CN107251223A - 存储器单元 - Google Patents
存储器单元 Download PDFInfo
- Publication number
- CN107251223A CN107251223A CN201680010690.6A CN201680010690A CN107251223A CN 107251223 A CN107251223 A CN 107251223A CN 201680010690 A CN201680010690 A CN 201680010690A CN 107251223 A CN107251223 A CN 107251223A
- Authority
- CN
- China
- Prior art keywords
- electrode
- capacitors
- memory cell
- capacitor
- cell according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 226
- 239000000463 material Substances 0.000 claims abstract description 211
- 239000000758 substrate Substances 0.000 claims description 32
- 238000000926 separation method Methods 0.000 claims description 28
- 238000010719 annulation reaction Methods 0.000 claims description 25
- 230000005611 electricity Effects 0.000 claims description 15
- 230000005684 electric field Effects 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- 230000005621 ferroelectricity Effects 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000002019 doping agent Substances 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 150000004770 chalcogenides Chemical class 0.000 claims description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims 1
- 229920005591 polysilicon Polymers 0.000 claims 1
- 238000005728 strengthening Methods 0.000 claims 1
- 238000010276 construction Methods 0.000 description 21
- 238000003860 storage Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002305 electric material Substances 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000011469 building brick Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B53/00—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B53/00—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
- H10B53/30—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/008—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/33—Thin- or thick-film capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/40—Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
- H01L28/75—Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
- H10B12/033—Making the capacitor or connections thereto the capacitor extending over the transistor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明揭示一种存储器单元,其包含选择装置及与所述选择装置串联电耦合的电容器。所述电容器包含两个导电电容器电极,其具有介于其之间的铁电材料。所述电容器具有从所述电容器电极中的一者穿过所述铁电材料而到另一电容器电极的本征电流泄漏路径。存在从所述一个电容器电极到所述另一电容器电极的平行电流泄漏路径。所述平行电流泄漏路径电路平行于所述本征路径,且具有比所述本征路径低的总电阻。本发明揭示其它方面。
Description
技术领域
本文所揭示的实施例涉及存储器单元。
背景技术
存储器是一种类型的集成电路,且其用于计算机系统中以存储数据。可将存储器制造成个别存储器单元的一或多个阵列。可使用数字线(其也可称为位线、数据线、感测线或数据/感测线)及存取线(其也可称为字线)来对存储器单元写入或从存储器单元读取。数字线可沿阵列的列导电地互连存储器单元,且存取线可沿阵列的行导电地互连存储器单元。可通过数字线与存取线的组合来唯一地寻址每一存储器单元。
存储器单元可为易失性或非易失性的。非易失性存储器单元可在较长时间段(其包含关闭计算机时)内存储数据。易失性存储器耗散且因此在许多实例中需要被每秒多次刷新/重写。无论如何,存储器单元经配置以在至少两个不同可选择状态中保存或存储存储器。在二进制系统中,将状态视为“0”或“1”。在其它系统中,至少一些个别存储器单元可经配置以存储信息的两个以上电平或状态。
电容器是可用于存储器单元中的一种类型的电子组件。电容器具有由电绝缘材料分离的两个电导体。作为电场的能量可静电地存储于此材料内。一种类型的电容器是铁电电容器,其具有铁电材料作为绝缘材料的至少部分。铁电材料的特征在于具有两个稳定极化状态。铁电材料的极化状态可通过施加适合编程电压来改变且在移除所述编程电压之后保持(至少达一段时间)。每一极化状态具有不同于另一极化状态的电荷存储电容,且其可在无需使所述极化状态反转的情况下理想地用于写入(即,存储)及读取存储器状态,直到期望使此极化状态反转。不太令人满意的是,在具有铁电电容器的某一存储器中,读取存储器状态的动作会使极化反转。因此,在确定极化状态之后,进行存储器单元的重写以在其确定之后使存储器单元即时进入预读取状态中。无论如何,并入铁电电容器的存储器单元理想地是非易失性的,这归因于形成电容器的部分的铁电材料的双稳态特性。
一种类型的存储器单元具有与铁电电容器串联电耦合的选择装置。即使当选择装置闲置时(即,当非作用中或“切断”时),电流通常通过选择装置来泄漏到相邻衬底材料。这导致铁电电容器的相邻电极处的电压下降,因此在两个电容器电极之间产生电压差。这导致当存储器单元闲置时跨越铁电材料来施加电场。即使此电场较小,其也会使铁电材料中的个别偶极开始翻转且一直到所有偶极被翻转,从而擦除存储器单元的经编程状态。这可在短时间内发生,借此破坏或妨碍存储器单元的非易失性。
附图说明
图1是根据本发明的实施例的存储器单元的示意图。
图2是根据本发明的实施例的存储器单元的部分的示意性截面图。
图3是根据本发明的实施例的存储器单元的部分的示意性截面图。
图4是根据本发明的实施例的存储器单元的部分的示意性截面图。
图5是根据本发明的实施例的存储器单元的部分的示意性截面图。
图6是图5构造的存储器单元的俯视图。
图7是根据本发明的实施例的存储器单元的部分的示意性截面图。
图8是根据本发明的实施例的存储器单元的部分的示意性截面图。
图9是根据本发明的实施例的存储器单元的部分的示意性截面图。
图10是图9构造的存储器单元的俯视图。
具体实施方式
参考示意图1来展示及首先描述根据本发明的实施例的存储器单元10。具有存储器单元10的集成电路(未展示)可具有相对于存储器阵列或子阵列而制造的数千个或数百万个此类存储器单元,且并非为本文的揭示内容的特别材料。此类阵列或子阵列可具有多个存取线及选择线,其在其之间的交叉处具有个别存储器单元10。个别存储器单元可被视为包括构成个别存取线及交叉个别选择线的部分。
存储器单元10包括选择装置12及(例如)由导电(即,电)路径16来与选择装置12串联(即,电路)电耦合的电容器14,如所展示。在所描绘的图式中,电容器14可被视为包括两个导电电容器电极18及20,其具有介于其之间的铁电材料19。在物理上,路径16可仅为由电容器14及选择装置12共享的单个电极。电容器14包括从电容器电极18或20中的一者穿过铁电材料19而到另一电容器电极的本征电流(即,电)泄漏路径。为清楚起见,图1中将此本征路径示意性地展示为围绕铁电材料19运行的路径22中的虚线。然而,实际上,路径22将本征地/固有地穿过铁电材料19而到电容器电极18及20中的每一者,且介于电容器电极18及20中的每一者之间。本征路径22将具有某一相对较高的整体/总电阻(即,电),当装置14在操作中用作电容器时,所述电阻被示意性地指示为电阻器24。电阻器24的总电阻将取决于铁电材料19的组合物、铁电材料19的厚度,及铁电材料19内的偶极定向。电阻器24可固有地为非线性/可变电阻器,借此其电阻具电压相依性。
存储器单元10包括从一个电容器电极18或20到另一电容器电极的平行(即,电路平行)电流泄漏路径26。在一个实施例中,平行路径26具有0.4eV到5.0eV的主导带隙,且在一个实施例中,所述主导带隙小于铁电材料19的主导带隙。如果平行路径26的长度远短于路径24,那么此主导带隙可大于铁电材料19的主导带隙。无论如何,在一个实施例中,平行路径26具有低于本征路径22的总电阻的某一总电阻(例如,展示为电阻器28)。仅举例来说,通过本征泄漏路径22的总电阻可为1×1011欧姆到1×1018欧姆,且通过平行泄漏路径26的总电阻可为1×109欧姆到1×1017欧姆。
选择装置12可为任何现存或待开发的选择装置,其包含多个装置。实例包含二极管、场效应晶体管及双极晶体管。在操作中,当存储器单元闲置时(即,当与存储器单元10相关联的集成电路在操作上是“接通的”但不发生存储器单元10的“读取”或“写入”操作时),选择装置12将展现电流泄漏。存在选择装置电流泄漏路径30且将其示意性地展示为围绕选择装置12的虚线,但此路径将本征地/固有地穿过选择装置12或到达下伏衬底(例如,保持于接地或其它电势处)。泄漏路径30被展示为具有某一总电阻32。在一个实施例中,平行路径26经配置,使得存储器单元10在闲置时通过其的电流大于或等于存储器单元10在闲置时通过路径30的电流泄漏。此将取决于选择装置12、电容器14、平行路径26的构造及材料,且取决于正常操作中的存储器单元10内的各种点处的电压。理想地且无论如何,此使闲置时的电极18及20处的电压彼此相等或至少非常接近(例如,差值在50毫伏特内),借此当存储器单元10闲置时,铁电材料19内不产生电场或产生可忽略的电场。举例来说且进一步来说,闲置时的跨越电容器的任何电压差理想地使得铁电材料19中的任何电场比铁电场材料19的本征矫顽场低至少20倍。此可排除铁电材料19内的非所期望偶极方向变化。替代地,作为实例,此可至少减小时间风险或增加铁电材料19内的非所期望偶极方向变化之前的时间。
在一个实施例中,平行路径26中的电阻器28是电容器电极18与20之间的非线性电阻器,其在较高电压(例如,在1到5伏特之间)处展现比较低电压(例如,小于250毫伏特)处的总电阻高的总电阻。理想地,此非线性电阻器经形成以趋向于提供比较低电压处于闲置时大的较高电压“读取”及“写入”操作期间的平行路径26中的电流泄漏的减小量值。
存取线及选择线(两者都未展示)可与存储器单元10相关联。举例来说,选择装置12可为简单两端子二极管或其它两端子装置。接着,可使用交叉点状阵列来构造,借此作为电容器电极18的部分的导电路径11而与存取线或选择线(未展示)连接,或是存取线或选择线(未展示)的部分,且作为选择装置12的部分的导电路径13而与存取线或选择线(未展示)的另一者连接,或是存取线或选择线(未展示)的另一者的部分。作为替代实例,选择装置12可为场效应晶体管。接着,作为实例,导电路径11可为共同用于存储器阵列或子阵列内的多个电容器14(未展示)的电容器单元电极18的部分,组件16可为晶体管的一个源极/漏极区域,且组件13可为晶体管的另一源极/漏极区域。晶体管的源极(未展示)可为存取线(未展示)的部分,且源极/漏极组件13可与感测线(未展示)的部分连接,或可为感测线(未展示)的部分。当然,可替代地使用其它架构及构造。
图2示意性地展示包括电容器14及平行电流泄漏路径26的存储器单元10的部分的实例物理构造。在适当处,已使用来自上述实施例的相同元件符号,其中使用不同元件符号来指示一些差异。选择装置12(未展示)可电耦合到电容器电极18或20中的任一者。材料将位于存储器单元构造10的两侧、立面内及立面外。举例来说,集成电路的其它部分或全部制造组件可提供于围绕构造10的某一位置处,且并非特别与本文所揭示的发明密切相关(除包含任何适合选择装置12之外,如图1示意图中所展示)。
用于电容器电极18及20的实例导电材料包含元素金属、两种或两种以上元素金属的合金、导电金属化合物及导电掺杂半导电材料中的一或多者。实例铁电材料19包含具有过渡金属氧化物、锆、氧化锆、铪、氧化铪、钛酸锆铅及钛酸锶钡中的一或多者的铁电体,且可在其内具有包括硅、铝、镧、钇、铒、钙、镁、锶及稀土元素中的一或多者的掺杂物。两个具体实例是HfxSiyOz及HfxZryOz。除非另有指示,否则本文所描述的材料及/或结构中的任何者可为均质或非均质的,且无论如何,可连续或不连续地上覆于任何材料上。此外,除非另有指示,否则可使用任何适合现存或待开发的技术(例如原子层沉积、化学气相沉积、物理气相沉积、外延生长、扩散掺杂及离子植入)来形成每一材料。电容器电极18及20中的每一者的实例厚度是25到300埃,而铁电材料19的实例厚度是15到200埃。在本发明中,将“厚度”本身(非前面的方向形容词)定义为从不同组合物的紧邻材料或紧邻区域的最接近表面垂直地通过给定材料或区域的平均直线距离。另外,本文所描述的各种材料可具有基本上恒定厚度或具有可变厚度。如果具有可变厚度,那么除非另有指示,否则厚度是指平均厚度。
平行路径26被展示为由材料34包围或位于材料34内。实例材料34包含非晶硅、多晶硅、锗、硫属化物(例如,金属二硫属化物)、富硅氮化硅、富硅氧化硅及适当地掺杂有导电性增强掺杂物(例如掺杂有Ti、Ta、Nb、Mo、Sr、Y、Cr、Hf、Zr及镧系离子的SiO2及/或Si3N4)的本征电介质材料中的一或多者。材料34及借此平行路径26可主要(即,大于50原子%)包括此类材料。这些材料中的任何者可经掺杂或未经掺杂以提供在存储器单元10闲置时流动通过其的电流泄漏的所期望总电阻。在一个实施例中,材料34是均质的,借此电容器电极18与20之间的平行路径26是均质的。在一个实施例中,材料34是非均质的,借此电容器电极18与20之间的平行电路是非均质的。在其中材料34及借此平行路径26是非均质的实施例中,平行路径26可归因于其内的不同组合物材料具有不同带隙而具有多个带隙。然而,平行路径26将具有可取决于平行路径26内的个别不同材料的相应容量的0.4eV到5.0eV的主导(意味着主控)带隙。因此且无论如何,“主导”被使用且应用于本文,不论特定路径/材料的均质性如何。在一个实施例中,铁电材料19的主导带隙可低于平行路径26的主导带隙。在一个实施例中,使平行路径26的最小长度长于铁电材料19的最小厚度。作为一个实例,当铁电材料及平行路径的主导带隙大致相同时,可在平行路径中的状态的密度等于或大于铁电材料中的状态的密度时使用此长度关系。作为另一实例,当铁电材料的主导带隙小于平行路径的主导带隙时,可在平行路径中的状态的密度等于或大于铁电材料中的状态的密度时使用此长度关系。
在一个实施例中且如图2中所展示,材料34及借此平行路径26直接抵靠铁电材料19。在本发明中,当所陈述的材料或结构相对于彼此存在至少某一物理触摸接触时,材料或结构“直接抵靠”另一材料或结构。相比来说,前面未加“直接”的“上方”、“上”及“抵靠”涵盖“直接抵靠”以及其中介入材料或结构导致所陈述的材料或结构相对于彼此的非物理触摸接触的构造。如果两个所陈述的材料并非直接彼此抵靠,那么具有不同组合物的材料介于其之间。如本文所使用,举例来说,如果此类材料是非均质的,那么“不同组合物”仅需要可直接彼此抵靠的两个所陈述材料的部分在化学上及/或物理上是不同的。如果两个所陈述的材料并非直接彼此抵靠,那么“不同组合物”仅需要:如果此类材料是非均质的,那么彼此最接近的两个所陈述材料的部分在化学上及/或物理上是不同的。图3描绘替代实施例存储器单元10a,其中平行路径26并非直接抵靠铁电材料19a。在适当处,已使用来自上述实施例的相同元件符号,其中使用后缀“a”或使用不同元件符号来指示一些构造差异。电容器14a被展示为包括间隔于材料34与19a之间的某一材料21(例如电介质材料,例如二氧化硅及/或氮化硅),借此平行路径26并非直接抵靠铁电材料19a。可使用如上文所描述的任何其它属性或构造。
图4展示另一实例实施例存储器单元10b。在适当处,已使用来自上述实施例的相同元件符号,其中使用后缀“b”或不同元件符号来指示一些构造差异。存储器单元10b中的材料34b(及借此平行路径26b)本质上被展示为穿过铁电材料19b,借此构成电容器构造14b的内部部分且具有两个横向侧35(即,在至少一个直线横截面中),两个横向侧35中的每一者直接抵靠铁电材料19b。可使用如上文所描述的任何其它属性或构造。
平行电流泄漏路径可具有等于、大于或小于两个电容器电极之间的铁电材料的最小厚度的最小长度。在一个实施例中,平行路径具有两个电容器电极之间的铁电材料的最小厚度的5%内的最小长度。图2到4本质上将平行路径26展示为具有基本上等于铁电材料19/19a/19b的最小厚度的最小长度。举例来说,即使在图2及图3实施例中,穿过材料34的最短路径(例如最小长度)是从电容器电极18的材料的最右下角到电极20的材料的最右上角,但为清楚起见,图2及3中将平行路径26示意性地展示为穿过材料34的宽拱形路径。在一些实施例中,平行路径可具有大于两个电容器电极之间的铁电材料的最小厚度的最小长度,在一个实施例中,其在两个电容器电极之间的铁电材料的最小厚度的30%内,且在一个实施例中,其是两个电容器电极之间的铁电材料的最小厚度的至少两倍。
图5及6中展示另一实例实施例存储器单元10c。在适当处,已使用来自上述实施例的相同元件符号,其中使用后缀“c”或使用不同元件符号来指示一些构造差异。电容器14c包括第一导电电容器电极20c,其具有基底40及从基底40延伸的横向间隔(即,在至少一个直线横截面中)壁42。横向间隔壁42具有对向侧表面43。第二导电电容器电极18c横向地介于第一电容器电极20c的壁42之间。铁电材料19c横向地介于第一电容器电极20c的壁42之间,且横向地介于第二电容器电极18c与第一电容器电极20c之间。在一个实施例中,铁电材料19c包括具有侧表面44的横向间隔壁45(图5)。电容器14c包括从第一电容器电极20c及第二电容器电极18c中的一者穿过铁电材料19c而到另一电容器电极的本征电流泄漏路径22。
平行电流泄漏路径26c介于第二电容器电极18c与第一电容器电极20c的基底40的表面41之间。平行路径26电路平行于本征路径22且具有比本征路径22低的总电阻。在一个实施例中,平行路径26c在具有0.4eV到5.0eV的主导带隙的材料34c内且穿过材料34c,且在一个实施例中,其带隙小于铁电材料19c的带隙。图5展示实例实施例,其中平行路径26c的最小长度比铁电材料19c的最小厚度大两倍。在一个实施例中,材料34c直接抵靠第一电容器电极42的基底40的表面41。在一个实施例中,材料34c直接抵靠铁电材料19c的横向间隔壁45的侧表面44。选择装置12(未展示)将与电容器14c串联电耦合,具体来说,与第一电容器电极20c或第二电容器电极18c中的一者串联电耦合。在一个实施例中且如所展示,材料34c并非直接抵靠第一电容器电极20c的横向间隔壁42的侧表面43。在一个实施例中且如所展示,第一电容器电极20c包括环形物48,且在一个实施例中,铁电材料19c包括环形物50。可使用如上文所描述的任何其它属性或构造。
任何适合技术均可用于制造图5及6构造。作为实例,可形成第一电容器电极20c及铁电材料19c作为电介质材料(未展示)中的开口内的相应衬层。接着,可使铁电材料19c各向异性地蚀刻穿过第一电容器电极20c的基底以产生如图5中所展示的材料19c构造。接着,材料34c可经沉积且经回蚀以产生如图5中所展示的其构造,接着沉积且回抛或回蚀材料18c。
图7描绘由图5及6展示的存储器单元的替代实施例存储器单元10d。在适当处,已使用来自上述实施例的相同元件符号,其中使用后缀“d”或使用不同元件符号来指示一些构造差异。铁电材料19d具有横向间隔壁45从其延伸的基底54。材料34d延伸穿过铁电材料19d的基底54。在一个实施例中且如所展示,材料34d并非直接抵靠铁电材料19d的横向间隔壁45的横向侧表面44。选择装置12(未展示)将与电容器14d串联电耦合,具体来说,电耦合到电容器电极18d或20c中的一者。当然,任何适合技术可用于制造图7构造。举例来说,可形成第一电容器电极20c及铁电材料19d作为电介质材料(未展示)中的开口内的相应衬层。接着,可首先形成材料18d作为剩余开口内的衬层,其具有铁电材料19d作为其侧壁且留下具有等于材料34d的横向宽度的横向宽度的空隙空间。接着,可使材料18d衬层各向异性地蚀刻穿过铁电材料19d的基底。此接着蚀刻穿过铁电材料19d的基底而到材料20c以产生图7中所展示的材料19d的最终构造。接着,材料34d可经沉积且经回蚀以产生其最终构造,接着沉积且回抛或回蚀剩余材料18d。可使用如上文所描述的任何其它属性或构造。
图8中展示另一实施例存储器单元10e。在适当处,已使用来自上述实施例的相同元件符号,其中使用后缀“e”或使用不同元件符号来指示一些构造差异。不论是否具有基底40,第一电容器电极20c具有横向间隔壁42。材料34e内的平行电流泄漏路径26e介于第二电容器电极18c与第一电容器电极20c的横向间隔壁42的表面60之间。在一个实施例中且如所展示,表面60包括第一电容器电极20c的横向间隔壁42的横向侧表面。无论如何,在一个实施例中且如所展示,材料34e直接抵靠第一电容器电极20c的壁42的表面60。在其中第一电容器电极20c具有基底40(横向间隔壁42从其延伸)的一个实施例中,材料34e可直接抵靠第一电容器电极20c的基底40的表面61。选择装置12(未展示)将与电容器14e串联电耦合,具体来说,电耦合到电容器电极18c或20c中的一者。当然,任何适合技术可用于制造图8构造。举例来说,可形成第一电容器电极20c作为电介质材料(未展示)中的开口内的衬层。接着,材料34e可经沉积且经回蚀以产生其构造,如图8中所展示。此可接着沉积铁电材料19e作为剩余开口内的衬层且随后使其各向异性地蚀刻穿过材料19e的基底。接着,可沉积材料18c且将其回抛或回蚀成其所描绘的最终构造。可使用如上文所描述的任何其它属性或构造。
图9及10中展示另一实施例存储器单元10f。在适当处,已使用来自上述实施例的相同元件符号,其中使用后缀“f”或使用不同元件符号来指示一些构造差异。存储器单元10f与存储器单元10e的相近类似点在于:平行电流泄漏路径26f介于第二电容器电极18f与第一电容器电极20c的横向间隔壁42的表面之间。然而,在存储器单元10f中,此表面包括第一电容器电极20c的横向间隔壁42的立向最外表面65。此外,在一个实施例中且如所展示,材料34f直接抵靠铁电材料19f的立向最外表面66。此外,在一个实施例中且如所展示,材料34f包括环状物70。当然,任何适合技术可用于制造图9及10构造。举例来说,可形成第一电容器电极20c及铁电材料19f作为电介质材料(未展示)中的开口内的相应衬层。接着,材料18f可经沉积以填充具有铁电材料19f作为其侧壁的剩余开口。接着,可将材料20c、19f及18f共同回蚀或回抛到表面65及66的高度。接着,可沉积材料34f作为剩余开口内的衬层且随后使材料34f各向异性地蚀刻穿过其基底以产生如图9及10中所展示的其最终构造。接着,可沉积剩余材料18f且将回抛或回蚀成其所描绘的最终构造。可使用如上文所描述的任何其它属性或构造。
在一个实施例中,存储器单元(例如10e或10f)具有包括环形物48的第一电容器电极20c。第二电容器电极18c/18f径向地位于第一电容器电极20c的环形物48内。铁电材料19e/19f径向地位于第一电容器电极20c的环形物48内。电容器14e/14f包括从第一及第二电容器电极中的一者穿过铁电材料19e/19f而到另一电容器电极的本征电流泄漏路径22。平行电流泄漏路径26e/26f介于第二电容器电极18c/18f与第一电容器电极20c的环形物48的表面之间。平行路径26e/26f电路平行于本征路径22且具有比本征路径22低的总电阻。
在一个实施例中,材料34f包括环形物70。在一个实施例中,材料34f直接抵靠环形物48的立向最外表面65。在一个实施例中,铁电材料19f包括环形物50f,且材料34f直接抵靠环形物50f的立向最外表面66。可使用如上文所描述的任何其它属性或构造。
总结
在一些实施例中,一种存储器单元包括选择装置及与所述选择装置串联电耦合的电容器。所述电容器包括两个导电电容器电极,其具有介于其之间的铁电材料。所述电容器包括从所述电容器电极中的一者穿过所述铁电材料而到另一电容器电极的本征电流泄漏路径。存在从所述电容器电极到所述另一电容器电极的平行电流泄漏路径。所述平行电流泄漏路径电路平行于所述本征路径且具有比所述本征路径低的总电阻。
在一些实施例中,一种存储器单元包括选择装置及与所述选择装置串联电耦合的电容器。所述电容器包括两个导电电容器电极,其具有介于其之间的铁电材料。所述电容器包括从所述电容器电极中的一者穿过所述铁电材料而到另一电容器电极的本征电流泄漏路径。存在从所述电容器电极到所述另一电容器电极的平行电流泄漏路径。所述平行电流泄漏路径电路平行于所述本征路径且具有0.4eV到5.0eV的主导带隙。
在一些实施例中,一种存储器单元包括选择装置及与所述选择装置串联电耦合的电容器。所述电容器包括具有基底及从所述基底延伸的横向间隔壁的第一导电电容器电极。第二导电电容器电极横向地介于所述第一电容器电极的所述壁之间。铁电材料横向地介于所述第一电容器电极的所述壁之间且横向地介于所述第二电容器电极与所述第一电容器电极之间。所述电容器包括从所述第一电容器电极及所述第二电容器电极中的一者穿过所述铁电材料而到另一电容器电极的本征电流泄漏路径。在所述第二电容器电极与所述第一电容器电极的所述基底的表面之间存在平行电流泄漏路径。所述平行电流泄漏路径电路平行于所述本征路径且具有比所述本征路径低的总电阻。
在一些实施例中,一种存储器单元包括选择装置及与所述选择装置串联电耦合的电容器。所述电容器包括具有横向间隔壁的第一导电电容器电极。第二导电电容器电极横向地介于所述第一电容器电极的所述壁之间。铁电材料横向地介于第一电容器电极的所述壁之间且横向地介于所述第二电容器电极与所述第一电容器电极之间。所述电容器包括从所述第一电容器电极及所述第二电容器电极中的一者穿过所述铁电材料而到另一电容器电极的本征电流泄漏路径。在所述第二电容器电极与所述第一电容器电极的所述横向间隔壁的表面之间存在平行电流泄漏路径。所述平行电流泄漏路径电路平行于所述本征路径且具有比所述本征路径低的总电阻。
在一些实施例中,一种存储器单元包括选择装置及与所述选择装置串联电耦合的电容器。所述电容器包括第一导电电容器电极,其包括环形物。第二导电电容器电极径向地位于所述第一电容器电极的所述环形物内。铁电材料径向地位于所述第二电容器电极与所述第一电容器电极之间的所述第一电容器电极的所述环形物内。所述电容器包括从所述第一电容器电极及所述第二电容器电极中的一者穿过所述铁电材料而到另一电容器电极的本征电流泄漏路径。在所述第二电容器电极与所述第一电容器电极的所述环状物的表面之间存在平行电流泄漏路径。所述平行电流泄漏路径电路平行于所述本征路径且具有比所述本征路径低的总电阻。
在遵守法规的情况下,已用或多或少专针对结构及方法特征的语言描述本文所揭示的标的物。然而,应了解,权利要求书不受限于所展示及所描述的特定特征,这是因为本文所揭示的构件包括实例实施例。因此,权利要求书应被给予如字面措词的全范围且应根据等效物的教义来适当地加以解释。
Claims (37)
1.一种存储器单元,其包括:
选择装置;
电容器,其与所述选择装置串联电耦合,所述电容器包括两个导电电容器电极,所述两个导电电容器电极具有介于其之间的铁电材料,所述电容器包括从所述电容器电极中的一者穿过所述铁电材料而到另一电容器电极的本征电流泄漏路径;及
平行电流泄漏路径,其从所述一个电容器电极到所述另一电容器电极,所述平行电流泄漏路径电路平行于所述本征路径且具有比所述本征路径低的总电阻。
2.根据权利要求1所述的存储器单元,其中在操作中,当所述存储器单元闲置时,所述选择装置展现电流泄漏,所述平行路径经配置使得所述存储器单元闲置时通过所述平行路径的电流大于或等于所述存储器单元闲置时的所述选择装置的所述电流泄漏。
3.根据权利要求2所述的存储器单元,其中所述平行路径经配置使得所述存储器单元闲置时通过所述平行路径的电流不多于1毫微安。
4.根据权利要求1所述的存储器单元,其中所述平行路径具有0.4eV到5.0eV的主导带隙,且所述主导带隙小于所述铁电材料的主导带隙。
5.根据权利要求1所述的存储器单元,其中在操作中,闲置时横跨所述电容器的任何电压差使得所述铁电材料中的任何电场比所述铁电场材料的本征矫顽场低至少20倍。
6.根据权利要求1所述的存储器单元,其中所述平行路径直接抵靠所述铁电材料。
7.根据权利要求6所述的存储器单元,其中所述平行路径具有两个横向侧,其中每一者直接抵靠所述铁电材料。
8.根据权利要求1所述的存储器单元,其中所述平行路径包括介于所述两个电容器电极之间的非线性电阻器,所述非线性电阻器在较高电压处展现比较低电压处的电阻高的电阻。
9.根据权利要求1所述的存储器单元,其中所述平行路径具有大于所述两个电容器电极之间的所述铁电材料的最小厚度的最小长度。
10.根据权利要求9所述的存储器单元,其中所述平行路径的所述最小长度是所述铁电材料的所述最小厚度的至少两倍。
11.根据权利要求9所述的存储器单元,其中所述平行路径的所述最小长度在所述铁电材料的所述最小厚度的30%内。
12.根据权利要求9所述的存储器单元,其中所述铁电材料的所述主导带隙等于或小于所述平行路径的主导带隙。
13.根据权利要求1所述的存储器单元,其中所述平行路径具有在所述两个电容器电极之间的所述铁电材料的最小厚度的5%内的最小长度。
14.一种存储器单元,其包括:
选择装置;
电容器,其与所述选择装置串联电耦合,所述电容器包括两个导电电容器电极,所述两个导电电容器电极具有介于其之间的铁电材料,所述电容器包括从所述电容器电极中的一者穿过所述铁电材料而到另一电容器电极的本征电流泄漏路径;及
平行电流泄漏路径,其从所述一个电容器电极到所述另一电容器电极,所述平行电流泄漏路径电路平行于所述本征路径,所述平行电流泄漏路径具有0.4eV到5.0eV的主导带隙。
15.根据权利要求14所述的存储器单元,其中所述平行路径的所述主导带隙小于所述铁电材料的主导带隙。
16.根据权利要求14所述的存储器单元,其中所述平行路径主要包括非晶硅、多晶硅及锗中的一或多者。
17.根据权利要求14所述的存储器单元,其中所述平行路径主要包括一或多种硫属化物。
18.根据权利要求14所述的存储器单元,其中所述平行路径主要包括富硅氮化硅、富硅氧化硅,及掺杂有导电性增强掺杂物的本征电介质材料中的一或多者。
19.根据权利要求14所述的存储器单元,其中所述两个电容器电极之间的所述平行路径是均质的。
20.根据权利要求14所述的存储器单元,其中所述两个电容器电极之间的所述平行路径是非均质的。
21.一种存储器单元,其包括:
选择装置;
电容器,其与所述选择装置串联电耦合,所述电容器包括:
第一导电电容器电极,其具有基底及从所述基底延伸的横向间隔壁;
第二导电电容器电极,其横向地介于所述第一电容器电极的所述壁之间;及
铁电材料,其横向地介于所述第一电容器电极的所述壁之间且横向地介于所述第二电容器电极与所述第一电容器电极之间,所述电容器包括从所述第一及第二电容器电极中的一者穿过所述铁电材料而到另一电容器电极的本征电流泄漏路径;及
平行电流泄漏路径,其介于所述第二电容器电极与所述第一电容器电极的所述基底的表面之间,所述平行电流泄漏路径电路平行于所述本征路径,且具有比所述本征路径低的总电阻。
22.根据权利要求21所述的存储器单元,其中所述第二电容器电极与所述第一电容器电极的所述基底的所述表面之间的所述平行路径位于具有0.4eV到5.0eV的主导带隙的材料内且穿过所述材料,具有0.4eV到5.0eV的主导带隙的所述材料直接抵靠所述第一电容器电极的所述基底的所述表面。
23.根据权利要求22所述的存储器单元,其中所述铁电材料包括具有侧表面的横向间隔壁,所述材料具有0.4eV到5.0eV的主导带隙,其直接抵靠所述铁电材料的所述横向间隔壁的所述侧表面。
24.根据权利要求21所述的存储器单元,其中所述第二电容器电极与所述第一电容器电极的所述基底的所述表面之间的所述平行路径位于具有0.4eV到5.0eV的主导带隙的材料内且穿过所述材料,具有0.4eV到5.0eV的主导带隙的所述材料不直接抵靠所述第一电容器电极的所述横向间隔壁的横向侧表面。
25.根据权利要求21所述的存储器单元,其中:
所述铁电材料具有基底及从所述基底延伸的横向间隔壁;且
所述第二电容器电极与所述第一电容器电极的所述基底的所述表面之间的所述平行路径位于具有0.4eV到5.0eV的主导带隙的材料内且穿过所述材料,具有0.4eV到5.0eV的主导带隙的所述材料延伸穿过所述铁电材料的所述基底。
26.根据权利要求25所述的存储器单元,其中具有0.4eV到5.0eV的主导带隙的所述材料不直接抵靠所述铁电材料的所述横向间隔壁的横向侧表面。
27.一种存储器单元,其包括:
选择装置;
电容器,其与所述选择装置串联电耦合,所述电容器包括:
第一导电电容器电极,其具有横向间隔壁;
第二导电电容器电极,其横向地介于所述第一电容器电极的所述壁之间;及
铁电材料,其横向地介于所述第一电容器电极的所述壁之间且横向地介于所述第二电容器电极与所述第一电容器电极之间,所述电容器包括从所述第一及第二电容器电极中的一者穿过所述铁电材料而到另一电容器电极的本征电流泄漏路径;及
平行电流泄漏路径,其介于所述第二电容器电极与所述第一电容器电极的所述横向间隔壁的表面之间,所述平行电流泄漏路径电路平行于所述本征路径,且具有比所述本征路径低的总电阻。
28.根据权利要求27所述的存储器单元,其中所述第二电容器电极与所述第一电容器电极的所述横向间隔壁的所述表面之间的所述平行路径位于具有0.4eV到5.0eV的主导带隙的材料内且穿过所述材料,具有0.4eV到5.0eV的主导带隙的所述材料直接抵靠所述第一电容器电极的所述横向间隔壁的所述表面。
29.根据权利要求28所述的存储器单元,其中所述表面包括所述第一电容器电极的所述横向间隔壁的横向侧表面。
30.根据权利要求28所述的存储器单元,其中所述表面包括所述第一电容器电极的所述横向间隔壁的立面最外表面。
31.根据权利要求30所述的存储器单元,其中所述铁电材料包括立面最外表面,所述材料具有0.4eV到5.0eV的主导带隙,其直接抵靠所述铁电材料的所述立面最外表面。
32.根据权利要求28所述的存储器单元,其中所述第一电容器电极具有基底,所述横向间隔壁从所述基底延伸,所述材料具有0.4eV到5.0eV的主导带隙,其直接抵靠所述第一电容器电极的所述基底的表面。
33.根据权利要求27所述的存储器单元,其中所述第二电容器电极与所述第一电容器电极的所述横向间隔壁的所述表面之间的所述平行路径位于具有0.4eV到5.0eV的主导带隙的材料内且穿过所述材料,具有0.4eV到5.0eV的主导带隙的所述材料包括环形物。
34.一种存储器单元,其包括:
选择装置;
电容器,其与所述选择装置串联电耦合,所述电容器包括:
第一导电电容器电极,其包括环形物;
第二导电电容器电极,其径向地位于所述第一电容器电极的所述环形物内;及
铁电材料,其径向地位于所述第二电容器电极与所述第一电容器电极之间的所述第一电容器电极的所述环形物内,所述电容器包括从所述第一及第二电容器电极中的一者穿过所述铁电材料而到另一电容器电极的本征电流泄漏路径;及
平行电流泄漏路径,其介于所述第二电容器电极与所述第一电容器电极的所述环形物的表面之间,所述平行电流泄漏路径电路平行于所述本征电路,且具有比所述本征路径低的总电阻。
35.根据权利要求34所述的存储器单元,其中所述第二电容器电极与所述第一电容器电极的所述环形物的所述表面之间的所述平行路径位于具有0.4eV到5.0eV的主导带隙的材料内且穿过所述材料,具有0.4eV到5.0eV的主导带隙的所述材料包括环形物。
36.根据权利要求34所述的存储器单元,其中:
所述环形物的所述表面是所述环形物的立向最外表面;及
所述第二电容器电极与所述第一电容器电极的所述环形物的所述表面之间的所述平行路径位于具有0.4eV到5.0eV的主导带隙的材料内且穿过所述材料,具有0.4eV到5.0eV的主导带隙的所述材料直接抵靠所述环形物的所述立向最外表面。
37.根据权利要求34所述的存储器单元,其中:
所述铁电材料包括具有立向最外表面的环形物;及
所述第二电容器电极与所述第一电容器电极的所述环形物的所述表面之间的所述平行路径位于具有0.4eV到5.0eV的主导带隙的材料内且穿过所述材料,具有0.4eV到5.0eV的主导带隙的所述材料直接抵靠所述铁电材料的所述立向最外表面。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110220052.XA CN112802844A (zh) | 2015-02-17 | 2016-01-13 | 存储器单元 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/623,749 | 2015-02-17 | ||
US14/623,749 US9305929B1 (en) | 2015-02-17 | 2015-02-17 | Memory cells |
PCT/US2016/013174 WO2016133611A1 (en) | 2015-02-17 | 2016-01-13 | Memory cells |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110220052.XA Division CN112802844A (zh) | 2015-02-17 | 2016-01-13 | 存储器单元 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107251223A true CN107251223A (zh) | 2017-10-13 |
CN107251223B CN107251223B (zh) | 2021-03-16 |
Family
ID=55589087
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110220052.XA Pending CN112802844A (zh) | 2015-02-17 | 2016-01-13 | 存储器单元 |
CN201680010690.6A Active CN107251223B (zh) | 2015-02-17 | 2016-01-13 | 存储器单元 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110220052.XA Pending CN112802844A (zh) | 2015-02-17 | 2016-01-13 | 存储器单元 |
Country Status (6)
Country | Link |
---|---|
US (7) | US9305929B1 (zh) |
EP (1) | EP3259757A4 (zh) |
KR (3) | KR102369843B1 (zh) |
CN (2) | CN112802844A (zh) |
TW (1) | TWI594236B (zh) |
WO (1) | WO2016133611A1 (zh) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9337210B2 (en) | 2013-08-12 | 2016-05-10 | Micron Technology, Inc. | Vertical ferroelectric field effect transistor constructions, constructions comprising a pair of vertical ferroelectric field effect transistors, vertical strings of ferroelectric field effect transistors, and vertical strings of laterally opposing pairs of vertical ferroelectric field effect transistors |
US9263577B2 (en) | 2014-04-24 | 2016-02-16 | Micron Technology, Inc. | Ferroelectric field effect transistors, pluralities of ferroelectric field effect transistors arrayed in row lines and column lines, and methods of forming a plurality of ferroelectric field effect transistors |
US9472560B2 (en) | 2014-06-16 | 2016-10-18 | Micron Technology, Inc. | Memory cell and an array of memory cells |
US9159829B1 (en) | 2014-10-07 | 2015-10-13 | Micron Technology, Inc. | Recessed transistors containing ferroelectric material |
US9276092B1 (en) | 2014-10-16 | 2016-03-01 | Micron Technology, Inc. | Transistors and methods of forming transistors |
US9305929B1 (en) | 2015-02-17 | 2016-04-05 | Micron Technology, Inc. | Memory cells |
US9853211B2 (en) | 2015-07-24 | 2017-12-26 | Micron Technology, Inc. | Array of cross point memory cells individually comprising a select device and a programmable device |
US10134982B2 (en) | 2015-07-24 | 2018-11-20 | Micron Technology, Inc. | Array of cross point memory cells |
US10396145B2 (en) * | 2017-01-12 | 2019-08-27 | Micron Technology, Inc. | Memory cells comprising ferroelectric material and including current leakage paths having different total resistances |
WO2019045682A1 (en) * | 2017-08-29 | 2019-03-07 | Intel Corporation | SELECTOR DEVICES |
US10650978B2 (en) * | 2017-12-15 | 2020-05-12 | Micron Technology, Inc. | Methods of incorporating leaker devices into capacitor configurations to reduce cell disturb |
US10347322B1 (en) * | 2018-02-20 | 2019-07-09 | Micron Technology, Inc. | Apparatuses having memory strings compared to one another through a sense amplifier |
US10923493B2 (en) | 2018-09-06 | 2021-02-16 | Micron Technology, Inc. | Microelectronic devices, electronic systems, and related methods |
US10615288B1 (en) | 2018-10-24 | 2020-04-07 | International Business Machines Corporation | Integration scheme for non-volatile memory on gate-all-around structure |
US11177284B2 (en) | 2018-12-20 | 2021-11-16 | Sandisk Technologies Llc | Ferroelectric memory devices containing a two-dimensional charge carrier gas channel and methods of making the same |
US10700093B1 (en) * | 2018-12-20 | 2020-06-30 | Sandisk Technologies Llc | Ferroelectric memory devices employing conductivity modulation of a thin semiconductor material or a two-dimensional charge carrier gas and methods of operating the same |
US10833092B2 (en) | 2019-01-23 | 2020-11-10 | Micron Technology, Inc. | Methods of incorporating leaker-devices into capacitor configurations to reduce cell disturb, and capacitor configurations incorporating leaker-devices |
KR102664403B1 (ko) | 2019-02-18 | 2024-05-09 | 삼성전자주식회사 | 반도체 장치 및 이를 제조하는 방법 |
US10804274B2 (en) | 2019-02-27 | 2020-10-13 | International Business Machines Corporation | Co-integration of non-volatile memory on gate-all-around field effect transistor |
US11170834B2 (en) | 2019-07-10 | 2021-11-09 | Micron Technology, Inc. | Memory cells and methods of forming a capacitor including current leakage paths having different total resistances |
US11177266B2 (en) | 2019-08-26 | 2021-11-16 | Micron Technology, Inc. | Array of capacitors, an array of memory cells, a method of forming an array of capacitors, and a method of forming an array of memory cells |
US11101274B2 (en) | 2019-12-05 | 2021-08-24 | Micron Technology, Inc. | Ferroelectric capacitor, a ferroelectric memory cell, an array of ferroelectric memory cells, and a method of forming a ferroelectric capacitor |
US11107516B1 (en) | 2020-02-24 | 2021-08-31 | Sandisk Technologies Llc | Ferroelectric memory devices containing a two-dimensional charge carrier gas channel and methods of making the same |
US11672128B2 (en) * | 2020-07-20 | 2023-06-06 | Micron Technology, Inc. | Methods of incorporating leaker devices into capacitor configurations to reduce cell disturb, and capacitor configurations incorporating leaker devices |
US11355531B1 (en) | 2020-11-30 | 2022-06-07 | Micron Technology, Inc. | Array of capacitors, an array of memory cells, method used in forming an array of memory cells, methods used in forming an array of capacitors, and methods used in forming a plurality of horizontally-spaced conductive lines |
US11557593B2 (en) | 2020-11-30 | 2023-01-17 | Micron Technology, Inc. | Array of memory cells, methods used in forming an array of memory cells, methods used in forming an array of vertical transistors, and methods used in forming an array of capacitors |
DE102021200003A1 (de) * | 2021-01-04 | 2022-07-07 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren und Vorrichtung zur Verwendung eines Halbleiterbauelements |
US11706927B2 (en) | 2021-03-02 | 2023-07-18 | Micron Technology, Inc. | Memory devices and methods of forming memory devices |
US11705906B1 (en) | 2021-05-21 | 2023-07-18 | Kepler Computing Inc. | Majority logic gate having ferroelectric input capacitors and a pulsing scheme coupled to a conditioning logic |
US11394387B1 (en) | 2021-05-21 | 2022-07-19 | Kepler Computing Inc. | 2-input NAND gate with non-linear input capacitors |
US11695072B2 (en) | 2021-07-09 | 2023-07-04 | Micron Technology, Inc. | Integrated assemblies and methods of forming integrated assemblies |
US12035536B2 (en) | 2021-07-19 | 2024-07-09 | Micron Technology, Inc. | Integrated assemblies and methods of forming integrated assemblies |
US11917834B2 (en) | 2021-07-20 | 2024-02-27 | Micron Technology, Inc. | Integrated assemblies and methods of forming integrated assemblies |
US11641205B1 (en) | 2021-10-01 | 2023-05-02 | Kepler Computing Inc. | Reset mechanism for a chain of majority or minority gates having paraelectric material |
US11664370B1 (en) | 2021-12-14 | 2023-05-30 | Kepler Corpating inc. | Multi-function paraelectric threshold gate with input based adaptive threshold |
US11705905B1 (en) | 2021-12-14 | 2023-07-18 | Kepler Computing, Inc. | Multi-function ferroelectric threshold gate with input based adaptive threshold |
US11750197B1 (en) | 2022-04-20 | 2023-09-05 | Kepler Computing Inc. | AND-OR-invert logic based on a mix of majority OR minority logic gate with non-linear input capacitors and other logic gates |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6256220B1 (en) * | 1997-09-15 | 2001-07-03 | Celis Semiconductor Corporation | Ferroelectric memory with shunted isolated nodes |
US20020119621A1 (en) * | 2001-02-27 | 2002-08-29 | Nanya Technology Corporaton | Method of fabricating a trench capacitor of a memory cell |
US20060118841A1 (en) * | 2004-12-03 | 2006-06-08 | Texas Instruments Incorporated | Ferroelectric capacitor with parallel resistance for ferroelectric memory |
CN104051231A (zh) * | 2013-03-14 | 2014-09-17 | 格罗方德半导体公司 | 包含金属-绝缘层-金属电容器的半导体结构的形成方法 |
Family Cites Families (232)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4070653A (en) | 1976-06-29 | 1978-01-24 | Texas Instruments Incorporated | Random access memory cell with ion implanted resistor element |
US5565695A (en) | 1995-04-21 | 1996-10-15 | Johnson; Mark B. | Magnetic spin transistor hybrid circuit element |
DE59510349D1 (de) | 1995-04-24 | 2002-10-02 | Infineon Technologies Ag | Halbleiter-Speichervorrichtung unter Verwendung eines ferroelektrischen Dielektrikums und Verfahren zur Herstellung |
JP2921468B2 (ja) | 1996-02-19 | 1999-07-19 | 日本電気株式会社 | 半導体メモリ装置 |
JPH1093083A (ja) | 1996-09-18 | 1998-04-10 | Toshiba Corp | 半導体装置の製造方法 |
DE19640215C1 (de) | 1996-09-30 | 1998-02-19 | Siemens Ag | Integrierte Halbleiterspeicheranordnung mit "Buried-Plate-Elektrode" |
JP3587004B2 (ja) | 1996-11-05 | 2004-11-10 | ソニー株式会社 | 半導体メモリセルのキャパシタ構造及びその作製方法 |
US6336544B1 (en) | 1999-03-01 | 2002-01-08 | Casinovations Incorporated | Coin collection system |
JP3668790B2 (ja) * | 1997-03-31 | 2005-07-06 | 岩崎電気株式会社 | 始動器内蔵形高圧蒸気放電灯 |
US6288431B1 (en) | 1997-04-04 | 2001-09-11 | Nippon Steel Corporation | Semiconductor device and a method of manufacturing the same |
JPH1140683A (ja) | 1997-07-22 | 1999-02-12 | Hitachi Ltd | 半導体記憶装置及びその製造方法 |
KR100269306B1 (ko) * | 1997-07-31 | 2000-10-16 | 윤종용 | 저온처리로안정화되는금속산화막으로구성된완충막을구비하는집적회로장치및그제조방법 |
US5959878A (en) * | 1997-09-15 | 1999-09-28 | Celis Semiconductor Corporation | Ferroelectric memory cell with shunted ferroelectric capacitor and method of making same |
JP3373403B2 (ja) | 1997-09-16 | 2003-02-04 | 帝人株式会社 | スェード調人工皮革の製造方法 |
JPH11274429A (ja) * | 1998-03-19 | 1999-10-08 | Toshiba Corp | 半導体記憶装置 |
KR100292819B1 (ko) * | 1998-07-07 | 2001-09-17 | 윤종용 | 커패시터및그의제조방법 |
US20030001189A1 (en) | 2000-02-24 | 2003-01-02 | Tetsuo Fujiwara | Ferroelectric capacitor and semiconductor device |
US6249014B1 (en) * | 1998-10-01 | 2001-06-19 | Ramtron International Corporation | Hydrogen barrier encapsulation techniques for the control of hydrogen induced degradation of ferroelectric capacitors in conjunction with multilevel metal processing for non-volatile integrated circuit memory devices |
JP3743189B2 (ja) | 1999-01-27 | 2006-02-08 | 富士通株式会社 | 不揮発性半導体記憶装置及びその製造方法 |
US6242299B1 (en) * | 1999-04-01 | 2001-06-05 | Ramtron International Corporation | Barrier layer to protect a ferroelectric capacitor after contact has been made to the capacitor electrode |
US6236076B1 (en) | 1999-04-29 | 2001-05-22 | Symetrix Corporation | Ferroelectric field effect transistors for nonvolatile memory applications having functional gradient material |
US6611014B1 (en) * | 1999-05-14 | 2003-08-26 | Kabushiki Kaisha Toshiba | Semiconductor device having ferroelectric capacitor and hydrogen barrier film and manufacturing method thereof |
US6370056B1 (en) | 2000-03-10 | 2002-04-09 | Symetrix Corporation | Ferroelectric memory and method of operating same |
EP1220318A4 (en) | 1999-09-30 | 2007-06-06 | Rohm Co Ltd | NON-VOLATILE MEMORY |
DE19959084B4 (de) | 1999-12-08 | 2005-05-12 | Schott Ag | Organisches LED-Display und Verfahren zu seiner Herstellung |
US6635528B2 (en) * | 1999-12-22 | 2003-10-21 | Texas Instruments Incorporated | Method of planarizing a conductive plug situated under a ferroelectric capacitor |
US6417537B1 (en) | 2000-01-18 | 2002-07-09 | Micron Technology, Inc. | Metal oxynitride capacitor barrier layer |
JP4938921B2 (ja) | 2000-03-16 | 2012-05-23 | 康夫 垂井 | トランジスタ型強誘電体不揮発性記憶素子 |
US20020036313A1 (en) | 2000-06-06 | 2002-03-28 | Sam Yang | Memory cell capacitor structure and method of formation |
GB2366666B (en) | 2000-09-11 | 2002-12-04 | Toshiba Res Europ Ltd | An optical device and method for its manufacture |
US6339544B1 (en) | 2000-09-29 | 2002-01-15 | Intel Corporation | Method to enhance performance of thermal resistor device |
US20020102808A1 (en) | 2001-01-31 | 2002-08-01 | Skyland Pu | Method for raising capacitance of a trench capacitor and reducing leakage current |
US6448601B1 (en) | 2001-02-09 | 2002-09-10 | Micron Technology, Inc. | Memory address and decode circuits with ultra thin body transistors |
KR100407575B1 (ko) | 2001-04-18 | 2003-12-01 | 삼성전자주식회사 | 강유전체 메모리 장치 및 그 형성 방법 |
US6717215B2 (en) | 2001-06-21 | 2004-04-06 | Hewlett-Packard Development Company, L.P. | Memory structures |
US6717195B2 (en) | 2001-06-29 | 2004-04-06 | Rohm Co., Ltd. | Ferroelectric memory |
JP2003045174A (ja) | 2001-08-01 | 2003-02-14 | Sharp Corp | 半導体記憶装置 |
US20030063740A1 (en) * | 2001-08-20 | 2003-04-03 | Sagar Richard B. | Method of providing multilevel quality signals |
TW508808B (en) | 2001-09-14 | 2002-11-01 | Winbond Electronics Corp | Stacked type capacitor structure and its manufacturing method |
US6665207B2 (en) | 2001-11-14 | 2003-12-16 | Micron Technology, Inc. | ROM embedded DRAM with dielectric removal/short |
US7075134B2 (en) | 2001-11-29 | 2006-07-11 | Symetrix Corporation | Ferroelectric and high dielectric constant integrated circuit capacitors with three-dimensional orientation for high-density memories, and method of making the same |
KR100799129B1 (ko) | 2001-12-24 | 2008-01-29 | 주식회사 하이닉스반도체 | 반도체 메모리 소자의 캐패시터 제조방법 |
CN1306599C (zh) | 2002-03-26 | 2007-03-21 | 松下电器产业株式会社 | 半导体装置及其制造方法 |
US6579760B1 (en) | 2002-03-28 | 2003-06-17 | Macronix International Co., Ltd. | Self-aligned, programmable phase change memory |
JP2003289134A (ja) | 2002-03-28 | 2003-10-10 | Matsushita Electric Ind Co Ltd | 半導体装置及びその製造方法 |
US6940085B2 (en) | 2002-04-02 | 2005-09-06 | Hewlett-Packard Development Company, I.P. | Memory structures |
US7994153B2 (en) | 2002-05-20 | 2011-08-09 | Otsuka Pharmaceutical Co., Ltd. | Chloasma amelioration composition and dullness amelioration composition |
US6812509B2 (en) | 2002-06-28 | 2004-11-02 | Palo Alto Research Center Inc. | Organic ferroelectric memory cells |
JP2004040059A (ja) | 2002-07-08 | 2004-02-05 | Fujitsu Ltd | 半導体記憶装置の製造方法および半導体記憶装置 |
US7884349B2 (en) | 2002-08-02 | 2011-02-08 | Unity Semiconductor Corporation | Selection device for re-writable memory |
US7186569B2 (en) | 2002-08-02 | 2007-03-06 | Unity Semiconductor Corporation | Conductive memory stack with sidewall |
US7009235B2 (en) | 2003-11-10 | 2006-03-07 | Unity Semiconductor Corporation | Conductive memory stack with non-uniform width |
KR100475116B1 (ko) * | 2002-11-12 | 2005-03-11 | 삼성전자주식회사 | 산화알루미늄/산화하프늄 복합유전막을 가지는 반도체메모리 소자의 커패시터 및 그 제조 방법 |
US6897106B2 (en) | 2002-08-16 | 2005-05-24 | Samsung Electronics Co., Ltd. | Capacitor of semiconductor memory device that has composite Al2O3/HfO2 dielectric layer and method of manufacturing the same |
US6744087B2 (en) | 2002-09-27 | 2004-06-01 | International Business Machines Corporation | Non-volatile memory using ferroelectric gate field-effect transistors |
JP4509467B2 (ja) | 2002-11-08 | 2010-07-21 | シャープ株式会社 | 不揮発可変抵抗素子、及び記憶装置 |
US6876021B2 (en) * | 2002-11-25 | 2005-04-05 | Texas Instruments Incorporated | Use of amorphous aluminum oxide on a capacitor sidewall for use as a hydrogen barrier |
JP4355136B2 (ja) | 2002-12-05 | 2009-10-28 | シャープ株式会社 | 不揮発性半導体記憶装置及びその読み出し方法 |
KR100493040B1 (ko) | 2002-12-30 | 2005-06-07 | 삼성전자주식회사 | 반도체 소자의 커패시터 및 그 제조방법 |
KR100480644B1 (ko) | 2003-02-28 | 2005-03-31 | 삼성전자주식회사 | 셀 구동 전류가 증가된 상 변화 메모리 |
JP4141861B2 (ja) | 2003-03-03 | 2008-08-27 | 富士通株式会社 | 半導体装置及びその製造方法 |
US7755934B2 (en) | 2003-03-18 | 2010-07-13 | Kabushiki Kaisha Toshiba | Resistance change memory device |
US6958486B2 (en) | 2003-06-26 | 2005-10-25 | Rj Mears, Llc | Semiconductor device including band-engineered superlattice |
KR100578212B1 (ko) | 2003-06-30 | 2006-05-11 | 주식회사 하이닉스반도체 | 엠티피 구조의 강유전체 캐패시터 및 그 제조 방법 |
US7408212B1 (en) | 2003-07-18 | 2008-08-05 | Winbond Electronics Corporation | Stackable resistive cross-point memory with schottky diode isolation |
US7067385B2 (en) | 2003-09-04 | 2006-06-27 | Micron Technology, Inc. | Support for vertically oriented capacitors during the formation of a semiconductor device |
US7297602B2 (en) | 2003-09-09 | 2007-11-20 | Sharp Laboratories Of America, Inc. | Conductive metal oxide gate ferroelectric memory transistor |
US7001821B2 (en) * | 2003-11-10 | 2006-02-21 | Texas Instruments Incorporated | Method of forming and using a hardmask for forming ferroelectric capacitors in a semiconductor device |
US7816722B2 (en) | 2004-02-04 | 2010-10-19 | Hewlett-Packard Development Company, L.P. | Memory array |
US7082052B2 (en) | 2004-02-06 | 2006-07-25 | Unity Semiconductor Corporation | Multi-resistive state element with reactive metal |
KR100626912B1 (ko) | 2004-04-23 | 2006-09-20 | 주식회사 하이닉스반도체 | 불휘발성 강유전체 수직 전극 셀과 수직 전극 셀을 이용한불휘발성 강유전체 메모리 장치 및 그 수직 전극 셀 제조방법 |
US6995025B2 (en) | 2004-06-21 | 2006-02-07 | Sharp Laboratories Of America, Inc. | Asymmetrical programming ferroelectric memory transistor |
JP2006049566A (ja) | 2004-08-04 | 2006-02-16 | Toshiba Corp | 半導体記憶装置及びその製造方法 |
EP1624479A3 (en) * | 2004-08-05 | 2008-07-16 | Samsung Electronics Co, Ltd | Ferroelectric memory and ferroelectric capacitor with Ir-alloy electrode or Ru-alloy electrode and method of manufacturing same |
US7161213B2 (en) * | 2004-08-05 | 2007-01-09 | Broadcom Corporation | Low threshold voltage PMOS apparatus and method of fabricating the same |
KR100587396B1 (ko) | 2004-08-13 | 2006-06-08 | 동부일렉트로닉스 주식회사 | 비휘발성 메모리 소자 및 그의 제조방법 |
US7378286B2 (en) | 2004-08-20 | 2008-05-27 | Sharp Laboratories Of America, Inc. | Semiconductive metal oxide thin film ferroelectric memory transistor |
US8154002B2 (en) | 2004-12-06 | 2012-04-10 | President And Fellows Of Harvard College | Nanoscale wire-based data storage |
JP4345676B2 (ja) | 2005-01-12 | 2009-10-14 | エルピーダメモリ株式会社 | 半導体記憶装置 |
KR100707181B1 (ko) | 2005-02-14 | 2007-04-13 | 삼성전자주식회사 | 듀얼 스토리지 노드를 구비하는 반도체 메모리 장치와 그제조 및 동작 방법 |
US8270193B2 (en) | 2010-01-29 | 2012-09-18 | Unity Semiconductor Corporation | Local bit lines and methods of selecting the same to access memory elements in cross-point arrays |
US8937292B2 (en) | 2011-08-15 | 2015-01-20 | Unity Semiconductor Corporation | Vertical cross point arrays for ultra high density memory applications |
US8003511B2 (en) | 2008-12-19 | 2011-08-23 | Unity Semiconductor Corporation | Memory cell formation using ion implant isolated conductive metal oxide |
KR100695513B1 (ko) | 2005-06-15 | 2007-03-15 | 주식회사 하이닉스반도체 | 반도체 소자의 제조방법 |
JP2007049016A (ja) | 2005-08-11 | 2007-02-22 | Nec Electronics Corp | 半導体装置およびその製造方法 |
US7304339B2 (en) * | 2005-09-22 | 2007-12-04 | Agile Rf, Inc. | Passivation structure for ferroelectric thin-film devices |
JP2007157982A (ja) | 2005-12-05 | 2007-06-21 | Seiko Epson Corp | トランジスタ型強誘電体メモリおよびその製造方法 |
US7982252B2 (en) | 2006-01-27 | 2011-07-19 | Hynix Semiconductor Inc. | Dual-gate non-volatile ferroelectric memory |
US7842990B2 (en) | 2006-02-17 | 2010-11-30 | Hynix Semiconductor Inc. | Nonvolatile ferroelectric memory device including trench capacitor |
JP4745108B2 (ja) | 2006-04-06 | 2011-08-10 | 株式会社東芝 | 不揮発性半導体記憶装置 |
WO2008073529A2 (en) | 2006-07-31 | 2008-06-19 | Drexel University | Integrated semiconductor and transition-metal oxide nanostructures and methods for preparing same |
TWM315710U (en) | 2006-08-04 | 2007-07-21 | Jackson Yu | Storing apparatus of video/audio media |
US7558097B2 (en) | 2006-12-28 | 2009-07-07 | Intel Corporation | Memory having bit line with resistor(s) between memory cells |
US8207063B2 (en) | 2007-01-26 | 2012-06-26 | Eastman Kodak Company | Process for atomic layer deposition |
FR2913523B1 (fr) | 2007-03-09 | 2009-06-05 | Commissariat Energie Atomique | Disposistif de memorisation de donnees multi-niveaux a materiau a changement de phase |
JP4535076B2 (ja) | 2007-03-14 | 2010-09-01 | セイコーエプソン株式会社 | 強誘電体キャパシタとその製造方法 |
KR100876136B1 (ko) | 2007-04-12 | 2008-12-29 | 서울시립대학교 산학협력단 | 엠에프엠아이에스 구조를 갖는 전계효과 트랜지스터 및강유전체 메모리 장치와 그 제조방법 |
WO2008126961A1 (en) | 2007-04-12 | 2008-10-23 | University Of Seoul Foundation Of Industry-Academic Cooperation | Mfmis-fet, mfmis-ferroelectric memory device, and methods of manufacturing the same |
US7452776B1 (en) | 2007-04-24 | 2008-11-18 | Promos Technoloies Pte. Ltd. | Integrated circuits with substrate protrusions, including (but not limited to) floating gate memories |
JP2008277543A (ja) | 2007-04-27 | 2008-11-13 | Toshiba Corp | 不揮発性半導体記憶装置 |
US8487450B2 (en) | 2007-05-01 | 2013-07-16 | Micron Technology, Inc. | Semiconductor constructions comprising vertically-stacked memory units that include diodes utilizing at least two different dielectric materials, and electronic systems |
WO2009015298A2 (en) | 2007-07-25 | 2009-01-29 | Intermolecular, Inc. | Nonvolatile memory elements |
US8679903B2 (en) | 2007-07-27 | 2014-03-25 | Stmicroelectronics, Inc. | Vertical quadruple conduction channel insulated gate transistor |
JP2009076653A (ja) * | 2007-09-20 | 2009-04-09 | Toshiba Corp | 半導体装置及びその製造方法 |
US7892956B2 (en) | 2007-09-24 | 2011-02-22 | International Business Machines Corporation | Methods of manufacture of vertical nanowire FET devices |
KR101226685B1 (ko) | 2007-11-08 | 2013-01-25 | 삼성전자주식회사 | 수직형 반도체 소자 및 그 제조 방법. |
KR20090055874A (ko) | 2007-11-29 | 2009-06-03 | 삼성전자주식회사 | 비휘발성 메모리 소자 및 그 제조 방법 |
TWI360708B (en) * | 2007-12-17 | 2012-03-21 | Au Optronics Corp | Pixel structure, display panel, elecro-optical app |
JP2009170511A (ja) | 2008-01-11 | 2009-07-30 | Toshiba Corp | 半導体素子及び半導体装置 |
US8394683B2 (en) | 2008-01-15 | 2013-03-12 | Micron Technology, Inc. | Methods of forming semiconductor constructions, and methods of forming NAND unit cells |
TW200933878A (en) | 2008-01-21 | 2009-08-01 | Ind Tech Res Inst | Memory capacitor and manufacturing method thereof |
JP5162276B2 (ja) | 2008-02-28 | 2013-03-13 | ローム株式会社 | 強誘電体メモリ装置 |
US8034655B2 (en) | 2008-04-08 | 2011-10-11 | Micron Technology, Inc. | Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays |
US8304823B2 (en) | 2008-04-21 | 2012-11-06 | Namlab Ggmbh | Integrated circuit including a ferroelectric memory cell and method of manufacturing the same |
JP5288877B2 (ja) | 2008-05-09 | 2013-09-11 | 株式会社東芝 | 不揮発性半導体記憶装置 |
JP5546740B2 (ja) | 2008-05-23 | 2014-07-09 | ローム株式会社 | 半導体装置 |
US8004871B2 (en) | 2008-05-26 | 2011-08-23 | Panasonic Corporation | Semiconductor memory device including FET memory elements |
JP5081069B2 (ja) | 2008-06-09 | 2012-11-21 | パナソニック株式会社 | 半導体記憶装置 |
JP2010044844A (ja) | 2008-08-18 | 2010-02-25 | Toshiba Corp | 半導体記憶装置 |
US7791925B2 (en) | 2008-10-31 | 2010-09-07 | Seagate Technology, Llc | Structures for resistive random access memory cells |
US20100110753A1 (en) | 2008-10-31 | 2010-05-06 | Qimonda Ag | Ferroelectric Memory Cell Arrays and Method of Operating the Same |
US8362604B2 (en) | 2008-12-04 | 2013-01-29 | Ecole Polytechnique Federale De Lausanne (Epfl) | Ferroelectric tunnel FET switch and memory |
US8159858B2 (en) | 2008-12-19 | 2012-04-17 | Unity Semiconductor Corporation | Signal margin improvement for read operations in a cross-point memory array |
US20100195393A1 (en) | 2009-01-30 | 2010-08-05 | Unity Semiconductor Corporation | Data storage system with refresh in place |
US8021897B2 (en) | 2009-02-19 | 2011-09-20 | Micron Technology, Inc. | Methods of fabricating a cross point memory array |
WO2010104918A1 (en) | 2009-03-10 | 2010-09-16 | Contour Semiconductor, Inc. | Three-dimensional memory array comprising vertical switches having three terminals |
US8193522B2 (en) | 2009-04-09 | 2012-06-05 | Qualcomm Incorporated | Diamond type quad-resistor cells of PRAM |
US7940554B2 (en) | 2009-04-24 | 2011-05-10 | Sandisk 3D Llc | Reduced complexity array line drivers for 3D matrix arrays |
US8173987B2 (en) | 2009-04-27 | 2012-05-08 | Macronix International Co., Ltd. | Integrated circuit 3D phase change memory array and manufacturing method |
US7968876B2 (en) | 2009-05-22 | 2011-06-28 | Macronix International Co., Ltd. | Phase change memory cell having vertical channel access transistor |
JP5025696B2 (ja) | 2009-08-11 | 2012-09-12 | 株式会社東芝 | 抵抗変化メモリ |
WO2011056281A1 (en) | 2009-11-06 | 2011-05-12 | Rambus Inc. | Three-dimensional memory array stacking structure |
CN102074562B (zh) | 2009-11-25 | 2012-08-29 | 中国科学院微电子研究所 | Nand结构及其形成方法 |
US8144516B2 (en) * | 2009-12-03 | 2012-03-27 | Micron Technology, Inc. | Dynamic pass voltage for sense operation in a memory device |
US8441097B2 (en) | 2009-12-23 | 2013-05-14 | Intel Corporation | Methods to form memory devices having a capacitor with a recessed electrode |
US8363443B2 (en) | 2010-02-01 | 2013-01-29 | Unity Semiconductor Corporation | Circuits and techniques to compensate data signals for variations of parameters affecting memory cells in cross-point arrays |
WO2011105198A1 (en) | 2010-02-26 | 2011-09-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8198160B2 (en) | 2010-04-19 | 2012-06-12 | Jun Liu | Vertical transistor phase change memory |
US8411477B2 (en) | 2010-04-22 | 2013-04-02 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells |
US8570785B2 (en) | 2010-05-26 | 2013-10-29 | Hewlett-Packard Development Company | Reading a memory element within a crossbar array |
CN102263122B (zh) | 2010-05-28 | 2012-12-12 | 旺宏电子股份有限公司 | 非易失性存储装置 |
US8241944B2 (en) | 2010-07-02 | 2012-08-14 | Micron Technology, Inc. | Resistive RAM devices and methods |
US8890233B2 (en) | 2010-07-06 | 2014-11-18 | Macronix International Co., Ltd. | 3D memory array with improved SSL and BL contact layout |
US20120012897A1 (en) | 2010-07-16 | 2012-01-19 | Unity Semiconductor Corporation | Vertically Fabricated BEOL Non-Volatile Two-Terminal Cross-Trench Memory Array with Two-Terminal Memory Elements and Method of Fabricating the Same |
US8207032B2 (en) | 2010-08-31 | 2012-06-26 | Micron Technology, Inc. | Methods of forming pluralities of vertical transistors, and methods of forming memory arrays |
US8659944B2 (en) | 2010-09-01 | 2014-02-25 | Macronix International Co., Ltd. | Memory architecture of 3D array with diode in memory string |
US8796661B2 (en) | 2010-11-01 | 2014-08-05 | Micron Technology, Inc. | Nonvolatile memory cells and methods of forming nonvolatile memory cell |
US9454997B2 (en) | 2010-12-02 | 2016-09-27 | Micron Technology, Inc. | Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells |
US8431458B2 (en) | 2010-12-27 | 2013-04-30 | Micron Technology, Inc. | Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells |
US8399874B2 (en) | 2011-01-17 | 2013-03-19 | Snu R&Db Foundation | Vertical nonvolatile memory device including a selective diode |
US8791447B2 (en) | 2011-01-20 | 2014-07-29 | Micron Technology, Inc. | Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells |
US8462537B2 (en) | 2011-03-21 | 2013-06-11 | Intel Corporation | Method and apparatus to reset a phase change memory and switch (PCMS) memory cell |
KR20120124788A (ko) | 2011-05-04 | 2012-11-14 | 삼성전자주식회사 | 반도체 소자 |
JP5662237B2 (ja) | 2011-05-10 | 2015-01-28 | 株式会社日立製作所 | 半導体記憶装置 |
US8847196B2 (en) | 2011-05-17 | 2014-09-30 | Micron Technology, Inc. | Resistive memory cell |
US8665007B2 (en) * | 2011-06-10 | 2014-03-04 | Cypress Semiconductor Corporation | Dynamic power clamp for RFID power control |
US20120327714A1 (en) | 2011-06-23 | 2012-12-27 | Macronix International Co., Ltd. | Memory Architecture of 3D Array With Diode in Memory String |
KR20130005878A (ko) | 2011-07-07 | 2013-01-16 | 삼성전자주식회사 | 저저항 반도체 소자 |
WO2013009711A1 (en) * | 2011-07-08 | 2013-01-17 | Timler John P | Insulator based upon one or more dielectric structures |
US8946812B2 (en) | 2011-07-21 | 2015-02-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US8575584B2 (en) | 2011-09-03 | 2013-11-05 | Avalanche Technology Inc. | Resistive memory device having vertical transistors and method for making the same |
US8536561B2 (en) | 2011-10-17 | 2013-09-17 | Micron Technology, Inc. | Memory cells and memory cell arrays |
US8760909B2 (en) | 2011-10-20 | 2014-06-24 | Macronix International Co., Ltd. | Memory and manufacturing method thereof |
US9252188B2 (en) | 2011-11-17 | 2016-02-02 | Micron Technology, Inc. | Methods of forming memory cells |
US20130193400A1 (en) | 2012-01-27 | 2013-08-01 | Micron Technology, Inc. | Memory Cell Structures and Memory Arrays |
KR20130092925A (ko) | 2012-02-13 | 2013-08-21 | 에스케이하이닉스 주식회사 | 가변 저항 메모리 소자 및 이의 제조 방법 |
US9368581B2 (en) | 2012-02-20 | 2016-06-14 | Micron Technology, Inc. | Integrated circuitry components, switches, and memory cells |
US9041129B2 (en) | 2012-02-24 | 2015-05-26 | National Applied Research Laboratories | Semiconductor memory storage array device and method for fabricating the same |
JP5951374B2 (ja) | 2012-07-09 | 2016-07-13 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
TWI571971B (zh) * | 2012-07-25 | 2017-02-21 | 漢陽大學校 產學協力團 | 非揮發性記憶體元件 |
WO2014047570A1 (en) | 2012-09-21 | 2014-03-27 | Md Revolution, Inc. | Systems and methods for developing and implementing personalized health and wellness programs |
US9152428B2 (en) | 2012-09-28 | 2015-10-06 | Intel Corporation | Alternative boot path support for utilizing non-volatile memory devices |
KR102031187B1 (ko) | 2012-10-05 | 2019-10-14 | 삼성전자주식회사 | 수직형 메모리 장치 |
US8796085B2 (en) | 2012-10-12 | 2014-08-05 | Viktor Koldiaev | Vertical super-thin body semiconductor on dielectric wall devices and methods of their fabrication |
US9230685B2 (en) * | 2012-10-23 | 2016-01-05 | Micron Technology, Inc. | Memory programming methods and memory systems |
GB2507557B (en) | 2012-11-05 | 2015-06-10 | Nano Porous Solutions Ltd | Pressure swing adsorption apparatus |
US8796751B2 (en) | 2012-11-20 | 2014-08-05 | Micron Technology, Inc. | Transistors, memory cells and semiconductor constructions |
US9053801B2 (en) | 2012-11-30 | 2015-06-09 | Micron Technology, Inc. | Memory cells having ferroelectric materials |
US8878271B2 (en) | 2013-03-01 | 2014-11-04 | Micron Technology, Inc. | Vertical access device and apparatuses having a body connection line, and related method of operating the same |
JP5793525B2 (ja) | 2013-03-08 | 2015-10-14 | 株式会社東芝 | 不揮発性半導体記憶装置 |
US20140252298A1 (en) | 2013-03-10 | 2014-09-11 | Sandisk 3D Llc | Methods and apparatus for metal oxide reversible resistance-switching memory devices |
US9196831B2 (en) * | 2013-03-14 | 2015-11-24 | Crossbar, Inc. | Two-terminal memory with intrinsic rectifying characteristic |
US20140269046A1 (en) * | 2013-03-15 | 2014-09-18 | Micron Technology, Inc. | Apparatuses and methods for use in selecting or isolating memory cells |
US9691981B2 (en) | 2013-05-22 | 2017-06-27 | Micron Technology, Inc. | Memory cell structures |
US9000407B2 (en) | 2013-05-28 | 2015-04-07 | Intermolecular, Inc. | ReRAM materials stack for low-operating-power and high-density applications |
US9153777B2 (en) | 2013-06-03 | 2015-10-06 | Micron Technology, Inc. | Thermally optimized phase change memory cells and methods of fabricating the same |
JP6121819B2 (ja) | 2013-07-04 | 2017-04-26 | 株式会社東芝 | 半導体装置および誘電体膜 |
US9246100B2 (en) | 2013-07-24 | 2016-01-26 | Micron Technology, Inc. | Memory cell array structures and methods of forming the same |
US20150028280A1 (en) | 2013-07-26 | 2015-01-29 | Micron Technology, Inc. | Memory cell with independently-sized elements |
US9337210B2 (en) | 2013-08-12 | 2016-05-10 | Micron Technology, Inc. | Vertical ferroelectric field effect transistor constructions, constructions comprising a pair of vertical ferroelectric field effect transistors, vertical strings of ferroelectric field effect transistors, and vertical strings of laterally opposing pairs of vertical ferroelectric field effect transistors |
JP6194207B2 (ja) | 2013-08-20 | 2017-09-06 | 矢崎総業株式会社 | 外装部材 |
WO2015032999A1 (es) | 2013-09-06 | 2015-03-12 | Permanyer Griño Connexions, S.L.U. | Equipo electrónico de medición de calidad de la transmisión de señales eléctricas |
CN104469711B (zh) | 2013-09-23 | 2019-06-11 | 中兴通讯股份有限公司 | 非结构化补充数据业务监控方法及装置 |
JP6067524B2 (ja) | 2013-09-25 | 2017-01-25 | 株式会社東芝 | 半導体装置および誘電体膜 |
KR20150041705A (ko) | 2013-10-08 | 2015-04-17 | 삼성전자주식회사 | 선택 소자와 저항 변화 소자를 갖는 반도체 소자 및 그 형성 방법 |
US9543515B2 (en) | 2013-11-07 | 2017-01-10 | Intel Corporation | Electrode materials and interface layers to minimize chalcogenide interface resistance |
KR102131075B1 (ko) | 2013-11-12 | 2020-07-07 | 삼성전자주식회사 | 반도체 소자 및 이의 제조 방법 |
US9076686B1 (en) | 2014-01-10 | 2015-07-07 | Micron Technology, Inc. | Field effect transistor constructions and memory arrays |
US9806129B2 (en) | 2014-02-25 | 2017-10-31 | Micron Technology, Inc. | Cross-point memory and methods for fabrication of same |
US9601194B2 (en) | 2014-02-28 | 2017-03-21 | Crossbar, Inc. | NAND array comprising parallel transistor and two-terminal switching device |
US20150249113A1 (en) | 2014-02-28 | 2015-09-03 | Kabushiki Kaisha Toshiba | Nonvolatile memory device |
WO2016040131A1 (en) | 2014-09-03 | 2016-03-17 | Visionscope Technologies Llc | Devices and methods for minimally invasive surgery |
US9263577B2 (en) | 2014-04-24 | 2016-02-16 | Micron Technology, Inc. | Ferroelectric field effect transistors, pluralities of ferroelectric field effect transistors arrayed in row lines and column lines, and methods of forming a plurality of ferroelectric field effect transistors |
US20160019960A1 (en) | 2014-05-20 | 2016-01-21 | Sandisk 3D Llc | Operation modes for adjustable resistance bit line structures |
KR20150135804A (ko) | 2014-05-26 | 2015-12-04 | 삼성전자주식회사 | 가변 저항 메모리 장치 및 그 제조 방법 |
US9362494B2 (en) | 2014-06-02 | 2016-06-07 | Micron Technology, Inc. | Array of cross point memory cells and methods of forming an array of cross point memory cells |
US9343506B2 (en) | 2014-06-04 | 2016-05-17 | Micron Technology, Inc. | Memory arrays with polygonal memory cells having specific sidewall orientations |
US9472560B2 (en) | 2014-06-16 | 2016-10-18 | Micron Technology, Inc. | Memory cell and an array of memory cells |
JP6458384B2 (ja) | 2014-07-24 | 2019-01-30 | 株式会社デンソー | 車線検出装置および車線検出方法 |
US9437658B2 (en) | 2014-08-05 | 2016-09-06 | Sandisk Technologies Llc | Fully isolated selector for memory device |
JP6265091B2 (ja) | 2014-09-19 | 2018-01-24 | 株式会社デンソー | 高圧ポンプの制御装置 |
US9159829B1 (en) | 2014-10-07 | 2015-10-13 | Micron Technology, Inc. | Recessed transistors containing ferroelectric material |
US9276092B1 (en) | 2014-10-16 | 2016-03-01 | Micron Technology, Inc. | Transistors and methods of forming transistors |
US9305929B1 (en) | 2015-02-17 | 2016-04-05 | Micron Technology, Inc. | Memory cells |
US9853211B2 (en) | 2015-07-24 | 2017-12-26 | Micron Technology, Inc. | Array of cross point memory cells individually comprising a select device and a programmable device |
KR102452290B1 (ko) | 2015-09-04 | 2022-12-01 | 에스케이하이닉스 주식회사 | 반도체구조물 및 그 제조 방법 |
GB2543520B (en) | 2015-10-20 | 2019-06-19 | Advanced Risc Mach Ltd | Memory access instructions |
EP4071787B1 (en) | 2015-12-18 | 2023-09-27 | Floadia Corporation | Memory cell, nonvolatile semiconductor storage device, and method for manufacturing nonvolatile semiconductor storage device |
KR102450814B1 (ko) | 2015-12-29 | 2022-10-05 | 에스케이하이닉스 주식회사 | 문턱 스위칭 장치 및 그 제조 방법과, 이를 포함하는 전자 장치 |
US9741764B1 (en) | 2016-02-22 | 2017-08-22 | Samsung Electronics Co., Ltd. | Memory device including ovonic threshold switch adjusting threshold voltage thereof |
US10282108B2 (en) | 2016-08-31 | 2019-05-07 | Micron Technology, Inc. | Hybrid memory device using different types of capacitors |
US10163917B2 (en) | 2016-11-01 | 2018-12-25 | Micron Technology, Inc. | Cell disturb prevention using a leaker device to reduce excess charge from an electronic device |
US10396145B2 (en) | 2017-01-12 | 2019-08-27 | Micron Technology, Inc. | Memory cells comprising ferroelectric material and including current leakage paths having different total resistances |
KR20180105530A (ko) | 2017-03-15 | 2018-09-28 | 에스케이하이닉스 주식회사 | 강유전성 메모리 소자 및 이를 포함하는 크로스 포인트 어레이 장치 |
TWI633648B (zh) | 2017-07-04 | 2018-08-21 | 華邦電子股份有限公司 | 記憶體裝置及其製造方法 |
US10438645B2 (en) | 2017-10-27 | 2019-10-08 | Ferroelectric Memory Gmbh | Memory cell and methods thereof |
US10650978B2 (en) | 2017-12-15 | 2020-05-12 | Micron Technology, Inc. | Methods of incorporating leaker devices into capacitor configurations to reduce cell disturb |
EP3837529A4 (en) | 2018-08-17 | 2022-09-14 | Massachusetts Institute of Technology | ARTICLES AND METHODS FOR GENERATION TUNABLE COLORING AND INTERFERENCE |
JP2020047314A (ja) | 2018-09-14 | 2020-03-26 | キオクシア株式会社 | 半導体記憶装置 |
US10833092B2 (en) | 2019-01-23 | 2020-11-10 | Micron Technology, Inc. | Methods of incorporating leaker-devices into capacitor configurations to reduce cell disturb, and capacitor configurations incorporating leaker-devices |
US11812600B2 (en) | 2019-06-25 | 2023-11-07 | Intel Corporation | Vertical memory cell with self-aligned thin film transistor |
US11170834B2 (en) | 2019-07-10 | 2021-11-09 | Micron Technology, Inc. | Memory cells and methods of forming a capacitor including current leakage paths having different total resistances |
-
2015
- 2015-02-17 US US14/623,749 patent/US9305929B1/en active Active
-
2016
- 2016-01-13 CN CN202110220052.XA patent/CN112802844A/zh active Pending
- 2016-01-13 KR KR1020217005013A patent/KR102369843B1/ko active IP Right Grant
- 2016-01-13 CN CN201680010690.6A patent/CN107251223B/zh active Active
- 2016-01-13 WO PCT/US2016/013174 patent/WO2016133611A1/en active Application Filing
- 2016-01-13 KR KR1020207006363A patent/KR102220284B1/ko active IP Right Grant
- 2016-01-13 EP EP16752758.9A patent/EP3259757A4/en not_active Withdrawn
- 2016-01-13 KR KR1020177023241A patent/KR102087488B1/ko active IP Right Grant
- 2016-01-28 TW TW105102738A patent/TWI594236B/zh active
- 2016-03-09 US US15/064,988 patent/US9673203B2/en active Active
-
2017
- 2017-05-02 US US15/584,371 patent/US9887204B2/en active Active
-
2018
- 2018-01-03 US US15/861,286 patent/US10217753B2/en active Active
-
2019
- 2019-02-25 US US16/284,475 patent/US10741567B2/en active Active
-
2020
- 2020-07-13 US US16/927,779 patent/US11244951B2/en active Active
-
2021
- 2021-12-23 US US17/561,579 patent/US11706929B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6256220B1 (en) * | 1997-09-15 | 2001-07-03 | Celis Semiconductor Corporation | Ferroelectric memory with shunted isolated nodes |
US20020119621A1 (en) * | 2001-02-27 | 2002-08-29 | Nanya Technology Corporaton | Method of fabricating a trench capacitor of a memory cell |
US20060118841A1 (en) * | 2004-12-03 | 2006-06-08 | Texas Instruments Incorporated | Ferroelectric capacitor with parallel resistance for ferroelectric memory |
CN104051231A (zh) * | 2013-03-14 | 2014-09-17 | 格罗方德半导体公司 | 包含金属-绝缘层-金属电容器的半导体结构的形成方法 |
Also Published As
Publication number | Publication date |
---|---|
US20160240545A1 (en) | 2016-08-18 |
TW201635286A (zh) | 2016-10-01 |
KR102369843B1 (ko) | 2022-03-03 |
EP3259757A1 (en) | 2017-12-27 |
US9673203B2 (en) | 2017-06-06 |
US20200350323A1 (en) | 2020-11-05 |
EP3259757A4 (en) | 2018-09-19 |
US11706929B2 (en) | 2023-07-18 |
US20170236828A1 (en) | 2017-08-17 |
KR102087488B1 (ko) | 2020-03-11 |
KR20170105604A (ko) | 2017-09-19 |
US11244951B2 (en) | 2022-02-08 |
US20180145084A1 (en) | 2018-05-24 |
US10741567B2 (en) | 2020-08-11 |
CN107251223B (zh) | 2021-03-16 |
TWI594236B (zh) | 2017-08-01 |
US20220122998A1 (en) | 2022-04-21 |
CN112802844A (zh) | 2021-05-14 |
WO2016133611A1 (en) | 2016-08-25 |
US9305929B1 (en) | 2016-04-05 |
KR20210022151A (ko) | 2021-03-02 |
US20190189626A1 (en) | 2019-06-20 |
US10217753B2 (en) | 2019-02-26 |
KR20200027573A (ko) | 2020-03-12 |
KR102220284B1 (ko) | 2021-02-26 |
US9887204B2 (en) | 2018-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107251223A (zh) | 存储器单元 | |
TWI654742B (zh) | 記憶胞及形成電容器之方法 | |
US11856790B2 (en) | Ferroelectric capacitors | |
CN107924932B (zh) | 交叉点存储器单元阵列及形成交叉点存储器单元阵列的方法 | |
CN110214374A (zh) | 个别地包含电容器及竖向延伸晶体管的存储器单元阵列,形成存储器单元阵列的层的方法,及形成个别地包含电容器及竖向延伸晶体管的存储器单元阵列的方法 | |
CN110192278A (zh) | 形成电容器阵列的方法、形成个别包括电容器及晶体管的存储器单元的阵列的方法、电容器阵列以及个别包括电容器及晶体管的存储器单元的阵列 | |
CN110168727A (zh) | 形成包括垂直对置电容器对的阵列的方法及包括垂直对置电容器对的阵列 | |
CN107924997A (zh) | 交叉点存储器单元阵列 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |