JP4785334B2 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP4785334B2 JP4785334B2 JP2002558343A JP2002558343A JP4785334B2 JP 4785334 B2 JP4785334 B2 JP 4785334B2 JP 2002558343 A JP2002558343 A JP 2002558343A JP 2002558343 A JP2002558343 A JP 2002558343A JP 4785334 B2 JP4785334 B2 JP 4785334B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- gate
- semiconductor device
- field effect
- effect transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims description 164
- 230000006641 stabilisation Effects 0.000 claims description 138
- 238000011105 stabilization Methods 0.000 claims description 138
- 239000000758 substrate Substances 0.000 claims description 98
- 239000012535 impurity Substances 0.000 claims description 82
- 230000005669 field effect Effects 0.000 claims description 79
- 210000000746 body region Anatomy 0.000 claims description 71
- 230000000087 stabilizing effect Effects 0.000 claims description 41
- 230000015572 biosynthetic process Effects 0.000 claims description 25
- 239000004020 conductor Substances 0.000 claims description 10
- 238000009413 insulation Methods 0.000 claims description 3
- 230000010355 oscillation Effects 0.000 description 78
- 229910052710 silicon Inorganic materials 0.000 description 71
- 239000010703 silicon Substances 0.000 description 71
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 70
- 238000009792 diffusion process Methods 0.000 description 49
- 239000010410 layer Substances 0.000 description 46
- 230000000694 effects Effects 0.000 description 28
- 230000004888 barrier function Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 16
- 230000008859 change Effects 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 230000007423 decrease Effects 0.000 description 12
- 230000001629 suppression Effects 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 229910021332 silicide Inorganic materials 0.000 description 7
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 230000001151 other effect Effects 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- -1 aluminum compound Chemical class 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
- H01L29/407—Recessed field plates, e.g. trench field plates, buried field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
- H01L29/7395—Vertical transistors, e.g. vertical IGBT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
- H01L29/7395—Vertical transistors, e.g. vertical IGBT
- H01L29/7396—Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
- H01L29/7397—Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41741—Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
- H01L29/456—Ohmic electrodes on silicon
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Semiconductor Integrated Circuits (AREA)
- Electrodes Of Semiconductors (AREA)
Description
【発明の属する技術分野】
本発明は、半導体装置に関し、短絡電流抑制、ゲート容量低減および短絡時の発振抑制を同時に達成可能な高耐圧半導体装置に関するものである。
【0002】
【従来の技術】
数百Vを超える電圧を制御する高耐圧半導体装置の分野では、その取扱う電流も大きなことから、発熱、すなわち損失を抑えた素子特性が要求される。また、それらの電圧・電流を制御するゲートの駆動方式としては、駆動回路が小さく、そこでの損失の小さな電圧駆動素子が望ましい。
【0003】
近年、上記のような理由で、この分野では電圧駆動が可能で、損失の少ない素子として、絶縁ゲートバイポーラトランジスタ、すなわちIGBT(Insulated Gate Bipolar Transistor)が主流となってきている。このIGBTの構造は、MOS(Metal Oxide Semiconductor)トランジスタのドレインの不純物濃度を低くして耐圧を保たせるとともに、ドレイン抵抗を低くするためにドレイン側をダイオードとしたものとみなすことができる構造である。
【0004】
このようにIGBTにおいてはダイオードがバイポーラ動作をするため、本願においては、IGBTのMOSトランジスタのソースをエミッタと呼び、ドレイン側をコレクタ側と呼ぶ。
【0005】
電圧駆動素子であるIGBTでは一般に、コレクタとエミッタ間に数百Vの電圧が印加され、その電圧が±数V〜数十Vのゲート電圧によって制御される。また、IGBTはインバータとして用いられることが多く、ゲートがオン状態にある場合にはコレクタ・エミッタ間の電圧は低いが、大電流が流れ、ゲートがオフ状態にある場合には電流は流れないがコレクタ・エミッタ間の電圧は高くなっている。
【0006】
通常は、上記のようなモードでIGBTの動作が行なわれるため、損失はオン状態での電流・電圧積である定常損失と、オン状態とオフ状態とが切替わる過渡時のスイッチング損失とに分けられる。オフ状態でのリーク電流・電圧積は非常に小さいため無視することができる。
【0007】
一方、たとえば負荷が短絡した場合など異常な状態にあっても、素子の破壊を防ぐことも重要である。この場合は、コレクタ・エミッタ間に数百Vの電源電圧が印加されたまま、ゲートがオンし、大電流が流れることになる。
【0008】
MOSトランジスタとダイオードとを直列に接続した構造を持つIGBTでは、MOSトランジスタの飽和電流で最大電流が制限される。このため、上記のような短絡時にも電流制限が働き、一定の時間発熱することによる素子の破壊を防ぐことができる。
【0009】
しかし、近年のIGBTでは、さらに損失を小さくするため、トレンチゲートを採用したトレンチゲートIGBTが主流となりつつある。トレンチゲートIGBTは、MOSトランジスタ部分の微細化を行なった素子であるため、ゲート容量が大きくなっており、また短絡時に飽和電流が非常に大きくなるため、発熱が大きく短い時間で破壊してしまう傾向にある。
【0010】
さらに、近年、たとえばProceedings of 1998 International Symposium on Power Semiconductor Devices & ICs, p.89に記載のように、IGBTの帰還容量に起因し、短絡時にゲート電圧、ゲート電流、コレクタ・エミッタ電圧およびコレクタ電流に発振が生じ、誤動作を引起こす現象が知られている。このような帰還容量に起因した発振現象は、トレンチゲートIGBTのような、ゲート容量の大きな素子では益々深刻な問題となっている。以下、そのような観点から従来の技術および問題点について説明する。
【0011】
図52は、従来の高耐圧半導体装置の構成を概略的に示す断面図である。図52を参照して、濃度が約1×1014cm-3のn-シリコン基板101の第1主面側に、p型ボディ領域102が形成されている。このp型ボディ領域102の濃度は約1×1016〜1×1018cm-3であり、第1主面からの深さは約3μmである。このp型ボディ領域102内の第1主面には、n型エミッタ領域103とp+不純物領域106が形成されている。
【0012】
このn型エミッタ領域103の濃度は1×1019cm-3以上であり、深さは約0.5μmである。p+不純物領域106は、p型ボディ領域102への低抵抗コンタクトをとるために設けられ、1×1020cm-3程度の濃度を有している。
【0013】
このn型エミッタ領域103とp型ボディ領域102とを突き抜けてn-シリコン基板101に達するように、深さが3〜10μmのゲート用溝101aが形成されている。このゲート用溝101aのピッチは2.0μm〜6.0μmが一般的である。このゲート用溝101aの内表面に沿うようにたとえば30〜200nmの厚みのシリコン酸化膜よりなるゲート絶縁膜104aが形成されている。このゲート用溝101a内を埋込むように、たとえばリンが高濃度に導入された多結晶シリコンよりなるゲート電極105aが形成されている。
【0014】
第1主面上には絶縁膜109が形成されており、この絶縁膜109には、第1主面の一部を開口する孔109aが設けられている。この孔109aの底部にはバリアメタル層110が形成されている。このバリアメタル層110を介してエミッタ電極111がp型ボディ領域102およびn型エミッタ領域103に電気的に接続されている。
【0015】
n-シリコン基板101の第2主面側には、n型バッファ領域107とp型コレクタ領域108とが形成されている。このp型コレクタ領域108には、たとえばアルミニウム化合物よりなるコレクタ電極112が電気的に接続されている。
【0016】
上記の半導体装置では、たとえばインバータ接続時には、エミッタ電位Eを基準に、ゲート電極105aのゲート電位Gはオフ状態では−15V、オン状態では+15Vに設定されたパルス状の制御信号であり、コレクタ電極112のコレクタ電位はゲート電位に従って、概ね電源電圧と飽和電圧間の動作電圧範囲とされる。
【0017】
図53に、従来の高耐圧半導体装置のセル領域終端部を示す概略断面図を示す。図53を参照して、複数個配列されたセル領域の終端部の第1主面には、p型不純物領域121が、たとえば1×1016〜1×1018cm-3の濃度で形成されている。このp型不純物領域121はp型ボディ領域102より第1主面から深く形成されており、かつチップ最外周部とセル領域間の電位差による電界を緩和する構造を有している。
【0018】
図52の構成を改良したものとして、USP6,040,599や特開平9−331063号公報に開示された半導体装置がある。以下、これらの半導体装置について説明する。
【0019】
図54は、USP6,040,599に開示された半導体装置の構成を概略的に示す断面図である。図54を参照して、この半導体装置の構成は、図52の構成と比較して、高濃度n型不純物領域114が追加されている点において実質的に異なる。この高濃度n型不純物領域114は、n-シリコン基板101内のp型ボディ領域102と接する部分に設けられる。
【0020】
なお、これ以外の構成については、上述した図52に示す構成と実質的に同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
【0021】
図54に示す構造では、高濃度n型不純物領域114の存在によって、キャリアに対するバリアができる。このため、p型ボディ領域102の面積を縮小することなくn-シリコン基板101のエミッタ側キャリア濃度を増加することができる。これにより、オン抵抗およびオン電圧を低減することができる。
【0022】
図55は、特開平9−331063号公報に開示された半導体装置の構成を概略的に示す断面図である。図55を参照して、この半導体装置の構成は、図52に示す構成と比較して、いわゆるエミッタトレンチが設けられた点において異なる。このエミッタトレンチは、基板の第1主面に設けられたエミッタ用溝101bと、このエミッタ用溝101bの内表面に沿って形成されるエミッタ用絶縁膜104bと、エミッタ用溝101b内を埋込むエミッタ電極105bとから構成されている。このエミッタ電極105bは、絶縁層109A、109Bに設けられた孔109bを介してエミッタ電極111と電気的に接続されている。このようなエミッタトレンチが、たとえば2つのゲート用溝101aに挟まれる領域に設けられている。
【0023】
なお、これ以外の構成については、上述した図52に示す構成と実質的に同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
【0024】
上記公報は、図55の構成においてゲート用溝101aとエミッタ用溝101bとの距離dxを0.2μm、ゲート用溝101aのピッチPiを5.3μmとすると、エミッタ側のキャリア濃度が増加し、IGBTのオン抵抗(すなわち、一定電流下でのIGBTのコレクタ−エミッタ間電圧;飽和電圧)を小さくでき、定常損失を抑制できるとしている。
【0025】
しかしながら、USP6,040,599に開示された構成(図54)では、高濃度n型不純物領域114の存在によって、ゲート105aからの空乏層が伸びにくくなる。これにより、ドレイン側のゲート容量が大きくなり、短絡時に発振が生じるという問題があった。
【0026】
またUSP6,040,599に開示された構成では、ゲート用溝101aを通常のピッチで設計した場合、飽和電流が非常に大きくなり、短絡耐量自体が低くなるという問題もあった。
【0027】
さらにUSP6,040,599に開示された構成では、ゲート容量が大きいため、スイッチング時間遅れが生じ、かつ大容量ゲート駆動回路が必要になるという問題もあった。
【0028】
また特開平9−331063号公報に開示された構成(図55)では、(2×dx)/Piを小さくすることにより、飽和電圧が小さくされている。しかし飽和電圧を小さくするうえにおいて、エミッタ用溝101b内を埋込む導電層105bがエミッタ電位である必然性はなく、かつ発振を制御するための考慮もなされていない。このため、エミッタ用溝101b内を埋込む導電層105bの電位がゲート電位や浮遊電位になった場合や、導電層105bがエミッタ電位になっても他の条件が変動した場合には短絡時の発振が生じるという問題があった。以下、そのことについて詳細に説明する。
【0029】
特開平9−331063号公報に開示された発明の効果を出すためには、(2×dx)/Piが小さなことが必須である。ここで、(2×dx)/Piは、セル中のエミッタ電位Eに接続されたp型ボディ領域102の割合である。
【0030】
また、特開平9−331063号公報に係る発明と類似の発明を開示する特開平7−50405号公報には、トレンチの深さとp型ボディ領域の深さとの差をdyとして、(Pi+dy)/(2×dx)が5以上であることが要件として挙げられている。ここでdxは、MOSトランジスタのチャネル1個分に相当するエミッタ電位Eに接続されたp型ボディ領域の幅である。
【0031】
すなわち、特開平9−331063号公報に係る発明において、飽和電圧を小さくする要件は、dyにかかわらず、Pi/dxが大きいことであり、エミッタ用溝101bを埋込む導電層105bがエミッタ電位となることではない。
【0032】
図56は、IGBTの等価回路を示す図である。図56を参照して、特開平7−50405号公報や特開平9−331063号公報に係る発明では、Pi/dxを大きくするため、微細加工限界で制限されるdxを基準にすると、Piを大きくすることになる。このため、単位面積当たりに形成されるMOSトランジスタ構造部分が少なくなる。よって、MOSトランジスタTr部分での電圧降下Vmosは、エミッタトレンチがない図52の構造よりも大きくなる。
【0033】
一方、特開平7−50405号公報や特開平9−331063号公報に係る発明では、特開平7−50405号公報に示されているようにn型基板101のエミッタ側に近い領域でのキャリア濃度が上昇するため、ダイオードDi部分の電圧降下Vdiは、エミッタトレンチがない図52の構造よりも小さくなる。
【0034】
IGBTとしての飽和電圧は、VmosとVdiとの和で表わされるため、実際は特開平7−50405号公報に述べられている、(Pi+dy)/(2×dx)が5以上という条件は根拠がないことになる。
【0035】
このことは、Proceedings of 1995 International Symposium on Semiconductor Devices & ICs, pp.486-491においても、MOSトランジスタ部分のパラメータを一定とした場合について、Pi/dxをあまり大きくすると、MOSトランジスタ部分での電圧降下が大きくなるために飽和電圧が上昇することが述べられている。
【0036】
Pi/dxの最適範囲は、Proceedings of 1998 International Symposium on Semiconductor Devices & ICs, pp.43-46にコレクタ注入効率を一定として示されたように、ゲート絶縁膜厚やチャネル長などのMOSトランジスタ部のパラメータ、基板厚みや基板内のライフタイムなどのダイオード部のパラメータ、トレンチ深さや電流密度などにより変わってくる。
【0037】
【発明が解決しようとする課題】
しかし、現存する一般的なIGBTのパラメータを用い、dxも現実的な値である1.5〜2.5μmに設定したとき、5000V級の高耐圧IGBTでは、最適なPi/dxは概ね5〜8となる。また、1000V級では、NPT(Non Punch Through)型IGBTのように、コレクタ注入効率が低い場合には、dxを2μm、電流密度を100A/cm2とすると、Pi/dxが8程度では飽和電圧を小さくする効果が出るが、Pi/dxが3程度では飽和電圧は逆に増加してしまう。
【0038】
このように、特開平9−331063号公報に係る発明において、エミッタ用溝101b内を埋込む導電層105bがエミッタ電位であることの必然性は、単にエミッタ用溝101bの側壁にチャネルを形成しないことである。しかし、上記公報に開示された図55に示す構成では、エミッタ用溝101bの側壁にn+エミッタ領域103は設けられていないため、その側壁にチャネルが形成されない。ゆえに、エミッタ用溝101b内を埋込む導電層105bはエミッタ電位でなく、たとえば浮遊電位やゲート電位であったとしても、飽和電圧低減の効果が得られるため、飽和電圧を低減するための必然性としてエミッタ用溝101b内を埋込む導電層105bがエミッタ電位であることは求められない。
【0039】
したがって、エミッタ用溝101b内を埋込む導電層105bの電位がゲート電位や浮遊電位になった場合や、エミッタ電位であったとしても他の条件が変動した場合には短絡時に発振が生じてしまう。
【0040】
ここで、IGBTの発振について簡単に説明する。
図57は、IGBTの等価回路を示す図である。図57を参照して、短絡状態で、MOSトランジスタTrのゲートがオンし、ゲート電圧がVgになった場合、MOSトランジスタTrがオフ状態からオン状態に変わるため、ドレイン側の電位Vdは急激に低下し、dVdの変化をする。一方、ソース側電位Vsは、主電流iがdi/dtだけ変化するため、エミッタの抵抗をReとすると、Re・di/dtだけ上昇する。
【0041】
したがって、ドレイン側容量をCd、ソース側容量をCsとすると、ゲートにドレイン側から流入する電流igdは以下のようになる。
【0042】
igd=Cd・dVd/dt (dVd/dt<0)
またゲートにソース側から流入する電流igsは以下のようになる。
【0043】
igs=Cs・Re・di/dt (di/dt>0)
したがって、ゲートに流れ込む電流igの合計は、igd+igsとなり、ゲート抵抗をRgとすると、ゲート電圧は、dVg=Rg・igだけ変化し、Vg′になる。ここで、Vg′は以下のように表わされる。
【0044】
Vg′=Vg+Rg・ig=Vg+Rg・(Cd・dVd/dt+Cs・Re・di/dt)
実際は、寄生インダクタンスにより、dVd/dtとdi/dtとに時間差が生じるため、オン時にゲート電圧にサージが生じるなどの現象が起こるが、ここでは定性的な説明を行なうためにそのことは省略する。
【0045】
また、Cd、CsがVd、Vgによって変化するが、このことも本説明の定性的な部分では省略する。
【0046】
また、これにより、主電流は短絡状態でMOSトランジスタを飽和状態であるとすれば、電流変化di=i′−iは、以下のようになる。
【0047】
di=gm(Vg′−Vth)k−gm(Vg−Vth)k
ここで、kは1〜2の値である。gmはトランスコンダクタンスである。
【0048】
また、この電流の変化によって、再びドレイン側の電位Vd′が変化する。この繰返しの帰還のかかりかたによって、IGBTの短絡時の振る舞いが変わってくる。
【0049】
OFF状態から短絡(ON状態)に変化するとき、Cs・Re・di/dt+Cd・dVd/dt>0の場合、Vg′をVgからdt時間後のゲート電圧とすると、Vg′は以下のようになる。
【0050】
Vg′=Vg+Rg・ig=Vg+Rg・(Cd・dVd/dt+Cs・Re・di/dt)
上式で、(Cd・dVd/dt+Cs・Re・di/dt)>0であるため、Vg′>Vgとなる。
【0051】
すなわち、ゲート電圧はさらに上昇する。dt時間後の主電流i′は以下のように表わされる。
【0052】
i′=gm(Vg′−Vth)k
このため、ゲート電圧の上昇に伴い、主電流もさらに増加する。このようにして正帰還がかかる。
【0053】
また、ゲート電圧の上昇に伴い、ドレイン・ソース間の電圧Vdはさらに下降するが、その変化dVd′はdVdよりも小さい。このようにdVd/dtは時間とともに小さくなるため、Vgの変化も時間とともに小さくなる。さらに、di/dtも時間とともに小さくなるため、最終的には収束し発振はしない。
【0054】
しかし、Cs・Re・di/dt+Cd・dVd/dtが非常に大きなときは、正帰還が大きすぎ、瞬時に主電流が非常に大きくなり、発熱によって破壊することもある。
【0055】
Cs・Re・di/dt+Cd・dVd/dt<0の場合は、負帰還がかかる。
【0056】
すなわち、ゲートがオンすることによるドレイン近傍の電位Vd低下の効果が大きく、ゲートへ電流が流れ込む。
【0057】
Vg′=Vg+Rg・ig=Vg+Rg・(Cd・dVd/dt+Cs・Re・di/dt)
上式で、(Cd・dVd/dt+Cs・Re・di/dt)<0であるため、Vg′<Vgとなる。
【0058】
すなわち、dt時間後のゲート電圧は低下する。
i′=gm(Vg′−Vth)k
であるため、今度はゲート電圧の低下に伴い、主電流が減少する。この状態で、主電流i′は低下する。
【0059】
Vg′<Vthである場合、一度ONしたチャネルがOFF状態となるため、i′は著しく減少し、Vd′は著しく増加する。すると、この場合、今度は逆に、ON状態からOFF状態への変化であり、dVd′/dt>0、di′/dt<0となるため、IGBTのMOSトランジスタ部がオフに近い状態で、Cs・Re・di′/dt+Cd・dVd′/dt>0となり、今度は再び、以下のようになる。
【0060】
Vg"=Vg′+Rg・ig′=Vg′+Rg・(Cd・dVd′/dt+Cs・Re・di′/dt)
そして、Re・di′/dt+Cd・dVd′/dt>0であるから、Vg">Vg′となり、ゲート電位は非常に高くなる。
【0061】
この繰返しによって、発振が起こるが、n番目の発振で生じたdVd(n)とn+1番目の発振で生じたdVd(n+1)の関係がdVd(n)>dVd(n+1)の場合、発振は収束する。dVd(n)<dVd(n+1)の場合には発振は大きくなるが、dVdは十分にONしている状態から十分にOFFしている状態が最大となるため、発振振幅には上限があり、その状態で発振が継続する。
【0062】
なお、本願において帰還係数として挙げた係数は、OFF状態からON状態になる場合のdVdと次にON状態からOFF状態になる場合のdVd変化の比dVd(OFF→ON)/dVd(ON→OFF)であり、例として、−1以上(最終的には−1に収束する)、−0.9程度(発振は徐々に収束する)、−0.1程度(発振は急激に収束する)を挙げている。
【0063】
ここで、dVd(OFF→ON)/dVd(ON→OFF)とdVd(ON→OFF)/dVd(OFF→ON)は同様と仮定している(実際はそうなっている)。
【0064】
また、特開平9−331063号公報の構成(図55)では、ゲート用溝10aのピッチPiに対し、相当の幅のエミッタトレンチを必要とするか、もしくは浮遊電位のp型ボディ領域102をゲート用溝101aのピッチPiに対し相当分とらなくてはならない。
【0065】
幅の広いエミッタトレンチを形成した場合、その中に充填する導電体は非常に厚く堆積し、エッチバックする必要があり、生産性が悪くなる問題があった。
【0066】
またdxを非常に小さくすれば、生産性の問題は解決されるが、MOSトランジスタの密度が大きくなるため、ゲート容量の増加によってスイッチング時間遅れが生じたり、大容量ゲート駆動回路が必要になるなどの問題が生じる。
【0067】
また、MOSトランジスタ密度の増加により、飽和電流の増加による短絡耐量の低下も問題となる。
【0068】
また広い浮遊電位のp型ボディ領域を確保する手法では、たとえばUSP4,994,871に示されたように、エミッタ電位のp型ボディ領域の面積の不足により、ラッチアップが生じる可能性もある。
【0069】
【課題を解決するための手段】
本発明の目的は、オン抵抗や飽和電圧を小さくし、かつ飽和電流を小さくし、さらに発振を抑制することのできる半導体装置を提供することである。
【0070】
本発明の一の局面に従う半導体装置は、絶縁ゲート型電界効果トランジスタ部と安定化プレートとを備えている。絶縁ゲート型電界効果トランジスタ部は、チャネル形成領域を挟んで互いに対向するソース領域およびドレイン領域と、チャネル形成領域にゲート絶縁膜を挟んで対向するゲート電極とを有している。安定化プレートは導電体または半導体からなり、ドレイン領域にプレート用絶縁膜を挟んで対向し、かつドレイン領域との間で容量を形成する。安定化プレートとドレイン領域との間で形成される安定化プレート容量は、ゲート電極とドレイン領域との間で形成されるゲート−ドレイン容量よりも大きい。
【0071】
本発明の一の局面に従う半導体装置によれば、安定化プレート容量がゲート−ドレイン容量よりも大きいため、短絡時の発振を抑制することが可能となる。
【0072】
また、安定化プレートを設けたことにより、飽和電圧を抑制しつつMOSトランジスタ密度を低減することができる。このため、ゲート容量の増加によるスイッチング時間遅れを防止でき、かつ大容量ゲート駆動回路を不要にすることができる。
【0073】
また、絶縁ゲート型電界効果トランジスタ密度を低減できるため、飽和電流を小さくでき、短絡耐量を向上させることができる。
【0074】
また、安定化プレートを幅広の溝内に埋込む構成にする必要もない。このため、上記構成を形成する際のゲート電極材料のエッチバックに関する生産性の悪化を回避することもできる。
【0075】
上記一の局面において好ましくは、安定化プレートは、ソース領域に電気的に接続されている。
【0076】
これにより、効果的に発振を防止することができる。
上記一の局面において好ましくは、安定化プレートは、ソース電位との間で容量を構成する。
【0077】
これにより、発振を防止しつつ構成の自由度を高めることができる。
上記一の局面において好ましくは、安定化プレートがドレイン領域と対向する部分におけるプレート用絶縁膜の膜厚は、ゲート電極がドレイン領域と対向する部分におけるゲート絶縁膜の膜厚よりも薄い。
【0078】
これにより、プレート用絶縁膜の膜厚をゲート絶縁膜の膜厚より厚くするだけで、簡単な構成により発振を防止することができる。
【0079】
上記一の局面において好ましくは、安定化プレートがドレイン領域と対向する部分におけるプレート用絶縁膜の誘電率は、ゲート電極がドレイン領域と対向する部分におけるゲート絶縁膜の誘電率よりも大きい。
【0080】
これにより、プレート用絶縁膜の誘電率をゲート絶縁膜の誘電率よりも大きくするだけで、簡単な構成で発振を防止することができる。
【0081】
上記一の局面において好ましくは、安定化プレートがドレイン領域と対向する面積は、ゲート電極がドレイン領域と対向する面積よりも大きい。
【0082】
これにより、簡単な構成で発振を抑制することができる。
上記一の局面において好ましくは、安定化プレートに対向する部分におけるドレイン領域の不純物濃度は、ゲート電極に対向する部分におけるドレイン領域の不純物濃度よりも高い。
【0083】
これにより、不純物濃度を制御するだけの簡単な構成で発振を抑制することができる。
【0084】
上記一の局面において好ましくは、絶縁ゲート型電界効果トランジスタは複数個並んで配置されており、2つの絶縁ゲート型電界効果トランジスタに挟まれる領域には2以上の安定化プレートが配置されている。
【0085】
これにより、発振を防止しつつ、絶縁ゲート型電界効果トランジスタ密度を低減することができる。
【0086】
上記一の局面において好ましくは、ドレイン領域のうち2以上の安定化プレートに挟まれる領域の不純物濃度が、ドレイン領域の他の領域の不純物濃度よりも高い。
【0087】
この不純物濃度の高い領域により、空乏層が広がりにくくなるため、安定化プレートの容量を大きく保つことができる。
【0088】
上記一の局面において好ましくは、チャネル形成領域はソース領域およびドレイン領域とは逆導電型のボディ領域内にあり、ボディ領域が安定化プレートに対向する長さに対するドレイン領域が安定化プレートに対向する長さの比は、ボディ領域がゲート電極に対向する長さに対するドレイン領域のゲート電極に対向する長さの比よりも大きい。
【0089】
これにより、安定化プレートの容量をゲート−ドレイン容量よりも大きくすることができる。
【0090】
上記一の局面において好ましくは、互いに対向する第1主面および第2主面を有し、かつ第1主面に形成されたゲート用溝を有する半導体基板がさらに備えられており、ゲート電極はゲート用溝内を埋め込んでいる。
【0091】
これにより、チャネル形成領域が基板表面に垂直に形成される構成についても、発振を防止することができる。
【0092】
上記一の局面において好ましくは、ゲート電極は互いに対向する両側面を有しており、両側面の各々においてチャネル形成領域と対向する。
【0093】
これにより、ゲート電極の両側面でチャネルを形成することが可能となる。
上記一の局面において好ましくは、ソース側電極とドレイン側電極とはともに半導体基板の第1主面に形成されている。
【0094】
これにより、チャネル形成領域が基板表面に平行に形成される構成についても発振を抑制することができる。
【0095】
上記一の局面において好ましくは、ソース側電極は半導体基板の第1主面に形成されており、ドレイン側電極は第2主面側に形成されている。
【0096】
これにより、チャネル形成領域が基板表面に垂直に形成される構成についても、発振を抑制することができる。
【0097】
上記一の局面において好ましくは、ゲート用溝は、ドレイン領域にまで達している。
【0098】
これにより、ゲート電極とドレイン領域との間で容量を構成することができる。
【0099】
上記一の局面において好ましくは、絶縁ゲート型電界効果トランジスタ部を含むセルが複数個並べて配列されており、配列された複数のセルの終端部に安定化プレートが配置されている。
【0100】
これにより、セル内の絶縁ゲート型電界効果トランジスタ部のドレインで発生した電位変化がセル外に及ぶことを抑制し、耐量を向上させることができる。
【0101】
上記一の局面において好ましくは、配列された複数のセルの終端部に安定化プレートが複数個配置されている。
【0102】
これにより、発振抑制効果をさらに向上させることができる。
本発明の他の局面に従う半導体装置は、半導体基板と、第1および第2の絶縁ゲート型電界効果トランジスタ部と、第1および第2の安定化プレートとを備えている。半導体基板は、互いに対向する第1主面および第2主面を有している。第1および第2の絶縁ゲート型電界効果トランジスタの各々は、チャネル形成領域を挟んで互いに対向するソース領域およびドレイン領域と、チャネル形成領域にゲート絶縁膜を挟んで対向するゲート電極とを有している。第1の安定化プレートは、第1の絶縁ゲート型電界効果トランジスタ部のドレイン領域に第1のプレート用絶縁膜を挟んで対向し、かつ第1の絶縁ゲート型電界効果トランジスタ部のドレイン領域との間で容量を形成し、かつ導電体または半導体からなっている。第2の安定化プレートは、第2の絶縁ゲート型電界効果トランジスタ部のドレイン領域に第2のプレート用絶縁膜を挟んで対向し、かつ第2の絶縁ゲート型電界効果トランジスタ部のドレイン領域との間で容量を形成し、かつ導電体または半導体からなっている。第1の絶縁ゲート型電界効果トランジスタ部は第1主面に形成され、第2の絶縁ゲート型電界効果トランジスタ部は第2主面に形成され、かつ第1および第2の絶縁ゲート型電界効果トランジスタ部の間で電流が流される。
【0103】
本発明の他の局面に従う半導体装置によれば、2つの絶縁ゲート型電界効果トランジスタ部の各々が基板の両面に対向して配置された発振の起こりやすい構成においても、安定化プレート容量をゲート−ドレイン容量よりも大きくすることにより、短絡時の発振を抑制することが可能となる。
【0104】
また、安定化プレートを設けたことにより、飽和電圧を抑制しつつ絶縁ゲート型電界効果トランジスタ密度を低減することができる。このため、ゲート容量の増加によるスイッチング時間遅れを防止でき、かつ大容量ゲート駆動回路を不要とすることができる。
【0105】
また、絶縁ゲート型電界効果トランジスタ密度を低減できるため、飽和電流を小さくでき、短絡耐量を向上させることができる。
【0106】
また、安定化プレートを幅広の溝内に埋込む構成にする必要もない。このため、上記構成を形成する際のエッチバックに関する生産性の悪化も回避することができる。
【0107】
上記他の局面において好ましくは、第1の安定化プレートと第1の絶縁ゲート型電界効果トランジスタ部のドレイン領域との間で形成される第1の安定化プレート容量は、第1の絶縁ゲート型電界効果トランジスタ部のゲート電極とドレイン領域との間で形成される第1のゲート−ドレイン容量よりも大きい。第2の安定化プレートと第2の絶縁ゲート型電界効果トランジスタ部のドレイン領域との間で形成される第2の安定化プレート容量は、第2の絶縁ゲート型電界効果トランジスタ部のゲート電極とドレイン領域との間で形成される第2のゲート−ドレイン容量よりも大きい。
【0108】
これにより、発振を抑制することが可能となる。
上記他の局面において好ましくは、第1の絶縁ゲート型電界効果トランジスタが複数個並んで配置されており、2つの第1の絶縁ゲート型電界効果トランジスタに挟まれる領域には、2以上の第1の安定化プレートが配置されている。第2の絶縁ゲート型電界効果トランジスタが複数個並んで配置されており、2つの第2の絶縁ゲート型電界効果トランジスタに挟まれる領域には、2以上の第2の安定化プレートが配置されている。ドレイン領域のうち2以上の第1の安定化プレートに挟まれる領域の不純物濃度および2以上の第2の安定化プレートに挟まれる領域の不純物濃度が、ドレイン領域の他の領域の不純物濃度よりも高い。
【0109】
この不純物濃度の高い領域により、空乏層が広がりにくくなるため、安定化プレートの容量を大きく保つことができる。
【0110】
上記他の局面において好ましくは、半導体基板は、第1主面に形成された第1のゲート用溝と、第2主面に形成された第2のゲート用溝とを有している。第1の絶縁ゲート型電界効果トランジスタ部のゲート電極は、第1のゲート用溝内を埋め込んでいる。第2の絶縁ゲート型電界効果トランジスタ部のゲート電極は、第2のゲート用溝内を埋め込んでいる。
【0111】
これにより、チャネル形成領域が基板表面に垂直に形成される構成についても、発振を抑制することができる。
【0112】
上記他の局面において好ましくは、第1の絶縁ゲート型電界効果トランジスタ部のゲート電極は、互いに対向する両側面を有しており、両側面の各々において第1の絶縁ゲート型電界効果トランジスタ部のチャネル形成領域と対向している。第2の絶縁ゲート型電界効果トランジスタ部のゲート電極は、互いに対向する両側面を有しており、両側面の各々において第2の絶縁ゲート型電界効果トランジスタ部のチャネル形成領域と対向している。
【0113】
これにより、ゲート電極の両側面でチャネルを形成することができる。
上記他の局面において好ましくは、第1および第2の絶縁ゲート型電界効果トランジスタ部を含むセルが複数個並べて配列されており、配列された複数のセルの終端部に第1および第2の安定化プレートが配置されている。
【0114】
これにより、セル内の絶縁ゲート型電界効果トランジスタ部のドレインで発生した電位変化がセル外に及ぶことを抑制でき、耐量を向上させることができる。
【0115】
上記他の局面において好ましくは、配列された複数のセルの終端部に第1および第2の安定化プレートの各々が複数個配置されている。
【0116】
これにより、発振抑制効果がさらに向上する。
本発明のさらに他の局面に従う半導体装置は、絶縁ゲート型電界効果トランジスタ部と、安定化プレートとを備えている。絶縁ゲート型電界効果トランジスタ部は、チャネル形成領域を挟んで互いに対向するソース領域およびドレイン領域と、チャネル形成領域にゲート絶縁膜を挟んで対向するゲート電極とを有している。安定化プレートは、ドレイン領域にプレート用絶縁膜を挟んで対向し、かつドレイン領域との間で容量を形成し、かつ導電体または半導体からなっている。絶縁ゲート型電界効果トランジスタ部を含むセルが複数個並べて配列されており、配列された複数のセルの終端部に安定化プレートが配置されている。
【0117】
本発明のさらに他の局面に従う半導体装置によれば、セル内の絶縁ゲート型電界効果トランジスタ部のドレインで発生した電位変化がセル外に及ぶことを抑制でき、耐量を向上させることができる。
【0118】
上記さらに他の局面において好ましくは、配列された複数のセルの終端部に安定化プレートが複数個配置されている。
【0119】
これにより、発振抑制効果がさらに大きくなる。
【0120】
【発明の実施の形態】
以下、本発明の実施の形態について図に基づいて説明する。
【0121】
(実施の形態1)
図1および図2は、本発明の実施の形態1における半導体装置の構成を示す回路図および概略断面図である。
【0122】
主に図2を参照して、本実施の形態の半導体装置は、たとえば100〜200μmの厚みを有する半導体基板に形成されたトレンチゲート型IGBTである。n-シリコン基板1は、たとえば約1×1014cm-3の濃度を有している。このn-シリコン基板1の第1主面側に、たとえば濃度が約1×1016〜1×1018cm-3で第1主面からの深さが約3μmのp型半導体よりなるp型ボディ領域2が形成されている。p型ボディ領域2内の第1主面には、たとえば濃度が1×1019cm-3以上で、第1主面からの深さが約0.5μmのn型半導体よりなるn型エミッタ領域3が形成されている。このn型エミッタ領域3と隣り合うように第1主面には、p型ボディ領域2への低抵抗コンタクトをとるためのp+不純物拡散領域6が、たとえば1×1020cm-3程度の濃度で形成されている。
【0123】
第1主面には、n型エミッタ領域3とp型ボディ領域2とを突き抜けてn-シリコン基板1に達するゲート用溝1aが形成されている。このゲート用溝1aは、第1主面からたとえば3〜10μmの深さを有しており、ゲート用溝101aのピッチはたとえば2.0μm〜6.0μmである。このゲート用溝1aの内表面には、たとえば30〜200nmの厚みのシリコン酸化膜よりなるゲート絶縁膜4aが形成されている。ゲート用溝1a内を埋め込むように、たとえばリンが高濃度に導入された多結晶シリコンよりなるゲート電極5aが形成されている。ゲート電極5aは、ゲート電位Gを与える制御電極に電気的に接続されている。
【0124】
このようにゲート用溝1aとゲート絶縁膜4aとゲート電極5aとからゲートトレンチが構成されている。またn-シリコン基板1とn型エミッタ領域3とゲートトレンチとから、n-シリコン基板1をドレインとし、n型エミッタ領域3をソースとする絶縁ゲート型電界効果トランジスタ部(ここでは、MOSトランジスタ部)が構成されている。
【0125】
第1主面にはMOSトランジスタ部が複数個配置されており、2つのMOSトランジスタ部の間に、エミッタトレンチが形成されている。このエミッタトレンチは、エミッタ用溝1bと、エミッタ用絶縁膜4bと、エミッタ用導電層5bとを有している。エミッタ用溝1bは、p型ボディ領域2を突き抜けてn-シリコン基板1に達するように形成されており、第1主面からたとえば3〜10μmの深さを有している。このエミッタ用溝1bの内表面に沿うように、たとえば30〜200nmの厚みのシリコン酸化膜よりなるエミッタ用絶縁膜4bが形成されている。エミッタ用溝1b内を埋め込むように、たとえばリンが高濃度に導入された多結晶シリコンよりなり、安定化プレートとなるエミッタ用導電層5bが形成されている。
【0126】
第1主面上には層間絶縁膜9が形成されており、この層間絶縁膜9には第1主面に達する孔9aが設けられている。この孔9aの底部にはバリアメタル層10が形成されている。このバリアメタル層10を介して安定化プレート5b、p+不純物拡散領域6およびn型エミッタ領域3には、エミッタ電位Eを与えるエミッタ電極11が電気的に接続されている。
【0127】
またn-シリコン基板1の第2主面側にはn型バッファ領域7と、p型コレクタ領域8とが順に形成されている。このp型コレクタ領域8には、コレクタ電位Cを与えるコレクタ電極12が電気的に接続されている。このコレクタ電極12の材質は、たとえばアルミニウム化合物である。
【0128】
主に図1を参照して、図2に示すIGBTの構成は、MOSトランジスタTrとダイオードDiとから構成されている。またゲート電極5aとn-シリコン基板1との間にはドレイン側容量Cdが構成されており、ゲート電極5aとn型エミッタ領域3との間にはソース側容量Csが構成されている。また安定化プレート5bとn-シリコン基板1との間には安定化プレート容量Cfが構成されている。そして本実施の形態においては、この安定化プレート容量Cfがドレイン側容量Cdより大きくなるように構成されている。
【0129】
本実施の形態の半導体装置においては、たとえばインバータ接続時には、エミッタ電位を基準に、制御電極のゲート電位Gはオフ状態では−15Vに、オン状態では+15Vに設定されたパルス状の制御信号であり、コレクタ電極12のコレクタ電位Cはゲート電位Gに従って概ね電源電圧と飽和電圧との間の電圧とされる。
【0130】
なお、ゲート用溝1aとエミッタ用溝1bとの距離をdx、ゲート用溝1aのピッチをPiとした場合に、Pi/dxの制限はない。
【0131】
本願発明者らは、従来例と本実施の形態との各半導体装置における短絡時の波形について調べた。
【0132】
従来例としては、図54に示すUSP6,040,599に記載の半導体装置を用いた。また測定にあたっては、電源電圧を400Vとし、ゲートには−15V〜+14Vの範囲でオンパルス幅が10μsecのシングルパルス信号を与えた。その結果を図3A〜図3Dおよび図4に示す。
【0133】
なお、図3A〜図3Dでは、Ig、Vg、VceまたはIcを縦軸にとり、時間を横軸にとっている。また図4では、図3A〜図3Dの一部を拡大したものであり、VceまたはIcを縦軸にとり、時間を横軸にとっている。
【0134】
図3A〜図3Dおよび図4を参照して、図54に示す構成では、ゲートにオンパルスが入力された後、0.4〜0.7μsecにかけて負のゲート電流が最大−2A流れる。これによって、ゲート電圧Vgが0.75μsec後には−10V程度まで低下し、一度オンしたチャネルが再び閉じ、そのことによって再びゲートがオンしていることがわかる。この構造では、過剰な負帰還がかかり、発振が生じ、その発振は減衰せずに継続することがわかる。
【0135】
また図2に示す本実施の形態の構成においては、電源電圧を800Vとし、ゲートには−15V〜+19Vの範囲でオンパルス幅が10μsecのシングルパルス信号を与えた。そのときの短絡時の波形を図5A〜図5Dおよび図6に示す。
【0136】
なお、図5A〜図5DはIg、Vg、VceまたはIcを縦軸とし、時間を横軸にとっている。図6は、図5A〜図5Dの一部を拡大して示す図であり、VceまたはIcを縦軸にとり、時間を横軸にとっている。
【0137】
図5A〜図5Dおよび図6を参照して、図2に示す構成では、ゲートにオンパルスが入力された後、0.4〜0.55μsecにかけては、負のゲート電流Igが最大−1A流れる。これによって、ゲート電圧Vgが0.55μmsec後には、一瞬ほぼ0Vまで低下し、発振しているが、次の発振はほぼ抑制されていることがわかる。図2の構造では、過剰な負帰還がかかり発振が一時的に生じるが、帰還の係数kが−1<k<0で0.1に近い値であるため発振は急激に減衰する。このように本実施の形態の構造によると、800V以下の電源電圧で、オン時のゲート電圧の範囲が19V以下では発振は抑制される。
【0138】
本実施の形態の構成において短絡時の発振が抑制できる理由を以下に説明する。
【0139】
本実施の形態では、図1を参照して、短絡状態ではオフ状態から電源電圧を印加されたまま、オン状態になる。そこで、ドレイン近傍に発生する電荷Qdは、安定化プレート5bが設けられているため、ドレイン側容量Cdと安定化プレート容量Cfとに分配されることになる。このため、dVdは、安定化プレート5bがない場合に比べ、Cd/(Cd+Cf)の大きさとなる。よって、本実施の形態のように安定化プレート容量Cfがドレイン側容量Cdに比較して大きくなる場合には、dVdは小さくなり、Cdが大きくなってもゲート電流Igの流入は小さくなり、Vgの低下も小さくなる。したがって、帰還が小さくなり、発振が抑制されるのである。
【0140】
また本願発明者らは、従来例と本実施の形態との各半導体装置におけるコレクタ電流とコレクタ電圧との関係について調べた。その結果を図7に示す。
【0141】
図7の結果より、本実施の形態の半導体装置では、図52や図54に示す従来の半導体装置に比較して、コレクタ電圧を固定した時のコレクタ電流を小さくできることが分かる。
【0142】
以上より、本実施の形態では、安定化プレート容量Cfがドレイン側容量Cdよりも大きくなるように構成されているため、短絡時の発振を抑制することができる。
【0143】
また、安定化プレート5bの容量を介して、半導体基板内の電位がほぼ一定電位に固定されていることも、発振抑制に効果がある。
【0144】
また、発振抑制にはゲートトレンチの両側にMOSトランジスタ部を形成し、ドレイン側容量Cを小さくすることも重要である。
【0145】
また、チップ内の一部に不均一が生じ、dVd/dtが局所的に生じた場合でも、安定化プレート5bの容量を介して電位が固定されるため、周辺への影響を抑制することができる。
【0146】
また、安定化プレート5bを設けたことにより、MOSトランジスタ密度を低減することができる。このため、ゲート容量の増加によるスイッチング時間遅れを防止でき、かつ大容量ゲート駆動回路を不要にすることができる。
【0147】
また、MOSトランジスタ密度を低減できるため、飽和電流を小さくでき、短絡耐量を向上させることもできる。また、安定化プレート5bを幅広の溝内に埋め込む構成にする必要もないため、このような幅広の構成を形成する際のエッチバックに関する生産性悪化を回避することもできる。
【0148】
なお、本実施の形態においては、トレンチゲート構造のIGBTについて説明したが、MOSゲート構造のサイリスタ、MOSトランジスタなどの絶縁ゲート型電界効果トランジスタ部を持つスイッチング素子に対し、適用可能であり、同様の効果が望めることはいうまでもない。
【0149】
また、本発明は、コレクタ構造がいかなる構造であっても同様な効果が得られる。
【0150】
さらに、図8に示すようにたとえば平面ゲート型IGBTのような平面ゲート型スイッチング素子に適用しても、同様の効果があることはいうまでもない。
【0151】
また図8に示す平面ゲート型素子で、面積効率を上げるためにトレンチ型の安定化プレート5bを用いても同様の効果があることも明白である。
【0152】
また平面ゲート型素子では、安定化プレート5bの存在により、オン時に安定化プレート5b近傍の電流経路で電流が流れにくくなる現象がある。これを抑制するために、ゲート5aと安定化プレート5bの距離を拡げたり、安定化プレート5bに対向するn-シリコン基板1の領域のn型不純物濃度を高くすることも容易に推測できる。
【0153】
また、導電型が逆の素子に対しても同様に有効である。
さらに、本実施の形態では、安定化プレート5bをエミッタ電極11に接続した例について説明したが、安定化プレート5bは、エミッタ電位E以外の一定電位や、負帰還を打ち消す方向の可変の電位を持つ電極でもよい。
【0154】
また、安定化プレート5bのn-シリコン基板1側の側壁のn型不純物濃度を高くすることにより、安定化プレート容量Cfを大きくすること、ひいては発振抑制特性を向上する効果も得られる。
【0155】
また安定化プレート容量Cfがドレイン側容量Cdに比べて大きいほどに電位安定化につながる。このため、図9〜図17に示す構造またはそれらの組合せを用いることにより、安定化プレート容量Cfを増加させることによって、発振抑制効果をさらに高めることができる。
【0156】
また図18に示すような、半導体基板の第1主面および第2主面の双方に絶縁ゲート型電界効果トランジスタ構造を設けた素子や、コレクタとエミッタがともに第1主面に形成された素子に対しても本発明の構成は有効である。
【0157】
また図19の等価回路に示すように、安定化プレートを直接一定電位にするのではなく、安定化プレートをn-シリコン基板1との間で容量を構成させるとともにエミッタ電位との間でも容量を構成させるような浮遊電位とし、容量結合による電位の安定化を図ってもよい。
【0158】
以下、これらの転用例について説明する。
(実施の形態2)
図8は、本発明の実施の形態2における半導体装置の構成を概略的に示す断面図である。図8を参照して、本実施の形態の半導体装置は、たとえば厚さが約100〜200μmの半導体基板に形成された平面ゲート型IGBTである。たとえば濃度が約1×1014cm-3のn-シリコン基板1の第1主面側には、p型半導体よりなるp型ボディ領域2が選択的に形成されている。p型ボディ領域2は、たとえば約1×1016〜1×1018cm-3の濃度を有し、第1主面から約3μmの深さを有している。p型ボディ領域2内の第1主面には、たとえば濃度が1×1019cm-3以上で、第1主面からの深さが約0.5μmのn型半導体よりなるn型エミッタ領域3が形成されている。このn型エミッタ領域3の隣には、p型ボディ領域2への低抵抗コンタクトをとるためのp+不純物拡散領域6がたとえば1×1020cm-3程度の高濃度で形成されている。
【0159】
n-シリコン基板1とn型エミッタ領域3とに挟まれるp型ボディ領域2と対向するように第1主面上にゲート絶縁膜4を介してゲート電極5aが形成されている。
【0160】
このn-シリコン基板1とn型エミッタ領域3とゲート電極5aとにより、n-シリコン基板1をドレインとし、n型エミッタ領域3をソースとする絶縁ゲート型電界効果トランジスタ部(ここでは、MOSトランジスタ部)が構成されている。
【0161】
2つのMOSトランジスタ部に挟まれる第1主面上に、絶縁膜4を介して安定化プレートとなるエミッタ用導電層5bが形成されている。この安定化プレート5bとゲート電極5aとの材質には、たとえばリンを高濃度に導入した多結晶シリコン、高融点金属材料、高融点金属シリサイド、またはそれらの複合膜が用いられる。
【0162】
第1主面上には層間絶縁膜9が形成されており、この層間絶縁膜9には第1主面の一部表面に達する孔9aが形成されている。この孔9aの底部にはバリアメタル層10が形成されている。このバリアメタル層10を介して安定化プレート5b、p+不純物拡散領域6およびn型エミッタ領域3とに、エミッタ電位Eを与えるエミッタ電極11が電気的に接続されている。
【0163】
またn-シリコン基板1の第2主面側には、n型バッファ領域7とp型コレクタ領域8とが順に形成されている。p型コレクタ領域8には、コレクタ電位Cを与えるコレクタ電極12が電気的に接続されている。このコレクタ電極12の材質は、たとえばアルミニウム化合物である。
【0164】
なお、本実施の形態においては、ソース側電極とドレイン側電極とは共に第1主面側に形成されてもよい。
【0165】
本実施の形態においても、安定化プレート5bとn-シリコン基板1との間で構成される安定化プレート容量Cfは、ゲート電極5aとn-シリコン基板1との間で構成されるドレイン側容量Cdよりも大きくなるように構成されている。
【0166】
本実施の形態の半導体装置においては、たとえばインバータ接続時には、エミッタ電位Eを基準に、制御電極のゲート電位Gにオフ状態では−15V、オン状態では+15Vに設定されたパルス状の制御信号であり、コレクタ電極12のコレクタ電位Cは、ゲート電位Gに従って概ね電源電圧と飽和電圧との間の電圧とされる。
【0167】
本実施の形態においても、安定化プレート容量Cfがドレイン側容量Cdよりも大きくなるよう設定されているため、実施の形態1と同様、短絡時の発振を抑制することができる。
【0168】
また、これ以外の効果についても実施の形態1と同様の効果が得られる。
(実施の形態3)
図9は、本発明の実施の形態3における半導体装置の構成を概略的に示す断面図である。図9を参照して、本実施の形態の構成は、ゲート用溝1aとエミッタ用溝1bとの深さの関係において実施の形態1の構成と異なる。本実施の形態では、エミッタ用溝1bのn-シリコン基板内を延びる深さD2が、ゲート用溝1aのn-シリコン基板内を延びる深さD1よりも深くなるように設定されている。これにより、安定化プレート5bとn-シリコン基板1との間で構成される安定プレート容量Cfが、ゲート電極5aとn-シリコン基板1との間で構成されるゲート側容量Cdより大きくなっている。
【0169】
なお、ゲート用溝1aとエミッタ用溝1bの第1主面からの深さD3、D4の各々は、たとえば3〜10μmの範囲内である。
【0170】
なお、これ以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
【0171】
本実施の形態においても、ゲート用溝1aの深さD1とエミッタ用溝1bの深さD2とを調整することにより、安定化プレート容量Cfがドレイン側容量Cdより大きくなるように構成されているため、実施の形態1と同様、短絡時の発振を抑制することができる。
【0172】
また、これ以外の効果についても実施の形態1と同様の効果が得られる。
なお、図8に示す構成では、安定化プレート5bがn-シリコン基板1と対向する面積を、ゲート電極5aがn-シリコン基板1と対向する面積より大きくすることにより、短絡時の発振を抑制することができる。
【0173】
(実施の形態4)
図10は、本発明の実施の形態4における半導体装置の構成を概略的に示す断面図である。図10を参照して、本実施の形態の構成は、ゲート絶縁膜4aとエミッタ用絶縁膜4bとの膜厚の関係において実施の形態1の構成と異なる。本実施の形態では、ゲート絶縁膜4aとエミッタ用絶縁膜4bとにたとえばシリコン酸化膜などの同一の材質が用いられた上で、エミッタ用絶縁膜4bの厚みT2がゲート絶縁膜4aの厚みT1より薄く構成されている。これにより、安定化プレート容量Cfがドレイン側容量Cdよりも大きくなるように構成されている。
【0174】
なお、これ以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
【0175】
本実施の形態では、エミッタ用絶縁膜4bの厚みT2とゲート絶縁膜4aの厚みT1とを調整することにより、安定化プレート容量Cfがドレイン側容量Cdより大きくなるように構成されているため、実施の形態1と同様、短絡時の発振を抑制することができる。
【0176】
また、これ以外の効果についても実施の形態1と同様の効果が得られる。
なお、上記においては、ゲート絶縁膜4aとエミッタ用絶縁膜4bとの各膜厚を調整する場合について説明したが、図1の構成においてエミッタ用絶縁膜4bの誘電率をゲート絶縁膜4aの誘電率より高くすることにより、安定化プレート容量Cfがドレイン側容量Cdより大きくなるよう構成されていてもよい。
【0177】
誘電率を調整する場合においても、安定化プレート容量Cfがドレイン側容量Cdより大きくなるため、実施の形態1と同様、発振を抑制することができる。
【0178】
(実施の形態5)
図11は、本発明の実施の形態5における半導体装置の構成を概略的に示す断面図である。図11を参照して、本実施の形態の構成は、2つのMOSトランジスタ部に挟まれる領域に複数本のエミッタトレンチが設けられている点において実施の形態1の構成と異なる。本実施の形態では、2つのMOSトランジスタに挟まれる領域の第1主面にたとえば2本のエミッタトレンチが設けられている。
【0179】
このエミッタトレンチは、実施の形態1と同様、エミッタ用溝1bとエミッタ用絶縁膜4bと安定化プレート5bとから構成されている。また2つのエミッタトレンチに挟まれる第1主面には、p型ボディ領域2への低抵抗コンタクトをとるためのp+不純物拡散領域6がたとえば1×1020cm-3程度の高濃度で形成されている。
【0180】
なお、これ以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
【0181】
本実施の形態では、2つのMOSトランジスタ部に挟まれる領域に安定化プレート5bが複数本設けられているため、安定化プレート容量Cfをドレイン側容量Cdよりも大きくすることができ、実施の形態1と同様、短絡時における発振を抑制することができる。
【0182】
また、これ以外の効果についても実施の形態1と同様の効果が得られる。
なお、安定化プレート5bに挟まれた領域は、エミッタ電位である必要はなく、浮遊電位であってもよい。浮遊電位の場合には、特開平9−331063号公報の効果と同様の効果を得ることができるが、USP4,994,871に示されたようにラッチアップに対する耐量が下がるおそれがあるため注意が必要である。
【0183】
(実施の形態6)
図12は、本発明の実施の形態6における半導体装置の構成を概略的に示す断面図である。図12を参照して、本実施の形態の構成は、n-シリコン基板1の不純物濃度が調整されている点において実施の形態1の構成と異なる。本実施の形態では、n-シリコン基板1の安定化プレート5bに対向する領域のn型不純物濃度が他のn-シリコン基板1の領域よりも高くなっている。つまり、n-シリコン基板1の安定化プレート5bに対向する領域にn+不純物拡散領域14が設けられており、このn+不純物拡散領域14は、たとえば1×1014cm-3程度の濃度を有するn-シリコン基板1よりも高いn型不純物濃度を有している。
【0184】
なお、これ以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
【0185】
本実施の形態では、安定化プレート5bに対向する位置に高濃度のn+不純物拡散領域14が設けられている。このため、空乏層が拡がりにくく、大きい容量の安定化プレート容量Cfを得ることが可能となる。よって、安定化プレート容量Cfをドレイン側容量Cdより大きくすることができるため、実施の形態1と同様、短絡時における発振を抑制することができる。
【0186】
また、これ以外の効果についても実施の形態1と同様の効果を得ることができる。
【0187】
なお、n+不純物拡散領域14は、半導体基板表面からのイオン注入と拡散によって形成することができ、またエミッタ用溝1b形成時にエミッタ用溝1bの側壁からのイオン注入や拡散によって形成することもできる。
【0188】
なお図12に示す構成においては、高濃度のn+不純物拡散領域14は、安定化プレート5bの両側壁近傍に配置されているが、安定化プレート5bの片方の側壁近傍のみに設けられても発振抑制の効果が得られる。
【0189】
また図8に示すように平面ゲート型IGBTにおいては、安定化プレート5bと対向するn-シリコン基板1の第1主面の領域に高濃度のn+不純物拡散領域を設けることにより、本実施の形態と同様の効果が得られることは言うまでもない。
【0190】
また図11に示すように2つのMOSトランジスタに挟まれる領域内に複数のエミッタトレンチがある構成においても、本実施の形態の構成を適用することができる。つまり、図13を参照して、2つのエミッタトレンチに挟まれるn-シリコン基板1の領域に高濃度のn+不純物拡散領域14を設けることにより、本実施の形態と同様の効果を得ることができる。
【0191】
また図13に示すように安定化プレート5bに挟まれたp型ボディ領域2がエミッタ電位に設定されている場合には、高濃度のn+不純物拡散領域14の存在によってキャリア蓄積効果による飽和電圧低減の効果も得られる。
【0192】
なお、図14および図15に示すようにp型ボディ領域2の下面近傍全域にわたって高濃度のn+不純物拡散領域14が設けられていてもよい。このようにp型ボディ領域2の直下全域に高濃度のn+不純物拡散領域14を設けることによって、飽和電圧低減の効果も得られる。
【0193】
また図14および図15に示す構造においては、安定化プレート5b近傍のn+不純物拡散領域14もしくはn-シリコン基板1のn型不純物濃度を他のn型領域の濃度より高くすることにより、空乏層の拡がりを十分に抑制でき、さらにドレイン側容量Cdを小さくすることもできる。
【0194】
なお、上述した以外の図12〜図15の構成は、図2に示す実施の形態1の構成もしくは図11に示す実施の形態5の構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
【0195】
また本願発明者らは、図14に示す本実施の形態の半導体装置におけるコレクタ電流とコレクタ電圧との関係について調べた。その結果を図7に併せて示す。
【0196】
図7の結果より、本実施の形態の半導体装置では、図54に示す従来の半導体装置に比較して、コレクタ電圧を固定した時のコレクタ電流を小さくできることが分かる。
【0197】
(実施の形態7)
図16は、本発明の実施の形態7における半導体装置の構成を概略的に示す断面図である。図16を参照して、本実施の形態の構成は、p型ボディ領域2の深さがエミッタトレンチ部とゲートトレンチ部とで異なっている点において実施の形態1の構成と異なる。本実施の形態では、p型ボディ領域2はゲートトレンチ部において深く、かつエミッタトレンチ部においては浅く形成されている。
【0198】
このため、エミッタトレンチ部がn-シリコン基板1と対向する長さは、ゲートトレンチがn-シリコン基板1と対向する長さよりも長くなっている。つまり、p型ボディ領域2が安定化プレート5bに対向する長さに対するn-シリコン基板1が安定化プレート5bに対向する長さの比は、p型ボディ領域2がゲート電極5aに対向する長さに対するn-シリコン基板1のゲート電極5aに対向する長さの比よりも大きくなっている。
【0199】
このように安定化プレート5bがn-シリコン基板1に対向する長さが、ゲート電極5aがn-シリコン基板1に対向する長さよりも長くなっているため、安定化プレート容量Cfをドレイン側容量Cdよりも大きくすることができる。
【0200】
なお、これ以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
【0201】
本実施の形態では、p型ボディ領域2の各部の深さを制御することにより、安定化プレート容量Cfをドレイン側容量Cdよりも大きくすることができるため、実施の形態1と同様、短絡時における発振を抑制することができる。
【0202】
また、これ以外の効果についても実施の形態1と同様の効果が得られる。
本実施の形態のp型ボディ領域2の深さを制御した構成は、図11の構成に適用されてもよい。この場合、たとえば図17に示すような構成が得られる。
【0203】
図17を参照して、複数のエミッタトレンチに挟まれるp型ボディ領域2の第1主面からの深さが、p型ボディ領域2の他の部分の第1主面からの深さよりも浅くなるように形成される。これにより、上記と同様、安定化プレート容量Cfをドレイン側容量Cdよりも大きくすることができ、短絡時における発振を抑制することが可能となる。
【0204】
なお、図17に示す構成においては、2つのMOSトランジスタ部に挟まれる領域にエミッタトレンチが2本設けられた場合について説明したが、エミッタトレンチは3本以上設けられていてもよく、この場合には少なくとも1本のエミッタトレンチ近傍のp型ボディ領域2の第1主面からの深さが浅くなっていればよい。
【0205】
また、安定化プレート5bの近傍または安定化プレート5bに挟まれた領域で、p型ボディ領域をなくし、n-シリコン基板1が分布するようにしてもよい。ただし、p型ボディ領域2の深さを浅くしたり、p型ボディ領域2をなくしたりする場合、主耐圧が低くならないように注意する必要がある。
【0206】
また、p型ボディ領域2の安定化プレート5b近傍におけるp型不純物濃度を、p型ボディ領域2の他の領域の不純物濃度よりも低くすることによっても、上記と同様の効果を得ることができる。
【0207】
(実施の形態8)
図18は、本発明の実施の形態8における半導体装置の構成を概略的に示す断面図である。図18を参照して、本実施の形態の構成は、厚みがたとえば100〜200μmの半導体基板の第1主面および第2主面の双方にMOSトランジスタ部が形成された構成を有している。濃度が約1×1014cm-3のn-シリコン基板1の第1主面側および第2主面側の各々に、たとえば濃度が約1×1016〜1×1018cm-3、深さが約3μmのp型半導体よりなるp型ボディ領域2が形成されている。
【0208】
また各p型ボディ領域2内の第1主面および第2主面の各々には、たとえば濃度が1×1019cm-3以上、深さが約0.5μmのn型半導体よりなるn型エミッタ領域3が形成されている。また各n型エミッタ領域3の隣には、p型ボディ領域2への低抵抗コンタクトをとるためのp+不純物拡散領域6が、たとえば1×1020cm-3程度の高濃度で形成されている。
【0209】
第1主面および第2主面の各々には、n型エミッタ領域3とp型ボディ領域2とを突き抜けてn-シリコン基板1に達するゲート用溝1aが、たとえば3〜10μmの深さで形成されている。このゲート用溝1aの内表面に沿うように、たとえばシリコン酸化膜よりなるゲート絶縁膜4aが形成されている。ゲート用溝1a内を埋め込むように、たとえばリンが高濃度で導入された多結晶シリコンよりなるゲート電極5aが形成されている。ゲート電極5aは、ゲート電位Gを与える制御電極に電気的に接続されている。
【0210】
このようにゲート用溝1aとゲート絶縁膜4aとゲート電極5aとからゲートトレンチが構成されている。またn-シリコン基板1とn型エミッタ領域3とゲート電極5aとから、n-シリコン基板1をドレインとし、n型エミッタ領域3をソースとする絶縁ゲート型電界効果トランジスタ部(ここでは、MOSトランジスタ部)が構成されている。
【0211】
2つのMOSトランジスタ部に挟まれる第1および第2主面の各々には、エミッタトレンチが形成されている。
【0212】
このエミッタトレンチは、エミッタ用溝1bと、エミッタ用絶縁膜4bと、エミッタ用導電層5bとを有している。エミッタ用溝1bは、p型ボディ領域2を突き抜けてn-シリコン基板1に達するように形成されており、3〜10μmの深さで形成されている。このエミッタ用溝1bの内表面に沿うように、たとえばシリコン酸化膜よりなるエミッタ用絶縁膜4bが形成されている。エミッタ用溝1b内を埋め込むように、たとえばリンが高濃度で導入された多結晶シリコンよりなり、安定化プレートとなるエミッタ用導電層5bが形成されている。
【0213】
第1主面側に形成された安定化プレート5bは、バリアメタル層10を介して、第1主面上に形成されたたとえばアルミニウム化合物よりなる第1電極11と電気的に接続されている。またこの第1電極11は、第1主面にあるp+不純物拡散領域6およびn型エミッタ領域3とバリアメタル層10を介して電気的に接続されている。
【0214】
また第2主面側に形成された安定化プレート5bは、バリアメタル層10を介して、第2主面上に形成されたたとえばアルミニウム化合物よりなる第2電極11と電気的に接続されている。またこの第2電極11は、第2主面にあるp+不純物拡散領域6およびn型エミッタ領域3とバリアメタル層10を介して電気的に接続されている。
【0215】
上記の構成においては、第1および第2電極11の電位を基準にして、第1および第2主面の各々に形成されたゲート電極5aに、たとえばオフ時には−15V、オン時には+15Vの信号が入力される。一方、第1および第2電極11間には最大で概ね主耐圧の半分程度の電圧が印加され、その大小によっては、一方がエミッタ、一方がコレクタとなり、それらは一般には任意に入れ替わる。
【0216】
このため、第1および第2主面の双方にMOSトランジスタ部が位置する構成においては、MOSトランジスタ部のドレイン側電位の変化は、図2に示した構造に比べて大きくなるため、発振も起こりやすくなってくる。したがって、本実施の形態の構成のように、MOSトランジスタ部のドレイン側電位変化を抑制する安定化プレート5bを設けて発振を抑制することは極めて有効である。
【0217】
なお、安定化プレート5bとn-シリコン基板1との間で構成される安定化プレート容量Cfは、ゲート電極5aとn-シリコン基板1との間で構成されるドレイン側容量Cdよりも大きいことが好ましい。これにより、短絡時の発振をさらに抑制することが可能となる。
【0218】
なお、図18においては、第1および第2主面の両面に安定化プレート5bを設けた場合について説明したが、第1および第2主面のいずれか片面にのみ安定化プレート5bを設ける場合でも発振抑制の効果が得られることは言うまでもない。
【0219】
また、第1および第2主面の少なくともいずれかに実施の形態2〜7による構造を用いた場合でも、同様に発振抑制効果が向上することも明白である。
【0220】
(実施の形態9)
本実施の形態においては、上記の実施の形態1〜7の各構成におけるIGBTのセルが複数個配列されたその終端構造に関するものである。
【0221】
図20は、本発明の実施の形態9における半導体装置の構成を概略的に示す断面図である。なお、図20においては、図2に示した実施の形態1におけるIGBTのセルが複数個配置された構成を例として示している。
【0222】
図20を参照して、図中左側には図示を省略してあるがたとえば図2に示す実施の形態1と同様のIGBTのセルが複数個配置されている。その複数配置されたセルの終端部の第1主面には、p型不純物拡散領域21とエミッタトレンチとが形成されている。
【0223】
p型不純物拡散領域21は、たとえば深さがp型ボディ領域2よりも深く、濃度が約1×1016〜1×1018cm-3であり、セル形成領域を取囲むように形成されている。またエミッタトレンチは、p型不純物拡散領域21を突き抜けてn-シリコン基板1に達するエミッタ用溝1aと、そのエミッタ用溝1bに内表面に沿うように形成されたエミッタ用絶縁膜4bと、エミッタ用溝1b内を埋め込む安定化プレートとなるエミッタ用導電層5bとを有している。
【0224】
この安定化プレート5bは、第1主面上に形成されたエミッタ電極11とバリアメタル層10を介して電気的に接続されている。またp型不純物拡散領域21は、低抵抗コンタクトをとるためのp+不純物拡散領域6とバリアメタル層10を介してエミッタ電極11に電気的に接続されている。
【0225】
なおこれ以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
【0226】
本実施の形態では、セル領域の終端部に安定化プレート5bを配置することによって、セル領域内のドレイン部で発生した電位変化が、セル領域外に及ぶことが抑制されるため、耐量を向上させる効果がある。
【0227】
なお図20では、セル終端部に安定化プレート5bを1本配置した場合について説明したが、安定化プレート5bを2本以上配置することにより、より発振抑制効果を高めることができる。
【0228】
図21は、セル終端部に安定化プレートを複数本(たとえば2本)を配置した場合の構成を示す概略断面図である。図21を参照して、セル終端部に配置した2本の安定化プレート5bのうち最外周に配置される安定化プレート5bの構成は、図20に示す構成と同様の構成を有している。また最外周に配置される安定化プレート5bとセル領域との間に配置される安定化プレート5bは、たとえば図12に示す実施の形態6の構成とほぼ同じ構成を有している。
【0229】
つまり、安定化プレート5bに対向するn-シリコン基板1の領域近傍に、n-シリコン基板1よりもn型不純物濃度が高いn+不純物拡散領域14が形成されている。
【0230】
なお、これ以外の構成については、上述した図20の構成とほぼ同じであるため、同一の部材については同一の符号を付し、その説明を省略する。
【0231】
このようにセル終端部に複数本の安定化プレート5bを配置することにより、より発振抑制効果を高めることができる。
【0232】
また、電界を緩和させる構造が、フィールドプレート構造やベベル構造など別の構造であっても、本発明による安定化プレートを用いることにより、セル領域内の電位変化を電界緩和構造部分に及ぼしにくくできることは明白である。
【0233】
また、これらの構造は、図57、図59、図60に示したような従来の高耐圧半導体装置のセル構造のセル終端部分の構造としても適用することができる。
【0234】
(実施の形態10)
図18に示す実施の形態8の構成においては、MOSトランジスタ構造に挟まれる領域に安定化プレート5bを第1主面および第2主面の各々に1本ずつ配置した構成について説明したが、図22に示すように第1主面および第2主面の各々に複数本(たとえば2本)の安定化プレート5bが配置されていてもよい。またこの場合、複数の安定化プレート5bに挟まれるn-シリコン基板1の部分に高濃度のn+不純物拡散領域14が設けられていてもよい。
【0235】
このように第1主面および第2主面の各々に安定化プレート5bを複数本設け、さらにn+不純物拡散領域14を設けることにより、さらに発振抑制効果を高めることができる。
【0236】
また、図18の構成におけるセル領域終端部の構成は、図20に示す構成とされてもよい。この場合、図23に示すようにセル領域終端部の第1主面および第2主面の各々にエミッタトレンチとp型不純物拡散領域21が形成される。また図18の構成におけるセル領域終端部の構成は、図21に示す構成とされてもよい。この場合、図24に示すような構成となる。
【0237】
(他の実施の形態)
上述した実施の形態1〜10の構成以外に、本発明の構成は、多種多様な高耐圧半導体装置に適用することができる。以下、各種の高耐圧半導体装置に本発明の構成を適用した例について説明する。
【0238】
図25は、本発明の他の実施の形態における半導体装置の構成を概略的に示す断面図である。図25を参照して、n-シリコン基板1の第1主面側には、高濃度のn型不純物拡散領域14とp型ボディ領域2とが形成されている。このp型ボディ領域2内の第1主面にはn型エミッタ領域3と、p型ボディ領域2への低抵抗コンタクトをとるためのp+不純物拡散領域6とが形成されている。
【0239】
第1主面には、n型エミッタ領域3とp型ボディ領域2とn型不純物拡散領域14とを突き抜けてn-シリコン基板1に達するゲート用溝1aが形成されている。このゲート用溝1aの内表面に沿うようにゲート絶縁膜4aが形成されており、ゲート用溝1a内を埋め込むようにゲート電極5aが形成されている。
【0240】
このn-シリコン基板1とn型エミッタ領域3とゲート電極5aとから、n-シリコン基板1をドレインとし、n型エミッタ領域3をソースとするMOSトランジスタ構造が構成されている。また、ゲート用溝1aとゲート絶縁膜4aとゲート電極5aとから、ゲートトレンチが構成されている。
【0241】
この2つのMOSトランジスタ構造に挟まれる第1主面にはたとえば複数本(たとえば2本)のエミッタトレンチが形成されている。このエミッタトレンチは、エミッタ用溝1bとエミッタ用絶縁膜4bとエミッタ用導電層5bとから構成されている。
【0242】
エミッタ用溝1bは、p型ボディ領域2とn型不純物拡散領域14とを突き抜けてn-シリコン基板1に達するように形成されている。このエミッタ用溝1bの内表面に沿うようにエミッタ用絶縁膜4bが形成されており、エミッタ用溝1b内を埋め込むように、安定化プレートとなるエミッタ用導電層5bが形成されている。また複数本のエミッタトレンチに挟まれる第1主面にはp型ボディ領域2への低抵抗コンタクトをとるためのp+不純物拡散領域6が形成されており、その上にシリサイド層21aが形成されている。
【0243】
ゲート電極5a上には、たとえばシリコン酸化膜よりなる絶縁膜22Aを介して、絶縁膜9、22Bが形成されている。また第1主面および安定化プレート5b上にはシリサイド層21a、21bが形成されている。第1主面全面を覆うようにバリアメタル層10とエミッタ電極11とが形成されている。これにより、エミッタ電極11は、安定化プレート5b、n型エミッタ領域3およびp+不純物拡散領域6に電気的に接続されている。
【0244】
なお、n-シリコン基板1の第2主面側の構造は、たとえば図2に示すようにn型バッファ領域7、p型コレクタ領域8およびコレクタ電極12が形成された構成であってもよく、これ以外の構成であってもよい。このように複数の構成を適用することができるため、n-シリコン基板1の第2主面側の構造の図示は省略してある。
【0245】
本実施の形態においても、安定化プレート5bとn-シリコン基板1との間に形成される安定化プレート容量Cfは、ゲート電極5aとn-シリコン基板1との間に形成されるドレイン側容量Cdよりも大きくなるよう構成されている。これにより、上述した実施の形態1〜10と同様、短絡時の発振を抑制することが可能となる。
【0246】
図25の構成においては、エミッタ用溝1bの側壁であって第1主面にn+不純物拡散領域3が追加されて図26に示すような構成が採用されてもよい。
【0247】
また、図25の構成においては、ゲート用溝1aの両側壁にn型エミッタ領域3を設けた場合について説明したが、図27に示すようにゲート用溝1bの片側の側壁にのみn型エミッタ領域3が設けられていてもよい。また、図27に示すように、MOSトランジスタ構造に挟まれる領域に1本の安定化プレート5bのみが配置されてもよい。
【0248】
また図25の構成においては、各エミッタ用溝1b内を埋め込む安定化プレート5bは、互いに分離された導電層として形成されているが、図28に示すように複数のエミッタ用溝1b内は、一体化された単一の層よりなる安定化プレート5bによって埋め込まれていてもよい。この場合に、安定化プレート5bは、各エミッタ用溝1b内の部分をつなぐブリッジ部上に形成されたシリサイド層21bを介して、バリアメタル層10とエミッタ電極11とに電気的に接続されている。またシリサイド層21bが形成された領域以外の安定化プレート5b上には、絶縁膜22A、9、22Bが形成されている。
【0249】
また、図28の構成においては、エミッタ用溝1bの側壁であって第1主面にn+不純物拡散領域3が追加されて図29に示すような構成が採用されてもよい。
【0250】
また、図27の構成においても、エミッタ用溝1bの側壁であって第1主面にn+不純物拡散領域3が追加されて図30に示すような構成が採用されてもよい。
【0251】
また、図27の構成においては、安定化プレート5bの上面はエミッタ用溝1b内に位置しているが、図31に示すようにエミッタ用溝1bの上方に突出していてもよい。この場合、安定化プレート5bにエミッタ電極11が接続される部分にはシリサイド層21bが形成されているが、それ以外の部分上には絶縁膜22A、9、22Bが形成されている。
【0252】
また、図31の構成においては、エミッタ用溝1bの側壁であって第1主面にn+不純物拡散領域3が追加されて図32に示すような構成が採用されてもよい。
【0253】
また、図25の構成においては、p型ボディ領域2が第1主面全面に均一に分布した構成について説明したが、図33に示すようにゲート用溝1aの側壁部にのみ位置していてもよい。
【0254】
また、図33の構成においては、エミッタ用溝1bの側壁であって第1主面にn+不純物拡散領域3が追加されて図34に示すような構成が採用されてもよい。
【0255】
また、図27の構成においても、p型ボディ領域2が第1主面全面に均一に分布した構成について説明したが、図35に示すようにゲート用溝1aの側壁部にのみ位置していてもよい。
【0256】
また、図28の構成においても、p型ボディ領域2が第1主面全面に均一に分布した構成について説明したが、図36に示すようにゲート用溝1aの側壁部にのみ位置していてもよい。
【0257】
また、図36の構成においては、エミッタ用溝1bの側壁であって第1主面にn+不純物拡散領域3が追加されて図37に示すような構成が採用されてもよい。
【0258】
また、図35の構成においても、エミッタ用溝1bの側壁であって第1主面にn+不純物拡散領域3が追加されて図38に示すような構成が採用されてもよい。
【0259】
また、図31の構成においては、p型ボディ領域2は第1主面全面に均一に分布した構成について説明したが、図39に示すようにゲート用溝1aの側壁部にのみ位置していてもよい。
【0260】
また、図39の構成においては、エミッタ用溝1bの側壁であって第1主面にn+不純物拡散領域3が追加されて図40に示すような構成が採用されてもよい。
【0261】
また図25〜図40に示す構造では、ゲート電極5aの上面はゲート用溝1a内に位置する場合について説明したが、ゲート用溝1a上に突出していてもよい。ゲート電極5aの上面がゲート用溝1aの上方に突出した構成を図41〜図49に示す。
【0262】
図41は図25の構成、図42は図26の構成、図43は図27の構成、図44は図28の構成、図45は図37の構成、図46は図38の構成、図47は図39の構成、図48は図40の構成において、ゲート電極5aの上面がゲート用溝1a上に突出した構成に対応している。
【0263】
また、図8に示す平面ゲート構造においてn-シリコン基板1の第1主面側の濃度が高濃度にされてもよい。たとえば図49に示すようにn-シリコン基板1の第1主面側に高濃度のn型不純物拡散領域14が形成されていてもよい。これにより、安定化プレート容量Cfを大きくすることができるため、短絡時の発振をより抑制することができる。
【0264】
また図49の構成においてn型バッファ領域7が省略されて図50に示すような構成とされてもよい。また図8に示す構成においてn型バッファ領域7が省略されて図51に示すような構成とされてもよい。
【0265】
さらに、本発明のエミッタトレンチ(安定化プレート)を有するトレンチMOSゲート構造についても、これまでn型バッファ領域7が存在した場合について示したが、n型バッファ領域7が省略された構成でも同様な効果が得られる。
【0266】
なお、上記の実施の形態1〜10および他の実施の形態においては、安定化プレート容量Cfがドレイン側容量Cdよりも大きい場合について説明したが、安定化プレート容量Cfがドレイン側容量Cdの20%よりも大きい場合にも発振抑制の効果を得ることはできる。
【0267】
また、ゲート電極5aおよび安定化プレート5bが導電体である場合について説明したが、ゲート電極5aおよび安定化プレート5bは半導体であってもよい。
【0268】
また、上記においてはIGBTについて説明したが、本発明は絶縁ゲート型電界効果トランジスタ部を有する全ての素子に適用することが可能である。
【0269】
本発明は、高耐圧素子、とりわけIGBTの構造に関するものであり、特にトレンチゲートIGBTにおいてはその効果を最大に発揮するものである。また、本発明は、短絡電流の抑制、ゲート容量の低減、短絡時の発振の抑制と損失低減を同時に達成する半導体装置およびその製造方法に有利に適用され得る。
【0270】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【図1】 本発明の実施の形態1における半導体装置の構成を概略的に示す回路図である。
【図2】 本発明の実施の形態1における半導体装置の構成を概略的に示す断面図である。
【図3A】 従来例において発振が生ずる様子を示す図である。
【図3B】 従来例において発振が生ずる様子を示す図である。
【図3C】 従来例において発振が生ずる様子を示す図である。
【図3D】 従来例において発振が生ずる様子を示す図である。
【図4】 図3A、図3B、図3Cおよび図3Dの部分拡大図である。
【図5A】 本発明の実施の形態1における半導体装置において発振が抑制されることを示す図である。
【図5B】 本発明の実施の形態1における半導体装置において発振が抑制されることを示す図である。
【図5C】 本発明の実施の形態1における半導体装置において発振が抑制されることを示す図である。
【図5D】 本発明の実施の形態1における半導体装置において発振が抑制されることを示す図である。
【図6】 図5A、図5B、図5Cおよび図5Dの部分拡大図である。
【図7】 IcとVceとの関係を示す図である。
【図8】 本発明の実施の形態2における半導体装置の構成を概略的に示す断面図である。
【図9】 本発明の実施の形態3における半導体装置の構成を概略的に示す断面図である。
【図10】 本発明の実施の形態4における半導体装置の構成を概略的に示す断面図である。
【図11】 本発明の実施の形態5における半導体装置の構成を概略的に示す断面図である。
【図12】 本発明の実施の形態6における半導体装置の構成を概略的に示す断面図である。
【図13】 本発明の実施の形態6における半導体装置の他の構成を示す概略断面図である。
【図14】 本発明の実施の形態6における半導体装置の他の構成を示す概略断面図である。
【図15】 本発明の実施の形態6における半導体装置の他の構成を示す概略断面図である。
【図16】 本発明の実施の形態7における半導体装置の構成を概略的に示す断面図である。
【図17】 本発明の実施の形態7における半導体装置の他の構成を示す概略断面図である。
【図18】 本発明の実施の形態8における半導体装置の構成を概略的に示す断面図である。
【図19】 安定化プレートがフローティング状態にある様子を示す回路図である。
【図20】 本発明の実施の形態9における半導体装置の構成を概略的に示す断面図である。
【図21】 本発明の実施の形態9における半導体装置の他の構成を示す概略断面図である。
【図22】 本発明の実施の形態10における半導体装置の構成を概略的に示す断面図である。
【図23】 本発明の実施の形態10における半導体装置の他の構成を示す概略断面図である。
【図24】 本発明の実施の形態10における半導体装置の他の構成を示す概略断面図である。
【図25】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図26】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図27】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図28】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図29】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図30】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図31】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図32】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図33】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図34】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図35】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図36】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図37】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図38】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図39】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図40】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図41】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図42】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図43】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図44】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図45】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図46】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図47】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図48】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図49】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図50】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図51】 本発明のその他の形態における半導体装置の構成を示す概略断面図である。
【図52】 従来の半導体装置の構成を概略的に示す断面図である。
【図53】 従来の半導体装置の終端構造を示す概略断面図である。
【図54】 USP6,040,599に開示された半導体装置の構成を概略的に示す断面図である。
【図55】 特開平9−331063号公報に開示された半導体装置の構成を概略的に示す断面図である。
【図56】 IGBTのトランジスタ部とダイオード部の各々にかかる電圧を説明するための図である。
【図57】 IGBTの回路構成を示す図である。
【符号の説明】
1 シリコン基板、1a,1b エミッタ用溝(ゲート用溝)、2 p型ボディ領域、3 型エミッタ領域、4,4a ゲート絶縁膜、4b エミッタ用絶縁膜、5a ゲート電極、5b エミッタ用導電層(安定化プレート)、6 不純物拡散領域、7 n型バッファ領域、8 p型コレクタ領域、9 層間絶縁膜、9a 孔、10 バリアメタル層、10a ゲート用溝、11 エミッタ電極、12 コレクタ電極、14 不純物拡散領域、21a,21b シリサイド層、21 p型不純物拡散領域、22A 絶縁膜。
Claims (27)
- チャネル形成領域(2)を挟んで互いに対向するソース領域(3)およびドレイン領域(1)と、前記チャネル形成領域(2)にゲート絶縁膜(4、4a)を挟んで対向するゲート電極(5a)とを有する絶縁ゲート型電界効果トランジスタ部と、
前記ドレイン領域(1)にプレート用絶縁膜(4、4b)を挟んで対向し、かつ前記ドレイン領域(1)との間で容量を形成する、導電体または半導体からなる安定化プレート(5b)とを備え、
前記安定化プレート(5b)と前記ドレイン領域(1)との間で形成される安定化プレート容量は、前記ゲート電極(5a)と前記ドレイン領域(1)との間で形成されるゲート−ドレイン容量よりも大きいことを特徴とする、半導体装置。 - 前記安定化プレート(5b)は、前記ソース領域(3)に電気的に接続されていることを特徴とする、請求項1に記載の半導体装置。
- 前記安定化プレート(5b)は、ソース電位との間で容量を構成することを特徴とする、請求項1に記載の半導体装置。
- 前記安定化プレート(5b)が前記ドレイン領域(1)と対向する部分における前記プレート用絶縁膜(4b)の膜厚は、前記ゲート電極(5a)が前記ドレイン領域(1)と対向する部分における前記ゲート絶縁膜(4a)の膜厚よりも薄いことを特徴とする、請求項1に記載の半導体装置。
- 前記安定化プレート(5b)が前記ドレイン領域(1)と対向する部分における前記プレート用絶縁膜(4b)の誘電率は、前記ゲート電極(5a)が前記ドレイン領域(1)と対向する部分における前記ゲート絶縁膜(4a)の誘電率よりも大きいことを特徴とする、請求項1に記載の半導体装置。
- 前記安定化プレート(5b)が前記ドレイン領域(1)と対向する面積は、前記ゲート電極(5a)が前記ドレイン領域(1)と対向する面積よりも大きいことを特徴とする、請求項1に記載の半導体装置。
- 前記安定化プレート(5b)に対向する部分における前記ドレイン領域(1)の不純物濃度は、前記ゲート電極(5a)に対向する部分における前記ドレイン領域(1)の不純物濃度よりも高いことを特徴とする、請求項1に記載の半導体装置。
- 前記絶縁ゲート型電界効果トランジスタが複数個並んで配置されており、
2つの前記絶縁ゲート型電界効果トランジスタに挟まれる領域には、2以上の前記安定化プレート(5b)が配置されていることを特徴とする、請求項1に記載の半導体装置。 - 前記ドレイン領域(1)のうち前記2以上の安定化プレート(5b)に挟まれる領域の不純物濃度が、前記ドレイン領域(1)の他の領域の不純物濃度よりも高いことを特徴とする、請求項8に記載の半導体装置。
- 前記チャネル形成領域(2)は前記ソース領域(3)および前記ドレイン領域(1)とは逆導電型のボディ領域内にあり、
前記ボディ領域(2)が前記安定化プレート(5b)に対向する長さに対する前記ドレイン領域(1)が前記安定化プレート(5b)に対向する長さの比は、前記ボディ領域(2)が前記ゲート電極(5a)に対向する長さに対する前記ドレイン領域(1)の前記ゲート電極(5a)に対向する長さの比よりも大きいことを特徴とする、請求項6に記載の半導体装置。 - 互いに対向する第1主面および第2主面を有し、かつ前記第1主面に形成されたゲート用溝(4a)を有する半導体基板をさらに備え、
前記ゲート電極(5a)は、前記ゲート用溝(4a)内を埋め込んでいることを特徴とする、請求項1に記載の半導体装置。 - 前記ゲート電極(5a)は互いに対向する両側面を有しており、前記両側面の各々において前記チャネル形成領域(2)と対向することを特徴とする、請求項11に記載の半導体装置。
- ソース側電極(11)とドレイン側電極(12)とは共に前記半導体基板の第1主面に形成されていることを特徴とする、請求項1に記載の半導体装置。
- ソース側電極(11)は前記半導体基板の第1主面に形成されており、ドレイン側電極(12)は前記第2主面側に形成されていることを特徴とする、請求項1に記載の半導体装置。
- 前記ゲート用溝(4a)は、前記ドレイン領域(1)にまで達していることを特徴とする、請求項11に記載の半導体装置。
- 前記絶縁ゲート型電界効果トランジスタ部を含むセルが複数個並べて配列されており、配列された複数の前記セルの終端部に前記安定化プレート(5b)が配置されていることを特徴とする、請求項1に記載の半導体装置。
- 配列された複数の前記セルの終端部に前記安定化プレート(5b)が複数個配置されていることを特徴とする、請求項16に記載の半導体装置。
- 互いに対向する第1主面および第2主面を有する半導体基板と、
チャネル形成領域(2)を挟んで互いに対向するソース領域(3)およびドレイン領域(1)と、前記チャネル形成領域(2)にゲート絶縁膜(4a)を挟んで対向するゲート電極(5a)とをそれぞれが有する第1および第2の絶縁ゲート型電界効果トランジスタ部と、
前記第1の絶縁ゲート型電界効果トランジスタ部の前記ドレイン領域(1)に第1のプレート用絶縁膜(4b)を挟んで対向し、かつ前記第1の絶縁ゲート型電界効果トランジスタ部の前記ドレイン領域(1)との間で容量を形成する、導電体または半導体からなる第1の安定化プレート(5b)と、
前記第2の絶縁ゲート型電界効果トランジスタ部の前記ドレイン領域(1)に第2のプレート用絶縁膜(4b)を挟んで対向し、かつ前記第2の絶縁ゲート型電界効果トランジスタ部の前記ドレイン領域(1)との間で容量を形成する、導電体または半導体からなる第2の安定化プレート(5b)とを備え、
前記第1の絶縁ゲート型電界効果トランジスタ部は前記第1主面に形成され、前記第2の絶縁ゲート型電界効果トランジスタ部は前記第2主面に形成され、かつ前記第1および第2の絶縁ゲート型電界効果トランジスタ部の間で電流を流すことを特徴とする、半導体装置。 - 前記第1の安定化プレート(5b)と前記第1の絶縁ゲート型電界効果トランジスタ部の前記ドレイン領域(1)との間で形成される第1の安定化プレート容量は、前記第1の絶縁ゲート型電界効果トランジスタ部の前記ゲート電極(5a)と前記ドレイン領域(1)との間で形成される第1のゲート−ドレイン容量よりも大きく、
前記第2の安定化プレート(5b)と前記第2の絶縁ゲート型電界効果トランジスタ部の前記ドレイン領域(1)との間で形成される第2の安定化プレート容量は、前記第2の絶縁ゲート型電界効果トランジスタ部の前記ゲート電極(5a)と前記ドレイン領域(1)との間で形成される第2のゲート−ドレイン容量よりも大きいことを特徴とする、請求項18に記載の半導体装置。 - 前記第1の絶縁ゲート型電界効果トランジスタが複数個並んで配置されており、2つの前記第1の絶縁ゲート型電界効果トランジスタに挟まれる領域には、2以上の前記第1の安定化プレート(5b)が配置されており、
前記第2の絶縁ゲート型電界効果トランジスタが複数個並んで配置されており、2つの前記第2の絶縁ゲート型電界効果トランジスタに挟まれる領域には、2以上の前記第2の安定化プレート(5b)が配置されており、
前記ドレイン領域(1)のうち前記2以上の第1の安定化プレート(5b)に挟まれる領域の不純物濃度および前記2以上の第2の安定化プレート(5b)に挟まれる領域の不純物濃度が、前記ドレイン領域(1)の他の領域の不純物濃度よりも高いことを特徴とする、請求項18に記載の半導体装置。 - 前記半導体基板は、前記第1主面に形成された第1のゲート用溝(4a)と、前記第2主面に形成された第2のゲート用溝(4a)とを有し、
前記第1の絶縁ゲート型電界効果トランジスタ部の前記ゲート電極(5a)は、前記第1のゲート用溝(4a)内を埋め込んでおり、
前記第2の絶縁ゲート型電界効果トランジスタ部の前記ゲート電極(5a)は、前記第2のゲート用溝(4a)内を埋め込んでいることを特徴とする、請求項18に記載の半導体装置。 - 前記第1の絶縁ゲート型電界効果トランジスタ部の前記ゲート電極(5a)は、互いに対向する両側面を有しており、前記両側面の各々において前記第1の絶縁ゲート型電界効果トランジスタ部の前記チャネル形成領域(2)と対向し、
前記第2の絶縁ゲート型電界効果トランジスタ部の前記ゲート電極(5a)は、互いに対向する両側面を有しており、前記両側面の各々において前記第2の絶縁ゲート型電界効果トランジスタ部の前記チャネル形成領域(2)と対向することを特徴とする、請求項21に記載の半導体装置。 - 前記第1および第2の絶縁ゲート型電界効果トランジスタ部を含むセルが複数個並べて配列されており、配列された複数の前記セルの終端部に前記第1および第2の安定化プレート(5b)が配置されていることを特徴とする、請求項18に記載の半導体装置。
- 配列された複数の前記セルの終端部に前記第1および第2の安定化プレート(5b)の各々が複数個配置されていることを特徴とする、請求項18に記載の半導体装置。
- チャネル形成領域(2)を挟んで互いに対向するソース領域(3)およびドレイン領域(1)と、前記チャネル形成領域(2)にゲート絶縁膜(4a)を挟んで対向するゲート電極(5a)とを有する絶縁ゲート型電界効果トランジスタ部と、
前記ドレイン領域(1)にプレート用絶縁膜(4b)を挟んで対向し、かつ前記ドレイン領域(1)との間で容量を形成する、導電体または半導体からなる安定化プレート(5b)とを備え、
前記絶縁ゲート型電界効果トランジスタ部を含むセルが複数個並べて配列されており、配列された複数の前記セルの終端部に前記安定化プレート(5b)が配置されている、半導体装置。 - 配列された複数の前記セルの終端部に前記安定化プレート(5b)が複数個配置されていることを特徴とする、請求項25に記載の半導体装置。
- 隣り合う2つのトレンチゲートである前記ゲート電極(5a)に挟まれる領域内に前記チャネル形成領域(2)と前記安定化プレート(5b)とが存在することを特徴とする、請求項1に記載の半導体装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2001/000373 WO2002058160A1 (fr) | 2001-01-19 | 2001-01-19 | Dispositif a semi-conducteur |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2002058160A1 JPWO2002058160A1 (ja) | 2004-05-27 |
JP4785334B2 true JP4785334B2 (ja) | 2011-10-05 |
Family
ID=11736934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002558343A Expired - Lifetime JP4785334B2 (ja) | 2001-01-19 | 2001-01-19 | 半導体装置 |
Country Status (7)
Country | Link |
---|---|
US (2) | US6953968B2 (ja) |
EP (3) | EP2463912B1 (ja) |
JP (1) | JP4785334B2 (ja) |
KR (1) | KR100447364B1 (ja) |
CN (1) | CN1187839C (ja) |
TW (1) | TW484171B (ja) |
WO (1) | WO2002058160A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8994102B2 (en) | 2012-08-21 | 2015-03-31 | Rohm Co., Ltd. | Semiconductor device |
US9236461B2 (en) | 2013-08-28 | 2016-01-12 | Rohm Co., Ltd. | Semiconductor device |
US9543421B2 (en) | 2012-08-21 | 2017-01-10 | Rohm Co., Ltd. | Trench-type insulated gate semiconductor device including an emitter trench and an overlapped floating region |
US9685544B2 (en) | 2014-04-15 | 2017-06-20 | Rohm Co., Ltd. | Semiconductor device including emitter regions and method of manufacturing the semiconductor device |
DE102017222805A1 (de) | 2016-12-27 | 2018-06-28 | Mitsubishi Electric Corporation | Halbleitervorrichtung, Leistungswandlungsvorrichtung und Verfahren einer Fertigung einer Halbleitervorrichtung |
DE112015007246T5 (de) | 2015-12-28 | 2018-09-20 | Mitsubishi Electric Corporation | Halbleiterbauelement und verfahren zum herstellen eines halbleiterbauelements |
US11101133B2 (en) | 2018-08-17 | 2021-08-24 | Mitsubishi Electric Corporation | Semiconductor device and manufacturing method thereof |
DE102021126018A1 (de) | 2020-11-02 | 2022-05-05 | Mitsubishi Electric Corporation | Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung |
DE102022100456A1 (de) | 2021-02-16 | 2022-08-18 | Mitsubishi Electric Corporation | Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung |
Families Citing this family (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6703707B1 (en) * | 1999-11-24 | 2004-03-09 | Denso Corporation | Semiconductor device having radiation structure |
JP4823435B2 (ja) * | 2001-05-29 | 2011-11-24 | 三菱電機株式会社 | 半導体装置及びその製造方法 |
JP3906052B2 (ja) * | 2001-10-15 | 2007-04-18 | 株式会社東芝 | 絶縁ゲート型半導体装置 |
JP4090747B2 (ja) * | 2002-01-31 | 2008-05-28 | 三菱電機株式会社 | 絶縁ゲート型半導体装置 |
US6943426B2 (en) * | 2002-08-14 | 2005-09-13 | Advanced Analogic Technologies, Inc. | Complementary analog bipolar transistors with trench-constrained isolation diffusion |
US6903969B2 (en) * | 2002-08-30 | 2005-06-07 | Micron Technology Inc. | One-device non-volatile random access memory cell |
JP4799829B2 (ja) * | 2003-08-27 | 2011-10-26 | 三菱電機株式会社 | 絶縁ゲート型トランジスタ及びインバータ回路 |
JP2005101334A (ja) * | 2003-09-25 | 2005-04-14 | Sanyo Electric Co Ltd | 半導体装置およびその製造方法 |
JP2005191287A (ja) * | 2003-12-25 | 2005-07-14 | Nec Kyushu Ltd | 半導体装置及びその製造方法 |
JP4829473B2 (ja) * | 2004-01-21 | 2011-12-07 | オンセミコンダクター・トレーディング・リミテッド | 絶縁ゲート型半導体装置およびその製造方法 |
US8461648B2 (en) | 2005-07-27 | 2013-06-11 | Infineon Technologies Austria Ag | Semiconductor component with a drift region and a drift control region |
US8110868B2 (en) | 2005-07-27 | 2012-02-07 | Infineon Technologies Austria Ag | Power semiconductor component with a low on-state resistance |
JP5586650B2 (ja) * | 2005-07-27 | 2014-09-10 | インフィネオン テクノロジーズ オーストリア アクチエンゲゼルシャフト | ドリフト領域とドリフト制御領域とを有する半導体素子 |
US7655977B2 (en) * | 2005-10-18 | 2010-02-02 | International Rectifier Corporation | Trench IGBT for highly capacitive loads |
US8093621B2 (en) | 2008-12-23 | 2012-01-10 | Power Integrations, Inc. | VTS insulated gate bipolar transistor |
US8368144B2 (en) * | 2006-12-18 | 2013-02-05 | Infineon Technologies Ag | Isolated multigate FET circuit blocks with different ground potentials |
JP2008227251A (ja) * | 2007-03-14 | 2008-09-25 | Mitsubishi Electric Corp | 絶縁ゲート型トランジスタ |
JP2008235788A (ja) * | 2007-03-23 | 2008-10-02 | Sanyo Electric Co Ltd | 絶縁ゲート型半導体装置 |
JP4600936B2 (ja) | 2007-06-20 | 2010-12-22 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
US7807555B2 (en) * | 2007-07-31 | 2010-10-05 | Intersil Americas, Inc. | Method of forming the NDMOS device body with the reduced number of masks |
JP2009135360A (ja) | 2007-12-03 | 2009-06-18 | Renesas Technology Corp | 半導体装置およびその製造方法 |
US8507945B2 (en) * | 2008-03-31 | 2013-08-13 | Mitsubishi Electric Corporation | Semiconductor device including an insulated gate bipolar transistor (IGBT) |
JP4688901B2 (ja) * | 2008-05-13 | 2011-05-25 | 三菱電機株式会社 | 半導体装置 |
US8093653B2 (en) * | 2008-10-01 | 2012-01-10 | Niko Semiconductor Co., Ltd. | Trench metal oxide-semiconductor transistor and fabrication method thereof |
JP5423018B2 (ja) * | 2009-02-02 | 2014-02-19 | 三菱電機株式会社 | 半導体装置 |
JP5577606B2 (ja) * | 2009-03-02 | 2014-08-27 | 日産自動車株式会社 | 半導体装置 |
KR20120008511A (ko) * | 2009-04-28 | 2012-01-30 | 미쓰비시덴키 가부시키가이샤 | 전력용 반도체장치 |
US9048282B2 (en) * | 2013-03-14 | 2015-06-02 | Alpha And Omega Semiconductor Incorporated | Dual-gate trench IGBT with buried floating P-type shield |
JP5634318B2 (ja) * | 2011-04-19 | 2014-12-03 | 三菱電機株式会社 | 半導体装置 |
JP5774422B2 (ja) * | 2011-09-14 | 2015-09-09 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
JP2012142628A (ja) * | 2012-04-26 | 2012-07-26 | Mitsubishi Electric Corp | 電力用半導体装置 |
US10411111B2 (en) * | 2012-05-30 | 2019-09-10 | Kyushu Institute Of Technology | Method for fabricating high-voltage insulated gate type bipolar semiconductor device |
JP2014027182A (ja) | 2012-07-27 | 2014-02-06 | Toshiba Corp | 半導体装置 |
US9029874B2 (en) | 2012-09-13 | 2015-05-12 | Panasonic Intellectual Property Management Co., Ltd. | Semiconductor device having a first silicon carbide semiconductor layer and a second silicon carbide semiconductor layer |
US10475663B2 (en) | 2012-10-02 | 2019-11-12 | Mitsubishi Electric Corporation | Semiconductor device and method for manufacturing semiconductor device |
US8853774B2 (en) * | 2012-11-30 | 2014-10-07 | Infineon Technologies Ag | Semiconductor device including trenches and method of manufacturing a semiconductor device |
US9960267B2 (en) * | 2013-03-31 | 2018-05-01 | Shindengen Electric Manufacturing Co., Ltd. | Semiconductor device |
US10249721B2 (en) | 2013-04-04 | 2019-04-02 | Infineon Technologies Austria Ag | Semiconductor device including a gate trench and a source trench |
JP6265619B2 (ja) * | 2013-04-17 | 2018-01-24 | 三菱電機株式会社 | 電力用半導体装置およびその製造方法 |
US9799731B2 (en) | 2013-06-24 | 2017-10-24 | Ideal Power, Inc. | Multi-level inverters using sequenced drive of double-base bidirectional bipolar transistors |
US9742385B2 (en) | 2013-06-24 | 2017-08-22 | Ideal Power, Inc. | Bidirectional semiconductor switch with passive turnoff |
AU2014302625B2 (en) | 2013-06-24 | 2017-05-11 | Ideal Power Inc. | Systems, circuits, devices, and methods with bidirectional bipolar transistors |
DE102013108518B4 (de) | 2013-08-07 | 2016-11-24 | Infineon Technologies Ag | Halbleitervorrichtung und verfahren zum herstellen derselben |
US9666663B2 (en) | 2013-08-09 | 2017-05-30 | Infineon Technologies Ag | Semiconductor device with cell trench structures and contacts and method of manufacturing a semiconductor device |
US9076838B2 (en) | 2013-09-13 | 2015-07-07 | Infineon Technologies Ag | Insulated gate bipolar transistor with mesa sections between cell trench structures and method of manufacturing |
US9385228B2 (en) | 2013-11-27 | 2016-07-05 | Infineon Technologies Ag | Semiconductor device with cell trench structures and contacts and method of manufacturing a semiconductor device |
US9105679B2 (en) | 2013-11-27 | 2015-08-11 | Infineon Technologies Ag | Semiconductor device and insulated gate bipolar transistor with barrier regions |
US11637016B2 (en) | 2013-12-11 | 2023-04-25 | Ideal Power Inc. | Systems and methods for bidirectional device fabrication |
US9355853B2 (en) | 2013-12-11 | 2016-05-31 | Ideal Power Inc. | Systems and methods for bidirectional device fabrication |
KR20160098385A (ko) * | 2014-01-14 | 2016-08-18 | 미쓰비시덴키 가부시키가이샤 | 전력용 반도체 장치 |
US9553179B2 (en) | 2014-01-31 | 2017-01-24 | Infineon Technologies Ag | Semiconductor device and insulated gate bipolar transistor with barrier structure |
JP2015177010A (ja) * | 2014-03-14 | 2015-10-05 | 株式会社東芝 | 半導体装置およびその製造方法 |
JP6226786B2 (ja) | 2014-03-19 | 2017-11-08 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
CN103956379B (zh) * | 2014-05-09 | 2017-01-04 | 常州中明半导体技术有限公司 | 具有优化嵌入原胞结构的cstbt器件 |
CN106796951B (zh) * | 2014-10-13 | 2020-08-18 | 理想能量有限公司 | 双基极双向双极晶体管两个相对表面上的场板:器件、方法和系统 |
JP6434274B2 (ja) | 2014-10-27 | 2018-12-05 | ローム株式会社 | 半導体装置 |
KR102450784B1 (ko) | 2014-11-06 | 2022-10-05 | 아이디얼 파워 인크. | 이중-베이스 양극성 접합 트랜지스터의 최적화된 동작을 갖는 회로, 방법 및 시스템 |
KR101955055B1 (ko) | 2014-11-28 | 2019-03-07 | 매그나칩 반도체 유한회사 | 전력용 반도체 소자 및 그 소자의 제조 방법 |
JP6411929B2 (ja) * | 2015-03-24 | 2018-10-24 | トヨタ自動車株式会社 | Mosfet |
KR101745776B1 (ko) | 2015-05-12 | 2017-06-28 | 매그나칩 반도체 유한회사 | 전력용 반도체 소자 |
US9324807B1 (en) * | 2015-07-10 | 2016-04-26 | United Silicon Carbide, Inc. | Silicon carbide MOSFET with integrated MOS diode |
US9653455B1 (en) * | 2015-11-10 | 2017-05-16 | Analog Devices Global | FET—bipolar transistor combination |
CN105226090B (zh) * | 2015-11-10 | 2018-07-13 | 株洲中车时代电气股份有限公司 | 一种绝缘栅双极晶体管及其制作方法 |
JP2017120801A (ja) * | 2015-12-28 | 2017-07-06 | 株式会社日立製作所 | 半導体装置およびそれを用いる電力変換装置 |
JP6634860B2 (ja) * | 2016-02-10 | 2020-01-22 | 株式会社デンソー | 半導体装置 |
US10164078B2 (en) | 2016-03-18 | 2018-12-25 | Infineon Technologies Americas Corp. | Bipolar semiconductor device with multi-trench enhancement regions |
US9871128B2 (en) | 2016-03-18 | 2018-01-16 | Infineon Technologies Americas Corp. | Bipolar semiconductor device with sub-cathode enhancement regions |
US20170271445A1 (en) * | 2016-03-18 | 2017-09-21 | Infineon Technologies Americas Corp. | Bipolar Semiconductor Device Having Localized Enhancement Regions |
JP6280148B2 (ja) * | 2016-03-23 | 2018-02-14 | 三菱電機株式会社 | 半導体装置 |
US10600867B2 (en) | 2017-05-16 | 2020-03-24 | Fuji Electric Co., Ltd. | Semiconductor device having an emitter region and a contact region inside a mesa portion |
CN109891595B (zh) * | 2017-05-31 | 2022-05-24 | 富士电机株式会社 | 半导体装置 |
US10388726B2 (en) * | 2017-10-24 | 2019-08-20 | Semiconductor Components Industries, Llc | Accumulation enhanced insulated gate bipolar transistor (AEGT) and methods of use thereof |
JP6513168B2 (ja) * | 2017-11-29 | 2019-05-15 | 三菱電機株式会社 | 半導体装置 |
CN108122964B (zh) * | 2017-12-22 | 2020-06-16 | 中国科学院微电子研究所 | 一种绝缘栅双极晶体管 |
JP7055052B2 (ja) | 2018-04-05 | 2022-04-15 | 三菱電機株式会社 | 半導体装置および電力変換装置 |
CN110943124A (zh) * | 2018-09-25 | 2020-03-31 | 比亚迪股份有限公司 | Igbt芯片及其制造方法 |
JP2021082725A (ja) * | 2019-11-20 | 2021-05-27 | 三菱電機株式会社 | 半導体装置 |
JP7330092B2 (ja) * | 2019-12-25 | 2023-08-21 | 三菱電機株式会社 | 半導体装置 |
US11245016B2 (en) | 2020-01-31 | 2022-02-08 | Alpha And Omega Semiconductor (Cayman) Ltd. | Silicon carbide trench semiconductor device |
JP7442932B2 (ja) * | 2020-03-09 | 2024-03-05 | 三菱電機株式会社 | 半導体装置 |
JP7548776B2 (ja) | 2020-11-02 | 2024-09-10 | 株式会社東芝 | 半導体装置及び半導体モジュール |
WO2022153652A1 (ja) * | 2021-01-12 | 2022-07-21 | ローム株式会社 | 半導体装置 |
US11776994B2 (en) | 2021-02-16 | 2023-10-03 | Alpha And Omega Semiconductor International Lp | SiC MOSFET with reduced channel length and high Vth |
WO2024127817A1 (ja) * | 2022-12-16 | 2024-06-20 | 富士電機株式会社 | 炭化珪素mosfetインバータ回路および炭化珪素mosfetインバータ回路の制御方法 |
CN115985942A (zh) * | 2023-03-21 | 2023-04-18 | 晶艺半导体有限公司 | 沟槽栅igbt器件和制作方法 |
CN115985943A (zh) * | 2023-03-21 | 2023-04-18 | 晶艺半导体有限公司 | Igbt半导体器件及其制作方法 |
CN116632059B (zh) * | 2023-07-17 | 2024-04-12 | 湖南大学 | 一种发射极伸入衬底凹槽的igbt芯片 |
CN117476756A (zh) * | 2023-12-28 | 2024-01-30 | 深圳天狼芯半导体有限公司 | 一种具备沟槽发射极的碳化硅igbt及制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533546U (ja) * | 1991-10-08 | 1993-04-30 | 株式会社明電舎 | 絶縁ゲート型半導体素子 |
JPH08222728A (ja) * | 1995-02-09 | 1996-08-30 | Mitsubishi Electric Corp | 絶縁ゲート型半導体装置 |
JPH09275212A (ja) * | 1996-04-04 | 1997-10-21 | Hitachi Ltd | 電圧駆動型半導体装置 |
JPH09283754A (ja) * | 1996-04-16 | 1997-10-31 | Toshiba Corp | 高耐圧半導体装置 |
JPH11330466A (ja) * | 1998-05-19 | 1999-11-30 | Toshiba Corp | 絶縁ゲート型半導体装置 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1200322A (en) | 1982-12-13 | 1986-02-04 | General Electric Company | Bidirectional insulated-gate rectifier structures and method of operation |
JPH0682800B2 (ja) * | 1985-04-16 | 1994-10-19 | 株式会社東芝 | 半導体記憶装置 |
US4994871A (en) | 1988-12-02 | 1991-02-19 | General Electric Company | Insulated gate bipolar transistor with improved latch-up current level and safe operating area |
JPH03109775A (ja) | 1989-09-25 | 1991-05-09 | Hitachi Ltd | 絶縁ゲート型半導体装置 |
US5121176A (en) * | 1990-02-01 | 1992-06-09 | Quigg Fred L | MOSFET structure having reduced gate capacitance |
JP2657134B2 (ja) | 1991-07-25 | 1997-09-24 | 三洋電機株式会社 | ヒンジ装置 |
JP3222692B2 (ja) | 1991-08-08 | 2001-10-29 | 株式会社東芝 | 電力用半導体素子 |
JP3307785B2 (ja) * | 1994-12-13 | 2002-07-24 | 三菱電機株式会社 | 絶縁ゲート型半導体装置 |
JPH08264772A (ja) | 1995-03-23 | 1996-10-11 | Toyota Motor Corp | 電界効果型半導体素子 |
US5714775A (en) * | 1995-04-20 | 1998-02-03 | Kabushiki Kaisha Toshiba | Power semiconductor device |
US5973367A (en) * | 1995-10-13 | 1999-10-26 | Siliconix Incorporated | Multiple gated MOSFET for use in DC-DC converter |
US6040599A (en) | 1996-03-12 | 2000-03-21 | Mitsubishi Denki Kabushiki Kaisha | Insulated trench semiconductor device with particular layer structure |
US5895951A (en) * | 1996-04-05 | 1999-04-20 | Megamos Corporation | MOSFET structure and fabrication process implemented by forming deep and narrow doping regions through doping trenches |
DE19651108C2 (de) * | 1996-04-11 | 2000-11-23 | Mitsubishi Electric Corp | Halbleitereinrichtung des Gategrabentyps mit hoher Durchbruchsspannung und ihr Herstellungsverfahren |
JPH09331063A (ja) | 1996-04-11 | 1997-12-22 | Mitsubishi Electric Corp | 高耐圧半導体装置およびその製造方法 |
JP3719323B2 (ja) | 1997-03-05 | 2005-11-24 | 株式会社デンソー | 炭化珪素半導体装置 |
JP3371763B2 (ja) | 1997-06-24 | 2003-01-27 | 株式会社日立製作所 | 炭化けい素半導体装置 |
US6191470B1 (en) * | 1997-07-08 | 2001-02-20 | Micron Technology, Inc. | Semiconductor-on-insulator memory cell with buried word and body lines |
US6020024A (en) * | 1997-08-04 | 2000-02-01 | Motorola, Inc. | Method for forming high dielectric constant metal oxides |
US6396102B1 (en) * | 1998-01-27 | 2002-05-28 | Fairchild Semiconductor Corporation | Field coupled power MOSFET bus architecture using trench technology |
JP2000040951A (ja) * | 1998-05-18 | 2000-02-08 | Toshiba Corp | 半導体素子、その駆動方法及び駆動装置 |
EP1835542A3 (en) * | 1999-09-30 | 2007-10-03 | Kabushiki Kaisha Toshiba | Semiconductor device with trench gate |
-
2001
- 2001-01-19 EP EP12154987.7A patent/EP2463912B1/en not_active Expired - Lifetime
- 2001-01-19 US US10/221,273 patent/US6953968B2/en not_active Expired - Lifetime
- 2001-01-19 CN CNB018068618A patent/CN1187839C/zh not_active Expired - Lifetime
- 2001-01-19 KR KR10-2002-7012304A patent/KR100447364B1/ko active IP Right Grant
- 2001-01-19 EP EP11173885.2A patent/EP2398058B1/en not_active Expired - Lifetime
- 2001-01-19 WO PCT/JP2001/000373 patent/WO2002058160A1/ja active IP Right Grant
- 2001-01-19 EP EP01901484.4A patent/EP1353385B1/en not_active Expired - Lifetime
- 2001-01-19 JP JP2002558343A patent/JP4785334B2/ja not_active Expired - Lifetime
- 2001-01-20 TW TW090101502A patent/TW484171B/zh not_active IP Right Cessation
-
2005
- 2005-08-16 US US11/204,048 patent/US7115944B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533546U (ja) * | 1991-10-08 | 1993-04-30 | 株式会社明電舎 | 絶縁ゲート型半導体素子 |
JPH08222728A (ja) * | 1995-02-09 | 1996-08-30 | Mitsubishi Electric Corp | 絶縁ゲート型半導体装置 |
JPH09275212A (ja) * | 1996-04-04 | 1997-10-21 | Hitachi Ltd | 電圧駆動型半導体装置 |
JPH09283754A (ja) * | 1996-04-16 | 1997-10-31 | Toshiba Corp | 高耐圧半導体装置 |
JPH11330466A (ja) * | 1998-05-19 | 1999-11-30 | Toshiba Corp | 絶縁ゲート型半導体装置 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9299820B2 (en) | 2012-08-21 | 2016-03-29 | Rohm Co., Ltd. | Semiconductor device |
US9543421B2 (en) | 2012-08-21 | 2017-01-10 | Rohm Co., Ltd. | Trench-type insulated gate semiconductor device including an emitter trench and an overlapped floating region |
US9559195B2 (en) | 2012-08-21 | 2017-01-31 | Rohm Co., Ltd. | Semiconductor device |
US8994102B2 (en) | 2012-08-21 | 2015-03-31 | Rohm Co., Ltd. | Semiconductor device |
US10923582B2 (en) | 2012-08-21 | 2021-02-16 | Rohm Co., Ltd. | Trench-type insulated gate semiconductor device including an emitter trench and an overlapped floating region |
US10062774B2 (en) | 2012-08-21 | 2018-08-28 | Rohm Co., Ltd. | Trench-type insulated gate semiconductor device including an emitter trench and an overlapped floating region |
US10090297B2 (en) | 2013-08-28 | 2018-10-02 | Rohm Co., Ltd. | Semiconductor device |
US9236461B2 (en) | 2013-08-28 | 2016-01-12 | Rohm Co., Ltd. | Semiconductor device |
US9748229B2 (en) | 2013-08-28 | 2017-08-29 | Rohm Co., Ltd. | Semiconductor device |
US11610884B2 (en) | 2013-08-28 | 2023-03-21 | Rohm Co., Ltd. | Semiconductor device |
US10777548B2 (en) | 2013-08-28 | 2020-09-15 | Rohm Co., Ltd. | Method for manufacturing semiconductor device |
US9685544B2 (en) | 2014-04-15 | 2017-06-20 | Rohm Co., Ltd. | Semiconductor device including emitter regions and method of manufacturing the semiconductor device |
US10090404B2 (en) | 2014-04-15 | 2018-10-02 | Rohm Co., Ltd. | Semiconductor device including emitter regions and method of manufacturing the semiconductor device |
US10763344B2 (en) | 2014-04-15 | 2020-09-01 | Rohm Co., Ltd. | Semiconductor device including emitter regions and method of manufacturing the semiconductor device |
US12034065B2 (en) | 2014-04-15 | 2024-07-09 | Rohm Co., Ltd. | Semiconductor device including emitter regions and method of manufacturing the semiconductor device |
DE112015007246T5 (de) | 2015-12-28 | 2018-09-20 | Mitsubishi Electric Corporation | Halbleiterbauelement und verfahren zum herstellen eines halbleiterbauelements |
US10026803B1 (en) | 2016-12-27 | 2018-07-17 | Mitsubishi Electric Corporation | Semiconductor device, power conversion device, and method of manufacturing semiconductor device |
DE102017222805A1 (de) | 2016-12-27 | 2018-06-28 | Mitsubishi Electric Corporation | Halbleitervorrichtung, Leistungswandlungsvorrichtung und Verfahren einer Fertigung einer Halbleitervorrichtung |
US11101133B2 (en) | 2018-08-17 | 2021-08-24 | Mitsubishi Electric Corporation | Semiconductor device and manufacturing method thereof |
DE102021126018A1 (de) | 2020-11-02 | 2022-05-05 | Mitsubishi Electric Corporation | Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung |
US11949007B2 (en) | 2020-11-02 | 2024-04-02 | Mitsubishi Electric Corporation | Semiconductor device and method of manufacturing semiconductor device |
DE102022100456A1 (de) | 2021-02-16 | 2022-08-18 | Mitsubishi Electric Corporation | Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung |
Also Published As
Publication number | Publication date |
---|---|
EP2398058B1 (en) | 2016-09-07 |
US20050280029A1 (en) | 2005-12-22 |
EP1353385A1 (en) | 2003-10-15 |
US20030042537A1 (en) | 2003-03-06 |
US6953968B2 (en) | 2005-10-11 |
KR100447364B1 (ko) | 2004-09-07 |
JPWO2002058160A1 (ja) | 2004-05-27 |
EP2398058A3 (en) | 2011-12-28 |
WO2002058160A1 (fr) | 2002-07-25 |
TW484171B (en) | 2002-04-21 |
EP2398058A2 (en) | 2011-12-21 |
EP1353385A4 (en) | 2007-12-26 |
CN1418377A (zh) | 2003-05-14 |
EP2463912A3 (en) | 2012-10-17 |
EP2463912B1 (en) | 2015-07-08 |
EP1353385B1 (en) | 2014-09-24 |
US7115944B2 (en) | 2006-10-03 |
CN1187839C (zh) | 2005-02-02 |
EP2463912A2 (en) | 2012-06-13 |
KR20020086655A (ko) | 2002-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4785334B2 (ja) | 半導体装置 | |
US8698195B2 (en) | Semiconductor device | |
JP4028333B2 (ja) | 半導体装置 | |
JP2950688B2 (ja) | 電力用半導体素子 | |
EP1271654B1 (en) | Semiconductor device and method of manufacturing the same | |
US6737705B2 (en) | Insulated gate semiconductor device | |
US5838026A (en) | Insulated-gate semiconductor device | |
US7795638B2 (en) | Semiconductor device with a U-shape drift region | |
TWI336131B (en) | Semiconductor device | |
WO2017157289A1 (zh) | 一种大电流绝缘体上硅横向绝缘栅双极型晶体管器件 | |
CN111180521B (zh) | 一种降低开关损耗的半导体结构及制造方法 | |
JPH10178176A (ja) | トレンチ・ゲート構造を有するトレンチ・ゲート形絶縁ゲート・バイポーラ・トランジスタ | |
JP2006245477A (ja) | 半導体装置 | |
US6169299B1 (en) | Semiconductor device | |
JP3222692B2 (ja) | 電力用半導体素子 | |
US20100025725A1 (en) | Semiconductor device and method for production thereof | |
JP5610930B2 (ja) | 半導体装置 | |
KR20150076716A (ko) | 전력 반도체 소자 | |
JP2012165018A (ja) | 半導体装置およびその製造方法 | |
JP4130643B2 (ja) | 半導体素子 | |
KR20020010041A (ko) | 트렌치구조의 폴리실리콘 영역을 구비하는 고전압소자 및그 제조방법 | |
KR102042833B1 (ko) | 전력 반도체 소자 및 그 제조방법 | |
JP2002531952A (ja) | 補助電極を有するmos電界効果トランジスタ | |
CN117425965A (zh) | 碳化硅半导体装置 | |
JP2004247751A (ja) | 半導体素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060908 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110705 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110712 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4785334 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140722 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |