JP5968479B2 - スパッタリングターゲットを形成する方法 - Google Patents

スパッタリングターゲットを形成する方法 Download PDF

Info

Publication number
JP5968479B2
JP5968479B2 JP2015038226A JP2015038226A JP5968479B2 JP 5968479 B2 JP5968479 B2 JP 5968479B2 JP 2015038226 A JP2015038226 A JP 2015038226A JP 2015038226 A JP2015038226 A JP 2015038226A JP 5968479 B2 JP5968479 B2 JP 5968479B2
Authority
JP
Japan
Prior art keywords
target
sputtering
backing plate
powder
sputtering material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015038226A
Other languages
English (en)
Other versions
JP2015098652A (ja
Inventor
エー. ミラー スティーブン
エー. ミラー スティーブン
クマール プラバート
クマール プラバート
ウー リチャード
ウー リチャード
サン シューウェイ
サン シューウェイ
ジマーマン シュテファン
ジマーマン シュテファン
シュミット−パーク オラフ
シュミット−パーク オラフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Publication of JP2015098652A publication Critical patent/JP2015098652A/ja
Application granted granted Critical
Publication of JP5968479B2 publication Critical patent/JP5968479B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0089Reactive sputtering in metallic mode
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F2005/103Cavity made by removal of insert
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

(関連出願)
本願は、米国仮出願第60/915,967号(2007年5月4日出願)および米国特許出願第11/937,164号(2007年11月8日出願)に基づく利益を主張する。これら出願は、その全体があらゆる有用な目的のために参照により援用される。
電子業界で物理気相蒸着法(PVD)に採用されるスパッタリングターゲットの物理的特性が、産生される薄膜の最終的な特性に大きな影響を与えることは、当技術分野において既知である。実際に、高品質の薄膜デバイスおよび回路の製造を可能にし、かつ増強するターゲットの特性は、以下の通りである。
微細な、および均一で微細な粒構造。
個々の粒の、ランダムな、および均一にランダムな結晶配向。
マクロスケールで見た時に、ターゲット本体の全体を通して実質的に不変である微細構造。
ターゲットからターゲットへ繰り返すことができる微細構造。
実質的に100%の高密度であり、高い粒間接合強度を提供する微細構造。
これらの特性は、特に、タンタル(Ta)およびニオブ(Nb)ターゲットにおける達成が非常に困難である。これは、高純度のTaおよびNbが、電子ビーム溶解を介して精錬および精製され、低温水冷金型に鋳込まれているという事実に起因する。形成されるインゴットは、幅および長さがどちらもセンチメートルの倍数単位で測定される、多数の極めて大きい粒を有する。これらの極めて大きい粒は、粒径を低減し、個々の粒の結晶学的整列を低減する(テクスチャを低減する)ために、大規模かつ高価な熱機械的処理を必要とする。熱機械的処理には、粒径の低減、もたらされる結晶学的ランダム性、およびもたらされる微細構造の均一性に限界がある。一般的に、インゴットから産生されるタンタルターゲット材料は、依然として、粒径およびテクスチャのバンディング領域と称される、大きな程度の不均一性を含んでおり、該領域には、粒径全体およびターゲット全体のテクスチャに一般的ではない共通の粒径およびテクスチャが存在する。
この問題の重要性および大きさは、特許文献1で取り上げられており、その中で、インゴットは、最初に、側部鍛造または側部圧延され、その後に据え込み鍛造または据え込み圧延される。特許文献2は、{100}および{111}配向を伴う粒の混合を提供するように、据え込み鋳造、その後に寄せ鋳造(draw back forging)、次に側部鍛造、そして最後に交差圧延プロセスを利用するプロセスを記載している。特許文献3および特許文献4において、発明者は、複数の変形および焼鈍の構成要素から成る、複合3ステッププロセスを詳述している。しかし、複合プロセス手段は、粒径を成功裏に精練するが、該プロセスは、依然として、大部分は{111}テクスチャとなっている。
特許文献5は、膜厚の限られた部分に選択的な(222)配向を有する、Taスパッタリングターゲットを記載しており、スパッタリングされた膜厚の均一性の改善を主張している。
他の特許は、固体タンタルインゴットではなく、タンタル金属粉末から開始するという、固有の利点を認識している。特許文献6および特許文献7は、そこからスパッタリングターゲットを作製することができる、十分に高密度なビレットを産生するために、その後に広範囲にわたる熱的/機械的プロセス手法を受け得る、Ta粉末のビレットへのコールドプレスを記載している。特許文献8は、均一であるがランダムではない粒構造を提供するように、粉末ビレットを十分な密度まで固めて、その後に圧延および焼鈍することを記載している。特許文献9のプロセスを拡張する特許文献10は、少なくとも99.99%の純粋なタンタルである、結果として生じるタンタルスパッタリングターゲットを含むように、特許文献7のプロセスを発展させている。
特許文献11は、圧縮の前に、最初にタンタル粉末を表面窒化する、粉末冶金プロセスを記載している。表面窒化粉末は、次いで、粉末の窒素含有量を高く維持しなければならない、少なくとも23の一連の異なる処理ステップによって圧縮され得る。好ましくないものの1つは、スプレー蒸着であり、どのようなタイプのスプレー蒸着、すなわち、プラズマスプレー、低圧プラズマ蒸着、火炎スプレー、高速酸素燃料等、が使用されているのかには言及していないが、多くのうちの2、3のプロセスが現在採用されている。
特許文献12および特許文献13は、タンタルの被覆を産生するためのコールドスプレープロセスを開示しており、これらは、コールドスプレープロセスの開示について、参照することにより組み込まれる。
タンタル、およびタンタルをバッキングプレートに接合するためのプロセスが非常に高価であるという事実から、使用済みターゲットの再生、再処理または修復も、経済的に関心がある。これは、ターゲット全体を置き換えなければならなくなる前に、平面ターゲットの約25〜30%および回転ターゲットの60〜70しかスパッタリングに使用されないという事実によって拍車がかかっている。したがって、未使用のTaの回収には、高い関心がある。
特許文献14は、タンタルを脆化させて、バッキングプレートから分離し、研削して、インゴットの作製時に粉末ストックとして再利用することができるように、タンタルターゲットを水素化する方法を開示している。特許文献15は、スパッタリングによって作り出された空隙を充填するように、使用済みターゲットの摩耗領域内に送給される粉末の融解および融合を同時に行うために、レーザビームおよび他の集束エネルギー源を使用することを論じている。当然、これらの全ての手法は、相当な熱を発生させ、修復前にバッキングプレートをターゲットから除去することが必要である。加えて、当業者には既知であるように、融解が生じる時に、粉末は、方向的な様態によって再凝固し、結果として生じる微細構造は、強いテクスチャ構成要素を有する。
ターゲットは、使用できるようにする前に、最終的な寸法に機械加工し、次いで、スパッタリンク機内に載置するために、高熱伝導率のバッキングプレートにはんだ付け、ろう付け、または拡散接合しなければならない。
スパッタリングターゲットは、窓ガラス(Nb)、光起電フィルタ(Mo)、狭帯域通過フィルタ(TaNb)等のための反射および低放射率被覆に及ぶ用途を伴う、広範囲にわたる薄膜を作製するのに使用される。しかしながら、それらの最も知られている使用は、集積回路におけるものであり、層状のスパッタリングされた膜が、機能電子構成要素(集積回路、フラットパネルディスプレイ等)を産生する、基本的なスイッチングデバイス、およびそれらを接続する回路を作製するのに使用される。上述のように、薄膜技術を使用して作製される薄膜の品質、したがって、作製される製品の品質は、そこからスパッタリングされるターゲットの品質に大きく依存する。
コールドスプレーまたは動的スプレー(特許文献16、特許文献17、および特許文献18、非特許文献1、特許文献19および特許文献20および特許文献21を参照されたい)は、多数の工業生産的な問題を解決するのに採用されている先端産業技術である(例えば、特許文献22、特許文献23、特許文献24、および特許文献25も参照されたい)。上述した全ての参考文献は、コールドスプレーまたは動的スプレーのそれらの開示について、参照することにより組み込まれる。
コールドスプレーは、一般的に44ミクロン未満のサイズである粉末を、粉末が表面に衝突した時に表面に接合して、一体的な、十分に接着された高密度な被覆を形成する程度の高速まで急速に加速する、高速ガス噴流を採用している。様々な基板(鋼を含む)上へのタンタル粉末のコールドスプレーが提案されている(例えば、非特許文献2、非特許文献3、非特許文献4を参照されたい)。これは全て、従来の熱スプレープロセスで行われているように、粉末をその融点付近またはそれ以上に加熱することを必要とせずに達成される。高密度な被覆を低温で形成することができるという事実は、多くの利点を提供している。このような利点には、酸化が無いこと、高密度な蒸着、固体圧密化、熱的に誘発される応力が無いこと、および、特に、この場合は、相当な基板加熱が無いことが挙げられる。
動的スプレーは、例えば、65μmを超える粒子直径を有するTa出発粉末を、ドラバル型(de Laval−type)ノズル内に注入し、超音速のガス流中に混入させ、抗力効果により高速に加速することによって達成することができる。粒子の運動エネルギーは、塑性変形を介して、基板表面との衝突に対する歪みおよび熱に変換される。粒子は、そのプロセスで融解される。
物理気相蒸着法(PVD)の分野について、陰極または電子スパッタリングターゲットのブランクを製造する事例では、限定的な基板加熱が好ましい。ターゲット材料は、高融解温度(「TM」)の耐火金属(TaのTMは2998℃)であることが多く、一方で、ターゲットを支持するバッキングプレートは、その熱伝導率の高さで選択され、一般的に銅またはアルミニウム(AlのTMは660℃)であり、どちらも低融解温度の材料である。したがって、粉末を融点またはその付近まで加熱することが必要である他の熱スプレープロセスは、耐火金属を低融解温度のバッキングプレート上に蒸着するのに使用することができない。現在の慣例では、ターゲットおよびバッキングプレートを互いに接合するために、バッキングプレートからターゲットを完全に分離させ、次いで、はんだ、ろう付け、拡散接合、または爆着技術を使用する。コールドまたは動的スプレーは、実質的に粉末を加熱しないので、ターゲットをバッキングプレート上に直接的に作製すること、およびターゲットをバッキングプレートから除去することを必要とせずに、使用済みターゲットを修復するのに使用することができる。
米国特許第6,193,821号明細書 米国特許出願公開第2002/0112789号明細書 米国特許第6,331,233号明細書 米国特許第7,101,447号明細書 米国特許出願公開第2005/0155856号明細書 米国特許第5,580,516号明細書 米国特許第6,521,173号明細書 米国特許第6,770,154号明細書 米国特許第6,770,154号明細書 米国特許第7,081,148号明細書 米国特許第7,067,197号明細書 国際公開第2006/117145号 国際公開第2006/117144号 米国特許出願公開第2004/0065546号明細書 米国特許出願公開第2006/0032735号明細書 米国特許第5,302,414号明細書 米国特許第6,502,767号明細書 米国特許第6,759,085号明細書 米国特許第6,139,913号明細書 米国特許出願公開第20050120957号明細書 米国特許出願公開第20050252450号 米国特許第6,924,974号明細書 米国特許第6,444,259号明細書 米国特許第6,491,208号明細書 米国特許第6,905,728号明細書
Van Steenkiste他の「Analysys of Tantalum Coatings Produced by the Kinetic Spray Process」、Jouranal of Thermal Spray Technology、Vol.13(2)、2004年6月、265〜273ページ Van Steenkiste他の「Analysis of Tantalum Coatings Produced by the Kinetic Spray Process」、Jouranal of Thermal Spray Technology、13巻、2号、2004年6月、265〜273ページ Marx他、「Cold spraying−innovative layers for new applications 」、Jouranal of Thermal Spray Technology、15巻、2号、2006年6月、177〜183ページ Gartner他、「The Cold Spray Process and Its Potential for industrial Applications」、Jouranal of Thermal Spray Technology、15巻、2号、2006年6月、223〜232ページ
本発明の目的は、ターゲット本体の全体を通して均一に微細かつ結晶学的にランダムな微細構造を有する、スパッタリングターゲットを製造することである。
本発明のさらなる目的は、このような微細構造をコスト効率的に作り出すことができ、ターゲットからターゲットへの構築を繰り返すことができる製造プロセスを提供することである。好ましくは、プロセスは、融解を必要としない。このようなプロセスの実施例には、コールドスプレーまたは動的スプレープロセスが挙げられる。
本発明のさらなる目的は、元々有するものと同じ、またはより良好な微細構造を、修復したターゲットに与える、コスト効率的な修復または再生プロセスを提供することである。
さらなる目的は、コールドスプレーまたは動的スプレー等の、融解を必要としない方法による、ターゲット再生プロセスを開発することである。
発明者らは、上述の複合処理を伴わずに、ターゲットの厚さ全体を通して、微細な、ランダムに配向された粒構造を伴うターゲットを直接的に製作できるようにする手法およびパラメータと、ターゲットの微細構造を、所望の微細構造でバッキングプレート上に直接的に製造できるようにする、および修復する使用済みターゲットのための手法と、を発見した。その手法は、融解プロセスを使用しない。このようなプロセスの実施例には、タンタル粉末等が挙げられるが、これに限定されない、微細な金属粉末のコールドスプレーまたは動的スプレーが挙げられる。
加えて、本発明は、それによって上述のスパッタリングターゲットのうちのいずれかが、スパッタリング状態に曝され、それによってスパッタリングされる、スパッタリング法を提供する。あらゆる好適なスパッタリング法を、本発明で使用することができる。好適なスパッタリング法には、マグネトロンスパッタリング、パルスレーザスパッタリング、イオンビームスパッタリング、三極管スパッタリング、およびそれらの組み合わせが挙げられるが、これに限定されない。
加えて、本発明は、本質的に44ミクロン未満の微細で均一な粒構造を備え、電子後方散乱回折(「EBSD」)によって測定された時に、選択されたテクスチャ配向が無く(すなわち、本質的にランダムに配向付けられた粒から成る)、本質的に44ミクロン未満の粒から成り、ターゲット本体の全体を通して粒径またはテクスチャのバンディングを示さない、スパッタリングターゲットを提供する。
加えて、本発明は、焼鈍された状態で等軸粒径を含み、粒径は、出発粉末の粒子径よりも小さい、ターゲットを提供する。
加えて、本発明は、EBSDによって測定された時に、選択されたテクスチャ配向が無く、ターゲット本体の全体を通して粒径またはテクスチャのバンディングを示さない、実質的に粒子間拡散が無いことを特徴とする、レンズ状の粒構造を伴うスパッタリングリングターゲットを提供する。
加えて、本発明は、粉末スプレーを介して、単一のステップで、ターゲット粉末材料をターゲットアセンブリで使用されるバッキングプレート上に直接的に蒸着するステップと、蒸着物および基板を最終的なターゲットアセンブリ寸法に機械加工するステップとによって、付加的にスパッタリングターゲットアセンブリを製造するためのプロセスを提供する。
本発明は、薄膜を作製するための方法であって、
(a)上述のスパッタリングターゲットをスパッタリングするステップと、
(b)ターゲットから金属原子を除去するステップと、
(c)上述の金属を含む薄膜を基板上に形成するステップと、を含む、方法も提供する。
本発明は、複合構造体を基板上に形成するように、耐火粉末および高熱伝導金属粉末から成る粉末の混合物のコールドまたは動的スプレーを行うステップを含むプロセスによって作製される、熱管理材料を提供する。
スパッタリングターゲットは、板状、管状、または異形のターゲットとすることができる。
本発明は、以下のポイントを包含する。
ポイント1:44ミクロン未満の微細で均一な等軸粒構造を備え、電子後方散乱回折(「EBSD」)によって測定された時に、選択されたテクスチャ配向が無く、ターゲット本体の全体を通して粒径のバンディングまたはテクスチャのバンディングを示さない、スパッタリングターゲット。
ポイント2:実質的に粒子間拡散が無い、ポイント1によるターゲット。
ポイント3:平均粒径は、20ミクロンよりも小さい、ポイント1または2によるターゲット。
ポイント4:平均粒径は、10ミクロンよりも小さい、ポイント1〜3のうちのいずれかによるターゲット。
ポイント5:ターゲットは、所望のスパッタリング材料の層および少なくとも1つの付加層をバッキングプレートの界面において組み込む層状組織を有し、該層は、バッキングプレートの熱膨張係数(「CTE」)とスパッタリング材料の層のCTEとの間のCTE値を有する、ポイント1〜4のうちのいずれかによるターゲット。
ポイント6:レンズ状または扁平な粒構造を伴い、電子後方散乱回折(「EBSD」)によって測定された時に、選択されたテクスチャ配向が無く、ターゲット本体の全体を通して粒径またはテクスチャのバンディングを示さない、スパッタリングターゲットであって、ターゲットは、スパッタリング材料の層および少なくとも1つの付加層をバッキングプレートの界面において組み込む層状組織を有し、該層は、バッキングプレートの熱膨張係数(「CTE」)とスパッタリング材料の層のCTEとの間のCTE値を有する、スパッタリングターゲット。
ポイント7:実質的に粒子間拡散が無い、ポイント6によるターゲット。
ポイント8:ターゲットアセンブリが、単一のステップで製造され、その後に、バッキングプレートまたはバッキングチューブを最終的なターゲットアセンブリ寸法に機械加工するように、ターゲット粉末材料を、粉末スプレーを介して、バッキングプレートまたはバッキングチューブ上に直接的に蒸着するステップを含む、付加的な様態でスパッタリングターゲットアセンブリを製造するためのプロセスであって、ターゲットは、44ミクロン未満の微細で均一な等軸粒構造を備え、電子後方散乱回折(「EBSD」)によって測定された時に、実質的にいかなる粒子間拡散も無く、選択されたテクスチャ配向が無く、ターゲット本体の全体を通して粒径またはテクスチャのバンディングを示さない、プロセス。
ポイント9:スプレーは、コールドスプレープロセスによって行われる、ポイント8によるプロセス。
ポイント10:スプレーは、動的スプレープロセスによって行われる、ポイント8または9によるプロセス。
ポイント11:ターゲットは、電子後方散乱回折(「EBSD」)によって測定された時に、選択されたテクスチャ配向が無く、ターゲット本体の全体を通して粒径またはテクスチャのバンディングを示さない、粒子間拡散が無いことを特徴とするレンズ状または扁平な粒構造を有する、ポイント8〜10のうちのいずれかによるプロセス。
ポイント12:ターゲットと、バッキングプレート材料とを備える、ターゲットアセンブリであって、バッキングプレート材料およびターゲットの熱膨張係数は、密接に一致し、バッキングプレート材料の融点は、ターゲット材料を焼鈍することができる温度を上回る、少なくとも200℃である、ターゲットアセンブリ。
ポイント13:ターゲットは、スプレーした時のあらゆる応力を緩和するアセンブリとして焼鈍されている、ポイント12によるターゲットアセンブリ。
ポイント14:プロセスは、ガス流をターゲット上に方向付けるステップを含む、コールドスプレープロセスであり、ガス流は、ニオブ、タンタル、タングステン、モリブデン、チタニウム、ジルコニウム、およびそれらのうちの少なくとも2つの混合物、またはそれらのうちの少なくとも2つまたは他の金属とのそれらの合金から成る群より選択される材料の粉末を有するガス/粉末混合物を形成し、粉末は、0.5〜150μmの粒子径を有し、超音速がガス流に付与され、超音速の噴流は、ターゲットの表面上に方向付けられ、それによって、ターゲットに、(厚さを通じて)微細で、完全にランダムかつ均一にランダムな粒径および結晶学的テクスチャをコールドスプレーする、ポイント8〜11のうちのいずれかによるプロセス。
ポイント15:スプレーは、コールドスプレーガンによって行われ、被覆されるターゲットおよびコールドスプレーガンは、0.1MPaを超える圧力で、環境制御チャンバ内に位置付けられる、ポイント8〜11および14のうちのいずれかによるプロセス。
ポイント16:望ましくない相の形成をもたらす、いかなる検出可能な金属の相互拡散も無いように、ターゲットとバッキングプレートとの間にコンプライアンスを提供するように金属粉末の混合物をバッキングプレートに塗布するステップを含む、複数の金属粉末のターゲットを作製するためのプロセス。
ポイント17:金属粉末は、タングステン、モリブデン、タンタル、ニオブ、チタニウム、およびジルコニウムから成る群より選択される、少なくとも2つの材料の混合物を含む、ポイント16によるプロセス。
ポイント18:スパッタリング状態をポイント1〜7のうちのいずれかによるスパッタリングターゲットに受けさせ、それによってターゲットをスパッタリングするステップを含む、スパッタリング法。
ポイント19:スパッタリングは、マグネトロンスパッタリング、パルスレーザスパッタリング、イオンビームスパッタリング、三極管スパッタリング、およびそれらの組み合わせから成る群より選択される、スパッタリング法を使用して行われる、ポイント18による方法。
ポイント20:スパッタリング状態をポイント6によるスパッタリングターゲットに受けさせ、それによってターゲットをスパッタリングするステップを含む、スパッタリング法。
ポイント21:スパッタリングは、マグネトロンスパッタリング、パルスレーザスパッタリング、イオンビームスパッタリング、三極管スパッタリング、およびそれらの組み合わせから成る群より選択される、スパッタリング法を使用して行われる、ポイント20による方法。
ポイント22:薄膜を作製するための方法であって、
(a)コールドスプレーまたは動的スプレーによってスパッタリングターゲットを作製するステップと、
(b)ポイント1によるスパッタリングターゲットをスパッタリングするステップと、
(c)ターゲットから金属原子を除去するステップと、
(d)それらの金属原子を含む薄膜を基板上に形成するステップと、
を含む方法。
ポイント23:(b)の後に、反応ガスを金属分子に供給するステップをさらに含むステップを追加され得る、ポイント22による方法。
ポイント24:反応ガスは、酸素、窒素、および/またはシリコンを含有するガスである、ポイント22または23よる方法。
ポイント25:薄膜は、0.5nmから10μmの範囲の厚さを有する、ポイント22〜24のうちのいずれかよる方法。
ポイント26:ポイント22〜25のうちのいずれかによる方法に従って作製される薄膜。
ポイント27:ポイント26による薄膜を備える、フラットパネルディスプレイデバイス。
ポイント28:デバイスは、薄膜トランジスタ液晶ディスプレイ、プラズマディスプレイパネル、有機発光ダイオード、無機発光ダイオードディスプレイ、電界放出ディスプレイから成る群より選択される、ポイント27によるフラットパネルデバイス。
ポイント29:薄膜を作製するための方法であって、
(a)コールドスプレーまたは動的スプレーによってスパッタリングターゲットを作製するステップと、
(b)ポイント1〜7のうちのいずれかによるスパッタリングターゲットをスパッタリングするステップと、
(c)ターゲットから金属原子を除去するステップと、
(d)それらの金属原子を含む薄膜を基板上に形成するステップと、
を含む方法。
ポイント30:(b)の後に、反応ガスを金属分子に供給するステップをさらに含むステップが追加され得る、ポイント29による方法。
ポイント31:反応ガスは、酸素、窒素、および/またはシリコンを含有するガスである、ポイント29または30よる方法。
ポイント32:薄膜は、0.5nmから10μmの範囲の厚さを有する、ポイント29〜31のうちのいずれかよる方法。
ポイント33:ポイント1の微細構造を伴うターゲットから、4%未満の膜の不均一性である、ポイント29〜32のうちのいずれかの方法に従って作製される薄膜。
ポイント34:ポイント33による薄膜を備える、フラットパネルディスプレイデバイス。
ポイント35:デバイスは、薄膜トランジスタ液晶ディスプレイ、プラズマディスプレイパネル、有機発光ダイオード、無機発光ダイオードディスプレイ、電界放出ディスプレイから成る群より選択される、ポイント34によるフラットパネルデバイス。
ポイント36:障壁層および背面接点としてポイント33による薄膜を備える、太陽電池デバイス。
ポイント37:ポイント33による膜を備える、磁気ディスクドライブ記憶デバイス。
ポイント38:ポイント33による膜を備える、半導体メモリデバイス。
ポイント39:建築用ガラスの表面と接触する、ポイント33による薄膜を備え、該薄膜は、酸化亜鉛薄膜である、被覆建築用ガラス。
ポイント40:ポイント33による薄膜を伴う被覆した建築用ガラスを備える、建築用ガラスの被覆プロセス。
ポイント41:ポイント33による膜を備える、インクジェット印刷ヘッド。
ポイント42:光学コーティングは、反射または反射防止材料と、ポイント33による膜とを含み、該膜は、該反射または反射防止材料と接触する、光学被覆。
ポイント43:銅層と、ポイント33による膜を備えるシリコン基板との間の拡散障壁層。
ポイント44:ターゲットは、板状、管状、または異形のターゲットである、ポイント1〜7のうちのいずれかによるターゲット。
ポイント45:該粉末の混合物を塗布するステップは、コールドスプレーまたは動的スプレーによって行われる、ポイント16または17のうちのいずれかによるプロセス。
ポイント46:その耐用年数の終わりまで事前にスパッタリングされ、その後、侵食された体積に高密度化粉末を充填することによって修復されて、ポイント1〜7のうちのいずれかによる微細構造を有するターゲットの全体積となる、スパッタリングターゲットおよびスパッタリングターゲットアセンブリ。
ポイント47:その耐用年数の終わりまで事前にスパッタリングされ、その後、侵食された体積に高密度化粉末を充填することによって修復されて、元の材料よりも粒径が有意に微細な新しい材料の等軸微細構造となる、スパッタリングターゲットおよびスパッタリングターゲットアセンブリ。
ポイント48:複合構造体を基板上に形成するように、耐火粉末および高熱伝導金属粉末から成る粉末の混合物をコールドまたは動的スプレーするステップを含む、プロセスによって作製される、熱管理材料。
ポイント49:該熱伝導金属粉末は、Cu、Al、Ag、Auであり、基板は、ステンレス鋼基板である、ポイント48による材料。
ポイント50:ステンレス鋼の基板が機械加工によって除去される、ポイント48または49のうちのいずれかによる材料。
(項目1)
44ミクロン未満の微細で均一な等軸粒構造を備え、電子後方散乱回折(「EBSD」)によって測定されたときに、選択されたテクスチャ配向が無く、ターゲット本体の全体を通して粒径のバンディングまたはテクスチャのバンディングを示さない、スパッタリングターゲット。
(項目2)
前記ターゲットは、所望のスパッタリング材料の層、および少なくとも1つの付加層をバッキングプレートの界面において組み込む層状組織を有し、該層は、該バッキングプレートの熱膨張係数(「CTE」)と、該スパッタリング材料の層のCTEとの間のCTE値を有する、項目1に記載のターゲット。
(項目3)
レンズ状の、または扁平な粒構造を有するスパッタリングターゲットであって、電子後方散乱回折(「EBSD」)によって測定されたときに、選択されたテクスチャ配向が無く、該ターゲット本体の全体を通して粒径またはテクスチャのバンディングを示さず、該ターゲットが、該スパッタリング材料の層、および少なくとも1つの付加層をバッキングプレートの界面において組み込む層状組織を有し、該層は、該バッキングプレートの熱膨張係数(「CTE」)と、該スパッタリング材料の層のCTEとの間のCTE値を有する、スパッタリングターゲット。
(項目4)
平均粒径は、20ミクロンよりも小さく、好ましくは10ミクロンよりも小さく、および/または実質的に粒子間拡散が無い、項目1〜3のうちのいずれか1項に記載のターゲット。
(項目5)
付加的な態様でスパッタリングターゲットアセンブリを製造するプロセスであって、
ターゲットアセンブリが単一のステップで製造されるように、粉末スプレーを介して、ターゲット粉末材料をバッキングプレートまたはバッキングチューブ上に直接的に蒸着するステップと、
その後、該バッキングプレートまたはバッキングチューブを最終的なターゲットアセンブリ寸法に機械加工するステップと
を含み、該ターゲットは、44ミクロン未満の微細で均一な等軸粒構造を備え、電子後方散乱回折(「EBSD」)によって測定されたときに、実質的に粒子間拡散が無く、選択されたテクスチャ配向が無く、該ターゲット本体の全体を通して粒径またはテクスチャのバンディングを示さない、
プロセス。
(項目6)
前記スプレーは、コールドスプレーまたは動的スプレーによって行われ、前記ターゲットは、電子後方散乱回折(「EBSD」)によって測定されたときに、選択されたテクスチャ配向が無く、該ターゲット本体の全体を通して粒径またはテクスチャのバンディングを示さない、粒子間拡散が無いことを特徴とする、レンズ状または扁平な粒構造を有する、項目5に記載のプロセス。
(項目7)
項目5または6に記載のプロセスであって、該プロセスは、ガス流をターゲット上に方向付けるステップを含むコールドスプレープロセスであり、該ガス流は、ニオブ、タンタル、タングステン、モリブデン、チタニウム、ジルコニウム、およびそれらのうちの少なくとも2つの混合物、またはそれらのうちの少なくとも2つまたは他の金属とのそれらの合金から成る群より選択される材料の粉末を有するガス・粉末混合物を形成し、該粉末は、0.5〜150μmの粒子径を有し、超音速が該ガス流に付与され、該超音速の噴流が該ターゲットの表面上に方向付けられ、それによって、ターゲットに、(厚さを通じて)微細で、完全にランダムかつ均一にランダムな粒径および結晶学的テクスチャをコールドスプレーする、プロセス。
(項目8)
ターゲットと、バッキングプレート材料とを備える、ターゲットアセンブリであって、該バッキングプレート材料および該ターゲットの熱膨張係数は、密接に一致し、該バッキングプレート材料の融点は、該ターゲット材料を焼鈍することができる温度を上回る、少なくとも200℃である、ターゲットアセンブリ。
(項目9)
複数の金属粉末のターゲットを作製するためのプロセスであって、望ましくない相の形成をもたらす、検出可能な該金属の相互拡散が無いように、ターゲットとバッキングプレートとの間にコンプライアンスを提供するように金属粉末の混合物を該バッキングプレートに塗布するステップを含む、プロセス。
(項目10)
薄膜を作製するための方法であって、
(a)項目1〜4のうちのいずれか1項に記載の前記スパッタリングターゲットをスパッタリングするステップと、
(b)該ターゲットから金属原子を除去するステップと、
(c)それらの金属原子を含む薄膜を基板上に形成するステップと
を含む、方法。
(項目11)
項目10に記載の前記方法に従って作製される、薄膜。
(項目12)
項目11に記載の前記薄膜を備える、フラットパネルディスプレイデバイス。
(項目13)
太陽電池デバイス、半導体デバイス、被覆した建築用ガラス、インクジェット印刷ヘッド、光学被覆、または拡散障壁層における、項目12に記載の前記膜の使用。
(項目14)
その耐用年数の終わりまで事前にスパッタリングされ、次いで、侵食された体積に高密度化粉末を充填することによって修復されて、項目1〜4のうちのいずれか1項に記載の前記微細構造を有するターゲットの全体積となる、スパッタリングターゲットおよびスパッタリングターゲットアセンブリ。
(項目15)
その耐用年数の終わりまで事前にスパッタリングされ、次いで、侵食された体積に高密度化粉末を充填することによって修復されて、元の材料よりも粒径が有意に微細である新しい材料の等軸微細構造となる、スパッタリングターゲットおよびスパッタリングターゲットアセンブリ。
(項目16)
複合構造体を基板上に形成するように、耐火粉末および高熱伝導金属粉末から成る粉末の混合物をコールドまたは動的スプレーするステップを含む、プロセスによって作製される、熱管理材料。
図1(A)は、ヘリウムガスを使用して、コールドスプレーによって作製される平坦な平面タンタルターゲットを示す図である。図1(B)は、窒素ガスを使用して、コールドスプレーによって作製される平坦な平面タンタルターゲットを示す写真である。 図2は、スパッタリング後のコールドスプレーによって作製された平面タンタルターゲットを示す写真である。 図3Aは、ヘリウムコールドスプレー、窒素コールドスプレー、および圧延ビレットによって調製されるターゲットからの、スパッタリングされたタンタル薄膜の走査型電子顕微鏡(「SEM」)の顕微鏡写真である。 図3Bは、ヘリウムコールドスプレー、窒素コールドスプレー、および圧延ビレットによって調製されるターゲットからの、スパッタリングされたタンタル薄膜の走査型電子顕微鏡(「SEM」)の顕微鏡写真である。 図3Cは、ヘリウムコールドスプレー、窒素コールドスプレー、および圧延ビレットによって調製されるターゲットからの、スパッタリングされたタンタル薄膜の走査型電子顕微鏡(「SEM」)の顕微鏡写真である。 図4Aは、圧延ターゲットの斑紋状の不規則な表面を明らかにしている、スパッタリング後の圧延ターゲットの拡大写真である。 図4Bは、コールドスプレーターゲットのより滑らかな、非斑紋状の表面を明らかにしている、スパッタリング後のヘリウムコールドスプレーされたターゲットの拡大写真である。 図5は、本発明によるタンタル管状実施体を示す写真である。 図6Aは、スプレーの方向に垂直に撮影した、スプレーおよび焼鈍した組織の顕微鏡写真である。 図6Bは、スプレーの方向に垂直に撮影した、スプレーおよび焼鈍した組織の顕微鏡写真である。 図6Cは、スプレーの方向に垂直に撮影した、スプレーおよび焼鈍した組織の顕微鏡写真である。 図6Dは、スプレーの方向に垂直に撮影した、スプレーおよび焼鈍した組織の顕微鏡写真である。 図7Aは、コールドスプレーを使用して、1450℃で焼鈍した結果を示す写真である。 図7Bは、コールドスプレーを使用して、1450℃で焼鈍した結果を示す写真である。 図8は、コールドスプレーを使用して、1150℃で焼鈍した結果を示す写真である。 図9は、コールドスプレーを使用して、942℃で焼鈍した結果を示す写真である。 図10は、基板が、圧延して過度に焼鈍した板の代表的なテクスチャを伴う、非常に大きな等軸粒を有することを示す写真である。 図11は、本発明による極点図である。 図12は、圧延して過度に焼鈍した板の代表的なテクスチャを伴う、非常に大きな等軸粒を有する、プラズマスプレーを行ったタンタル試料を示す写真である。 図13は、本発明による極点図である。 図14は、コールドスプレーを行ったTaNbターゲットを示す写真である。蒸着は、長さ440mm、幅110mm、および厚さ7mmにわたって行う。銅のバッキングプレートの中央で3mmの湾曲を誘発したことに留意されたい。 図15は、スプレーした時のタンタルの荷重対たわみを示す図である。蒸着は、いかなる塑性変形も呈さずに、脆性破壊によって失敗することに留意されたい。 図16は、曲げ試験中に、0.08インチ(約2.03ミリ)のたわみの後に、Ta蒸着物に得られた永久変形を示す図である。 図17は、焼鈍および矯正後のターゲットを示す写真である。直定規は、湾曲が成功裏に除去されたことを実証している。 図18は、MoTiターゲットの微細構造、および粉末を圧密化するように熱間等方圧縮(「HIP」)中に産生される有害な相および相互拡散ゾーンを示す写真である。 図19は、Mo元素およびTi元素だけを含み、いかなる有害な相も形成されていない、コールドスプレーによって産生された、スプレーしたときのMoTiターゲットの微細構造を示す写真である。 図20は、熱間等方圧縮(「HIP」)したターゲット(図19)と比較して、実質的にいかなる有害な相も形成されていないことを示す、700℃で1.5時間焼鈍した後にコールドスプレーを行ったMoTiを示す写真である。 図21Aは、W−Cu(50/50体積%)の微細構造を示す写真である。 図21Bは、扁平な組織を有するCuを示す写真である。
発明者らは、上述の複合処理を伴わずに、ターゲットを直接的に製造できるようにする手法およびパラメータ、ターゲットの微細構造を、所望の微細構造でバッキングプレート上に直接的にターゲットを製造すること、および事前のバッキングプレートからの除去の有無に関わらず、使用済みターゲットが簡単に修復されることを可能にする手法とを発見した。その手法は、融解プロセスを使用しない。このようなプロセスの実施例には、タンタル粉末等が挙げられるが、これに限定されない、微細な金属粉末のコールドスプレーまたは動的スプレーが挙げられる。
該手法は、スパッタリングターゲットの再生または修復に使用することもできる。
金属粉末とともにガス・粉末混合物を形成するガスとして、概して、不活性ガスが使用される。本発明による不活性ガスには、アルゴン、ヘリウム、または比較的に非反応性の窒素、またはそれらの2つ以上の混合物が挙げられるが、これに限定されない。特別な場合では、空気も使用され得る。安全規則を満たしている場合は、水素、または水素と他のガスとの混合物の使用も考慮され、水素の非常に速い音速によって好都合に使用することができるが、実際に、水素の音速は、ヘリウムの音速よりも30%速く、そしてまた、窒素の音速よりも約3倍速い。空気の音速は、20℃および1気圧(atm)で344m/sであり、一方で、分子量が2.016である水素は、空気の分子量28.96と比較して、最も軽い元素である。その密度は、空気の約1/14未満であり、1308m/sの音速を有する。
プロセスの1つの好適なバージョンにおいて、スプレーは、
スプレーによって被覆される表面に隣接してスプレーオリフィスを提供するステップと、
ニオブ、タンタル、タングステン、モリブデン、チタニウム、ジルコニウム、それらのうちの少なくとも2つの混合物、または互いの、または他の金属とそれらの合金から成る群より選択される材料の粉末を、スプレーオリフィスに提供するステップであって、該粉末は、粒子のサイズが0.5〜150μm、好ましくは、5〜80μm、最も好ましくは10〜44μmであり、該粉末は、加圧下にある、ステップと、
高よどみ点圧力で不活性ガスをスプレーオリフィスに提供し、該粒子材料およびガスのスプレーを、被覆する基板表面上に提供するステップと、
低周囲圧力の領域内にスプレーオリフィスを位置付けるステップであって、
該周囲圧力は、該粒子材料およびガスのスプレーの相当な加速を、被覆する基板表面上に提供するように、スプレーオリフィスの手前ではよどみ点圧力未満であり、
それによって、基板は、高密度化被覆で被覆され、焼鈍される、ステップと、を含む。高密度化被覆は、焼鈍前、またはその後に基板から除去され得ることに留意されたい。
プロセスの別の好適なバージョンにおいて、スプレーは、コールドスプレーガンで行われ、被覆されるターゲットおよびコールドスプレーガンは、80kPaを下回る、または0.1MPaを上回る圧力で、不活性化されたチャンバ(環境制御されたチャンバ)内に位置付けられる。
明細書の全体を通して、コールドスプレーという用語を使用する。コールドスプレープロセスだけに言及される場合において、コールドスプレープロセスの代わりに、動的スプレープロセスを使用することが可能であることを理解されたい。
プロセスの別の好適なバージョンにおいて、スプレーは、動的デバイスによって行われる。動的プロセスは、より速い粒子速度および通常はより低い粒子温度を伴う、50μm未満の粒子直径を使用するコールドスプレープロセスと比較して、65〜200μmのより大きな粒子径分布およびより高い粒子温度を使用して、被覆を産生する。運動エネルギーは、粒子直径の3乗、および粒子速度の2乗に比例するので、総塑性変形に利用できる総運動エネルギーは、通常、コールドスプレーのそれよりも大きい。動的スプレーは、のど領域の後ろのより長いノズル長(標準の80mmに対して280mm等)、およびより高いガス温度(例えば、200℃超であるが、材料の融点よりはかなり低い)で行われる。粒子速度が速くなるにつれて、被覆特性が改善され、その結果、塑性変形の程度が高くなり、密着性が高まり、細孔率が下がり、また、より短いノズルで産生した被覆と比較して、加工硬化が高くなる。
一般に、耐火金属は、99.5%、99.7%、または99.9%等、少なくとも99%の純度を有し、好都合には、金属不純物に基づいて、99.95%、特に少なくとも99.995%または少なくとも99.999%、特に99.9995%の純度を有する。
一般に、単一の耐火金属の代わりに合金が使用される場合、好ましくは全体として合金であるが、少なくとも耐火金属は、対応する高純度被覆を産生することができるように、その純度を有する。
本発明による実施形態のうちの1つにおいて、酸素、炭素、窒素、または水素等の、粉末中の非金属不純物の総含有量は、好都合には1,000ppm未満、好ましくは500ppm未満、より好ましくは150ppm未満とすべきである。
本発明による実施形態のうちの1つにおいて、酸素含有量は、50ppm以下であり、窒素含有量は25ppm以下であり、炭素含有量は、25ppm以下である。
金属不純物の含有量は、好都合には500ppm以下、好ましくは100ppm以下、最も好ましくは50ppm以下、特に10ppm以下である。
このような金属粉末は、商業的に購入することができ、または還元剤、および、好ましくはその後の脱酸素によって、耐火金属化合物を還元することによって調製することができる。酸化タングステンまたは酸化モリブデンは、例えば、高温で水素のストリーム中で還元される。調製は、例えば、Schubert、Lassnerの「Tungsten」、Kluwer Academic/Plenum Publishers、New york、1999、またはBrauerの「Handbuch der Preparativen Anorgnischen Chemie」、Ferdinand Enke Verlag Stuttgart、1981、p1530に記載されている。
タンタルおよびニオブの場合、調製は、ほとんどの場合、アルカリまたはアルカリ土類金属で、例えばヘプタフルオロタンタル酸ナトリウム、ヘプタフルオロタンタル酸カリウム、ヘプタフルオロニオブ酸ナトリウム、ヘプタフルオロニオブ酸カリウム等の、アルカリヘプタフルオロタンタル酸およびヘプタフルオロタンタル酸アルカリ土類金属、または酸化物を還元することによって行われる。還元は、例えばナトリウムの添加を伴って融解塩中で、または、カルシウムまたはマグネシウムの蒸気が好都合に使用される気相中で行われる。耐火金属化合物を、アルカリまたはアルカリ土類金属と混合して、その混合物を加熱することも可能である。水素雰囲気が好都合であり得る。多数の好適なプロセスは、好適な反応条件を選択することができるプロセスパラメータのように、当業者に既知である。好適なプロセスは、例えば、米国特許第4,483,819号および国際公開第98/37249号に記載されている。
低酸素含有量が所望される場合、低酸素含有量を有する純粋な粉末を調整するためのさらなるプロセスは、例えば国際公開第01/12364号および欧州特許出願公開第1200218号Aに開示されているように、アルカリ土類金属を還元剤として使用する、耐火金属水酸化物を還元するステップを含む。
本発明はさらに、スパッタターゲット(金属の陰極スパッタリングにおける金属源)を再処理するためのプロセスであって、ガス流は、ニオブ、タンタル、タングステン、モリブデン、チタニウム、ジルコニウム、またはそれらのうちの2つ以上の混合物、またはそれらのうちの少なくとも2つまたは他の金属とのそれらの合金から成る群より選択される材料の粉末とともに、ガス・粉末混合物を形成し、粉末は、0.5〜150μmの粒子径を有し、超音速がガス流に付与され、超音速の噴流は、再処理または産生される物体の表面上に方向付けられる、プロセスに関する。
スパッタターゲットは、金属の陰極スパッタリングにおける金属源である。これらは、集積回路、半導体、および他の電気、磁気、および光学製品の産生に採用される。スパッタリングプロセス中に、一般に、スパッタターゲットの金属表面は、不均一に磨滅し、表面上に溝を生じさせる。バッキングプレートの材料の汚染、またはさらに冷却液の破局的な漏出を回避するために、スパッタターゲットは、耐火金属ターゲットが使い果たされるまで使用されるのではなく、新しいスパッタターゲットを採用しなければならない時に、比較的に少量の高価な耐火金属だけが使い果たされるように、事前に、即座に使用が停止される。バッキングプレートの除去が必要であり、新しい耐火金属板への接続が必要となるので、大半は、単にスクラップとして、または再生利用されるそれらの材料として販売される。しかしながら、バッキングプレートは、この場合、より価値の低い、スパッタターゲットの一部である。
したがって、このためにバッキングプレートを外すことを必要とせずに、スパッタターゲットを再処理する、または再生させることができるように、またはスパッタ材料をバッキングプレートに、または回転ターゲットのバッキングチューブに直接的に蒸着できるようにする手法が必要である。
この目的のために、使用済みスパッタターゲット内の溝は、再び特定の耐火金属で補充される。好ましくは、融解を用いずに行われる。例えば、上述のようにコールドスプレーまたは動的プロセスによって行うことができる。このために、ガス・粉末混合物の超音速の噴流が、溝上に方向付けられ、溝の全長および形状にわたって移動する。これは、溝を再び補充することが必要になるたびに繰り返され、そのため、スパッタターゲットの表面は、再び実質的に平坦な領域を形成し、および/または補充した材料は、スパッタターゲットの表面よりもわずかに高くなる。好ましくは、ガス・粉末混合物の超音速の噴流は、次いで、スパッタターゲットの表面を完全に覆う、均一な厚さの平坦な層が得られるまで、スパッタターゲットの残りの表面上に方向付けられ、スパッタターゲット表面の全長、幅、および形状にわたって誘導される。得られた粗面は、次いで、所望の滑面が得られるように、従来のプロセスによって研削および研磨を行うことができる。
発明者らは、元のターゲットが、従来のインゴット冶金法または粉末冶金法によって作製された場合、コールドスプレーによる修復は、元のターゲットよりも微細な粒径、およびランダムな構造を有することを発見した。元のターゲットが、コールドスプレーによって作製された場合、修復したものは、元のターゲットとは見分けのつかないほどの、同様の微細構造を有する。しかしながら、元のターゲットと修復したゾーンとの間には、ターゲットの断面内に見ることができる、明瞭な境界線が存在することになる。
新しいスパッタターゲットの産生中に、ターゲットは、バッキングプレートに直接的に塗布される。ターゲットの構成に基づいて、ガス・粉末混合物の超音速の噴流は、したがって、スパッタターゲットの表面を完全に覆う、均一で十分に厚く平坦な層が得られるまで、スパッタターゲットのバッキングプレートの完全な表面上に方向付けられ、スパッタターゲット表面の全長、幅、および形状にわたって誘導されるか、または、プラズマの接触領域だけが被覆され、材料の大幅な節減がもたらされる。
ターゲットは、厚さが2〜20mm、より好ましくは、3.0〜15mm、さらに好ましくは5〜12mm、さらに好ましくは8〜12mmであることが好ましい。
得られるターゲットの純度および酸素含有量は、粉末のそれらから5%、好ましくは1%を超えて外れてはならない。
これは、好都合に、再処理されるスパッタターゲットが不活性ガスの下で被覆される場合に達成することができる。アルゴンは、空気よりも密度が高いため、不活性ガスとして好都合に使用され、特に、スパッタターゲットが、アルゴンの漏れまたは流出を防ぐ容器内にあり、アルゴンが連続的に補給される場合に、被覆される物体を覆い、存在し続ける傾向がある。本発明に従って機能する他の不活性ガスは、上述の通りである。
本発明によるプロセスは、スパッタリングターゲットの処理または産生に特に好適である。なぜならば、一方では、熱機械的プロセスによる産生中に、異なる間隔で変化する可能性のある結晶学的に選択された配向がしばしば生じ、そのため、均一なテクスチャが得られず、その代わりに、いわゆるバンド、すなわち、異なる選択された配向の領域が生じるからである、熱機械的プロセスにおいて、これは、非常に複雑で高価なプロセスでしか防止できないためである。対照的に、耐火金属ターゲットの厚さにわたって、いかなる検出可能で選択された配向も存在しない、均一にランダムなテクスチャが、本発明によるプロセスによって得られ得る。
均一かつランダムな粒子径分布および粒径分布も、ターゲット内で同様に得られ、そのため、同じく、これが所望されない場合は、いかなる異なる粒子径または粒径のバンドも得られない。スパッタリングターゲット内の粒径またはテクスチャのバンディングは、それがスパッタ率および膜の均一性を変動させるので、特に不適当である。
粉末がスパッタターゲットに塗布されて、融解されるプロセスでは、経験的に、バブリングおよび粒の成長が生じることが分かっている。これも、本発明によるプロセスでは観察することができない。
ターゲットの塗布後、スパッタターゲットの表面は、通常、好適な滑面を得るように、研削および研磨される。これは、従来技術による従来のプロセスによって行うことができる。
新しいスパッタターゲットの産生において、ターゲットは、バッキング手段、例えばバッキングプレートに塗布される。この板は、一般に、銅またはアルミニウムの板、またはこれらの金属うちの少なくとも1つとベリリウムとの合金である。このバッキングプレートは、冷却媒体が存在するチャネルを含むことができる。
バッキングプレート、およびしたがってスパッタターゲットも、平坦形、ロッド形、円筒形、ブロック形、または他のあらゆる所望の形状の形態とすることができる。追加的な構造用構成要素、液体冷却コイル、および/または大型冷却材貯蔵容器、複合フランジ、または他の機械的または電気的構造体も取り付けることができる。
本発明に従って製作されるターゲット、またはスパッタターゲットの産生中または再処理中に産生されるターゲットは、純度を高く、かつ酸素含有量を低くすることができる。
結果として生じるターゲットは、このターゲットが産生された出発粉末の含有量から、50%を超えて、または20%を超えて、または10%を超えて、または5%を超えて、あるいは1%を超えて外れない、ガス状不純物の含有量を有する。この関連では、外れという用語は、特に、増加を意味するものとして理解されるべきであり、したがって、得られるターゲットは、出発粉末の含有量の50%を超えない、ガス状不純物の含有量を好都合に有するべきである。
表面上に高密度化される粉末は、好ましくは、出発粉末の酸素含有量から5%を超えて、特に1%を超えて外れない、酸素含有量を有する。
好都合な実施形態において、ターゲットは、さらに、少なくとも97%、好ましくは98%を超える、特に99%または99.5%を超える密度を有する。この場合、ターゲットの密度は、ターゲットの閉鎖性および細孔率の尺度である。97%のターゲット密度とは、ターゲットが、バルク材料の97%の密度を有することを意味する。閉鎖した、実質的に無細孔のターゲットは、常時、99.5%を超える密度を有する。密度は、このようなターゲットの断面画像(横断面)の画像分析によって、またはヘリウム比重法によって特定することができる。後者の方法は、非常に高密度なターゲットの場合、ターゲット内に存在する、表面から遠く離れた細孔が検出されず、したがって、実際に存在するよりも低い細孔率が測定されるので、あまり好適ではない。密度は画像分析によって特定することができるが、最初に、顕微鏡の画像区域内の、調査されるターゲットの総面積を特定し、次いで、この面積を細孔の面積と関連付けることによって特定される。表面から遠く離れた細孔、および基板の界面近くの細孔も、この手段によって記録される。少なくとも97%の、好ましくは98%を超える、特に99%または99.5%を超える高密度は、特に、スパッタターゲットの産生または再処理に重要である。
ターゲットは、それらの高密度によって、および粒子の高度な変形によって生じる高い機械的強度を示し、したがって、タンタルの場合、金属粉末とともにガス・粉末混合物を形成するガスが窒素である場合に、強度は、少なくとも80MPa、より好ましくは少なくとも100MPa、最も好ましくは少なくとも140Mpaである。このスプレーされる粉末の機械的強度およびじん性は、スプレーの後に、焼鈍または拡散接合熱処理を提供することによって、さらに高めることができる。
ヘリウムが使用される場合、強度は、通常、少なくとも150MPa、好ましくは少なくとも170MPa、最も好ましくは少なくとも200MPa、さらに最も好ましくは250MPa超である。
本発明は、発明のスパッタリングターゲットをスパッタリング状態に曝し、それによってターゲットをスパッタリングする方法にも関する。
スパッタリングは、マグネトロンスパッタリング、パルスレーザスパッタリング、イオンビームスパッタリング、三極管スパッタリング、およびそれらの組み合わせから成る群より選択される、スパッタリング法を使用することによって行うことができる。
スパッタリングは、マグネトロンスパッタリング、パルスレーザスパッタリング、イオンビームスパッタリング、三極管スパッタリング、およびそれらの組み合わせから成る群より選択される、スパッタリング法を使用することによって行うことができる。
本発明は、薄膜を作製するための方法であって、
(a)コールドスプレーまたは動的スプレーによって所望のスパッタリングターゲットを作製するステップと、
(b)上述のスパッタリングターゲットをスパッタリングするステップと、
(c)ターゲットから金属原子を除去するステップと、
(d)金属原子を含む薄膜を基板上に形成するステップと、を含む、方法も提供する。
本発明による金属原子には、ニオブ、タンタル、タングステン、モリブデン、チタニウム、ジルコニウム、クロミウム、バナジウム、マグネシウム、スズ、鉛、アルミニウム、亜鉛、銅、ロジウム、銀、金、コバルト、鉄、ルテニウム、レニウム、ガリウム、インジウム、アンチモン、それらのうちの2つ以上の混合物、またはそれらのうちの2つの合金、または上述の特性を有する他の金属との合金が挙げられるが、これに限定されない。薄膜の用途に基づいて、スパッタリングターゲットの作製に、どの金属、または金属原子の組み合わせを使用するのかを決定する。
一実施形態は、タングステン、モリブデン、タンタル、ニオブ、チタニウム、およびジルコニウムから成る群より選択される少なくとも2つの金属の混合物を含む、金属粉末を使用する。
本発明の別の実施形態において、ステップ(b)でスパッタリングターゲットがスパッタリングされた後、反応ガスを金属原子に供給するステップを追加することができる。反応ガスは、ガス状の状態で、または基板上に蒸着させた時点で、金属原子と反応し、金属または合金の化合物を形成することができる成分を含むガスである。限定的でない実施例として、反応ガスは、酸素、窒素、および/またはシリコンを含有するガスとすることができる。
本方法によって塗布される薄膜は、あらゆる所望の厚さを有することができる。薄膜の厚さは、所望される最終用途に依存する。一般的に、薄膜の厚さは、少なくとも0.5nm、いくつかの状況では少なくとも1nm、いくつかの事例では少なくとも5nm、他の事例では少なくとも10nm、いくつかの状況では少なくとも25nm、他の状況では少なくとも50nm、いくつかの環境では75nm、他の環境では少なくとも100nmとすることができる。また、膜厚は、最高で10μm、いくつかの事例では最高で5μm、他の事例では最高で2μm、いくつかの状況では最高で1μm、他の状況では最高で0.5μmとすることができる。膜厚は、定められた値のうちのいずれかにすることができ、または上述の値のうちのいずれかの間の範囲とすることができる。本発明による薄膜の利点は、薄膜が、優れた均一性、および非常に小さい表面粗さを有することができることである。驚くべきことに、同様のマグネトロンスパッタリング条件では、(表1に示されているように)従来のインゴット圧延したタンタルターゲットから作製された薄膜の不均一性が4.3%〜15.4%であるのと比較して、コールドスプレーしたタンタルターゲットから作製された薄膜の不均一性は、1.5%〜4%の範囲である。改良された薄膜の均一性は、ランダムで均一なテクスチャの特徴、および実質的に44μmよりも小さい微細な粒径を呈する、コールドスプレーターゲットの結果である。
本発明による薄膜の使用は、フラットパネルデバイス等の種々の用途で使用される製品を包含する。フラットパネルデバイスは、薄膜トランジスタ−液晶ディスプレイ、プラズマディスプレイパネル、有機発光ダイオード、無機発光ダイオードディスプレイ、および電界放出ディスプレイから成る群より選択される。
好適な一実施形態において、本発明に従って作製される薄膜は、薄膜トランジスタ(TFT)−液晶ディスプレイ(LCD)用途で使用することができる。また、別の実施形態において、本発明は、太陽電池用途、センサ用途、半導体デバイス、およびCMOS(相補型金属酸化膜半導体)技術のための金属ゲートで使用される薄膜を包含する。一実施形態において、本発明は、優れた均一性を有するゲート電極として機能する、モリブデン薄膜を含むTFT−LCDデバイスを目的とする。別の実施形態は、薄膜太陽電池用途を目的とし、本発明は、Mo薄膜が、背面接触部および障壁層として機能する太陽電池を包含する。薄膜は、インクジェット印刷ヘッド用途(例えば、タンタルが、加熱要素(高耐食性金属材料)として使用される)、キャビテーション障壁、およびパッシベーション層(Taとして)、または建築用ガラスの被覆で使用することができ、薄膜は、フラットパネルディスプレイ、またはディスクドライブストレージとしての磁気薄膜材料、および光学被覆、またはその一部とすることができる。本発明による薄膜は、従来技術による従来の薄膜に代わることができる。
金属スパッタリングターゲットの厚さを通じての粒径およびテクスチャの均一性により、このようなターゲットから得られる膜は、コールドスプレーしたターゲットが、「微粒状」であり、ランダムな粒配向を有しバンド化が無いので、優れた均一性を有する。
太陽電池デバイスは、当技術分野において既知である。例えば、太陽電池デバイスのための以下の特許および基準は、太陽電池デバイスの開示につて参照することにより組み込まれる(障壁層および背面接触部としてのモリブデン薄膜)。米国特許第7,053,294号(Thin Film Solar Cell Fabricated on a
Flexible Metallic Substrate)、米国特許第4,915,745号(Thin Film Solar Cell and Method of
Making)、The Fablication and Physics of High−efficiency CdTe Thin Film Solar Cells(Alvin、Compaan and Victor Karpov、2003、National Renewable Energy Labによる)、および、Development of Cu(In,Ga)Se2 Superstrate Thin Film Solar Cells(Franz−Josef Haug、2001、Swiss Federal institute of Technology、ZurichのPh.D.論文による)。
概して、太陽電池は、
A)カバーガラスと、
B)上部電気接触層と、
C)透明な接触部と、
D)上部接合層と、
E)吸収体層と、
F)背面電気接触部と、
G)基板と、を含むことができる。
本発明によれば、薄膜は、上述のように、動的またはコールドスプレープロセスによって作製される、スパッタリングターゲットを使用することによって作製される。スパッタリングターゲットは、好ましくは、タンタル、ニオブ、モリブデン、アルミニウム、亜鉛、テルル、銅、または金といった金属から、少なくとも1つの粉末を混合している粉末である。本発明による膜は、背面電気接触部および障壁層として使用することができる。
本発明によれば、半導体デバイスを作製するために、スパッタリングターゲットは、上述のように、動的またはコールドスプレープロセスによって作製される。スパッタリングターゲットは、好ましくは、Ta、Nb、Mo、W、Cr、Ti、Hf、およびZrといった金属からの少なくとも1つの粉末を混合する粉末を伴う、コールドスプレーによって作製される。このようなターゲットから作製される薄膜は、障壁層として使用される。障壁層の使用は、当技術分野において既知である。例えば、障壁層に対する以下の特許は、障壁層の開示について、参照することにより組み込まれる。Semiconductor
Carrier Film,and Semiconductor Device and Loquid Crystal Module Using The Same(米国特許第7,164,205号)、Methods of forming an interconnect on a semiconductor substrate(米国特許第5,612,254号)、Fabrication of Semiconductor device(tungsten,chromium or molybdenum,and barrier carrier)(米国特許第7,183,206号)、全て半導体デバイスを開示している。
コールドスプレーまたは動的プロセスを使用する、本発明に従って作製される薄膜を伴う半導体デバイスは、チタニウム、タンタルニオブ、タングステン、クロミウム、ハフニウム、およびジルコニウム、ならびにそれらの窒化物、シリサイド、またはオキシ−シリサイドの膜を含む。これらの膜は、障壁層として使用することができ、従来のタンタル膜に代わることができる。例えば、以下の特許は、Ta障壁層を記載しており、Ta障壁層の開示について、参照することにより組み込まれる。Tantalum Barrier
Layer for Copper Metallization(米国特許第6,953,742号)、Method of Preventing Diffusion of Copper through a Tantalum−comprising Barrier Layer(米国特許第6,919,275号)、および、Method of Depositing a TaN seed Layer(米国特許第6,911,124号)。
本発明による磁気薄膜材料は、上述のように、動的またはコールドスプレープロセスによって作製される、スパッタリングターゲットを使用することによって作製される。スパッタリングターゲットは、好ましくは、少なくともプラチナ、コバルト、ニッケル、クロム、鉄、ニオブ、ジルコニウム、ボロン元素から、少なくとも2つの粉末を混合する複合粉末を伴う、コールドスプレーによって作製される。この磁気膜材料は、従来の磁気薄膜材料の代わりに、ハードディスク記憶デバイスおよび磁気ランダムアクセスメモリ(MRAM)に使用することができる。従来の磁気薄膜材料は、当技術分野において既知である。例えば、以下の特許は、ハードディスク記憶デバイスに使用される磁気薄膜材料の開示について、参照することにより組み込まれる。Magnetic Materials Structures,Devices and Methods(米国特許第7,128,988号)、Method and Apparatus to Control the Formation of Layers useful in Integrated Circuits(米国特許第6,669,782号)、Magnetic Recording Medium and Method for Its Production(米国特許第5,679,473号)、Magnetic Recording Medium(米国特許第4,202,932号)。ハードディスクドライブは、当技術分野において既知である。
光学被覆は、当技術分野において既知である。例えば、以下の特許は、光学被覆を開示しており、光学被覆の開示について、参照することにより組み込まれる。optical
reflector for reducing radiation heat transfer to hot engine parts(米国特許第7,208,230号)、Thin layer of hafnium oxide and deposit process(米国特許第7,192,623号)、Anti−reflective(AR)coating for high index gain media(米国特許第7,170,915号)。本発明によれば、光学被覆は、本発明による薄膜を使用することによって作製される。スパッタリングターゲットは、上述のように、動的またはコールドスプレープロセスによって作製される。スパッタリングターゲットは、ハフニウム、チタニウム、またはジルコニウムから作製される。酸化物材料は、スパッタリングターゲット上に強く押し付けられる。酸化物膜は、真空ホットプレスまたは熱間等方圧プロセスによって作製されたターゲットからスパッタリングされる従来の酸化物薄膜に代わるように、上述のターゲットの反応性マグネトロンスパッタリングによって作製することができる。
インクジェット印刷ヘッド(タンタルを含む)は、当技術分野において既知である。本発明によれば、インクジェット印刷ヘッドは、本発明による薄膜を使用することによって作製される。スパッタリングターゲットは、上述のように、動的またはコールドスプレープロセスによって作製される。スパッタリングターゲットは、タンタルまたはニオブから作製される。膜は、シランおよび/または酸素を伴う反応性スパッタリングによって作製され、米国特許第6,962,407号に記載されているように、タンタル−シリコン−酸素耐腐食性膜に代わることができる。例えば、以下の特許は、インクジェット印刷ヘッドを開示しており、インクジェットヘッドの開示について、参照することにより組み込まれる。Ink−jet recording head,method of manufacturing the same,and inkjet printer(米国特許第6,962,407号)、Print head for Ink−jet Printing A method for Making Print Heads(米国特許第5,859,654号)。
フラットパネルディスプレイのためのTFT−OLED(薄膜トランジスタ有機発光ダイオード)デバイス構造は、当技術分野において既知である。本発明によれば、薄膜は、上述のように、動的またはコールドスプレープロセスによって作製される、スパッタリングターゲットを使用することによって作製される。スパッタリングターゲットは、タングステン、クロム、銅、またはモリブデンから作製される。コールドスプレーターゲットからスパッタリングされるゲート層としての膜は、TFT−OLED内の従来の薄膜層に代わることができる。例えば、TFT−OLEDは、米国特許第6,773,969号に記載されている。
TFT−LCD(フラットパネルディスプレイ用の薄膜トランジスタ液晶ディスプレイ)の液晶ディスプレイは、
A)ガラス基板と、
B)ソース電極と、
C)ドレイン電極と、
D)ゲート絶縁体と、
E)ゲート電極と、
F)アモルファスシリコン、多結晶シリコン、または単結晶シリコン層と、
G)nドープシリコン層と、
H)パッシベーション層と、
I)画素透明電極と、
J)共通電極と、
K)ポリイミドアライメント層と、
L)ストレージ−キャパシタ電極と、を備える。
ゲート電極は、Mo、W、Al等の金属である。
TFT−LCDの別の概略では、アルミニウム拡散の小丘形成を回避するように、Moで完全にキャップされたAlゲートを使用する。通常、小丘形成を妨げるために、層の上のMoに必要な厚さは、約300Åである。低抵抗率(約4.08μΩ−cm)である、モリブデンで完全にキャップしたAl膜は、高性能のアモルファスSi:H TFTの製造に成功裏に統合された。半導体分野におけるTFTを記載している他の特許は、以下の通りである。米国特許第6,992,234号、第6,489,222号、第6,613,697号、これらは、半導体分野におけるTFTの使用について、参照することにより組み込まれる。本発明によれば、薄膜は、上述のように、動的またはコールドスプレープロセスによって作製される、スパッタリングターゲットを使用することによって作製される。スパッタリングターゲットは、モリブデン、タングステン、またはアルミニウムから作製される。スパッタリングターゲットから作製される膜は、TFT−LCD内の従来のアルミニウムおよび/またはモリブデン層に代わることができる。
金属スパッタリングターゲットの厚さを通じての粒径およびテクスチャの均一性により、このようなターゲットから得られる膜は、優れた均一性を有する。コールドスプレーしたターゲットは、「微粒状」であり、ランダムな粒配向によるバンド化が無い。
本発明の特定の一実施形態では、非常に薄い膜が提供される。本実施形態において、薄膜は、少なくとも100Å、いくつかの事例では少なくとも250Å、他の場合では少なくとも500Åである。本実施形態において、薄膜は、最高で5,000Å、いくつかの事例では最高で3,000Å、他の場合では最高で2,500Å、また、いくつかの状況では最高で2,000Åとすることができる。
種々の基板上の金属薄膜に加えて、Mが、金属(酸化)、MNx(窒化)、MSi (シリサイド化)およびあらゆるそれらの組み合わせ(例えばMOSi等)であるMOxも、反応性スパッタリングまたはイオン注入によって産生することができる。本発明による金属原子には、ニオブ、タンタル、タングステン、モリブデン、チタニウム、ジルコニウム、クロム、バナジウム、マグネシウム、スズ、鉛、アルミニウム、亜鉛、銅、ロジウム、銀、金、コバルト、鉄、ルテニウム、レニウム、ガリウム、インジウム、アンチモン、それらの2つ以上の混合物が挙げられるが、これに限定されない。
ガラスは、多数の用途、特に建築的な使用に関して、完全なものではない。一方で、遠赤外(室温放射)の反射が低いことによって、寒冷気候領域にある建造物を暖めるのに必要な熱エネルギーの不要な損失が生じる。これに反して、近赤外(太陽放射)での透過が高いことで、温暖気候領域にある建造物を冷却するのに必要なエネルギーを増加させている。
建築用ガラス被覆は、当技術分野において既知である。例えば、以下の特許は、建築用ガラス被覆を開示しており、建築用ガラスの開示について、参照することにより組み込まれる。D.C.reactively sputtered antireflection coatings(米国特許第5,270,858号)、Multilayer anti−reflection coating using zinc oxide
to provice ultraviolet blocking(米国特許第5,147,125号)、Coated architectural glass system and method(米国特許第3,990,784号)、Electrically−conductive,light−attenuating antireflection coating(米国特許第5,091,244号)。本発明によれば、薄膜は、上述のように、動的またはコールドスプレープロセスによって作製される、スパッタリングターゲットを使用することによって作製される。スパッタリングターゲットは、亜鉛から作製される。亜鉛ターゲットのスパッタリング中に、酸素がチャンバ(空気または酸素等)内に導入され、それによって酸化亜鉛薄膜を形成している。スパッタリングターゲットから作製される薄膜は、ガラス被覆における従来の酸化亜鉛層に代わることができる。
慎重に設計されたガラス上の被覆は、今日では、これらの全ての欠点を解決することができる。これらの被覆の目的は、より効率的な暖房または空気調節のために、ガラスを通じたエネルギー輸送を制御することである。被覆は、金属およびセラミックを多層化したものであり、特定の要求に対して正確な組成が調整される。熱を反射する、いわゆる低放射率の被覆は、最大量の日光を通過させるが、光が物体に当たる時に発生する熱(温室効果)を遮断する。
大面積のガラス被覆に最も重要な金属化合物は、SiO、SIN、SnO、ZnO、Ta、Nb、およびTiOであるが、これに限定されない。これらの薄膜被覆は、Si、Sn、Ta、Nb、およびTiの金属ターゲットの反応性スパッタリングによって得ることができる。スパッタリングターゲットは、上述のように、動的またはコールドスプレープロセスによって作製される。
使用することができる、本発明による他の分野の薄膜は、光学被覆等の被覆である。光学被覆には、反射および反射防止材料、選択的な透過を提供する被覆(すなわち、フィルタ)、および非線形光学用途が挙げられる。TiO薄膜およびNb薄膜等の実施例は、TaおよびNbスパッタリングターゲットから反応性スパッタリングされる。
自動車用途の場合、自動車メーカーが設定している目標を満たすには、可視光の70%を透過し、かつIRおよびUVの100%(または、ほぼ100%)を反射する被覆が必要である。
上述のように、薄膜を使用する分野は、磁気薄膜材料を含む。ディスクドライブストレージ技術に対する薄膜材料科学の影響は大きな革命であり、フェライトヘッドおよび粒子ディスクから薄膜ディスクおよびヘッドへの転換である。次世代の膜ディスクは、高保磁力および高誘導を必要とする。薄膜媒体はまた、より高い記録密度を達成するように、現在の粒子表面よりも滑らかで薄くなければならない。垂直記録は、極めて高い記録密度を達成するための、最も期待されている技術であると思われる。ストレージ用途のための磁気薄膜材料は、Co、Cr、Ni、Fe、Nb、Zr、B、およびPtの合金等である。本発明によれば、薄膜は、上述のように、動的またはコールドスプレープロセスによって作製される、スパッタリングターゲットを使用することによって作製される。スパッタリングターゲットは、Co、Cr、Ni、Fe、Nb、Zr、B、およびPtといった金属のうちの少なくとも2つの複合材から作製される。
また、上述のように、薄膜は、半導体用途も含む。タンタルは、半導体チップが高伝導性のCuを使用して相互接続を確保するために、Cu層とシリコン基板との間の拡散障壁層として使用される、TaN層を形成するように、Ar−N雰囲気中でスパッタリングされる。
したがって、本発明は、金属類であるマグネシウム、スズ、鉛、アルミニウム、亜鉛、銅、ロジウム、銀、金、コバルト、鉄、ルテニウム、ガリウム、インジウム、アンチモン、それらのうちの2つ以上の混合物、またはそれらのうちの2つの合金、または上述の特性を有する他の金属との合金を伴う、耐火金属であるニオブ、タンタル、タングステン、モリブデン、チタニウム、ジルコニウム、クロミウム、バナジウム、およびレニウムから成るスパッタターゲットにも関する。
好ましくは、タングステン、モリブデン、チタニウムジルコニウム、またはそれらの2つ以上の混合物、またはそれらの2つ以上の合金、あるいは他の金属との合金のターゲット、非常に好ましくはタンタルまたはニオブのターゲットが、コールドまたは動的スプレーによって、被覆される基板の表面に塗布される。該コールドスプレーしたターゲットにおいて、金属の酸素含有量は、粉末の酸素含有量と比較して、ほとんど変わらない。これらのコールドまたは動的スプレーしたターゲットは、プラズマスプレーによって、または真空スプレーによって産生されるターゲットよりも大幅に高い密度を示す。さらに、これらのコールドまたは動的スプレーしたターゲットは、粉末の特性および被覆パラメータに依存して、テクスチャを伴わずに、またはわずかなテクスチャを伴って産生することができる。
驚くべきことに、コールドまたは動的スプレーされるターゲットの酸素含有量の減少に伴って、スパッタリングされた薄膜層の密度および他の特性が改善されることが分かった。スパッタターゲット内の酸素は、スパッタリング率、したがって、薄膜の均一性に影響を及ぼす。金属薄膜の場合、酸素は、薄膜の低効率に対するその影響のため、高濃度であることは望ましくない。
発明者らは、本質的に44ミクロン未満の微細で均一な粒構造を有し、電子後方散乱回折(「EBSD」)によって測定された時に、いかなる選択されたテクスチャ配向が無く、ターゲット本体の全体を通していかなる粒径またはテクスチャのバンディングも示さず、また、ターゲットからターゲットへ再生することができる微細構造を有する、タンタルスパッタリングターゲットおよびそのタンタルターゲットの製造手段を発明した。加えて、発明者は、そのようなターゲット、および特定の熱間等方圧縮(HIP)を行ったターゲットを修復し、修復前のターゲットの微細構造を完全に再生するためのプロセスを発明した。低品質の微細構造の他のターゲットを修復するのに使用された場合、修復した部分は、本手法によって、あたかもターゲット全体が作製されたかのように、微細構造が改善される。本手法は、形状または材料に制限されず、平面、異形、および円筒形のターゲットを作製し、一連のターゲット組成物をスプレーするのに使用された。
本発明に関する改善には、ターゲットの粒子間結合および応力低減を改善する熱処理、および、スプレーしたときの応力の効果を最小化し、そしてアセンブリ全体に熱処理を行うことができるようにし、従来のバッキングプレート材料に必要な分解ステップをなくした、ターゲットアセンブリの材料の設計が挙げられる。換言すれば、ターゲットは、スプレーしたときのあらゆる応力を緩和するアセンブリとして焼鈍されている。
(コールドスプレー技術による熱管理材料)
これらの金属マトリックス複合材の目標は、金属元素の高熱伝導率を維持し、一方で、シリコンチップと比較して、放熱板の膨張および縮小の差を低減するように、低熱膨張係数のMoまたはWを添加する複合材料を産生することである。
伝統的に、産業界は、MoまたはW(「スケルトン」と称する)を焼結し、その後に、金属マトリクス複合材を作り出す温度および圧力下で融解Cuを溶浸させることから、WCuまたはMoCu金属マトリクス複合材を開発した。この手法に関連する問題点は、作業のコストが高いことである。溶浸温度は、概して800℃以上の範囲である。
加えて、現在のWCuまたはMoCu複合材の放熱板の製造には、最初にWのブロックを作製し、適切なサイズに切断し、その後にCuを溶浸させることが必要である。次いで、エンドユーザは、それを適切な厚さおよび寸法にスライスすることが必要である。コールドスプレーは、極めて薄く、均一に分布する複合材を直接的に作製することができる。
コールドスプレーは、材料の融点をはるかに下回る温度で粉末から部品を製作する、直接的な経路であるため、「焼結および溶浸」と比較して、非常にコストの低い作業である。
以下の実施例を用意した。
(実施例1は、平面タンタルスパッタターゲットの製作、試験、および薄膜の評価である。)
公称の厚さが1/8インチ(約3.18mm)、直径が3.1インチ(約78.74mm)である2枚のTaの平板に、粒径が15〜38ミクロンのタンタル粉末(Amperit#151、特級、H.C.Starck inc.から入手できる、商業的に純粋(>99.95 Ta)なもの)をコールドスプレーして、0.300インチ(約7.62mm)の厚さを提供した。ガスは、1つの事例では窒素、他の事例ではヘリウムであり、これを600℃まで予熱して、3MPaのよどみ点圧力で使用した。粉末およびガスは、Cold Gas Technology GmbH、Ampfing、Germanyから市販されている、Kinetiksガンを使用してスプレーした。円盤は、スプレーした後に、公称厚さ1/4インチ(約6.35mm)まで機械加工し、スパッタ表面は、スパッタリング前に研磨した。(図1を参照されたい)。ターゲットは、標準的なバーンイン手順を経て、次いで、標準的な条件を使用して、DCマグネトロンスパッタリングユニットを使用した薄膜の作製に用いられた。
図2は、スパッタリング前のターゲット表面を示している。比較のために、標準的な圧延板ターゲットも、同じ条件下でスパッタリングした。産生された膜の測定した特性を下記の表1に示す。表1は、コールドスプレーしたターゲットから産生された膜が、より良好な均一性を有しているが、採用される膜の厚さをより薄くできるようにし、また、プロセス時のタンタルの無駄が少なく、少ない時間でより小さい回路をエッチングすることができるようにしていることから、集積回路(「IC」)の製造業者には非常に魅力的な特性を有することを示している。改良された均一性は、電気的および物理的特性の両方に、およびチップ上の回路サイズの低減を達成するのに重要である。この改良された均一性は、従来のターゲットと比較して、コールドスプレーしたターゲットの非常に微細でランダムな粒構造に直接的に起因する。
この改良された均一性は、図4に示されている使用済みターゲットの表面に直接的に関連付けられる。図4は、圧延インゴット冶金ターゲット(上部)、およびHe(ヘリウム)コールドスプレーしたターゲット(下部)の拡大写真である。スパッタリング後に、圧延ターゲットは、コールドスプレーしたターゲットと比較して、圧延ターゲットの斑紋状の不規則な表面を有する。より滑らかで、非斑紋状のコールドスプレーターゲットの表面は、より均一なスパッタリング率結果として生じる膜を産生する、より均一でテクスチャ化されていない微細構造に起因する(図3を参照されたい)。また、表1には、抵抗率および表面形態が、3つ全ての膜について同様であることも示されている。したがって、コールドスプレーしたターゲットは、圧延インゴットから作製された従来のターゲット以上に良好であると結論され得る。図3はまた、ターゲットから産生された膜が、異なる内部形態を有し、ヘリウムスプレーしたターゲットの場合は、円柱状の内部構造をもたらし(図3A)、ヘリウムスプレーしたターゲットの場合は、等軸内部構造をもたらし(図3B)、また、圧延ターゲットの場合は、比較的に特徴の無い内部構造をもたらす(図3C)ことも示している。
Figure 0005968479

(実施例2 管状タンタルターゲット実施体の製作および微細構造分析)
管状タンタル実施体(図5を参照されたい)は、実施例1と同じ動作パラメータを使用して製作した。試料は、異なる温度で焼鈍された実施体から切断された。次いで、金属組織取り付け具を準備し、スプレーおよび焼鈍した標本に対して、微細構造分析を行った。特性の要約を表2に示す。試料は、出発粒径の中央値が15.9ミクロン(粒子数に基づく分布)および約2ミクロン(質量に基づく分布)である粉末を使用した実施体に由来するものである。
Figure 0005968479
表2および図6は、どちらも、スプレー、焼鈍、および熱間等方圧縮(HIP)した状態の、コールドスプレーしたタンタルの特性を明らかにしている。プロセス温度を図に示す。全ての焼鈍は、1.5時間、温度を保持し、HIPサイクルは、3時間、温度を保持した。出発粉末サイズは、高温焼鈍の後であっても、結果として生じる粒径を制御していると思われる。したがって、特徴的に、コールドスプレーした材料の粒径は、44ミクロン未満であり、一方で、インゴット材料は、入念に加工したものであっても一般的に60〜100ミクロン、およびそれよりも大きい粒径を有する。ここでも、この微細な粒径は、より均一な膜をもたらす、ターゲットの重要な特性である。しかしながら、それを機能させるには、全くテクスチャ化されていない微細構造と組み合わせなければならない。
図6は、焼鈍中に等軸粒に再結晶化している、スプレーしたときの材料の扁平な、または細長い、あるいはレンズ状の構造を示し、焼鈍の前および後の両方において非常に微細な組織であること、および入念な焼鈍の後であっても、粒径は、元の粉末の粒径と同じままであるか、またはそれよりも小さいことを示している。
結晶学的テクスチャの性質が存在することを判定するために、4つのコールドスプレーした試料、および1つのプラズマスプレーした試料を、電子後方散乱回折(EBSD)によって調査した。全て、厚さ方向の試料であり、また全て、EBSDのために配向したので、スプレー方向は、垂直に下方である。
材料化学の関連において、「テクスチャ」は、「結晶学的に選択された配向」を意味する。これらの配向が十分にランダムである試料は、いかなるテクスチャも無いと言われる。結晶方位がランダムではなく、いくつかの選択された配向を有する場合、試料は、弱い、強い、または中くらいのテクスチャを有する。EBSDは、標本を約70℃でタイル状にした時に形成される菊池回折パターンを適用することによって、標本の配向情報を得る。
試料は、次いで、載置、研磨、およびエッチングされた後に、表3に示されているステップサイズで、高解像度(2および4μmのステップサイズ)または低解像度(50μm)でESBDによって特徴付けられた。ステップサイズの選択は、小さい特徴を見逃さず、一方で、妥当な時間でEBSDの走査を完了するように、試料の粒径に基づいている。
Figure 0005968479
(結果−コールドスプレー、1450℃で焼鈍)
3つの直交方向に対するテクスチャマップを図7Aに示す。{100}方向の20°の範囲内に配向される粒を青色で示し、{111}方向の20°の範囲内のものを黄色で示し、{110}方向の20°の範囲内のものを赤色で示し、色は、配向のずれが減少するにつれて暗くなる。灰色は、3つの配向の中間に配向された粒を示す。図中の色のランダムな分布は、個々の粒のランダムな分布に起因するものであり、粒が何らかのテクスチャ化を呈する場合は、1つの色が卓越し、すなわち、大部分の粒が{100}方向に配向された場合は、黄色が優位な色となる。
極点図(図7B)は、対称性が全く無いことも示し、ここでも微細構造内にテクスチャがないことを示している。テクスチャマップおよび極点図から、試料は、テクスチャバンディングの無いランダムなテクスチャを有し、粒は、小さい粒径でランダムに配向され、いかなる組織的特徴も無いと結論することができる。
(結果−コールドスプレー、1150℃で焼鈍)
テクスチャは、図8のテクスチャ粒マップおよび極点図に示されているように、ランダムであった。粒構造は、1450℃で焼鈍した標本のそれよりも微細であった。
(結果−コールドスプレー、942℃で焼鈍)
この試料も、図9に示されているように、ランダムなテクスチャを有する。しかしながら、屈折率は、以前の標本に対するものよりも大幅に低く、材料が高い歪みを維持し、低焼鈍温度では再結晶化されなかったことを示している。
(結果−コールドスプレー(焼鈍無し))
ここでも、テクスチャは、マップおよび極点図に見られるように、ランダムであり、厚さを通して均一にランダムであることが分かった(図10および11を参照されたい)。この場合、下方の3つのマップは、調査した3つの領域を表し、1番目のものは、最初に蒸着した材料(スプレーした層の底部)であり、最後のものは、最後に蒸着した材料(スプレーした層の上部)である。全て、垂直方向に対するテクスチャを示す(厚さ方向を通してランダム)。
(結果−プラズマスプレー)
基板またはバッキングプレート(図12〜13においてマップの下部)は、等軸で、非常に大きい粒であり、圧延および焼鈍した板に特有のテクスチャを有する。マップ内の粒は、主に青色および黄色であり、テクスチャ粒マップの下部1/3だけを含む極点図H3は、{100}//NDおよび{111}//NDにおいて(比較的に弱いピークであるが)ピークを示し、ここでNDは、試料表面に垂直であることを意味する。H3極点図の3倍対称性(3−fold symmetry)は、圧延の証拠である。
プラズマ蒸着した材料は、円柱状の粒を示し、多数の低角度の境界(粒マップ内で赤色)を有する。極点図H1(テクスチャ粒マップの上部3つ)に示されているように、主に{100}//NDであり、マップ内では青色が優勢である。極点図H1は、事実上、軸対称である。
円柱状粒の下方の均質な粗さの等軸ゾーンの起源および原因は、未知である。
H1およびH3極点図は、含まれる点の数が非常に少ないので、無関係なピークの導入を回避するように、(通常の10°に対して)15°のスムージング角度の半幅によって作製した。
手短に言えば、上述のEBSD分析は、焼鈍温度に関係無く、コールドスプレーし、焼鈍したコールドスプレーターゲットにおいて、完全にランダムで、テクスチャ化されていない微細構造を示している。プラズマスプレーしたターゲットは、有意なテクスチャを示した。
(実施例3 TaNbをコールドスプレーしたターゲット)
50/50 w/0のNbTa長方形ターゲットを、銅のバッキングプレート上に直接的にコールドスプレーした。図14は、蒸着物におけるスプレーしたときの応力によるCu板内に産生された3mmの湾曲を示している。バッキングプレートは、それらの嵌合フランジを封止するように、平坦でなければならない。湾曲は、機械加工中に応力を簡単に再分配し、継続的なゆがみをもたらすので、機械加工し除くことができない。湾曲は、スプレーしたときのTa、TaNb、およびコールドスプレーした蒸着物が、一般に、非常に限られたじん性しか持たないので、機械的に加圧し除くこともできない(図15)。
しかしながら、実験は、焼鈍によってじん性が大幅に改善され得ることを示した。図16は、1.5時間、950℃で焼鈍した後の、Taの蒸着物が、永久変形するまで塑性変形し得ることを示している。銅のバッキングプレートをターゲットから除去し、次いで、ターゲットを、焼鈍し、曲がりを平坦にして、機械加工した(図17)。
この実施例から、従来の銅およびアルミニウムのバッキングプレート材料は、コールドスプレーによる耐火金属ターゲットには理想的ではないことも明らかである。それらは、高熱伝導率を有するが、それらの弾性係数は、低くなる傾向があり(反りを助長する)、耐火金属と整合しない大きい熱膨張係数(「CTE」)を有し(反りを助長し、焼鈍中のターゲットとバッキングプレートとの間の結合破壊の可能性を高める)、そして低融点を有する(バッキングプレートが付着する間、焼鈍プロセスを妨げる)。表4は、Mo、Ti、または316ステンレス鋼のような材料が、コールドスプレープロセス中(高弾性係数)の湾曲に抵抗する特性のより良好な組み合わせをし、耐火金属に必要である高温での焼鈍を行うことができる(CTEは、耐火金属のそれに近く、高融点である)ことを示している。
コールドスプレーは、上述したCTEの不整合および結果として生じる問題を解決する、多層ターゲットの作製に使用することができる。スパッタリング可能なターゲット材料を、バッキングプレート上に直接的にスプレーする代わりに、バッキングプレートとターゲット材料との間のCTEを有する、めっきまたは被覆を最初にスプレーすることもできる。これらの中間層は、0.25〜2.0mmの厚さを有し得る。このような層にスプレーする1つの方法は、バッキングプレート材料およびターゲット材料を含む粉末の混合物を使用することである。
Figure 0005968479
(実施例4 コールドスプレーされたNbTaターゲットのスパッタリング)
擬合金(TaおよびNb粉末が、化学的に別々のままである)ターゲットを、18”(約457.2mm)×5”(約127mm)の平面マグネトロン陰極スパッタリング装置内に配置した。ターゲット寸法は、4”(約101.6mm)×17”(約431.8mm)×約0.125”(約3.18mm)であった。
次の3つの試験を行った。ストレート金属蒸着(straight metal deposition)、酸化物蒸着、および窒化物蒸着。使用した条件および得られた結果を以下に記載する。
(ストレート金属蒸着)
スパッタリングは、1.0×10−3トール(基本圧力:4×10−5トール)、5.0キロワット、550ボルト、約73ワット/インチで、100sccmのアルゴンガスを使用して行った。ターゲットは、最初から非常にうまくスパッタリングされた。いかなるアークの発生も無く、安定性のためのいかなる実際の「バーンイン」時間も不要である。
1401オングストロームの最終膜厚が、ガラススライド上に蒸着された(Dektak 2Aマイクロプロフィロメータで測定)。これは、1オングストローム/(ワット/インチ)/蒸着時間(秒)の割合であり、NbおよびTaの個々の割合よりもわずかに高い。3.7Ω/平方の膜抵抗(4点プローブによってガラススライド上で測定)。これは、51.8 Ω−cmとなる。
予想された低効率の約28 Ω−cmよりも高い。この材料は、バックグラウンド圧力(不純物)に敏感であり、適切な抵抗率には、−5〜−6トールの範囲の低圧までポンピングする必要があり得る。膜の太陽光吸収は、0.41である(ASTM5903およびE490それぞれについて測定および計算)。
(酸化物蒸着)
スパッタリングは、1.2〜3トールで、100sccmのアルゴン、および90sccmの酸素を使用して行った(酸素レベルを下げるにつれて、徐々に金属モードに切り替わる結果となった)。680ボルトで3.0キロワット(44ワット/in)。これは、金属モードよりも酸化物モードの方が高いスパッタリング電圧を有する、数少ない材料のうちの1つである。20kHzで作動するSpark−Leユニットを伴うMDX D.C.電源を使用したが、ここでも、アークの発生が無く、問題も無い、非常に安定したスパッタリングプロセスを得た。スパッタリングは、金属の率の40%であった。このプロセスは、透過光がわずかにピンク色を帯び、反射光がわずかに緑色を帯びた、非常に良好な外観の透明フィルムを提供した。最終膜厚は、4282オングストロームであった。算出された屈折率は、2.8である。これは、タンタルおよびニオブの酸化物それぞれの屈折率(約2.2〜2.3)よりも高い。
(窒化物蒸着)
スパッタリングは、100sccmのアルゴン、および200sccmの窒素を使用し、約2.0×10−3トールのスパッタリング圧力で行った。窒化物は、うまくスパッタリングされ、非常に安定していた。しかしながら、多数のプロセスを試行した後であっても、透明な窒化物被覆を産生することはできなかった。MDXおよびSparc−Leユニットでは、3.0キロワットで良好に機能した。スパッタリングは、金属の率の51%であった。最終膜厚は、69Ω/平方で1828オングストロームであった。(1260μΩ−cm)。太陽光吸収は、0.59と測定された。
観察された結果のうちのいくつかは、以下の通りである。
金属モードでは、非常にうまくスパッタリングする。
酸化物モードでは、非常に良好にスパッタリングする。
いかなるアークの発生も無かったが、これは、ターゲット中の酸化物含有量が安定しており、ターゲットが蒸着中に誘電体層を構築していなかったことを意味する。非常に高い屈折率の酸化物が、位置および時間による化学的性質の関数として変動し、定量化され、測定された。
レーストラック(race track)は非常に明確であり、レーストラック内にはいかなる変色も無い。
ターゲットは、全体的に良好な割合で蒸着する。
ターゲットは、75ワット/inに変換する5kWのピーク電力で行った。参考のために、TiまたはNi−Crは、35ワット/inでスパッタリングされる。
ターゲットの電力は、1kWの増分で上昇させたが、いかなる問題も生じなかった。
高電力時に、ターゲットの伸張、過度の加熱に関して、いかなる問題も生じなかった。
寸法安定性は良好であり、クランプまたは縁部にはいかなる問題も生じなかった。
(実施例5 銅のバッキングプレート上にコールドスプレーしたTaNbターゲットの焼鈍および平坦化)
17”(約431.8mm)×1.5”(約38.1mm)×0.300”(約7.62mm)のTaNb蒸着物を、厚さ0.500”(約12.7mm)のCuバッキングプレート上にスプレーした。純粋なTaNbをスプレーする前に、厚さ約0.030”(約0.76mm)の50%Cu、50%(TaNb)の層を、Cu上にスプレーして、中間コンプライアントCTEの層を提供した。スプレーされたアセンブリには、中間点に約0.2”(約5.08mm)の湾曲が生じた。ターゲットアセンブリは、次いで、1.5時間、825℃で真空焼鈍したが、これは、ニオブの回復を導いて、それにじん性をもたせるのに十分である。冷却後、ターゲットアセンブリを、加圧機内に配置して、0.010”(約0.25mm)の範囲まで成功裏に加圧して平坦にし、仕上げ加工を行った。
(実施例6 熱間等方圧縮(HIP)によって、およびコールドスプレーによって作製される、約50/50のa/o組成のMoTiスパッタリングターゲット)
MoTi合金系は、100%の固溶度を呈さず、複数の有害な脆性中間相を含む。MoおよびTiを液体状態で合金にする時に、これらの相は不可避である。HIPパラメータの開発における目標は、これらの相の形成を最小限に抑えることである。しかし、2つの成分の相互拡散のため、十分な密度を達成すべき場合、これらの相は不可避である。図19は、7時間、15,000ksi、825℃でHIP処理した粉末における、これらの有害な相の存在を明確に示している。第3相材料の厚さ15〜20ミクロンのゾーンは、チタニウムおよびモリブデンの両方の粉末を囲むが(図19)、MoおよびTiのいかなる相互拡散も無く、純粋なMo元素および純粋なTi元素の相だけが、コールドスプレーによって産生されたターゲット内に存在することを示している。図20は、1.5時間、700℃で焼鈍した後であっても、実質的にいかなる相互拡散も無く、またこの倍率では、視認できるいかなる有害な相も形成されなかったことを示している。
(タングステン−銅(WCu)複合材の熱管理材料を作製するためのコールドスプレー条件を以下に列挙する)
装置:Cold Gas Technology GmbH(Germany)、Kinetiks 3000またはKinetiks 4000
コールドスプレー条件:600〜900℃および圧力2.0〜4.0MPaで窒素雰囲気、粉末送給率30〜90グラム/分、スプレー距離10〜80mm。
好適な条件:800〜900℃、および圧力3〜3.8MPa、粉末送給率30〜50グラム/分、スプレー距離20〜40mm。
使用した粉末:
タングステン(W):AMPERIT(登録商標)140、25/10μm粒径カット、焼結、および銅(Cu):AMPERIT(登録商標)190、35/15μm、ガス噴霧。材料はどちらもH.C.Starck Gmbhによって作製されたものである。コールドスプレーされるWCuの試料は、約50%体積のWおよび50%のCuを混合することによって作製され、紛体送給機CGS Cold Spray Systemを通じて送給して、WCu複合材を作製した。基板は、ステンレス鋼またはチタニウムとすることができる。複合構造体と基板との間の接合は、極めて良好である。W−Cu(50/50体積%)の微細構造を、図21Aおよび21Bに示す。
下表は、スプレーしたWCuが、193W/m・Kの熱的伝導性、および13.49ppm/℃の熱膨張係数を有することを示している。2時間、および4時間にわたる、1600°F(871℃)での焼鈍は、熱伝導率および熱膨張係数の有意な改善を示した。それは、焼鈍が、コールドスプレー熱管理材料の、熱伝導率を有意に高めるための、および、熱膨張係数を低下させるための重要なステップであることを明確に実証している。
Figure 0005968479
コールドスプレー技術によって作製される熱管理生成物は、以下の組成を有する。
WCu複合材:W含有量は、10%から85%まで変動する。MoCu複合材:Mo含有量は、10%から85%まで変動する。
コールドスプレープロセスによって作製される複合材の熱管理用途のための主な特徴を以下に示す。
(a)Cu−扁平な微細構造であり、Ag、Al、またはAu等の他の材料を使用することもできる。
(b)MoまたはWは、実質的にその粒子形態または凝集粒子を維持する。アルミニウム窒化物(AlN)、炭化ケイ素(SiC)等の他の材料を使用することもできる。W−Cu(50/50体積%)の微細構造を図26AおよびBに示す。
本発明は、複合構造体を基板上に形成するように、耐火粉末および高熱伝導金属粉末から成る粉末の混合物をコールドまたは動的スプレーするステップを含む、プロセスによって作製される、熱管理材料を提供する。
熱伝導金属粉末は、Cu、Al、Ag、Auであり、基板は、ステンレス鋼基板である。
プロセスは、ステンレス鋼基板が機械加工によって除去できることも提供する。
上述した全ての参考文献は、全ての有用な目的に対して、参照することによりその全体が組み込まれる。
本発明を具体化した特定の構成を図示して説明したが、当業者には、基礎を成す本発明の概念の精神および範囲から逸脱することなく、各部分の種々の変更および再編成が行われてもよく、また、それらは、本願明細書に図示して説明した特定の形態に限定されないことは明らかとなるであろう。

Claims (8)

  1. 複数の金属粉末のスパッタリングターゲットを形成する方法であって、前記方法は、
    コールドスプレーによって、バッキングプレート上にスパッタリング材料を塗布することであって、前記スパッタリング材料は、少なくとも2つの金属粉末の混合物を含む、ことと、
    前記スパッタリング材料における応力を減少させるために、または、前記スパッタリング材料のじん性を増加させるために、前記スパッタリング材料を焼鈍することと
    を含み、
    その後、(i)前記スパッタリング材料の前記金属間に望ましくない相の形成をもたらす、前記スパッタリング材料の前記金属の検出可能な相互拡散は存在せず、(ii)前記スパッタリング材料は、前記スパッタリング材料の全体を通して均一に微細かつ結晶学的にランダムな微細構造を有する、方法。
  2. 前記スパッタリング材料は、タングステン、モリブデン、タンタル、ニオブ、チタニウム、ジルコニウムから成る群から選択される少なくとも2つの金属粉末を含む、請求項1に記載の方法。
  3. 前記スパッタリング材料は、モリブデンおよびチタニウムの混合物を含む、請求項1に記載の方法。
  4. 前記スパッタリング材料は、少なくとも700℃の温度で焼鈍される、請求項1に記載の方法。
  5. 前記スパッタリング材料が前記バッキングプレート上に塗布される前に、前記バッキングプレートの熱膨張係数(CTE)と前記スパッタリング材料の熱膨張係数(CTE)との間の熱膨張係数(CTE)を有する少なくとも1つの付加層を前記バッキングプレート上に塗布することをさらに含む、請求項1に記載の方法。
  6. 前記少なくとも1つの付加層は、前記バッキングプレートの材料および前記スパッタリング材料の粉末混合物を含む、請求項5に記載の方法。
  7. 前記スパッタリング材料を焼鈍した後、前記スパッタリング材料を平坦にすることまたは前記スパッタリング材料を機械加工することのうちの少なくとも1つをさらに含む、請求項1に記載の方法。
  8. 前記バッキングプレートは、銅またはアルミニウムを含む、請求項1に記載の方法。
JP2015038226A 2007-05-04 2015-02-27 スパッタリングターゲットを形成する方法 Expired - Fee Related JP5968479B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US91596707P 2007-05-04 2007-05-04
US60/915,967 2007-05-04
US11/937,164 US8197894B2 (en) 2007-05-04 2007-11-08 Methods of forming sputtering targets
US11/937,164 2007-11-08

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013266839A Division JP5706958B2 (ja) 2007-05-04 2013-12-25 薄膜堆積の方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016132988A Division JP2016196706A (ja) 2007-05-04 2016-07-05 薄膜堆積の方法

Publications (2)

Publication Number Publication Date
JP2015098652A JP2015098652A (ja) 2015-05-28
JP5968479B2 true JP5968479B2 (ja) 2016-08-10

Family

ID=39717638

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2010506677A Expired - Fee Related JP5318090B2 (ja) 2007-05-04 2008-05-02 均一ランダム結晶配向の、微細粒でバンディングのない耐火金属スパッタリングターゲット、そのような膜の製造方法、およびそれから作製される薄膜ベースのデバイスおよび製品
JP2013148031A Active JP5450872B2 (ja) 2007-05-04 2013-07-16 スパッタリングターゲットを再生させる方法
JP2013266839A Active JP5706958B2 (ja) 2007-05-04 2013-12-25 薄膜堆積の方法
JP2015038226A Expired - Fee Related JP5968479B2 (ja) 2007-05-04 2015-02-27 スパッタリングターゲットを形成する方法
JP2016132988A Pending JP2016196706A (ja) 2007-05-04 2016-07-05 薄膜堆積の方法

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2010506677A Expired - Fee Related JP5318090B2 (ja) 2007-05-04 2008-05-02 均一ランダム結晶配向の、微細粒でバンディングのない耐火金属スパッタリングターゲット、そのような膜の製造方法、およびそれから作製される薄膜ベースのデバイスおよび製品
JP2013148031A Active JP5450872B2 (ja) 2007-05-04 2013-07-16 スパッタリングターゲットを再生させる方法
JP2013266839A Active JP5706958B2 (ja) 2007-05-04 2013-12-25 薄膜堆積の方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016132988A Pending JP2016196706A (ja) 2007-05-04 2016-07-05 薄膜堆積の方法

Country Status (7)

Country Link
US (4) US8197894B2 (ja)
EP (2) EP2155419A2 (ja)
JP (5) JP5318090B2 (ja)
KR (1) KR20100017613A (ja)
CN (1) CN101801565B (ja)
CA (1) CA2686242A1 (ja)
WO (1) WO2008137689A2 (ja)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030002043A1 (en) * 2001-04-10 2003-01-02 Kla-Tencor Corporation Periodic patterns and technique to control misalignment
RU2434073C9 (ru) 2005-05-05 2012-12-27 Х.К. Штарк Гмбх Способ покрытия поверхности субстрата и продукт с нанесенным покрытием
RU2418886C2 (ru) 2005-05-05 2011-05-20 Х.К. Штарк Гмбх Способ нанесения покрытий для изготовления или восстановления мишеней распыления и анодов рентгеновских трубок
US7837929B2 (en) * 2005-10-20 2010-11-23 H.C. Starck Inc. Methods of making molybdenum titanium sputtering plates and targets
US20080078268A1 (en) 2006-10-03 2008-04-03 H.C. Starck Inc. Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof
US20080145688A1 (en) 2006-12-13 2008-06-19 H.C. Starck Inc. Method of joining tantalum clade steel structures
WO2008134516A2 (en) * 2007-04-27 2008-11-06 Honeywell International Inc. Novel manufacturing design and processing methods and apparatus for sputtering targets
US8197894B2 (en) 2007-05-04 2012-06-12 H.C. Starck Gmbh Methods of forming sputtering targets
JP5389802B2 (ja) 2007-08-06 2014-01-15 エイチ.シー. スターク インコーポレイテッド 組織の均一性が改善された高融点金属プレート
DE102008024504A1 (de) * 2008-05-21 2009-11-26 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
US8246903B2 (en) 2008-09-09 2012-08-21 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
US8043655B2 (en) 2008-10-06 2011-10-25 H.C. Starck, Inc. Low-energy method of manufacturing bulk metallic structures with submicron grain sizes
DE102009015638A1 (de) * 2009-03-24 2010-09-30 Wieland Dental + Technik Gmbh & Co. Kg Rohrförmiges Sputtertarget und Verfahren zu seiner Herstellung
FR2944293B1 (fr) * 2009-04-10 2012-05-18 Saint Gobain Coating Solutions Procede d'elaboration par projection thermique d'une cible
FR2944294A1 (fr) * 2009-04-10 2010-10-15 Saint Gobain Couche obtenue par pulverisation d'une cible comprenant au moins un compose a base d'une poudre de molybdene
FR2944295B1 (fr) * 2009-04-10 2014-08-15 Saint Gobain Coating Solutions Cible a base de molybdene et procede d'elaboration par projection thermique d'une cible
DE102009031302A1 (de) * 2009-06-30 2011-01-05 O-Flexx Technologies Gmbh Verfahren zur Herstellung von thermoelektrischen Schichten
US8709548B1 (en) 2009-10-20 2014-04-29 Hanergy Holding Group Ltd. Method of making a CIG target by spray forming
US8709335B1 (en) 2009-10-20 2014-04-29 Hanergy Holding Group Ltd. Method of making a CIG target by cold spraying
US9103000B2 (en) * 2009-11-25 2015-08-11 Zetta Research and Development LLC—AQT Series Low melting point sputter targets for chalcogenide photovoltaic applications and methods of manufacturing the same
KR101392749B1 (ko) * 2010-03-23 2014-05-12 (주)태광테크 스퍼터링용 타겟 보수 방법 및 스퍼터링용 타겟
US8449818B2 (en) 2010-06-30 2013-05-28 H. C. Starck, Inc. Molybdenum containing targets
US8449817B2 (en) 2010-06-30 2013-05-28 H.C. Stark, Inc. Molybdenum-containing targets comprising three metal elements
JP4948634B2 (ja) * 2010-09-01 2012-06-06 Jx日鉱日石金属株式会社 インジウムターゲット及びその製造方法
US9546418B2 (en) 2011-02-14 2017-01-17 Tosoh Smd, Inc. Diffusion-bonded sputter target assembly and method of manufacturing
DE102011012034A1 (de) * 2011-02-22 2012-08-23 Heraeus Materials Technology Gmbh & Co. Kg Rohrförmiges Sputtertarget
JP5140169B2 (ja) 2011-03-01 2013-02-06 Jx日鉱日石金属株式会社 インジウムターゲット及びその製造方法
CN103562432B (zh) 2011-05-10 2015-08-26 H·C·施塔克公司 多段溅射靶及其相关的方法和物品
JP5026611B1 (ja) 2011-09-21 2012-09-12 Jx日鉱日石金属株式会社 積層構造体及びその製造方法
US8906450B1 (en) * 2011-09-28 2014-12-09 Hanergy Holding Group Ltd. Cold spray system nozzle
WO2013049274A2 (en) 2011-09-29 2013-04-04 H.C. Starck, Inc. Large-area sputtering targets and methods of manufacturing large-area sputtering targets
CN103930591A (zh) * 2011-10-14 2014-07-16 株式会社爱发科 靶组合件及其制造方法
US20130156967A1 (en) * 2011-12-16 2013-06-20 Christopher Michaluk Spray rejuvenation of sputtering targets
JP5074628B1 (ja) 2012-01-05 2012-11-14 Jx日鉱日石金属株式会社 インジウム製スパッタリングターゲット及びその製造方法
US9334565B2 (en) 2012-05-09 2016-05-10 H.C. Starck Inc. Multi-block sputtering target with interface portions and associated methods and articles
CN104583452B (zh) 2012-08-22 2017-07-21 Jx日矿日石金属株式会社 铟制圆筒型溅射靶及其制造方法
DE102012217617A1 (de) * 2012-09-27 2014-03-27 Siemens Aktiengesellschaft Bauteil mit einer Schicht sowie Verfahren zu dessen Herstellung
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US9404175B2 (en) 2013-02-04 2016-08-02 Blackberry Limited Method of forming a target for deposition of doped dielectric films by sputtering
US20140315392A1 (en) * 2013-04-22 2014-10-23 Lam Research Corporation Cold spray barrier coated component of a plasma processing chamber and method of manufacture thereof
CN104919080B (zh) * 2013-07-08 2018-10-16 Jx日矿日石金属株式会社 溅射靶及其制造方法
US9976212B2 (en) 2013-08-01 2018-05-22 H.C. Starck Inc. Partial spray refurbishment of sputtering targets
US10354846B2 (en) * 2013-11-06 2019-07-16 Jx Nippon Mining & Metals Corporation Sputtering target-backing plate assembly
JP6250450B2 (ja) * 2014-03-25 2017-12-20 Jx金属株式会社 スパッタリングターゲット/バッキングプレート組立体
JP6573629B2 (ja) * 2014-04-11 2019-09-11 ハー ツェー シュタルク インコーポレイテッドH.C. Starck, Inc. 高純度耐熱金属粉体、及び無秩序な組織を有し得るスパッタリングターゲットにおけるその使用
CN103902841B (zh) * 2014-04-21 2016-08-17 哈尔滨理工大学 一种定量分析ebsd测量体心立方合金凝固组织晶粒尺寸的方法
CN105895474A (zh) * 2014-05-06 2016-08-24 苏州艾默特材料技术有限公司 一种x射线管阳极靶的制备方法
KR101890507B1 (ko) * 2014-07-03 2018-08-21 플란제 에스이 층을 제조하기 위한 방법
AT14346U1 (de) 2014-07-08 2015-09-15 Plansee Se Target und Verfahren zur Herstellung eines Targets
AT14576U1 (de) 2014-08-20 2016-01-15 Plansee Se Metallisierung für ein Dünnschichtbauelement, Verfahren zu deren Herstellung und Sputtering Target
SG11201701835PA (en) * 2014-09-30 2017-04-27 Jx Nippon Mining & Metals Corp Tungsten sputtering target and method for producing same
US9548518B2 (en) * 2014-12-16 2017-01-17 General Electric Company Methods for joining ceramic and metallic structures
CN104561626B (zh) * 2015-01-13 2017-05-31 西安理工大学 一种快速制备细晶钨钛合金的方法
EP3211118B1 (en) * 2015-05-22 2020-09-09 JX Nippon Mining & Metals Corporation Tantalum sputtering target, and production method therefor
CN104946950A (zh) * 2015-06-10 2015-09-30 深圳市威勒达科技开发有限公司 一种钒钨合金靶材及其制备方法
CN104894449A (zh) * 2015-06-10 2015-09-09 深圳市威勒达科技开发有限公司 一种钒钼合金靶材及其制备方法
CN106702333A (zh) * 2015-07-29 2017-05-24 宁波江丰电子材料股份有限公司 靶材组件的制造方法
KR102622052B1 (ko) * 2015-08-03 2024-01-08 허니웰 인터내셔널 인코포레이티드 개선된 특성을 갖는 무마찰 단조 알루미늄 합금 스퍼터링 타겟
US10844475B2 (en) * 2015-12-28 2020-11-24 Jx Nippon Mining & Metals Corporation Method for manufacturing sputtering target
TWI613307B (zh) * 2015-12-30 2018-02-01 光洋應用材料科技股份有限公司 鉭靶材及其製法
CN105734332B (zh) * 2016-04-29 2017-09-22 合肥工业大学 一种孔隙均匀可控的多孔钨块体材料的制备方法
US10020281B2 (en) * 2016-08-30 2018-07-10 International Business Machines Corporation Metal bonding pads for packaging applications
US10900102B2 (en) 2016-09-30 2021-01-26 Honeywell International Inc. High strength aluminum alloy backing plate and methods of making
TWI619817B (zh) * 2016-10-26 2018-04-01 光洋應用材料科技股份有限公司 鈷鐵鈮基靶材
CN106435319B (zh) * 2016-12-15 2017-12-12 四川恒珲新材料科技有限公司 钨铜合金及其制备方法
JP7174476B2 (ja) * 2017-03-31 2022-11-17 Jx金属株式会社 タングステンターゲット
CN109106190A (zh) * 2017-06-22 2019-01-01 佛山市顺德区美的电热电器制造有限公司 一种ih内锅及其制造方法和烹饪器具
US11062889B2 (en) 2017-06-26 2021-07-13 Tosoh Smd, Inc. Method of production of uniform metal plates and sputtering targets made thereby
JP2019173048A (ja) * 2018-03-26 2019-10-10 Jx金属株式会社 スパッタリングターゲット部材及びその製造方法
US11648706B2 (en) 2018-04-26 2023-05-16 San Diego State University Research Foundation Selective sinter-based fabrication of fully dense complexing shaped parts
CZ307842B6 (cs) * 2018-05-02 2019-06-12 Fyzikální Ústav Av Čr, V. V. I. Způsob generování nízkoteplotního plazmatu, způsob povlakování vnitřního povrchu dutých elektricky vodivých nebo feromagnetických trubic a zařízení pro provádění těchto způsobů
US20220049346A1 (en) * 2018-09-26 2022-02-17 Jx Nippon Mining & Metals Corporation Sputtering Target and Method for Producing Same
GB2577522B (en) * 2018-09-27 2022-12-28 2D Heat Ltd A heating device, and applications therefore
BE1026683B1 (nl) * 2018-10-05 2020-05-07 Soleras Advanced Coatings Bvba Sputterdoel
CN109763100B (zh) * 2019-01-25 2021-05-07 西安交通大学苏州研究院 薄膜压力传感器中的敏感薄膜及其制作方法和应用
JP2022523357A (ja) * 2019-02-22 2022-04-22 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン 物理的気相成長(pvd)用ターゲットの製造方法
US11274363B2 (en) 2019-04-22 2022-03-15 Nxp Usa, Inc. Method of forming a sputtering target
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
CA3151605C (en) 2019-09-19 2023-04-11 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing
US11043352B1 (en) 2019-12-20 2021-06-22 Varex Imaging Corporation Aligned grain structure targets, systems, and methods of forming
CN111155080B (zh) * 2020-01-03 2021-12-21 西北工业大学 一种耐高温硅化物腐蚀的防护涂层材料及涂层制备方法
CN111118460B (zh) * 2020-01-10 2022-06-03 广州市尤特新材料有限公司 一种旋转钛靶及其制备方法
CN111230129B (zh) * 2020-03-18 2022-08-16 宁波江丰电子材料股份有限公司 一种钨钛混粉方法
JP7225170B2 (ja) * 2020-08-05 2023-02-20 松田産業株式会社 Ag合金円筒形スパッタリングターゲット、スパッタリング装置及び電子デバイスの製造方法
CN113684450B (zh) * 2021-08-24 2023-04-07 内蒙古大学 一种对小角度变化超敏感的薄膜及其制备方法和应用

Family Cites Families (354)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1030039A (en) 1910-08-17 1912-06-18 Kellogg Switchboard & Supply Automatic ringing system.
US1030353A (en) 1910-09-10 1912-06-25 John M Travis Dispensing-fount.
US1013253A (en) 1911-05-20 1912-01-02 Margaret J Woodworth Cooking utensil.
US3436299A (en) 1965-12-17 1969-04-01 Celanese Corp Polymer bonding
US3990784A (en) 1974-06-05 1976-11-09 Optical Coating Laboratory, Inc. Coated architectural glass system and method
US4011981A (en) 1975-03-27 1977-03-15 Olin Corporation Process for bonding titanium, tantalum, and alloys thereof
US4028787A (en) 1975-09-15 1977-06-14 Cretella Salvatore Refurbished turbine vanes and method of refurbishment thereof
US4050133A (en) 1976-06-07 1977-09-27 Cretella Salvatore Method of refurbishing turbine vanes and the like
US4059442A (en) 1976-08-09 1977-11-22 Sprague Electric Company Method for making a porous tantalum pellet
US4073427A (en) 1976-10-07 1978-02-14 Fansteel Inc. Lined equipment with triclad wall construction
US4140172A (en) 1976-12-23 1979-02-20 Fansteel Inc. Liners and tube supports for industrial and chemical process equipment
JPS5467198U (ja) 1977-10-18 1979-05-12
JPS5467198A (en) 1977-11-07 1979-05-30 Kawasaki Heavy Ind Ltd Anti-corrosion material for high temperature weak oxidation atmosphere
US4135286A (en) 1977-12-22 1979-01-23 United Technologies Corporation Sputtering target fabrication method
US4291104A (en) 1978-04-17 1981-09-22 Fansteel Inc. Brazed corrosion resistant lined equipment
US4202932A (en) 1978-07-21 1980-05-13 Xerox Corporation Magnetic recording medium
US4209375A (en) * 1979-08-02 1980-06-24 The United States Of America As Represented By The United States Department Of Energy Sputter target
US4349954A (en) 1980-11-26 1982-09-21 The United States Of America As Represented By The United States National Aeronautics And Space Administration Mechanical bonding of metal method
SE434353B (sv) 1981-02-06 1984-07-23 Nyby Uddeholm Ab Poros sinterkropp med god korrosionsbestendighet och sett att framstella denna
DE3130392C2 (de) 1981-07-31 1985-10-17 Hermann C. Starck Berlin, 1000 Berlin Verfahren zur Herstellung reiner agglomerierter Ventilmetallpulver für Elektrolytkondensatoren, deren Verwendung und Verfahren zur Herstellung von Sinteranoden
US4459062A (en) 1981-09-11 1984-07-10 Monsanto Company Clad metal joint closure
US4510171A (en) 1981-09-11 1985-04-09 Monsanto Company Clad metal joint closure
US4425483A (en) 1981-10-13 1984-01-10 Northern Telecom Limited Echo cancellation using transversal filters
CA1202599A (en) 1982-06-10 1986-04-01 Michael G. Down Upgrading titanium, zirconium and hafnium powders by plasma processing
JPS5920470A (ja) 1982-07-26 1984-02-02 Murata Mfg Co Ltd スパツタリング用タ−ゲツト
JPS5936809U (ja) 1982-08-31 1984-03-08 株式会社土屋製作所 燃料フイルタ
DE3309891A1 (de) 1983-03-18 1984-10-31 Hermann C. Starck Berlin, 1000 Berlin Verfahren zur herstellung von ventilmetallanoden fuer elektrolytkondensatoren
US4508563A (en) 1984-03-19 1985-04-02 Sprague Electric Company Reducing the oxygen content of tantalum
US4818559A (en) 1985-08-08 1989-04-04 Sumitomo Chemical Company, Limited Method for producing endosseous implants
US4818629A (en) 1985-08-26 1989-04-04 Fansteel Inc. Joint construction for lined equipment
US4688691A (en) 1986-01-22 1987-08-25 Nooter Corporation Process for attaching clad components and pressure vessel formed thereby
JPS62230967A (ja) 1986-03-31 1987-10-09 Mitsubishi Metal Corp 光磁気記録薄膜の形成に用いられた強磁性材製使用済みターゲットの再生方法
JPS63100177U (ja) 1986-12-19 1988-06-29
BR8702042A (pt) 1986-12-22 1988-07-12 Kawasaki Steel Co Aparelho e processo para recobrimento por aspersao de um material refratario sobre uma construcao refrataria
CH669609A5 (ja) 1986-12-23 1989-03-31 Balzers Hochvakuum
US4722756A (en) 1987-02-27 1988-02-02 Cabot Corp Method for deoxidizing tantalum material
US4731111A (en) 1987-03-16 1988-03-15 Gte Products Corporation Hydrometallurical process for producing finely divided spherical refractory metal based powders
JPS63227774A (ja) 1987-03-16 1988-09-22 Seiko Epson Corp スパツタリング用タ−ゲツト
JPS6415353A (en) 1987-07-08 1989-01-19 Toshiba Corp Alloy for thermal spraying
JPH0198359A (ja) 1987-10-12 1989-04-17 Nec Corp 加入者集線通信システム
JPH0756190B2 (ja) 1987-11-17 1995-06-14 清水建設株式会社 構造物の振動抑制装置
US4905886A (en) 1988-07-20 1990-03-06 Grumman Aerospace Corporation Method for diffusion bonding of metals and alloys using thermal spray deposition
US4915745A (en) 1988-09-22 1990-04-10 Atlantic Richfield Company Thin film solar cell and method of making
US4923531A (en) 1988-09-23 1990-05-08 Rmi Company Deoxidation of titanium and similar metals using a deoxidant in a molten metal carrier
US5242481A (en) 1989-06-26 1993-09-07 Cabot Corporation Method of making powders and products of tantalum and niobium
US5147125A (en) 1989-08-24 1992-09-15 Viratec Thin Films, Inc. Multilayer anti-reflection coating using zinc oxide to provide ultraviolet blocking
US4964906A (en) 1989-09-26 1990-10-23 Fife James A Method for controlling the oxygen content of tantalum material
JP3031474B2 (ja) 1989-12-26 2000-04-10 株式会社東芝 高純度タンタル材,タンタルターゲット,薄膜および半導体装置の製造方法
JPH0756Y2 (ja) 1990-02-20 1995-01-11 金沢樹脂工業株式会社 育苗箱
DE69016433T2 (de) 1990-05-19 1995-07-20 Papyrin Anatolij Nikiforovic Beschichtungsverfahren und -vorrichtung.
US5160534A (en) 1990-06-15 1992-11-03 Hitachi Metals Ltd. Titanium-tungsten target material for sputtering and manufacturing method therefor
US5091244A (en) 1990-08-10 1992-02-25 Viratec Thin Films, Inc. Electrically-conductive, light-attenuating antireflection coating
US5270858A (en) 1990-10-11 1993-12-14 Viratec Thin Films Inc D.C. reactively sputtered antireflection coatings
US5271965A (en) 1991-01-16 1993-12-21 Browning James A Thermal spray method utilizing in-transit powder particle temperatures below their melting point
JPH04323366A (ja) * 1991-04-19 1992-11-12 Asahi Glass Co Ltd スパッタリング用ターゲット及びその製造方法
JP2963240B2 (ja) 1991-07-10 1999-10-18 新日本製鐵株式会社 タンデム圧延機の張力制御方法
JPH05232580A (ja) 1991-11-28 1993-09-10 Misawa Homes Co Ltd スピーカー装置
US5230459A (en) 1992-03-18 1993-07-27 Tosoh Smd, Inc. Method of bonding a sputter target-backing plate assembly assemblies produced thereby
US5554889A (en) 1992-04-03 1996-09-10 Motorola, Inc. Structure and method for metallization of semiconductor devices
US5269899A (en) 1992-04-29 1993-12-14 Tosoh Smd, Inc. Cathode assembly for cathodic sputtering apparatus
US5612254A (en) 1992-06-29 1997-03-18 Intel Corporation Methods of forming an interconnect on a semiconductor substrate
JPH0681143A (ja) * 1992-08-31 1994-03-22 Mitsubishi Kasei Corp スパッタリングターゲット及びその製造方法
US5693203A (en) 1992-09-29 1997-12-02 Japan Energy Corporation Sputtering target assembly having solid-phase bonded interface
US5305946A (en) 1992-11-05 1994-04-26 Nooter Corporation Welding process for clad metals
JPH06144124A (ja) 1992-11-09 1994-05-24 Mazda Motor Corp 自動車の内装部材取付方法
JPH06158300A (ja) * 1992-11-19 1994-06-07 Tokyo Tungsten Co Ltd 高融点金属ターゲット材,及びその製造方法
JP3197640B2 (ja) 1992-11-30 2001-08-13 朝日興業株式会社 気泡発生装置
US5330798A (en) 1992-12-09 1994-07-19 Browning Thermal Systems, Inc. Thermal spray method and apparatus for optimizing flame jet temperature
JPH06192828A (ja) * 1992-12-24 1994-07-12 Sumitomo Chem Co Ltd 半導体ターゲット
US5679473A (en) 1993-04-01 1997-10-21 Asahi Komag Co., Ltd. Magnetic recording medium and method for its production
US5428882A (en) 1993-04-05 1995-07-04 The Regents Of The University Of California Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets
JPH06346232A (ja) * 1993-06-11 1994-12-20 Asahi Glass Co Ltd スパッタリング用ターゲットおよびその製造方法
US5466355A (en) 1993-07-15 1995-11-14 Japan Energy Corporation Mosaic target
US5853866A (en) 1993-12-10 1998-12-29 Toto Ltd. Multi-functional material with photocalytic functions and method of manufacturing same
US5433835B1 (en) 1993-11-24 1997-05-20 Applied Materials Inc Sputtering device and target with cover to hold cooling fluid
US5487822A (en) 1993-11-24 1996-01-30 Applied Materials, Inc. Integrated sputtering target assembly
US5392981A (en) 1993-12-06 1995-02-28 Regents Of The University Of California Fabrication of boron sputter targets
JPH07228966A (ja) * 1994-02-16 1995-08-29 Mitsubishi Materials Corp クロム長尺円筒ターゲットの製造方法
US5687600A (en) 1994-10-26 1997-11-18 Johnson Matthey Electronics, Inc. Metal sputtering target assembly
US6103392A (en) 1994-12-22 2000-08-15 Osram Sylvania Inc. Tungsten-copper composite powder
CN1146740A (zh) 1995-02-22 1997-04-02 丰田自动车株式会社 滚焊工艺和滚焊设备
US5836506A (en) 1995-04-21 1998-11-17 Sony Corporation Sputter target/backing plate assembly and method of making same
US5795626A (en) 1995-04-28 1998-08-18 Innovative Technology Inc. Coating or ablation applicator with a debris recovery attachment
JP3301278B2 (ja) 1995-06-02 2002-07-15 日本電信電話株式会社 サージ保護回路
US6193856B1 (en) * 1995-08-23 2001-02-27 Asahi Glass Company Ltd. Target and process for its production, and method for forming a film having a highly refractive index
DE19532244C2 (de) 1995-09-01 1998-07-02 Peak Werkstoff Gmbh Verfahren zur Herstellung von dünnwandigen Rohren (I)
US5766544A (en) 1996-03-15 1998-06-16 Kemp Development Corporation Process for fluidizing particulate material within a rotatable retort
US6269536B1 (en) 1996-03-28 2001-08-07 H.C. Starck, Inc. Production of low oxygen metal wire
US5993513A (en) 1996-04-05 1999-11-30 Cabot Corporation Method for controlling the oxygen content in valve metal materials
US5954856A (en) 1996-04-25 1999-09-21 Cabot Corporation Method of making tantalum metal powder with controlled size distribution and products made therefrom
US5738770A (en) 1996-06-21 1998-04-14 Sony Corporation Mechanically joined sputtering target and adapter therefor
KR100237316B1 (ko) 1996-08-01 2000-01-15 박호군 자성 박막 형성을 위한 스파터링 타겟 및 그 제조방법
US5863398A (en) 1996-10-11 1999-01-26 Johnson Matthey Electonics, Inc. Hot pressed and sintered sputtering target assemblies and method for making same
US5859654A (en) 1996-10-31 1999-01-12 Hewlett-Packard Company Print head for ink-jet printing a method for making print heads
EP0964937B1 (de) 1997-02-19 2001-10-04 H.C. Starck Gmbh & Co.Kg Tantalpulver, verfahren zu seiner herstellung, sowie daraus erhältliche sinteranoden
JP3098204B2 (ja) 1997-03-07 2000-10-16 ティーディーケイ株式会社 光磁気記録用合金ターゲット、その製造方法およびその再生方法
JPH10275887A (ja) 1997-03-31 1998-10-13 Nec Corp 半導体装置
US5972065A (en) 1997-07-10 1999-10-26 The Regents Of The University Of California Purification of tantalum by plasma arc melting
US20030052000A1 (en) 1997-07-11 2003-03-20 Vladimir Segal Fine grain size material, sputtering target, methods of forming, and micro-arc reduction method
JPH1169637A (ja) 1997-08-15 1999-03-09 Kokusai Electric Co Ltd 携帯用電子機器
US6010583A (en) 1997-09-09 2000-01-04 Sony Corporation Method of making unreacted metal/aluminum sputter target
DE19747385A1 (de) 1997-10-27 1999-04-29 Linde Ag Herstellung von Formteilen
JP4947834B2 (ja) 1997-11-26 2012-06-06 アプライド マテリアルズ インコーポレイテッド ダメージフリー被覆刻設堆積法
US6911124B2 (en) 1998-09-24 2005-06-28 Applied Materials, Inc. Method of depositing a TaN seed layer
JP3052240B2 (ja) 1998-02-27 2000-06-12 東京タングステン株式会社 X線管用回転陽極及びその製造方法
JPH11256323A (ja) * 1998-03-12 1999-09-21 Matsushita Electric Ind Co Ltd スパッタリング方法及び装置
JPH11269639A (ja) 1998-03-24 1999-10-05 Sumitomo Metal Mining Co Ltd スパッタリングターゲットの再生方法
JPH11269637A (ja) 1998-03-24 1999-10-05 Sumitomo Metal Mining Co Ltd 大型スパッタリングターゲットの製造方法
US6171363B1 (en) 1998-05-06 2001-01-09 H. C. Starck, Inc. Method for producing tantallum/niobium metal powders by the reduction of their oxides with gaseous magnesium
US6189663B1 (en) 1998-06-08 2001-02-20 General Motors Corporation Spray coatings for suspension damper rods
US6875324B2 (en) 1998-06-17 2005-04-05 Tanaka Kikinzoku Kogyo K.K. Sputtering target material
WO2000006793A1 (en) * 1998-07-27 2000-02-10 Applied Materials, Inc. Sputtering target assembly
JP2000052438A (ja) 1998-08-11 2000-02-22 Sulzer Innotec Ag 繊維・プラスチック化合物材料の連続的形状体の製造法及び該方法を行うプラント
US6193821B1 (en) 1998-08-19 2001-02-27 Tosoh Smd, Inc. Fine grain tantalum sputtering target and fabrication process
US6071389A (en) * 1998-08-21 2000-06-06 Tosoh Smd, Inc. Diffusion bonded sputter target assembly and method of making
US6749103B1 (en) 1998-09-11 2004-06-15 Tosoh Smd, Inc. Low temperature sputter target bonding method and target assemblies produced thereby
DE19847012A1 (de) 1998-10-13 2000-04-20 Starck H C Gmbh Co Kg Niobpulver und Verfahren zu dessen Herstellung
FR2785897B1 (fr) 1998-11-16 2000-12-08 Commissariat Energie Atomique Couche mince d'oxyde d'hafnium et procede de depot
US6328927B1 (en) 1998-12-24 2001-12-11 Praxair Technology, Inc. Method of making high-density, high-purity tungsten sputter targets
US6176947B1 (en) 1998-12-31 2001-01-23 H-Technologies Group, Incorporated Lead-free solders
US6197082B1 (en) 1999-02-17 2001-03-06 H.C. Starck, Inc. Refining of tantalum and tantalum scrap with carbon
KR20000062587A (ko) 1999-03-02 2000-10-25 로버트 에이. 바쎄트 박막 증착에 사용 및 재사용하기 위한 열분사에 의한스퍼터 타깃의 제조 및 재충전 방법
US6558447B1 (en) 1999-05-05 2003-05-06 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
US6139913A (en) 1999-06-29 2000-10-31 National Center For Manufacturing Sciences Kinetic spray coating method and apparatus
JP2001020065A (ja) 1999-07-07 2001-01-23 Hitachi Metals Ltd スパッタリング用ターゲット及びその製造方法ならびに高融点金属粉末材料
US6165413A (en) 1999-07-08 2000-12-26 Praxair S.T. Technology, Inc. Method of making high density sputtering targets
US6478902B2 (en) 1999-07-08 2002-11-12 Praxair S.T. Technology, Inc. Fabrication and bonding of copper sputter targets
US6283357B1 (en) 1999-08-03 2001-09-04 Praxair S.T. Technology, Inc. Fabrication of clad hollow cathode magnetron sputter targets
US6521173B2 (en) 1999-08-19 2003-02-18 H.C. Starck, Inc. Low oxygen refractory metal powder for powder metallurgy
US6261337B1 (en) 1999-08-19 2001-07-17 Prabhat Kumar Low oxygen refractory metal powder for powder metallurgy
DE19942916A1 (de) 1999-09-08 2001-03-15 Linde Gas Ag Herstellen von aufschäumbaren Metallkörpern und Metallschäumen
US6245390B1 (en) 1999-09-10 2001-06-12 Viatcheslav Baranovski High-velocity thermal spray apparatus and method of forming materials
JP2001085378A (ja) 1999-09-13 2001-03-30 Sony Corp 半導体装置およびその製造方法
JP4240679B2 (ja) 1999-09-21 2009-03-18 ソニー株式会社 スパッタリング用ターゲットの製造方法
JP3632524B2 (ja) 1999-09-24 2005-03-23 東ソー株式会社 Mg含有ITOスパッタリングターゲットおよびMg含有ITO蒸着材の製造方法
JP4510959B2 (ja) 1999-10-07 2010-07-28 キヤノンアネルバ株式会社 反応性スパッタリング装置
US6258402B1 (en) 1999-10-12 2001-07-10 Nakhleh Hussary Method for repairing spray-formed steel tooling
JP2001123267A (ja) 1999-10-26 2001-05-08 Sanyo Special Steel Co Ltd Ge−Sb−Te系スパッタリングターゲット材の製造方法
US6267851B1 (en) 1999-10-28 2001-07-31 Applied Komatsu Technology, Inc. Tilted sputtering target with shield to block contaminants
RU2166421C1 (ru) 1999-12-06 2001-05-10 Государственный космический научно-производственный центр им. М.В. Хруничева Способ восстановления изделий
US6878250B1 (en) 1999-12-16 2005-04-12 Honeywell International Inc. Sputtering targets formed from cast materials
US6855236B2 (en) 1999-12-28 2005-02-15 Kabushiki Kaisha Toshiba Components for vacuum deposition apparatus and vacuum deposition apparatus therewith, and target apparatus
US6331233B1 (en) 2000-02-02 2001-12-18 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
US7122069B2 (en) 2000-03-29 2006-10-17 Osram Sylvania Inc. Mo-Cu composite powder
US6502767B2 (en) 2000-05-03 2003-01-07 Asb Industries Advanced cold spray system
US6432804B1 (en) 2000-05-22 2002-08-13 Sharp Laboratories Of America, Inc. Sputtered silicon target for fabrication of polysilicon thin film transistors
US20030023132A1 (en) 2000-05-31 2003-01-30 Melvin David B. Cyclic device for restructuring heart chamber geometry
US6582572B2 (en) 2000-06-01 2003-06-24 Seagate Technology Llc Target fabrication method for cylindrical cathodes
US6489222B2 (en) 2000-06-02 2002-12-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP2001347672A (ja) 2000-06-07 2001-12-18 Fuji Photo Film Co Ltd インクジェット記録ヘッドおよびインクジェット記録ヘッドの製造方法ならびにインクジェットプリンタ
US6748902B1 (en) 2000-06-09 2004-06-15 Brian Boesch System and method for training of animals
US6464933B1 (en) 2000-06-29 2002-10-15 Ford Global Technologies, Inc. Forming metal foam structures
US6725522B1 (en) 2000-07-12 2004-04-27 Tosoh Smd, Inc. Method of assembling target and backing plates
US6497797B1 (en) 2000-08-21 2002-12-24 Honeywell International Inc. Methods of forming sputtering targets, and sputtering targets formed thereby
JP3791829B2 (ja) 2000-08-25 2006-06-28 株式会社日鉱マテリアルズ パーティクル発生の少ないスパッタリングターゲット
US6409897B1 (en) 2000-09-20 2002-06-25 Poco Graphite, Inc. Rotatable sputter target
WO2002027768A2 (en) 2000-09-27 2002-04-04 Nüp2 Incorporated Fabrication of semiconductor devices
US6413578B1 (en) 2000-10-12 2002-07-02 General Electric Company Method for repairing a thermal barrier coating and repaired coating formed thereby
US7041204B1 (en) 2000-10-27 2006-05-09 Honeywell International Inc. Physical vapor deposition components and methods of formation
US6498091B1 (en) 2000-11-01 2002-12-24 Applied Materials, Inc. Method of using a barrier sputter reactor to remove an underlying barrier layer
US6946039B1 (en) 2000-11-02 2005-09-20 Honeywell International Inc. Physical vapor deposition targets, and methods of fabricating metallic materials
WO2002043658A2 (en) 2000-11-06 2002-06-06 The Jackson Laboratory Fcrn-based therapeutics for the treatment of auto-immune disorders
US6669782B1 (en) 2000-11-15 2003-12-30 Randhir P. S. Thakur Method and apparatus to control the formation of layers useful in integrated circuits
US20020090464A1 (en) 2000-11-28 2002-07-11 Mingwei Jiang Sputter chamber shield
US6491208B2 (en) 2000-12-05 2002-12-10 Siemens Westinghouse Power Corporation Cold spray repair process
DE60136098D1 (de) 2000-12-18 2008-11-20 Tosoh Smd Inc Niedrigtemperaturverfahren zur sputtertarget/grundungen
US6444259B1 (en) 2001-01-30 2002-09-03 Siemens Westinghouse Power Corporation Thermal barrier coating applied with cold spray technique
AU2002250075B2 (en) * 2001-02-14 2007-03-29 H. C. Starck, Inc. Rejuvenation of refractory metal products
US7794554B2 (en) 2001-02-14 2010-09-14 H.C. Starck Inc. Rejuvenation of refractory metal products
AU2002257005B2 (en) 2001-02-20 2007-05-31 H.C. Starck, Inc. Refractory metal plates with uniform texture and methods of making the same
TWI232241B (en) 2001-03-13 2005-05-11 Ind Tech Res Inst Method of regenerating a phase change sputtering target for optical storage media
JP4189476B2 (ja) 2001-03-14 2008-12-03 日鉱金属株式会社 パーティクル発生の少ないスパッタリングターゲット、バッキングプレート又はスパッタリング装置内の機器及び粗化方法
TW558471B (en) 2001-03-28 2003-10-21 Phild Co Ltd Method and device for manufacturing metallic particulates and manufactured metallic particulates
US6797137B2 (en) 2001-04-11 2004-09-28 Heraeus, Inc. Mechanically alloyed precious metal magnetic sputtering targets fabricated using rapidly solidfied alloy powders and elemental Pt metal
US6915964B2 (en) * 2001-04-24 2005-07-12 Innovative Technology, Inc. System and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation
WO2002088417A1 (en) * 2001-04-26 2002-11-07 Honeywell International Inc. Assemblies comprising molybdenum and aluminum; and methods of utilizing interlayers in forming target/backing plate assemblies
US6722584B2 (en) 2001-05-02 2004-04-20 Asb Industries, Inc. Cold spray system nozzle
DE10126100A1 (de) 2001-05-29 2002-12-05 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
US6592935B2 (en) * 2001-05-30 2003-07-15 Ford Motor Company Method of manufacturing electromagnetic devices using kinetic spray
US7201940B1 (en) 2001-06-12 2007-04-10 Advanced Cardiovascular Systems, Inc. Method and apparatus for thermal spray processing of medical devices
US6613697B1 (en) 2001-06-26 2003-09-02 Special Materials Research And Technology, Inc. Low metallic impurity SiO based thin film dielectrics on semiconductor substrates using a room temperature wet chemical growth process, method and applications thereof
JP4332832B2 (ja) 2001-07-06 2009-09-16 富士電機デバイステクノロジー株式会社 垂直磁気記録媒体およびその製造方法
US7053294B2 (en) 2001-07-13 2006-05-30 Midwest Research Institute Thin-film solar cell fabricated on a flexible metallic substrate
US6780458B2 (en) 2001-08-01 2004-08-24 Siemens Westinghouse Power Corporation Wear and erosion resistant alloys applied by cold spray technique
AU2002333640A1 (en) 2001-09-17 2003-04-01 Heraeus, Inc. Refurbishing spent sputtering targets
US7081148B2 (en) 2001-09-18 2006-07-25 Praxair S.T. Technology, Inc. Textured-grain-powder metallurgy tantalum sputter target
US6770154B2 (en) 2001-09-18 2004-08-03 Praxair S.T. Technology, Inc. Textured-grain-powder metallurgy tantalum sputter target
US20030082297A1 (en) 2001-10-26 2003-05-01 Siemens Westinghouse Power Corporation Combustion turbine blade tip restoration by metal build-up using thermal spray techniques
JP4162467B2 (ja) 2001-10-30 2008-10-08 三井金属鉱業株式会社 スパッタリングターゲットの製造方法
JP4312431B2 (ja) 2001-11-30 2009-08-12 新日鉄マテリアルズ株式会社 ターゲット材
US20030178301A1 (en) 2001-12-21 2003-09-25 Lynn David Mark Planar magnetron targets having target material affixed to non-planar backing plates
US6986471B1 (en) 2002-01-08 2006-01-17 Flame Spray Industries, Inc. Rotary plasma spray method and apparatus for applying a coating utilizing particle kinetics
US6861101B1 (en) 2002-01-08 2005-03-01 Flame Spray Industries, Inc. Plasma spray method for applying a coating utilizing particle kinetics
WO2003062491A2 (en) * 2002-01-24 2003-07-31 H. C. Starck Inc. Refractrory metal and alloy refining by laser forming and melting
US20030175142A1 (en) 2002-03-16 2003-09-18 Vassiliki Milonopoulou Rare-earth pre-alloyed PVD targets for dielectric planar applications
US6627814B1 (en) 2002-03-22 2003-09-30 David H. Stark Hermetically sealed micro-device package with window
BE1014736A5 (fr) 2002-03-29 2004-03-02 Alloys For Technical Applic S Procede de fabrication et de recharge de cibles pour pulverisation cathodique.
US6623796B1 (en) 2002-04-05 2003-09-23 Delphi Technologies, Inc. Method of producing a coating using a kinetic spray process with large particles and nozzles for the same
US6896933B2 (en) 2002-04-05 2005-05-24 Delphi Technologies, Inc. Method of maintaining a non-obstructed interior opening in kinetic spray nozzles
US20030219542A1 (en) 2002-05-25 2003-11-27 Ewasyshyn Frank J. Method of forming dense coatings by powder spraying
DE10224777A1 (de) 2002-06-04 2003-12-18 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
DE10224780A1 (de) 2002-06-04 2003-12-18 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
WO2003106733A1 (en) 2002-06-14 2003-12-24 Tosoh Smd, Inc. Target and method of diffusion bonding target to backing plate
US6759085B2 (en) 2002-06-17 2004-07-06 Sulzer Metco (Us) Inc. Method and apparatus for low pressure cold spraying
US20040005449A1 (en) 2002-07-05 2004-01-08 Kabushiki Kaisha Kobe Seiko Sho Foamed resin laminate sound insulation board and method for manufacturing the same
DE10231203B4 (de) 2002-07-10 2009-09-10 Interpane Entwicklungs-Und Beratungsgesellschaft Mbh Targetträgeranordnung
US20040016635A1 (en) 2002-07-19 2004-01-29 Ford Robert B. Monolithic sputtering target assembly
US20070189916A1 (en) 2002-07-23 2007-08-16 Heraeus Incorporated Sputtering targets and methods for fabricating sputtering targets having multiple materials
CA2433613A1 (en) 2002-08-13 2004-02-13 Russel J. Ruprecht, Jr. Spray method for mcralx coating
US7128988B2 (en) 2002-08-29 2006-10-31 Lambeth Systems Magnetic material structures, devices and methods
JP4883546B2 (ja) 2002-09-20 2012-02-22 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲットの製造方法
US6743468B2 (en) 2002-09-23 2004-06-01 Delphi Technologies, Inc. Method of coating with combined kinetic spray and thermal spray
US7108893B2 (en) 2002-09-23 2006-09-19 Delphi Technologies, Inc. Spray system with combined kinetic spray and thermal spray ability
AU2003277000A1 (en) 2002-09-25 2004-04-19 Alcoa Inc. Coated vehicle wheel and method
US20040065546A1 (en) 2002-10-04 2004-04-08 Michaluk Christopher A. Method to recover spent components of a sputter target
DE60335394D1 (de) 2002-10-09 2011-01-27 Nat Inst For Materials Science Verfahren zur herstellung eines metall berzugs mit einer hvof-spritzpistole und vorrichtung zum thermischen spritzen
CA2444917A1 (en) 2002-10-18 2004-04-18 United Technologies Corporation Cold sprayed copper for rocket engine applications
US6749002B2 (en) 2002-10-21 2004-06-15 Ford Motor Company Method of spray joining articles
DE60326621D1 (de) 2002-10-21 2009-04-23 Cabot Corp Verfahren zur herstellung eines sputtertargets und sputtertarget
DE10253794B4 (de) 2002-11-19 2005-03-17 Hühne, Erwin Dieter Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem
TW571342B (en) 2002-12-18 2004-01-11 Au Optronics Corp Method of forming a thin film transistor
WO2004057551A2 (en) 2002-12-20 2004-07-08 Koninklijke Philips Electronics N.V. System with macrocommands
US7067197B2 (en) 2003-01-07 2006-06-27 Cabot Corporation Powder metallurgy sputtering targets and methods of producing same
US6872427B2 (en) 2003-02-07 2005-03-29 Delphi Technologies, Inc. Method for producing electrical contacts using selective melting and a low pressure kinetic spray process
JP2006514160A (ja) 2003-02-20 2006-04-27 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム スパッタターゲットの製造方法
ATE522637T1 (de) 2003-02-24 2011-09-15 Tekna Plasma Systems Inc Verfahren zur herstellung eines sputtertargets
TW200506080A (en) 2003-02-25 2005-02-16 Cabot Corp Method of forming sputtering target assembly and assemblies made therefrom
JP4000075B2 (ja) 2003-02-27 2007-10-31 株式会社東芝 ロータの補修方法
JP4422975B2 (ja) 2003-04-03 2010-03-03 株式会社コベルコ科研 スパッタリングターゲットおよびその製造方法
JP4163986B2 (ja) 2003-04-09 2008-10-08 新日本製鐵株式会社 不溶性電極及びその製造方法
US7278353B2 (en) 2003-05-27 2007-10-09 Surface Treatment Technologies, Inc. Reactive shaped charges and thermal spray methods of making same
KR20060029622A (ko) 2003-06-20 2006-04-06 캐보트 코포레이션 백킹 플레이트에 스퍼터 타겟 부착을 위한 방법 및 디자인
JP4008388B2 (ja) 2003-06-30 2007-11-14 シャープ株式会社 半導体キャリア用フィルムおよびそれを用いた半導体装置、液晶モジュール
JP3890041B2 (ja) 2003-07-09 2007-03-07 株式会社リケン ピストンリング及びその製造方法
US6992261B2 (en) 2003-07-15 2006-01-31 Cabot Corporation Sputtering target assemblies using resistance welding
US7425093B2 (en) 2003-07-16 2008-09-16 Cabot Corporation Thermography test method and apparatus for bonding evaluation in sputtering targets
US7170915B2 (en) 2003-07-23 2007-01-30 Intel Corporation Anti-reflective (AR) coating for high index gain media
US7314650B1 (en) 2003-08-05 2008-01-01 Leonard Nanis Method for fabricating sputter targets
US7208230B2 (en) 2003-08-29 2007-04-24 General Electric Company Optical reflector for reducing radiation heat transfer to hot engine parts
JP4310251B2 (ja) 2003-09-02 2009-08-05 新日本製鐵株式会社 コールドスプレー用ノズル及びコールドスプレー被膜の製造方法
JP4468302B2 (ja) 2003-09-12 2010-05-26 日鉱金属株式会社 スパッタリングターゲット及び同ターゲットの表面仕上げ方法
US7351450B2 (en) 2003-10-02 2008-04-01 Delphi Technologies, Inc. Correcting defective kinetically sprayed surfaces
US7128948B2 (en) 2003-10-20 2006-10-31 The Boeing Company Sprayed preforms for forming structural members
US7335341B2 (en) 2003-10-30 2008-02-26 Delphi Technologies, Inc. Method for securing ceramic structures and forming electrical connections on the same
WO2005079209A2 (en) 2003-11-26 2005-09-01 The Regents Of The University Of California Nanocrystalline material layers using cold spray
US20050147742A1 (en) 2004-01-07 2005-07-07 Tokyo Electron Limited Processing chamber components, particularly chamber shields, and method of controlling temperature thereof
US20070172378A1 (en) * 2004-01-30 2007-07-26 Nippon Tungsten Co., Ltd. Tungsten based sintered compact and method for production thereof
JP2005232580A (ja) 2004-02-23 2005-09-02 Toyoshima Seisakusho:Kk 分割スパッタリングターゲット
US7832619B2 (en) 2004-02-27 2010-11-16 Howmet Corporation Method of making sputtering target
US7504008B2 (en) 2004-03-12 2009-03-17 Applied Materials, Inc. Refurbishment of sputtering targets
US6905728B1 (en) 2004-03-22 2005-06-14 Honeywell International, Inc. Cold gas-dynamic spray repair on gas turbine engine components
US7244466B2 (en) 2004-03-24 2007-07-17 Delphi Technologies, Inc. Kinetic spray nozzle design for small spot coatings and narrow width structures
US20050220995A1 (en) 2004-04-06 2005-10-06 Yiping Hu Cold gas-dynamic spraying of wear resistant alloys on turbine blades
JP4826066B2 (ja) 2004-04-27 2011-11-30 住友金属鉱山株式会社 非晶質の透明導電性薄膜およびその製造方法、並びに、該非晶質の透明導電性薄膜を得るためのスパッタリングターゲットおよびその製造方法
US7066375B2 (en) 2004-04-28 2006-06-27 The Boeing Company Aluminum coating for the corrosion protection of welds
DE102004029354A1 (de) 2004-05-04 2005-12-01 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
WO2006001976A2 (en) 2004-06-15 2006-01-05 Tosoh Smd, Inc. High purity target manufacturing methods
US20060006064A1 (en) 2004-07-09 2006-01-12 Avi Tepman Target tiles in a staggered array
TW200606270A (en) * 2004-07-09 2006-02-16 Mitsui Mining & Smelting Co Sputtering target material
ITMN20040016A1 (it) 2004-07-13 2004-10-13 Amfag Spa Utensile raschiatore per aereatore installato su rubinetto
US20060011470A1 (en) 2004-07-16 2006-01-19 Hatch Gareth P Sputtering magnetron control devices
US20060021870A1 (en) * 2004-07-27 2006-02-02 Applied Materials, Inc. Profile detection and refurbishment of deposition targets
ES2282769T3 (es) 2004-08-10 2007-10-16 APPLIED MATERIALS GMBH & CO. KG Dispositivo de pulverizacion catodica con magnetron, catodo cilindric y procedimiento para la aplicacion de capas delgadas de multiples componente en un sustrato.
JP2006052440A (ja) 2004-08-11 2006-02-23 Hyogo Prefecture 無電解めっき用触媒液及び無電解めっき皮膜の形成方法
US20060045785A1 (en) 2004-08-30 2006-03-02 Yiping Hu Method for repairing titanium alloy components
US20060042728A1 (en) * 2004-08-31 2006-03-02 Brad Lemon Molybdenum sputtering targets
EP1797212A4 (en) 2004-09-16 2012-04-04 Vladimir Belashchenko DEPOSIT SYSTEM, METHODS AND MATERIALS FOR COMPOSITE COATINGS
EP1794350A1 (de) 2004-09-25 2007-06-13 ABB Technology AG Verfahren zur herstellung einer abbrandfesten beschichtung, sowie entsprechende schirmung für vakuumschaltkammern
US20060090593A1 (en) 2004-11-03 2006-05-04 Junhai Liu Cold spray formation of thin metal coatings
US20060121187A1 (en) 2004-12-03 2006-06-08 Haynes Jeffrey D Vacuum cold spray process
DE102004059716B3 (de) 2004-12-08 2006-04-06 Siemens Ag Verfahren zum Kaltgasspritzen
US7378132B2 (en) 2004-12-14 2008-05-27 Honeywell International, Inc. Method for applying environmental-resistant MCrAlY coatings on gas turbine components
CN100364618C (zh) 2004-12-27 2008-01-30 戴萌 一种用于骨修补的外科植入物材料
US20060137969A1 (en) 2004-12-29 2006-06-29 Feldewerth Gerald B Method of manufacturing alloy sputtering targets
US7479299B2 (en) 2005-01-26 2009-01-20 Honeywell International Inc. Methods of forming high strength coatings
JP4579709B2 (ja) * 2005-02-15 2010-11-10 株式会社神戸製鋼所 Al−Ni−希土類元素合金スパッタリングターゲット
US7399355B2 (en) 2005-02-22 2008-07-15 Halliburton Energy Services, Inc. Fluid loss control additive and cement compositions comprising same
US7399335B2 (en) 2005-03-22 2008-07-15 H.C. Starck Inc. Method of preparing primary refractory metal
US7354659B2 (en) 2005-03-30 2008-04-08 Reactive Nanotechnologies, Inc. Method for fabricating large dimension bonds using reactive multilayer joining
DE102005018618A1 (de) 2005-04-21 2006-10-26 Rheinmetall Waffe Munition Gmbh Waffenrohr und Verfahren zur Beschichtung der inneren Oberfläche des Waffenrohres
RU2418886C2 (ru) 2005-05-05 2011-05-20 Х.К. Штарк Гмбх Способ нанесения покрытий для изготовления или восстановления мишеней распыления и анодов рентгеновских трубок
RU2434073C9 (ru) 2005-05-05 2012-12-27 Х.К. Штарк Гмбх Способ покрытия поверхности субстрата и продукт с нанесенным покрытием
US20060251872A1 (en) 2005-05-05 2006-11-09 Wang Jenn Y Conductive barrier layer, especially an alloy of ruthenium and tantalum and sputter deposition thereof
US7316763B2 (en) 2005-05-24 2008-01-08 Applied Materials, Inc. Multiple target tiles with complementary beveled edges forming a slanted gap therebetween
US20060266639A1 (en) 2005-05-24 2006-11-30 Applied Materials, Inc. Sputtering target tiles having structured edges separated by a gap
KR100620213B1 (ko) 2005-05-31 2006-09-06 어플라이드 사이언스(주) 스퍼터링 타겟의 솔더 본딩 방법
US7550055B2 (en) 2005-05-31 2009-06-23 Applied Materials, Inc. Elastomer bonding of large area sputtering target
KR100683124B1 (ko) 2005-06-04 2007-02-15 재단법인서울대학교산학협력재단 초음속 분사 적층기술을 이용한 금형의 보수 방법
US7644745B2 (en) 2005-06-06 2010-01-12 Applied Materials, Inc. Bonding of target tiles to backing plate with patterned bonding agent
US7652223B2 (en) 2005-06-13 2010-01-26 Applied Materials, Inc. Electron beam welding of sputtering target tiles
US20060289305A1 (en) 2005-06-27 2006-12-28 Applied Materials, Inc. Centering mechanism for aligning sputtering target tiles
US20070012557A1 (en) 2005-07-13 2007-01-18 Applied Materials, Inc Low voltage sputtering for large area substrates
JP4200156B2 (ja) 2005-09-15 2008-12-24 麒麟麦酒株式会社 飲料注出装置の洗浄システム
US7837929B2 (en) 2005-10-20 2010-11-23 H.C. Starck Inc. Methods of making molybdenum titanium sputtering plates and targets
JP4795157B2 (ja) 2005-10-24 2011-10-19 新日本製鐵株式会社 コールドスプレー装置
US7624910B2 (en) 2006-04-17 2009-12-01 Lockheed Martin Corporation Perforated composites for joining of metallic and composite materials
US7618500B2 (en) 2005-11-14 2009-11-17 Lawrence Livermore National Security, Llc Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals
US8187720B2 (en) 2005-11-14 2012-05-29 Lawrence Livermore National Security, Llc Corrosion resistant neutron absorbing coatings
US8480864B2 (en) 2005-11-14 2013-07-09 Joseph C. Farmer Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings
US8075712B2 (en) 2005-11-14 2011-12-13 Lawrence Livermore National Security, Llc Amorphous metal formulations and structured coatings for corrosion and wear resistance
US20070116890A1 (en) 2005-11-21 2007-05-24 Honeywell International, Inc. Method for coating turbine engine components with rhenium alloys using high velocity-low temperature spray process
CA2560030C (en) 2005-11-24 2013-11-12 Sulzer Metco Ag A thermal spraying material, a thermally sprayed coating, a thermal spraying method an also a thermally coated workpiece
US8647484B2 (en) 2005-11-25 2014-02-11 Applied Materials, Inc. Target for sputtering chamber
CA2571099C (en) 2005-12-21 2015-05-05 Sulzer Metco (Us) Inc. Hybrid plasma-cold spray method and apparatus
ATE400674T1 (de) 2006-01-10 2008-07-15 Siemens Ag Kaltspritzanlage und kaltspritzverfahren mit moduliertem gasstrom
US7402277B2 (en) 2006-02-07 2008-07-22 Exxonmobil Research And Engineering Company Method of forming metal foams by cold spray technique
TW200738896A (en) 2006-04-12 2007-10-16 Wintek Corp Sputtering target
EP1849887A1 (de) 2006-04-26 2007-10-31 Sulzer Metco AG Target für eine Sputterquelle
JP5210498B2 (ja) 2006-04-28 2013-06-12 株式会社アルバック 接合型スパッタリングターゲット及びその作製方法
US20070289869A1 (en) 2006-06-15 2007-12-20 Zhifei Ye Large Area Sputtering Target
US20070289864A1 (en) 2006-06-15 2007-12-20 Zhifei Ye Large Area Sputtering Target
US7815782B2 (en) 2006-06-23 2010-10-19 Applied Materials, Inc. PVD target
KR101377574B1 (ko) 2006-07-28 2014-03-26 삼성전자주식회사 프락시 모바일 아이피를 사용하는 이동통신 시스템에서보안 관리 방법 및 그 시스템
US20080041720A1 (en) 2006-08-14 2008-02-21 Jaeyeon Kim Novel manufacturing design and processing methods and apparatus for PVD targets
WO2008079461A2 (en) 2006-09-08 2008-07-03 Reactive Nanotechnologies, Inc. Reactive multilayer joining with improved metallization techniques
KR20090051215A (ko) 2006-09-12 2009-05-21 토소우 에스엠디, 인크 스퍼터링 타게트 조립체 및 그 제조 방법
US20080078268A1 (en) 2006-10-03 2008-04-03 H.C. Starck Inc. Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US20100015467A1 (en) 2006-11-07 2010-01-21 H.C. Starck Gmbh & Co., Kg Method for coating a substrate and coated product
US20080110746A1 (en) 2006-11-09 2008-05-15 Kardokus Janine K Novel manufacturing design and processing methods and apparatus for sputtering targets
US20080145688A1 (en) 2006-12-13 2008-06-19 H.C. Starck Inc. Method of joining tantalum clade steel structures
WO2008081585A1 (ja) 2007-01-05 2008-07-10 Kabushiki Kaisha Toshiba スパッタリングターゲットとその製造方法
US8784729B2 (en) 2007-01-16 2014-07-22 H.C. Starck Inc. High density refractory metals and alloys sputtering targets
US8197894B2 (en) 2007-05-04 2012-06-12 H.C. Starck Gmbh Methods of forming sputtering targets
US20110303535A1 (en) 2007-05-04 2011-12-15 Miller Steven A Sputtering targets and methods of forming the same
US7914856B2 (en) 2007-06-29 2011-03-29 General Electric Company Method of preparing wetting-resistant surfaces and articles incorporating the same
US20090010792A1 (en) 2007-07-02 2009-01-08 Heraeus Inc. Brittle metal alloy sputtering targets and method of fabricating same
US7871563B2 (en) 2007-07-17 2011-01-18 Williams Advanced Materials, Inc. Process for the refurbishing of a sputtering target
US7901552B2 (en) 2007-10-05 2011-03-08 Applied Materials, Inc. Sputtering target with grooves and intersecting channels
BRPI0817495B1 (pt) 2007-11-01 2020-04-07 Nippon Steel & Sumitomo Metal Corp método de regeneração de um bujão de punção e de laminação, linha de equipamento para regeneração de um bujão de punção e de laminação.
TWI367904B (en) 2007-12-06 2012-07-11 Ind Tech Res Inst Aliphatic copolyester and its preparation, melt-blown nonwovens and fiber woven fabrics comprising the aliphatic copolyester
US8173206B2 (en) 2007-12-20 2012-05-08 General Electric Company Methods for repairing barrier coatings
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
JP2009221543A (ja) 2008-03-17 2009-10-01 Hitachi Cable Ltd スパッタリングターゲット材
GB2459917B (en) 2008-05-12 2013-02-27 Sinito Shenzhen Optoelectrical Advanced Materials Company Ltd A process for the manufacture of a high density ITO sputtering target
DE102008024504A1 (de) 2008-05-21 2009-11-26 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
EP2135973A1 (en) 2008-06-18 2009-12-23 Centre National de la Recherche Scientifique Method for the manufacturing of sputtering targets using an inorganic polymer
JP5092939B2 (ja) 2008-07-01 2012-12-05 日立電線株式会社 Tft用平板型銅スパッタリングターゲット材及びスパッタリング方法
US20100012488A1 (en) 2008-07-15 2010-01-21 Koenigsmann Holger J Sputter target assembly having a low-temperature high-strength bond
US8246903B2 (en) 2008-09-09 2012-08-21 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
US8043655B2 (en) 2008-10-06 2011-10-25 H.C. Starck, Inc. Low-energy method of manufacturing bulk metallic structures with submicron grain sizes
US8192799B2 (en) 2008-12-03 2012-06-05 Asb Industries, Inc. Spray nozzle assembly for gas dynamic cold spray and method of coating a substrate with a high temperature coating
JP4348396B1 (ja) 2008-12-26 2009-10-21 田中貴金属工業株式会社 再生ターゲットの製造方法
US20100170937A1 (en) 2009-01-07 2010-07-08 General Electric Company System and Method of Joining Metallic Parts Using Cold Spray Technique
US8268237B2 (en) 2009-01-08 2012-09-18 General Electric Company Method of coating with cryo-milled nano-grained particles
US8363787B2 (en) 2009-03-25 2013-01-29 General Electric Company Interface for liquid metal bearing and method of making same
KR101294329B1 (ko) 2009-03-30 2013-08-07 삼성코닝정밀소재 주식회사 대형 스퍼터링 타겟재 제조방법
US8673122B2 (en) 2009-04-07 2014-03-18 Magna Mirrors Of America, Inc. Hot tile sputtering system
US8821701B2 (en) 2010-06-02 2014-09-02 Clifton Higdon Ion beam sputter target and method of manufacture
US20120017521A1 (en) 2010-07-26 2012-01-26 Matthew Murray Botke Variable performance building cladding according to view angle
US20120061235A1 (en) 2010-10-27 2012-03-15 Primestar Solar, Inc. Mixed sputtering target of cadmium sulfide and cadmium telluride and methods of their use
CN103228815B (zh) 2010-11-30 2016-08-17 陶氏环球技术有限责任公司 翻新含有铜和铟的合金溅射靶
WO2013049274A2 (en) 2011-09-29 2013-04-04 H.C. Starck, Inc. Large-area sputtering targets and methods of manufacturing large-area sputtering targets
US20130156967A1 (en) 2011-12-16 2013-06-20 Christopher Michaluk Spray rejuvenation of sputtering targets

Also Published As

Publication number Publication date
EP2155419A2 (en) 2010-02-24
US8883250B2 (en) 2014-11-11
CN101801565B (zh) 2012-07-18
US20080271779A1 (en) 2008-11-06
JP5450872B2 (ja) 2014-03-26
WO2008137689A3 (en) 2009-04-30
WO2008137689A2 (en) 2008-11-13
US9783882B2 (en) 2017-10-10
JP2014129599A (ja) 2014-07-10
KR20100017613A (ko) 2010-02-16
JP2016196706A (ja) 2016-11-24
US20120251714A1 (en) 2012-10-04
CN101801565A (zh) 2010-08-11
JP2010526211A (ja) 2010-07-29
JP5318090B2 (ja) 2013-10-16
US20130337159A1 (en) 2013-12-19
JP2015098652A (ja) 2015-05-28
US8491959B2 (en) 2013-07-23
US8197894B2 (en) 2012-06-12
EP2706129A1 (en) 2014-03-12
JP5706958B2 (ja) 2015-04-22
JP2013224495A (ja) 2013-10-31
US20150034477A1 (en) 2015-02-05
CA2686242A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5968479B2 (ja) スパッタリングターゲットを形成する方法
EP2125270B1 (en) Process for producing high density refractory metals&alloys sputtering targets
EP1923479A1 (en) AI-Ni-La system AI-based alloy sputtering target and process for producing the same
WO2017115648A1 (ja) スパッタリングターゲットの製造方法
WO2005012591A1 (ja) スパッタリングターゲット及びその製造方法
EP2002027B1 (en) Ternary aluminum alloy films and targets
TWI438295B (zh) 具有均勻隨機結晶定向之細粒非帶狀耐熔金屬濺擊目標,製造此膜之方法,及由此製造之薄膜式裝置及產品
JP6651438B2 (ja) 銅−ガリウムスパッタリングターゲット
EP4249628A1 (en) Sputtering target and manufacturing method therefor
JP4380187B2 (ja) 複合構造物およびその作製方法
KR20220128268A (ko) 스퍼터링 타겟 및 그 제조방법
CN116710592A (zh) 溅射靶及其制造方法
JP2007084385A (ja) 光学素子成形用金型の製造方法及び光学素子成形用金型

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160705

R150 Certificate of patent or registration of utility model

Ref document number: 5968479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees