US20170362119A1 - Transparent, near infrared-shielding glass ceramic - Google Patents
Transparent, near infrared-shielding glass ceramic Download PDFInfo
- Publication number
- US20170362119A1 US20170362119A1 US15/244,534 US201615244534A US2017362119A1 US 20170362119 A1 US20170362119 A1 US 20170362119A1 US 201615244534 A US201615244534 A US 201615244534A US 2017362119 A1 US2017362119 A1 US 2017362119A1
- Authority
- US
- United States
- Prior art keywords
- mol
- glass ceramic
- glass
- ceramic
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0018—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
- C03C10/0027—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B27/00—Tempering or quenching glass products
- C03B27/012—Tempering or quenching glass products by heat treatment, e.g. for crystallisation; Heat treatment of glass products before tempering by cooling
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0009—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0018—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0054—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C14/00—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
- C03C14/006—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/007—Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/095—Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/122—Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/14—Silica-free oxide glass compositions containing boron
- C03C3/15—Silica-free oxide glass compositions containing boron containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/0028—Compositions for glass with special properties for crystal glass, e.g. lead-free crystal glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/04—Compositions for glass with special properties for photosensitive glass
- C03C4/06—Compositions for glass with special properties for photosensitive glass for phototropic or photochromic glass
- C03C4/065—Compositions for glass with special properties for photosensitive glass for phototropic or photochromic glass for silver-halide free photochromic glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
- C03C4/082—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
- C03C4/085—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/18—Compositions for glass with special properties for ion-sensitive glass
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2204/00—Glasses, glazes or enamels with special properties
Definitions
- the disclosure relates to glass ceramic materials. More particularly, the disclosure relates to optically transparent glass ceramic materials. Even more particularly, the disclosure relates to optically transparent glass ceramic materials having a crystalline tungsten bronze phase.
- NIR-shielding glasses are being developed to block and/or eliminate wavelengths ranging from 700-2500 nm for applications ranging from optical filters, lenses, and glazing for medical, defense, aerospace, and consumer applications.
- Low emittance (low-E) coatings have been developed to minimize the amount of ultraviolet and infrared light that can pass through glass without compromising the amount of visible light that is transmitted.
- Low-E coatings are typically either sputtered or pyrolytic coatings.
- low-E plastic laminates may be retrofitted to a glass substrate.
- tungsten bronzes thin films, coatings, and composite materials containing nano- or micron-sized particles of non-stoichiometric tungsten suboxides or doped non-stoichiometric tungsten trioxides (referred to as tungsten bronzes) have been used to provide near infrared shielding with high transparency in the visible spectrum.
- tungsten bronze films often require expensive vacuum deposition chambers, have limited mechanical robustness, and are susceptible to oxygen, moisture, and UV light, all of which cause the NIR shielding performance of these materials to decrease and to discolor and degrade transparency in the visible light range.
- the present disclosure provides optically transparent glass ceramic materials which, in some embodiments, comprise a glass phase containing at least about 80% silica by weight and a crystalline tungsten bronze phase having the formula M x WO 3 , where M includes, but is not limited to, at least one of H, Li, Na, K, Rb, Cs, Ca, Sr, Ba, Zn, Cu, Ag, Sn, Cd, In, Tl, Pb, Bi, Th, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and U, and where 0 ⁇ x ⁇ 1.
- the crystalline tungsten bronze phase comprises nanoparticles.
- the glass ceramic in some embodiments, has a low coefficient of thermal expansion (CTE), strong attenuation or blocking of ultraviolet (UV) radiation at wavelengths of less than about 360 nm and near infrared (NIR) radiation at wavelengths ranging from about 700 nm to about 3000 nm.
- CTE coefficient of thermal expansion
- UV radiation ultraviolet
- NIR near infrared
- Aluminosilicate and zinc-bismuth-borate glasses comprising at least one of Sm 2 O 3 , Pr 2 O 3 , and Er 2 O 3 are also provided.
- one aspect of the disclosure is to provide a glass ceramic comprising a silicate glass phase and from about 1 mol % to about 10 mol % of a crystalline M x WO 3 phase comprising nanoparticles, where M is at least one of H, Li, Na, K, Rb, Cs, Ca, Sr, Ba, Zn, Cu, Ag, Sn, Cd, In, Tl, Pb, Bi, Th, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and U, and where 0 ⁇ x ⁇ 1.
- a second aspect of the disclosure is to provide a glass ceramic comprising a silicate glass phase and from about 1 mol % to about 10 mol % of a crystalline M x WO 3 phase comprising nanoparticles, where M is at least one alkali metal, and 0 ⁇ x ⁇ 1.
- an aluminosilicate glass comprising SiO 2 , Al 2 O 3 , and at least one of Sm 2 O 3 , Pr 2 O 3 , and Er 2 O 3 , where Sm 2 O 3 +Pr 2 O 3 +Er 2 O 3 ⁇ 30 mol %.
- the aluminosilicate glass in some embodiments, comprises from about 8 mol % to about 45 mol % Al 2 O 3 , from about 40 mol % to about 72 mol % SiO 2 and at least one of Sm 2 O 3 , Pr 2 O 3 , and Er 2 O 3 , wherein Sm 2 O 3 +Pr 2 O 3 +Er 2 O 3 ⁇ 30 mol %.
- the aluminosilicate glass further comprises at least one alkaline earth oxide and B 2 O 3 .
- the glasses in some embodiments, have less than about 30% transmission at a wavelength between about 1400 nm and about 1600 nm.
- a zinc-bismuth-borate glass comprising ZnO, Bi 2 O 3 , B 2 O 3 , and at least one of Sm 2 O 3 , Pr 2 O 3 , and Er 2 O 3 , where Sm 2 O 3 +Pr 2 O 3 +Er 2 O 3 ⁇ 12 mol %.
- the Zn—Bi-borate glasses further comprise at least one of Na 2 O and TeO 2 . These glasses, in some embodiments, have less than about 30% transmission at a wavelength between about 1400 nm and about 1600 nm.
- a phosphate glass comprising at least one rare earth oxide Ln 2 O 3 and having a molar ratio 25Ln 2 O 3 :75P 2 O 5 , where Ln 2 O 3 comprises at least one of Sm 2 O 3 , Pr 2 O 3 , and Er 2 O 3 is provided.
- the phosphate glass comprises: from about 6 mol % to about 25% Ln 2 O 3 ; from about 5 mol % to about 27% Al 2 O 3 ; and from about 67 mol % to about 74 mol % P 2 O 5 .
- FIG. 1 is a plot of absorbance vs. wavelength of splat-quenched, annealed, and heat-treated glass ceramic samples
- FIG. 2 is a plot of spectra of splat-quenched (A), annealed (B), and heat-treated (C) glass ceramic compositions;
- FIG. 3 is a plot of differential scanning calorimetry cooling curves measured for glass ceramic samples
- FIG. 4 is a plot of spectra of glass ceramics containing different alkali tungsten bronzes
- FIG. 5 is an x-ray powder diffraction profile of a splat-quenched glass ceramic
- FIG. 6 is an x-ray powder diffraction profile of a heat-treated glass ceramic
- FIG. 7 is a flow chart for a method of infiltrating a glass to form a glass ceramic
- FIG. 8 is a plot of a dispersion curve for glass E listed in Table E;
- FIG. 9 is a plot of transmission for glass E listed in Table E.
- FIG. 10 is a plot of transmission for glasses J, K, and L listed in Table F.
- glass article and “glass articles” are used in their broadest sense to include any object made wholly or partly of glass and/or glass ceramics, and includes laminates of the glasses and glass ceramics described herein with conventional glasses. Unless otherwise specified, all compositions are expressed in terms of mole percent (mol %). Coefficients of thermal expansion (CTE) are expressed in terms of 10 ⁇ 7 /° C. and represent a value measured over a temperature range from about 20° C. to about 300° C., unless otherwise specified.
- CTE coefficients of thermal expansion
- nanoparticle and “nanoparticles” refer to particles between about 1 and about 1,000 nanometers (nm) in size.
- platelet and “platelets” refer to flat or planar crystals.
- nanorod and “nanorods” refer to elongated crystals having a length of up to about 1,000 nm and an aspect ratio (length/width) of at least 3 and in some embodiments, in a range from about 3 to about 5.
- transmission and “transmittance” refer to external transmission or transmittance, which takes absorption, scattering and reflection into consideration. Fresnel reflection is not subtracted out of the transmission and transmittance values reported herein.
- a glass that is “free of MgO” is one in which MgO is not actively added or batched into the glass, but may be present in very small amounts (e.g., less than 400 parts per million (ppm), or less than 300 ppm) as a contaminant.
- Compressive stress and depth of layer are measured using those means known in the art.
- Such means include, but are not limited to, measurement of surface stress (FSM) using commercially available instruments such as the FSM-6000, manufactured by Orihara Co., Ltd. (Tokyo, Japan).
- FSM surface stress
- FSM-6000 manufactured by Orihara Co., Ltd. (Tokyo, Japan).
- SOC stress optical coefficient
- ASTM standard C770-98 (2013) entitled “Standard Test Method for Measurement of Glass Stress-Optical Coefficient,” the contents of which are incorporated herein by reference in their entirety.
- the modification of Procedure C includes using a glass disc as the specimen having a thickness of 5 to 10 mm and a diameter of 12.7 mm.
- the disc is isotropic and homogeneous, and is core-drilled with both faces polished and parallel.
- the modification also includes calculating the maximum force, Fmax to be applied to the disc.
- the force should be sufficient to produce at least 20 MPa compression stress.
- Fmax is calculated using the equation:
- Fmax maximum force, expressed in Newtons
- D is the diameter of the disc, expressed in millimeters (mm)
- h is the thickness of the light path, also expressed in mm.
- F is the force, expressed in Newtons
- D is the diameter of the disc, expressed in millimeters (mm)
- h is the thickness of the light path, also expressed in millimeters.
- depth of layer refers to the depth of the compressive layer as determined by surface stress measurements (FSM) measurements using commercially available instruments such as, but not limited to, the FSM-6000 stress meter.
- the depth of compression DOC refers to the depth at which the stress is effectively zero inside the glass and can be determined from the stress profile obtained using the refractive near field (RNF) and polarimetric methods that are known in the art. This DOC is typically less than the FSM_DOL measured by the FSM instrument for a single ion exchange process.
- the FSM technique may suffer from contrast issues that affect the observed DOL value.
- the FSM software analysis is incapable of determining the compressive stress profile (i.e., the variation of compressive stress as a function of depth within the glass).
- the FSM technique is incapable of determining the depth of layer resulting from the ion exchange of certain elements in the glass such as, for example, the ion exchange of sodium for lithium.
- the DOL as determined by the FSM is a relatively good approximation for the depth of the compressive layer of depth compression (DOC) when the DOL is a small fraction r of the thickness t and the index profile has a depth distribution that is reasonably well approximated with a simple linear truncated profile.
- DOC compressive layer of depth compression
- the compressive stress, stress profile, and depth of layer may be determined using scattered linear polariscope (SCALP) techniques that are known in the art.
- SCALP scattered linear polariscope
- the SCALP technique enables non-destructive measurement of surface stress and depth of layer.
- optically transparent glass ceramic materials which, in some embodiments, comprise a glass phase containing at least about 90% silica by weight and a crystalline tungsten bronze phase.
- These glass ceramics comprise a silicate glass phase and from about 0.1 mol % to about 10 mol %, or from about 1 mol % to about 4 mol %, or from about 0.5 mol % to about 5 mol % of a crystalline tungsten bronze phase comprising crystalline M x WO 3 nanoparticles.
- the crystalline M x WO 3 nanoparticles are encapsulated within and dispersed within and, in some embodiments, throughout the residual glass phase.
- the M x WO 3 crystalline nanoparticles are disposed at or near the surface of the glass ceramic.
- the M x WO 3 crystalline nanoparticles are platelet-shaped and have an average diameter, determined by those means known in the art (e.g., SEM and/or TEM microscopy, x-ray diffraction, light scattering, centrifugal methods, etc.) ranging from about 10 nm to 1000 nm, or from about 10 nm to about 5 m, and/or M x WO 3 nanorods having a high aspect ratio and an average length, determined by those means known in the art, ranging from 10 nm to 1000 nm, and an average width, determined by those means known in the art, ranging from about 2 to about 75 nm.
- tungsten bronze glass ceramics that exhibit high visible transparency and strong UV and NIR absorption contain high aspect ratio (length/width) M x WO 3 rods having an average length ranging from about 10 nm to about 200 nm and an average width ranging from about 2 nm to 30 nm.
- the crystalline tungsten bronze phase has the formula M x WO 3 , where M is at least one of H, Li, Na, K, Rb, Cs, Ca, Sr, Ba, Zn, Cu, Ag, Sn, Cd, In, Tl, Pb, Bi, Th, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and U, and where 0 ⁇ x ⁇ 1.
- These glass ceramics have a low coefficient of thermal expansion (CTE), strong attenuation or blocking of ultraviolet (UV) radiation at wavelengths of less than about 250 nm and near infrared (NIR) radiation at wavelengths ranging from about 700 nm to about 2500 nm.
- CTE coefficient of thermal expansion
- UV radiation ultraviolet
- NIR radiation near infrared
- the glass ceramics described herein are optically transparent in the visible (i.e., wavelengths from about 400 nm to about 700 nm) region of the spectrum. That is, the glass ceramic has a transmittance of greater than about 1% over a 1 mm path (expressed herein as “%/mm”) over at least one 50 nm-wide wavelength band of light in a range from about 400 nm to about 700 nm.
- the glass ceramic has a transmittance of at least greater than about 10%/mm, in other embodiments, greater than about 50%/mm, in other embodiments, greater than about 75%/mm, in other embodiments, greater than about 80%/mm, and in still other embodiments, greater than about 90%/mm over at least one 50 nm-wide wavelength band of light in the visible region of the spectrum.
- these glass ceramics absorb light in the ultraviolet (UV) region (wavelengths of less than about 370 nm) and near infrared (NIR) region (from greater than about 700 nm to about 1700 nm) of the spectrum without use of coatings or films, which are mechanically fragile and sensitive to UV light and moisture.
- UV ultraviolet
- NIR near infrared
- the glass ceramic has a transmittance of less than 5%/mm and, in other embodiments, less than 1%/mm for light having a wavelength of about 370 nm or less. In some embodiments, the glass ceramic has an absorption of at least 90%/mm, in other embodiments, at least than 95%/mm, and in other embodiments, at least than 99%/mm for light having a wavelength of about 370 nm or less. In some embodiments, the glass ceramic has a transmittance of less than 10%/mm and, in other embodiments, less than 5%/mm over at least one 50 nm-wide wavelength band of light for light in the NIR region (i.e., from about 700 nm to about 2500 nm) of the spectrum.
- the glass ceramic has an absorption of at least 90%/mm and, in other embodiments, at least 95%/mm over at least one 50 nm-wide wavelength band of light for light in the NIR region (i.e., from about 700 nm to about 2500 nm) of the spectrum.
- the glass ceramics described herein are capable of withstanding temperatures of at least about 300° C., or, in some embodiments, at least about 200° C., without impairing their optical or mechanical properties.
- the transmittance of the glass ceramic between about 500 nm and about 2500 nm changes by less than 10%/mm when the glass ceramic is heated at temperatures in a range from about 200° C. to about 300° C. for periods of at least one hour.
- These glass ceramics are, in some embodiments, unreactive and otherwise impervious to oxygen, hydrogen, and moisture.
- the glass ceramics described herein have a coefficient of thermal expansion (CTE) at temperatures ranging from about 0° C. to about 300° C. of about 75 ⁇ 10 ⁇ 7 ° C. ⁇ 1 . In some embodiments, the glass ceramics have a coefficient of thermal expansion (CTE) at temperatures ranging from about 0° C. to about 300° C. from about 33.5 ⁇ 10 ⁇ 7 ° C. ⁇ 1 to about 66.3 ⁇ 10 ⁇ 7 ° C. ⁇ 1 (e.g., samples 2, 11, 12, 13, and 54 in Table 1).
- CTE coefficient of thermal expansion
- the glass ceramics described herein are bleachable—i.e., the crystalline M x WO 3 may be “erased” by thermally treating the glasses/glass ceramics for a short period above their respective softening points. Such thermal treatment may be performed using those energy sources known in the art, such as, but not limited to, resistance furnaces, lasers, microwaves, or the like.
- Composition 37 (Table 1), for example, may be bleached by holding the material at a temperature between about 685° C. and about 740° C. for approximately 5 minutes.
- the M x WO 3 bronze phase may then be re-formed or re-crystallized on the surface of the material by exposure to a UV-pulsed laser; i.e., the tungsten bronze phase will be re-formed in those areas exposed to the laser.
- the glass ceramics described herein may be used for low-emittance glazing in architectural, automotive, medical, aerospace, or other applications, including thermal face shields, medical eyewear, optical filters, and the like.
- the glass ceramic forms a portion of a consumer electronic product, such as a cellular phone or smart phone, laptop computer, tablet, or the like.
- consumer electronic products typically comprise a housing having front, back, and side surfaces, and includes electrical components, which are at least partially internal to the housing.
- the electrical components include at least a power source, a controller, a memory, and a display.
- the glass ceramic described herein comprises at least a portion of a protective element, such as, but not limited to, the housing and/or display.
- the glass phase is a borosilicate glass and the glass ceramic comprises SiO 2 , Al 2 O 3 , B 2 O 3 , WO 3 , and at least one alkali metal oxide R 2 O, where R 2 O is at least one of Na 2 O, K 2 O, Cs 2 O, and/or Rb 2 O, and the crystalline tungsten bronze phase is an tungsten bronze solid solution containing, comprising, or consisting essentially of MWO 3 , where M is at least one of Na 2 O, K 2 O, Cs 2 O, and Rb 2 O.
- the glass ceramic comprises: from about 56 mol % to about 78 mol % SiO 2 (56 mol % ⁇ SiO 2 ⁇ 78 mol %) or from about 60 mol % to about 78 mol % SiO 2 (60 mol % ⁇ SiO 2 ⁇ 78 mol %); from about 8 mol % to about 27 mol % B 2 O 3 (8 mol % ⁇ B 2 O 3 ⁇ 27 mol %); from about 0.5 mol % to about 14 mol % Al 2 O 3 (0.5 mol % ⁇ Al 2 O 3 ⁇ 14 mol %); from greater than 0 mol % to about 10 mol % of at least one of Na 2 O, K 2 O, Cs 2 O, and Rb 2 O (0 mol % ⁇ Na 2 O+K 2 O+Cs 2 O+Rb 2 O ⁇ 9 mol %); from about 1 mol % to about 10 mol % WO 3 (1 mol % ⁇ WO 3
- the glass ceramic may comprise from 0 mol % to about 9 mol % Li 2 O; in some embodiments, from 0 mol % to about 9 mol % Na 2 O (0 mol % ⁇ Na 2 O ⁇ 9 mol %); in some embodiments, from 0 mol % to about 9 mol % K 2 O (0 mol % ⁇ K 2 O ⁇ 9 mol %) or from 0 mol % to about 3 mol % K 2 O (0 mol % ⁇ K 2 O ⁇ 3 mol %); in some embodiments, from 0 mol % to about 10 mol % Cs 2 O (0 mol % ⁇ Cs 2 O ⁇ 10 mol %) or from greater than 0 mol % to about 7 mol % Cs 2 O (0 mol % ⁇ Cs 2 O ⁇ 7 mol %); and/or, in some embodiments, from 0 mol % to about 9 mol % Rb 2 O (0 mol % ⁇ Rb 2 O ⁇ 9
- the glass ceramic may further comprise at least one of: up to about 0.5 mol % MgO (0 mol % ⁇ MgO ⁇ 0.5 mol %); up to about 2 mol % P 2 O 5 (0 mol % ⁇ P 2 O 5 ⁇ 2 mol %); and up to about 1 mol % (0 mol % ⁇ ZnO ⁇ 1 mol %).
- the rate of formation of M x WO 3 upon cooling or heat treatment may be increased by the addition of at least one of MgO (e.g., samples 55, 56, and 57 in Table 1), P 2 O 5 . (e.g., sample 58 in Table 1), and ZnO up (e.g., sample 59 in Table 1).
- Non-limiting compositions of glass ceramics that are transparent in the visible light range and UV and NIR-absorbing are listed in Table 1. Compositions that do not absorb either UV or NIR radiation are listed in Table 2.
- peraluminous melts may be divided into three sub-categories.
- the term “peraluminous melts” refer to melts in which the molar proportion or content of alumina that is greater than that of R 2 O, where R 2 O is at least one of Li 2 O, Na 2 O, K 2 O, and Cs 2 O; i.e. Al 2 O 3 (mol %)>R 2 O (mol %).
- the first sub-category is one in which peraluminous melts, when quenched rapidly from the molten state and after annealing, are transparent in the visible wavelength range and NIR regime (e.g., samples 12, 15-17, 20, 23, 25, 33, 35-42, 44, 46, 47, and 48 in Table 1). These materials require a subsequent heat treatment at or slightly above the anneal temperature but below the softening point in order to develop the NIR-absorbing nanocrystalline M x WO 3 phase.
- FIG. 1 is a plot of absorbance vs. wavelength for splat-quenched, annealed, and heat-treated samples of composition 13.
- the term “splat-quenching” refers to the process of pouring a small amount or “glob” of molten glass onto an iron plate that is at room temperature and immediately pressing the glob with an iron plunger (also at room temperature) so as to rapidly cool the glass and press the glob into a thin (3-6 mm) disc of glass. While the splat-quenched (A in FIG.
- composition/sample 13 show no absorption in the visible or NIR regimes, those samples that have been heat treated (C, D, E) exhibit absorbance in the NIR regime that increases with increasing heat treatment time, as well as some visible light attenuation at wavelengths in the 600-700 nm range, resulting in a material having a blue hue.
- the second category of peraluminous melts remains transparent in the visible and NIR regimes if rapidly quenched, but exhibits NIR absorption post annealing (see samples 12, 14, 19, 21, 22, 24, and 26-32 in Table 1).
- FIG. 2 which shows spectra of splat-quenched (A), annealed (B), and heat-treated (C) samples of glass ceramic composition 11, the NIR absorbance of the splat-quenched or annealed glass ceramic may be enhanced by further heat treatment.
- the third category of peraluminous melts exhibits NIR absorption even upon rapid quenching (see samples 1 and 7 in Table 1).
- the NIR absorption of these materials may be further enhanced by subsequent heat treatment at or above the annealing point, but below the softening point.
- UV- and NIR-absorbing melts were transparent in the visible and NIR when rapidly quenched but were NIR-absorbing after annealing. As with the melts previously described hereinabove, NIR absorption may be further enhanced by subsequent heat treatment at or above the annealing point, but below the softening point.
- the rate of formation of the crystalline M x WO 3 phase may also be tuned by adjusting at least one of heat treatment time and temperature; the (R 2 O (mol %)+Al 2 O 3 (mol %))/WO 3 (mol %) ratio; the R 2 O (mol %)/WO 3 (mol %) ratio; the Al 2 O 3 (mol %)/WO 3 (mol %) ratio; and selection of alkali (or alkalis) to be batched.
- more of the crystalline M x WO 3 phase precipitates with longer heat treatment times, resulting in a material having stronger NIR absorption.
- excessive heat treatment times may cause the crystalline M x WO 3 phase to coarsen.
- coarsening may be accompanied by formation of a secondary or tertiary crystalline phase such as borastalite or aluminum borate.
- the formation of these secondary phases may produce a material that scatters visible wavelengths of light and thus appears hazy or opalescent.
- the rate of M x WO 3 formation in most instances increases as the heat treatment temperature increases and approaches the softening point of the glass.
- the rate of M x WO 3 formation decreases.
- the NIR-absorbing crystalline M x WO 3 phase ceases to precipitate from the melt.
- the ratio R 2 O (mol %)/WO 3 (mol %) is greater than or equal to 0 and less than or equal to about 4 (0 ⁇ R 2 O (mol %)/WO 3 (mol %) ⁇ 4), and the ratio Al 2 O 3 (mol %)/WO 3 (mol %) is in a range from about 0.66 and about 6 (0.66 ⁇ Al 2 O 3 (mol %)/WO 3 (mol %) ⁇ 6).
- R 2 O (mol %)/WO 3 (mol %) is greater than 4 (R 2 O (mol %)/WO 3 (mol %)>4), the glasses may precipitate a dense immiscible second phase and separate, resulting in an inhomogeneous melt.
- the glasses cease to precipitate the crystalline M x WO 3 NIR-absorbing phase.
- the R 2 O (mol %)/WO 3 (mol %) ratio is in a range from about 0 to about 3.5 (0 ⁇ R 2 O/WO 3 ⁇ 3.5) (e.g., sample 26 in Table 1).
- R 2 O/WO 3 is in a range from about 1.25 and about 3.5 (1.25 ⁇ R 2 O (mol %)/WO 3 (mol %) ⁇ 3.5) (e.g., sample 53 in Table 1), as samples in this compositional range rapidly precipitate the UV and NIR absorbing M x WO 3 crystalline phase, exhibit high visible transparency with strong NIR absorption, and are bleachable (i.e., the M x WO 3 crystalline phase can be “erased”).
- the ratio Al 2 O 3 (mol %)/WO 3 (mol %) is, in certain embodiments, is in a range from about 0.66 and about 4.5 (0.66 ⁇ Al 2 O 3 (mol %)/WO 3 (mol %) ⁇ 4.5) (e.g., sample 40 in Table 1), and, most preferably, Al 2 O 3 (mol %)/WO 3 (mol %) is is in a range from about 2 to about 3 (1 ⁇ Al 2 O 3 (mol %)/WO 3 (mol %) ⁇ 3) (e.g., sample 61 in Table 1). Above this range, the NIR absorbing nanocrystalline M x WO 3 bronze forms slowly.
- DSC differential scanning calorimetry
- the peak or maximum transmission wavelength in the visible range and NIR absorption edge of the glass ceramic may be tuned through composition, heat treatment time and temperature, and alkali metal oxide selection.
- Spectra of glass ceramics containing different alkali tungsten bronzes and otherwise having identical compositions are shown in FIG. 4 .
- the potassium and cesium analogs (samples 16 and 13, respectively) and have shorter peak visible transmittance wavelengths (440-450 nm) than the sodium and lithium analogs (samples 15 and 14, respectively), which have peak visible transmittance wavelengths of 460 nm and 510 nm, respectively.
- the glass ceramics described herein have a lower boron concentration—i.e., from about 9.8 mol % to about 11.4 mol % B 2 O 3 (9.8 mol % ⁇ B 2 O 3 ⁇ 11.4 mol %).
- the NIR-absorbing crystalline M x WO 3 phase is precipitated over a narrow and low temperature range, as shown in Table B. These compositions may be heated above their respective softening points and sagged, slumped, or formed, without growing the crystalline M x WO 3 phase.
- composition 44 can be bleached by holding the material at a temperature between about 685° C. and about 740° C. for approximately 5 minutes.
- these glasses and glass ceramics may be patterned with UV lasers.
- the M x WO 3 phase may be precipitated in rapidly quenched compositions (e.g., sample 14 in Table 1), for example, by exposing the material exposed to a 10 watt 355 nm pulsed laser.
- Table C lists physical properties, including strain, anneal and softening points, coefficients of thermal expansion (CTE), density, refractive indices, Poisson's ratio, shear modulus, Young's modulus, liquidus (maximum crystallization) temperature, and the stress optical coefficient (SOC) measured for selected sample compositions listed in Table 1.
- XRD x-ray powder diffraction
- FIGS. 5 and 6 are representative XRD profiles obtained for splat-quenched and heat-treated materials, both having composition 14 in Table 1, respectively. These XRD profiles demonstrate that as-quenched materials ( FIG. 5 ) are amorphous and do not contain a crystalline M x WO 3 phase prior to heat treatment, and heat-treated glass materials contain a crystalline M x WO 3 second phase.
- the glass ceramic may be ion exchangeable.
- Ion exchange is commonly used to chemically strengthen glasses.
- alkali cations within a source of such cations e.g., a molten salt, or “ion exchange,” bath
- CS compressive stress
- DOL depth of layer
- DOC depth of compression DOC
- the glass ceramic is ion exchanged and has a compressive layer extending from at least one surface to a depth (as indicated by DOC and/or DOL) of at least about 10 ⁇ m within the glass ceramic.
- the compressive layer has a compressive stress CS of at least about 100 MPa and less than about 1500 MPa at the surface.
- compositions 51 and 54 were ion exchanged.
- the samples were first heat-treated at 550° C. for 15 hours, then cooled at 1° C./min to 475° C., and further cooled to room temperature at the rate of cooling of the furnace when power is shut off (furnace rate).
- the cerammed samples were then ion exchanged at 390° C. for 3 hours in a molten bath of KNO 3 resulting in surface compressive stresses of 360 MPa and 380 MPa and depths of layers of 31 and 34 microns for glass-ceramic compositions 51 and 54, respectively.
- the glass ceramics described herein may be made using a melt quench process. Appropriate ratios of the constituents may be mixed and blended by turbulent mixing or ball milling. The batched material is then melted at temperatures ranging from about 1550° C. to about 1650° C. and held at temperature for times ranging from about 6 to about 12 hours, after which time it may be cast or formed and then annealed. Depending on the composition of the material, additional heat treatments at or slightly above the annealing point, but below the softening point, to develop the crystalline M x WO 3 second phase and provide UV- and NIR-absorbing properties.
- the glass ceramic is formed by infiltrating a nano-porous glass such as, but not limited to, VYCOR®, a high-silica glass manufactured by Corning Incorporated.
- a nano-porous glass such as, but not limited to, VYCOR®, a high-silica glass manufactured by Corning Incorporated.
- Such nano-porous glasses may be 20 to 30% porous with a 4.5-16.5 nm average pore diameter, with a narrow pore size distribution (with about 96% of the pores in the glass being +0.6 nm from the average diameter).
- the average pore diameter may be increased to about 16.5 nm by adjusting the heat treatment schedule required to phase separate the glass and by modifying etching conditions.
- FIG. 7 A flow chart for the method of infiltrating a glass and forming the glass ceramic is shown in FIG. 7 .
- a first solution containing tungsten, a second solution containing the metal cation M, and a third solution of boric acid are prepared or provided to deliver these components to a nano-porous glass substrate.
- the tungsten solution is prepared by dissolving ammonium metatungstate (AMT) in deionized water to produce a desired concentration of tungsten ions.
- AMT ammonium metatungstate
- organic precursors such as tungsten carbonyl, tungsten hexachloride, or the like may be used to deliver the tungsten into the pores of the nano-porous glass substrate.
- a number of aqueous precursors, including nitrates, sulfates, carbonates, chlorides, or the like may also be used to provide the metal M cation in the M x WO 3 bronze.
- a first aqueous solution of 0.068 M AMT and a second aqueous solution 0.272 M of cesium nitrate are prepared or provided such that the cesium cation concentration is 1 ⁇ 3 of the tungsten cation concentration.
- the third solution is a super-saturated boric acid solution which, in some embodiments, may be prepared by adding boric acid hydrate to deionized water, and heating the mixture to boiling while stirring.
- the nano-porous glass may be cleaned prior to forming the glass ceramic.
- Samples e.g., 1 mm sheets
- Samples may first be slowly heated in ambient air to a temperature of about 550° C. to remove moisture and organic contaminants, and subsequently kept stored at about 150° C. until ready for use.
- the nano-porous glass is first infiltrated with the tungsten solution (step 120 ) by immersing the glass in the first, tungsten-containing solution at room temperature (about 25° C.). In one non-limiting example, the nano-porous glass is immersed in the first solution for about one hour. The glass sample may then be removed from the first solution, soaked for about one minute in deionized water, and dried in ambient air for times ranging from about 24 to about 72 hours.
- the infiltrated nano-porous glass sample is heated in flowing oxygen to decompose the ammonium tungsten metatungstate and form WO 3 (step 130 ).
- the glass is first heated to about 225° C. at a rate of about 1° C./minute, then heated from about 225° C. to about 450° C. at a rate of 2.5° C./minute followed by a four hour hold at 450° C., and then cooled from about 450° C. to room temperature at a rate in a range from about 5° C. to about 7° C. per minute.
- Step 130 may, in some embodiments, include pre-heating the glass at about 80° C. for up to about 24 hours prior to the above heat treatment.
- the glass is immersed in the second solution (step 140 ) at room temperature (about 25° C.) to infiltrate the glass with the M cation solution.
- Step 140 may, in some embodiments, be preceded by pre-heating the glass at about 80° C. for up to about 24 hours prior to immersion.
- the nano-porous glass is immersed in the second solution for about one hour.
- the glass sample may then be removed from the second solution, soaked for about one minute in deionized water, and dried in ambient air for times ranging from about 24 to about 72 hours.
- Heating step 150 includes first heating the glass from about 5° C. to about 200° C. at a rate (ramp rate) of about 1° C./minute in a nitrogen atmosphere, followed by heating from about 200° C. to about 575° C. at a rate of about 3° C./minute under an atmosphere of 3% hydrogen and 97% nitrogen and a one hour hold at 575° C., and then rapidly cooling the glass to about 300° C. by opening the furnace in which the heating step takes place.
- the sample is then left to stand in ambient air for an unspecified time.
- the glass sample is immersed in the third solution, which is a supersaturated boric acid solution (step 160 ).
- the third solution is maintained at boiling and gently stirred during step 160 .
- the glass sample is immersed in the boiling solution for about 30 minutes.
- the sample in some embodiments, is washed with deionized water and left to stand in ambient air for about 24 hours.
- the glass is then heated under a nitrogen atmosphere to form and consolidate the glass ceramic (step 170 ).
- the glass is first heated from room temperature to about 225° C. at a ramp rate of about 1° C./minute in step 170 , followed by heating from about 225° C. to about 800° C. at a rate of about 5° C./minute.
- the glass is held at 800° C. for about one hour and then cooled from about 800° C. to room temperature at a rate of about 10° C./minute.
- glasses doped with rare earth oxides and having high absorbance in the NIR region of the spectrum are provided.
- these REO-doped glasses contribute to high refractive index of the glass in the infrared (IR).
- the rare earth oxide dopants which include Sm 2 O 3 , Pr 2 O 3 , and Er 2 O 3 , comprise up to about 30 mol % of the glass.
- the REO-doped glasses are aluminosilicate glasses comprising Al 2 O 3 and SiO 2 and at least one of Sm 2 O 3 , Pr 2 O 3 , and Er 2 O 3 , where Sm 2 O 3 +Pr 2 O 3 +Er 2 O 3 ⁇ 30 mol %, in some embodiments, Sm 2 O 3 +Pr 2 O 3 +Er 2 O 3 ⁇ 28 mol % and, in other embodiments, Sm 2 O 3 +Pr 2 O 3 +Er 2 O 3 ⁇ 25 mol %. In some embodiments, these REO-doped glasses may comprise up to about 30 mol % Pr 2 O 3 or up to about 25 mol % Pr 2 O 3 .
- these REO-doped glasses may comprise up to 28 mol % Sm 2 O 3 or up to 26 mol % Sm 2 O 3 .
- the REO-doped aluminosilicate glasses may comprise from about 40 mol % to about 72 mol % SiO 2 (40 mol % ⁇ SiO 2 ⁇ 72 mol %) or from about 50 mol % to about 72 mol % SiO 2 (50 mol % ⁇ SiO 2 ⁇ 72 mol %) and from about 8 mol % to about 45 mol % Al 2 O 3 (8 mol % ⁇ Al 2 O 3 ⁇ 45 mol %), or from about 8 mol % to about 20 mol % Al 2 O 3 (8 mol % ⁇ Al 2 O 3 ⁇ 20 mol %) or from about 8 mol % to about 18 mol % Al 2 O 3 (8 mol % ⁇ Al 2 O 3 ⁇ 18 mol %).
- the glasses further comprise at least one alkaline earth oxide and/or B 2 O 3 , where 0 mol % ⁇ MgO+CaO+BaO ⁇ 24 mol % and 0 mol % ⁇ B 2 O 3 ⁇ 6 mol %.
- the glasses in some embodiments, have less than about 30% transmission at a wavelength between about 1400 nm and about 1600 nm.
- Non-limiting examples of compositions of aluminosilicate glasses are listed in Table E. Refractive indices (RI) measured for these glasses are also listed in Table E. Glasses A, B and C, which contain no alkaline earth modifiers, were found to be too viscous to pour, even at 1650° C.
- Glasses E and F which contain appreciable amounts (>21 mol %) of alkaline earth modifiers, as well as B 2 O 3 are pourable at 1650° C. Dispersion and percent transmittance for Glass E for both the visible and NIR regions of the spectrum are plotted in FIGS. 8 and 9 , respectively. Glass E exhibits both a high refractive index in the infrared (IR) region and high absorbance at 1550 nm. UV-VIS-IR spectra of these compositions containing 3-5 mol %% Pr 2 O 3 are plotted in FIG. 10 , and show the high absorbance of these glasses at 1550 nm.
- IR infrared
- the REO-doped glasses are zinc-bismuth-borate glasses comprising ZnO, Bi 2 O 3 , B 2 O 3 , and at least one of Sm 2 O 3 , Pr 2 O 3 , and Er 2 O 3 , where Sm 2 O 3 +Pr 2 O 3 +Er 2 O 3 ⁇ 10 mol % or, in other embodiments, Sm 2 O 3 +Pr 2 O 3 +Er 2 O 3 ⁇ 5 mol %.
- these REO-doped glasses may comprise up to about 10 mol % Pr 2 O 3 . In other embodiments, these REO-doped glasses may comprise up to 10 mol % Sm 2 O 3 .
- the REO-doped Zn—Bi-borate glasses may comprise from about 20 mol % to about 30 mol % ZnO (20 mol % ⁇ ZnO ⁇ 30 mol %), from about 4 mol % to about 20 mol % Bi 2 O 3 (4 mol % ⁇ Bi 2 O 3 ⁇ 20 mol %), and from about 40 mol % to about 50 mol % B 2 O 3 (40 mol % ⁇ B 2 O 3 ⁇ 50 mol %).
- the REO-doped Zn—Bi-borate glasses further comprise at least one of Na 2 O and TeO 2 , where 0 mol % ⁇ TeO 2 ⁇ 6 mol % and 0 mol % ⁇ Na 2 O ⁇ 15 mol %.
- the glasses in some embodiments, have less than about 30% transmission at a wavelength between about 1400 nm and about 1600 nm.
- Non-limiting examples of compositions of Zn—Bi-borate glasses are listed in Table F. Refractive indices (RI) measured for these glasses are also listed in Table F.
- the REO-doped glasses described herein are phosphate or aluminophosphate glasses.
- such glasses comprise from about 6 mol % to about 22.5% Sm 2 O 3 (6 mol % ⁇ Sm 2 O 3 ⁇ 22.5 mol %), from about 5 mol % to about 27% Al 2 O 3 (5 mol % ⁇ Al 2 O 3 ⁇ 27 mol %), and from about 67 mol % to about 74 mol % P 2 O 5 (67 mol % ⁇ P 2 O 5 ⁇ 67 mol %).
- Non-limiting examples of compositions of samarium-doped aluminophosphate glasses are listed in Table G.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Toxicology (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Glass Compositions (AREA)
- Surface Treatment Of Glass (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Details Of Aerials (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/244,534 US20170362119A1 (en) | 2016-06-17 | 2016-08-23 | Transparent, near infrared-shielding glass ceramic |
| US16/559,806 US11214511B2 (en) | 2016-06-17 | 2019-09-04 | Transparent, near infrared-shielding glass ceramic |
| US17/539,507 US11629091B2 (en) | 2016-06-17 | 2021-12-01 | Transparent, near infrared-shielding glass ceramic |
| US18/121,689 US20230322607A1 (en) | 2016-06-17 | 2023-03-15 | Manufacturing tungsten bronze glass ceramic |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662351616P | 2016-06-17 | 2016-06-17 | |
| US201662352602P | 2016-06-21 | 2016-06-21 | |
| US15/244,534 US20170362119A1 (en) | 2016-06-17 | 2016-08-23 | Transparent, near infrared-shielding glass ceramic |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/559,806 Division US11214511B2 (en) | 2016-06-17 | 2019-09-04 | Transparent, near infrared-shielding glass ceramic |
| US16/559,806 Continuation US11214511B2 (en) | 2016-06-17 | 2019-09-04 | Transparent, near infrared-shielding glass ceramic |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170362119A1 true US20170362119A1 (en) | 2017-12-21 |
Family
ID=59216082
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/244,534 Abandoned US20170362119A1 (en) | 2016-06-17 | 2016-08-23 | Transparent, near infrared-shielding glass ceramic |
| US16/559,806 Active 2036-09-13 US11214511B2 (en) | 2016-06-17 | 2019-09-04 | Transparent, near infrared-shielding glass ceramic |
| US17/539,507 Active US11629091B2 (en) | 2016-06-17 | 2021-12-01 | Transparent, near infrared-shielding glass ceramic |
| US18/121,689 Pending US20230322607A1 (en) | 2016-06-17 | 2023-03-15 | Manufacturing tungsten bronze glass ceramic |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/559,806 Active 2036-09-13 US11214511B2 (en) | 2016-06-17 | 2019-09-04 | Transparent, near infrared-shielding glass ceramic |
| US17/539,507 Active US11629091B2 (en) | 2016-06-17 | 2021-12-01 | Transparent, near infrared-shielding glass ceramic |
| US18/121,689 Pending US20230322607A1 (en) | 2016-06-17 | 2023-03-15 | Manufacturing tungsten bronze glass ceramic |
Country Status (12)
| Country | Link |
|---|---|
| US (4) | US20170362119A1 (enExample) |
| EP (2) | EP3442914B1 (enExample) |
| JP (3) | JP7084880B2 (enExample) |
| KR (3) | KR102664949B1 (enExample) |
| CN (2) | CN114685042A (enExample) |
| AU (1) | AU2017285323B2 (enExample) |
| BR (1) | BR112018076280A2 (enExample) |
| CA (1) | CA3028117A1 (enExample) |
| MX (2) | MX2018015928A (enExample) |
| RU (1) | RU2747856C2 (enExample) |
| TW (3) | TWI806828B (enExample) |
| WO (1) | WO2017218859A1 (enExample) |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10150699B2 (en) * | 2014-12-11 | 2018-12-11 | Corning Incorporated | X-ray induced coloration in glass or glass-ceramic articles |
| US10246371B1 (en) * | 2017-12-13 | 2019-04-02 | Corning Incorporated | Articles including glass and/or glass-ceramics and methods of making the same |
| US10450220B2 (en) | 2017-12-13 | 2019-10-22 | Corning Incorporated | Glass-ceramics and glasses |
| US10464840B2 (en) | 2016-10-05 | 2019-11-05 | Corning Incorporated | Near infrared shielding and laser-resistant window |
| WO2020106486A1 (en) | 2018-11-21 | 2020-05-28 | Corning Incorporated | Very low total solar transmittance window laminate with visible light tunability |
| WO2020101874A3 (en) * | 2018-11-16 | 2020-07-23 | Corning Incorporated | Glass ceramic devices and methods with tunable infrared transmittance |
| US20200255325A1 (en) * | 2019-02-12 | 2020-08-13 | Corning Incorporated | Polychromatic glass & glass-ceramic articles and methods of making the same |
| WO2020167416A1 (en) * | 2019-02-12 | 2020-08-20 | Corning Incorporated | Gradient tinted articles and methods of making the same |
| US10829408B2 (en) | 2017-12-13 | 2020-11-10 | Corning Incorporated | Glass-ceramics and methods of making the same |
| US11053159B2 (en) | 2017-12-13 | 2021-07-06 | Corning Incorporated | Polychromatic articles and methods of making the same |
| US11118076B2 (en) * | 2019-03-29 | 2021-09-14 | Tdk Corporation | Black marker composition and electronic component using the same |
| CN113454037A (zh) * | 2019-02-20 | 2021-09-28 | 康宁股份有限公司 | 铁掺杂和锰掺杂的钨酸盐与钼酸盐玻璃以及玻璃陶瓷制品 |
| US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
| US11214511B2 (en) | 2016-06-17 | 2022-01-04 | Corning Incorporated | Transparent, near infrared-shielding glass ceramic |
| US20220258455A1 (en) * | 2017-12-15 | 2022-08-18 | Corning Incorporated | Laminate glass ceramic articles with uv-and nir-blocking characteristics and methods of making the same |
| EP3980512A4 (en) * | 2019-06-10 | 2023-07-12 | Thomas J. Baudhuin | SUPERCRITICAL WATER CARBONATING APPARATUS |
| US11746041B2 (en) | 2017-12-04 | 2023-09-05 | Corning Incorporated | Glass-ceramics and glass-ceramic articles with UV- and NIR-blocking characteristics |
| US12091353B2 (en) | 2021-05-03 | 2024-09-17 | Corning Incorporated | Articles including glass and/or glass-ceramic and methods of making the same |
| US12503660B2 (en) | 2019-08-21 | 2025-12-23 | Thomas J. Baudhuin | Supercritical water gasification process |
| US12509388B2 (en) | 2020-02-06 | 2025-12-30 | Corning Incorporated | Iron- and manganese-doped tungstate and molybdate glass and glass-ceramic articles |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20230312405A1 (en) * | 2017-10-23 | 2023-10-05 | Corning Incorporated | Glass-ceramics and glasses |
| CN111511696A (zh) * | 2017-10-23 | 2020-08-07 | 康宁股份有限公司 | 玻璃陶瓷和玻璃 |
| CN115210192A (zh) * | 2020-03-27 | 2022-10-18 | 日本电气硝子株式会社 | 玻璃材料 |
| CN115916718A (zh) * | 2020-06-19 | 2023-04-04 | 株式会社小原 | 强化结晶化玻璃 |
| CN114195383B (zh) * | 2021-12-27 | 2022-09-09 | 苏州广辰光学科技有限公司 | 一种红外截止滤光片用蓝玻璃制备工艺 |
| CN119317610A (zh) * | 2022-06-07 | 2025-01-14 | 康宁股份有限公司 | 通过激光漂白在玻璃-陶瓷制品中形成和调节局部透过率对比的方法 |
| US20250038288A1 (en) | 2022-11-15 | 2025-01-30 | Lg Energy Solution, Ltd. | Recycled cathode active material, method of producing the same, and secondary battery including the same |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6214429B1 (en) * | 1996-09-04 | 2001-04-10 | Hoya Corporation | Disc substrates for information recording discs and magnetic discs |
| US6537937B1 (en) * | 1999-08-03 | 2003-03-25 | Asahi Glass Company, Limited | Alkali-free glass |
| JP2004206741A (ja) * | 2002-12-24 | 2004-07-22 | Hitachi Ltd | 磁気ディスク用ガラス基板及びそれを用いた磁気ディスク |
| US20060063009A1 (en) * | 2004-09-17 | 2006-03-23 | Takashi Naitou | Glass member |
| US20070158317A1 (en) * | 2005-07-06 | 2007-07-12 | Peter Brix | Thin flat glass for display purposes and method of cutting the thin flat glass into display sheets |
| US7727916B2 (en) * | 2001-03-24 | 2010-06-01 | Schott Ag | Alkali-free aluminoborosilicate glass, and uses thereof |
| US7838451B2 (en) * | 2003-12-26 | 2010-11-23 | Asahi Glass Company, Limited | Alkali-free glass and liquid crystal display panel |
| US7851394B2 (en) * | 2005-06-28 | 2010-12-14 | Corning Incorporated | Fining of boroalumino silicate glasses |
| CN104445932A (zh) * | 2014-12-10 | 2015-03-25 | 中国建材国际工程集团有限公司 | 粉红铝硅酸盐玻璃 |
Family Cites Families (123)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2034994A (en) | 1933-06-26 | 1936-03-24 | Mississippi Glass Co | Heat absorbing glass |
| US2952575A (en) | 1958-05-16 | 1960-09-13 | Monsanto Chemicals | Near-infrared spectrum filter media |
| NL124218C (enExample) * | 1963-03-14 | |||
| GB1104178A (en) * | 1964-06-26 | 1968-02-21 | Corning Glass Works | Tungsten bronze films |
| US3499775A (en) | 1966-07-01 | 1970-03-10 | Owens Illinois Inc | Ultraviolet-absorbing glass compositions containing cerium and molybdenum oxides |
| US3457106A (en) | 1966-12-21 | 1969-07-22 | Ppg Industries Inc | Metal-tungsten bronze films |
| US3582370A (en) | 1968-11-05 | 1971-06-01 | Corning Glass Works | Glass-ceramic articles |
| US3652303A (en) | 1970-01-26 | 1972-03-28 | Ppg Industries Inc | Heat absorbing blue soda-lime-silica glass |
| SU392016A1 (ru) | 1971-08-03 | 1973-07-27 | Тбилисский государственный научно исследовательский институт строительных материалов | Полупроводниковое стекло |
| US3785834A (en) | 1972-06-09 | 1974-01-15 | Owens Illinois Inc | Glasses,glass-ceramics and process for making same |
| US3985534A (en) * | 1975-03-19 | 1976-10-12 | Corning Glass Works | Spontaneously-formed fluormica glass-ceramics |
| US4009042A (en) | 1976-01-15 | 1977-02-22 | Corning Glass Works | Transparent, infra-red transmitting glass-ceramics |
| JPS5385813A (en) * | 1976-12-30 | 1978-07-28 | Hoya Glass Works Ltd | Spectacle glass having glareeprotection effect |
| JPS6049142B2 (ja) | 1978-04-17 | 1985-10-31 | 株式会社保谷硝子 | カラ−・テレビジョン・カメラ用近赤外吸収フイルタ− |
| US4537862A (en) | 1982-06-28 | 1985-08-27 | Owens-Illinois, Inc. | Lead-free and cadmium-free glass frit compositions for glazing, enameling and decorating |
| US4769347A (en) * | 1986-01-06 | 1988-09-06 | Schott Glass Technologies, Inc. | Contrast enhancement filter glass for color CRT displays |
| JP2539214B2 (ja) * | 1987-03-31 | 1996-10-02 | 川鉄鉱業株式会社 | ガラスセラミツクスおよびその製造方法 |
| US4792536A (en) | 1987-06-29 | 1988-12-20 | Ppg Industries, Inc. | Transparent infrared absorbing glass and method of making |
| US4919991A (en) * | 1988-05-23 | 1990-04-24 | Corning Incorporated | Hybrid ceramic matrix composite articles comprising particulate additives and method |
| US5422319A (en) * | 1988-09-09 | 1995-06-06 | Corning Incorporated | Fiber reinforced ceramic matrix composites exhibiting improved high-temperature strength |
| US4870539A (en) | 1989-01-17 | 1989-09-26 | International Business Machines Corporation | Doped titanate glass-ceramic for grain boundary barrier layer capacitors |
| RU2032633C1 (ru) * | 1990-07-09 | 1995-04-10 | Обнинское научно-производственное предприятие "Технология" | Стекло для прозрачного в ик-области темно-красного стеклокристаллического материала |
| US5393593A (en) | 1990-10-25 | 1995-02-28 | Ppg Industries, Inc. | Dark gray, infrared absorbing glass composition and coated glass for privacy glazing |
| GB9108257D0 (en) | 1991-04-17 | 1991-06-05 | Cookson Group Plc | Glaze compositions |
| US5468694A (en) | 1992-11-21 | 1995-11-21 | Yamamura Glass Co. Ltd. | Composition for producing low temperature co-fired substrate |
| AU666830B2 (en) | 1993-11-16 | 1996-02-22 | Ppg Industries Ohio, Inc. | Gray glass composition |
| US5565388A (en) | 1993-11-16 | 1996-10-15 | Ppg Industries, Inc. | Bronze glass composition |
| AU666831B2 (en) | 1993-11-16 | 1996-02-22 | Ppg Industries Ohio, Inc. | Gray glass composition |
| JP3270236B2 (ja) | 1994-01-20 | 2002-04-02 | ワイケイケイ株式会社 | 合成樹脂製ベルト連結具 |
| US5668066A (en) | 1995-07-24 | 1997-09-16 | Hoya Corporation | Near infrared absorption filter glass |
| JP2005037932A (ja) * | 1995-12-22 | 2005-02-10 | Mitsui Chemicals Inc | プラズマディスプレーおよびプラズマディスプレー用フィルター |
| JPH09241035A (ja) * | 1996-03-06 | 1997-09-16 | Central Glass Co Ltd | 結晶化ガラス |
| GB9619134D0 (en) | 1996-09-13 | 1996-10-23 | Pilkington Plc | Improvements in or related to coated glass |
| IL119719A0 (en) * | 1996-11-29 | 1997-02-18 | Yeda Res & Dev | Inorganic fullerene-like structures of metal chalcogenides |
| US6001753A (en) | 1996-12-20 | 1999-12-14 | Libbey-Owens-Ford Co. | Spectral modifiers for glass compositions |
| CA2229348C (en) * | 1997-02-14 | 2007-10-02 | Nippon Telegraph And Telephone Corporation | Tellurite glass, optical amplifier, and light source |
| US5851940A (en) | 1997-07-11 | 1998-12-22 | Ford Motor Company | Blue glass with improved UV and IR absorption |
| JP3270423B2 (ja) | 1998-06-22 | 2002-04-02 | オリンパス光学工業株式会社 | 赤外吸収ガラス及びその作製方法 |
| DE19838198C2 (de) | 1998-08-24 | 2002-06-27 | Schott Glas | Gläser und Glaskeramiken mit hohem E-Modul sowie deren Verwendungen |
| JP3933345B2 (ja) * | 1999-05-21 | 2007-06-20 | 日本特殊陶業株式会社 | 発熱抵抗体及びセラミックヒータ用発熱抵抗体並びにその製造方法、及びセラミックヒータ |
| JP4680347B2 (ja) | 1999-06-01 | 2011-05-11 | 株式会社オハラ | 高剛性ガラスセラミックス基板 |
| US6376399B1 (en) | 2000-01-24 | 2002-04-23 | Corning Incorporated | Tungstate, molybdate, vanadate base glasses |
| US6911254B2 (en) | 2000-11-14 | 2005-06-28 | Solutia, Inc. | Infrared absorbing compositions and laminates |
| JP4030320B2 (ja) * | 2001-03-22 | 2008-01-09 | 株式会社デンソー | セラミック体およびセラミック触媒体 |
| US6677046B2 (en) * | 2001-03-27 | 2004-01-13 | Hoya Corporation | Glass ceramic |
| JP2002293571A (ja) | 2001-03-30 | 2002-10-09 | Nippon Electric Glass Co Ltd | 照明用ガラス |
| DE10141104C1 (de) | 2001-08-22 | 2003-04-17 | Schott Glas | Optische Farbgläser und ihre Verwendung |
| DE10141102A1 (de) | 2001-08-22 | 2003-04-03 | Schott Glas | Cadmiumfreie optische Steilkantenfilter |
| JP2003099913A (ja) * | 2001-09-27 | 2003-04-04 | Hitachi Ltd | 磁気ディスク用ガラス基板及びそれを用いた磁気ディスク |
| US7407902B2 (en) * | 2002-03-29 | 2008-08-05 | Matsushita Electric Industrial Co., Ltd. | Bismuth glass composition, and magnetic head and plasma display panel including the same as sealing member |
| KR20050025182A (ko) | 2002-05-16 | 2005-03-11 | 쇼오트 아게 | Uv-차단 보로실리케이트 유리, 이것의 이용, 및 형광 램프 |
| US7192897B2 (en) | 2002-07-05 | 2007-03-20 | Hoya Corporation | Near-infrared light-absorbing glass, near-infrared light-absorbing element, near-infrared light-absorbing filter, and method of manufacturing near-infrared light-absorbing formed glass article, and copper-containing glass |
| JP2004091308A (ja) | 2002-07-11 | 2004-03-25 | Nippon Electric Glass Co Ltd | 照明用ガラス |
| US9279193B2 (en) * | 2002-12-27 | 2016-03-08 | Momentive Performance Materials Inc. | Method of making a gallium nitride crystalline composition having a low dislocation density |
| DE10353756A1 (de) | 2003-11-17 | 2005-06-30 | Bio-Gate Bioinnovative Materials Gmbh | Schichtmaterial |
| JP5086541B2 (ja) | 2003-12-26 | 2012-11-28 | 日本板硝子株式会社 | 近赤外線吸収グリーンガラス組成物、およびこれを用いた合わせガラス |
| FR2867774B1 (fr) | 2004-03-19 | 2007-08-10 | Saint Gobain | Composition de verre silico-sodo-calcique gris fonce destinee a la fabrication de vitrages |
| JP5146897B2 (ja) | 2004-04-05 | 2013-02-20 | 日本電気硝子株式会社 | 照明用ガラス |
| US7341964B2 (en) * | 2004-07-30 | 2008-03-11 | Shepherd Color Company | Durable glass and glass enamel composition for glass coatings |
| EP1826187A1 (en) * | 2004-09-29 | 2007-08-29 | Nippon Electric Glass Co., Ltd. | Glass for semiconductor sealing, sheath tube for semiconductor sealing and semiconductor electronic part |
| WO2006059492A1 (ja) | 2004-11-30 | 2006-06-08 | Asahi Glass Company, Limited | フィールドエミッションディスプレイ用結晶化ガラススペーサーおよびその製造方法 |
| DE202005021791U1 (de) | 2005-04-09 | 2010-03-11 | Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg | Verbundscheibe |
| JP2007103594A (ja) * | 2005-10-03 | 2007-04-19 | Shoei Chem Ind Co | 抵抗体組成物並びに厚膜抵抗体 |
| JP4933863B2 (ja) * | 2005-10-25 | 2012-05-16 | 株式会社オハラ | 結晶化ガラスおよび結晶化ガラスの製造方法 |
| DE102005051387B3 (de) | 2005-10-27 | 2007-01-25 | Ivoclar Vivadent Ag | Dentalglas, Verfahren zu dessen Herstellung sowie dessen Verwendung |
| WO2007091483A1 (ja) * | 2006-02-09 | 2007-08-16 | Nagaoka University Of Technology | 光部品及びその製造方法 |
| JP5034272B2 (ja) * | 2006-03-06 | 2012-09-26 | 住友金属鉱山株式会社 | タングステン含有酸化物微粒子、およびその製造方法、ならびにそれを用いた赤外線遮蔽体 |
| DE102006023115A1 (de) * | 2006-05-16 | 2007-11-22 | Schott Ag | Backlightsystem mit IR-Absorptionseigenschaften |
| DE102008011206B4 (de) | 2008-02-26 | 2011-05-05 | Schott Ag | Verfahren zur Herstellung einer Glaskeramik und Verwendung einer Glaskeramik laskeramik |
| DE102008025277A1 (de) * | 2008-05-27 | 2009-12-03 | Merck Patent Gmbh | Glaszusammensetzung |
| JP5354445B2 (ja) * | 2008-06-25 | 2013-11-27 | 日本電気硝子株式会社 | 金属被覆用ガラス及び半導体封止材料 |
| DE102008050263C5 (de) * | 2008-10-07 | 2020-01-02 | Schott Ag | Transparente, eingefärbte Kochfläche mit verbesserter farbiger Anzeigefähigkeit und Verfahren zur Herstellung einer solchen Kochfläche |
| KR101536803B1 (ko) * | 2008-11-13 | 2015-07-14 | 스미토모 긴조쿠 고잔 가부시키가이샤 | 적외선 차폐 미립자 및 이의 제조방법, 및 이를 사용한 적외선 차폐 미립자 분산체, 적외선 차폐 기재 |
| WO2010098227A1 (ja) * | 2009-02-27 | 2010-09-02 | 国立大学法人長岡技術科学大学 | 光変調材料およびその製造方法 |
| JP5402184B2 (ja) * | 2009-04-13 | 2014-01-29 | 日本電気硝子株式会社 | ガラスフィルムおよびその製造方法 |
| DE102009024645B4 (de) | 2009-06-04 | 2011-06-01 | Schott Ag | Glaskeramik mit nanoskaligem Bariumtitanat, Verfahren zu deren Herstellung und Verwendung |
| US8946102B2 (en) * | 2009-06-19 | 2015-02-03 | Ferro Corporation | Copper red frits and pigments comprising silica and at least one of cupric oxide and cuprous oxide |
| BR112012000425A2 (pt) | 2009-07-07 | 2018-04-10 | Basf Se | particulas de solução sólida de bronze de potássio-césio-tungstênio, processo para a preparação de partículas de solução sólida de bronze de potássio-césio-tungstênio, potássio-césio-tungstênio. |
| JP5715353B2 (ja) * | 2009-07-31 | 2015-05-07 | 株式会社オハラ | 結晶化ガラスおよびその製造方法 |
| WO2011013797A1 (ja) * | 2009-07-31 | 2011-02-03 | 株式会社オハラ | ガラスセラミックス、ガラスセラミックス焼結体、ガラスセラミックス複合体、ガラス粉粒体、スラリー状混合物、及び光触媒 |
| DE102009058200A1 (de) * | 2009-12-15 | 2011-06-16 | Bayer Materialscience Ag | Polymer-Zusammensetzung mit Wärme-absorbierenden Eigenschaften und hoher Stabilität |
| JP2011168466A (ja) | 2010-02-22 | 2011-09-01 | Ohara Inc | 複合体、光触媒機能性部材、及び親水性成部材 |
| JP5771183B2 (ja) * | 2010-02-27 | 2015-08-26 | 株式会社オハラ | ガラスセラミックス、その製造方法及びその利用 |
| JP2011225397A (ja) * | 2010-04-20 | 2011-11-10 | Ohara Inc | ガラスセラミックス、その製造方法 |
| JP2011241092A (ja) * | 2010-04-21 | 2011-12-01 | Ohara Inc | ガラスセラミックス及びその製造方法 |
| JP5840830B2 (ja) * | 2010-06-10 | 2016-01-06 | 株式会社ブリヂストン | 熱線遮蔽複層ガラス |
| JP5778488B2 (ja) * | 2010-12-22 | 2015-09-16 | 株式会社ブリヂストン | 熱線遮蔽ガラス、及びこれを用いた複層ガラス |
| US20120247525A1 (en) | 2011-03-31 | 2012-10-04 | Bruce Gardiner Aitken | Tungsten-titanium-phosphate materials and methods for making and using the same |
| MX351160B (es) * | 2011-10-14 | 2017-10-04 | Ivoclar Vivadent Ag | Vidrio y cerámica de vidrio de silicato de litio con óxido de metal hexavalente. |
| RU2531958C2 (ru) * | 2012-05-02 | 2014-10-27 | Корпорация "Самсунг Электроникс Ко., Лтд" | Лазерное электрооптическое стекло и способ его изготовления |
| JP2013242946A (ja) | 2012-05-22 | 2013-12-05 | Panasonic Corp | 情報記録媒体、並びに情報記録媒体の製造方法 |
| JP6391926B2 (ja) * | 2012-10-10 | 2018-09-19 | 株式会社オハラ | 結晶化ガラス及びその製造方法 |
| TWI458629B (zh) * | 2012-12-17 | 2014-11-01 | Ind Tech Res Inst | 紅外線反射性多層結構及其製法 |
| US9751800B2 (en) * | 2013-02-06 | 2017-09-05 | Guardian Glass, LLC | Heat treatable coated article with tungsten-doped zirconium based layer(s) in coating |
| FR3002530A1 (fr) * | 2013-02-28 | 2014-08-29 | Centre Nat Rech Scient | Verres et vitroceramiques nanostructures transparents dans le visible et l'infrarouge |
| US20140256865A1 (en) | 2013-03-05 | 2014-09-11 | Honeywell International Inc. | Electric-arc resistant face shield or lens including ir-blocking inorganic nanoparticles |
| EP2805829A1 (de) * | 2013-04-15 | 2014-11-26 | Schott AG | Glaskeramik-Kochfläche mit lokal erhöhter Transmission und Verfahren zur Herstellung einer solchen Glaskeramik-Kochfläche |
| JP6312805B2 (ja) | 2013-04-15 | 2018-04-18 | ショット アクチエンゲゼルシャフトSchott AG | ガラス及びガラスセラミックの透過率を変化させるための方法及び該方法により製造可能なガラス又はガラスセラミック物品 |
| JP2014241035A (ja) | 2013-06-11 | 2014-12-25 | キヤノン株式会社 | サーバー装置、画像の再作成方法及びプログラム |
| JP6171733B2 (ja) | 2013-08-27 | 2017-08-02 | 住友金属鉱山株式会社 | 熱線遮蔽分散体形成用塗布液および熱線遮蔽体 |
| US8927069B1 (en) | 2013-10-02 | 2015-01-06 | Eritek, Inc. | Method and apparatus for improving radio frequency signal transmission through low-emissivity coated glass |
| CN104743882A (zh) * | 2013-12-27 | 2015-07-01 | 株式会社小原 | 光学物品及透镜 |
| US9878940B2 (en) | 2014-02-21 | 2018-01-30 | Corning Incorporated | Low crystallinity glass-ceramics |
| CN105254181B (zh) | 2014-07-18 | 2017-08-11 | 长春理工大学 | 一种铕掺杂钨酸盐透明玻璃陶瓷及其制备方法 |
| DE102014013528B4 (de) | 2014-09-12 | 2022-06-23 | Schott Ag | Beschichtetes Glas-oder Glaskeramiksubstrat mit beständigen multifunktionellen Oberflächeneigenschaften, Verfahren zu dessen Herstellung und dessen Verwendung |
| CN107223116B (zh) | 2014-12-11 | 2021-12-07 | 康宁股份有限公司 | 玻璃或玻璃-陶瓷制品中的由x射线引发的着色 |
| CN104944471A (zh) * | 2015-05-25 | 2015-09-30 | 北京航空航天大学 | 一种具有高红外屏蔽性能的掺杂钨青铜粉体及其合成方法 |
| JP6206736B2 (ja) | 2015-10-28 | 2017-10-04 | パナソニックIpマネジメント株式会社 | 飛翔体を用いた観測システムおよび観測方法 |
| EP3388494A4 (en) * | 2015-12-02 | 2019-07-24 | Sumitomo Metal Mining Co., Ltd. | THERMAL RADIATION PROTECTION MICROPARTICLE, THERMAL RADIATION PROTECTION MICROPARTICLE DISPERSION SOLUTION, HEAT RAY PROTECTIVE FILM, HEAT RAY PROTECTIVE GLASS, HEAT RAY PROTECTION DISPERSION ORPS, AND TRANSPARENT BASE MATERIAL LAMINATE OF PROTECTION AGAINST THERMAL RAYS |
| JP7021091B2 (ja) | 2016-01-27 | 2022-02-16 | エボニック オペレーションズ ゲーエムベーハー | 酸化タングステンおよびタングステン混合酸化物の製造方法 |
| JP6769476B2 (ja) * | 2016-02-25 | 2020-10-14 | Agc株式会社 | 耐クラック性に優れたガラス |
| CN105948513B (zh) | 2016-05-16 | 2018-09-21 | 长春理工大学 | 一种铽掺杂含钼酸钙晶相透明玻璃陶瓷及其制备方法 |
| US20170362119A1 (en) | 2016-06-17 | 2017-12-21 | Corning Incorporated | Transparent, near infrared-shielding glass ceramic |
| CN106396413B (zh) | 2016-09-08 | 2018-11-09 | 长春理工大学 | 铒镱共掺含钨酸钡晶相上转换发光玻璃陶瓷及其制备方法 |
| CN107601853A (zh) | 2017-09-06 | 2018-01-19 | 蚌埠玻璃工业设计研究院 | 一种具有高弹性模量的光致变色玻璃及其制备方法 |
| WO2019051408A2 (en) | 2017-09-11 | 2019-03-14 | Corning Incorporated | BLANKED DISCRETE REGION DEVICES AND METHODS OF MANUFACTURE |
| US10450220B2 (en) | 2017-12-13 | 2019-10-22 | Corning Incorporated | Glass-ceramics and glasses |
| US10246371B1 (en) | 2017-12-13 | 2019-04-02 | Corning Incorporated | Articles including glass and/or glass-ceramics and methods of making the same |
| CN111511696A (zh) | 2017-10-23 | 2020-08-07 | 康宁股份有限公司 | 玻璃陶瓷和玻璃 |
| EP3720824A1 (en) | 2017-12-04 | 2020-10-14 | Corning Incorporated | Glass-ceramics and glass-ceramic articles with uv- and nir-blocking characteristics |
| US11806549B2 (en) | 2017-12-05 | 2023-11-07 | Lumen Catheters, LLC | Method, system, and devices of safe, antimicrobial light-emitting catheters, tubes, and instruments |
| US10829408B2 (en) | 2017-12-13 | 2020-11-10 | Corning Incorporated | Glass-ceramics and methods of making the same |
| US11053159B2 (en) * | 2017-12-13 | 2021-07-06 | Corning Incorporated | Polychromatic articles and methods of making the same |
-
2016
- 2016-08-23 US US15/244,534 patent/US20170362119A1/en not_active Abandoned
-
2017
- 2017-06-16 TW TW106120158A patent/TWI806828B/zh active
- 2017-06-16 MX MX2018015928A patent/MX2018015928A/es unknown
- 2017-06-16 TW TW112110830A patent/TWI828563B/zh active
- 2017-06-16 AU AU2017285323A patent/AU2017285323B2/en not_active Ceased
- 2017-06-16 TW TW112146982A patent/TWI893552B/zh active
- 2017-06-16 CN CN202210361822.7A patent/CN114685042A/zh active Pending
- 2017-06-16 BR BR112018076280-6A patent/BR112018076280A2/pt not_active Application Discontinuation
- 2017-06-16 CN CN201780037677.4A patent/CN109311730B/zh active Active
- 2017-06-16 RU RU2019101015A patent/RU2747856C2/ru active
- 2017-06-16 EP EP17733310.1A patent/EP3442914B1/en active Active
- 2017-06-16 EP EP22151609.9A patent/EP4005988A1/en active Pending
- 2017-06-16 WO PCT/US2017/037809 patent/WO2017218859A1/en not_active Ceased
- 2017-06-16 KR KR1020227038989A patent/KR102664949B1/ko active Active
- 2017-06-16 CA CA3028117A patent/CA3028117A1/en not_active Abandoned
- 2017-06-16 JP JP2018565799A patent/JP7084880B2/ja active Active
- 2017-06-16 KR KR1020197001381A patent/KR102466477B1/ko active Active
- 2017-06-16 KR KR1020247014881A patent/KR102752551B1/ko active Active
-
2018
- 2018-12-17 MX MX2023011560A patent/MX2023011560A/es unknown
-
2019
- 2019-09-04 US US16/559,806 patent/US11214511B2/en active Active
-
2021
- 2021-06-09 JP JP2021096347A patent/JP7473506B2/ja active Active
- 2021-12-01 US US17/539,507 patent/US11629091B2/en active Active
-
2023
- 2023-03-15 US US18/121,689 patent/US20230322607A1/en active Pending
- 2023-12-21 JP JP2023215541A patent/JP7756995B2/ja active Active
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6214429B1 (en) * | 1996-09-04 | 2001-04-10 | Hoya Corporation | Disc substrates for information recording discs and magnetic discs |
| US6537937B1 (en) * | 1999-08-03 | 2003-03-25 | Asahi Glass Company, Limited | Alkali-free glass |
| US7727916B2 (en) * | 2001-03-24 | 2010-06-01 | Schott Ag | Alkali-free aluminoborosilicate glass, and uses thereof |
| JP2004206741A (ja) * | 2002-12-24 | 2004-07-22 | Hitachi Ltd | 磁気ディスク用ガラス基板及びそれを用いた磁気ディスク |
| US7838451B2 (en) * | 2003-12-26 | 2010-11-23 | Asahi Glass Company, Limited | Alkali-free glass and liquid crystal display panel |
| US20060063009A1 (en) * | 2004-09-17 | 2006-03-23 | Takashi Naitou | Glass member |
| US7851394B2 (en) * | 2005-06-28 | 2010-12-14 | Corning Incorporated | Fining of boroalumino silicate glasses |
| US20070158317A1 (en) * | 2005-07-06 | 2007-07-12 | Peter Brix | Thin flat glass for display purposes and method of cutting the thin flat glass into display sheets |
| CN104445932A (zh) * | 2014-12-10 | 2015-03-25 | 中国建材国际工程集团有限公司 | 粉红铝硅酸盐玻璃 |
| US20180044224A1 (en) * | 2014-12-10 | 2018-02-15 | China Triumph International Engineering Co., Ltd. | Pink aluminosilicate glass |
Cited By (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10865140B2 (en) | 2014-12-11 | 2020-12-15 | Corning Incorporated | X-ray induced coloration in glass or glass-ceramic articles |
| US10150699B2 (en) * | 2014-12-11 | 2018-12-11 | Corning Incorporated | X-ray induced coloration in glass or glass-ceramic articles |
| US11629091B2 (en) | 2016-06-17 | 2023-04-18 | Corning Incorporated | Transparent, near infrared-shielding glass ceramic |
| US11214511B2 (en) | 2016-06-17 | 2022-01-04 | Corning Incorporated | Transparent, near infrared-shielding glass ceramic |
| US10464840B2 (en) | 2016-10-05 | 2019-11-05 | Corning Incorporated | Near infrared shielding and laser-resistant window |
| US11643359B2 (en) | 2017-10-23 | 2023-05-09 | Corning Incorporated | Glass-ceramics and glasses |
| US11046609B2 (en) | 2017-10-23 | 2021-06-29 | Corning Incorporated | Glass-ceramics and glasses |
| US11746041B2 (en) | 2017-12-04 | 2023-09-05 | Corning Incorporated | Glass-ceramics and glass-ceramic articles with UV- and NIR-blocking characteristics |
| US11312653B2 (en) | 2017-12-13 | 2022-04-26 | Corning Incorporated | Articles including glass and/or glass-ceramics and methods of making the same |
| US10807906B2 (en) | 2017-12-13 | 2020-10-20 | Corning Incorporated | Articles including glass and/or glass-ceramics and methods of making the same |
| US10829408B2 (en) | 2017-12-13 | 2020-11-10 | Corning Incorporated | Glass-ceramics and methods of making the same |
| US11912609B2 (en) | 2017-12-13 | 2024-02-27 | Corning Incorporated | Articles including glass and/or glass-ceramics and methods of making the same |
| US10246371B1 (en) * | 2017-12-13 | 2019-04-02 | Corning Incorporated | Articles including glass and/or glass-ceramics and methods of making the same |
| US11053159B2 (en) | 2017-12-13 | 2021-07-06 | Corning Incorporated | Polychromatic articles and methods of making the same |
| US10370291B2 (en) * | 2017-12-13 | 2019-08-06 | Corning Incorporated | Articles including glass and/or glass-ceramics and methods of making the same |
| US10450220B2 (en) | 2017-12-13 | 2019-10-22 | Corning Incorporated | Glass-ceramics and glasses |
| US20220258455A1 (en) * | 2017-12-15 | 2022-08-18 | Corning Incorporated | Laminate glass ceramic articles with uv-and nir-blocking characteristics and methods of making the same |
| US11890833B2 (en) * | 2017-12-15 | 2024-02-06 | Corning Incorporated | Laminate glass ceramic articles with UV-and NIR-blocking characteristics and methods of making the same |
| US12122120B2 (en) | 2018-08-10 | 2024-10-22 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
| US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
| US11426818B2 (en) | 2018-08-10 | 2022-08-30 | The Research Foundation for the State University | Additive manufacturing processes and additively manufactured products |
| WO2020101874A3 (en) * | 2018-11-16 | 2020-07-23 | Corning Incorporated | Glass ceramic devices and methods with tunable infrared transmittance |
| US20220009823A1 (en) * | 2018-11-16 | 2022-01-13 | Corning Incorporated | Glass ceramic devices and methods with tunable infrared transmittance |
| US12338169B2 (en) * | 2018-11-16 | 2025-06-24 | Corning Incorporated | Glass ceramic devices and methods with tunable infrared transmittance |
| CN113165955A (zh) * | 2018-11-16 | 2021-07-23 | 康宁公司 | 具有可调红外透射率的玻璃陶瓷装置和方法 |
| WO2020106486A1 (en) | 2018-11-21 | 2020-05-28 | Corning Incorporated | Very low total solar transmittance window laminate with visible light tunability |
| US20200255325A1 (en) * | 2019-02-12 | 2020-08-13 | Corning Incorporated | Polychromatic glass & glass-ceramic articles and methods of making the same |
| WO2020167416A1 (en) * | 2019-02-12 | 2020-08-20 | Corning Incorporated | Gradient tinted articles and methods of making the same |
| US11254603B2 (en) | 2019-02-12 | 2022-02-22 | Corning Incorporated | Gradient tinted articles and methods of making the same |
| CN113454037A (zh) * | 2019-02-20 | 2021-09-28 | 康宁股份有限公司 | 铁掺杂和锰掺杂的钨酸盐与钼酸盐玻璃以及玻璃陶瓷制品 |
| US11118076B2 (en) * | 2019-03-29 | 2021-09-14 | Tdk Corporation | Black marker composition and electronic component using the same |
| EP3980512A4 (en) * | 2019-06-10 | 2023-07-12 | Thomas J. Baudhuin | SUPERCRITICAL WATER CARBONATING APPARATUS |
| US12318765B2 (en) | 2019-06-10 | 2025-06-03 | Thomas J. Baudhuin | Apparatus for supercritical water gasification |
| US12503660B2 (en) | 2019-08-21 | 2025-12-23 | Thomas J. Baudhuin | Supercritical water gasification process |
| US12509388B2 (en) | 2020-02-06 | 2025-12-30 | Corning Incorporated | Iron- and manganese-doped tungstate and molybdate glass and glass-ceramic articles |
| US12091353B2 (en) | 2021-05-03 | 2024-09-17 | Corning Incorporated | Articles including glass and/or glass-ceramic and methods of making the same |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11629091B2 (en) | Transparent, near infrared-shielding glass ceramic | |
| TWI811252B (zh) | 玻璃陶瓷與玻璃 | |
| JP7449860B2 (ja) | ガラスセラミックおよびその製造方法 | |
| US11643359B2 (en) | Glass-ceramics and glasses |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CORNING INCORPORATED, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEJNEKA, MATTHEW JOHN;KOHL, JESSE;PATIL, MALLANAGOUDA DYAMANAGOUDA;SIGNING DATES FROM 20160804 TO 20160805;REEL/FRAME:039510/0485 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |