amino acid peptide that is synthesized and released from specialized enteroendocrine cells called L-cells found predominantly within the distal GI tract (see, e.g., Karra et al., J. Physiol. 587 (Pt 1):19-25 (2009)).
  • the peptide YY ligand is NN-9747, NN-9748, NN-9775 or any peptide YY ligand disclosed in WO 2016/198682, which is incorporated by reference herein in its entirety.
  • the peptide YY ligand is NN-9747 (PYY 1562, NNC0165-1562, NN-9748), analogue of the appetite-regulating hormone, PYY, which can be used for mono- or combination treatment with the GLP-1 analogue semaglutide.
  • NN-9747 or NN-9748 is administered subcutaneously qd.
  • NN-9747 is indicated for obesity.
  • NN-9748 is indicated for diabetes.
  • the peptide YY ligand is NN-9775 (NNC0165-1875), a peptide tyrosine 1875 analog (PYY 1875 analog), for the potential sc treatment of obesity and overweight.
  • NN-9748 is an analogue of the appetite-regulating hormone, PYY, intended for mono- or combination treatment with the GLP-1 analogue semaglutide.
  • NN-9747 is the same drug substance as NN-9748.
  • the therapeutic suitable for use with the devices and methods described herein is an amylin analog.
  • the amylin analog is AM-833.
  • the metabolic or endocrine disease or condition is obesity or diabetes with obesity.
  • the therapeutic is NNC0247-0829.
  • the metabolic or endocrine disease or condition is obesity or diabetes with obesity.
  • the therapeutic suitable for use with the devices and methods described herein is a glucagon receptor agonist or a glucagon-like peptide-1 (GLP-1) receptor agonist.
  • the glucagon receptor agonist or the GLP-1 receptor agonist is glucagon.
  • the glucagon receptor agonist or the GLP-1 receptor agonist is NN-9277 (see, e.g., Brandt et al., J. Endocrinol. 283(2):R109-R119 (2016)).
  • the glucagon receptor agonist or the GLP-1 receptor agonist is semaglutide; or a biosimilar thereof.
  • the glucagon receptor agonist or the GLP-1 receptor agonist is dulaglutide; or a biosimilar thereof. In some embodiments, the glucagon receptor agonist or the GLP-1 receptor agonist is albiglutide; or a biosimilar thereof. In some embodiments, the glucagon receptor agonist or the GLP-1 receptor agonist is exenatide; or a biosimilar thereof. In some embodiments, the glucagon receptor agonist or the GLP-1 receptor agonist is liraglutide; or a biosimilar thereof. In some embodiments, the glucagon receptor agonist or the GLP-1 receptor agonist is lixisenatide; or a biosimilar thereof. In some embodiments, the glucagon receptor agonist or the GLP-1 receptor agonist is NNC-0090-2746.
  • the therapeutic suitable for use with the devices and methods described herein is a therapeutic for treating diabetes.
  • the therapeutic for treating diabetes that is suitable for use with the devices and methods described herein is an insulin.
  • the insulin is selected from human insulin, insulin aspart, ultra-fast acting insulin aspart, insulin degludec, insulin detemir, insulin glargine, insulin glulisine, insulin lispro, and insulin tregopil.
  • the therapeutic for treating diabetes that is suitable for use with the devices and methods described herein is a dipeptidyl peptidase-4 inhibitor (DPP-4).
  • DPP-4 inhibitors are oral hypoglycemics which are used to treat diabetes mellitus type-2. These drugs include, but are not limited to: sitagliptin, vildagliptin, saxagliptin, linagliptin, gemigliptin, anagliptin, teneligliptin, alogliptin, trelagliptin, omarigliptin, evogliptin, gosogliptin, dutogliptin and berberine.
  • Exemplary therapeutics for treating diabetes for delivery using any of the devices or methods described herein include those listed in Table 4, and any combination thereof.
  • the disease or condition is NASH and/or NAFLD.
  • the therapeutic suitable for use with the devices and methods described herein is a therapeutic for treating non-alcoholic steatohepatitis (NASH) and/or non-alcoholic fatty liver disease (NAFLD).
  • NASH non-alcoholic steatohepatitis
  • NAFLD non-alcoholic fatty liver disease
  • the therapeutic suitable for use with the devices and methods described herein is selected from the therapeutic agent is selected from the group consisting of selonsertib, cenicriviroc, elafibinor, ocaliva, tropifexor, firocostat and cilofexor. These represent several biological mechanisms. A combination of multiple drugs may be required. In some embodiments, the drug is selected from selonsertib, cenicriviroc, elafibinor, ocaliva, tropifexor, firocostat and cilofexor.
  • Exemplary therapeutics for treating NASH and/or NAFLD for delivery using any of the devices or methods described herein include those listed in Table 5.
  • the therapeutic suitable for use with the devices and methods described herein is a therapeutic for treating rheumatoid arthritis.
  • exemplary therapeutics for treating rheumatoid arthritis for delivery using any of the devices or methods described herein include those listed in Table 6.
  • the therapeutic suitable for use with the devices and methods described herein is a therapeutic for treating inflammatory bowel disease (IBD).
  • IBD inflammatory bowel disease
  • Exemplary therapeutics for treating IBD for delivery using any of the devices or methods described herein include those listed in Table 7.
  • the therapeutic suitable for use with the devices and methods described herein is a therapeutic for treating hemophilia.
  • the hemophilia is hemophilia A, hemophilia B, or Von Willebrand disease.
  • the therapeutic for treating hemophilia is an alternative coagulation promotor (ACP).
  • the ACP is an anti-tissue factor pathway inhibitor (anti-TFPI).
  • anti-TFPIs include, but are not limited to, concizumab, MG-1113A (GC Pharma, Gyeonggi-do, South Korea), marstacimab (PF-6741086) or BAY-1093884; or biosimilars thereof.
  • the anti-TFPI is concizumab or a biosimilar thereof.
  • the therapeutic for treating hemophilia is a factor VIII mimetic.
  • the factor VIII mimetic is emicizumab or a biosimilar thereof.
  • the therapeutic for treating hemophilia is selected from albutrepenonacog alfa, AMT-061, beroctocog alpha, betafact, BIVV-001, BS027125, byclot, catridecacog, clotnine, dalcinonacog alfa, damoctocog alfa pegol, DTX-201, eftrenonacog alfa, eptacog alfa, Factor VIII, Factor IX, Factor X, fidanacogene elaparvovec, fitusiran, FLT-180a, hemoleven, lonoctocog alfa, LR-769, marzeptacog alfa, monofix, moroctocog alfa, NIBX-2101, nonacog alfa, nonacog beta pegol, octocog alfa, OPK-88005, recolyl, recombinate, rurio
  • the therapeutic for treating hemophilia is a recombinant factor VIIa.
  • exemplary recombinant factor VIIa include OPK-88005 (OPKO Health, Miami, Fla.) and LR-769 (see, e.g., Chevreux et al., Haemophilia 23(4):e324-e334 (2017)). Additional exemplary therapeutics for treating hemophilia for delivery using any of the devices or methods described herein include those listed in Table 8.
  • the therapeutic suitable for use with the devices and methods described herein is a hepatocellular carcinoma drug.
  • Hepatocellular carcinoma is the most common type of primary liver cancer and the most common cause of death in people with cirrhosis.
  • Drugs to treat hepatocellular carcinoma include but are not limited to nivolumab, lenvatinib, sorafenib, regorafenib and carbozantinib.
  • the therapeutic suitable for use with the devices and methods described herein is a glucagon-like peptide 1 (GLP-1) receptor agonist.
  • the GLP-1 pathway has been indicated in the treatment of type 2 diabetes mellitus (T2DM).
  • the GLP-1 receptor agonist is a peptide.
  • the GLP-1 receptor agonist is a small molecule.
  • the GLP-1 receptor agonist is formulated with a carrier, or delivery agent.
  • the carrier or delivery agent is a salt of a medium chain fatty acid derivative.
  • the carrier or delivery agent is the sodium salt of N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC).
  • the carrier or delivery agent is biotin.
  • the GLP-1 receptor agonist is exanatide (synthetic exendin-4), a 39-residue peptide which shares 53% sequence identity with GLP-1, having the sequence:
  • the GLP-1 receptor agonist is a compound with a structure selected from:
  • the GLP-1 receptor agonist is liraglutide (compound 3) or a pharmaceutically acceptable salt thereof. In some embodiments, the GLP-1 receptor agonist is semaglutide (compound 4) or a pharmaceutically acceptable salt thereof.
  • the GLP-1 receptor agonist is a compound having the structure:
  • the GLP-1 receptor agonist is an 11-mer GLP-1 receptor agonist.
  • Exemplary 11-mer GLP-1 receptor agonists are represented by the structures and the table below.
  • the GLP-1 receptor agonist is a compound having the structure:
  • the GLP-1 receptor agonist is a compound with a structure selected from:
  • the GLP-1 receptor agonist is Boc5 (compound 12) or a pharmaceutically acceptable salt thereof.
  • the GLP-1 receptor agonist is a compound with a structure selected from:
  • the GLP-1 receptor agonist is TTP-054 or a pharmaceutically acceptable salt thereof, such as described in Edmonds et al., Annu. Rep. Med. Chem. (2013) 48:119-130), which is herein incorporated by reference in its entirety.
  • the GLP-1 receptor agonist is OWL883, such as described in Kawai et al., Diabetes (2016) 67 (Supplement 1):1118-P, which is herein incorporated by reference in its entirety.
  • the GLP-1 receptor agonist is a compound described in Edmonds and Price, “Chapter Nine: Oral GLP-1 Modulators for the Treatment of Diabetes,” Ann. Rep. Med. Chem. (2013) 48:119-130, which is herein incorporated by reference in its entirety.
  • GLP-1 receptor agonists for delivery using any of the devices or methods described herein include those listed in Table 9.
  • GLP-1 receptor agonists adaptable for delivery via ingestible device for the treatment of the listed diseases and conditions
  • GLP-1 Agonist Dosage and (Company) Tradename Administration Comments Albiglutide Tanzeum 30 mg/dose (0.82 ⁇ mol); up to 50 GLP-1 (7-36) dimer fused to (GSK) EU: Eperzan mg/dose; Once weekly, recombinant human albumin. subcutaneus injection MWt ⁇ 73 kDa. Dulaglutide Trulicity 0.75 mg/dose (0.024 ⁇ mol); up to GLP-1 (7-37) covalently (Eli Lilly) 1.5 mg/dose; Once weekly, linked to an Fc fragment of subcutaneus injection human IgG4.
  • the therapeutic suitable for use with the devices and methods described herein is a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor.
  • the PCSK9 inhibitor treats one or more of endocrine and/or metabolic diseases or conditions, cardiovascular diseases, and infection.
  • the endocrine and/or metabolic disease or condition is familial hypercholesterolemia, hypercholesterolemia, or hyperlipidemia.
  • the PCSK9 inhibitor is alirocumab. In some embodiments, the PCSK9 inhibitor is evolocumab.
  • Other exemplary PCSK9 inhibitors for delivery using any of the devices or methods described herein include those listed in Table 10.
  • evolocumab Biological Endocrine/Metabolic Familial WO2009026558 therapeutic; Cell hypercholesterolemia; Kasichayanula, culture Hypercholesterolemia; Sreeneeranj, et al. technique; Hyperlipidemia; “Clinical Immunoglobulin- Lipid metabolism pharmacokinetics G; Monoclonal disorder and antibody pharmacodynamics human; of evolocumab, a Solution; PCSK9 inhibitor.” Subcutaneous Clinical formulation pharmacokinetics 57.7 (2018): 769-779. bococizumab Biological Endocrine/Metabolic Hypercholesterolemia; Ridker, Paul M., et therapeutic; Hyperlipidemia al.
  • the therapeutic suitable for use with the devices and methods described herein is a TNF ⁇ inhibitor.
  • TNF ⁇ inhibitor or “TNF-alpha inhibitor” refer to an agent which directly or indirectly inhibits, impairs, reduces, down-regulates, or blocks TNF ⁇ activity and/or expression.
  • a TNF ⁇ inhibitor is an inhibitory nucleic acid, an antibody or an antigen-binding fragment thereof, a fusion protein, a soluble TNF ⁇ receptor (a soluble TNFR1 or a soluble TNFR2), or a small molecule TNF ⁇ antagonist.
  • the inhibitory nucleic acid is a ribozyme, small hairpin RNA, a small interfering RNA, an antisense nucleic acid, or an aptamer.
  • such indirect TNF ⁇ inhibitors can be a small molecule inhibitor of a signaling component downstream of a TNF ⁇ receptor (e.g., any of the signaling components downstream of a TNF ⁇ receptor described herein or known in the art), a small molecule inhibitor of a protein encoded by a TNF ⁇ -induced gene (e.g., any protein encoded by a TNF ⁇ -induced gene known in the art), and a small molecule inhibitor of a transcription factor selected from the group of NF- ⁇ B, c-Jun, and ATF2.
  • a signaling component downstream of a TNF ⁇ receptor e.g., any of the signaling components downstream of a TNF ⁇ receptor described herein or known in the art
  • a small molecule inhibitor of a protein encoded by a TNF ⁇ -induced gene e.g., any protein encoded by a TNF ⁇ -induced gene known in the art
  • Exemplary TNF ⁇ inhibitors that are inhibitory nucleic acids targeting TNF ⁇ include, e.g., antisense DNA (e.g., Myers et al., J Pharmacol Exp Ther. 304(1):411-424, 2003; Wasmuth et al., Invest. Opthalmol. Vis. Sci, 2003; Dong et al., J. Orthop. Res. 26(8):1114-1120, 2008; U.S. Patent Application Serial Nos. 2003/0083275, 2003/0022848, and 2004/0770970; ISIS 104838; U.S. Pat. Nos.
  • RNA short interfering RNA
  • siRNA short interfering RNA
  • the inhibitory nucleic acid blocks pre-mRNA splicing of TNF ⁇ (e.g., Chiu et al., Mol. Pharmacol. 71(6): 1640-1645, 2007).
  • the inhibitory nucleic acid e.g., an aptamer (e.g., Orava et al., ACS Chem Biol. 2013; 8(1): 170-178, 2013), can block the binding of a TNF ⁇ protein with its receptor (TNFR1 and/or TNFR2).
  • an aptamer e.g., Orava et al., ACS Chem Biol. 2013; 8(1): 170-178, 2013
  • TNFR1 and/or TNFR2 can block the binding of a TNF ⁇ protein with its receptor (TNFR1 and/or TNFR2).
  • the inhibitory nucleic acid can down-regulate the expression of a TNF ⁇ -induced downstream mediator (e.g., TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF- ⁇ B, p38, JNK, IKB- ⁇ , or CCL2).
  • a TNF ⁇ -induced downstream mediator e.g., TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF- ⁇ B, p38, JNK, IKB- ⁇ , or CCL2
  • TNF ⁇ -induced downstream mediator e.g., TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF- ⁇ B, p38, JNK, IKB- ⁇ ,
  • inhibitory nucleic acids Additional aspects of inhibitory nucleic acids are described in Aagaard et al., Adv. Drug Delivery Rev. 59(2):75-86, 2007, and Burnett et al., Biotechnol. J. 6(9):1130-1146, 2011.
  • the TNF ⁇ inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv).
  • an antibody or antigen-binding fragment described herein binds specifically to any one of TNF ⁇ , TNFR1, or TNFR2.
  • an antibody or antigen-binding fragment of an antibody described herein can bind specifically to TNF ⁇ .
  • an antibody or antigen-binding fragment of an antibody described herein can bind specifically to an TNF ⁇ receptor (TNFR1 or TNFR2).
  • TNF inhibitors that are antibodies that specifically bind to TNF ⁇ are described in Elliott et al., Lancet 1994; 344: 1125-1127, 1994; Rankin et al., Br. J. Rheumatol. 2:334-342, 1995; Butler et al., Eur. Cytokine Network 6(4):225-230, 1994; Lorenz et al., J. Immunol.
  • the TNF ⁇ inhibitor can include or is infliximab (RemicadeTM), CDP571, CDP 870, golimumab (GolimumabTM), adalimumab (HumiraTM) or certolizumab pegol (CimziaTM).
  • the TNF ⁇ inhibitor can be a TNF ⁇ inhibitor biosimilar.
  • TNF ⁇ inhibitor biosimilars examples include, but are not limited to, infliximab biosimilars such as RemsimaTM and Inflectra® (CT-P13) from Celltrion/Pfizer, GS071 from Aprogen, FlixabiTM (SB2) from Samsung Bioepis, PF-06438179 from Pfizer/Sandoz, NI-071 from Nichi-Iko Pharmaceutical Co., and ABP 710 from Amgen; adalimumab biosimilars such as ExemptiaTM (ZRC3197) from Zydus Cadila, India, Solymbic® and Amgevita® (ABP 501) from Amgen, Imraldi (SB5) from Samsung Bioepis, GP-2017 from Sandoz, Switzerland, ONS-3010 from Oncobiologics/Viropro, U.S.A., M923 from Momenta Pharmaceuticals/Baxalta (Baxter spinoff USA), PF-06410293
  • the TNF ⁇ inhibitor can be SAR252067 (e.g., a monoclonal antibody that specifically binds to TNFSF14, described in U.S. Patent Application Publication No. 2013/0315913) or MDGN-002 (described in U.S. Patent Application Publication No. 2015/0337046).
  • the TNF ⁇ inhibitor can be PF-06480605, which binds specifically to TNFSF15 (e.g., described in U.S. Patent Application Publication No. 2015/0132311). Additional examples of TNF ⁇ inhibitors include DLCX105 (described in Tsianakas et al., Exp. Dermatol.
  • TNF ⁇ inhibitors that are antibodies or antigen-binding antibody fragments are described in, e.g., WO 17/158097, EP 3219727, WO 16/156465, and WO 17/167997.
  • the TNF ⁇ inhibitor is DLX-105, e.g., the gel formulation.
  • the TNF ⁇ inhibitor is adalimumab.
  • Adalimumab is a recombinant human IgG1 monoclonal antibody specific for human tumor necrosis factor and is indicated for the treatment of various inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and ulcerative colitis.
  • Adalimumab is currently delivered as an SC injection of 40 mg in 0.4-0.8 mL once every 1-2 weeks. It is sold in prefilled pen injectors for self-administration. The bioavailability is approximately 64% by SC injection, the half-life is approximately 2 weeks, and intracellular catabolism is the primary mode of elimination. Adalimumab must be refrigerated but can be temporarily stored at room temperature before use.
  • Adalimumab is a suitable therapeutic for delivery via ingestible device as described herein. It is currently available as a liquid, administered by self-injection, and, because adverse injection site reactions are not uncommon, patients may readily adopt an alternative dosage form. Lastly, the probability of acute reactions to overdose is low which, theoretically, could allow an increase in dose to compensate for lower bioavailability than SC injection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Genetics & Genomics (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Dermatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Medicinal Preparation (AREA)
  • Surgical Instruments (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US17/295,275 2018-11-19 2019-11-19 Methods and devices for treating a disease with biotherapeutics Pending US20230023414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/295,275 US20230023414A1 (en) 2018-11-19 2019-11-19 Methods and devices for treating a disease with biotherapeutics

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862769496P 2018-11-19 2018-11-19
US201962818731P 2019-03-14 2019-03-14
US201962819513P 2019-03-15 2019-03-15
US201962932459P 2019-11-07 2019-11-07
PCT/US2019/062266 WO2020106754A1 (en) 2018-11-19 2019-11-19 Methods and devices for treating a disease with biotherapeutics
US17/295,275 US20230023414A1 (en) 2018-11-19 2019-11-19 Methods and devices for treating a disease with biotherapeutics

Publications (1)

Publication Number Publication Date
US20230023414A1 true US20230023414A1 (en) 2023-01-26

Family

ID=68848481

Family Applications (4)

Application Number Title Priority Date Filing Date
US17/295,275 Pending US20230023414A1 (en) 2018-11-19 2019-11-19 Methods and devices for treating a disease with biotherapeutics
US17/295,277 Pending US20220249814A1 (en) 2018-11-19 2019-11-19 Methods and devices for treating a disease with biotherapeutics
US17/024,176 Active US11007356B2 (en) 2018-11-19 2020-09-17 Ingestible device for delivery of therapeutic agent to the gastrointestinal tract
US17/319,800 Active US11439802B2 (en) 2018-11-19 2021-05-13 Ingestible device for delivery of therapeutic agent to the gastrointestinal tract

Family Applications After (3)

Application Number Title Priority Date Filing Date
US17/295,277 Pending US20220249814A1 (en) 2018-11-19 2019-11-19 Methods and devices for treating a disease with biotherapeutics
US17/024,176 Active US11007356B2 (en) 2018-11-19 2020-09-17 Ingestible device for delivery of therapeutic agent to the gastrointestinal tract
US17/319,800 Active US11439802B2 (en) 2018-11-19 2021-05-13 Ingestible device for delivery of therapeutic agent to the gastrointestinal tract

Country Status (9)

Country Link
US (4) US20230023414A1 (zh)
EP (3) EP3883635A1 (zh)
JP (1) JP7482866B2 (zh)
KR (1) KR20210095165A (zh)
CN (3) CN116726361A (zh)
AU (1) AU2019383976A1 (zh)
CA (1) CA3120619A1 (zh)
IL (1) IL283268B1 (zh)
WO (4) WO2020106704A2 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230042759A (ko) 2016-09-09 2023-03-29 비오라 쎄라퓨틱스, 인크. 분배가능한 물질의 전달을 위한 전자기계식 섭취가능한 디바이스
KR20210095165A (ko) 2018-11-19 2021-07-30 프로제너티, 인크. 바이오의약품으로 질환을 치료하기 위한 방법 및 디바이스
EP4309722A2 (en) 2019-12-13 2024-01-24 Biora Therapeutics, Inc. Ingestible device for delivery of therapeutic agent to the gastrointestinal tract
CN116171179A (zh) 2020-08-08 2023-05-26 诺和诺德股份有限公司 管腔可插入胶囊
KR20230045085A (ko) * 2020-08-10 2023-04-04 메사추세츠 인스티튜트 오브 테크놀로지 섭취가능한 약물 전달 디바이스
CN116322873A (zh) 2020-09-30 2023-06-23 诺和诺德股份有限公司 可吞咽胶囊装置
JP2023543293A (ja) 2020-09-30 2023-10-13 ノボ・ノルデイスク・エー/エス 嚥下可能なカプセル装置
AU2021354905A1 (en) 2020-09-30 2023-03-16 Novo Nordisk A/S Lumen insertable capsule
US20230372625A1 (en) 2020-10-02 2023-11-23 Novo Nordisk A/S Device for intestinal drug delivery
JP2023544632A (ja) 2020-10-09 2023-10-24 ノボ・ノルデイスク・エー/エス カプセル装置
CN116390785A (zh) 2020-11-02 2023-07-04 诺和诺德股份有限公司 物质递送胶囊
WO2022263265A1 (en) * 2021-06-18 2022-12-22 Novo Nordisk A/S Medical device with fluid acivated actuation mechanism
EP4366815A1 (en) 2021-07-09 2024-05-15 Novo Nordisk A/S Capsule administering assembly
DK181267B1 (en) * 2021-10-28 2023-06-14 Biograil ApS Drug delivery device with capsule lock
CN114917217B (zh) * 2022-05-20 2023-09-12 广东工业大学 磷酸二酯酶4抑制剂ZL-n-91在制备治疗三阴性乳腺癌的药物中的应用
CN115120854B (zh) * 2022-07-04 2023-10-13 奥格生物技术(六安)有限公司 前列腺自然直接给药装置

Family Cites Families (636)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE101738C1 (sv) 1937-07-16 1941-06-10 Husqvarna Vapenfabriks Ab Sätt vid tillverkning av mangelvalsar
CH337989A (fr) 1957-04-09 1959-04-30 Perrenoud Jean Pierre Dr Capsule
US3057344A (en) 1957-05-21 1962-10-09 Abella Carlos Alberto Capsule for the study of the digestive tract and method of using the same
GB993734A (en) 1963-01-04 1965-06-02 Nat Res Dev An improved sampling device for gastro-intestinal fluids
US3315660A (en) 1963-08-08 1967-04-25 Carlos A Abella Capsule for insertion in the digestive track
US3485235A (en) 1967-12-04 1969-12-23 Ronald Felson Capsule for the study and treatment of the digestive tract
CH557178A (de) * 1972-08-10 1974-12-31 Siemens Ag Geraet fuer die zufuehrung von medikamenten.
US4036214A (en) 1975-04-14 1977-07-19 Louis Bucalo Fluid-collecting and microorganism-detecting devices
US4172446A (en) 1974-12-20 1979-10-30 Louis Bucalo Apparatus for collecting body fluids
IL47062A (en) 1975-04-10 1979-07-25 Yeda Res & Dev Process for diminishing antigenicity of tissues to be usedas transplants by treatment with glutaraldehyde
JPS5349880A (en) 1976-10-19 1978-05-06 Seiko Instr & Electronics Medical capsule
US4239040A (en) 1976-10-19 1980-12-16 Kabushiki Kaisha Daini Seikosha Capsule for medical use
US4281645A (en) 1977-06-28 1981-08-04 Duke University, Inc. Method and apparatus for monitoring metabolism in body organs
US4481952A (en) 1978-03-22 1984-11-13 Jerzy Pawelec Device for the study of the alimentary canal
GB2039219B (en) 1978-03-22 1982-10-06 Pawelec J Device for study of the alimentary canal
JPS5588732A (en) 1978-12-26 1980-07-04 Olympus Optical Co Endoscope
US4665077A (en) 1979-03-19 1987-05-12 The Upjohn Company Method for treating rejection of organ or skin grafts with 6-aryl pyrimidine compounds
DE2928477C3 (de) 1979-07-14 1982-04-15 Battelle-Institut E.V., 6000 Frankfurt Vorrichtung zur Freisetzung von Substanzen an definierten Orten des Verdauungstraktes
JPS57163309A (en) 1981-04-01 1982-10-07 Olympus Optical Co Ltd Capsule apparatus for medical use
US4522625A (en) * 1982-09-29 1985-06-11 Alza Corporation Drug dispenser comprising wall formed of semipermeable member and enteric member
GB2129557A (en) 1982-11-03 1984-05-16 Gec Xpelair Ltd Actuator
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4573447A (en) 1985-02-19 1986-03-04 Sunbelt America Corporation Chemical heater
JPS6226215A (ja) * 1985-05-10 1987-02-04 メルク エンド カムパニ− インコ−ポレ−テツド 一定に制御した時間内胃中に保持できる薬剤移送装置
US5116742A (en) 1986-12-03 1992-05-26 University Patents, Inc. RNA ribozyme restriction endoribonucleases and methods
US4987071A (en) 1986-12-03 1991-01-22 University Patents, Inc. RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods
IL85746A (en) 1988-03-15 1994-05-30 Yeda Res & Dev Preparations comprising t-lymphocyte cells treated with 8-methoxypsoralen or cell membranes separated therefrom for preventing or treating autoimmune diseases
FI891226A (fi) 1988-04-28 1989-10-29 Univ Leland Stanford Junior Reseptordeterminanter i anti-t-celler foer behandling av autoimmunsjukdom.
US5075222A (en) 1988-05-27 1991-12-24 Synergen, Inc. Interleukin-1 inhibitors
US4844076A (en) 1988-08-26 1989-07-04 The Johns Hopkins University Ingestible size continuously transmitting temperature monitoring pill
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
WO1990008187A1 (en) 1989-01-19 1990-07-26 Dana Farber Cancer Institute Soluble two domain cd2 protein
RU2138512C1 (ru) 1989-03-21 1999-09-27 Дзе Иммюн Риспонз Корпорейшн Вакцина для профилактики или лечения опосредованной т-клетками патологии или нерегулируемой репликации клонами т-клеток, способ выделения вакцины, способ диагностирования или прогнозирования восприимчивости к ревматоидному артриту или рассеянному склерозу, способ профилактики или лечения ревматоидного артрита или рассеянного склероза и содержащий последовательность sgdqggne пептид, являющийся агентом для обнаружения, профилактики или лечения рассеянного склероза
IL94878A (en) 1989-06-28 2003-01-12 Schering Corp Cytokine synthesis inhibitory factor, antagonists thereof and methods of using same
AU652540B2 (en) 1989-07-19 1994-09-01 Xoma Corporation T cell receptor peptides as therapeutics for autoimmune and malignant disease
AU630497B2 (en) 1989-09-05 1992-10-29 Immunex Corporation Tumor necrosis factor-alpha and -beta receptors
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6641809B1 (en) 1990-03-26 2003-11-04 Bristol-Myers Squibb Company Method of regulating cellular processes mediated by B7 and CD28
US5170801A (en) * 1990-10-02 1992-12-15 Glaxo Inc. Medical capsule device actuated by radio-frequency (rf) signal
US5167626A (en) 1990-10-02 1992-12-01 Glaxo Inc. Medical capsule device actuated by radio-frequency (RF) signal
US5395366A (en) 1991-05-30 1995-03-07 The State University Of New York Sampling capsule and process
US5279607A (en) * 1991-05-30 1994-01-18 The State University Of New York Telemetry capsule and process
GB9206422D0 (en) 1992-03-24 1992-05-06 Bolt Sarah L Antibody preparation
US7381803B1 (en) 1992-03-27 2008-06-03 Pdl Biopharma, Inc. Humanized antibodies against CD3
US5874082A (en) 1992-07-09 1999-02-23 Chiron Corporation Humanized anti-CD40 monoclonal antibodies and fragments capable of blocking B cell proliferation
US5318557A (en) 1992-07-13 1994-06-07 Elan Medical Technologies Limited Medication administering device
US5316015A (en) 1992-07-30 1994-05-31 Sinaiko Robert J Externally controlled intestinal content sampler
US6180403B1 (en) 1999-10-28 2001-01-30 Isis Pharmaceuticals Inc. Antisense inhibition of tumor necrosis factor alpha converting enzyme (TACE) expression
WO1994009138A1 (en) 1992-10-20 1994-04-28 Cetus Oncology Corporation Interleukin-6 receptor antagonists
EP0603992B2 (en) 1992-12-22 2000-12-06 University Of Cincinnati Oral administration of immunologically active biomolecules and other therapeutic proteins
AU695124B2 (en) 1993-05-28 1998-08-06 Scripps Research Institute, The Methods and compositions for inhibiting CD14 mediated cell activation
US5739103A (en) 1993-11-12 1998-04-14 Dana-Farber Cancer Institute Chemokine N-terminal deletion mutations
DE69535327T2 (de) 1994-01-13 2007-06-06 The Regents Of The University Of California, Oakland Monocyten protein rezeptoren aus säugern, mit chemoattraktion auslösender wirkung
IL108352A (en) 1994-01-17 2000-02-29 Given Imaging Ltd In vivo video camera system
US5705398A (en) 1994-03-02 1998-01-06 The Scripps Research Institute Methods for identifying inhibitors of LPS-mediated LBP binding
US5857998A (en) 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
BR9508243A (pt) 1994-07-05 1997-10-21 Steeno Res Group As Imunomoduladores
US5994524A (en) 1994-07-13 1999-11-30 Chugai Seiyaku Kabushiki Kaisha Polynucleotides which encode reshaped IL-8-specific antibodies and methods to produce the same
US5614191A (en) 1995-03-15 1997-03-25 The United States Of America As Represented By The Department Of Health And Human Services IL-13 receptor specific chimeric proteins and uses thereof
US6743594B1 (en) 1995-06-06 2004-06-01 Human Genome Sciences, Inc. Methods of screening using human G-protein chemokine receptor HDGNR10 (CCR5)
US7265083B2 (en) 1995-06-06 2007-09-04 The Regents Of The University Of Michigan Treatment of idiopathic pulmonary fibrosis using IP-10
US20030180290A1 (en) 1995-06-07 2003-09-25 Idec Pharmaceuticals Corporation Anti-CD80 antibody having ADCC activity for ADCC mediated killing of B cell lymphoma cells alone or in combination with other therapies
KR19990022358A (ko) 1995-06-07 1999-03-25 다니엘 엘. 캐시앙, 헨리 엘. 노르호프 세포 증식을 억제하기 위한 IL-6 수용체 mRNA에 대한 안티센스 올리고뉴클레오티드의 용도
CZ45498A3 (cs) 1995-08-17 1999-01-13 Protein Design Labs, Inc. Použití antiselektinových protilátek pro výrobu farmaceutických kompozic určených pro prevenci mnohačetného selhání orgánů v důsledku vícečetného úrazu a pro prevenci akutního poškození orgánů po aplikaci mimotělního krevního objehu
JP4224135B2 (ja) 1995-10-23 2009-02-12 ズィナイス セラピューティックス ピーティーワイ.エルティーディー. 新規なヘモポエチン受容体およびそれをコードする遺伝子配列
US6090382A (en) 1996-02-09 2000-07-18 Basf Aktiengesellschaft Human antibodies that bind human TNFα
ZA9610374B (en) 1995-12-11 1997-06-23 Elan Med Tech Cartridge-based drug delivery device
WO1997024325A1 (en) 1995-12-28 1997-07-10 Takeda Chemical Industries, Ltd. DIPHENYLMETHANE DERIVATIVES AS MIP-1α/RANTES RECEPTOR ANTAGONISTS
AU4385696A (en) 1996-01-18 1997-08-11 Christian Gronhoj Larsen Synthetic il-10 analogues
CN1300173C (zh) 1996-02-09 2007-02-14 艾博特生物技术有限公司 结合人TNFα的人抗体
SE9600820D0 (sv) 1996-03-01 1996-03-01 Pharmacia Ab Antibodies and their use
AU2576697A (en) 1996-04-19 1997-11-12 Chugai Seiyaku Kabushiki Kaisha Rheumatoid arthritis remedy containing anti-il-8 antibody as active ingredient
WO1997044329A1 (en) 1996-05-20 1997-11-27 Teijin Limited Diarylalkyl cyclic diamine derivatives as chemokine receptor antagonists
US5738110A (en) 1996-05-29 1998-04-14 Beal; Charles B. Device for the diagnosis of certain gastrointestinal pathogens
WO1998004554A1 (fr) 1996-07-29 1998-02-05 Banyu Pharmaceutical Co., Ltd. Antagonistes de recepteurs de chemokines
WO1998006751A1 (en) 1996-08-16 1998-02-19 Research Corporation Technologies, Inc. Mcp-3, rantes and mip-1alpha receptor antagonists
WO1998009642A2 (en) 1996-09-06 1998-03-12 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Therapeutic chemokine antagonists
US6140064A (en) 1996-09-10 2000-10-31 Theodor-Kocher Institute Method of detecting or identifying ligands, inhibitors or promoters of CXC chemokine receptor 3
ES2288305T3 (es) 1996-09-10 2008-01-01 Theodor-Kocher Institute Receptor de quimiocinas cxcr3, anticuerpos, acidos nucleicos y metodos de uso.
US6528625B1 (en) 1996-10-28 2003-03-04 Millennium Pharmaceuticals, Inc. Anti-CCR5 antibodies and kits comprising same
US5919792A (en) 1996-10-30 1999-07-06 Merck & Co., Inc. Integrin antagonists
US5971942A (en) 1996-12-03 1999-10-26 Gu; Howard H. Intestinal fluid sampler
AU5604998A (en) 1996-12-13 1998-07-03 Merck & Co., Inc. Spiro-substituted azacycles as modulators of chemokine receptor activity
WO1998025605A1 (en) 1996-12-13 1998-06-18 Merck & Co., Inc. Spiro-substituted azacycles as modulators of chemokine receptor activity
WO1998025617A1 (en) 1996-12-13 1998-06-18 Merck & Co., Inc. Substituted aryl piperazines as modulators of chemokine receptor activity
WO1998027815A1 (en) 1996-12-20 1998-07-02 Merck & Co., Inc. Substituted aminoquinolines as modulators of chemokine receptor activity
EP1003743A4 (en) 1997-01-21 2001-04-11 Merck & Co Inc 3,3-DISBSTITUED PIPERIDINE LIKE MODULATORS OF CHEMOKINE RECEPTOR ACTIVITY
PL335484A1 (en) 1997-02-26 2000-04-25 Pfizer Derivatives of heteroarylhexamide, their production and application as selective inhibitors of mip-1a being assimilated by its ccr1 receptor
US20020018783A1 (en) 1997-03-20 2002-02-14 Michel Sadelain Fusion proteins of a single chain antibody and cd28 and uses thereof
AU6780398A (en) 1997-03-28 1998-10-22 Du Pont Merck Pharmaceutical Company, The Heterocyclic integrin inhibitor prodrugs
DE19722888A1 (de) 1997-05-28 1998-12-03 Thomas Prof Dr Huenig Human-CD28 spezifische monoklonale Antikörper zur antigenunspezifischen Aktivierung von T-Lymphozyten
US5951538A (en) 1997-08-07 1999-09-14 Ceramatec, Inc. Gas generating device for delivering beneficial agents to a body cavity
GB9716657D0 (en) 1997-08-07 1997-10-15 Zeneca Ltd Chemical compounds
US7704944B2 (en) 1997-08-14 2010-04-27 Yeda Research And Development Company Ltd. Interleukin-18 binding proteins, their preparation and use for the treatment of sepsis
US6630492B1 (en) 1997-08-28 2003-10-07 Novartis Ag Lymphocyte function antigen-1 antagonists
CA2248762A1 (en) 1997-10-22 1999-04-22 University Technologies International, Inc. Antisense oligodeoxynucleotides regulating expression of tnf-.alpha.
PL340799A1 (en) 1997-11-04 2001-02-26 Pfizer Prod Inc Therapeutically active compounds based on a substitution of indazole bioisoster for cathechol in pde 4 inhibitors
DE19801573A1 (de) 1998-01-19 1999-07-22 Suchatzki Bernd Ulrich Dr Sammler für lokale Probeflüssigkeiten und Verwendung eines solchen Sammlers im menschlichen oder tierischen Verdauugssystem
US7005504B2 (en) 1998-01-22 2006-02-28 Genentech, Inc. Antibody fragment-peg conjugates
GB9803228D0 (en) 1998-02-17 1998-04-08 Zeneca Ltd Chemical compounds
CA2224551A1 (en) 1998-02-25 1999-08-25 Alex Hongsheng Chang A quick in situ diagnostic method for detecting alimentary diseases
US20040186071A1 (en) 1998-04-13 2004-09-23 Bennett C. Frank Antisense modulation of CD40 expression
US6197584B1 (en) 1998-05-01 2001-03-06 Isis Pharmaceuticals, Inc. Antisense modulation of CD40 expression
US6369039B1 (en) 1998-06-30 2002-04-09 Scimed Life Sytems, Inc. High efficiency local drug delivery
US6696550B2 (en) 1998-07-23 2004-02-24 Millennium Pharmaceuticals, Inc. Humanized anti-CCR2 antibodies and methods of use therefor
US6727349B1 (en) 1998-07-23 2004-04-27 Millennium Pharmaceuticals, Inc. Recombinant anti-CCR2 antibodies and methods of use therefor
US6312689B1 (en) 1998-07-23 2001-11-06 Millennium Pharmaceuticals, Inc. Anti-CCR2 antibodies and methods of use therefor
DK1974747T3 (da) 1998-08-11 2012-09-17 Biogen Idec Inc Kombinationsterapier for B-celle-lymfomer omfattende indgivelse af anti-CD20-antistof
US6080580A (en) 1998-10-05 2000-06-27 Isis Pharmaceuticals Inc. Antisense oligonucleotide modulation of tumor necrosis factor-α (TNF-α) expression
US6228642B1 (en) 1998-10-05 2001-05-08 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of tumor necrosis factor-(α) (TNF-α) expression
IL126727A (en) 1998-10-22 2006-12-31 Given Imaging Ltd A method of bringing a device to the goal
PT1131096E (pt) 1998-11-09 2010-04-14 Biogen Idec Inc Tratamento com anticorpo anti-cd20 de pacientes beneficiários de transplante de medula óssea ou transplante de células estaminais de sangue periférico
KR20010103655A (ko) 1998-11-09 2001-11-23 케네쓰 제이. 울코트 키메라 항-cd20항체를 이용한 순환성 종양세포와관련된 혈액학적 악성종양의 치료법
GB9825632D0 (en) 1998-11-23 1999-01-13 Novartis Ag Organic compounds
US20080015348A1 (en) 1998-12-16 2008-01-17 Progenics Pharmaceuticals, Inc. Nucleic acids encoding polypeptides of anti-CCR5 antibodies
US20040228869A1 (en) 1998-12-16 2004-11-18 Progenics Pharmaceuticals, Inc. Synergistic inhibition of HIV-1 fusion and attachment, compositions and antibodies thereto
US6833373B1 (en) 1998-12-23 2004-12-21 G.D. Searle & Co. Method of using an integrin antagonist and one or more antineoplastic agents as a combination therapy in the treatment of neoplasia
US20020142000A1 (en) 1999-01-15 2002-10-03 Digan Mary Ellen Anti-CD3 immunotoxins and therapeutic uses therefor
EP1144388B1 (en) 1999-01-22 2010-01-13 Elan Pharmaceuticals, Inc. Acyl derivatives which treat vla-4 related disorders
GB9902461D0 (en) 1999-02-05 1999-03-24 Zeneca Ltd Chemical compounds
GB9902452D0 (en) 1999-02-05 1999-03-24 Zeneca Ltd Chemical compounds
GB9902459D0 (en) 1999-02-05 1999-03-24 Zeneca Ltd Chemical compounds
US6329159B1 (en) 1999-03-11 2001-12-11 Millennium Pharmaceuticals, Inc. Anti-GPR-9-6 antibodies and methods of identifying agents which modulate GPR-9-6 function
PT1176960E (pt) 1999-05-04 2005-02-28 Altana Pharma Ag Combinacao sinergica compreendendo roflumilast e um inibidor de pde-3
AU5047600A (en) 1999-05-27 2000-12-18 Schering Corporation Mammalian interleukin-10 homologs: il-d110 and il-d210
ITMI991299A1 (it) 1999-06-11 2000-12-11 Consiglio Nazionale Ricerche Uso di anticorpi contro antigeni di superficie per il trattamento della malattia trapianto contro ospite
US7813789B2 (en) 1999-06-15 2010-10-12 Given Imaging Ltd. In-vivo imaging device, optical system and method
IL130486A (en) 1999-06-15 2005-08-31 Given Imaging Ltd Optical system
US8557244B1 (en) 1999-08-11 2013-10-15 Biogen Idec Inc. Treatment of aggressive non-Hodgkins lymphoma with anti-CD20 antibody
DE19939653A1 (de) 1999-08-13 2001-02-22 Thomas Huenig Verwendung CD28 spezifischer monoklonaler Antikörper zur Herstellung einer pharmazeutischen Zusammensetzung
US7033781B1 (en) 1999-09-29 2006-04-25 Diversa Corporation Whole cell engineering by mutagenizing a substantial portion of a starting genome, combining mutations, and optionally repeating
US20070111259A1 (en) 1999-10-02 2007-05-17 Medarex, Inc. Human antibodies
US6576429B1 (en) 1999-10-26 2003-06-10 Alimenta Diagnostics Ab Apparatus for intestinal sampling and use thereof
CA2389293A1 (en) 1999-10-29 2001-05-10 Smithkline Beecham Corporation Method for administering a phosphodiesterase 4 inhibitor
IL149500A0 (en) 1999-11-08 2002-11-10 Idec Pharma Corp Treatment of b cell malignancies using anti-cd40l antibodies in combination with anti-cd20 antibodies and/or chemotherapeutics and radiotherapy
US6344027B1 (en) 1999-12-08 2002-02-05 Scimed Life Systems, Inc. Needle-less injection apparatus and method
US20020006403A1 (en) 1999-12-14 2002-01-17 Xue-Zhong Yu CD28-specific antibody compositions for use in methods of immunosuppression
GB9930000D0 (en) 1999-12-21 2000-02-09 Phaeton Research Ltd An ingestible device
GB9930001D0 (en) 1999-12-21 2000-02-09 Phaeton Research Ltd An ingestible device
JP4039856B2 (ja) 2000-02-03 2008-01-30 エーザイ・アール・アンド・ディー・マネジメント株式会社 インテグリン発現阻害剤
JP2003523768A (ja) 2000-02-25 2003-08-12 イミュネックス・コーポレーション インテグリンアンタゴニスト
WO2001068586A2 (en) 2000-03-14 2001-09-20 Novartis Ag α4β1 AND α4β7 INTEGRIN INHIBITORS
EP2258689A1 (en) 2000-03-16 2010-12-08 Biolipox AB Benzylated PDE4 inhibitors
GB0006398D0 (en) 2000-03-16 2000-05-03 Novartis Ag Organic compounds
GB0007911D0 (en) 2000-03-30 2000-05-17 Novartis Ag Organic compounds
BR0109705A (pt) 2000-03-31 2005-01-11 Idec Pharma Corp Uso combinado de anticorpos ou antagonistas anti-citocina e anticd20 para o tratamento de linfoma de célula b
US20040092712A1 (en) 2000-03-31 2004-05-13 Shoji Furusako Tlr/cd14 binding inhibitor
US20070160574A1 (en) 2000-04-12 2007-07-12 Ahmed Merzouk Design of CXC chemokine analogs for the treatment of human diseases
US20070116669A1 (en) 2002-09-13 2007-05-24 Chemokine Therapeutics Corporation Interferon-inducible protein-10 (IP-10 or CXCL10) chemokine analogs for the treatment of human diseases
US20030086932A1 (en) 2000-04-12 2003-05-08 Jeffrey A. Bluestone Surface-bound antigen binding portions of antibodies that bind to CTLA-4 and CD28 and uses therefor
US20020019345A1 (en) 2000-04-14 2002-02-14 Millennium Pharmaceuticals, Inc. Method of treating graft rejection using inhibitors of CCR5 function
US20020042370A1 (en) 2000-04-14 2002-04-11 Millennium Pharmaceuticals, Inc. Method of treating graft rejection using inhibitors of CCR2 function
WO2001078708A1 (en) 2000-04-14 2001-10-25 Millennium Pharmaceuticals, Inc. Treating graft rejection with cxcr3 inhibitors
WO2001096397A2 (en) 2000-06-09 2001-12-20 Biogen, Inc. Cd154 variants and uses thereof
CA2411102A1 (en) 2000-06-20 2001-12-27 Idec Pharmaceutical Corporation Cold anti-cd20 antibody/radiolabeled anti-cd22 antibody combination
GB0016138D0 (en) 2000-06-30 2000-08-23 Novartis Ag Organic compounds
US6794506B2 (en) 2000-07-21 2004-09-21 Elan Pharmaceuticals, Inc. 3-(heteroaryl) alanine derivatives-inhibitors of leukocyte adhesion mediated by VLA-4
US6902734B2 (en) 2000-08-07 2005-06-07 Centocor, Inc. Anti-IL-12 antibodies and compositions thereof
DE10040105A1 (de) 2000-08-17 2002-02-28 Merck Patent Gmbh Peptid- und Peptidmimetika-Derivate mit Integrin-Inhibitor-Eigenschaften
US20020099310A1 (en) 2001-01-22 2002-07-25 V-Target Ltd. Gastrointestinal-tract sensor
GB0020685D0 (en) 2000-08-22 2000-10-11 Novartis Ag Organic compounds
EP1399435A2 (en) 2000-09-01 2004-03-24 Biogen, Inc. Pyridine derivatives useful as cd40:cd154 binding interruptors and use thereof to treat immunological complications
AU2001296962A1 (en) 2000-09-29 2002-04-08 Schering Corporation Pegylated interleukin-10
PT1326896E (pt) 2000-10-02 2011-03-03 Novartis Vaccines & Diagnostic Anticorpos humanos anti-cd40
EP1343528A2 (en) 2000-11-02 2003-09-17 Research Foundation of City University of New York Methods for stimulating nervous system regeneration and repair by inhibition phosphodiesterase type 4
EP1336620A4 (en) 2000-11-22 2004-11-17 Mochida Pharm Co Ltd MONOCLONAL ANTI-CD14 ANTIBODIES INHIBITING THE CD14 / TLR BINDING
CN1575177A (zh) 2000-12-11 2005-02-02 图拉里克公司 Cxcr3拮抗剂
DE60142794D1 (de) 2000-12-26 2010-09-23 Inst Nat Sante Rech Med Antikörper gegen cd28
US7553276B2 (en) 2001-01-16 2009-06-30 Given Imaging Ltd. Method and device for imaging body lumens
IL157007A0 (en) 2001-01-22 2004-02-08 Target Technologies Ltd V Ingestible device
US6962926B2 (en) 2001-01-31 2005-11-08 Telik, Inc. Antagonist of MCP-1 function, and compositions and methods of use thereof
US20070065436A1 (en) 2001-01-31 2007-03-22 Biogen Idec Inc. Anti-cd80 antibody having adcc activity for adcc mediated killing of b cell lymphoma cells alone or in combination with other therapies
AU2002303084B2 (en) 2001-02-02 2006-05-25 Pharmacopiea, Inc. 3,4-di-substituted cyclobutene-1, 2 -diones as CXC chemokine receptor antagonists
US20030204085A1 (en) 2001-02-02 2003-10-30 Taveras Arthur G. 3, 4-Di-substituted cyclobutene-1,2-diones as CXC-chemokine receptor antagonists
IL157274A0 (en) 2001-02-12 2004-02-19 Medarex Inc Human monoclonal antibodies to fc alpha receptor (cd89)
US7531168B2 (en) 2001-02-16 2009-05-12 Genetics Institute Llc Method for downmodulating immune response in type I diabetes
US20080095774A1 (en) 2001-02-16 2008-04-24 Wyeth Agents and Methods for Specifically Blocking CD28-Mediated Signaling
TWI245761B (en) 2001-03-01 2005-12-21 Telik Inc Antagonists of MCP-1 function and methods of use thereof
ES2274957T3 (es) 2001-03-01 2007-06-01 University Of Saskatchewan Technologies Inc. Antagonistas de elevada afinidad de quimiocinas cxc de elr.
US20030003440A1 (en) 2001-03-14 2003-01-02 Lucia Lopalco Novel CCR5 epitope and antibodies against it
AU2002241215A1 (en) 2001-03-14 2002-09-24 Given Imaging Ltd. Method and system for detecting colorimetric abnormalities
EP1243524A3 (en) 2001-03-16 2004-04-07 Pfizer Products Inc. Pharmaceutical kit for oxygen-sensitive drugs
DE10114178A1 (de) 2001-03-23 2002-10-10 Aventis Pharma Gmbh Zinkfreie und zinkarme Insulinzubereitungen mit verbesserter Stabilität
US20020150882A1 (en) 2001-04-16 2002-10-17 Andrew Devitt Antibody specific to CD14 and uses thereof
CN101508734A (zh) 2001-04-27 2009-08-19 协和发酵麒麟株式会社 抗cd40单克隆抗体
US6861504B2 (en) 2001-05-03 2005-03-01 Cbr, Inc. Compounds and methods for the modulation of CD154
EP1387634B1 (en) 2001-05-17 2006-05-03 Färgklämman AB Sampling device and method for obtaining samples of internal body substances and method for producing a sampling device
US20030211105A1 (en) 2001-05-18 2003-11-13 Murphy William J Methods for reducing tumor growth and metastasis by inhibiting mcp-1 activity
US20050227935A1 (en) 2001-05-18 2005-10-13 Sirna Therapeutics, Inc. RNA interference mediated inhibition of TNF and TNF receptor gene expression using short interfering nucleic acid (siNA)
US6794379B2 (en) 2001-06-06 2004-09-21 Tularik Inc. CXCR3 antagonists
EP1982636B2 (en) 2001-06-18 2016-09-07 Given Imaging Ltd. In vivo sensing device with a circuit board having rigid sections and flexible sections
US7160258B2 (en) 2001-06-26 2007-01-09 Entrack, Inc. Capsule and method for treating or diagnosing the intestinal tract
GB0118266D0 (en) 2001-07-26 2001-09-19 Powderject Res Ltd Silencing device and method for needleless syringe
US7347817B2 (en) 2001-08-02 2008-03-25 Given Imaging Ltd. Polarized in vivo imaging device, system and method
EP1285922A1 (en) 2001-08-13 2003-02-26 Warner-Lambert Company 1-Alkyl or 1-cycloalkyltriazolo[4,3-a]quinazolin-5-ones as phosphodiesterase inhibitors
US7615234B2 (en) 2001-09-11 2009-11-10 Glide Pharmaceutical Technologies Limited Drug delivery technology
AU2002337105B2 (en) 2001-09-19 2008-03-20 Takeda Gmbh Combination of a NSAID and a PDE-4 inhibitor
WO2003031440A1 (en) 2001-10-12 2003-04-17 Schering Corporation 3,4-di-substituted maleimide compounds as cxc-chemokine receptor antagonists
US20040116675A1 (en) 2001-12-14 2004-06-17 Tso J. Jun Silenced anti-cd28 antibodies and use thereof
US7393934B2 (en) 2001-12-21 2008-07-01 Human Genome Sciences, Inc. Human G-protein chemokine receptor (CCR5) HDGNR10
US20040093621A1 (en) 2001-12-25 2004-05-13 Kyowa Hakko Kogyo Co., Ltd Antibody composition which specifically binds to CD20
US6878709B2 (en) 2002-01-04 2005-04-12 Schering Corporation 3,4-di-substituted pyridazinediones as CXC chemokine receptor antagonists
DE10204789A1 (de) 2002-02-06 2003-08-14 Merck Patent Gmbh Inhibitoren des Integrins alpha¶v¶beta6
JP4498746B2 (ja) 2002-02-14 2010-07-07 イミューノメディクス、インコーポレイテッド 抗cd20抗体およびその融合タンパク質ならびに使用法
MY140561A (en) 2002-02-20 2009-12-31 Nycomed Gmbh Dosage form containing pde 4 inhibitor as active ingredient
US7122185B2 (en) 2002-02-22 2006-10-17 Progenics Pharmaceuticals, Inc. Anti-CCR5 antibody
CA2373854A1 (en) 2002-02-28 2003-08-28 Alain Moreau Methods of diagnosing and counteracting adolescent idiopathic scoliosis
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US20030216551A1 (en) 2002-03-08 2003-11-20 Diabetogen Biosciences Inc. Fully human anti-CD3 monoclonal antibodies
BRPI0308585B8 (pt) 2002-03-13 2021-05-25 Biogen Idec Inc anticorpo isolado ou fragmento de ligação a antígeno do mesmo que se liga à alfavbeta6, composição, método de detecção in vitro de alfavbeta6 e construção de dna
DE10212108A1 (de) 2002-03-13 2003-10-02 Tegenero Ag Verwendung einer an CD28 bindenden Wirksubstanz zur Herstellung einer pharmazeutischen Zusammensetzung
US20030180292A1 (en) 2002-03-14 2003-09-25 Idec Pharmaceuticals Treatment of B cell malignancies using anti-CD40L antibodies in combination with anti-CD20 antibodies and/or chemotherapeutics and radiotherapy
EP1576013A4 (en) 2002-03-22 2008-08-13 Amrad Operations Pty Ltd MONOCLONAL ANTIBODY AGAINST THE INTERLEUKIN-13 RECEPTOR ALPHA 1 (IL-13RA1)
US7797033B2 (en) 2002-04-08 2010-09-14 Smart Pill Corporation Method of using, and determining location of, an ingestible capsule
CN1665839A (zh) 2002-04-10 2005-09-07 应用研究系统Ars股份公司 Mcp蛋白质的新型拮抗剂
US7662094B2 (en) 2002-05-14 2010-02-16 Given Imaging Ltd. Optical head assembly with dome, and device for use thereof
US20040254455A1 (en) 2002-05-15 2004-12-16 Iddan Gavriel J. Magneic switch for use in a system that includes an in-vivo device, and method of use thereof
US20100129363A1 (en) 2002-05-17 2010-05-27 Zeldis Jerome B Methods and compositions using pde4 inhibitors for the treatment and management of cancers
EP1515990B1 (en) 2002-06-12 2007-04-11 Applied Research Systems ARS Holding N.V. Antagonists of cxcr3-binding cxc chemokines
WO2004000814A1 (en) 2002-06-25 2003-12-31 Merck Frosst Canada & Co. 8-(biaryl) quinoline pde4 inhibitors
CA2494104A1 (en) 2002-07-31 2004-04-22 Seattle Genetics, Inc. Anti-cd20 antibody-drug conjugates for the treatment of cancer and immune disorders
AU2003249551A1 (en) 2002-08-13 2004-02-25 Given Imaging Ltd. System for in vivo sampling and analysis
RS20050834A (en) 2002-08-19 2007-12-31 Abgenix Inc., Antibodies directed to monocyte chemo-attractant protein-1 (mcp-1) and uses thereof
EP1400534B1 (en) 2002-09-10 2015-10-28 Affimed GmbH Human CD3-specific antibody with immunosuppressive properties
AU2003262051B2 (en) 2002-09-12 2008-09-25 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Human antihuman MCP-1 antibody and antibody fragment thereof
US7662093B2 (en) 2002-09-30 2010-02-16 Given Imaging, Ltd. Reduced size imaging device
MXPA05003867A (es) 2002-10-09 2005-11-23 Schering Corp Tiadiazoldioxidos y tiadiazoloxidos como ligandos de receptor cxc-y cc-quimiocina.
TWI250312B (en) 2002-10-11 2006-03-01 Delta Electronics Inc Illumination system with multiple lamps
PL216630B1 (pl) 2002-10-17 2014-04-30 Genmab As Izolowane ludzkie przeciwciało monoklonalne wiążące ludzki CD20, związane z tym przeciwciałem transfektoma, komórka gospodarza, transgeniczne zwierzę lub roślina, kompozycja, immunokoniugat, cząsteczka bispecyficzna, wektor ekspresyjny, kompozycja farmaceutyczna, zastosowanie medyczne, zestaw oraz przeciwciało antyidiotypowe i jego zastosowanie
ES2340266T3 (es) 2002-11-12 2010-06-01 Mochida Pharmaceutical Co., Ltd. Kit de analisis para cd14 humana de bajo peso molecular y anticuerpo.
US7608684B2 (en) 2002-11-12 2009-10-27 Mochida Pharmaceuticals Co., Ltd. Soluble CD14 antigen
WO2006006948A2 (en) 2002-11-14 2006-01-19 Dharmacon, Inc. METHODS AND COMPOSITIONS FOR SELECTING siRNA OF IMPROVED FUNCTIONALITY
US7977471B2 (en) 2002-11-14 2011-07-12 Dharmacon, Inc. siRNA targeting TNFα
AU2003291549A1 (en) 2002-11-15 2004-06-15 Morehouse School Of Medicine Anti-chemokine and associated receptors antibodies for inhibition of growth of neoplasms
JP4966497B2 (ja) 2002-11-15 2012-07-04 ゲンマブ エー/エス Cd25に対するヒトモノクローナル抗体
US8658377B2 (en) 2002-11-15 2014-02-25 Morehouse School Of Medicine Detecting cancer with anti-CCL25 and anti-CCR9 antibodies
US9233120B2 (en) 2002-11-15 2016-01-12 Jyant Technologies Anti-CCL25 and anti-CCR9 antibodies for the prevention and treatment of cancer and cancer cell migration
US20070021466A1 (en) 2002-11-18 2007-01-25 Solomon Ungashe CCR2 inhibitors and methods of use thereof
EA010027B1 (ru) 2002-11-27 2008-06-30 Инсайт Корпорейшн Производные 3-аминопирролидина в качестве модуляторов рецепторов хемокинов
US20060079540A1 (en) 2002-11-27 2006-04-13 Altana Pharma Ag Pde4 and pde3/4 inhibitors for use in the treatment of cachexia
US20040253237A1 (en) 2002-12-05 2004-12-16 Ian Walters Methods of treatment of ulcerative colitis with anti-CD3 antibodies
GB0228796D0 (en) 2002-12-11 2003-01-15 Adjuvantix Ltd Valency
US20040115647A1 (en) 2002-12-12 2004-06-17 Paterson Thomas S. Apparatus and method for identifying biomarkers using a computer model
JP2006511554A (ja) 2002-12-13 2006-04-06 スミスクライン ビーチャム コーポレーション Ccr5アンタゴニストとしてのピペリジン誘導体
AU2003285756A1 (en) 2002-12-16 2004-07-09 Given Imaging Ltd. Device, system and method for selective activation of in vivo sensors
CA2510087C (en) 2002-12-16 2018-09-04 Medarex, Inc. Human monoclonal antibodies against interleukin 8 (il-8)
AU2003288517A1 (en) 2002-12-26 2004-07-22 Given Imaging Ltd. In vivo imaging device and method of manufacture thereof
JP2006512130A (ja) 2002-12-26 2006-04-13 ギブン・イメージング・リミテツド 不動化可能な生体内センシング装置
US20050154277A1 (en) 2002-12-31 2005-07-14 Jing Tang Apparatus and methods of using built-in micro-spectroscopy micro-biosensors and specimen collection system for a wireless capsule in a biological body in vivo
DE10302501A1 (de) 2003-01-23 2004-08-05 Roche Diagnostics Gmbh Vorrichtung und Verfahren zur Aufnahme einer Körperflüssigkeit für Analysezwecke
RU2334506C2 (ru) 2003-01-29 2008-09-27 И-Пилл Фарма Лтд. Активная доставка лекарственного средства в желудочно-кишечном тракте
DE10305784A1 (de) 2003-02-12 2004-08-26 Merck Patent Gmbh Verfahren zur Herstellug bicyclischer aromatischer Aminosäuren sowie deren Zwischenprodukte
US20070148162A1 (en) 2003-02-27 2007-06-28 Ranjit Bhardwaj Molecule which binds cd80 and cd86
US20040242498A1 (en) 2003-02-27 2004-12-02 Collins Tassie L. CXCR3 antagonists
US8084582B2 (en) 2003-03-03 2011-12-27 Xencor, Inc. Optimized anti-CD20 monoclonal antibodies having Fc variants
JP4149838B2 (ja) 2003-03-04 2008-09-17 オリンパス株式会社 カプセル型医療装置
US20040185450A1 (en) 2003-03-21 2004-09-23 Heavner George A. MCP-1 mutant proteins, antibodies, compositions, methods and uses
US20040199054A1 (en) 2003-04-03 2004-10-07 Wakefield Glenn Mark Magnetically propelled capsule endoscopy
GB0307863D0 (en) 2003-04-04 2003-05-14 Merck Sharp & Dohme Therapeutic treatment
US7598243B2 (en) 2003-04-17 2009-10-06 Merck & Co., Inc. Heterocyclic cyclopentyl tetrahydroisoquinoline and tetrahydropyridopyridine modulators of chemokine receptor activity
US7611480B2 (en) 2003-04-24 2009-11-03 Levy Mark M Gastrointestinal bioreactor
CA2523501A1 (en) 2003-04-25 2004-11-11 Janssen Pharmaceutica N.V. Preservation of rna in a biological sample
EP1620012B1 (en) 2003-05-01 2012-04-18 Given Imaging Ltd. Panoramic field of view imaging device
EP1626993B1 (en) 2003-05-09 2015-03-11 Duke University Cd20-specific antibodies and methods of employing same
US7247711B2 (en) 2003-05-09 2007-07-24 Centocor, Inc. IL-23p40 specific antibody
AR044388A1 (es) 2003-05-20 2005-09-07 Applied Molecular Evolution Moleculas de union a cd20
AU2004241749B2 (en) 2003-05-22 2010-03-25 Takeda Gmbh Composition comprising a PDE4 inhibitor and a PDE5 inhibitor
WO2005000101A2 (en) 2003-06-12 2005-01-06 University Of Utah Research Foundation Apparatus, systems and methods for diagnosing carpal tunnel syndrome
CA2528551A1 (en) 2003-06-13 2005-01-13 Biogen Idec Ma Inc. Aglycosyl anti-cd154 (cd40 ligand) antibodies and uses thereof
US7460896B2 (en) 2003-07-29 2008-12-02 Given Imaging Ltd. In vivo device and method for collecting oximetry data
US8147832B2 (en) 2003-08-14 2012-04-03 Merck Patent Gmbh CD20-binding polypeptide compositions and methods
US20050065441A1 (en) 2003-08-29 2005-03-24 Arkady Glukhovsky System, apparatus and method for measurement of motion parameters of an in-vivo device
JP4445732B2 (ja) 2003-08-29 2010-04-07 オリンパス株式会社 被検体内導入装置および無線型被検体内情報取得システム
JP2005074031A (ja) 2003-09-01 2005-03-24 Pentax Corp カプセル内視鏡
AR045614A1 (es) 2003-09-10 2005-11-02 Hoffmann La Roche Anticuerpos contra el recepctor de la interleuquina- 1 y los usos de los mismos
EP1600164A3 (de) 2003-09-22 2006-05-17 TeGenero AG Verwendung einer an CD28 bindenden Wirksubstanz zur Herstellung einer Pharmazeutischen Zusammensetzung mit dosisabhängiger Wirkung
EP2380985B1 (en) 2003-09-23 2014-01-01 University of North Carolina at Chapel Hill Cells expressing vitamin K epoxide reductase and use thereof
WO2005030793A2 (en) 2003-09-24 2005-04-07 Millennium Pharmaceuticals, Inc. Antibodies which bind human cxcr3
JP4733918B2 (ja) * 2003-10-01 2011-07-27 オリンパス株式会社 カプセル投薬システム
RU2388472C2 (ru) 2003-10-01 2010-05-10 Мерк Патент Гмбх Антагонисты альфаvбета3 и альфаvбета6 интегринов в качестве антифибротических агентов
EP1677783A2 (en) 2003-10-08 2006-07-12 Nicholas Piramal India Limited Fibrinogen receptor antagonists and their use
AR046594A1 (es) 2003-10-16 2005-12-14 Applied Research Systems Usos terapeuticos de variantes de quemoquina
US8277810B2 (en) 2003-11-04 2012-10-02 Novartis Vaccines & Diagnostics, Inc. Antagonist anti-CD40 antibodies
CN105820160B (zh) 2003-11-05 2019-02-12 萨可德生物科学公司 细胞粘着调节剂
US20050232923A1 (en) 2003-11-05 2005-10-20 Li Yan Methods and compositions for treating MCP-1 related pathologies
DE10352900A1 (de) 2003-11-11 2005-06-16 Tegenero Ag Verwendung einer an CD28 bindenden Wirksubstanz zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung von B-CLL
WO2005046485A1 (en) 2003-11-12 2005-05-26 FäRGKLäMMAN AB Sampling device, method of producing a sampling device and use of a sampling device
EP1530950A1 (en) 2003-11-12 2005-05-18 Färgklämman AB Sampling device and method of producing thereof
US7935793B2 (en) 2003-12-04 2011-05-03 Abbott Biotherapeutics Corp. Treatment of inflammatory bowel diseases with anti-IP-10 antibodies
KR20130133302A (ko) 2003-12-10 2013-12-06 메다렉스, 인코포레이티드 Ip―10 항체 및 그의 용도
GB2423472A (en) 2003-12-11 2006-08-30 Univ Yale Methods and compositions relating to ccr5 antagonist,ifn-&gammed;and il-13 induced inflammation
US9392961B2 (en) 2003-12-17 2016-07-19 Check-Cap Ltd. Intra-lumen polyp detection
MXPA06007205A (es) 2003-12-22 2006-08-31 Schering Corp Dioxidos de isotiazol como ligandos del receptor cxc y cc-quimiocina.
DK1711528T3 (da) 2003-12-23 2012-08-20 Genentech Inc Behandling af cancer med hidtil ukendte anti-il 13 monoklonale antistoffer
PT1707627E (pt) 2003-12-25 2013-01-24 Kyowa Hakko Kirin Co Ltd Mutante antagonista de anticorpo anti-cd40
US7821564B2 (en) 2003-12-30 2010-10-26 Given Imaging Ltd. Assembly for aligning an optical system
US7647090B1 (en) 2003-12-30 2010-01-12 Given Imaging, Ltd. In-vivo sensing device and method for producing same
US8206285B2 (en) 2003-12-31 2012-06-26 Given Imaging Ltd. Apparatus, system and method to indicate in-vivo device location
WO2005062716A2 (en) 2003-12-31 2005-07-14 Given Imaging Ltd. Apparatus, system and method to indicate in-vivo device location
WO2005076965A2 (en) 2004-02-04 2005-08-25 The Trustees Of Columbia University In The City Of New York Anti-cd3 and antigen-specific immunotherapy to treat autoimmunity
US20070122488A1 (en) 2004-02-25 2007-05-31 Erich Windhab Multi-functional microcapsules and method and device for manufacturing same
US7435831B2 (en) 2004-03-03 2008-10-14 Chemocentryx, Inc. Bicyclic and bridged nitrogen heterocycles
EP1575089B1 (en) 2004-03-09 2007-11-14 Infineon Technologies AG Highly reliable, cost effective and thermally enhanced AuSn die-attach technology
US8195276B2 (en) 2004-03-25 2012-06-05 Olympus Corporation In-vivo information acquisition apparatus and in-vivo information acquisition apparatus system
US20050260139A1 (en) 2004-03-30 2005-11-24 Boehringer Ingelheim International Gmbh Pharmaceutical compositions based on anticholinergics and CCR2 receptor antagonists
NZ550217A (en) 2004-03-31 2009-11-27 Genentech Inc Humanized anti-TGF-beta antibodies
CN100376599C (zh) 2004-04-01 2008-03-26 北京安波特基因工程技术有限公司 基因工程重组抗cea抗cd3抗cd28线性单链三特异抗体
US8019413B2 (en) 2007-03-19 2011-09-13 The Invention Science Fund I, Llc Lumen-traveling biological interface device and method of use
US9801527B2 (en) 2004-04-19 2017-10-31 Gearbox, Llc Lumen-traveling biological interface device
US7857767B2 (en) 2004-04-19 2010-12-28 Invention Science Fund I, Llc Lumen-traveling device
EP1740946B1 (en) 2004-04-20 2013-11-06 Genmab A/S Human monoclonal antibodies against cd20
CA2563691A1 (en) 2004-04-23 2005-12-15 University Of Pittsburgh Of The Commonwealth System Of Higher Education Cell death modulation via antagonists of fasl and fas activation
CA2565519A1 (en) 2004-05-12 2005-12-01 Schering Corporation Cxcr1 and cxcr2 chemokine antagonists
US7970455B2 (en) 2004-05-20 2011-06-28 Spectrum Dynamics Llc Ingestible device platform for the colon
AU2005245224A1 (en) 2004-05-21 2005-12-01 Given Imaging Ltd. Device, system and method for in-vivo sampling
US7717874B2 (en) 2004-05-28 2010-05-18 Bioject, Inc. Needle-free injection system
ES2257152B1 (es) 2004-05-31 2007-07-01 Laboratorios Almirall S.A. Combinaciones que comprenden agentes antimuscarinicos y agonistas beta-adrenergicos.
BRPI0511782B8 (pt) 2004-06-03 2021-05-25 Novimmune Sa anticorpos anti-cd3, uso e método de produção dos mesmos, composição farmacêutica, molécula de ácido nucleico isolada e vetor
AR049390A1 (es) 2004-06-09 2006-07-26 Wyeth Corp Anticuerpos contra la interleuquina-13 humana y usos de los mismos
US7938775B2 (en) 2004-06-28 2011-05-10 Given Imaging, Ltd. Device, system, and method for in-vivo analysis
US7643865B2 (en) 2004-06-30 2010-01-05 Given Imaging Ltd. Autonomous in-vivo device
US8500630B2 (en) 2004-06-30 2013-08-06 Given Imaging Ltd. In vivo device with flexible circuit board and method for assembly thereof
WO2006085961A2 (en) 2004-06-30 2006-08-17 Centocor, Inc. Anti-mcp-1 antibodies, compositions, methods and uses
TWI307630B (en) 2004-07-01 2009-03-21 Glaxo Group Ltd Immunoglobulins
AU2005287406B2 (en) 2004-07-26 2011-08-18 Biogen Ma Inc. Anti-CD154 antibodies
JP2008510007A (ja) 2004-08-16 2008-04-03 メディミューン,インコーポレーテッド 抗体依存性細胞性細胞傷害活性が増強されたEph受容体Fc変異体
JP2008512479A (ja) 2004-09-08 2008-04-24 ジェネンテック・インコーポレーテッド デスレセプターリガンド及びcd20抗体の使用方法
NZ553174A (en) 2004-09-08 2010-03-26 Genentech Inc Methods of using death receptor ligands Apo2L/Trail and CD20 antibodies
EP1808499B1 (en) 2004-09-14 2013-06-19 NTN Corporation High-frequency heat treatment apparatus, high-frequency heat treatment process, and high-frequency heat treated article
DK176145B1 (da) 2004-09-23 2006-10-02 Guldmann V As Kobling
AR051444A1 (es) 2004-09-24 2007-01-17 Centocor Inc Proteinas derivadas de inmunoglobulina especifica de il-23p40, composiciones, epitopos, metodos y usos
TW200902555A (en) 2005-01-03 2009-01-16 Hoffmann La Roche Antibodies against IL-13 receptor alpha 1 and uses thereof
US7622583B2 (en) 2005-01-14 2009-11-24 Chemocentryx, Inc. Heteroaryl sulfonamides and CCR2
EP1861007A2 (en) 2005-01-18 2007-12-05 Koninklijke Philips Electronics N.V. Electronically controlled ingestible capsule for sampling fluids in alimentary tract
US8738106B2 (en) 2005-01-31 2014-05-27 Given Imaging, Ltd Device, system and method for in vivo analysis
US8852083B2 (en) 2005-02-04 2014-10-07 Uti Limited Partnership Self-stabilized encapsulated imaging system
CA2597098C (en) 2005-02-08 2016-08-02 Steven R. Ledbetter Antibodies to tgfbeta
US20070043320A1 (en) 2005-02-09 2007-02-22 Kenany Saad A Microstream injector
ITMI20050328A1 (it) 2005-03-03 2006-09-04 Univ Degli Studi Milano Composti peptidomimetrici e preparazione di derivati biologicamente attivi
BRPI0609543B1 (pt) 2005-03-31 2021-11-09 Biomedics Inc Anticorpo monoclonal anti-cd20, hibridoma, anticorpo monoclonal anti-cd20 quimérico, anticorpo monoclonal anti-cd20 humanizado, agente de diagnóstico, e, agente terapêutico
TW200720289A (en) 2005-04-01 2007-06-01 Hoffmann La Roche Antibodies against CCR5 and uses thereof
US20090216082A1 (en) 2005-04-01 2009-08-27 Elisha Rabinovitz Device, System and Method for In Vivo Magnetic Immunoassay Analysis
DE102005015522A1 (de) 2005-04-04 2006-10-05 Karl Storz Gmbh & Co. Kg Intrakorporale Videokapsel mit schwenkbarem Bildaufnehmer
US8475794B2 (en) 2005-04-06 2013-07-02 Ibc Pharmaceuticals, Inc. Combination therapy with anti-CD74 antibodies provides enhanced toxicity to malignancies, Autoimmune disease and other diseases
WO2007054128A1 (en) 2005-11-14 2007-05-18 Dominion Pharmakine S.L. Novel inhibitors of the lfa-1/icam-1 interaction, and uses thereof
GB0507696D0 (en) 2005-04-15 2005-05-25 Novartis Ag Organic compounds
GB0507918D0 (en) 2005-04-19 2005-05-25 Novartis Ag Organic compounds
US8604174B2 (en) 2005-04-20 2013-12-10 Amgen Inc. High affinity fully human monoclonal antibodies to interleukin-8
US20060257411A1 (en) 2005-05-06 2006-11-16 Bruce Beutler Compositions and methods for modulating cells via CD14 and toll-like receptor 4 signaling pathway
CN101171005A (zh) 2005-05-11 2008-04-30 尼科梅德有限责任公司 Pde4抑制剂罗氟司特与四氢生物蝶呤衍生物的组合
US8114964B2 (en) 2005-05-19 2012-02-14 Centocor, Inc. Anti-MCP-1 antibodies, compositions, methods and uses
KR20080022552A (ko) 2005-05-20 2008-03-11 엘란 파마슈티칼스, 인크. Vla―4 길항제로서의 이미다졸론 페닐알라닌 유도체
AP2007004252A0 (en) 2005-05-24 2007-12-31 Avestha Gengraine Tech Pvt Ltd A method for the production of a monoclonal antibody to cd20 for the treatment of B-cell lymphoma
US20110129412A1 (en) 2005-06-02 2011-06-02 Astrazeneca Ab Antibodies Directed to CD20 and Uses Thereof
EP1889908A4 (en) 2005-06-03 2012-04-25 Mochida Pharm Co Ltd PROTEIN FUSED WITH ANTI-CD14 ANTIBODY
PT2163562E (pt) 2005-06-21 2013-12-19 Xoma Us Llc Anticorpos de ligação a il 1 beta e respectivos fragmentos
ES2710289T3 (es) 2005-06-30 2019-04-24 Janssen Biotech Inc Anticuerpos anti-IL-23, composiciones, procedimientos y usos
EP3424421A3 (en) 2005-07-20 2019-03-06 Neil R. Euliano Electronic pill for monitoring medication compliance
WO2007014238A2 (en) 2005-07-25 2007-02-01 Trubion Pharmaceuticals, Inc. Single dose use of cd20-specific binding molecules
NI200800032A (es) 2005-07-25 2009-03-23 Reducción de célula b utilizando moléculas de unión específicas cd37 y cd20
US20070027362A1 (en) 2005-07-27 2007-02-01 Olympus Medical Systems Corp. Infrared observation system
AU2006291005A1 (en) 2005-09-12 2007-03-22 Novimmune S.A. Anti-CD3 antibody formulations
WO2007033291A2 (en) 2005-09-14 2007-03-22 The Trustees Of Columbia University In The City Of New York Regulatory cd8+t cells induced with anti-cd3 antibody
DE602006021044D1 (de) 2005-09-29 2011-05-12 Glaxo Group Ltd Pyrazoloä3,4-büpyridinverbindungen und ihre verwendung als pde4-inhibitoren
CN101282677B (zh) 2005-10-05 2010-07-28 奥林巴斯医疗株式会社 胶囊式医疗装置、其引导系统和引导方法、及被检体内插入装置
GB0520378D0 (en) 2005-10-06 2005-11-16 Novartis Ag Organic compounds
GB0521200D0 (en) 2005-10-19 2005-11-23 Reckitt Benckiser Au Pty Ltd Chemical formulation supply unit for a vapour emanating device
AR058104A1 (es) 2005-10-21 2008-01-23 Novartis Ag Compuestos organicos
US20070092401A1 (en) 2005-10-26 2007-04-26 Feier Liao Devices and methods for sample collection and analysis
LT2926847T (lt) * 2005-11-02 2022-08-10 Medicaltree Patents Ltd. Implantuojamas infuzinis prietaisas su ištraukiama ir įtraukiama adata
EP2298308B1 (en) 2005-11-14 2013-01-16 University Of Southern California Integrin-binding small molecules
US20070161928A1 (en) 2005-11-22 2007-07-12 Stichting Technologisch Top-Instituut Voedselwetenschappen Sampling device for in vivo sampling of liquids from the gastrointestinal tract, process for the production thereof and mould or mask for use in the production process
US8129366B2 (en) 2005-12-13 2012-03-06 Daiichi Sankyo Company, Limited VLA-4 inhibitory drug
US8673873B1 (en) 2005-12-28 2014-03-18 Alcon Research, Ltd. RNAi-mediated inhibition of phosphodiesterase type 4 for treatment of cAMP-related ocular disorders
EP1965698B1 (en) 2005-12-29 2014-02-19 Given Imaging Ltd. System and method of in-vivo magnetic position determination
US7510844B2 (en) 2006-01-24 2009-03-31 Bristol-Myers Squibb Company CD86 and CD80 receptor competition assays
US10344095B2 (en) 2006-02-16 2019-07-09 University Of Kentucky Research Foundation CCR3 inhibition for ocular angiogenesis and macular degeneration
MX2008010988A (es) 2006-02-27 2008-10-20 Elan Pharm Inc Compuestos de pirimidinil sulfonamida que inhiben la adhesion de los leucocitos mediada por vla-4.
JPWO2007102200A1 (ja) 2006-03-07 2009-07-23 国立大学法人大阪大学 抗cd20モノクローナル抗体
ES2544957T3 (es) 2006-03-21 2015-09-07 Genentech, Inc. Terapia combinada que implica antagonistas alfa5beta1
IL182332A (en) 2006-03-31 2013-04-30 Given Imaging Ltd A system and method for assessing a patient's condition
DE102006030434A1 (de) * 2006-05-03 2007-11-08 CFS Bühl GmbH Zuführvorrichtung für einen Traysealer
US7727525B2 (en) 2006-05-11 2010-06-01 City Of Hope Engineered anti-CD20 antibody fragments for in vivo targeting and therapeutics
CA2652094A1 (en) 2006-05-16 2007-11-22 University Of Saskatchewan High-affinity antagonists of elr-cxc chemokines
ATE422375T1 (de) 2006-06-15 2009-02-15 Ela Medical Sa Aktives medizinisches implantat, insbesondere vorrichtung zur stimulation, resynchronisation, defibrillation und/oder kardioversion, die mittel zur prädiktiven warnung über eine verschlimmerung des krankheitszustands des patienten umfasst
WO2007147026A2 (en) 2006-06-15 2007-12-21 Centocor, Inc. Ccr2 antagonists for chronic organ transplantation rejection
RU2009101475A (ru) 2006-06-20 2010-07-27 Конинклейке Филипс Электроникс, Н.В. (Nl) Электронная капсула и способ для лечения желудочно-кишечного заболевания
CA2656224C (en) 2006-06-26 2018-01-09 Macrogenics, Inc. Combination of fc.gamma.riib antibodies and cd20-specific antibodies and methods of use thereof
US20130004480A1 (en) 2006-07-04 2013-01-03 Paul Parren CD20 Binding Molecules for the Treatment of Copd
CN101484166B (zh) 2006-07-05 2012-09-05 奈科明有限责任公司 用于治疗炎症性肺部疾病的HMG-CoA还原酶抑制剂与磷酸二酯酶4抑制剂的组合
CA2657670C (en) 2006-07-14 2012-04-17 Chemocentryx, Inc. Triazolyl pyridyl benzenesulfonamides as ccr2 or ccr9 modulators for the treatment of inflammation
CA2658612C (en) 2006-08-03 2015-11-17 Astrazeneca Ab Antibodies directed to .alpha.v.beta.6 and uses thereof
WO2008022153A2 (en) 2006-08-14 2008-02-21 The Regents Of The University Of California Inhibitors of pde4 and methods of use
TW200817438A (en) 2006-08-17 2008-04-16 Hoffmann La Roche A conjugate of an antibody against CCR5 and an antifusogenic peptide
PT2292663E (pt) 2006-08-28 2013-11-04 Kyowa Hakko Kirin Co Ltd Anticorpos monoclonais humanos antagonistas específicos de light humano
WO2008030482A2 (en) 2006-09-06 2008-03-13 Innurvation Inc System and method for acoustic information exchange involving an ingestible low power capsule
US8213698B2 (en) 2006-09-19 2012-07-03 Capso Vision Inc. Systems and methods for capsule camera control
CN101516257B (zh) 2006-09-25 2012-08-15 皇家飞利浦电子股份有限公司 给药器
ES2606034T3 (es) 2006-09-28 2017-03-17 Merck Sharp & Dohme Corp. IL-10 pegilada para uso en el tratamiento de linfoma
MX2009002694A (es) 2006-09-29 2009-03-24 Hoffmann La Roche Anticuerpos dirigidos contra ccr5 y usos de los mismos.
MX2009003762A (es) 2006-10-05 2009-07-10 Centocor Ortho Biotech Inc Antagonistas del receptor cc-quimiocina 2 para el tratamiento de fibrosis.
US9382327B2 (en) 2006-10-10 2016-07-05 Vaccinex, Inc. Anti-CD20 antibodies and methods of use
US8178100B2 (en) 2006-10-13 2012-05-15 Seoul National University Industry Foundation Antibodies to IP-10 for treating bone diseases with bone destruction
US8597279B2 (en) * 2006-10-31 2013-12-03 Medimetrics Personalized Drug Delivery, Inc. Swallowable multi-nozzle dosing device for releasing medicines in the gastrointestinal tract
CN101534824A (zh) 2006-11-17 2009-09-16 艾博特公司 作为化学活素受体拮抗剂的氨基吡咯烷
US8852172B2 (en) 2006-11-21 2014-10-07 Medimetrics Personalized Drug Delivery Ingestible electronic capsule and in vivo drug delivery or diagnostic system
EP2117104A4 (en) 2007-02-26 2015-08-12 Olympus Medical Systems Corp MAGNETIC ADJUSTABLE MEMBER, METHOD FOR OPERATING A MAGNETIC ADJUSTING MEMBER AND ENCAPSED ENDOSCOPE THEREWITH
CA2678626A1 (en) 2007-02-28 2008-09-04 Novimmune S.A. Anti-ip-10 antibodies and methods of use thereof
US9730573B2 (en) 2007-03-20 2017-08-15 Given Imaging Ltd. Narrow band in-vivo imaging device
MX2009010120A (es) 2007-03-22 2009-10-19 Ucb Pharma Sa Proteinas de union, incluyendo anticuerpos, derivados de anticuerpo y fragmentos de anticuerpo, que se unen especificamente cd154 y sus usos.
JP4932588B2 (ja) 2007-05-08 2012-05-16 オリンパス株式会社 画像処理装置および画像処理プログラム
EP2164871A2 (en) 2007-06-12 2010-03-24 Wyeth a Corporation of the State of Delaware Anti-cd20 therapeutic compositions and methods
CN101687844B (zh) 2007-07-02 2013-11-13 弗·哈夫曼-拉罗切有限公司 用作ccr2受体拮抗剂的咪唑衍生物
CN101820881B (zh) 2007-07-12 2013-05-01 坎莫森特里克斯公司 作为ccr2调节剂用于治疗炎症的稠合杂芳基吡啶基和苯基苯磺酰胺
CA2693863C (en) 2007-07-17 2017-10-03 Merck Patent Gmbh Engineered anti-alpha v- integrin hybrid antibodies
AU2008277796A1 (en) 2007-07-19 2009-01-22 F. Hoffmann-La Roche Ag Novel heterocyclyl compounds and their use as chemokine antagonists
US7977358B2 (en) 2007-07-26 2011-07-12 Hoffmann-La Roche Inc. Pyrazol derivatives
US20090028866A1 (en) 2007-07-27 2009-01-29 John Wayne Cancer Institute USE OF CCR9, CCL25/TECK, AND NITEGRIN alpha4 IN DIAGNOSIS AND TREATMENT OF MELANOMA METASTASIS IN THE SMALL INTESTINE
PL2178916T3 (pl) 2007-07-31 2015-08-31 Regeneron Pharma Ludzkie przeciwciała przeciwko ludzkiemu CD20 i sposób ich zastosowania
CA2697482C (en) 2007-09-05 2016-05-31 F. Hoffmann-La Roche Ag Combination therapy with type i and type ii anti-cd20 antibodies
CN101848999A (zh) 2007-09-06 2010-09-29 国立大学法人大阪大学 抗-cd20单克隆抗体
KR20100050570A (ko) 2007-10-01 2010-05-13 에프. 호프만-라 로슈 아게 Ccr 수용체 길항제로서의 n-헤테로사이클릭 바이아릴 카복스아마이드
US8008092B2 (en) 2007-10-09 2011-08-30 University Of Kentucky Research Foundation CCR3 inhibition for ocular angiogenesis and macular degeneration
EP2050764A1 (en) 2007-10-15 2009-04-22 sanofi-aventis Novel polyvalent bispecific antibody format and uses thereof
US20090098118A1 (en) 2007-10-15 2009-04-16 Thomas Friess Combination therapy of a type ii anti-cd20 antibody with an anti-bcl-2 active agent
CN101918586A (zh) 2007-10-22 2010-12-15 新加坡科技研究局 融合基因
US20090110688A1 (en) 2007-10-24 2009-04-30 Georg Fertig Combination therapy of type ii anti-cd20 antibody with a proteasome inhibitor
US8168829B2 (en) 2007-10-26 2012-05-01 Janssen Pharmaceutica N.V. Synthesis of quaternary salt compounds
ES2620816T3 (es) 2007-11-12 2017-06-29 Novineon Healthcare Technology Partners Gmbh Dispositivo para la detección de hemorragias
EP2628499B1 (en) 2007-11-29 2019-05-22 Boston Scientific Scimed, Inc. Drainage catheter
WO2009076434A1 (en) 2007-12-12 2009-06-18 Molecular Insight Pharmaceuticals, Inc. Inhibitors of integrin vla-4
AU2008343347A1 (en) 2007-12-21 2009-07-09 Genentech, Inc. Crystallization of anti-CD20 antibodies
US7914785B2 (en) 2008-01-02 2011-03-29 Bergen Teknologieverforing As B-cell depleting agents, like anti-CD20 antibodies or fragments thereof for the treatment of chronic fatigue syndrome
EP2235061A1 (en) 2008-01-15 2010-10-06 F. Hoffmann-La Roche AG Afucosylated antibodies against ccr5 and their use
EP2245065A1 (en) 2008-01-23 2010-11-03 Xencor, Inc. Optimized cd40 antibodies and methods of using the same
JP6230772B2 (ja) 2008-02-18 2017-11-15 シュトコ・ツェーン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 患者に対する薬物の投与
US8845535B2 (en) 2008-02-22 2014-09-30 Herbert Michael Pinedo Device for detecting a medical condition or disease
US20100111763A1 (en) 2008-03-18 2010-05-06 Kahn Laurence H Examination Device for Blood Detection
AR072947A1 (es) 2008-03-25 2010-10-06 Glycart Biotechnology Ag Terapia de combinacion de un anticuerpo anti-cd20 de tipo ii con citotoxicidad, celular dependiente de anticuerpos (ccda) aumentada, composicion farmaceutica, anticuerpo anti-cd20 de tipo ii
WO2009137471A2 (en) 2008-05-05 2009-11-12 University Of Miami Azo dye related small molecule modulators of protein-protein interactions
US8636653B2 (en) 2008-06-09 2014-01-28 Capso Vision, Inc. In vivo camera with multiple sources to illuminate tissue at different distances
CA2724890A1 (en) 2008-06-18 2009-12-23 The Smartpill Corporation System and method of evaluating a subject with an ingestible capsule
EP2303391B1 (en) 2008-06-25 2014-08-13 Medimetrics Personalized Drug Delivery B.V. Electronic pill comprising a plurality of medicine reservoirs
EP2296622B1 (en) 2008-07-07 2017-03-22 Medimetrics Personalized Drug Delivery B.V. Electronic pill comprising a medicine reservoir
US8423122B2 (en) 2008-07-10 2013-04-16 Given Imaging Ltd. Localization of capsule with a synthetic source of quadrupoles and dipoles
WO2010003193A1 (en) 2008-07-11 2010-01-14 Phylogica Limited Peptide inhibitors of cd40l signaling and uses therefor
US8262566B2 (en) 2008-07-14 2012-09-11 Given Imaging Ltd. Device and method for uniform in vivo illumination
AU2009270726B2 (en) 2008-07-18 2015-07-09 Bristol-Myers Squibb Company Compositions monovalent for CD28 binding and methods of use
US20110097339A1 (en) 2008-07-18 2011-04-28 Domantis Limited Compositions monovalent for CD28 binding and methods of use
BRPI0916973A2 (pt) 2008-08-18 2016-07-26 Amgen Fremont Inc anticorpos para ccr2
EP2328930B1 (en) 2008-08-20 2014-12-24 Probiodrug AG Antibodies directed against pyroglutamate monocyte chemoattractant protein-1 (mcp-1 n1pe)
US8399630B2 (en) 2008-08-20 2013-03-19 Centocor Ortho Biotech Inc. Engineered anti-IL-13 antibodies, compositions, methods and uses
US20100055098A1 (en) 2008-08-28 2010-03-04 Facet Biotech Corporation Method for treating multiple sclerosis patients with anti-il2r antibodies
EP2166009A1 (en) 2008-09-23 2010-03-24 Genkyo Tex Sa Pyrazolo pyridine derivatives as nadph oxidase inhibitors
ES2657220T3 (es) 2008-10-02 2018-03-02 Aptevo Research And Development Llc Proteínas de unión multi-diana antagonistas de CD86
NZ592436A (en) 2008-11-06 2012-10-26 Glenmark Pharmaceuticals Sa Treatment with anti-alpha2 integrin antibodies
RS55784B1 (sr) 2008-11-11 2017-07-31 Univ Michigan Regents Anti-cxcr1 kompozicije i postupci
ES2957546T3 (es) 2008-12-17 2024-01-22 Merck Sharp & Dohme Producción de mono- y di-PEG-IL10; y usos
CA2747326C (en) 2008-12-22 2017-05-16 Millennium Pharmaceuticals, Inc. Combination of aurora kinase inhibitors and anti-cd20 antibodies
FR2940616A1 (fr) 2008-12-30 2010-07-02 Lfb Biotechnologies Utilisation d'un anticorps anti-cd20 pour le traitement du lymphome primaire intraoculaire.
BRPI1005285A2 (pt) 2009-01-29 2020-09-01 Given Imaging Ltda dispositivo, sistema e método de detecção de sangramento
WO2010093480A2 (en) 2009-02-16 2010-08-19 Biolex Therapeutics, Inc. Humanized anti-cd20 antibodies and methods of use
DE102009009165B4 (de) 2009-02-16 2018-12-27 Siemens Healthcare Gmbh Verfahren und Vorrichtung zur Bestimmung eines von einer Endoskopiekapsel in einem Patienten zurückgelegten Weges
EA201190132A1 (ru) 2009-02-23 2013-01-30 Гленмарк Фармасьютикалс С.А. Гуманизированные антитела, связывающиеся с cd19, и их применение
US20110306055A1 (en) 2009-02-25 2011-12-15 Diagnocure Inc. Method for Detecting Metastasis of GI Cancer
EP2400962B1 (de) 2009-02-27 2017-11-08 Boehringer Ingelheim International GmbH Arzneimittelkombinationen enthaltend pde4-inhibitoren und nsaids
WO2010097332A1 (de) 2009-02-27 2010-09-02 Boehringer Ingelheim International Gmbh Arzneimittelkombinationen enthaltend pde4-inhibitoren und nsaids
US8696602B2 (en) 2009-03-31 2014-04-15 Given Imaging, Inc. Method of determining body exit of an ingested capsule
KR100931946B1 (ko) 2009-06-10 2009-12-15 주식회사 인트로메딕 캡슐 내시경에 의해 촬영된 이미지 데이터를 저장하고 있는 서버로부터 관심있는 데이터를 우선하여 단말기에 수신하여 확인할 수 있도록 하는 서버-클라이언트 시스템의 이미지 데이터 전송 프로세싱 방법
US20120184827A1 (en) 2009-06-16 2012-07-19 Shoulamit Cohen Shwartz Miniature disease optical spectroscopy diagnostic system
CN101967192B (zh) 2009-07-28 2013-01-23 中国医学科学院医药生物技术研究所 抗cd20抗体片段与力达霉素的融合蛋白、制备方法及其用途
JP6030956B2 (ja) 2009-08-05 2016-11-24 テル ハショマー メディカル リサーチ インフラストラクチャー アンド サーヴィシーズ リミテッド 胃腸管の異常の診断に使える情報を提供する方法と機器
US20110038871A1 (en) 2009-08-11 2011-02-17 Veena Viswanth Ccr2 inhibitors for treating conditions of the eye
MX2012001783A (es) 2009-08-14 2012-05-22 Roche Glycart Ag Terapia combinatoria de un anticuerpo anti-cd20 afucosilado con fludarabina y/o mitoxantrona.
TWI409079B (zh) 2009-08-14 2013-09-21 Roche Glycart Ag 非典型岩藻醣化cd20抗體與苯達莫斯汀(bendamustine)之組合療法
PL2470671T3 (pl) 2009-08-28 2015-05-29 Regeneron Pharma Przeciwciała antykinowe wiążące się z wieloma chemokinami CC
US20130018279A1 (en) 2009-09-01 2013-01-17 Pathway Genomics "blood sample collection apparatus and kits"
FR2951176A1 (fr) 2009-10-09 2011-04-15 Tcl Pharma Ligands monovalents du recepteur cd28 humain
CA2775595A1 (en) 2009-10-20 2011-04-28 Abbott Laboratories Isolation and purification of anti-il-13 antibodies using protein a affinity chromatography
EP2490714A4 (en) 2009-10-20 2013-11-13 Glaxo Group Ltd ASSAY OF ANTI-CD3 ANTIBODIES IN AUTOIMMUNE DISEASES
US20110091824A1 (en) 2009-10-20 2011-04-21 Vinayak Barve Method of operating a multi-fuel combustion system
EP2494351B1 (en) 2009-10-26 2016-06-08 Externautics S.p.A. Colon and rectal tumor markers and methods of use thereof
US9026192B2 (en) 2009-11-24 2015-05-05 Given Imaging Ltd Device and method for in vivo imaging
AU2010336330B2 (en) * 2009-12-24 2016-04-28 Rani Therapeutics, Llc Swallowable drug delivery device and methods of drug delivery
US8296093B2 (en) 2009-12-30 2012-10-23 Infineon Technologies Ag Semiconductor device with thermal fault detection
US20160208011A1 (en) 2010-01-28 2016-07-21 The Board Of Trustees Of The Leland Stanford Junior University Ccr3 modulation in the treatment of aging-associated impairments, and compositions for practicing the same
CN102933231B (zh) 2010-02-10 2015-07-29 伊缪诺金公司 Cd20抗体及其用途
AR080155A1 (es) 2010-02-10 2012-03-14 Immunogen Inc Anticuerpos anti-cd20 y su utilizacion
ITFI20100019A1 (it) 2010-02-12 2011-08-13 Univ Firenze Inibitori peptidomimetici di integrine basati sull'1,2,3-triazolo per la diagnosi e terapia dei tumori.
SI2536764T1 (sl) 2010-02-18 2018-11-30 Ose Immunotherapeutics Humanizirna protitelesa anti-CD28
CN102933604B (zh) 2010-02-23 2016-04-06 赛诺菲 抗-α2整联蛋白抗体及其用途
US8569450B2 (en) 2010-03-03 2013-10-29 Health Research Inc. CD3 epsilon immunogens and antibodies
US9616120B2 (en) 2010-03-04 2017-04-11 Vet Therapeutics, Inc. Monoclonal antibodies directed to CD20
US20130013031A1 (en) 2010-03-17 2013-01-10 Photopill Medical Ltd. Capsule phototherapy
CN102190728B (zh) 2010-03-17 2014-07-02 永卓博济(上海)生物医药技术有限公司 一种人源化抗cd20单克隆抗体
EP2547693B1 (en) 2010-03-19 2015-03-11 H. Lee Moffitt Cancer Center & Research Institute Integrin interaction inhibitors for the treatment of cancer
SI3178851T1 (sl) 2010-03-31 2020-09-30 Boehringer Inhelheim International Gmbh Anti-CD40 protitelesa
EP2555773A1 (de) 2010-04-08 2013-02-13 Boehringer Ingelheim International GmbH Arzneimittelkombinationen enthaltend pde4-inhibitoren und ep4-rezeptor-antagonisten
US20130225609A1 (en) 2010-04-08 2013-08-29 Boehringer Ingelheim International Gmbh Combinations of medicaments, containing pde4-inhibitors and ep4-receptor-antagonists
MX342590B (es) 2010-04-27 2016-10-05 Roche Glycart Ag Terapia de combinacion de un anticuerpo cd20 afucosilado con un inhibidor mtor.
WO2011135544A2 (en) 2010-04-29 2011-11-03 Nasvax Ltd. Methods and compositions for treating hepatitis with anti-cd3 immune molecule therapy
JP2013525435A (ja) 2010-04-30 2013-06-20 エラン ファーマシューティカルズ,インコーポレイテッド 選択的インテグリン阻害剤
TW201208703A (en) 2010-08-17 2012-03-01 Roche Glycart Ag Combination therapy of an afucosylated CD20 antibody with an anti-VEGF antibody
GB201013989D0 (en) 2010-08-20 2010-10-06 Univ Southampton Biological materials and methods of using the same
AR083847A1 (es) 2010-11-15 2013-03-27 Novartis Ag Variantes de fc (fragmento constante) silenciosas de los anticuerpos anti-cd40
WO2012066553A1 (en) 2010-11-16 2012-05-24 Given Imaging Ltd. In-vivo imaging device and method for performing spectral analysis
US9415004B2 (en) 2010-12-23 2016-08-16 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8809271B2 (en) 2010-12-23 2014-08-19 Rani Therapeutics, Llc Therapeutic agent preparations comprising liraglutide for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8969293B2 (en) 2010-12-23 2015-03-03 Rani Therapeutics, Llc Therapeutic agent preparations comprising exenatide for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
CA2822775A1 (en) 2011-01-04 2012-07-12 Charite Universitatsmedizin Berlin Modulators of il-12 and/or il-23 for the prevention or treatment of alzheimer's disease
EP2661448A4 (en) 2011-01-07 2015-09-16 Abbvie Inc ANTI-IL-12 / IL-23 ANTIBODIES AND USES THEREOF
US20120208755A1 (en) * 2011-02-16 2012-08-16 Intarcia Therapeutics, Inc. Compositions, Devices and Methods of Use Thereof for the Treatment of Cancers
PT3556774T (pt) 2011-03-11 2024-02-29 Beth Israel Deaconess Medical Ct Inc Anticorpos anti-cd40 e suas utilizações
WO2012137705A1 (ja) 2011-04-01 2012-10-11 オリンパスメディカルシステムズ株式会社 受信装置及びカプセル型内視鏡システム
US9028826B2 (en) 2011-04-04 2015-05-12 The Trustees Of Dartmouth College Methods of immune therapy with anti-CD154 antibodies having impaired FcR binding and/or complement binding properties
CA2832281C (en) 2011-04-04 2019-11-05 Trustees Of Dartmouth College Anti-cd154 antibodies having impaired fcr binding and/or complement binding properties and the use thereof in immune therapies
US8586384B2 (en) 2011-04-05 2013-11-19 Olympus Corporation Method of collecting duodenal specimen to detect upper digestive system disease without using pancreatic or bile stimulant
WO2012138880A2 (en) 2011-04-07 2012-10-11 The Brigham And Women's Hospital, Inc. Methods of treating inflammatory diseases by targeting the chemoattractant cytokine receptor 2 (ccr2) or chemokine (c-c motif) ligand 2 (ccl2)
BR112013027867A2 (pt) 2011-04-29 2016-09-06 Bristol Myers Squibb Co "método de detectar o nível de um anticorpo anti-ip10 em amostra, anticorpo monoclonal isolado ou porção de ligação de antígeno do mesmo, linhagem de célula de hibridoma e kit"
SG10201509588TA (en) 2011-05-21 2015-12-30 Macrogenics Inc CD3-Binding Molecules Capable Of Binding To Human And Non-Human CD3
US9434766B2 (en) 2011-06-27 2016-09-06 Universite Pierre Et Marie Curie (Paris 6) CCR2 antagonist peptides
EP3653224A1 (en) * 2011-06-29 2020-05-20 Rani Therapeutics, LLC Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
KR20140061379A (ko) 2011-07-06 2014-05-21 모르포시스 아게 항­cd20 및 항­gm­csf 항체의 치료 조합물 및 이의 용도
EP2734236A4 (en) 2011-07-13 2015-04-15 Abbvie Inc METHOD AND COMPOSITIONS FOR TREATING ASTHMA WITH ANTI-IL-13 ANTIBODIES
US20140206956A1 (en) 2011-08-04 2014-07-24 Elisha Rabinovitz Device, system and method for in-vivo immunoassay
MX352546B (es) 2011-08-17 2017-11-29 Piramal Imaging Sa Compuesto para la union de glicoproteina iib/iiia especifica a plaquetas y su uso para la formacion de imagenes de un trombo.
CA2848162C (en) 2011-09-12 2023-03-14 Creatics Llc Non-invasive methods of detecting target molecules
US8884006B2 (en) 2011-09-19 2014-11-11 University Of Puerto Rico Small-molecule inhibitors of Rac1 in metastatic breast cancer
US8801630B2 (en) 2011-09-30 2014-08-12 Olympus Medical Systems Corp. Method of taking out liquid present inside subject therefrom
JO3370B1 (ar) 2011-11-10 2019-03-13 Regeneron Pharma طريقة لتثبيط نمو الورم عن طريق تثبيط مستقبل انترلوكين 6
EP2591782A1 (en) 2011-11-11 2013-05-15 Johann Wolfgang Goethe-Universität Nadph oxidase 4 inhibitors and use thereof
CN104271028B (zh) 2011-12-15 2017-11-17 基文影像公司 确定患者的胃肠道随时间的出血曲线的类型的系统
US9795330B2 (en) 2011-12-15 2017-10-24 Given Imaging Ltd. Device, system and method for in-vivo detection of bleeding in the gastrointestinal tract
US20140004037A1 (en) 2012-01-19 2014-01-02 Therapeutic Proteins, Inc. Stabilization of the anti-cd20 antibody rituximab
EP2819584B1 (en) 2012-02-17 2020-04-08 Progenity, Inc. Ingestible medical device
WO2013130913A1 (en) 2012-02-29 2013-09-06 Ambrx, Inc. Interleukin-10 polypeptide conjugates and their uses
US20130315913A1 (en) 2012-03-26 2013-11-28 Sanofi Anti-light antibody therapy for inflammatory bowel disease
LT2659881T (lt) 2012-04-30 2018-02-12 Tillotts Pharma Ag Uždelsto atpalaidavimo vaisto forma
WO2013188693A1 (en) 2012-06-15 2013-12-19 Imaginab, Inc. Antigen binding constructs to cd3
WO2013192596A2 (en) 2012-06-22 2013-12-27 Sorrento Therapeutics Inc. Antigen binding proteins that bind ccr2
US20150224190A1 (en) 2012-07-06 2015-08-13 Mohamed Bentires-Alj Combination of a phosphoinositide 3-kinase inhibitor and an inhibitor of the IL-8/CXCR interaction
WO2014026054A2 (en) 2012-08-10 2014-02-13 University Of Southern California CD20 scFv-ELPs METHODS AND THERAPEUTICS
US9131842B2 (en) 2012-08-16 2015-09-15 Rock West Solutions, Inc. System and methods for locating relative positions of multiple patient antennas
CN111481552A (zh) 2012-09-07 2020-08-04 吉宁特有限公司 II型抗CD20抗体与选择性Bcl-2抑制剂的组合治疗
KR101452865B1 (ko) 2012-09-17 2014-10-21 서울대학교산학협력단 신규한 ip-10 에피토프 및 이에 대한 항체
JOP20200236A1 (ar) 2012-09-21 2017-06-16 Regeneron Pharma الأجسام المضادة لمضاد cd3 وجزيئات ربط الأنتيجين ثنائية التحديد التي تربط cd3 وcd20 واستخداماتها
AU2013327638B2 (en) 2012-10-01 2018-06-14 Mayo Foundation For Medical Education And Research Cancer treatments
US8865723B2 (en) 2012-10-25 2014-10-21 Tetra Discovery Partners Llc Selective PDE4 B inhibition and improvement in cognition in subjects with brain injury
US20150232558A1 (en) 2012-10-30 2015-08-20 Emory University Stimulating bone formation by inhibition of cd28 co-stimulation
BR112015009879A8 (pt) 2012-11-02 2019-09-17 Lab Francais Du Fractionnement método in vitro de inibição da proliferação de uma população de células, composto, kit e composição farmacêutica
DE102012025143A1 (de) 2012-11-07 2014-05-08 Heraeus Medical Gmbh Verfahren zur Wirkstofffreisetzung und Wirkstofffreisetzungssysteme
EP2916868B1 (en) 2012-11-08 2022-05-11 Rhizen Pharmaceuticals S.A. Pharmaceutical compositions containing a pde4 inhibitor and a pi3 delta or dual pi3 delta-gamma kinase inhibitor
US8491495B1 (en) 2012-11-16 2013-07-23 L. Zane Shuck Human intestinal tract research and diagnostic system to evaluate patients and advance medical science and bioengineering and to determine processes in the gut and causes of diseases
JP2016502526A (ja) 2012-11-16 2016-01-28 ノバルティス アーゲー 末梢動脈疾患を処置するためのIL−1β結合抗体の使用
US8915863B2 (en) 2012-11-16 2014-12-23 L. Zane Shuck In vivo device and method for researching GI tract processes, microbes, and variables associated with illnesses and diseases
US8926526B2 (en) 2012-11-30 2015-01-06 L. Zane Shuck Patient in vivo gut diagnostic and treatment tool
WO2014095808A1 (en) 2012-12-17 2014-06-26 Delenex Therapeutics Ag Antibodies against il-1 beta
WO2014122660A1 (en) 2013-02-11 2014-08-14 Mor Research Applications Ltd. Cd14 inhibitors as an effective treatment for hcv infection
RS60280B1 (sr) 2013-03-12 2020-06-30 Molecular Templates Inc Citotoksični proteini koji sadrže ciljane vezujuće regione za ćelije i regioni shiga toksina a podjedinice za selektivno ubijanje određenih vrsta ćelija
US9759640B2 (en) 2013-03-14 2017-09-12 Spot On Sciences, Inc. Biological sample collection and preservation
CA2904527A1 (en) 2013-03-15 2014-09-18 Abbvie Biotechnology Ltd. Anti-cd25 antibodies and their uses
EP2970488A2 (en) 2013-03-15 2016-01-20 AbbVie Biotechnology Ltd Anti-cd25 antibodies and their uses
US9290570B2 (en) 2013-03-15 2016-03-22 Eli Lilly And Company Pan-ELR+ CXC Chemokine Antibodies
GB201304738D0 (en) 2013-03-15 2013-05-01 Mars Inc Sampling Device
CA2909230C (en) 2013-04-12 2021-06-15 Kyoto University Method for inducing alveolar epithelial progenitor cells
US20160060347A1 (en) 2013-04-17 2016-03-03 Morphosys Ag Antibodies targeting specifically human cxcr2
TWI679019B (zh) 2013-04-29 2019-12-11 法商賽諾菲公司 抗il-4/抗il-13之雙特異性抗體調配物
ES2693370T3 (es) 2013-05-02 2018-12-11 F. Hoffmann-La Roche Ag Politerapia de un anticuerpo CD20 afucosilado con un conjugado de anticuerpo CD22-fármaco
ES2653424T3 (es) 2013-05-02 2018-02-07 F. Hoffmann-La Roche Ag Tratamiento combinado de un anticuerpo CD20 afucosilado con un conjugado de anticuerpo CD79b y fármaco
WO2014184384A1 (en) 2013-05-17 2014-11-20 Centre National De La Recherche Scientifique (Cnrs) Anti-cxcl1, cxcl7 and cxcl8 antibodies and their applications
CA2912443A1 (en) 2013-05-23 2014-11-27 Shire Human Genetic Therapies, Inc. Anti-ccl2 and anti-loxl2 combination therapy for treatment of scleroderma
US20140349944A1 (en) 2013-05-23 2014-11-27 Musc Foundation For Research Development Chaperone-based integrin inhibitors for the treatment of cancer and inflammatory diseases
JP6377153B2 (ja) 2013-06-25 2018-08-22 デジタルダイレクト・アイアール、インク サイドスキャン赤外線撮像装置
KR102531517B1 (ko) 2013-07-05 2023-05-12 젠맵 에이/에스 인간화 또는 키메라 cd3 항체
US10046002B2 (en) 2013-08-02 2018-08-14 Syntrix Biosystems Inc. Method for treating cancer using chemokine antagonists
US9324145B1 (en) 2013-08-08 2016-04-26 Given Imaging Ltd. System and method for detection of transitions in an image stream of the gastrointestinal tract
EP3033082B1 (en) 2013-08-16 2021-06-16 Universiteit Maastricht Treatment of cognitive impairment with pde4 inhibitor
PL226431B1 (pl) 2013-08-23 2017-07-31 Inst Biochemii I Biofizyki Polskiej Akademii Nauk Cząsteczka miRNA do zastosowania do wytwarzania leku do zmniejszania reakcji zapalnej lub zapobiegania zwiększaniu się reakcji zapalnej organizmu
CN111097097A (zh) 2013-09-26 2020-05-05 宝珍那提公司 具有阈值释放装置的传送胶囊
JP2016538328A (ja) 2013-09-27 2016-12-08 シェール, ジャスティンSHER, Justin Pde4阻害、ドーパミン代謝向上、および長期増強のための機能性食品組成物
ITMI20131658A1 (it) 2013-10-08 2015-04-09 Getters Spa Combinazione di materiali per dispositivi di rilascio di mercurio e dispositivi contenenti detta combinazione di materiali
TR201907240T4 (tr) 2013-11-07 2019-06-21 Hoffmann La Roche Bir anti cd20 antikorunun bir btk inhibitörü ile kombinasyon tedavisi.
TWI736515B (zh) 2013-11-13 2021-08-21 美商輝瑞大藥廠 類腫瘤壞死因子之配體1a之專一性抗體及其組合物及用途
UA120753C2 (uk) 2013-12-17 2020-02-10 Дженентек, Інк. Біспецифічне антитіло до сd3 та cd20
US20160249793A1 (en) 2013-12-27 2016-09-01 Kang-Huai Wang Capsule Camera Device with Multi-Spectral Light Sources
US20160375101A1 (en) 2014-01-15 2016-12-29 Armo Biosciences, Inc. Methods of Using Interleukin-10 for Treating Diseases and Disorders
EP3107564A4 (en) 2014-02-18 2017-08-30 CytoDyn Inc. Use of anti-ccr5 antibodies in graft versus host disease
EP3114139B1 (en) 2014-03-04 2022-06-15 Chemomab Ltd. Anti eotaxin-2 antibodies that recognize additional ccr3-binding chemokines
US11142584B2 (en) 2014-03-11 2021-10-12 Molecular Templates, Inc. CD20-binding proteins comprising Shiga toxin A subunit effector regions for inducing cellular internalization and methods using same
US20170107294A1 (en) 2014-03-21 2017-04-20 Nordlandssykehuset Hf Anti-cd14 antibodies and uses thereof
EP3124005B1 (en) 2014-03-28 2019-12-11 Terumo Kabushiki Kaisha Packaged drug-filled container
DE102014004843A1 (de) 2014-04-02 2015-10-08 Schaltbau Gmbh Gleichstromschütz mit zusätzlicher Schalttauglichkeit für Wechselstromlasten und Polung entgegen der Vorzugsstromrichtung
WO2015175773A1 (en) 2014-05-15 2015-11-19 Celgene Corporation Use of pde4 inhibitors and combinations thereof for the treatment of cystic fibrosis
KR20220151036A (ko) 2014-05-27 2022-11-11 아카데미아 시니카 항-cd20 글리코항체 및 이의 용도
CR20160557A (es) 2014-05-29 2017-01-20 Glaxosmithkline Ip Dev Ltd Compuestos derivados de 1-(ciclopent-2-en-1-il)-3-(2-hidroxi-3-(arilsulfonil)fenil)urea como inhibidores cxcr2
EP3725357A1 (en) * 2014-06-11 2020-10-21 Massachusetts Institute Of Technology Residence structures and related methods
FR3022142B1 (fr) 2014-06-16 2019-07-12 Universite Paul Sabatier - Toulouse Iii Inhibition de la chimiokine ccl7 ou de son recepteur ccr3 pour le traitement et le diagnostic du cancer de la prostate
WO2016014974A2 (en) 2014-07-25 2016-01-28 Cytomx Therapeutics, Inc. Anti-cd3 antibodies, activatable anti-cd3 antibodies, multispecific anti-cd3 antibodies, multispecific activatable anti-cd3 antibodies, and methods of using the same
CN106660950A (zh) 2014-07-31 2017-05-10 葛兰素史密斯克莱知识产权发展有限公司 Cxcr2拮抗剂用于预防和/或治疗化疗诱导的周围神经病变(cipn)的用途
US20160066855A1 (en) 2014-09-05 2016-03-10 Elwha LLC, a limited liability company of the State of Delaware Systems, methods, and devices addressing the gastro-intestinal tract
SG11201702308TA (en) 2014-09-25 2017-04-27 Progenity Inc Electromechanical pill device with localization capabilities
SG11201702383SA (en) 2014-09-30 2017-04-27 Bristol Myers Squibb Co Methods of treating systemic lupus erythematosus using a domain antibody directed against cd28
WO2016054015A1 (en) 2014-09-30 2016-04-07 The Regents Of The University Of California Active agent delivery devices and methods of using the same
US10300259B2 (en) * 2014-10-22 2019-05-28 Purdue Research Foundation Smart capsule with GI-tract-location-specific payload release
US10064544B2 (en) 2015-01-26 2018-09-04 The Chinese University Of Hong Kong Endoscopic capsule and endoscopic system
US20160272702A1 (en) 2015-03-18 2016-09-22 University Of South Carolina Anti-ccl8 therapy for breast cancer
DK4089113T3 (da) 2015-03-31 2024-02-05 Sorriso Pharmaceuticals Inc Polypeptider
SG11201708191XA (en) 2015-04-08 2017-11-29 Novartis Ag Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car) - expressing cell
PT3302549T (pt) 2015-05-26 2019-09-09 H Hoffnabb La Roche Ag Terapêutica combinada de um anticorpo anti-cd20 com um inibidor de bcl-2 e um inibidor de mdm2
US10827953B2 (en) 2015-06-02 2020-11-10 Given Imaging Ltd. Devices, systems and methods for in-vivo immunoassay
EP3307768A1 (en) 2015-06-12 2018-04-18 Novo Nordisk A/S Selective pyy compounds and uses thereof
EP3108810A1 (en) 2015-06-23 2016-12-28 Valtronic Technologies (Holding) SA Ingestible device for measuring glucose concentration
US20180193621A1 (en) 2015-06-30 2018-07-12 Entrega Inc. Device for oral delivery of active agents
JP2017012395A (ja) 2015-06-30 2017-01-19 富士フイルム株式会社 内視鏡システム及び内視鏡システムの作動方法
ES2812303T3 (es) 2015-07-10 2021-03-16 Merus Nv Anticuerpo que se une a CD3 humano
TWI724056B (zh) 2015-11-19 2021-04-11 美商卡默森屈有限公司 Cxcr2抑制劑
EP3383903A1 (en) 2015-11-30 2018-10-10 Bristol-Myers Squibb Company Anti human ip-10 antibodies and their uses
US10610351B2 (en) 2016-03-08 2020-04-07 Picocyl Gas canisters and methods for making them
RS61412B1 (sr) 2016-03-17 2021-03-31 Tillotts Pharma Ag Anti-tnf alfa-antitela i njihovi funkcionalni fragmenti
SG11201807402PA (en) 2016-03-31 2018-09-27 Vhsquared Ltd Compositions
EP3463366A4 (en) 2016-06-07 2020-01-08 Dermavant Sciences GmbH TOPICAL FORMULATIONS OF PDE-4 INHIBITORS AND METHODS OF USE THEREOF
CA3034263A1 (en) 2016-08-18 2018-02-22 Mitchell Lawrence Jones Sampling systems and related materials and methods
KR20230042759A (ko) * 2016-09-09 2023-03-29 비오라 쎄라퓨틱스, 인크. 분배가능한 물질의 전달을 위한 전자기계식 섭취가능한 디바이스
CN109715076B (zh) 2016-09-15 2022-03-08 宝珍那提公司 流体取样装置
WO2018111326A1 (en) * 2016-12-14 2018-06-21 Progenity Inc. Methods and ingestible devices for the regio-specific release of immunosuppressants at the site of gastrointestinal tract disease
CN106725634B (zh) * 2017-01-23 2024-01-16 天津医科大学总医院 肠道微生物采集胶囊
US20200094031A1 (en) * 2017-03-30 2020-03-26 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with a chst15 inhibitor
EP3900613B1 (en) 2017-03-31 2023-12-27 Biora Therapeutics, Inc. Localization methods for an ingestible device
JP7219723B2 (ja) 2017-05-17 2023-02-08 マサチューセッツ インスティテュート オブ テクノロジー 自己復元システムならびに関連構成要素および方法
EP3765138A1 (en) 2018-03-13 2021-01-20 Progenity, Inc. Ingestible device with relatively large payload volume
TWI705820B (zh) * 2018-06-22 2020-10-01 美商美國禮來大藥廠 Gip/glp1促效劑組合物
US20210213263A1 (en) 2018-08-23 2021-07-15 Baywind Bioventures Capsule device for delivery of active agent to gastrointestinal tract
KR20210095165A (ko) 2018-11-19 2021-07-30 프로제너티, 인크. 바이오의약품으로 질환을 치료하기 위한 방법 및 디바이스
WO2020157324A1 (en) 2019-02-01 2020-08-06 Novo Nordisk A/S Medical device with actuation mechanism
US11771829B2 (en) 2019-02-01 2023-10-03 Massachusetts Institute Of Technology Systems and methods for liquid injection

Also Published As

Publication number Publication date
CN113348011A (zh) 2021-09-03
US20210283385A1 (en) 2021-09-16
JP7482866B2 (ja) 2024-05-14
WO2020106754A1 (en) 2020-05-28
CN116726362A (zh) 2023-09-12
WO2020106704A3 (en) 2020-07-02
US20210038872A1 (en) 2021-02-11
JP2022509129A (ja) 2022-01-20
EP3883636A1 (en) 2021-09-29
AU2019383976A1 (en) 2021-06-10
US20220249814A1 (en) 2022-08-11
EP3883634A1 (en) 2021-09-29
WO2020106704A2 (en) 2020-05-28
US11439802B2 (en) 2022-09-13
EP3883635A1 (en) 2021-09-29
CN116726361A (zh) 2023-09-12
IL283268B1 (en) 2024-05-01
WO2020106757A1 (en) 2020-05-28
KR20210095165A (ko) 2021-07-30
US11007356B2 (en) 2021-05-18
CA3120619A1 (en) 2020-05-28
IL283268A (en) 2021-07-29
WO2020106750A1 (en) 2020-05-28
CN113348011B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
US11439802B2 (en) Ingestible device for delivery of therapeutic agent to the gastrointestinal tract
EP3870261B1 (en) Ingestible device for delivery of therapeutic agent to the gastrointestinal tract
JP6716668B2 (ja) リンパ組織に幹細胞および前駆細胞が結合することを阻害する組成および方法、ならびにリンパ組織の胚中心を再生させるための組成および方法
US20210299214A1 (en) Use of PRG4 as an Anti-Inflammatory Agent
CN111225686A (zh) 使用可摄入装置释放免疫调节剂治疗炎性疾病
TW202005981A (zh) 高親和性、異構體選擇性之TGFβ1抑制劑及其用途
JP2011057670A (ja) 自己免疫障害を処置するためのグルカゴン様ペプチド−1受容体(glp−1r)アゴニスト
CA2778334A1 (en) Anti-cd3 antibody dosing in autoimmune disease
Wei et al. Development of a Janus kinase inhibitor prodrug for the treatment of rheumatoid arthritis
JP2021113190A (ja) 移植片拒絶の予防に使用するための抗cd40抗体
WO2019087094A1 (en) Anti-cd40 antibodies for use in treatment of sjögren's syndrome
US20220257606A1 (en) Method for treatment of muscular dystrophy
JP2022116272A (ja) T1dm及び膵島炎の治療に使用するための抗cd40抗体

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEAM CONSULTING LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUDGE, EDWARD;SALT, NICHOLAS MARK;STEVENS, NIA ELERI;AND OTHERS;SIGNING DATES FROM 20210615 TO 20210623;REEL/FRAME:056965/0011

Owner name: PROGENITY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEAM CONSULTING LIMITED;REEL/FRAME:056963/0313

Effective date: 20210624

AS Assignment

Owner name: PROGENITY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEAM CONSULTING LIMITED;REEL/FRAME:057033/0956

Effective date: 20210624

AS Assignment

Owner name: PROGENITY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHIMIZU, JEFFREY A.;JONES, MITCHELL LAWRENCE;DRLIK, MARK SASHA;AND OTHERS;SIGNING DATES FROM 20150518 TO 20211123;REEL/FRAME:058244/0282

AS Assignment

Owner name: BIORA THERAPEUTICS, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:PROGENITY, INC.;REEL/FRAME:060382/0322

Effective date: 20220426

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: GLAS TRUST COMPANY LLC, AS COLLATERAL AGENT, NEW JERSEY

Free format text: SECURITY INTEREST;ASSIGNOR:BIORA THERAPEUTICS, INC.;REEL/FRAME:066089/0235

Effective date: 20231219