JP7169683B2 - 磁気抵抗効果素子及び磁気メモリ - Google Patents

磁気抵抗効果素子及び磁気メモリ Download PDF

Info

Publication number
JP7169683B2
JP7169683B2 JP2020510360A JP2020510360A JP7169683B2 JP 7169683 B2 JP7169683 B2 JP 7169683B2 JP 2020510360 A JP2020510360 A JP 2020510360A JP 2020510360 A JP2020510360 A JP 2020510360A JP 7169683 B2 JP7169683 B2 JP 7169683B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
nonmagnetic
magnetic layer
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020510360A
Other languages
English (en)
Other versions
JPWO2019187674A1 (ja
Inventor
杏太 渡部
俊輔 深見
英夫 佐藤
英男 大野
哲郎 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Publication of JPWO2019187674A1 publication Critical patent/JPWO2019187674A1/ja
Application granted granted Critical
Publication of JP7169683B2 publication Critical patent/JP7169683B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/30Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the intermediate layers, e.g. seed, buffer, template, diffusion preventing, cap layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3227Exchange coupling via one or more magnetisable ultrathin or granular films
    • H01F10/3231Exchange coupling via one or more magnetisable ultrathin or granular films via a non-magnetic spacer
    • H01F10/3236Exchange coupling via one or more magnetisable ultrathin or granular films via a non-magnetic spacer made of a noble metal, e.g.(Co/Pt) n multilayers having perpendicular anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Description

本発明は、磁気抵抗効果素子、及び、該磁気抵抗効果素子を備えた磁気メモリに関する。特に、スピン移行トルク磁化反転素子に関する。
MRAM(Magnetic Random Access Memory;磁気メモリ)は、MTJ(Magnetic Tunnel Junction;磁気トンネル接合)を利用した不揮発性メモリである。
待機時に電力を消費せず、高速動作性及び高書き込み耐性を有し、また、メモリサイズを微細化可能であるMRAMは、次世代の論理集積回路として注目されている。
MRAMに使用される磁気抵抗効果素子は、記録層と参照層の間に障壁層となる非磁性層が挟まれた構造を基本とする。MRAMの磁性層(記録層)に記録されたビット情報は、障壁層を通りTMR(Tunnel Magnetoresistance;トンネル磁気抵抗)効果を用いて読み出される。
また、磁性層(記録層)への書き込みには、磁場を用いる方法と電流を用いる方法があり、後者の書き込み方法を用いるMRAMには、スピン移行トルク(Spin-transfer-torque;STT)誘起磁化反転等を用いて磁性層(記録層)へビット情報を書き込む2端子型と、スピン軌道トルク(Spin-orbit-torque;SOT)誘起磁化反転等を用いて磁性層(記録層)へビット情報を書き込む3端子型等がある。
ところで、磁気抵抗効果素子であるMRAMで応用上重要となる特性は、(i)熱安定性指数Δが大きいこと、(ii)書き込み電流ICが小さいこと、(iii)磁気抵抗効果素子のトンネル磁気抵抗比(TMR比)が大きいこと、(iv)素子サイズが小さいことである。(i)は磁気メモリの不揮発性のため、(ii)はセルトランジスタのサイズを小さくしてセルサイズを小さくし、また消費電力を下げるため、(iii)は高速での読み出しに対応するため、(iv)はセル面積を小さくして大容量化するために要求される特性である。
上記特性のうち、記録層の熱擾乱に対する安定性、すなわち(i)熱安定性指数Δは、以下の式で表される。
Figure 0007169683000001
数1の式において、Eはエネルギー障壁、kBはボルツマン係数、Tは絶対温度、Keffは実効磁気異方性エネルギー密度、tは膜厚、Sは記録層の面積、Kiは界面磁気異方性エネルギー密度、Kbはバルク(結晶)磁気異方性エネルギー密度、Msは飽和磁化、μ0は真空の透磁率である。
現在、磁気抵抗効果素子の性能として10年間の不揮発性を有することが求められており、換算すると、熱安定性指数Δは少なくとも60以上であることが必要であるとされる。
なお、数1の式にある実効磁気異方性エネルギー密度Keffは、Keff>0の場合は垂直磁化容易軸を得ることができ、Keff<0の場合は面内磁化容易軸となり垂直磁化容易軸を得ることができない。
本発明者らは、磁気抵抗効果素子の熱安定性指数Δを向上させるために、さまざまな研究を鋭意行っている。
非特許文献1には、薄膜化したCoFeB/MgO積層構造を垂直磁気異方性磁気抵抗効果素子に適用することにより、直径が40nmの記録層で熱安定性指数Δが約40の磁気抵抗効果素子が得られていることが開示されている。かかる磁気抵抗効果素子は、膜厚tを小さくして数1の式における反磁界の項(第3項)の寄与を低減させ、垂直磁化容易軸を実現し、同時に熱安定性指数Δを高めたものである。
非特許文献2には、二重のCoFeB/MgO界面を有するMgO/CoFeB/Ta/CoFeB/MgO積層構造を垂直磁気異方性磁気抵抗効果素子に適用することにより、1つのCoFeB/MgO界面の場合より1.9倍の熱安定性指数Δを得られたことが開示されている。かかる磁気抵抗効果素子は、記録層の界面の面積Sを2倍にして数1の式における第1項の寄与を高め、熱安定性指数Δを向上させたものである。
この他、特許文献1には、記録層の飽和磁化量を低減しなくても書き込み電流量を低減することができ、記録層の熱安定性を確保できる記憶素子について開示されている(特許文献1段落0023、要約等)。本記憶素子は、記録層に接する絶縁層と、絶縁層とは反対側で記録層に接する他方の層は、少なくとも記録層と接する界面が酸化膜で形成されており、さらに記録層はCo-Fe-B磁化層に加え、非磁性金属と酸化物の一方又は両方が含まれているものである(特許文献1段落0020等)。たとえば、記録層のCo-Fe-Bに酸化物のMgOが含まれている場合、MgOの膜厚が0.1nm、0.2nm、0.3nmにおいて、酸化物等が含まれない比較例より高い熱安定性指数Δが得られている(特許文献1段落0125等)。一方、MgOの膜厚が0.4nmになると、熱安定性指数にほぼ比例する保磁力がゼロとなることが開示されている(特許文献1段落0125等)。
特開2012-64625号公報
しかしながら、上記非特許文献1、非特許文献2や特許文献1等の先行文献に開示された、あるいはそれらが組み合わせられた磁気抵抗効果素子であっても、素子サイズが概ね30nm付近より小さくなるに従い、熱安定性指数Δが急激に低下することが開示されている(非特許文献3)。
すなわち、従来技術により素子サイズがある程度の大きさ以上においては熱安定性指数Δを増大させることに成功しているが、素子サイズが小さい領域においては熱安定性指数Δが低下してしまい、高度集積に求められるより小さな素子サイズでは不揮発性の高い磁気メモリを提供できないという課題があった。
本発明は、上記実情に鑑み、より微細な磁気抵抗効果素子のサイズが要求される次世代に向けて、素子サイズが小さい領域においても、より高温での安定した記録保持が可能な、さらに高い熱安定性を有する磁気抵抗効果素子の構成を見出し、完成させるに至ったものである。
上記課題を解決するために、本発明の磁気抵抗効果素子は、参照層(B1)と、前記参照層(B1)に隣接して設けられた第1の非磁性層(1)と、前記第1の非磁性層(1)の前記参照層(B1)とは反対側に隣接して設けられた第1の磁性層(21)と、前記第1の磁性層(21)の前記第1の非磁性層(1)とは反対側に隣接して設けられた第1の非磁性挿入層(31)と、前記第1の非磁性挿入層(31)の前記第1の磁性層(21)とは反対側に隣接して設けられた第2の磁性層(22)と、を備え、前記第1の非磁性層(1)は酸素を含み、前記第1の非磁性挿入層(31)は酸素を含む材料から構成され、膜厚は0.5nm以上であり、前記第1の磁性層(21)、前記第1の非磁性挿入層(31)及び前記第2の磁性層(22)は記録層(A1)を構成し、前記記録層(A1)の素子サイズは50nm以下であることを特徴とする。
前記記録層(A1)は、n個(n≧2)の磁性層と、n-1個の非磁性挿入層が交互に隣接して積層した構造を有し、1番目の磁性層(21)は前記第1の非磁性層(1)と隣接して設けられることが望ましい。
前記第1の非磁性挿入層のそれぞれの膜厚は、0.6nm以上1.5nm以下であることが好ましい。
また、本発明の磁気抵抗効果素子は、参照層(B1)と、前記参照層(B1)に隣接して設けられた第1の非磁性層(1)と、前記第1の非磁性層(1)の前記参照層(B1)とは反対側に隣接して設けられた記録層(A1)と、を備え、前記記録層(A1)は、n個(n≧2)の磁性層と、n-1個の非磁性挿入層が交互に隣接して積層した構造を有し、1番目の磁性層(21)は前記第1の非磁性層(1)と隣接して設けられ、前記記録層(A1)の素子サイズは50nm以下であり、m番目(1≦m≦n-1)の前記非磁性挿入層に隣接するm番目の磁性層とm+1番目の磁性層は、静磁気相互作用が支配的となって静磁結合していることを特徴とする。
前記非磁性挿入層のそれぞれの膜厚は、0.6nm以上1.5nm以下であることが望ましい。
前記非磁性挿入層の材料は、MgO、Al-O、Ta-O、W-O、Hf-Oから選択されてもよい。
前記磁性層のそれぞれの膜厚は、0.5nm以上2.5nm以下であることが望ましい。
前記磁性層の材料は、少なくともFe又はCoのいずれかを含んでもよい。
前記磁性層のそれぞれは、該磁性層内に非磁性サブ挿入層を含んでもよい。
前記記録層(A1)の前記第1の非磁性層(1)とは反対側に第2の非磁性層(4)をさらに備え、前記第2の非磁性層(4)は酸素を含む材料で構成されてもよい。
また、本発明の磁気メモリは、上述の磁気抵抗効果素子を備える。
本発明によれば、磁気抵抗効果素子の素子サイズが小さい領域で、高い熱安定性指数Δを有する磁気抵抗効果素子及び磁気メモリを提供することができる。具体的には、記録層の磁性層に非磁性挿入層を1又は複数挿入することにより、界面磁気異方性を生じる界面の面積を増やし、かつ、素子サイズを小さくした、磁性層が垂直磁化容易軸を有する磁気抵抗効果素子及び磁気メモリである。
ここで、膜面に対し垂直方向の界面磁気異方性を生じさせるために挿入する非磁性層の厚みをある程度大きくする必要があるが、熱安定性の検討以前に、本構成ではそもそも非磁性層に隣接した磁性層同士が磁気的に結合できなくなると考えられていた。実際、従来に多く検討されていた概ね50nmを超える素子サイズでは、本構成の磁性層は十分に磁気的に結合しないことが分かっていた。しかし、本発明により、素子サイズを小さくすれば、界面磁気異方性を生じる厚みを有する非磁性層を1又は複数挿入しても磁性層は磁気的に結合し、界面の面積(数1の式中のS)の増加に従い、熱安定性指数Δを高めることができることが新たに見出された。すなわち本発明によれば、素子サイズが小さい領域において低下する熱安定性指数Δを十分補完可能な、もしくは、熱安定性指数Δをさらに高めることができる、磁気抵抗効果素子及び磁気メモリを提供することができる。
なお、本願における磁気抵抗効果素子の素子サイズとは、素子形状の短辺、短径である。素子形状が円形であれば直径、楕円であれば短径、矩形であれば短辺を指す。
(a)及び(b)に、本発明の磁気抵抗効果素子の構成の一例の縦断面図を示す。 (a)及び(b)に、本発明の磁気抵抗効果素子の構成の他の一例の縦断面図を示す。 (a)及び(b)に、本発明の磁気抵抗効果素子の構成の他の一例の縦断面図を示す。 本発明の磁気抵抗効果素子の構成の他の一例の縦断面図を示す。 本発明の磁気抵抗効果素子の構成の他の一例の縦断面図を示す。 本発明の磁気抵抗効果素子の構成の他の一例の縦断面図を示す。 本発明の磁気抵抗効果素子の構成の他の一例の縦断面図を示す。 本発明の磁気抵抗効果素子の構成の他の一例の縦断面図を示す。 本発明の磁気抵抗効果素子を複数個配置した磁気メモリのブロック図の一例である。 従来の磁気抵抗効果素子の構成の縦断面図を示す。 (a)は磁性層間の交換結合作用(交換結合)を説明する図であり、(b)は磁性層間の静磁気相互作用(静磁結合)を説明する図である。 ナノ磁石周辺の磁界を説明する図である。(a)は直径が10nm、(b)は直径が20nm、(c)は直径が50nmの場合を示す。 静磁界の素子サイズ依存性を示す、グラフである。 素子サイズ及び積層回数と、熱安定性指数の関係を示すグラフである。 素子サイズと保磁力の関係を示すグラフである。
以下、図面を参照しながら、本発明の磁気抵抗効果素子及び磁気メモリについて、詳細を説明する。
なお、図は一例に過ぎず、また、符号を付して説明するが、本発明を何ら限定するものではない。
(実施の形態1)
図1(a)に、本発明の実施の形態1の基本構成を示す。該磁気抵抗効果素子の基本構成は、参照層(B1)/第1の非磁性層(1)/第1の磁性層(21)/第1の非磁性挿入層(31)/第2の磁性層(22)が順に隣接して配置されたものであり、第1の磁性層(21)/第1の非磁性挿入層(31)/第2の磁性層(22)は記録層(A1)を構成する。
少なくとも第1の非磁性層(1)/第1の磁性層(21)の界面は垂直方向の界面磁気異方性を有し、また、第1の磁性層(21)と第2の磁性層(22)の間は、後述する静磁気相互作用が支配的となり静磁結合を介して強磁性的に結合している。
図1(b)に、上記実施の形態1の第2の磁性層(22)に第2の非磁性層(4)を隣接させてさらに設けた構成例を示す。第2の磁性層(22)/第2の非磁性層(4)の界面も垂直磁気異方性を有するように、材料や膜厚を調整することが望ましい。
図1(b)では、参照層(B1)が第1の非磁性層(1)側に隣接しているため第1の非磁性層(1)が障壁層(絶縁層からなるトンネル接合層)となる。図示しないが、さらに参照層が第2の非磁性層(4)側に隣接した場合は第2の非磁性層(4)も障壁層となる。
参照層(B1)は、磁化方向が固定された磁性層であり、[Co/Pt]/Ru/[Co/Pt]/Ta/CoFeB等が例示される。[Co/Pt]はCo/Ptの交互積層膜を指し、[Co/Pd]や[Co/Ni]等を用いることもできる。Ruの代わりにIr等でもよく、TaはW、Mo、Hf等でもよい。さらにCoFeBはFeB等でもよい。
第1の非磁性層(1)及び第2の非磁性層(4)は、O(酸素)を含む材料が用いられる。第1の非磁性層(1)は、及び第2の非磁性層(4)が磁気抵抗効果素子の障壁層(絶縁層からなるトンネル接合層)となる場合は、接合する2つの端面の材料の組み合わせで磁気抵抗変化率が大きく発現するよう、MgO、Al23、SiO2、TiO、Hf2O等の酸素を含む絶縁体が用いられ、好ましくはMgOが用いられる。
第1の非磁性層(1)の膜厚、及び第2の非磁性層(4)が磁気抵抗効果素子の障壁層となる場合の膜厚は、TMR比を大きくするために0.5nm以上であることが好ましく、0.8nm以上であることがより好ましい。また、小さな書き込み電流ICで磁化反転するために2.0nm以下であることが好ましく、1.5nm以下であることがより好ましい。よって0.5~2.0nmの範囲、より好ましくは0.8~1.5nmの範囲に調整される。
一方、第2の非磁性層(4)が磁気抵抗効果素子の障壁層とならない場合、キャップ層として設けられる場合は、MgO、Al23、SiO2、TiO、Hf2O、Ta-O、W-O等の酸素を含む絶縁体が用いられ、好ましくはMgOが用いられる。
第1の磁性層(21)及び第2の磁性層(22)は、少なくともCo又はFeのいずれかを含み、Ni等の3d強磁性遷移金属をさらに含んでいてもよい。
また、第1の磁性層(21)及び第2の磁性層(22)は、W、Ta、Hf、Zr、Nb、Mo、Ti、V、Cr、Si、Al、B、Pd、Pt等の非磁性元素をさらに含んでもよい。なかでも、B、Vは、取り扱いやすさの面からも好ましい。これらの非磁性元素は、磁性層の飽和磁化(Ms)を低くすることができる。
具体例として、Co、CoFe、CoB、Fe、FeB、CoFeB等が挙げられるが、後述する静磁気相互作用が支配的となって第1の磁性層(21)及び第2の磁性層(22)の間が強磁性的に結合するものであり、かつ、膜面垂直方向に界面磁気異方性を有する材料であれば、これに限定されない。
第1の磁性層(21)及び第2の磁性層(22)の膜厚はそれぞれ0.3nm~3.0nmの範囲にあることが好ましく、0.5nm~2.5nmの範囲にあることがより好ましい。膜厚がより薄くなると安定した強磁性が得られない一方、膜厚がより厚くなるとMgO等を第1の非磁性層(1)及び第2の非磁性層(4)に用いた場合は面内磁化容易軸となってしまうからである。
第1の非磁性挿入層(31)は、少なくとも酸素を含む材料から構成され、W、Ta、Hf、Zr、Nb、Mo、Ti、V、Cr、Si、Al、B、Pd、Pt等の非磁性元素を含む。なかでも、第1の非磁性挿入層(31)は隣接する第1の磁性層(21)及び第2の磁性層(22)の両方の界面において界面磁気異方性が大きくなる材料が好ましく、MgO、Al-O、Ta-O、W-O、Hf-O等がより好ましい。
第1の非磁性挿入層(31)の膜厚は、隣接した磁性層との界面に膜面垂直方向の界面磁気異方性を生じさせる厚さであり、かつ、十分なTMR比が得られるような薄さに調整される。前者の要請から下限が決まり、その膜厚は0.5nm程度である。またこの膜厚以上であれば隣り合う強磁性層は静磁気相互作用により強磁性的に結合する。また後者の要請から上限が決まり、その膜厚は2.0nm程度である。すなわち第1の非磁性挿入層(31)の膜厚は0.5nm~2.0nmの範囲が好ましく、0.6nm~1.5nmの範囲がより好ましい。さらに好ましくは0.7nm~1.1nmである。
記録層(A1)の素子サイズは、その短径が50nm以下である。上述したとおり、本願における磁気抵抗効果素子の素子サイズとは、素子形状の短辺、短径である。素子形状が円形であれば直径、楕円であれば短径、矩形であれば短辺を指す。
記録層(A1)を構成する磁性層は、磁気抵抗効果素子として磁化方向が反転する場合、静磁気相互作用が支配的となって静磁結合しているため、実質的に一体となって磁化反転する。
各層は、スパッタリングにより積層されることが望ましく、各膜厚はスパッタ時間等のスパッタ条件により調整される。
以下に、実施の形態1の構成を裏付ける評価検討について、説明する。
<従来の二重界面MTJと本発明の静磁結合MTJの比較>
図10に、従来の二重界面MTJ(磁気トンネル接合)の構成を示す。参照層(B1)/第1の非磁性層(1)/第1の磁性層(2a)/非磁性サブ挿入層(6)/第2の磁性層(2b)/第2の非磁性層(4)が順に隣接して配置されたものであり、第1の磁性層(2a)/非磁性挿入層(6)/第2の磁性層(2b)は記録層(A1)を構成する。
第1の非磁性層(1)及び第2の非磁性層(4)は、酸素を含む非磁性元素からなり、MgO等が好ましく用いられる。
第1の磁性層(2a)及び第2の磁性層(2b)は、少なくともCo又はFeのいずれかを含み、具体的にはCo、CoFe、CoB、Fe、FeB、CoFeB等が例示される。
非磁性サブ挿入層(6)は、W、Ta、Hf、Zr、Nb、Mo、Ti、V、Cr、Si、Al、B、Pd、Pt等の非磁性元素を含み、より好ましい元素としてはW、Ta等が例示される。非磁性サブ挿入層(6)は、隣接する磁性層中にBが存在する場合はBを吸収し結晶化を促進する役割とともに、隣接する第1の磁性層(2a)及び第2の磁性層(2b)を、後述する交換結合を介して強磁性的に結合させる必要があるため、非磁性サブ挿入層(6)の膜厚は十分に薄く、たとえば0.2nm~0.7nm程度に調整される。
以上のような層構成から、第1の非磁性層(1)と第1の磁性層(2a)の界面、及び、第2の磁性層(2b)と第2の非磁性層(4)の界面の、2つの界面(二重界面)において垂直磁気異方性を有することにより、記録層の界面の面積Sを2倍にして数1の式における第1項の寄与を高め、熱安定性指数Δを向上させている。
一方、本発明の静磁結合MTJの例を、図1(a)又は図1(b)に示した。前述したように、第1の非磁性層(1)/第1の磁性層(21)の界面の他、第1の磁性層(21)/第1の非磁性挿入層(31)の界面、第1の非磁性挿入層(31)/第2の磁性層(22)の界面、第2の非磁性層(4)が含まれる場合には第2の磁性層(22)/第2の非磁性層(4)の界面において、膜面に対して垂直方向の界面磁気異方性を有する。
また、記録層(A1)の素子サイズが50nm以下の場合、第1の磁性層(21)と第2の磁性層(22)の間は静磁結合を介して強磁性的に結合する。
以上のような層構成から、3つあるいは4つの界面において膜面垂直方向の界面磁気異方性を有することにより、記録層の界面の面積Sを3倍あるいは4倍にして数1の式における第1項の寄与を高め、熱安定性指数Δを向上させることができる。
ここで、交換結合について説明する。
図11(a)にイメージで表したように、交換結合は、2つの原子の電子軌道が重なる程度まで2つの原子が接近した時に働く、量子力学的相互作用に基づく。交換結合は、2つの原子が接近すると2つの電子のスピンが平行の場合と反平行の場合でエネルギーに差が生じるため、エネルギー的に安定するように1つの原子上の電子が他の原子の電子軌道にも行き来することにより生じるものである。また、自由電子等を介して生じる電子スピン結合も交換結合の一種である。つまり、交換相互作用に基づく交換結合は、軌道が重なる程度に近距離でしか生じない。
次に、静磁結合について説明する。
図11(b)にイメージで表したように、静磁結合は、近くに置かれた2つの磁石に対し、それぞれの磁石から出る磁力線により働く、古典電磁気学的相互作用に基づく。2つの磁石は、置いた互いの位置により強磁性的又は反強磁性的に結合する。よって、静磁気相互作用に基づく静磁結合は、比較的遠距離でも働く。
さらに、静磁エネルギーの区間分布は、磁性体の形状、大きさで決まる。
図12に、膜厚2nm、飽和磁化1.5Tで膜面垂直方向に磁化したナノ磁石について、素子サイズ(円の直径)が(a)10nm、(b)20nm、(c)50nmの場合に周辺に形成される磁界(静磁界)を検討した結果を示した。X軸が素子の径方向、Z軸が素子の膜厚方向であり、図面内部の数値が磁界(mT)の値である。磁界の値が正の場合は磁界が上向きであり、負の場合は磁界が下向きであることを示す。また、磁界が200mT以上あるいは-200mT以下の領域を網目状で囲み、磁界が100mT以上あるいは-100mT以下の領域を実線で囲んで表示した。
図12(a)、(b)、(c)のX-Z断面の磁界分布より、ナノ磁石のX-Y平面のX軸端から-X軸端までの範囲(すなわち、ナノ磁石の平面内部)からZ軸方向及び-Z軸方向に上向きの磁界が弧状に広がり、それ以外の空間では下向きの磁界が広がっていることが分かった。
図12(a)のように直径が小さいときは、ナノ磁石周辺の相対的に広い範囲にわたって大きな磁界が発生していることが分かる。この大きな磁界により、上下にある磁性層に、大きな静磁結合が働くといえる。
一方、図12(b)や(c)のように直径が大きくなると、ナノ磁石の中心に大きな磁界が発生している領域が相対的に少なくなる。このため、上下にある磁性層に働く静磁結合が、(a)の場合に比べて弱まっているといえる。
図13に、静磁界と素子サイズの関係の検討結果を示した。比較のため、交換結合に由来する有効磁界も併せて示した。
図12においても検討したとおり、素子サイズが小さくなると静磁界は増大し、素子サイズが大きくなると静磁界は減少する。一方、交換結合に由来する有効磁界は、材料や膜厚に強く依存するものの、図11(a)に示したとおり原子レベルの接近により発生するものであり、素子サイズには依存しない。
以上の静磁界及び交換結合に由来する有効磁界の特性から、磁気抵抗効果素子の素子サイズがおおむね50nm以下においては、静磁結合が支配的となることが分かった。
(実施の形態2)
図2(a)に、本発明の実施の形態2の構成を示す。該磁気抵抗効果素子の構成は、参照層(B1)/第1の非磁性層(1)/第1の磁性層(21)/第1の非磁性挿入層(31)/第2の磁性層(22)/第2の非磁性挿入層(32)/第3の磁性層(23)が順に隣接して配置されたものであり、第1の磁性層(21)/第1の非磁性挿入層(31)/第2の磁性層(22)/第2の非磁性挿入層(32)/第3の磁性層(23)は記録層(A1)を構成する。
少なくとも第1の非磁性層(1)/第1の磁性層(21)の界面は垂直方向の界面磁気異方性を有し、また、第1の磁性層(21)と第2の磁性層(22)の間、及び、第2の磁性層(22)と第3の磁性層(23)の間は、静磁気相互作用が支配的となり静磁結合を介して強磁性的に結合している。
図2(b)に、上記実施の形態2の第3の磁性層(23)に第2の非磁性層(4)を隣接させてさらに設けた構成例を示す。第3の磁性層(23)/第2の非磁性層(4)の界面も垂直磁気異方性を有するように、材料や膜厚を調整することが望ましい。
実施の形態2の詳細は、以下の記載を除き、実施の形態1と同様である。
第3の磁性層(23)は、少なくともCo又はFeのいずれかを含み、Ni等の3d強磁性遷移金属をさらに含んでいてもよい。
また、第3の磁性層(23)は、W、Ta、Hf、Zr、Nb、Mo、Ti、V、Cr、Si、Al、B、Pd、Pt等の非磁性元素をさらに含んでもよい。なかでも、B、Vは、取り扱いやすさの面からも好ましい。これらの非磁性元素は、磁性層の飽和磁化(Ms)を低くすることができる。
具体例として、Co、CoFe、CoB、Fe、FeB、CoFeB等が挙げられるが、静磁気相互作用が支配的となって静磁結合を介して第2の磁性層(22)及び第3の磁性層(23)の間が強磁性的に結合するものであり、かつ、膜面垂直方向に界面磁気異方性を有する材料であれば、これに限定されない。
第3の磁性層(23)の膜厚は0.3nm~3.0nmの範囲にあることが好ましく、0.5nm~2.5nmの範囲にあることがより好ましい。膜厚がより薄くなると安定した強磁性が得られない一方、膜厚がより厚くなるとMgO等を第1の非磁性層(1)及び第2の非磁性層(4)に用いた場合は面内磁化容易軸となってしまうからである。
第2の非磁性挿入層(32)は、少なくとも酸素を含む材料から構成され、W、Ta、Hf、Zr、Nb、Mo、Ti、V、Cr、Si、Al、B、Pd、Pt等の非磁性元素を含む。なかでも、第2の非磁性挿入層(32)は隣接する第2の磁性層(22)及び第3の磁性層(23)の両方の界面において界面磁気異方性が大きくなる材料が好ましく、MgO、Al-O、Ta-O、W-O、Hf-O等がより好ましい。
第2の非磁性挿入層(32)の膜厚は、隣接した磁性層との界面に膜面垂直方向の界面磁気異方性を生じさせる厚さであり、かつ、十分なTMR比が得られるような薄さに調整される。前者の要請から下限が決まり、その膜厚は0.5nm程度である。また、この膜厚以上であれば隣り合う強磁性層は静磁気相互作用により強磁性的に結合する。また後者の要請から上限が決まり、その膜厚は2.0nm程度である。すなわち第2の非磁性挿入層(32)の膜厚は、0.5nm~2.0nmの範囲が好ましく、0.6nm~1.5nmの範囲がより好ましい。さらに好ましくは0.7nm~1.1nmである。
実施の形態2における、具体的な記録層の積層構造として、FeB(2.0nm)/MgO(0.9nm)/FeB(2.0nm)/MgO(0.9nm)/FeB(2.0nm)が例示される。
(実施の形態3)
図3(a)に、本発明の実施の形態3の構成を示す。該磁気抵抗効果素子は、実施の形態1の記録層において、磁性層をn回、非磁性挿入層を(n-1)回、交互に隣接して積層したもの(n≧2)を含む。すなわち、参照層(B1)/第1の非磁性層(1)/第1の磁性層(21)/第1の非磁性挿入層(31)/・・・/第(n-1)の磁性層(2(n-1))/第(n-1)の非磁性挿入層(3(n-1))/第nの磁性層(2n)が順に隣接して配置されたものであり、第1の磁性層(21)/第1の非磁性挿入層(31)/・・・/第(n-1)の磁性層(2(n-1))/第(n-1)の非磁性挿入層(3(n-1))/第nの磁性層(2n)は記録層(A1)を構成する。
少なくとも第1の非磁性層(1)/第1の磁性層(21)の界面は垂直方向の界面磁気異方性を有し、また、第1の非磁性層(1)側から数えてm番目(1≦m≦n-1)の非磁性挿入層に隣接するm番目の磁性層とm+1番目の磁性層の間はそれぞれ、静磁気相互作用が支配的となり静磁結合を介して強磁性的に結合している。
図3(b)に、上記実施の形態3のn番目の磁性層(2n)に第2の非磁性層(4)を隣接させてさらに設けた構成例を示す。n番目の磁性層(2n)/第2の非磁性層(4)の界面も垂直磁気異方性を有するように、材料や膜厚を調整することが望ましい。
なお、実施の形態3において、n=2の場合は実施の形態1、n=3の場合は実施の形態2となる。
実施の形態3の詳細は、以下の記載を除き、実施の形態1と同様である。
m番目(1≦m≦n)の磁性層は、少なくともCo又はFeのいずれかを含み、Ni等の3d強磁性遷移金属をさらに含んでいてもよい。
また、m番目の磁性層は、W、Ta、Hf、Zr、Nb、Mo、Ti、V、Cr、Si、Al、B、Pd、Pt等の非磁性元素をさらに含んでもよい。なかでも、B、Vは、取り扱いやすさの面からも好ましい。これらの非磁性元素は、磁性層の飽和磁化(Ms)を低くすることができる。
具体例として、Co、CoFe、CoB、Fe、FeB、CoFeB等が挙げられるが、静磁気相互作用が支配的となって静磁結合を介してm番目の磁性層及びm+1番目の磁性層の間が強磁性的に結合するものであり、かつ、膜面垂直方向に界面磁気異方性を有する材料であれば、これに限定されない。
m番目の磁性層の膜厚は0.3nm~3.0nmの範囲にあることが好ましく、0.5nm~2.5nmの範囲にあることがより好ましい。膜厚がより薄くなると安定した強磁性が得られない一方、膜厚がより厚くなるとMgO等を第1の非磁性層(1)及び第2の非磁性層(4)に用いた場合は面内磁化容易軸となってしまうからである。
m番目(1≦m≦n-1)の非磁性挿入層は、少なくとも酸素を含む材料から構成され、W、Ta、Hf、Zr、Nb、Mo、Ti、V、Cr、Si、Al、B、Pd、Pt等の非磁性元素を含む。なかでも、m番目の非磁性挿入層は隣接するm番目の磁性層及びm+1番目の磁性層の両方の界面において界面磁気異方性が大きくなる材料が好ましく、MgO、Al-O、Ta-O、W-O、Hf-O等がより好ましい。
m番目の非磁性挿入層の膜厚は、隣接した磁性層との界面に膜面垂直方向の界面磁気異方性を生じさせる厚さであり、かつ、十分なTMR比が得られるような薄さに調整される。前者の要請から下限が決まり、その膜厚は0.5nm程度である。また、この膜厚以上であれば隣り合う強磁性層は静磁気相互作用により強磁性的に結合する。また後者の要請から上限が決まり、その膜厚は2.0nm程度である。すなわち非磁性挿入層のそれぞれの膜厚は、0.5nm~2.0nmの範囲が好ましく、0.6nm~1.5nmの範囲がより好ましい。さらに好ましくは0.7nm~1.1nmである。
図14に、実施の形態3において、磁性層と非磁性層を交互に隣接して積層することにより熱安定性指数Δがどのように増大するかを検討した結果を示した。
素子サイズが50nm以下となるように実施の形態3の素子を作製し、熱安定性指数Δを測定した。素子サイズが50nm以下の領域においては、非磁性挿入層が含まれない従来の二重界面の例と比較し、n=2の場合は熱安定性指数Δは約2倍、n=3の場合は約3倍、n=4の場合は約4倍となることが分かった。
なお、一般的に磁気抵抗効果素子は素子製造上の誤差が大きいとされるが、その点を考慮しても、熱安定性指数Δは有意に増大していることが分かった。
図15に、実施の形態3における磁気抵抗効果素子の記録層の、適切な素子サイズの範囲を検討した結果を示した。
素子サイズが100nm程度以下となるように実施の形態3の素子(磁性層4層、非磁性挿入層3層を交互に積層したもの)を作製し、熱安定性指数Δにほぼ比例する指標である保磁力Hcを測定した。プロットは多数の素子の測定値の平均を表し、エラーバーはその標準偏差を表している。
図15より、素子サイズが50nm以下であると、200mT程度の非常に大きな保磁力Hcが得られているが、素子サイズが50nmを超えると保磁力Hcは低下することが分かった。つまり、素子サイズが50nmを超えると、静磁気相互作用に基づく静磁結合が十分には働かなくなっていき、保磁力Hc、すなわち、熱安定性指数Δは低下することが分かった。
(実施の形態4)
図4に、本発明の実施の形態4の構成を示す。スピン移行トルク磁化反転を用いて情報の書き込みを行う2端子型であり、下地層(E1)/参照層(B1)/第1の非磁性層(1)/記録層(A1)/第2の非磁性層(4)が順に隣接して配置され、下地層(E1)に第1端子(T1)、第2の非磁性層(4)に第2端子(T2)が設けられている。記録層(A1)は実施の形態3の記録層と同じ構成である。
実施の形態4は、以下の記載を除き、実施の形態3と同様である。
参照層(B1)は、磁化方向が固定された磁性層であり、[Co/Pt]/Ru/[Co/Pt]/Ta/CoFeB等が例示される。[Co/Pt]はCo/Ptの交互積層膜を指し、[Co/Pd]や[Co/Ni]等を用いることもできる。Ruの代わりにIr等でもよく、TaはW、Mo、Hf等でもよい。さらにCoFeBはFeB等でもよい。
記録層(A1)と参照層(B1)に隣接して挟まれた第1の非磁性層(1)は、障壁層(絶縁層からなるトンネル接合層)となるため、接合する2つの端面の材料の組み合わせで磁気抵抗変化率が大きく発現するよう、MgO、Al23、SiO2、TiO、Hf2O等の酸素を含む絶縁体が用いられ、好ましくはMgOが用いられる。
障壁層となる第1の非磁性層(1)の膜厚は、TMR比を大きくするために0.5nm以上であることが好ましく、0.8nm以上であることがより好ましい。また、小さな書き込み電圧VCで磁化反転するために2.0nm以下であることが好ましく、1.5nmであることがより好ましい。よって0.5~2.0nmの範囲、より好ましくは0.8~1.5nmの範囲に調整される。
(実施の形態5)
図5に、本発明の実施の形態5の構成を示す。スピン移行トルク磁化反転を用いて情報の書き込みを行う2端子型であり、下地層(E1)/第1の非磁性層(1)/記録層(A1)/第2の非磁性層(4)/参照層(B1)/第3の非磁性層(5)が順に隣接して配置され、下地層(E1)に第1端子(T1)、第3の非磁性層(5)に第2端子(T2)が設けられている。記録層(A1)は実施の形態3の記録層と同じ構成である。
実施の形態5の詳細は、以下の記載を除き、実施の形態3及び実施の形態4と同様である。
記録層(A1)と参照層(B1)に隣接して挟まれた第2の磁性層(4)は、障壁層(絶縁層からなるトンネル接合層)となるため、接合する2つの端面の材料の組み合わせで磁気抵抗変化率が大きく発現するよう、MgO、Al23、SiO2、TiO、Hf2O等の酸素を含む絶縁体が用いられ、好ましくはMgOが用いられる。
障壁層となる第2の非磁性層(4)の膜厚は、TMR比を大きくするために0.5nm以上であることが好ましく、0.8nm以上であることがより好ましい。また、小さな書き込み電圧VCで磁化反転するために2.0nm以下であることが好ましく、1.5nmであることがより好ましい。よって0.5~2.0nmの範囲、より好ましくは0.8~1.5nmの範囲に調整される。
第3の非磁性層(5)は、キャップ層としてTa、W、Ruなどの金属が用いられる。
(実施の形態6)
図6に、本発明の実施の形態6の構成を示す。スピン軌道トルク磁化反転を用いて情報の書き込みを行う3端子型であり、下地層(E1)/記録層(A1)/第1の非磁性層(1)/参照層(B1)/第3の非磁性層(5)が順に隣接して配置され、下地層(E1)に第1端子(T1)及び第2端子(T2)、第3の非磁性層(5)に第2端子(T2)が設けられている。記録層(A1)は実施の形態3の記録層と同じ構成(図面上は上下反転している)である。
実施の形態6の詳細は、以下の記載を除き、実施の形態1~5と同様である。
実施の形態6の下地層(E1)は、チャネル層として磁気トンネル接合の記録層(A1を反転させるのに十分なスピン軌道トルクを発生させるだけの特性を備える材料であればよく、なかでも重金属を有することが望ましい。下地層(E1)に書き込み電流Iwriteを導入するとスピン軌道トルクが発生し、磁気抵抗効果素子への書き込みが行われる。このため、スピン・軌道相互作用の大きい重金属、たとえば、Ta、W、Hf、Re、Os、Ir、Pt、Pd、あるいはこれらの合金から構成されることが望ましい。これらの重金属層に適宜遷移金属を添加した材料であってもよく、重金属を導電性材料等にドープしたものでものでもよい。また、電気材料特性を改善する等の目的で、B、C、N、O、Al、Si、P、Ga、Ge等を添加してもよい。さらに、Co-Gaなども候補となる。
下地層(E1)の形状は、書き込み電流Iwriteを流せるものであり、かつ、記録層(A1)に対し効率的に磁化反転できる形状であれば、特に限定されないが、書き込み電流Iwriteの方向に延伸された平面形状が望ましい。
3端子型の磁気抵抗効果素子は、Zタイプ、Yタイプ、Xタイプいずれの磁化容易軸の方向であってもよい。
(実施の形態7)
図7に、本発明の実施の形態7の構成を示す。該磁気抵抗効果素子の構成は、参照層(B1)第1の非磁性層(1)/磁性層(21a)/非磁性サブ挿入層(61)/磁性層(21b)/第1の非磁性挿入層(31)/磁性層(22a)/非磁性サブ挿入層(62)/磁性層(22b)が順に隣接して配置されたものであり、磁性層(21a)/非磁性サブ挿入層(61)/磁性層(21b)/第1の非磁性挿入層(31)/磁性層(22a)/非磁性サブ挿入層(62)/磁性層(22b)は記録層(A1)を構成する。
少なくとも第1の非磁性層(1)/磁性層(21a)の界面は垂直方向の界面磁気異方性を有し、また、磁性層(21b)と磁性層(22a)の間は、静磁気相互作用が支配的となり静磁結合を介して強磁性的に結合している。
実施の形態7の詳細は、以下の記載を除き、実施の形態1と同様である。
非磁性サブ挿入層(61、62)は、W、Ta、Hf、Zr、Nb、Mo、Ti、V、Cr、Si、Al、B、Pd、Pt等の非磁性元素を含む。非磁性サブ挿入層はその界面に隣接した磁性層中のB等を吸収して膜面垂直方向の界面磁気異方性を誘起する役割も有するため、bcc(体心立方格子)で、原子半径が大きく、格子間隔が比較的大きな元素が好ましい。なかでもbccのW、Ta、Hf、Zr、Nb、Mo、Ti、V等が好ましく、W、Taがより好ましい。
非磁性サブ挿入層(61、62)の膜厚はそれぞれ、界面に隣接した磁性層中のB等を吸収して垂直磁気異方性を生じさせる厚さであり、かつ、2つの磁性層の間に交換結合が働く薄さの範囲に調整される。たとえば0.2nm~0.7nmの範囲で調整されることがより好ましい。
なお、非磁性サブ挿入層(61、62)のいずれかの膜厚が0.2nm程度以下となった場合、スパッタ時間を調整して原子サイズ程度あるいはそれより薄い膜厚の層を作製することになるため、層が連続しているものも、層が連続していないものも含まれる。層が連続していない場合であっても、格子に磁性層のB等を吸収する間隙があれば、垂直磁化容易軸を有することが可能である。
磁性層(21a、21b、22a、22b)は、少なくともCo又はFeのいずれかを含み、Ni等の3d強磁性遷移金属をさらに含んでいてもよい。
また、磁性層(21a、21b、22a、22b)は、W、Ta、Hf、Zr、Nb、Mo、Ti、V、Cr、Si、Al、B、Pd、Pt等の非磁性元素をさらに含んでもよい。なかでも、B、Vは、取り扱いやすさの面からも好ましい。これらの非磁性元素は、磁性層の飽和磁化(Ms)を低くすることができる。
具体例として、Co、CoFe、CoB、Fe、FeB、CoFeB等が挙げられるが、静磁気相互作用が支配的となって磁性層(21b、22a)の間が強磁性的に結合するものであり、かつ、膜面垂直方向に界面磁気異方性を有する材料であれば、これに限定されない。
磁性層(21a、21b)の膜厚の合計、及び、磁性層(22a、22b)の膜厚の合計はそれぞれ0.3nm~3.0nmの範囲にあることが好ましく、0.5nm~2.5nmの範囲にあることがより好ましい。
(実施の形態8)
図8に、本発明の実施の形態7の構成を示す。該磁気抵抗効果素子の構成は、参照層(B1)/第1の非磁性層(1)/磁性層(21a)/非磁性サブ挿入層(61)/磁性層(21b)/第1の非磁性挿入層(31)/磁性層(22a)/非磁性サブ挿入層(62)/磁性層(22b)/第2の非磁性挿入層(32)/磁性層(23a)/非磁性サブ挿入層(63)/磁性層(23b)が順に隣接して配置されたものであり、磁性層(21a)/非磁性サブ挿入層(61)/磁性層(21b)/第1の非磁性挿入層(31)/磁性層(22a)/非磁性サブ挿入層(62)/磁性層(22b)/第2の非磁性挿入層(32)/磁性層(23a)/非磁性サブ挿入層(63)/磁性層(23b)は記録層(A1)を構成する。
少なくとも第1の非磁性層(1)/磁性層(21a)の界面は垂直方向の界面磁気異方性を有し、また、磁性層(21b)と磁性層(22a)の間、磁性層(22b)と磁性層(23a)の間は、静磁気相互作用が支配的となって静磁結合を介して強磁性的に結合している。
実施の形態8の詳細は、以下の記載を除き、実施の形態2及び実施の形態7と同様である。
非磁性サブ挿入層(63)は、W、Ta、Hf、Zr、Nb、Mo、Ti、V、Cr、Si、Al、B、Pd、Pt等の非磁性元素を含む。非磁性サブ挿入層はその界面に隣接した磁性層中のB等を吸収して膜面垂直方向の界面磁気異方性を誘起する役割も有するため、bcc(体心立方格子)で、原子半径が大きく、格子間隔が比較的大きな元素が好ましい。なかでもbccのW、Ta、Hf、Zr、Nb、Mo、Ti、V等が好ましく、W、Taがより好ましい。
非磁性サブ挿入層(63)の膜厚は、界面に隣接した磁性層中のB等を吸収して垂直磁気異方性を生じさせる厚さであり、かつ、2つの磁性層の間に交換結合が働く薄さの範囲に調整される。たとえば0.2nm~0.7nmの範囲で調整されることがより好ましい。
磁性層(23a、23b)は、少なくともCo又はFeのいずれかを含み、Ni等の3d強磁性遷移金属をさらに含んでいてもよい。
また、磁性層(23a、23b)は、W、Ta、Hf、Zr、Nb、Mo、Ti、V、Cr、Si、Al、B、Pd、Pt等の非磁性元素をさらに含んでもよい。なかでも、B、Vは、取り扱いやすさの面からも好ましい。これらの非磁性元素は、磁性層の飽和磁化(Ms)を低くすることができる。
具体例として、Co、CoFe、CoB、Fe、FeB、CoFeB等が挙げられるが、静磁気相互作用が支配的となって磁性層(22b、23a)の間が強磁性的に結合するものであり、かつ、膜面垂直方向に界面磁気異方性を有する材料であれば、これに限定されない。
磁性層(23a、23b)の膜厚の合計は0.3nm~3.0nmの範囲にあることが好ましく、0.5nm~2.5nmの範囲にあることがより好ましい。
(実施の形態9)
図9に、実施の形態9として、実施の形態1~8の構成を有する磁気メモリセルを複数個備える磁気メモリの一例を示す。
磁気メモリは、メモリセルアレイ、Xドライバ、Yドライバ、コントローラを備える。メモリセルアレイは、アレイ状に配置された磁気メモリセルを有する。Xドライバは複数のワード線(WL)に接続され、Yドライバは複数のビット線(BL)に接続され、読み出し手段及び書き出し手段として機能する。
1 第1の非磁性層
21、22、23、、、2n 磁性層
2a、2b、21a、21b、22a、22b、23a、23b 磁性層
31、32、、、、3(n-1) 非磁性挿入層
4 第2の非磁性層
5 第3の非磁性層
6、61、62、63 非磁性サブ挿入層
A1 記録層
B1 参照層
BL1 第1のビット線
BL2 第2のビット線
GND グラウンド線
T1 第1端子
T2 第2端子
T3 第3端子
Tr1 第1トランジスタ
Tr2 第2トランジスタ
WL ワード線

Claims (13)

  1. 参照層(B1)と、
    前記参照層(B1)に隣接して設けられた第1の非磁性層(1)と、
    前記第1の非磁性層(1)の前記参照層(B1)とは反対側に隣接して設けられた第1の磁性層(21)と、
    前記第1の磁性層(21)の前記第1の非磁性層(1)とは反対側に隣接して設けられた第1の非磁性挿入層(31)と、
    前記第1の非磁性挿入層(31)の前記第1の磁性層(21)とは反対側に隣接して設けられた第2の磁性層(22)と、を備え、
    前記第1の磁性層(21)、前記第1の非磁性挿入層(31)及び前記第2の磁性層(22)は記録層(A1)を構成し、
    前記記録層(A1)の前記第1の非磁性層(1)とは反対側に隣接して第2の非磁性層(4)をさらに備え、
    前記第1の非磁性層(1)及び前記第2の非磁性層(4)は酸素を含み、
    前記第1の非磁性挿入層(31)は酸素を含む材料から構成され、膜厚は0.7nm以上1.1nm以下であり、
    前記記録層(A1)の素子サイズは50nm以下であり、
    前記第1の磁性層(21)と前記第2の磁性層(22)は、静磁気相互作用が支配的となって静磁結合している、磁気抵抗効果素子。
  2. 前記記録層(A1)は、n個(n≧3)の磁性層と、n-1個の非磁性挿入層が交互に隣接して積層した構造を有し、1番目の磁性層(21)は前記第1の非磁性層(1)と隣接して設けられ、
    m番目(1≦m≦n-1)の前記非磁性挿入層に隣接するm番目の磁性層とm+1番目の磁性層は、静磁気相互作用が支配的となって静磁結合している、請求項1に記載の磁気抵抗効果素子。
  3. (削除)
  4. (削除)
  5. (削除)
  6. 前記非磁性挿入層の材料は、MgO、Al-O、Ta-O、W-O、Hf-Oから選択される、請求項1又は2に記載の磁気抵抗効果素子。
  7. 前記磁性層のそれぞれの膜厚は、0.5nm以上2.5nm以下である、請求項1~2、6いずれか一項に記載の磁気抵抗効果素子。
  8. 前記磁性層の材料は、少なくともFe又はCoのいずれかを含む、請求項1~2、6~7いずれか一項に記載の磁気抵抗効果素子。
  9. 前記磁性層のそれぞれは、該磁性層内に非磁性サブ挿入層を含む、請求項1~2、6~8いずれか一項に記載の磁気抵抗効果素子。
  10. (削除)
  11. (削除)
  12. 参照層(B1)と、
    前記参照層(B1)に隣接して設けられた第1の非磁性層(1)と、前記第1の非磁性層(1)の前記参照層(B1)とは反対側に隣接して設けられた記録層(A1)と、
    前記記録層(A1)の前記第1の非磁性層(1)とは反対側に隣接して第2の非磁性層(4)を備え、
    前記第1の非磁性層(1)及び前記第2の非磁性層(4)は酸素を含み、
    前記記録層(A1)の素子サイズは50nm以下であり、n個(n≧2)の磁性層と、n-1個の非磁性挿入層が交互に隣接して積層した構造を有し、1番目の磁性層(21)は前記第1の非磁性層(1)と隣接して設けられ、
    前記非磁性挿入層は酸素を含む材料から構成され、膜厚は0.7nm以上1.1nm以下である、磁気抵抗効果素子。
  13. 請求項1~2、6~9、12のいずれか一項に記載の磁気抵抗効果素子を備える、磁気メモリ。
JP2020510360A 2018-03-30 2019-02-06 磁気抵抗効果素子及び磁気メモリ Active JP7169683B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018069879 2018-03-30
JP2018069879 2018-03-30
PCT/JP2019/004299 WO2019187674A1 (ja) 2018-03-30 2019-02-06 磁気抵抗効果素子及び磁気メモリ

Publications (2)

Publication Number Publication Date
JPWO2019187674A1 JPWO2019187674A1 (ja) 2021-05-13
JP7169683B2 true JP7169683B2 (ja) 2022-11-11

Family

ID=68061287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510360A Active JP7169683B2 (ja) 2018-03-30 2019-02-06 磁気抵抗効果素子及び磁気メモリ

Country Status (4)

Country Link
US (1) US10998491B2 (ja)
JP (1) JP7169683B2 (ja)
KR (1) KR20200136903A (ja)
WO (1) WO2019187674A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6844743B2 (ja) * 2018-02-27 2021-03-17 Tdk株式会社 強磁性積層膜、スピン流磁化回転素子、磁気抵抗効果素子及び磁気メモリ
KR102298837B1 (ko) * 2020-03-19 2021-09-06 고려대학교 산학협력단 텅스텐 질화물을 가지는 스핀궤도토크 스위칭 소자
US11514962B2 (en) * 2020-11-12 2022-11-29 International Business Machines Corporation Two-bit magnetoresistive random-access memory cell
JP2023042173A (ja) * 2021-09-14 2023-03-27 キオクシア株式会社 磁気メモリデバイス

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252037A (ja) 2007-03-30 2008-10-16 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2013030685A (ja) 2011-07-29 2013-02-07 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2014530503A (ja) 2011-09-22 2014-11-17 クアルコム,インコーポレイテッド スピン移行トルクスイッチングデバイスのための熱的耐性のある垂直磁気異方性結合素子
JP2015185581A (ja) 2014-03-20 2015-10-22 株式会社東芝 不揮発性記憶装置
WO2016178758A1 (en) 2015-05-07 2016-11-10 Micron Technology, Inc. Magnetic tunnel junctions
WO2017131894A1 (en) 2016-01-28 2017-08-03 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3234814B2 (ja) * 1998-06-30 2001-12-04 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
US6853520B2 (en) * 2000-09-05 2005-02-08 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US6937446B2 (en) * 2000-10-20 2005-08-30 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
JP5725735B2 (ja) * 2010-06-04 2015-05-27 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
JP5740878B2 (ja) 2010-09-14 2015-07-01 ソニー株式会社 記憶素子、メモリ装置
JP6090800B2 (ja) * 2012-04-09 2017-03-15 国立大学法人東北大学 磁気抵抗効果素子および磁気メモリ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252037A (ja) 2007-03-30 2008-10-16 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2013030685A (ja) 2011-07-29 2013-02-07 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2014530503A (ja) 2011-09-22 2014-11-17 クアルコム,インコーポレイテッド スピン移行トルクスイッチングデバイスのための熱的耐性のある垂直磁気異方性結合素子
JP2015185581A (ja) 2014-03-20 2015-10-22 株式会社東芝 不揮発性記憶装置
WO2016178758A1 (en) 2015-05-07 2016-11-10 Micron Technology, Inc. Magnetic tunnel junctions
WO2017131894A1 (en) 2016-01-28 2017-08-03 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer

Also Published As

Publication number Publication date
KR20200136903A (ko) 2020-12-08
US20210098689A1 (en) 2021-04-01
JPWO2019187674A1 (ja) 2021-05-13
US10998491B2 (en) 2021-05-04
WO2019187674A1 (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP5867030B2 (ja) 記憶素子、記憶装置
JP5414681B2 (ja) 電流によって誘起されるスピン運動量移動に基づいた、高速かつ低電力な磁気デバイス
TWI397069B (zh) Memory components and memory
JP7169683B2 (ja) 磁気抵抗効果素子及び磁気メモリ
US10439133B2 (en) Method and system for providing a magnetic junction having a low damping hybrid free layer
USRE49364E1 (en) Memory element, memory apparatus
JP6244617B2 (ja) 記憶素子、記憶装置、磁気ヘッド
CN106887247B (zh) 信息存储元件和存储装置
US11776726B2 (en) Dipole-coupled spin-orbit torque structure
JP6194752B2 (ja) 記憶素子、記憶装置、磁気ヘッド
JP5987613B2 (ja) 記憶素子、記憶装置、磁気ヘッド
US9196336B2 (en) Storage cell, storage device, and magnetic head
JP2012235015A (ja) 記憶素子及び記憶装置
JP2013115413A (ja) 記憶素子、記憶装置
WO2012004883A1 (ja) 磁気抵抗効果素子及びそれを用いたランダムアクセスメモリ
JP2013115399A (ja) 記憶素子、記憶装置
JP2013115412A (ja) 記憶素子、記憶装置
JPWO2019138778A1 (ja) 磁気抵抗効果素子及び磁気メモリ
JP2017212464A (ja) 記憶素子、記憶装置、磁気ヘッド
WO2013080437A1 (ja) 記憶素子、記憶装置
JP6607578B2 (ja) 磁気抵抗効果素子及び磁気メモリ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R150 Certificate of patent or registration of utility model

Ref document number: 7169683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150