CN108604632A - 具有磁性隧道结及热稳定性增强层的存储器单元 - Google Patents

具有磁性隧道结及热稳定性增强层的存储器单元 Download PDF

Info

Publication number
CN108604632A
CN108604632A CN201680080416.6A CN201680080416A CN108604632A CN 108604632 A CN108604632 A CN 108604632A CN 201680080416 A CN201680080416 A CN 201680080416A CN 108604632 A CN108604632 A CN 108604632A
Authority
CN
China
Prior art keywords
magnetic
layer
thermal stability
free
magnetism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680080416.6A
Other languages
English (en)
Other versions
CN108604632B (zh
Inventor
M·M·皮纳尔巴锡
B·A·考尔达斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siping Co ltd Assignment For Benefit Of Creditors
Integrated Silicon Solution Cayman Inc
Original Assignee
Spin Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spin Memory Inc filed Critical Spin Memory Inc
Priority to CN202310530959.5A priority Critical patent/CN116367697A/zh
Publication of CN108604632A publication Critical patent/CN108604632A/zh
Application granted granted Critical
Publication of CN108604632B publication Critical patent/CN108604632B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

本发明揭示一种磁阻随机存取存储器MRAM装置。本文描述的所述装置在磁性隧道结的自由层上方具有热稳定性增强层。所述热稳定性增强层改进所述自由层的所述热稳定性,增加所述自由层的磁矩而不使所述自由层的磁性方向在平面内。所述热稳定性增强层可由CoFeB铁磁材料层构成。

Description

具有磁性隧道结及热稳定性增强层的存储器单元
技术领域
本专利文献大体上涉及自旋转移扭矩磁性存储器(STT-MRAM)装置,更特定来说,涉及具有增加磁性隧道结的自由层的热稳定性的热稳定性增强层的STT-MRAM装置。
背景技术
磁阻随机存取存储器(“MRAM”)是一种通过磁性存储元件存储数据的非易失性存储器技术。在一种类型的MRAM中,磁性存储元件包括两个铁磁板或电极,其可保持磁场并由非磁性材料分离,例如非磁性金属或绝缘体。此结构称为磁性隧道结(“MTJ”)。一般来说,板中的一者使其磁化钉扎(即“参考层”),这意味着此层具有比另一层更高的矫顽力,并需要更大的磁场或自旋极化电流来改变其磁化定向。第二板通常被称为自由层,并且其磁化方向可通过相对于参考层的较小磁场或自旋极化电流来改变。因此,自由层也称为存储层。使用堆叠材料制造MTJ,其中材料的每一堆叠形成MTJ立柱。
MRAM装置通过改变自由层的磁化定向来存储信息。特定来说,基于自由层相对于参考层是平行还是反平行对准,可将“1”或“0”存储在每一MRAM单元中。由于自旋极化隧穿磁阻(TMR)效应,单元的电阻由于两层的磁场的定向而改变。对于平行及反平行状态,单元的电阻将不同,且因此单元的电阻可用于区分“1”及“0”。MRAM装置的一个重要特征是其为非易失性存储器装置,因为其即使在电源关闭时也能维持信息。两个板的横向大小可为亚微米,并磁化方向相对于热波动仍然是稳定的。
自旋转移扭矩或自旋转移切换使用自旋对准(“极化”)电子来改变磁性隧道结中的自由层的磁化定向。一般来说,电子具有自旋,即,电子固有的角动量的量子数。电流通常是非极化的,即其由50%向上自旋及50%向下自旋电子组成。使电流通过磁性层使具有对应于磁性层(即,极化器)的磁化方向的自旋定向的电子极化,因此产生自旋极化电流。如果自旋极化电流传递到磁性隧道结装置中的自由层的磁性区域,那么电子将把其自旋角动量的一部分转移到磁化层,以在自由层的磁化上产生扭矩。因此,此自旋转移扭矩可切换自由层的磁化,实际上,这基于自由层相对于参考层是处于平行状态还是处于反平行状态写入“1”或“0”。
MRAM装置被认为是广泛存储器应用的下一代结构。一种MRAM技术使用垂直磁性隧道结装置。在垂直MTJ装置中,自由层及参考层由薄绝缘体层分离以用于自旋极化隧穿。自由层及参考层具有垂直于其平面的磁性方向,因此产生垂直磁性隧道结(pMTJ)。与面内MTJ技术相比,pMTJ配置可提供更低的临界切换电流,无需使用厚的反铁磁性层的简化层堆叠结构,以及将装置大小减小到40nm以下。
图1说明用于常规MRAM装置的pMTJ堆叠100。如所展示,堆叠100包含设置在堆叠100的底部的一或多个晶种层110,以在上文沉积的层中引发期望的晶体生长。垂直合成反铁磁性层(“pSAF层”)120安置在晶种层110的顶部。MTJ 130沉积在合成反铁磁(SAF)层120的顶部。MTJ 130包含参考层132(其为磁性层)、非磁性隧穿势垒层(即,绝缘体)134及自由层136(其也为磁性层)。应理解,参考层132实际上是SAF层120的一部分,但是当非磁性隧穿势垒层134及自由层136形成在参考层132上时,形成MTJ130的铁磁板中的一者。如图1中所展示,磁性参考层132具有垂直于其平面的磁化方向。也如图1中所展示,自由层136也具有垂直于其平面的磁化方向,但其方向可变化180度。
垂直SAF层120中的第一磁性层114安置在晶种层110上方。垂直SAF层120还具有安置在第一磁性层114上方的反铁磁耦合层116。如通过垂直SAF 120的磁性层114及132中的箭头所见,层114及132具有垂直于其相应平面的磁性方向。此外,非磁性间隔物140安置在MTJ 130的顶部上,并且极化器150可任选地安置在非磁性间隔物140的顶部上。极化器150是具有在其平面中的磁性方向但与参考层132及自由层136的磁性方向正交的磁性层。提供极化器150以使施加到pMTJ结构100的电子电流(“自旋对准电子”)极化。此外,可在极化器150顶部提上供一或多个覆盖层160以保护MTJ堆叠100上下方的层。最后,在覆盖层160上方沉积硬掩模170,并提供硬掩模170以使用反应离子蚀刻(RIE)工艺图案化MTJ结构100的下伏层。
如所论述的,一种类型的MTJ被称为垂直MTJ。在垂直MTJ中,参考层及自由层各自具有垂直于其相应层的平面的磁性方向。磁性存储器装置的电阻对自由磁性层的磁化矢量与参考层的磁化矢量的相对定向敏感。当自由磁性层的磁化矢量及参考层的磁化矢量分别处于反平行对准时,磁性存储器装置的电阻最高。当层自由磁性层的磁化矢量及参考层的磁化矢量分别平行对准时,磁性装置的电阻最低。因此,电阻测量或其等效物可确定自由磁性层的磁化矢量的定向。
MTJ的一个重要特性是热稳定性。针对给定垂直各向异性,每一垂直MTJ的热稳定性(即磁位)与MTJ的磁性材料体积成比例。MTJ的热稳定性是数据保持能力的因素。因此,改进MTJ的自由层的热稳定性是重要设计考虑。由于MTJ的磁性材料体积与垂直各向异性之间的关系,所以随着MTJ立柱尺寸减小,例如当针对下一代MRAM装置缩小现有设计时,热稳定性下降。这是非常不合需要的。遗憾的是,自由层的厚度不能随意增加以添加更多磁矩(体积)以增强热稳定性。因此,仅通过增加用于构造自由层(通常为CoFeB)的材料的厚度,不能增强具有垂直磁性方向的自由层结构的热稳定性。这是因为可获得垂直各向异性的CoFeB的厚度受到限制。针对CoFeB,此厚度可为大约十六(16)埃。高于此厚度,磁化反转为在平面内,意味着MTJ将不再是垂直MTJ。因此,无法通过进一步增加自由层厚度增强垂直MTJ自由(即,存储)层的热稳定性。
垂直磁化方向可使用表面垂直各向异性(界面垂直磁性各向异性)来实现,所述表面垂直各向异性是铁磁膜及用于自由层的非磁性材料的相邻覆盖及晶种层的界面性质。界面垂直磁性各向异性(IPMA)与膜的厚度成反比。针对普通铁磁材料,IPMA变得足够强以在1.2到1.6nm的厚度范围内保持磁化在平面外。然而,在此厚度范围,自由层的磁矩很小。自由层的此小磁矩降低热稳定性。另一方面,增加自由层厚度降低IPMA,这使自由层变为面内磁化。在垂直MTJ装置中,这是不可接受的,因为其将导致隧穿磁阻(TMR)值降级到低于装置可可靠操作的水平。因此,增加自由层厚度通过减小垂直各向异性来降低热稳定性。另外,装置本身变得无用,因为自由层失去其垂直磁性各向异性。这是垂直MTJ MRAM装置要解决的最难的问题之一。
因此,需要增强MTJ的自由层的热稳定性而无须扰乱自由层的厚度。
发明内容
揭示一种MRAM装置,其包括具有垂直各向异性的薄磁性材料层,在本文中称为热稳定性增强(TSE)层,其沉积在非磁性分离层上,其中所述非磁性分离层位于所述自由层与所述TSE层之间。可如本文所描述那样优化TSE层磁化以增强自由层的切换特性。
在实施例中,揭示一种磁性装置。所述实施例包括位于第一平面中的底部电极。所述实施例进一步包括垂直合成反铁磁结构,其包含位于第二平面中的磁性参考层,其中所述磁性参考层具有垂直于所述第二平面并具有固定磁化方向的磁化方向。所述实施例进一步揭示位于第三平面中的非磁性隧道势垒层,其安置在所述磁性参考层上方。所述实施例进一步包括位于第四平面中的自由磁性层,其安置在所述非磁性隧道势垒层上方。所述自由磁性层具有垂直于所述第四平面的磁化矢量,并具有可从第一磁化方向切换到第二磁化方向的磁化方向。所述磁性参考层、所述非磁性隧道势垒层及所述自由磁性层形成磁性隧道结。所述实施例进一步包括位于第五平面中的非磁性热稳定性增强耦合层,其安置在所述自由磁性层上方。所述实施例还包括位于第六平面中的磁性热稳定性增强层,其与所述自由磁性层物理分离并通过所述非磁性热稳定性增强耦合层耦合到所述自由磁性层。所述磁性热稳定性增强层具有垂直于所述第六平面的磁化方向,并具有可从所述第一磁化方向切换到所述第二磁化方向的磁化方向,其中所述磁性热稳定性增强层从所述第一磁化方向到所述第二磁化方向的切换跟踪所述磁性自由层中的切换。所述实施例还包括位于第七平面中的盖层,其安置在所述热稳定性增强层上方。
在所述实施例的方面中,所述磁性装置进一步包括电流源,其引导电流通过位于第七平面中的盖层、位于第六平面中的磁性热稳定性增强层、位于第五平面中的非磁性热稳定性增强耦合层、位于第四平面中的自由磁性层、位于第三平面中的非磁性隧道势垒层、位于第二平面中的磁性参考层、及位于第一平面中的底部电极。
在所述实施例的另一方面中,所述磁性热稳定性增强层包括CoFeB层。
在所述实施例的另一方面中,所述磁性热稳定性增强层包括CoFeB膜,其厚度在1.3纳米与1.5纳米之间。
在所述实施例的另一方面中,所述自由磁性层包含具有Ta中间层的CoFeB。
在所述实施例的另一方面中,所述自由磁性层的总厚度为1.6纳米。
在所述实施例的另一方面中,所述垂直合成反铁磁结构进一步包括第一磁性pSAF层及第二磁性pSAF层,其中所述第一磁性pSAF层在所述第一电极上方并通过交换耦合层与所述第二磁性pSAF层分离。
在所述实施例的另一方面中,铁磁耦合层位于所述第二磁性pSAF层与所述磁性参考层之间。
在所述实施例的另一方面中,所述磁性热稳定性增强层通过所述非磁性热稳定性增强耦合层磁性地耦合到所述自由磁性层。
在所述实施例的另一方面中,所述非磁性热稳定性增强耦合层包括MgO层。
在所述实施例的另一方面中,所述MgO层的厚度在0.6到1.2nm之间。
在所述实施例的另一方面中,所述MgO层的厚度为0.7nm。
在所述实施例的另一方面中,所述非磁性热稳定性增强耦合层在所述磁性热稳定性增强层与自由磁性层之间提供高界面垂直磁性各向异性,使得所述自由磁性层的所述磁性方向保持垂直于所述第四平面,且所述磁性热稳定性增强层的磁性方向保持垂直于所述第六平面。
在另一实施例中,揭示一种磁性装置,其包括垂直磁性隧道结,所述磁性隧道结具有磁性参考层及磁性自由层。所述磁性参考层及所述磁性自由层由非磁性隧道势垒层分离。所述磁性参考层具有垂直于其平面的固定磁性方向。所述磁性自由层具有可在第一垂直磁性方向与第二垂直磁性方向之间切换的可变磁性方向。所述第一垂直磁性方向及所述第二垂直磁性方向垂直于所述磁性自由层。所述实施例进一步包括磁性热稳定性增强层,其安置在所述磁性隧道结的所述磁性自由层上。所述磁性热稳定性增强层包括具有可变磁性方向的磁性材料,所述可变磁性方向可在所述第一垂直磁性方向与所述第二垂直磁性方向之间切换。在实施例中,所述磁性热稳定性增强层从所述第一磁化方向到所述第二磁化方向的切换跟踪所述磁性自由层中的切换。所述实施例进一步包括非磁性热稳定性增强耦合层,其安置在所述磁性隧道结的所述磁性自由层与所述磁性热稳定性增强层之间并使所述磁性隧道结的所述磁性自由层与所述磁性热稳定性增强层物理分离。所述非磁性热稳定性增强耦合层磁性地耦合所述自由磁性层及所述磁性热稳定性耦合层。
在所述实施例的方面中,所述磁性装置进一步包括电极及耦合到所述电极的垂直合成反铁磁结构。所述垂直合成反铁磁结构包含所述磁性参考层。在此实施例的方面中,盖层安置在所述磁性热稳定性增强层上方。
在所述实施例的另一方面中,所述垂直合成反铁磁结构进一步包括第一磁性pSAF层及第二磁性pSAF层。所述第一磁性pSAF层在所述电极上方并通过非磁性交换耦合层与所述第二磁性pSAF层分离。
在所述实施例的另一方面中,所述磁性热稳定性增强层包括CoFeB。
在所述实施例的另一方面中,所述磁性热稳定性增强层包括CoFeB膜,所述CoFeB膜的厚度在1.3纳米与1.5纳米之间。
在所述实施例的另一方面中,所述自由磁性层包含具有Ta中间层的CoFeB。
在所述实施例的另一方面中,所述自由磁性层的总厚度为1.6纳米。
在所述实施例的另一方面中,所述磁性装置进一步包括电流源,所述电流源引导电流通过所述盖层、所述磁性热稳定性增强层、所述非磁性热稳定性增强耦合层、所述自由磁性层、所述非磁性隧道势垒层、所述垂直合成反铁磁结构及所述电极。
在所述实施例的另一方面中,所述非磁性热稳定性增强耦合层在所述磁性热稳定性增强层与自由磁性层之间提供高界面垂直磁性各向异性,使得所述自由磁性层的所述磁性方向及所述磁性热稳定性增强层的所述磁性方向保持在平面外。
参考下文描述及附图,将更好地理解实施例的这些及其它目的、特征,方面及优点。
附图说明
作为本说明书的一部分包含的附图说明目前优选实施例,并与上文给出的一般描述及下文给出的详细描述一起用于解释及教示本文描述的MTJ装置的原理。
图1说明用于具有正交偏振层的MRAM装置的垂直MTJ堆叠。
图2说明使用本文描述的概念制造磁性装置的过程。
图3说明根据本文所描述的教示制造的磁性装置的各个层。
图4是用于各种垂直磁性隧道结装置的薄膜振动样本磁强计(VSM)主磁滞回线数据的图。
图5是比较具有热稳定性增强层的装置与不具有热稳定性增强层的装置的热稳定性的图。
图式不一定按比例绘制,并在整个图式中,出于说明性目的,通常由相似参考数字表示具有类似结构或功能的元件。图式仅希望促进描述本文描述的各种实施例;图式未描述本文揭示的教示的每一个方面,并且不限制权利要求书的范围。
具体实施方式
呈现下文描述以使得所属领域的技术人员能够使用拥有具有高热稳定性的自由层的垂直磁性隧道结来创建及使用STT-MRAM装置。本文揭示的特征及教示中的每一者可单独利用或与其它特征结合使用以实施所揭示的系统及方法。参考附图进一步详细描述单独及组合地利用许多这些额外特征及教示的代表性实例。此详细描述仅希望向所属领域的技术人员教示用于实践本教示的优选方面的进一步细节,并不希望限制权利要求书的范围。因此,在下文详细描述中揭示的特征的组合对于在最广泛意义上实践教示可能不是必需的,而是仅仅经教示以描述本教示的具有特定代表性的实例。
在下文描述中,仅出于解释的目的,阐述特定术语以提供对本教示的透彻理解。然而,对于所属领域的技术人员来说显而易见的是,实践本教示不需要这些特定细节。
将参考图2及3描述使用本教示的STT-MRAM装置的实施例。图2是展示使用本教示制造STT-MRAM装置300的方法200的流程图。图3说明根据本文所描述的教示制造的STT-MRAM装置300的各个层。应注意,图3说明在所述层中的每一者之间具有空间。所属领域的技术人员将认识到,间隙仅用于说明目的,并且实际STT-MRAM装置在其各个层之间将不具有间隙。应注意,图3中所说明的各个层用于示范性装置。所属领域的一般技术人员将知道可能存在额外层或者所说明的所述特定层可能不存在于装置中。
如将论述,STT-MRAM装置300拥有具有垂直各向异性的薄磁性材料层,在本文中称为热稳定性增强层(TSE)380。如本文描述,TSE层通过分离层375磁性地耦合到MTJ 355的自由层365。在MTJ 355的固定磁性参考层340的相对侧上的铁磁耦合层345提供额外界面以实现高IPMA,这允许自由层维持平面外磁化,其实现高于百分之一百(100)的垂直TMR值。
为制造STT-MRAM装置300,在步骤202中,在半导体晶片(未展示)或其它适当衬底结构上制造底部电极305。在实施例中,底部电极305可包括六个TaN/CuN多层310,六个TaN/CuN多层中的每一者可具有六纳米的厚度。在步骤204期间使用磁控管溅射沉积这些TaN/CuN多层310。底部电极305还可包括在TaN/CuN多层310上方制造的TaN层315,在一个实施例中,TaN层315的厚度可为2nm。在步骤206期间通过磁控管溅射沉积TaN层315。
在制造底部电极305之后,在步骤208期间制造垂直合成反铁磁体(pSAF)结构320。如图2所见,pSAF 320的制造可包含若干步骤,现在将对其进行论述。在步骤210,制造第一磁性pSAF层325。在实施例中,第一磁性pSAF层包括具有垂直各向异性的Co/Ni多层。第一磁性pSAF层325沉积在底部电极305的TaN层315上方。第一磁性pSAF层325是具有垂直于其平面的磁性方向的磁性层,如图3中所展示。在实施例中,第一磁性pSAF层325包括六个Co/Ni层,其中每一Co/Ni层的厚度为0.8纳米。
pSAF 320的制造进一步包含步骤212,其中将非磁性交换耦合层330沉积在第一磁性pSAF层325上方。在实施例中,非磁性交换耦合层330由Co/Ru/Co多层构成,Co/Ru/Co多层包括由0.85nm的Ru层分离的第一及第二0.18nm的Co层。接下来,在步骤214,在交换耦合层330上方沉积第二磁性pSAF层335。在实施例中,第二磁性pSAF层包括具有垂直各向异性的Co/Ni多层。第二磁性pSAF层335是具有垂直于其平面的磁性方向的磁性层,如图3中所见。第二磁性pSAF层335可包括四个Co/Ni多层,其中每一Co/Ni多层厚度为0.8纳米。如图3所展示,由于通过交换耦合层330的反铁磁耦合,第一磁性pSAF层325及第二磁性pSAF层335的磁性方向相互反平行布置。应注意,pSAF 320中的磁性pSAF层325及335中的每一者或任一者可用Co/Pt层或Co/Ni多层与Co/Pt多层两者的组合代替。
pSAF 320的制造进一步可包含步骤216,其中制造垂直磁性隧道结355的参考层340。在实施例中,制造参考层340的步骤216包括步骤218,其中沉积铁磁耦合层345,以及步骤220,其中沉积固定磁性方向层350。在实施例中,铁磁耦合层345可包括Co/Ta多层,而固定磁性方向层350可包括CoFeB膜层及Ta层,其组合具有垂直各向异性。
Co/Ta铁磁耦合层345的Co层可具有0.21nm的厚度,并且Co/Ta铁磁耦合层345的Ta层可具有0.25nm的厚度。固定磁性方向层350可包括具有Ta中间层的CoFeB层。在实施例中,固定磁性方向层350包括0.7nm厚的CoFeB层、0.25nm的Ta层及0.8nm厚的CoFeB层。应注意,Ta中间层可被例如钨(W)、铪(Hf)等的其它材料代替。参考层340的铁磁耦合层345将固定磁性方向层350耦合到垂直合成反铁磁结构320的第二磁性pSAF层335,这有助于维持参考层340、自由层365(待论述)及热稳定性增强层380(也待论述)的垂直磁性方向。
在步骤222,制造垂直磁性隧道结355的剩余层。如所论述,垂直磁性隧道结355包括由非磁性隧道势垒层360分离的参考层340及自由层365。在实施例中,在步骤224处沉积非磁性隧穿势垒层360。非磁性隧穿势垒层360由绝缘体材料构成,所述绝缘体材料可为大约一(1)nm厚的氧化镁(MgO)层。在沉积非磁性隧穿势垒层360之后,执行步骤226,其沉积自由层365。在这些实施例中,自由层365可包括CoFeB层及Ta中间层。在实施例中,第一CoFeB层具有1.1nm的CoFeB厚度,Ta层具有0.25nm的厚度,且第二CoFeB层的具有0.5nm的CoFeB厚度。应注意,其它材料可代替Ta中间层,其实例是钨(W)、铪(Hf)等。
自由层365及参考层340两者皆具有垂直各向异性,且因此具有垂直于每一相应层的平面的磁性方向。取决于存储在装置中的逻辑电平,参考层及自由层的磁性方向将为平行的或反平行的。
在步骤230处,在垂直磁性隧道结的自由层365上方制造非磁性热稳定性增强耦合层375,其用途将在下文进行论述。然后,在步骤232,在非磁性热稳定性增强耦合层375上方制造热稳定性增强层380。在实施例中,热稳定性增强层380包括具有垂直各向异性的CoFeB铁磁性层,其厚度在0.35nm与1.5nm之间,而非磁性热稳定性增强耦合层375可包括MgO层,并可具有可在0.6到1.2nm之间变化的厚度。MgO厚度的选择经选择使得可实现与自由层365的不同磁性耦合强度。针对约0.6nm到0.75nm的MgO厚度,热稳定性增强层380与自由层的磁性耦合较强,并允许优化自由层稳定性。在一个实施例中,非磁性热稳定性增强耦合层375由0.7nm的MgO层组成。随着非磁性热稳定性增强耦合层375的MgO的厚度增加,磁性耦合将指数地减小。当非磁性热稳定性增强耦合层375的MgO的厚度增加时,热稳定性增强层380将变得越来越少地耦合到自由层365,并当MgO厚度超过大约1.2nm时,热稳定性增强层380与自由层365最终解耦。非磁性金属或金属层可代替此实施例中用于非磁性热稳定性增强耦合层375的MgO。
在图3中展示装置300的实施例中,热稳定性增强层380包括沉积在非磁性热稳定性耦合层375上方的厚度为0.35nm的CoFeB层。在另一实施例中,热稳定性增强层380包括厚度在1.3nm与1.5nm之间的CoFeB层。如图3中所展示,热稳定性增强层380是磁性的,具有垂直各向异性,并具有垂直于其平面的磁性方向(由箭头说明)。如还将论述,热稳定性增强层380的磁性方向可切换,并通常将跟踪自由层365的磁性方向。
如所论述,非磁性热稳定性耦合层375可包括厚度为0.7nm的MgO层。薄的CoFeB热稳定性增强层380及MgO非磁性热稳定性增强耦合层375能够在用以制造装置300退火工艺期间改进非磁性隧穿势垒层360的MgO及垂直磁性隧道结355的自由层365的CoFeB的再结晶。非磁性隧穿势垒层360的MgO及自由层365的CoFeB的经增强再结晶改进垂直MTJ结构355的性能(其包含热稳定性)。应注意,在替代实施例中,热稳定性增强层380可用除CoFeB之外的材料来解释,例如Co、Fe、Ni或B的合金。
过程200中的最后步骤234是在热稳定性增强层380上方制造覆盖结构。盖385可包括2nm的TaN层及厚度为10nm的Ru层。
非磁性热稳定性增强耦合层375(例如,MgO层)将热稳定性增强层380铁磁地耦合到自由层365并可用于控制自由层365的稳定程度,因此还允许间接调谐切换自由层365的磁性方向所需的切换电流。可调整热稳定性增强层380的厚度(从0.1到3nm)以针对不同装置大小优化热稳定性及切换电流,并且此厚度的选择将受到许多因素的影响,其包含MTJ层的厚度。
热稳定性增强层380改进装置300的热稳定性,如现在将参考图4及5进行论述。图4是针对垂直磁性隧道结装置的各种实施例的薄膜振动样本磁强计(VSM)主磁滞回线数据的图。应注意,针对这些测试,除热稳定性增强层380的厚度之外,针对每一测试的装置大小大致相同。实施例包含具有垂直磁性隧道结355但不具有热稳定性增强层380的装置。针对此实施例的VSM主磁滞回线标记为曲线405。第二实施例是具有垂直磁性隧道结355及包括1.3纳米的CoFeB层的热稳定性增强层380的装置。针对此实施例的VSM主磁滞回线标记为曲线410。第三实施例是具有垂直磁性隧道结355及包括1.5纳米的CoFeB层的热稳定性增强层380的装置。针对此实施例的VSM主磁滞回线标记为曲线415。
为获得此数据,垂直于每一者的平面施加DC场。施加场开始于-7000奥斯特,其接着在上升到+7000奥斯特(另一极大磁场)之前,减少到0.00奥斯特。然后在增加到-7000之前,施加场从+7000奥斯特稳定地减少到0.00奥斯特。DC施加场的正负符号指示场扫掠的垂直施加场方向。采用沿易磁性轴施加的DC磁场(即采用垂直于样本平面定向的磁场)来进行VSM测量(如图4中的图的Y轴上的归一化磁矩所展示)。针对各种磁场强度由图4的箭头展示垂直合成反铁磁结构320的Co/Ni层325、Co/Ni层335、CoFeB/Ta层350(参考层340的)、自由层365及热稳定性增强层380的垂直各向异性的磁性方向。
从图4中可看出,当施加磁场大约为-6500奥斯特时,垂直合成反铁磁结构320的第一磁性pSAF层325、第二磁性pSAF层335、固定磁性方向层350(参考层340的)、自由层365及热稳定性增强层380的磁性方向都彼此平行。随着磁场减小到大约-2500奥斯特,这是比MRAM装置将在真实世界应用中经历的磁场比大得多的磁场,第二磁性pSAF层335及参考层340的固定磁性方向层350的磁性方向切换使得其与自由层365反平行。然而,在施加大磁场的情况下,自由层365尚未切换。
当大约0.00奥斯特的施加磁场从负变为正时,图4展示自由层365及热稳定性增强层380的磁性方向切换。然而,参考层340的第二磁性pSAF层335及固定磁性方向层350的磁性方向不切换。这表明针对每一实施例(例如,具有及不具有热稳定性增强层380的装置),参考层340不切换。因此,图4展示热稳定性增强层380的存在不会对参考层340的性能产生负面影响(即,参考层340仍然难以切换)。
当施加磁场开始增加时,举例来说,在+5000奥斯特,图4展示参考层340的第二磁性pSAF层335及固定磁性方向层350(以及垂直合成反铁磁性结构320的第一磁性pSAF层325)的磁性方向切换使得这些层中的每一者的磁性方向再次平行。为完成这些实施例中的每一者的VSM主磁滞回线,接着将施加磁场减小到0.00奥斯特,接着增加磁场,如图4中的曲线405、410及415中的每一者展示。可看出,垂直合成反铁磁结构320的第一磁性pSAF层325、第二磁性pSAF层335、固定磁性方向层350(参考层340的)、自由层365及热稳定性增强层380中的每一者的切换特性针对VSM磁滞回线的此部分是类似的。
在图4中,曲线405、410及415展示在此实例中针对每一实施例的自由层365的磁性方向在大约0.00奥斯特切换。也如图4中所展示,与不具有热稳定性增强层380(参见曲线405)的垂直MTJ装置的自由层相比,具有热稳定性增强层380(参见曲线410及415)的实施例的每一实施例的磁矩(Y轴)增加。因此,构造成在自由层上方具有热稳定性增强层380的两个实施例表明个别垂直MTJ的磁体积的增加。
热稳定性增强层380与自由层365之间的非磁性热稳定性增强耦合层375提供高界面垂直磁性各向异性(IPMA),其用于维持自由层365及热稳定性增强层380两者的磁性方向在平面外,从而确保热稳定性增强层380及自由层365的磁化方向垂直于其平面。
图5比较具有热稳定性增强层380的装置300与不具有热稳定性增强层380的装置的性能数据。第一行含有矫顽场Hc(单位奥斯特)与装置直径(单位纳米)的中值。第二行展示作用在自由层365上的磁场的零(0)奥斯特的回线偏移,其指示自由层365与具有参考层340的垂直合成反铁磁体(pSAF)结构之间的静磁耦合。与图4中说明的测试一样,除热稳定性增强层380的存在及厚度之外,图5中所展示的每一实例的装置大小是相同的。
特定来说,图5比较不具有热稳定性增强层380的装置(列1)、具有厚度为1.3纳米的热稳定性增强层380的装置(列2)、以及具有厚度为1.5纳米的热稳定性增强层380的装置(列3)的矫顽场(Hc)。众所周知,矫顽场(Hc)是热稳定性(其难以直接测量)的良好指标。制造宽度为60nm、70nm、90nm及100nm的装置300,并针对每一实施例进行测试。如容易看出,与不具有此层的装置相比,具有1.3纳米厚的热稳定性增强层380的装置300具有显著改进的热稳定性。同样地,具有1.5nm厚的热稳定性增强层380的装置300进一步改进热稳定性。实际上,如图5中所见,具有热稳定性增强层380的装置的矫顽场(Hc)从大约100奥斯特增加到大约400奥斯特。这表明当存在热稳定性增强层380时,垂直磁性隧道结的热稳定性得到改进。
在矫顽力Hc增加的同时,临界切换电流不会以可能引起性能问题的方式增加,这与所属领域的一般技术人员对如此大的磁化量的预期相反。这可在表1中看到。特定来说,表1展示用于收集图5中数据的相同测试装置的关键切换参数:
参数 无TSE层 1.3nm TSE层380 1.5nm TSE层380
Jc0+/- 2.1/2.1 4.3/5.6 5.2/6.5
Vc0+/- 0.36/0.54 0.61/0.94 0.7/0.91
Delta+/- 20/22 34/32 30/40
TMR% 100 97 97
aΩμm2 12.3 13 13
在表1中,Jc0是临界切换电流密度。Vc0是临界切换电压。Delta是热稳定性因子。TMR是隧穿磁阻。RA是隧道结的电阻区域乘积。还应注意,“+/-”表示施加到测试装置的垂直电压的正/负方向。如表1中的数据表明,具有垂直MTJ及热稳定性增强层380的MRAM存储器单元(其中热稳定性增强层380及自由层365的厚度具有3nm的组合厚度)实现平面外磁化及低临界切换电流两者。
应注意,在图3的上下文中论述的实施例具有由CoFeB构造的热稳定性增强层380,热稳定性增强层380也可使用各种其它铁磁材料构造,其实例是Co、Ni、Fe及其合金。特定来说,可使用CoFeB(Ms~1200emu/cc)或CoFe(Ms~1500emu/cc)。通过使用这些材料或适当地将这些材料合金化,可获得热稳定性增强层380的所需磁化值,且因此能够控制自由层的铁磁耦合强度及热稳定性程度。
可使用薄膜沉积来制造如本文所描述的具有垂直磁性隧道结及热稳定性增强层380的MRAM装置300。使用市售的物理气相沉积(PVD)工具,通过常规DC及RF溅射方法沉积层堆叠。层堆叠可在300℃下沉积后退火,在不具有磁场的情况下浸泡1小时。
总之,本教示的一个方面是形成磁性层,其磁性地耦合到垂直磁性隧道结的自由层。本文描述为TSE层的此磁性层具有垂直于其平面的磁化方向,并使用非磁性分离层与MTJ的自由层分离。
所属领域的技术人员将理解,以上揭示仅映射特定实施例。应进一步理解,即使当一层被描述为已经放置在另一层上、覆盖在另一层之上或位于另一层之上时,也可出现中介层。所述理解适用于权利要求书。应进一步理解,虽然已经以二维横截面描绘MTJ立柱,但是其为三维物体,并且所论述的层可覆盖MTJ立柱的三维顶部、所有侧面及所有周围的谷部分。
所属领域的技术人员还应了解,可制造多个装置300并将其作为STT-MRAM装置的相应位单元提供。换句话说,每一装置300可实施为用于具有多个位单元的存储器阵列的位单元。
以上描述及图式仅被认为是对特定实施例的说明,所述特定实施例实现本文描述的特征及优点。可对特定工艺条件进行修改及替换。因此,本专利文献中的实施例不被视为受前述描述及图式的限制。

Claims (22)

1.一种磁性装置,其包括:
底部电极,其位于第一平面中;
垂直合成反铁磁结构,所述垂直合成反铁磁结构包含位于第二平面中的磁性参考层,所述磁性参考层具有垂直于所述第二平面的磁化方向并具有固定磁化方向;
非磁性隧道势垒层,其位于第三平面中并安置在所述磁性参考层上方;
自由磁性层,其位于第四平面中并安置在所述非磁性隧道势垒层上方,所述自由磁性层具有垂直于所述第四平面的磁化矢量并具有可从第一磁化方向切换到第二磁化方向的磁化方向,所述磁性参考层、所述非磁性隧道势垒层及所述自由磁性层形成磁性隧道结;
非磁性热稳定性增强耦合层,其位于第五平面中并安置在所述自由磁性层上方;
磁性热稳定性增强层,其位于第六平面中,所述磁性热稳定性增强层与所述自由磁性层物理分离并通过所述非磁性热稳定性增强耦合层耦合到所述自由磁性层,所述磁性热稳定性增强层具有垂直于所述第六层的磁化方向,并具有可从所述第一磁化方向切换到所述第二磁化方向的磁化方向,其中所述磁性热稳定性增强层从所述第一磁化方向到所述第二磁化方向的切换跟踪所述磁性自由层中的切换;及
盖层,其位于第七平面中并安置在所述热稳定性增强层上方。
2.根据权利要求1所述的磁性装置,其进一步包括电流源,所述电流源引导电流通过位于所述第七平面中的所述盖层、位于第六平面中的所述磁性热稳定性增强层、位于所述第五平面中的所述非磁性热稳定性增强耦合层、位于所述第四平面中的所述自由磁性层、位于所述第三平面中的所述非磁性隧道势垒层、位于所述第二平面中的所述磁性参考层、及位于所述第一平面中的所述底部电极。
3.根据权利要求1所述的磁性装置,其中所述磁性热稳定性增强层包括CoFeB层。
4.根据权利要求1所述的磁性装置,其中所述磁性热稳定性增强层包括CoFeB膜,所述CoFeB膜的厚度在1.3纳米与1.5纳米之间。
5.根据权利要求4所述的磁性装置,其中所述自由磁性层包括具有Ta中间层的CoFeB。
6.根据权利要求5所述的磁性装置,其中所述自由磁性层的总厚度为1.6纳米。
7.根据权利要求1所述的磁性装置,其中所述垂直合成反铁磁结构进一步包括第一磁性pSAF层及第二磁性pSAF层,其中所述第一磁性pSAF层在所述第一电极上方并通过交换耦合层与所述第二磁性pSAF层分离。
8.根据权利要求7所述的磁性装置,其进一步包括位于所述第二磁性pSAF层与所述磁性参考层之间的铁磁耦合层。
9.根据权利要求1所述的磁性装置,其中所述磁性热稳定性增强层通过所述非磁性热稳定性增强耦合层磁性地耦合到所述自由磁性层。
10.根据权利要求1所述的磁性装置,其中所述非磁性热稳定性增强耦合层包括MgO层。
11.根据权利要求10所述的磁性装置,其中所述MgO层的厚度在0.6到1.2nm之间。
12.根据权利要求10所述的磁性装置,其中所述MgO层的厚度为0.7nm。
13.根据权利要求1所述的磁性装置,其中所述非磁性热稳定性增强耦合层在所述磁性热稳定性增强层与自由磁性层之间提供高界面垂直磁性各向异性,使得所述自由磁性层的所述磁性方向保持垂直于所述第四平面,且所述磁性热稳定性增强层的所述磁性方向保持垂直于所述第六平面。
14.一种磁性装置,其包括:
垂直磁性隧道结,其具有磁性参考层及磁性自由层,所述磁性参考层及所述磁性自由层由非磁性隧穿势垒层分离,所述磁性参考层具有垂直于其平面的固定磁性方向,所述磁性自由层具有可在第一垂直磁性方向与第二垂直磁性方向之间切换的可变磁性方向,其中所述第一垂直磁性方向及所述第二垂直磁性方向垂直于所述磁性自由层;
磁性热稳定性增强层,其安置在所述磁性隧道结的所述磁性自由层上方,所述磁性热稳定性增强层包括具有可变磁性方向的磁性材料,所述可变磁性方向可在所述第一垂直磁性方向与所述第二垂直磁性方向之间切换,其中所述磁性热稳定性增强层从所述第一磁化方向到所述第二磁化方向的切换跟踪所述磁性自由层中的切换;及
非磁性热稳定性增强耦合层,其安置在所述磁性隧道结的所述磁性自由层与所述磁性热稳定性增强层之间并使所述磁性隧道结的所述磁性自由层与所述磁性热稳定性增强层物理分离,所述非磁性热稳定性增强耦合层磁性地耦合所述自由磁性层及所述磁性热稳定性耦合层。
15.根据权利要求14所述的磁性装置,其进一步包括:
电极;
垂直合成反铁磁结构,其耦合到所述电极,所述垂直合成反铁磁结构包含所述磁性参考层;
盖层,其安置在所述磁性热稳定性增强层上方。
16.根据权利要求15所述的磁性装置,其中所述垂直合成反铁磁结构进一步包括第一磁性pSAF层及第二磁性pSAF层,其中所述第一磁性pSAF层在所述电极上方并通过非磁性交换耦合层与所述第二磁性pSAF层分离。
17.根据权利要求14所述的磁性装置,其中所述磁性热稳定性增强层包括CoFeB。
18.根据权利要求14所述的磁性装置,其中所述磁性热稳定性增强层包括CoFeB膜,所述CoFeB膜的厚度在1.3纳米与1.5纳米之间。
19.根据权利要求18所述的磁性装置,其中所述自由磁性层包括具有Ta中间层的CoFeB。
20.根据权利要求19所述的磁性装置,其中所述自由磁性层的总厚度为1.6纳米。
21.根据权利要求15所述的磁性装置,其进一步包括电流源,所述电流源引导电流通过所述盖层、所述磁性热稳定性增强层、所述非磁性热稳定性增强耦合层、所述自由磁性层、所述非磁性隧道势垒层、所述垂直合成反铁磁结构及所述电极。
22.根据权利要求14所述的磁性装置,其中所述非磁性热稳定性增强耦合层在所述磁性热稳定性增强层与自由磁性层之间提供高界面垂直磁性各向异性,使得所述自由磁性层的所述磁性方向及所述磁性热稳定性增强层的所述磁性方向保持在平面外。
CN201680080416.6A 2016-01-28 2016-12-19 具有磁性隧道结及热稳定性增强层的存储器单元 Active CN108604632B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310530959.5A CN116367697A (zh) 2016-01-28 2016-12-19 具有磁性隧道结及热稳定性增强层的存储器单元

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662287994P 2016-01-28 2016-01-28
US62/287,994 2016-01-28
US15/157,783 2016-05-18
US15/157,783 US9741926B1 (en) 2016-01-28 2016-05-18 Memory cell having magnetic tunnel junction and thermal stability enhancement layer
PCT/US2016/067444 WO2017131894A1 (en) 2016-01-28 2016-12-19 Memory cell having magnetic tunnel junction and thermal stability enhancement layer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310530959.5A Division CN116367697A (zh) 2016-01-28 2016-12-19 具有磁性隧道结及热稳定性增强层的存储器单元

Publications (2)

Publication Number Publication Date
CN108604632A true CN108604632A (zh) 2018-09-28
CN108604632B CN108604632B (zh) 2023-05-09

Family

ID=59387213

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310530959.5A Pending CN116367697A (zh) 2016-01-28 2016-12-19 具有磁性隧道结及热稳定性增强层的存储器单元
CN201680080416.6A Active CN108604632B (zh) 2016-01-28 2016-12-19 具有磁性隧道结及热稳定性增强层的存储器单元

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310530959.5A Pending CN116367697A (zh) 2016-01-28 2016-12-19 具有磁性隧道结及热稳定性增强层的存储器单元

Country Status (5)

Country Link
US (3) US9741926B1 (zh)
JP (1) JP7105191B2 (zh)
KR (1) KR102617167B1 (zh)
CN (2) CN116367697A (zh)
WO (1) WO2017131894A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109471051A (zh) * 2018-12-24 2019-03-15 珠海多创科技有限公司 一种tmr全桥磁传感器及其制备方法
CN110335940A (zh) * 2019-07-10 2019-10-15 中国科学院物理研究所 巨磁致电阻器件和磁性隧道结结构及包括其的电子设备
CN111613720A (zh) * 2019-02-25 2020-09-01 上海磁宇信息科技有限公司 一种磁性随机存储器存储单元及磁性随机存储器
CN112490355A (zh) * 2019-09-12 2021-03-12 铠侠股份有限公司 磁性存储装置
CN112490353A (zh) * 2019-09-11 2021-03-12 上海磁宇信息科技有限公司 一种磁性随机存储器存储单元及磁性随机存储器
CN112490354A (zh) * 2019-09-11 2021-03-12 上海磁宇信息科技有限公司 一种磁性随机存储器存储单元及磁性随机存储器
CN112599661A (zh) * 2019-10-02 2021-04-02 三星电子株式会社 包括磁隧道结的磁存储器件
CN113140670A (zh) * 2020-01-16 2021-07-20 上海磁宇信息科技有限公司 一种磁性隧道结垂直反铁磁层及随机存储器

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11038100B1 (en) * 2013-11-06 2021-06-15 Yimin Guo Magnetoresistive element having a perpendicular AFM structure
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US10468590B2 (en) 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US10366774B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Device with dynamic redundancy registers
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
JP7023637B2 (ja) * 2017-08-08 2022-02-22 株式会社日立ハイテク 磁気トンネル接合素子の製造方法
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10693056B2 (en) 2017-12-28 2020-06-23 Spin Memory, Inc. Three-dimensional (3D) magnetic memory device comprising a magnetic tunnel junction (MTJ) having a metallic buffer layer
US10395711B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Perpendicular source and bit lines for an MRAM array
US10360962B1 (en) 2017-12-28 2019-07-23 Spin Memory, Inc. Memory array with individually trimmable sense amplifiers
US10541268B2 (en) 2017-12-28 2020-01-21 Spin Memory, Inc. Three-dimensional magnetic memory devices
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10424357B2 (en) * 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction (MTJ) memory device having a composite free magnetic layer
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10367136B2 (en) * 2017-12-29 2019-07-30 Spin Memory, Inc. Methods for manufacturing a perpendicular magnetic tunnel junction (p-MTJ) MRAM having a precessional spin current injection (PSC) structure
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10651370B2 (en) * 2017-12-29 2020-05-12 Spin Memory, Inc. Perpendicular magnetic tunnel junction retention and endurance improvement
US10803916B2 (en) 2017-12-29 2020-10-13 Spin Memory, Inc. Methods and systems for writing to magnetic memory devices utilizing alternating current
US10199083B1 (en) 2017-12-29 2019-02-05 Spin Transfer Technologies, Inc. Three-terminal MRAM with ac write-assist for low read disturb
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10403343B2 (en) 2017-12-29 2019-09-03 Spin Memory, Inc. Systems and methods utilizing serial configurations of magnetic memory devices
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10347308B1 (en) 2017-12-29 2019-07-09 Spin Memory, Inc. Systems and methods utilizing parallel configurations of magnetic memory devices
US10784439B2 (en) 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10374147B2 (en) * 2017-12-30 2019-08-06 Spin Memory, Inc. Perpendicular magnetic tunnel junction having improved reference layer stability
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device
US10255962B1 (en) 2017-12-30 2019-04-09 Spin Memory, Inc. Microwave write-assist in orthogonal STT-MRAM
US10229724B1 (en) 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10319900B1 (en) 2017-12-30 2019-06-11 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density
US10339993B1 (en) 2017-12-30 2019-07-02 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching
US10141499B1 (en) 2017-12-30 2018-11-27 Spin Transfer Technologies, Inc. Perpendicular magnetic tunnel junction device with offset precessional spin current layer
US10468588B2 (en) 2018-01-05 2019-11-05 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer
US10438995B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
US10319424B1 (en) 2018-01-08 2019-06-11 Spin Memory, Inc. Adjustable current selectors
US10192789B1 (en) 2018-01-08 2019-01-29 Spin Transfer Technologies Methods of fabricating dual threshold voltage devices
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
JP7267623B2 (ja) * 2018-02-13 2023-05-02 国立大学法人東北大学 磁気抵抗効果素子及び磁気メモリ
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10784437B2 (en) 2018-03-23 2020-09-22 Spin Memory, Inc. Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US11107974B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer
US11107978B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US10529915B2 (en) 2018-03-23 2020-01-07 Spin Memory, Inc. Bit line structures for three-dimensional arrays with magnetic tunnel junction devices including an annular free magnetic layer and a planar reference magnetic layer
JP7169683B2 (ja) * 2018-03-30 2022-11-11 国立大学法人東北大学 磁気抵抗効果素子及び磁気メモリ
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10650875B2 (en) 2018-08-21 2020-05-12 Spin Memory, Inc. System for a wide temperature range nonvolatile memory
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
US10692556B2 (en) 2018-09-28 2020-06-23 Spin Memory, Inc. Defect injection structure and mechanism for magnetic memory
US10878870B2 (en) 2018-09-28 2020-12-29 Spin Memory, Inc. Defect propagation structure and mechanism for magnetic memory
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US10580827B1 (en) 2018-11-16 2020-03-03 Spin Memory, Inc. Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching
US10971681B2 (en) * 2018-12-05 2021-04-06 Spin Memory, Inc. Method for manufacturing a data recording system utilizing heterogeneous magnetic tunnel junction types in a single chip
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture
KR102617267B1 (ko) * 2019-05-03 2023-12-21 고려대학교 산학협력단 이지-콘 상태의 자유층을 가지는 자기 터널 접합 소자
US10923652B2 (en) 2019-06-21 2021-02-16 Applied Materials, Inc. Top buffer layer for magnetic tunnel junction application
US11031058B2 (en) 2019-09-03 2021-06-08 Western Digital Technologies, Inc. Spin-transfer torque magnetoresistive memory device with a free layer stack including multiple spacers and methods of making the same
KR102289542B1 (ko) * 2019-09-18 2021-08-13 한국과학기술원 스핀궤도 토크 자기 소자
CN112864313B (zh) * 2019-11-28 2023-03-21 上海磁宇信息科技有限公司 磁性随机存储器的磁性隧道结结构
US11444238B2 (en) 2020-05-14 2022-09-13 International Business Machines Corporation Scalable heat sink and magnetic shielding for high density MRAM arrays

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403029A (zh) * 2010-09-14 2012-04-04 索尼公司 存储元件和存储装置
JP2014007263A (ja) * 2012-06-22 2014-01-16 Fujitsu Ltd 磁気抵抗メモリ
CN103907156A (zh) * 2011-09-22 2014-07-02 高通股份有限公司 用于自旋转移扭矩切换设备的耐热垂直磁各向异性耦合元件
WO2015094561A1 (en) * 2013-12-17 2015-06-25 Qualcomm Incorporated Hybrid synthetic antiferromagnetic layer for perpendicular magnetic tunnel junction (mtj)

Family Cites Families (300)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US341801A (en) 1886-05-11 Appaeatus foe peepaeing geain foe mashing
US5597437A (en) 1995-01-12 1997-01-28 Procter & Gamble Zero scrap absorbent core formation process
US5541868A (en) 1995-02-21 1996-07-30 The United States Of America As Represented By The Secretary Of The Navy Annular GMR-based memory element
US5629549A (en) 1995-04-21 1997-05-13 Johnson; Mark B. Magnetic spin transistor device, logic gate & method of operation
US5654566A (en) 1995-04-21 1997-08-05 Johnson; Mark B. Magnetic spin injected field effect transistor and method of operation
US6140838A (en) 1995-04-21 2000-10-31 Johnson; Mark B. High density and high speed magneto-electronic logic family
US5896252A (en) 1995-08-11 1999-04-20 Fujitsu Limited Multilayer spin valve magneto-resistive effect magnetic head with free magnetic layer including two sublayers and magnetic disk drive including same
JP3207094B2 (ja) 1995-08-21 2001-09-10 松下電器産業株式会社 磁気抵抗効果素子及びメモリー素子
US5695864A (en) 1995-09-28 1997-12-09 International Business Machines Corporation Electronic device using magnetic components
US6124711A (en) 1996-01-19 2000-09-26 Fujitsu Limited Magnetic sensor using tunnel resistance to detect an external magnetic field
US5640343A (en) 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
JP3327375B2 (ja) 1996-04-26 2002-09-24 富士通株式会社 磁気抵抗効果型トランスデューサ、その製造方法及び磁気記録装置
JP3447468B2 (ja) 1996-06-17 2003-09-16 シャープ株式会社 磁気抵抗効果素子及びその製造方法並びにそれを用いた磁気ヘッド
US5732016A (en) 1996-07-02 1998-03-24 Motorola Memory cell structure in a magnetic random access memory and a method for fabricating thereof
US5768069A (en) 1996-11-27 1998-06-16 International Business Machines Corporation Self-biased dual spin valve sensor
JP3557078B2 (ja) 1997-06-27 2004-08-25 株式会社東芝 不揮発性半導体記憶装置
JP4066477B2 (ja) 1997-10-09 2008-03-26 ソニー株式会社 不揮発性ランダムアクセスメモリー装置
US5966323A (en) 1997-12-18 1999-10-12 Motorola, Inc. Low switching field magnetoresistive tunneling junction for high density arrays
US6055179A (en) 1998-05-19 2000-04-25 Canon Kk Memory device utilizing giant magnetoresistance effect
JPH11352867A (ja) 1998-06-05 1999-12-24 Nippon Telegr & Teleph Corp <Ntt> サーバクライアント型学習支援システム,方法,および学習支援プログラムを記録した記録媒体
US6130814A (en) 1998-07-28 2000-10-10 International Business Machines Corporation Current-induced magnetic switching device and memory including the same
US6172902B1 (en) 1998-08-12 2001-01-09 Ecole Polytechnique Federale De Lausanne (Epfl) Non-volatile magnetic random access memory
US6097579A (en) 1998-08-21 2000-08-01 International Business Machines Corporation Tunnel junction head structure without current shunting
US6016269A (en) 1998-09-30 2000-01-18 Motorola, Inc. Quantum random address memory with magnetic readout and/or nano-memory elements
JP3766565B2 (ja) 1999-05-31 2006-04-12 Tdk株式会社 磁気抵抗効果膜および磁気抵抗効果型ヘッド
JP3589346B2 (ja) 1999-06-17 2004-11-17 松下電器産業株式会社 磁気抵抗効果素子および磁気抵抗効果記憶素子
WO2001001396A1 (fr) 1999-06-29 2001-01-04 Fujitsu Limited Tete magnetoresistive et dispositif de reproduction d'informations
US6292389B1 (en) 1999-07-19 2001-09-18 Motorola, Inc. Magnetic element with improved field response and fabricating method thereof
US6134138A (en) 1999-07-30 2000-10-17 Honeywell Inc. Method and apparatus for reading a magnetoresistive memory
JP3793669B2 (ja) 1999-08-26 2006-07-05 株式会社日立グローバルストレージテクノロジーズ 巨大磁気抵抗効果ヘッド、薄膜磁気ヘッドならびに磁気記録再生装置
US6611405B1 (en) 1999-09-16 2003-08-26 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory device
KR100373473B1 (ko) 1999-09-24 2003-02-25 가부시끼가이샤 도시바 자기 저항 효과 소자, 자기 저항 효과 헤드, 자기 재생장치 및 자성 적층체
JP3891540B2 (ja) 1999-10-25 2007-03-14 キヤノン株式会社 磁気抵抗効果メモリ、磁気抵抗効果メモリに記録される情報の記録再生方法、およびmram
US6447935B1 (en) 1999-11-23 2002-09-10 Read-Rite Corporation Method and system for reducing assymetry in a spin valve having a synthetic pinned layer
US6233172B1 (en) 1999-12-17 2001-05-15 Motorola, Inc. Magnetic element with dual magnetic states and fabrication method thereof
US6272036B1 (en) 1999-12-20 2001-08-07 The University Of Chicago Control of magnetic direction in multi-layer ferromagnetic devices by bias voltage
US6570139B1 (en) 2000-04-28 2003-05-27 The Holmes Group, Inc. Electronic control circuit
TW504713B (en) 2000-04-28 2002-10-01 Motorola Inc Magnetic element with insulating veils and fabricating method thereof
US6522137B1 (en) 2000-06-28 2003-02-18 Schlumberger Technology Corporation Two-dimensional magnetic resonance imaging in a borehole
CA2415098A1 (en) 2000-07-03 2002-01-10 Merck & Co., Inc. Methods for encoding combinatorial libraries
US6493259B1 (en) 2000-08-14 2002-12-10 Micron Technology, Inc. Pulse write techniques for magneto-resistive memories
DE10050076C2 (de) 2000-10-10 2003-09-18 Infineon Technologies Ag Verfahren zur Herstellung einer ferromagnetischen Struktur und ferromagnetisches Bauelement
US6385082B1 (en) 2000-11-08 2002-05-07 International Business Machines Corp. Thermally-assisted magnetic random access memory (MRAM)
FR2817999B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a empilement(s) tri-couche(s) et memoire utilisant ce dispositif
FR2817998B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a rotation d'aimantation, memoire et procede d'ecriture utilisant ce dispositif
EP1345277A4 (en) 2000-12-21 2005-02-16 Fujitsu Ltd MAGNETORESISTIVE COMPONENT, MAGNETIC HEAD AND MAGNET PLATE PLAYER
US6713195B2 (en) 2001-01-05 2004-03-30 Nve Corporation Magnetic devices using nanocomposite materials
JP3576111B2 (ja) 2001-03-12 2004-10-13 株式会社東芝 磁気抵抗効果素子
US6653154B2 (en) 2001-03-15 2003-11-25 Micron Technology, Inc. Method of forming self-aligned, trenchless mangetoresistive random-access memory (MRAM) structure with sidewall containment of MRAM structure
JP2002279618A (ja) * 2001-03-19 2002-09-27 Hitachi Ltd 磁気記録媒体
US6744086B2 (en) 2001-05-15 2004-06-01 Nve Corporation Current switched magnetoresistive memory cell
US6566246B1 (en) 2001-05-21 2003-05-20 Novellus Systems, Inc. Deposition of conformal copper seed layers by control of barrier layer morphology
JP2002357489A (ja) 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd 応力センサー
US6347049B1 (en) 2001-07-25 2002-02-12 International Business Machines Corporation Low resistance magnetic tunnel junction device with bilayer or multilayer tunnel barrier
US6902807B1 (en) 2002-09-13 2005-06-07 Flex Products, Inc. Alignable diffractive pigment flakes
US6772036B2 (en) 2001-08-30 2004-08-03 Fisher-Rosemount Systems, Inc. Control system using process model
US6777730B2 (en) 2001-08-31 2004-08-17 Nve Corporation Antiparallel magnetoresistive memory cells
US6545906B1 (en) 2001-10-16 2003-04-08 Motorola, Inc. Method of writing to scalable magnetoresistance random access memory element
FR2832542B1 (fr) 2001-11-16 2005-05-06 Commissariat Energie Atomique Dispositif magnetique a jonction tunnel magnetique, memoire et procedes d'ecriture et de lecture utilisant ce dispositif
US6750491B2 (en) 2001-12-20 2004-06-15 Hewlett-Packard Development Company, L.P. Magnetic memory device having soft reference layer
JP3583102B2 (ja) 2001-12-27 2004-10-27 株式会社東芝 磁気スイッチング素子及び磁気メモリ
US6773515B2 (en) 2002-01-16 2004-08-10 Headway Technologies, Inc. FeTa nano-oxide layer as a capping layer for enhancement of giant magnetoresistance in bottom spin valve structures
JP2003281705A (ja) 2002-03-25 2003-10-03 Hitachi Ltd 磁気ヘッド、磁気ヘッドジンバルアッセンブリ、磁気記録再生装置及び磁性メモリ
JP3769241B2 (ja) 2002-03-29 2006-04-19 株式会社東芝 磁気抵抗効果素子及び磁気メモリ
JP2003318461A (ja) 2002-04-22 2003-11-07 Matsushita Electric Ind Co Ltd 磁気抵抗効果素子とこれを用いた磁気ヘッドおよび磁気メモリならびに磁気記録装置
AU2003221188A1 (en) 2002-04-22 2003-11-03 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect element, magnetic head comprising it, magnetic memory, and magnetic recorder
US6879512B2 (en) 2002-05-24 2005-04-12 International Business Machines Corporation Nonvolatile memory device utilizing spin-valve-type designs and current pulses
US7005958B2 (en) 2002-06-14 2006-02-28 Honeywell International Inc. Dual axis magnetic sensor
US7095646B2 (en) 2002-07-17 2006-08-22 Freescale Semiconductor, Inc. Multi-state magnetoresistance random access cell with improved memory storage density
US6654278B1 (en) 2002-07-31 2003-11-25 Motorola, Inc. Magnetoresistance random access memory
US6714444B2 (en) 2002-08-06 2004-03-30 Grandis, Inc. Magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6888742B1 (en) 2002-08-28 2005-05-03 Grandis, Inc. Off-axis pinned layer magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6785159B2 (en) 2002-08-29 2004-08-31 Micron Technology, Inc. Combination etch stop and in situ resistor in a magnetoresistive memory and methods for fabricating same
US6838740B2 (en) 2002-09-27 2005-01-04 Grandis, Inc. Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6958927B1 (en) 2002-10-09 2005-10-25 Grandis Inc. Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element
US6956257B2 (en) 2002-11-18 2005-10-18 Carnegie Mellon University Magnetic memory element and memory device including same
US7675129B2 (en) 2002-12-13 2010-03-09 Japan Science And Technology Agency Spin injection device, magnetic device using the same, magnetic thin film used in the same
US6909631B2 (en) 2003-10-02 2005-06-21 Freescale Semiconductor, Inc. MRAM and methods for reading the MRAM
US7190611B2 (en) 2003-01-07 2007-03-13 Grandis, Inc. Spin-transfer multilayer stack containing magnetic layers with resettable magnetization
US6829161B2 (en) 2003-01-10 2004-12-07 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
WO2004073035A2 (en) 2003-02-10 2004-08-26 Massachusetts Institute Of Technology Magnetic memory elements using 360 degree domain walls
US6847547B2 (en) 2003-02-28 2005-01-25 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6677165B1 (en) 2003-03-20 2004-01-13 Micron Technology, Inc. Magnetoresistive random access memory (MRAM) cell patterning
JP3546238B1 (ja) 2003-04-23 2004-07-21 学校法人慶應義塾 磁気リングユニット及び磁気メモリ装置
US6933155B2 (en) 2003-05-21 2005-08-23 Grandis, Inc. Methods for providing a sub .15 micron magnetic memory structure
US7006375B2 (en) 2003-06-06 2006-02-28 Seagate Technology Llc Hybrid write mechanism for high speed and high density magnetic random access memory
US7054119B2 (en) 2003-06-18 2006-05-30 Hewlett-Packard Development Company, L.P. Coupled ferromagnetic systems having modified interfaces
US7041598B2 (en) 2003-06-25 2006-05-09 Hewlett-Packard Development Company, L.P. Directional ion etching process for patterning self-aligned via contacts
KR100512180B1 (ko) 2003-07-10 2005-09-02 삼성전자주식회사 자기 랜덤 엑세스 메모리 소자의 자기 터널 접합 및 그의형성방법
JP4142993B2 (ja) 2003-07-23 2008-09-03 株式会社東芝 磁気メモリ装置の製造方法
US7911832B2 (en) 2003-08-19 2011-03-22 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US8755222B2 (en) 2003-08-19 2014-06-17 New York University Bipolar spin-transfer switching
US6980469B2 (en) 2003-08-19 2005-12-27 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US7573737B2 (en) 2003-08-19 2009-08-11 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US7245462B2 (en) 2003-08-21 2007-07-17 Grandis, Inc. Magnetoresistive element having reduced spin transfer induced noise
US7598555B1 (en) 2003-08-22 2009-10-06 International Business Machines Corporation MgO tunnel barriers and method of formation
US6985385B2 (en) 2003-08-26 2006-01-10 Grandis, Inc. Magnetic memory element utilizing spin transfer switching and storing multiple bits
US6984529B2 (en) 2003-09-10 2006-01-10 Infineon Technologies Ag Fabrication process for a magnetic tunnel junction device
US7161829B2 (en) 2003-09-19 2007-01-09 Grandis, Inc. Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements
US20050128842A1 (en) 2003-11-07 2005-06-16 Alexander Wei Annular magnetic nanostructures
US7009877B1 (en) 2003-11-14 2006-03-07 Grandis, Inc. Three-terminal magnetostatically coupled spin transfer-based MRAM cell
JP2005150482A (ja) 2003-11-18 2005-06-09 Sony Corp 磁気抵抗効果素子及び磁気メモリ装置
US7602000B2 (en) 2003-11-19 2009-10-13 International Business Machines Corporation Spin-current switched magnetic memory element suitable for circuit integration and method of fabricating the memory element
US6969895B2 (en) 2003-12-10 2005-11-29 Headway Technologies, Inc. MRAM cell with flat topography and controlled bit line to free layer distance and method of manufacture
US20050136600A1 (en) 2003-12-22 2005-06-23 Yiming Huai Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements
CN1898574B (zh) 2003-12-23 2011-09-07 Nxp股份有限公司 高灵敏度磁性内置电流传感器
US6936479B2 (en) 2004-01-15 2005-08-30 Hewlett-Packard Development Company, L.P. Method of making toroidal MRAM cells
US7283333B2 (en) 2004-02-11 2007-10-16 Hitachi Global Storage Technologies Netherlands B.V. Self-pinned double tunnel junction head
US7110287B2 (en) 2004-02-13 2006-09-19 Grandis, Inc. Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer
US7203129B2 (en) 2004-02-16 2007-04-10 Taiwan Semiconductor Manufacturing Company, Ltd. Segmented MRAM memory array
US7242045B2 (en) 2004-02-19 2007-07-10 Grandis, Inc. Spin transfer magnetic element having low saturation magnetization free layers
US6967863B2 (en) 2004-02-25 2005-11-22 Grandis, Inc. Perpendicular magnetization magnetic element utilizing spin transfer
US6992359B2 (en) 2004-02-26 2006-01-31 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
US7233039B2 (en) 2004-04-21 2007-06-19 Grandis, Inc. Spin transfer magnetic elements with spin depolarization layers
US7045368B2 (en) 2004-05-19 2006-05-16 Headway Technologies, Inc. MRAM cell structure and method of fabrication
US7449345B2 (en) 2004-06-15 2008-11-11 Headway Technologies, Inc. Capping structure for enhancing dR/R of the MTJ device
US7098494B2 (en) 2004-06-16 2006-08-29 Grandis, Inc. Re-configurable logic elements using heat assisted magnetic tunneling elements
US7611912B2 (en) 2004-06-30 2009-11-03 Headway Technologies, Inc. Underlayer for high performance magnetic tunneling junction MRAM
US7576956B2 (en) 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
US7369427B2 (en) 2004-09-09 2008-05-06 Grandis, Inc. Magnetic elements with spin engineered insertion layers and MRAM devices using the magnetic elements
US7149106B2 (en) 2004-10-22 2006-12-12 Freescale Semiconductor, Inc. Spin-transfer based MRAM using angular-dependent selectivity
JP4682585B2 (ja) 2004-11-01 2011-05-11 ソニー株式会社 記憶素子及びメモリ
JP4575136B2 (ja) 2004-12-20 2010-11-04 株式会社東芝 磁気記録素子、磁気記録装置、および情報の記録方法
JP4693450B2 (ja) 2005-03-22 2011-06-01 株式会社東芝 磁気抵抗効果素子および磁気メモリ
US7376006B2 (en) 2005-05-13 2008-05-20 International Business Machines Corporation Enhanced programming performance in a nonvolatile memory device having a bipolar programmable storage element
US8130474B2 (en) * 2005-07-18 2012-03-06 Hitachi Global Storage Technologies Netherlands B.V. CPP-TMR sensor with non-orthogonal free and reference layer magnetization orientation
US20070019337A1 (en) 2005-07-19 2007-01-25 Dmytro Apalkov Magnetic elements having improved switching characteristics and magnetic memory devices using the magnetic elements
FR2888994B1 (fr) 2005-07-21 2007-10-12 Commissariat Energie Atomique Dispositif radiofrequence avec element magnetique et procede de fabrication d'un tel element magnetique
US7224601B2 (en) 2005-08-25 2007-05-29 Grandis Inc. Oscillating-field assisted spin torque switching of a magnetic tunnel junction memory element
FR2892231B1 (fr) 2005-10-14 2008-06-27 Commissariat Energie Atomique Dispositif magnetique a jonction tunnel magnetoresistive et memoire magnetique a acces aleatoire
US20070096229A1 (en) 2005-10-28 2007-05-03 Masatoshi Yoshikawa Magnetoresistive element and magnetic memory device
ATE528811T1 (de) 2005-11-21 2011-10-15 Nanosys Inc Nanodraht-strukturen mit kohlenstoff
JP5040105B2 (ja) * 2005-12-01 2012-10-03 ソニー株式会社 記憶素子、メモリ
US7936595B2 (en) 2005-12-31 2011-05-03 Institute Of Physics, Chinese Academy Of Sciences Close shaped magnetic multi-layer film comprising or not comprising a metal core and the manufacture method and the application of the same
US7280389B2 (en) * 2006-02-08 2007-10-09 Magic Technologies, Inc. Synthetic anti-ferromagnetic structure with non-magnetic spacer for MRAM applications
SE531384C2 (sv) 2006-02-10 2009-03-17 Vnk Innovation Ab Multipla magnetoresistansanordningar baserade på metalldopad magnesiumoxid
US8535952B2 (en) 2006-02-25 2013-09-17 Avalanche Technology, Inc. Method for manufacturing non-volatile magnetic memory
US8084835B2 (en) 2006-10-20 2011-12-27 Avalanche Technology, Inc. Non-uniform switching based non-volatile magnetic based memory
KR100764738B1 (ko) 2006-04-06 2007-10-09 삼성전자주식회사 향상된 신뢰성을 갖는 상변화 메모리 장치, 그것의 쓰기방법, 그리고 그것을 포함한 시스템
TWI320929B (en) 2006-04-18 2010-02-21 Ind Tech Res Inst Structure and access method for magnetic memory cell structure and circuit of magnetic memory
US7324387B1 (en) 2006-04-18 2008-01-29 Maxim Integrated Products, Inc. Low power high density random access memory flash cells and arrays
US8120949B2 (en) 2006-04-27 2012-02-21 Avalanche Technology, Inc. Low-cost non-volatile flash-RAM memory
US7643332B2 (en) * 2006-06-23 2010-01-05 Infineon Technologies Ag MRAM cell using multiple axes magnetization and method of operation
US7502249B1 (en) 2006-07-17 2009-03-10 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
FR2904724B1 (fr) 2006-08-03 2011-03-04 Commissariat Energie Atomique Dispositif magnetique en couches minces a forte polarisation en spin perpendiculaire au plan des couches, jonction tunnel magnetique et vanne de spin mettant en oeuvre un tel dispositif
US7502253B2 (en) 2006-08-28 2009-03-10 Everspin Technologies, Inc. Spin-transfer based MRAM with reduced critical current density
JP2008098365A (ja) 2006-10-11 2008-04-24 Toshiba Corp 磁気ランダムアクセスメモリ及びその製造方法
CA2668351A1 (en) 2006-11-03 2008-09-25 New York University Electronic devices based on current induced magnetization dynamics in single magnetic layers
US7508042B2 (en) 2006-12-22 2009-03-24 Magic Technologies, Inc. Spin transfer MRAM device with magnetic biasing
FR2910716B1 (fr) 2006-12-26 2010-03-26 Commissariat Energie Atomique Dispositif magnetique multicouches, procede pour sa realisation, capteur de champ magnetique, memoire magnetique et porte logique mettant en oeuvre un tel dispositif
US7791845B2 (en) * 2006-12-26 2010-09-07 Hitachi Global Storage Technologies Netherlands B.V. Tunneling magnetoresistive sensor having a high iron concentration free layer and an oxides of magnesium barrier layer
JP2008192832A (ja) 2007-02-05 2008-08-21 Hitachi Global Storage Technologies Netherlands Bv 磁気検出素子及びその製造方法
US8542524B2 (en) 2007-02-12 2013-09-24 Avalanche Technology, Inc. Magnetic random access memory (MRAM) manufacturing process for a small magnetic tunnel junction (MTJ) design with a low programming current requirement
US7602033B2 (en) * 2007-05-29 2009-10-13 Headway Technologies, Inc. Low resistance tunneling magnetoresistive sensor with composite inner pinned layer
JP4874884B2 (ja) 2007-07-11 2012-02-15 株式会社東芝 磁気記録素子及び磁気記録装置
US7750421B2 (en) 2007-07-23 2010-07-06 Magic Technologies, Inc. High performance MTJ element for STT-RAM and method for making the same
AU2008219354B2 (en) 2007-09-19 2014-02-13 Viavi Solutions Inc. Anisotropic magnetic flakes
US8008095B2 (en) 2007-10-03 2011-08-30 International Business Machines Corporation Methods for fabricating contacts to pillar structures in integrated circuits
JP5236244B2 (ja) 2007-10-16 2013-07-17 株式会社日立製作所 磁気記録媒体の製造方法
US9812184B2 (en) 2007-10-31 2017-11-07 New York University Current induced spin-momentum transfer stack with dual insulating layers
WO2009074411A1 (en) 2007-12-13 2009-06-18 Crocus Technology Magnetic memory with a thermally assisted writing procedure
FR2925725B1 (fr) 2007-12-21 2011-03-25 Commissariat Energie Atomique Procede de modelisation d'une jonction tunnel magnetique a ecriture par courant polarise en spin
US8105948B2 (en) 2008-02-14 2012-01-31 Magic Technologies, Inc. Use of CMP to contact a MTJ structure without forming a via
US7723128B2 (en) 2008-02-18 2010-05-25 Taiwan Semiconductor Manufacturing Company, Ltd. In-situ formed capping layer in MTJ devices
US8802451B2 (en) 2008-02-29 2014-08-12 Avalanche Technology Inc. Method for manufacturing high density non-volatile magnetic memory
JP4724196B2 (ja) 2008-03-25 2011-07-13 株式会社東芝 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
US8724260B2 (en) 2008-11-10 2014-05-13 Hitachi, Ltd. Information recording device having high-frequency field generating multilayer material with a receded section disposed between main and opposing poles
GB2465369B (en) 2008-11-13 2011-01-12 Ingenia Holdings Magnetic data storage device and method
US8120126B2 (en) 2009-03-02 2012-02-21 Qualcomm Incorporated Magnetic tunnel junction device and fabrication
US7916515B2 (en) 2009-03-10 2011-03-29 Seagate Technology Llc Non-volatile memory read/write verify
JP5470602B2 (ja) 2009-04-01 2014-04-16 ルネサスエレクトロニクス株式会社 磁気記憶装置
US7936598B2 (en) 2009-04-28 2011-05-03 Seagate Technology Magnetic stack having assist layer
US8624105B2 (en) 2009-05-01 2014-01-07 Synkera Technologies, Inc. Energy conversion device with support member having pore channels
KR101047050B1 (ko) 2009-05-15 2011-07-06 주식회사 하이닉스반도체 상변화 메모리 장치
WO2010133576A1 (en) 2009-05-18 2010-11-25 Imec Patterning and contacting of magnetic layers
FR2946183B1 (fr) 2009-05-27 2011-12-23 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin.
US8334213B2 (en) 2009-06-05 2012-12-18 Magic Technologies, Inc. Bottom electrode etching process in MRAM cell
US8269203B2 (en) 2009-07-02 2012-09-18 Actel Corporation Resistive RAM devices for programmable logic devices
JP5529648B2 (ja) 2009-08-04 2014-06-25 キヤノンアネルバ株式会社 磁気センサ積層体、その成膜方法、成膜制御プログラムおよび記録媒体
US10446209B2 (en) 2009-08-10 2019-10-15 Samsung Semiconductor Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
US8169821B1 (en) 2009-10-20 2012-05-01 Avalanche Technology, Inc. Low-crystallization temperature MTJ for spin-transfer torque magnetic random access memory (SSTTMRAM)
US8422285B2 (en) 2009-10-30 2013-04-16 Grandis, Inc. Method and system for providing dual magnetic tunneling junctions usable in spin transfer torque magnetic memories
US8912012B2 (en) 2009-11-25 2014-12-16 Qualcomm Incorporated Magnetic tunnel junction device and fabrication
US8362580B2 (en) 2009-12-08 2013-01-29 Qualcomm Incorporated Spin-transfer switching magnetic element utilizing a composite free layer comprising a superparamagnetic layer
US8199553B2 (en) 2009-12-17 2012-06-12 Hitachi Global Storage Technologies Netherlands B.V. Multilevel frequency addressable field driven MRAM
JP5127861B2 (ja) 2010-03-24 2013-01-23 株式会社東芝 磁気メモリ
US8981502B2 (en) 2010-03-29 2015-03-17 Qualcomm Incorporated Fabricating a magnetic tunnel junction storage element
JP5644198B2 (ja) 2010-06-15 2014-12-24 ソニー株式会社 記憶装置
JP2013534058A (ja) 2010-06-30 2013-08-29 サンディスク テクノロジィース インコーポレイテッド 超高密度垂直nandメモリデバイスおよびそれを作る方法
US8564080B2 (en) * 2010-07-16 2013-10-22 Qualcomm Incorporated Magnetic storage element utilizing improved pinned layer stack
US8772886B2 (en) * 2010-07-26 2014-07-08 Avalanche Technology, Inc. Spin transfer torque magnetic random access memory (STTMRAM) having graded synthetic free layer
US9019758B2 (en) * 2010-09-14 2015-04-28 Avalanche Technology, Inc. Spin-transfer torque magnetic random access memory with perpendicular magnetic anisotropy multilayers
US9070855B2 (en) 2010-12-10 2015-06-30 Avalanche Technology, Inc. Magnetic random access memory having perpendicular enhancement layer
US9082951B2 (en) 2011-02-16 2015-07-14 Avalanche Technology, Inc. Magnetic random access memory with perpendicular enhancement layer
US9396781B2 (en) * 2010-12-10 2016-07-19 Avalanche Technology, Inc. Magnetic random access memory having perpendicular composite reference layer
JP5085703B2 (ja) 2010-09-17 2012-11-28 株式会社東芝 磁気記録素子および不揮発性記憶装置
JP5514059B2 (ja) 2010-09-17 2014-06-04 株式会社東芝 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
US20120156390A1 (en) 2010-12-21 2012-06-21 Hitachi Global Storage Technologies Netherlands B.V. Multi-angle hard bias deposition for optimal hard-bias deposition in a magnetic sensor
EP2477227B1 (en) 2011-01-13 2019-03-27 Crocus Technology S.A. Magnetic tunnel junction comprising a polarizing layer
US9196332B2 (en) * 2011-02-16 2015-11-24 Avalanche Technology, Inc. Perpendicular magnetic tunnel junction (pMTJ) with in-plane magneto-static switching-enhancing layer
JP5695453B2 (ja) 2011-03-07 2015-04-08 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
JP5285104B2 (ja) 2011-03-17 2013-09-11 株式会社東芝 磁気記録素子及び不揮発性記憶装置
CN102822901B (zh) 2011-03-25 2014-09-24 松下电器产业株式会社 电阻变化型非易失性元件的写入方法及存储装置
JP5417369B2 (ja) 2011-03-25 2014-02-12 株式会社東芝 磁気素子及び不揮発性記憶装置
JP5214765B2 (ja) 2011-03-25 2013-06-19 株式会社東芝 磁気抵抗素子および磁気メモリ
US8758909B2 (en) * 2011-04-20 2014-06-24 Alexander Mikhailovich Shukh Scalable magnetoresistive element
US8592927B2 (en) 2011-05-04 2013-11-26 Magic Technologies, Inc. Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications
US8508006B2 (en) 2011-05-10 2013-08-13 Magic Technologies, Inc. Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications
KR101195041B1 (ko) 2011-05-12 2012-10-31 고려대학교 산학협력단 자기 공명 세차 현상을 이용한 스핀전달토크 자기 메모리 소자
KR101811315B1 (ko) 2011-05-24 2017-12-27 삼성전자주식회사 자기 기억 소자 및 그 제조 방법
JP2013012546A (ja) 2011-06-28 2013-01-17 Toshiba Corp 不揮発性記憶装置の製造方法
JP5740225B2 (ja) 2011-06-29 2015-06-24 株式会社東芝 抵抗変化メモリの製造方法
JP2013016587A (ja) 2011-07-01 2013-01-24 Toshiba Corp 磁気抵抗効果素子及びその製造方法
US8830736B2 (en) 2011-07-20 2014-09-09 Avalanche Technology, Inc. Initialization method of a perpendicular magnetic random access memory (MRAM) device with a stable reference cell
JP2013048210A (ja) 2011-07-22 2013-03-07 Toshiba Corp 磁気抵抗素子
KR101566863B1 (ko) 2011-08-25 2015-11-06 캐논 아네르바 가부시키가이샤 자기저항 소자의 제조 방법 및 자기저항 필름의 가공 방법
US8704320B2 (en) 2011-09-12 2014-04-22 Qualcomm Incorporated Strain induced reduction of switching current in spin-transfer torque switching devices
JP5734800B2 (ja) 2011-09-21 2015-06-17 株式会社東芝 磁気記憶素子及び不揮発性記憶装置
JP5809903B2 (ja) 2011-09-21 2015-11-11 株式会社東芝 不揮発性記憶装置
JP5767925B2 (ja) 2011-09-21 2015-08-26 株式会社東芝 磁気記憶素子及び不揮発性記憶装置
US8617408B2 (en) 2011-10-18 2013-12-31 HGST Netherlands B.V. Method for manufacturing a magnetic read sensor with narrow track width using amorphous carbon as a hard mask and localized CMP
US8912614B2 (en) * 2011-11-11 2014-12-16 International Business Machines Corporation Magnetic tunnel junction devices having magnetic layers formed on composite, obliquely deposited seed layers
KR20130069097A (ko) 2011-12-16 2013-06-26 에스케이하이닉스 주식회사 반도체 장치의 제조방법
KR101831725B1 (ko) * 2011-12-30 2018-04-04 인텔 코포레이션 수직 자기 터널 접합들에서의 상태들 간의 에너지 장벽 균형화
US8823118B2 (en) * 2012-01-05 2014-09-02 Headway Technologies, Inc. Spin torque transfer magnetic tunnel junction fabricated with a composite tunneling barrier layer
JP5856490B2 (ja) * 2012-01-20 2016-02-09 ルネサスエレクトロニクス株式会社 磁気抵抗効果素子及び磁気メモリ
US8871365B2 (en) 2012-02-28 2014-10-28 Headway Technologies, Inc. High thermal stability reference structure with out-of-plane aniotropy to magnetic device applications
US8574928B2 (en) 2012-04-10 2013-11-05 Avalanche Technology Inc. MRAM fabrication method with sidewall cleaning
US20130270661A1 (en) 2012-04-16 2013-10-17 Ge Yi Magnetoresistive random access memory cell design
US8852760B2 (en) 2012-04-17 2014-10-07 Headway Technologies, Inc. Free layer with high thermal stability for magnetic device applications by insertion of a boron dusting layer
JP5761455B2 (ja) 2012-05-09 2015-08-12 株式会社村田製作所 冷却装置、加熱冷却装置
US20130307097A1 (en) 2012-05-15 2013-11-21 Ge Yi Magnetoresistive random access memory cell design
US8456883B1 (en) 2012-05-29 2013-06-04 Headway Technologies, Inc. Method of spin torque MRAM process integration
US8883520B2 (en) 2012-06-22 2014-11-11 Avalanche Technology, Inc. Redeposition control in MRAM fabrication process
US8687415B2 (en) 2012-07-06 2014-04-01 International Business Machines Corporation Domain wall motion in perpendicularly magnetized wires having artificial antiferromagnetically coupled multilayers with engineered interfaces
US9129690B2 (en) 2012-07-20 2015-09-08 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions having improved characteristics
US9214624B2 (en) * 2012-07-27 2015-12-15 Qualcomm Incorporated Amorphous spacerlattice spacer for perpendicular MTJs
JP2014032724A (ja) 2012-08-03 2014-02-20 Sharp Corp 半導体記憶装置
US9231191B2 (en) 2012-08-20 2016-01-05 Industrial Technology Research Institute Magnetic tunnel junction device and method of making same
US8860156B2 (en) 2012-09-11 2014-10-14 Headway Technologies, Inc. Minimal thickness synthetic antiferromagnetic (SAF) structure with perpendicular magnetic anisotropy for STT-MRAM
JP5575198B2 (ja) 2012-09-25 2014-08-20 株式会社東芝 磁気抵抗効果素子の製造方法及び磁気抵抗効果素子の製造装置
US20160020011A2 (en) 2012-09-28 2016-01-21 Seagate Technology Llc Methods of forming magnetic materials and articles formed thereby
US9490054B2 (en) * 2012-10-11 2016-11-08 Headway Technologies, Inc. Seed layer for multilayer magnetic materials
US9082950B2 (en) 2012-10-17 2015-07-14 New York University Increased magnetoresistance in an inverted orthogonal spin transfer layer stack
US9082888B2 (en) 2012-10-17 2015-07-14 New York University Inverted orthogonal spin transfer layer stack
JP5680045B2 (ja) 2012-11-14 2015-03-04 株式会社東芝 磁気抵抗素子及び磁気メモリ
US9036407B2 (en) 2012-12-07 2015-05-19 The Regents Of The University Of California Voltage-controlled magnetic memory element with canted magnetization
US9070441B2 (en) 2012-12-21 2015-06-30 Sony Corporation Non-volatile memory system with reset verification mechanism and method of operation thereof
WO2014110603A1 (en) 2013-01-14 2014-07-17 Cornell University Quasi-linear spin torque nano-oscillators
US8737137B1 (en) 2013-01-22 2014-05-27 Freescale Semiconductor, Inc. Flash memory with bias voltage for word line/row driver
US20140252439A1 (en) 2013-03-08 2014-09-11 T3Memory, Inc. Mram having spin hall effect writing and method of making the same
KR102078849B1 (ko) 2013-03-11 2020-02-18 삼성전자 주식회사 자기저항 구조체, 이를 포함하는 자기 메모리 소자 및 자기저항 구조체의 제조 방법
JP6160903B2 (ja) 2013-03-13 2017-07-12 株式会社東芝 磁気記憶素子及び不揮発性記憶装置
US9130155B2 (en) 2013-03-15 2015-09-08 Samsung Electronics Co., Ltd. Magnetic junctions having insertion layers and magnetic memories using the magnetic junctions
US9240546B2 (en) * 2013-03-26 2016-01-19 Infineon Technologies Ag Magnetoresistive devices and methods for manufacturing magnetoresistive devices
US9281468B2 (en) 2013-06-17 2016-03-08 Imec Magnetic memory element
KR102153559B1 (ko) * 2013-08-02 2020-09-08 삼성전자주식회사 수직 자기터널접합을 구비하는 자기 기억 소자
US9203017B2 (en) 2013-08-02 2015-12-01 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions including a package structure usable in spin transfer torque memories
JP5649704B1 (ja) 2013-09-18 2015-01-07 株式会社東芝 磁気記録装置
WO2015102739A2 (en) 2013-10-18 2015-07-09 Cornell University Circuits and devices based on spin hall effect to apply a spin transfer torque with a component perpendicular to the plane of magnetic layers
JP5635666B2 (ja) 2013-10-24 2014-12-03 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
CN105122489B (zh) * 2013-11-01 2017-10-13 中国科学院物理研究所 一种用于温度传感器的纳米磁性多层膜及其制造方法
US10134988B2 (en) 2013-12-13 2018-11-20 E I Du Pont De Nemours And Company System for forming an electroactive layer
US9019754B1 (en) 2013-12-17 2015-04-28 Micron Technology, Inc. State determination in resistance variable memory
JP6106118B2 (ja) 2014-03-13 2017-03-29 株式会社東芝 磁気記憶素子及び不揮発性記憶装置
US20150279904A1 (en) 2014-04-01 2015-10-01 Spin Transfer Technologies, Inc. Magnetic tunnel junction for mram device
US9269893B2 (en) 2014-04-02 2016-02-23 Qualcomm Incorporated Replacement conductive hard mask for multi-step magnetic tunnel junction (MTJ) etch
SE538342C2 (sv) 2014-04-09 2016-05-24 Nanosc Ab Spinnoscillator-anordning
US9496489B2 (en) * 2014-05-21 2016-11-15 Avalanche Technology, Inc. Magnetic random access memory with multilayered seed structure
US10008248B2 (en) 2014-07-17 2018-06-26 Cornell University Circuits and devices based on enhanced spin hall effect for efficient spin transfer torque
US9263667B1 (en) 2014-07-25 2016-02-16 Spin Transfer Technologies, Inc. Method for manufacturing MTJ memory device
US9337412B2 (en) 2014-09-22 2016-05-10 Spin Transfer Technologies, Inc. Magnetic tunnel junction structure for MRAM device
KR102238527B1 (ko) * 2014-09-29 2021-04-09 삼성전자주식회사 수직 자기 터널 접합 패턴을 포함하는 자기 기억 소자
US9589616B2 (en) 2014-11-02 2017-03-07 Globalfoundries Singapore Pte. Ltd. Energy efficient three-terminal voltage controlled memory cell
KR102268187B1 (ko) * 2014-11-10 2021-06-24 삼성전자주식회사 자기 기억 소자 및 그 제조 방법
US9634237B2 (en) * 2014-12-23 2017-04-25 Qualcomm Incorporated Ultrathin perpendicular pinned layer structure for magnetic tunneling junction devices
US9472750B2 (en) * 2015-01-05 2016-10-18 Samsung Electronics Co., Ltd. Method and system for providing a bottom pinned layer in a perpendicular magnetic junction usable in spin transfer torque magnetic random access memory applications
KR102204389B1 (ko) 2015-01-06 2021-01-18 삼성전자주식회사 저항성 메모리 장치 및 저항성 메모리 장치의 동작 방법
US10468590B2 (en) * 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US9728712B2 (en) * 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US9537088B1 (en) 2015-07-13 2017-01-03 Micron Technology, Inc. Magnetic tunnel junctions
US9773540B2 (en) 2015-07-17 2017-09-26 The Johns Hopkins University Skyrmion based universal memory operated by electric current
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US9825216B2 (en) 2015-10-16 2017-11-21 Samsung Electronics Co., Ltd. Semiconductor memory device
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US10593389B2 (en) 2016-03-01 2020-03-17 Virginia Commonwealth University Switching skyrmions with VCMA/electric field for memory, computing and information processing
US9680089B1 (en) 2016-05-13 2017-06-13 Micron Technology, Inc. Magnetic tunnel junctions
KR101963482B1 (ko) 2016-10-20 2019-03-28 고려대학교 산학협력단 자기 터널 접합 소자 및 자기 메모리 소자
US10274571B2 (en) 2017-01-18 2019-04-30 Samsung Electronics Co., Ltd. Method and apparatus for measuring exchange stiffness at a patterned device level
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device
US10229724B1 (en) 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403029A (zh) * 2010-09-14 2012-04-04 索尼公司 存储元件和存储装置
CN103907156A (zh) * 2011-09-22 2014-07-02 高通股份有限公司 用于自旋转移扭矩切换设备的耐热垂直磁各向异性耦合元件
JP2014007263A (ja) * 2012-06-22 2014-01-16 Fujitsu Ltd 磁気抵抗メモリ
WO2015094561A1 (en) * 2013-12-17 2015-06-25 Qualcomm Incorporated Hybrid synthetic antiferromagnetic layer for perpendicular magnetic tunnel junction (mtj)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109471051A (zh) * 2018-12-24 2019-03-15 珠海多创科技有限公司 一种tmr全桥磁传感器及其制备方法
CN109471051B (zh) * 2018-12-24 2023-12-12 珠海多创科技有限公司 一种tmr全桥磁传感器及其制备方法
CN111613720A (zh) * 2019-02-25 2020-09-01 上海磁宇信息科技有限公司 一种磁性随机存储器存储单元及磁性随机存储器
CN111613720B (zh) * 2019-02-25 2022-09-09 上海磁宇信息科技有限公司 一种磁性随机存储器存储单元及磁性随机存储器
CN110335940A (zh) * 2019-07-10 2019-10-15 中国科学院物理研究所 巨磁致电阻器件和磁性隧道结结构及包括其的电子设备
CN110335940B (zh) * 2019-07-10 2021-05-25 中国科学院物理研究所 巨磁致电阻器件和磁性隧道结结构及包括其的电子设备
CN112490353A (zh) * 2019-09-11 2021-03-12 上海磁宇信息科技有限公司 一种磁性随机存储器存储单元及磁性随机存储器
CN112490354A (zh) * 2019-09-11 2021-03-12 上海磁宇信息科技有限公司 一种磁性随机存储器存储单元及磁性随机存储器
CN112490355A (zh) * 2019-09-12 2021-03-12 铠侠股份有限公司 磁性存储装置
CN112490355B (zh) * 2019-09-12 2023-10-31 铠侠股份有限公司 磁性存储装置
CN112599661A (zh) * 2019-10-02 2021-04-02 三星电子株式会社 包括磁隧道结的磁存储器件
CN113140670A (zh) * 2020-01-16 2021-07-20 上海磁宇信息科技有限公司 一种磁性隧道结垂直反铁磁层及随机存储器

Also Published As

Publication number Publication date
WO2017131894A1 (en) 2017-08-03
CN116367697A (zh) 2023-06-30
US10381553B2 (en) 2019-08-13
CN108604632B (zh) 2023-05-09
US20170324029A1 (en) 2017-11-09
US20170222132A1 (en) 2017-08-03
US10643680B2 (en) 2020-05-05
US20190006582A1 (en) 2019-01-03
JP2019506745A (ja) 2019-03-07
KR102617167B1 (ko) 2023-12-21
JP7105191B2 (ja) 2022-07-22
US9741926B1 (en) 2017-08-22
KR20180100065A (ko) 2018-09-06

Similar Documents

Publication Publication Date Title
CN108604632A (zh) 具有磁性隧道结及热稳定性增强层的存储器单元
US10622554B2 (en) Magnetoresistive stack and method of fabricating same
US10615335B2 (en) Spin transfer torque structure for MRAM devices having a spin current injection capping layer
KR102536602B1 (ko) Mram에 대한 높은 평면내 자화를 갖는 세차운동 스핀 전류 구조물
KR101405854B1 (ko) 스핀 토크 스위칭을 보조하는 층을 갖는 스핀 토크 스위칭을 이용하는 자기 스택
US7605437B2 (en) Spin-transfer MRAM structure and methods
CN106062979A (zh) 用于mram装置的磁性隧道结结构
US8908429B2 (en) Non-volatile memory with stray magnetic field compensation
US7799581B2 (en) Methods of forming magnetic memory devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information

Address after: California, USA

Applicant after: Spin Storage Co.

Address before: California, USA

Applicant before: SPIN TRANSFER TECHNOLOGIES, Inc.

CB02 Change of applicant information
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20211029

Address after: California, USA

Applicant after: Siping Co.,Ltd. (assignment for the benefit of creditors)

Address before: California, USA

Applicant before: Spin Storage Co.

Effective date of registration: 20211029

Address after: Greater Cayman, Cayman Islands

Applicant after: INTEGRATED SILICON SOLUTION, (CAYMAN) Inc.

Address before: California, USA

Applicant before: Siping Co.,Ltd. (assignment for the benefit of creditors)

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant