CN102460710A - 高电压ⅲ族氮化物半导体器件 - Google Patents
高电压ⅲ族氮化物半导体器件 Download PDFInfo
- Publication number
- CN102460710A CN102460710A CN2010800305245A CN201080030524A CN102460710A CN 102460710 A CN102460710 A CN 102460710A CN 2010800305245 A CN2010800305245 A CN 2010800305245A CN 201080030524 A CN201080030524 A CN 201080030524A CN 102460710 A CN102460710 A CN 102460710A
- Authority
- CN
- China
- Prior art keywords
- iii
- layer
- barrier layer
- resilient coating
- described device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title description 15
- 239000006185 dispersion Substances 0.000 claims abstract description 47
- 239000000463 material Substances 0.000 claims abstract description 44
- 230000004888 barrier function Effects 0.000 claims description 98
- 238000000576 coating method Methods 0.000 claims description 84
- 239000011248 coating agent Substances 0.000 claims description 82
- 150000004767 nitrides Chemical class 0.000 claims description 42
- 239000000758 substrate Substances 0.000 claims description 32
- 239000002019 doping agent Substances 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 229910052749 magnesium Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 230000010287 polarization Effects 0.000 claims description 7
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052790 beryllium Inorganic materials 0.000 claims description 5
- 229910052594 sapphire Inorganic materials 0.000 claims description 5
- 239000010980 sapphire Substances 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910002058 ternary alloy Inorganic materials 0.000 claims description 4
- 239000003990 capacitor Substances 0.000 claims description 2
- 238000009826 distribution Methods 0.000 abstract description 4
- 230000000903 blocking effect Effects 0.000 abstract 2
- 229910002601 GaN Inorganic materials 0.000 description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 21
- 229910002704 AlGaN Inorganic materials 0.000 description 20
- 230000002950 deficient Effects 0.000 description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 238000005036 potential barrier Methods 0.000 description 13
- 239000002800 charge carrier Substances 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000006911 nucleation Effects 0.000 description 5
- 238000010899 nucleation Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 230000003139 buffering effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000005264 electron capture Effects 0.000 description 3
- 238000001534 heteroepitaxy Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 208000032750 Device leakage Diseases 0.000 description 1
- 229910001199 N alloy Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000005516 deep trap Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001803 electron scattering Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66446—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
- H01L29/66462—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02581—Transition metal or rare earth elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/201—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
- H01L29/205—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/207—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
- H01L29/7787—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
描述了一种III-N器件,其具有:缓冲层,在该缓冲层上的第一III-N材料层,在该第一III-N材料层上的相对于缓冲层的相反侧上的第二III-N材料层以及在该缓冲层和沟道层之间的分散阻挡层。该第一III-N材料层是沟道层,并且在该第一III-N材料层和该第二III-N材料层之间的组分差异使得在该第一III-N材料层中感应出2DEG沟道。在该沟道层和该分散阻挡层的界面处的负电荷薄片或分布将电子限制为远离该缓冲层。
Description
技术领域
本发明涉及一种在III族氮化物半导体上制造的半导体器件。
背景技术
对于高功率电子应用来说,III族氮化物基器件具有很多超过硅基器件的潜在材料优势。其中,这些优势可以包括较大的带隙和击穿场,在二维电子气(2DEG)中的高电子迁移率和低热产生电流。然而,对III族氮化物半导体来说,大的同质衬底仍未广泛使用。目前,仍然在合适的非III族氮化物衬底上通过异质外延来生长III族氮化物膜。
通常用于支撑III族氮化物膜的衬底是碳化硅、蓝宝石或硅。可以采用分子束外延(MBE)或金属氧化物化学气相沉积(MOCVD)来执行异质外延,并且近来利用氢化物气相外延(HVPE)。通过异质外延会难以生长高质量的厚氮化镓层;因此,典型地,氮化镓中的高电压器件是仅有几微米厚的氮化镓层的横向器件。在电极不隔开相对大的距离的情况下,会难以在横向器件中容纳大的电压。对于在FET中横跨源/栅以及漏或者在二极管中横跨阳极和阴极的大阻挡电压来说,需要承受电压的电极之间的间隔可以是大的。例如,1kV器件可以具有间隔10μm或更大的栅-漏电极。这能够使高电压横向器件具有比等效的垂直器件更大的面积。因而,商业上,衬底成本变成重要的问题。
为了降低成本,硅是用于III族氮化物最期望的衬底。但是由于硅和氮化镓之间大的晶格和热失配,在器件结构中能够必需包括成核和应力管理层。这些通常称作缓冲层并且由能够包括超晶格的AlxGa1-xN层组成的层,在作为深陷阱或掺杂剂的大量的点缺陷一起,能够具有高密度的穿透位错和其他延伸缺陷。甚至对于晶格失配的衬底来说,合适的缓冲层可以在缓冲层上导致可接受质量的膜。但是缓冲层内的层在带隙中能够具有高浓度的缺陷水平。由于在这些层中的电子俘获,带隙缺陷水平能够引起分散或的电流崩塌,由于在这些层中载流子生成,带隙缺陷水平能够导致高漏极偏置处的电流泄漏,因此降低器件的击穿电压。
图1示出用于将电子限制到沟道的方法。图1(a)的III族氮化物堆叠是用于阳离子面上的n沟道器件的,目前优秀形式的III族氮化物结构用于制造HEMT。该堆叠能够用于形成在其中外部偏置调制有源层中的场和电流的横向器件。该器件结构包括其上具有缓冲层102的衬底101,缓冲层102可以包括由异质外延生长的成核和应力管理层。包括具有2DEG 104的沟道层103的有源层位于缓冲层102上。势垒层105位于沟道层103的相对于缓冲层102的相反侧,所述势垒层105的偶极子电荷能够形成2DEG并将电子限制在沟道层。绝缘和金属化层被沉积并被构图以形成器件(未示出)。
参考图1(b),是从沟道层至缓冲层的导带边(ΔEc)的台阶。正如在沿着平面YY1的能带图中所示的,只要势垒高度大于电子碰撞其上的能量,那么缓冲层中的较高导带边能够防止载流子注入和俘获在缓冲层中。具有小于势垒高度的能量的电子e1在势垒处被反射回去(示意性轨迹r1和r′1),而具有大于势垒的能量的电子e2注入到势垒中,其中电子e2可以被俘获(示意性轨迹r′2)或由位于势垒另一侧上的衬底接触来收集(示意性轨迹r″2)。图1(b)仅示出在缓冲层中的俘获过程。然而,在缓冲层中形成深能级的缺陷也扩散进入沟道层,其中它们可以容易地俘获电子并引起电流崩塌。
发明内容
一方面,描述了一种III-N器件,其具有缓冲层、在所述缓冲层上的第一III-N材料层、在所述第一III-N材料层上相对于所述缓冲层的相反侧上的第二III-N材料层和位于所述缓冲层和沟道层之间的分散阻挡层。所述第一III-N材料层是沟道层且在所述第一III-N材料层和所述第二III-N材料层之间的组分差异使得在所述第一III-N材料层中感生出2DEG沟道。在所述沟道层和所述分散阻挡层界面处的负电荷薄片或分布将电子限制为远离该缓冲层。
在另一方面,描述了一种集成电路。所述电路包括III-N器件,其中III-N器件是增强模式晶体管或耗尽模式晶体管并且电连接至二极管、电阻器或电容器中的一个。
器件的实施例可以包括一个或多个下列特征。在分散阻挡层中的最下面的导带最小值可以高于沟道层中最高的被占据的导带最小值。该分散阻挡层可以配置为在器件工作期间将电子限制在沟道层。该器件可以包括位于该分散阻挡层和该缓冲层之间的隔离层。分散阻挡层可以具有大于隔离层的铝浓度。该沟道层可以由第一III族氮化物合金组成,并且该隔离层由第二III族氮化物合金组成,其中该第一III族氮化物合金和该第二III族氮化物合金彼此具有10%内的铝摩尔分数。该沟道层的材料可以是非故意掺杂的且隔离层可以被补偿或过补偿。该隔离层可以由III族氮化物三元合金组成。该隔离层可以由0≤x<0.3的AlxGa1-xN组成。该分散阻挡层可以是与沟道层相邻的具有负极化电荷的薄片或层的三元III族氮化物合金层。该分散阻挡层可以包括AlxInyGa1-x-yN,其中y<x且0<(x+y)<1。分散阻挡层的比缓冲层更靠近沟道层的部分能够具有比分散阻挡层的靠近缓冲层的部分高的铝组分。该分散阻挡层能够具有缓变的铝浓度。该分散阻挡层可以具有阶梯状的铝浓度。三元III族氮化物合金层的组分可以是缓变的,且该三元III族氮化物合金层能够被故意补偿。Fe、C、Mg、Zn或Be或受主的任意组合或两性掺杂剂能够补偿III族氮化物层。该器件能够包括由Fe、C、Mg、Zn或Be或受主的任意组合或两性掺杂剂掺杂的隔离层。该器件能够包括源极接触、漏极接触和栅极,其中该栅极与第二III-N材料层相邻,该源极接触和漏极接触与2DEG电接触,并且该器件是增强模式FET。该器件能够包括源极接触、漏极接触和栅极,其中该栅极与第二III-N材料层接触,该源极接触和漏极接触与2DEG进行电接触,并且该器件是耗尽模式FET。该器件可以包括利用III族氮化物堆叠形成肖特基势垒的阳极以及与2DEG电接触的阴极,其中该器件是二极管。当在工作中,该器件可以具有如下导通电阻增加率,在300V以上电压的切换操作下所述导通电阻增加率小于10%。在工作中,该器件可以具有小于5%的导通电阻增加率。在工作中,该器件可以具有包括小于2%的导通电阻增加率的操作。在工作中,该器件可以具有如下导通电阻增加率,在1200V以上电压处的切换操作下所述导通电阻增加率小于5%。该沟道层可以具有小于1微米的厚度,如小于0.5微米或小于0.05微米。所有III-N层的组合厚度可以是大约2微米或更小,并且当用于其中器件至少阻挡300V的应用中时,该器件能够显示出小于20%的分散。所有III-N层的组合厚度可以是大约2.5微米或更小,并且当用于其中器件至少阻挡600V的应用中时,该器件可以显示出小于20%的分散。所有III-N层的组合厚度可以是大约3微米或更小,并且当用于其中器件至少阻挡1200V的应用中时,该器件可以显示出小于20%的分散。该器件可以包括缓冲层的与分散阻挡层相反侧上的衬底,其中该衬底包括碳化硅、蓝宝石或基本纯净的硅中的任一种。
这里描述的一个或多个实施例可以提供下列优点中的一个。防止由缓冲层中的陷阱引起的电流崩塌的一种方案是生长厚的(>2um)GaN沟道层以将2DEG中的电子与缓冲层中的缺陷分离。然而,当这种方案对于在碳化硅或蓝宝石衬底上生长的晶体管是合适的方法时,其会难以在硅衬底上生长厚的连续氮化镓层。因而,这里所描述的器件和方法不需要厚的沟道层。而是,可以使用具有小于0.5微米厚度,诸如小于0.2微米的沟道层。除了俘获和电流崩塌之外,在制造GaN器件中的另一主要挑战是产生绝缘的缓冲层。可以向缓冲层添加诸如铁(Fe)、碳(C)或镁(Mg)的一个或多个类型的故意杂质以补偿非故意的杂质以便使缓冲层半绝缘。然而,使用故意杂质必须小心地管理并且与对降低电流崩塌的需要进行平衡。例如,除了形成2-DEG的AlGaN/GaN界面附近的薄部分之外,标准的AlGaN/GaN晶体管可以生长,其中例如利用Fe掺杂整个GaN层中。在器件工作期间,这种结构可以导致极好的关态泄漏行为,但是作为沟道电荷通过与Fe有关联的深能级俘获的结果,会遭受电流崩塌。在光谱的另一端,AlGaN/GaN结构可以生长在没有使用Fe故意掺杂之处。这种结构将具有稍微的电路崩塌行为,但是在高电压处具有高的关态泄漏行为。
这里提供的方案避免了在其他III族氮化物器件中发生的问题,诸如在提供其他方案的器件中发生的问题,诸如仅在阳离子面III族氮化物器件中形成背势垒以将载流子限制在2DEG的附近。因为GaN沟道层紧邻AlN/AlGaN缓冲层,其不具有很高质量且在器件工作期间会因此俘获沟道电荷,因此背势垒可以导致器件表现出高的分散。为了防止缺陷形成在器件沟道附近,缓冲层不得不形成得厚(>0.5μm)。然而,厚的高带隙缓冲层可以用作对衬底的不良热导体,这对于功率器件是不期望的。此外,需要形成势垒以防止电子进入到缓冲层中的、具有大的Al摩尔分数(>20%)的厚AlN/AlGaN缓冲层是更难生长的。即使生长了具有大于20%的Al摩尔分数的厚AlGaN层,其也是有很多缺陷的,并且使有缺陷的沟道层随后形成在其上。作为背势垒,铟基四元III族氮化物产生小的导带中断。这些方案能够用于低电压应用中以提高沟道载流子限制,并因此提高跨导以及输出电阻。然而,它们对于高电压器件具有限制的应用性,其中工作电压大于100V,并且载流子加热导致电子越过这些小的势垒。
这里描述的器件和方法允许制造在各种衬底上的III-N器件,其中减轻由于缓冲层陷阱而产生的分散。通过防止将沟道电子俘获到缓冲层的块体中,缓冲层中的本底掺杂能够比以其他方式实现的高得多,导致更可制造的结构。此外,如果该沟道层足够薄,在沟道层中掺杂水平能够保持得高,而对电学性能没有重大影响。这允许使用掺杂剂(诸如MOCVD中的Fe),其可以在生长期间“乘坐”在表面并且在掺杂剂源关闭之后导致长尾。该缓冲层是充分绝缘的。整个III-N材料结构也是足够薄的以防止由衬底和III-N材料之间的热失配导致的缺陷形成。因为器件呈现低俘获和低泄漏,因此这里描述的器件可以用于高电压应用中。它们也可以用于高频HEMT以降低分散。通过将沟道与缓冲分离,优化缓冲层的设计可以与沟道结构的设计去耦合,导致较高的性能以及更可控、可重复的制造工艺。
附图说明
图1是GaN基器件中的背势垒的示意图,其示出导带背势垒如何能够防止来自沟道的载流子被俘获在缓冲层中。
图2示出具有所包含的分散阻挡层的半导体堆叠的通常结构。
图3示出半导体堆叠的横截面图,其中使用缓变AlGaN层来增加分散阻挡层。
图4示出用于具有分散阻挡层的半导体堆叠的仿真能带图。
图5示出说明分散阻挡层如何防止载流子俘获的能带图。
图6示出在分散阻挡层下方具有的不同补偿方案的两个半导体器件的CV和载流子分布。
图7具有示出当对具有和不具有分散阻挡层的器件将HEMT偏置为关闭时漏极泄漏电流与漏极偏置的曲线图。
图8是导通电阻和漏极电流作为漏极电压的函数的曲线图。
图9示出在其上制造HEMT的情况下、在硅衬底上的具有分散阻挡层的半导体堆叠的示意性横截面。
具体实施方式
其中包括在III-N半导体器件的沟道层和缓冲层之间的分散阻挡层的器件结构将载流子限制在沟道层,使得由于缓冲层中的俘获而产生的分散或电流塌陷最小化。术语分散阻挡层描述了在III-N器件中的分层结构,其降低在缓冲层中的电子俘获,并因此降低漏极电流分散或漏极电流崩塌并输出输出增加。这里,术语分散和电流崩塌对于由于电子俘获引起的漏极电流降低是同义的。另外,缓冲层可以制造成充分地绝缘,诸如通过故意掺杂以防止缓冲层泄漏。为了降低俘获和电流塌陷,分散阻挡层可以缓和对生长厚沟道或缓冲层的需要。该阻挡层还可以进一步消除优化在降低电流崩塌和具有低泄漏缓冲之间折衷的需要。通过靠近电子沟道插入极化设计的分散阻挡层,防止电子进入有缺陷的缓冲层,允许提高缓冲层的绝缘性质。分散阻挡层可以与硅上形成的GaN器件一起使用。
GaN基材料和诸如硅的异质衬底材料具有不同的晶格常数和不同的热膨胀系数。通过在可能包括用于成核、应力管理和缺陷降低的一个或多个层的缓冲层中使用AlGaN材料,可以部分地处理这些差异,以抵消晶格失配效应和热膨胀系数的差异效应。另外,对于高电压器件(根据应用,VDS>300V、600V或1200V),在硅衬底上生长的GaN基外延材料通常具有足够大的厚度以防止由GaN外延材料制造的器件的击穿。就是说,期望防止沿着从漏极至硅至源极的路径的击穿。因为Si衬底具有比其上生长的GaN高的传导率和低的击穿强度,因此这一路径是可能的。
典型地,因为晶格失配以及缓冲层需要适应由于热系数失配产生的应力,用于形成成核和缓冲层以管理晶格失配的效应和热膨胀系数的各种III-N合金是有很多缺陷的。生长在其上制造有有源高功率器件的成核和缓冲层上的沟道材料能够生长得尽可能纯和厚,以企图使沟道层中的有源沟道区与缓冲层分离。厚的沟道层可以减少由于电子陷入在缺陷中而产生的分散和电流崩塌问题。然而,因为晶格失配和热膨胀系数问题,高纯III-N沟道的最大厚度受到限制。此外,厚的沟道能够导致晶片的过度弯曲并且能够潜在地引起晶片破裂。因为在器件工作期间,III-N分散阻挡层防止来自沟道的电子与缓冲层中的缺陷相互作用,因而使用III-N分散阻挡层可以减轻对厚的沟道的需求。这允许将缓冲层设计为独立于沟道层,打破了会存在的折衷的设计。该阻挡层还能够允许降低在Si衬底上制造的高功率GaN基器件的分散操作。
参考图2,衬底1是合适的衬底,诸如碳化硅、蓝宝石、硅、III族氮化物或任何用于通过同质或异质外延生长包括阳离子面的III氮化物层的III族氮化物半导体层的其他材料。来自器件的有源部分的沟道层4和势垒层5,势垒层5的带隙大于沟道层4的带隙。缓冲层2位于衬底1和沟道层4之间。通常,器件的有源部分可以包括能够用于形成诸如二极管、HEMT、HFET、MISHFET、POLFET或其他III-N器件的III-N电子器件的III-N层的任何组合。在2007年9月17日提交的美国专利申请号11/856,687、2008年4月14日提交的美国专利申请号12/102,340、2008年11月26日提交的美国专利申请号12/324,574、2008年4月23日提交的美国专利申请号12/108,449、2008年12月10日提交的美国专利申请号12/332,284、2009年2月9日提交的美国专利申请号12/368,248、以及2007年9月17日提交的美国专利申请号11/856,695中,已找到III-N二极管和晶体管器件连同包括这些器件的III-N层的实例,其全部内容通过引用结合于此。
缓冲层2使覆盖的III族氮化物层能够形成。该缓冲层2可以是单一材料的简单层或者可以由诸如AlxGa1-xN/GaN层的任意组合的多层形成。缓冲层2可以是与衬底晶格失配的。理性地,缓冲层2的下面的平均晶格常数与衬底1匹配,并且缓冲层2的上面的平均晶格常数与沟道层的晶格常数匹配。然而,这种类型的晶格失配难以实现无缺陷的缓冲层2。而是,实际发生在缓冲层2和衬底1之间以及缓冲层2和沟道层4之间的晶格常数失配会导致具有深能级的位错和其他延伸缺陷的形成。该缓冲层2可以是故意掺杂的,诸如利用铁(Fe)、碳(C)或镁(Mg)掺杂以补偿会引起缓冲泄漏的非故意的n型掺杂剂。在器件工作期间,能够俘获沟道电荷的深能级的密度还能够通过补偿缓冲层中的非故意掺杂剂使其成为半绝缘的故意掺杂而增加。
分散阻挡层3被插入到缓冲层2和沟道层4之间。分散阻挡层3是薄的III族氮化物材料层,诸如小于500nm的厚度,例如小于200nm的厚度,并且如果需要被补偿,就是说,利用p型掺杂剂故意掺杂。分散阻挡层3是应变的使得相对于沟道材料来说被极化。在其上面的负极化电荷的薄片产生场,以将电子限制在沟道层4的上部区域并且防止电子被俘获到缓冲层2中。在沟道层4和分散阻挡层3的界面处带边不连续,使得分散阻挡层3中的导带的最小值较高,进一步帮助降低电子的注入和俘获。
分散阻挡层3基本上是一层或多层的组合,其产生大的电场和势垒以隔离电子和有缺陷的缓冲层2中的陷阱。隔离电子的一种方式是产生垂直于2DEG平面的大电场,其在器件工作期间,将电子限制在沟道层4的基本无陷阱的部分,使得沟道电荷的俘获例如小于10%。使用极化或δ掺杂、通过负电荷的薄片或层来产生该电场。因此电场将电子限制在沟道层的顶部。通过生长补偿的半绝缘假晶应变分散阻挡层3来隔离电子,使得仅在沟道层下方,极化产生负电荷的薄片。在一些情况下,需要在假晶应变分散阻挡层3和缓冲层之间的补偿的隔离层。
该分散阻挡层3可以由III族氮化物层合金形成,诸如二元合金AN、或诸如0≤x<1的AxGa1-xN的三元合金、或0≤(x+y)<1的四元合金ZyAxGa1-x-yN,其中A和Z是阳离子元素。在一些实施例中,这些层从一个合金至下一个是缓变的,或者合金在层内可以是阶梯状的。两个简单的例子是:AlN层或AlxGa1-xN层,其中后者的Al组分是缓变的或阶梯状的。分散阻挡层可以是AlGaN/GaN超晶格。该分散阻挡层3可以是由Fe、Mg、Be、C或Zn或其他任意合适掺杂剂或掺杂剂的组合故意掺杂补偿的,掺杂剂能够防止2DEG的形成或较少的被限制电子扩散到分散阻挡层中或下方。依赖于器件的需求,补偿的程度可以是从0到100%,由于故意补偿掺杂,而在分散阻挡层3中或下方的小的移动电子的优势和深缺陷的劣势之间折衷。由于极化,电荷产生了电场,其提高了与分散阻挡层3相邻的沟道层4的部分中的导带边。此外,III-N隔离层可以包括在缓冲层2和分散阻挡层3之间,并且可以作为分散阻挡层3的一部分。在一些实施例中,隔离层是III族氮化物三元合金,诸如AlxGa1-xN,其中0≤x<0.3。该隔离层可以是补偿的,即添加适当数量的相反类型掺杂剂以获得近本征半导体,或过补偿半导体,即材料类型发生转变,诸如从n型材料变成p型材料。
在图3中示意性示出具有分散阻挡层的典型器件。衬底1是SiC。缓冲层2包括在SiC衬底1上生长的薄AlN成核层21以及在成核层上的铁掺杂GaN层22。铁掺杂GaN层可以在大约1至10微米厚之间,如大约2.5微米厚。该分散阻挡层3具有适度Fe掺杂GaN隔离层31,并且在隔离层上具有缓变AlxGa1-xN(x从0至0.23)层32。该缓变AlxGa1-xN层大于27nm厚。沟道层4由GaN形成并具有小于500nm的厚度,诸如大于50nm。势垒层5包括0.6nm的AlN层51,并且其上具有27nm的Al0.28Ga0.72N层52。
在图4中示出了图3中示出的器件的仿真能带图。增加的分散阻挡层3产生了大电场E,其提高了在沟道层4的底面处的导带边201。此外,铁掺杂可以防止在阻挡层3的渐变AlGaN子层下方形成2DEG。可替选地,额外的2DEG或其他的电荷散布能够出现在分散阻挡层3中或下方,其中额外的电荷浓度可以通过调节铁掺杂浓度来控制。图5中的能带图示出了具有(图5(a))和不具有(图5(b))AlGaN分散阻挡层3的器件的情况下的势垒的差别。如能带图中所示,添加缓变AlGaN阻挡层防止了电子散射进入到能够俘获电子的缓冲层2。
图6-8示出了引入AlGaN分散阻挡层的效果。如曲线图所示,诸如通过Fe掺杂来掺杂隔离层可以防止或减少在分散阻挡层3下方形成2DEG。对于一些器件结构,消除分散阻挡层3下方的2DEG可以降低器件泄漏或过早击穿。此外,该分散阻挡层3可以提高器件切换性能。
图6示出了具有AlGaN分散阻挡层的两个器件的电容-电压(CV)图表和载流子分布。每个载流子分布具有两个峰,由于沟道2DEG而靠近表面的峰P1和P3以及在半导体中更深的峰P2和P4表示在扩散阻挡AlGaN层下方的电子浓度。图6(a)中的图表用于具有适当Fe掺杂恰好达到缓变AlGaN层的器件且图6(b)中的图表用于仅在缓冲层中具有Fe掺杂的器件。在后一情况中,在AlGaN分散阻挡层下方形成2DEG,其通过较尖锐且高于P2的P4示出。对于一些器件结构,在AlGaN分散阻挡层下方的2DEG在大器件偏置处会有问题。
图7和8是具有和没有缓变AlGaN分散阻挡层的HEMT的性能参数的性能图表。在图7(a)中,示出了没有分散阻挡层的器件的电流电压(IV)图表,且在图7(b)中,示出了具有分散阻挡层的器件的IV图表。所述图表(每个图表用于不同的器件)示出了器件偏置为关闭的漏极泄漏电流作为漏极偏置的函数。具有分散阻挡层的器件(图7(b))与没有分散阻挡层的器件(图7(a))相比具有更小的平均泄漏电流。
在图8中,示出了当FET在变成关闭之后转换为导通并保持在特定的漏极偏置时,导通电阻(R导通)被示出为当器件保持为关闭时的漏极电压的函数的图表。被绘制的还有用于测量每个R导通的漏极电流(IDS),并且正如所看到的漏极电流围绕在这些测量所设定的额定1A值范围。在漏极保持在特定的反向偏置之后,R导通是调制沟道的俘获的测量。在具有缓变AlGaN分散阻挡层的器件(图8(b))中,俘获的迹象不明显。然而,没有分散阻挡层的器件(图8(a))示出稳定增加的俘获效应,该俘获效应通过当漏极电压增加时R导通的增加来示例。
图9示出了具有分散阻挡层的Si上GaN耗尽模式(D-模式)HEMT的横截面。在硅衬底1上,异质外延生长III族氮化物缓冲层2。接下来,在缓冲层2上生长具有或不具有GaN隔离层的分散阻挡层3。在阻挡层3上生长沟道层4和势垒层5。通过构图和形成欧姆源极接触6和漏极接触9,沉积合适的电介质8以及在在电介质8上沉积栅极7和倾斜场板之前适当地微机械加工该电介质8并来制造D-模式HEMT。可选地,利用被构图以对用于引线结合或倒装结合至结合衬垫的接触孔进行开口的钝化层(未示出)覆盖该器件。作为如何将分散阻挡层用于平面GaN器件中的示例而示出这种D-模式的HEMT。E-模式的HEMT、二极管或者甚至GaN集成电路也可以受益于这种分散阻挡层。
已经描述了本发明的大量实施例。尽管如此,应当理解,在不偏离本发明的精神和范围的情况下,可以做出各种修改。例如,分散阻挡层可以具有不同类型的缓冲层和任一侧上的有源层,所述缓冲层被优化用于衬底和III族氮化物有源层,使得后者具有需要的应变分布和低的缺陷密度,以及所述有源层本身被优化用于在它们制造的FET、二极管或高电压集成电路。所提出的具体的HEMT结构和在其上的测量仅是示出分散阻挡层的功效。这里所描述的结构可以通过外延,诸如通过MBE或HVPE来生长。尽管术语“在......上”用于权利要求中以表示一些组件,诸如层的相对位置,这里也可以是一个或多个插入层。当使用术语“直接在......上”时,表示没有插入层。因此,其他实施例在下面的权利要求的范围内。
Claims (32)
1.一种III-N器件,包括:
缓冲层;
第一III-N材料层,所述第一III-N材料层在所述缓冲层上;
第二III-N材料层,在相对于所述缓冲层的相反侧上,所述第二III-N材料层在所述第一III-N材料层上,其中,所述第一III-N材料层是沟道层,并且在所述第一III-N材料层和所述第二III-N材料层之间的组分差异在所述第一III-N材料层中感生出2DEG沟道;以及
分散阻挡层,所述分散阻挡层在所述缓冲层和所述沟道层之间,其中,在所述沟道层和所述分散阻挡层界面处的负电荷的薄片或分布将电子限制为远离所述缓冲层。
2.如权利要求1所述的器件,其中,在所述分散阻挡层最下面的导带最小值高于在所述沟道层中的最高占据导带最小值。
3.如权利要求1或2所述的器件,其中,所述分散阻挡层配置为在器件工作期间将电子限制到所述沟道层。
4.如前述权利要求中的任一项所述的器件,进一步包括在所述分散阻挡层和所述缓冲层之间的隔离层。
5.如权利要求4的器件,其中,所述分散阻挡层具有大于所述隔离层的铝浓度。
6.如权利要求4或5所述的器件,其中,所述沟道层由第一III族氮化物合金组成,并且所述隔离层由第二III族氮化物合金组成,其中,所述第一III族氮化物合金和所述第二III族氮化物合金彼此具有10%以内的铝摩尔分数。
7.如权利要求4-6中的任一项所述的器件,所述沟道层的材料是非故意掺杂的,并且所述隔离层是被补偿的或过补偿的。
8.如权利要求4-7中的任一项所述的器件,其中,所述隔离层由III族氮化物三元合金组成。
9.如权利要求4-8中的任一项所述的器件,其中,所述隔离层由0≤x<0.3的AlxGa1-xN组成。
10.如前述权利要求中的任一项所述的器件,其中,所述分散阻挡层是具有与所述沟道层相邻的负极化电荷的薄片或层的三元III族氮化物合金层。
11.如权利要求1-9中的任一项所述的器件,其中,所述分散阻挡层包括AlxInyGa1-x-yN,其中y<x且0<(x+y)<1。
12.如前述权利要求中的任一项所述的器件,其中,所述分散阻挡层的、比所述缓冲层更靠近所述沟道层的部分比所述分散阻挡层的、靠近所述缓冲层的部分具有更高的铝组分。
13.如前述权利要求中的任一项所述的器件,其中,所述分散阻挡层具有缓变的铝浓度。
14.如权利要求1-12中的任一项所述的器件,其中,所述分散阻挡层具有阶梯状的铝浓度。
15.如权利要求10所述的器件,其中,所述三元III族氮化物合金层的组分是缓变的,并且所述三元III族氮化物合金层是故意补偿的。
16.如权利要求15所述的器件,其中,Fe、C、Mg、Zn或Be或受主的任意组合或两性掺杂剂补偿III族氮化物层。
17.如前述权利要求中的任一项所述的器件,进一步包括由Fe、C、Mg、Zn或Be或受主的任意组合或两性掺杂剂掺杂的隔离层。
18.如前述权利要求中的任一项所述的器件,进一步包括源极接触、漏极接触和栅极,其中所述栅极与所述第二III-N材料层相邻,所述源极接触和漏极接触与所述2DEG电接触,并且所述器件是增强模式FET。
19.如权利要求1-17中的任一项所述的器件,进一步包括源极接触、漏极接触和栅极,其中所述栅极与所述第二III-N材料层接触,所述源极接触和漏极接触与所述2DEG电接触,并且所述器件是耗尽模式FET。
20.如权利要求1-17中的任一项所述的器件,进一步包括利用III族氮化物堆叠形成肖特基势垒的阳极以及与所述2DEG电接触的阴极,其中所述器件是二极管。
21.如前述权利要求中的任一项所述的器件,其中,在工作中的所述器件在300V以上电压的切换操作下具有小于10%的导通电阻增加率。
22.如权利要求21所述的器件,其中,在工作中的所述器件具有小于5%的导通电阻增加率。
23.如权利要求21或22所述的器件,其中,在工作中的所述器件具有小于2%的导通电阻增加率。
24.如权利要求1-22中的任一项所述的器件,其中,在工作中的所述器件在1200V以上电压的切换操作下具有小于5%的导通电阻增加率。
25.如前述权利要求中的任一项所述的器件,其中,所述沟道层具有小于1微米的厚度。
26.如前述权利要求中的任一项所述的器件,其中,所述沟道层具有小于0.5微米的厚度。
27.如前述权利要求中的任一项所述的器件,其中,所述沟道层具有小于0.05微米的厚度。
28.如前述权利要求中的任一项所述的III-N器件,其中,所有III-N层的组合厚度大约是2μm或更小,并且当所述器件被用在使得该器件阻挡至少300V的应用中时,所述器件显示出小于20%的分散。
29.如权利要求1-27中的任一项所述的III-N器件,其中,所有III-N层的组合厚度大约是2.5μm或更小,并且当所述器件被用在使得该器件阻挡至少600V的应用中时,所述器件显示出小于20%的分散。
30.如权利要求1-27中的任一项所述的III-N器件,其中,所有III-N层的组合厚度大约是3μm或更小,并且当所述器件被用在使得该器件阻挡至少1200V的应用中时,所述器件显示出小于20%的分散。
31.如前述权利要求中的任一项所述的器件,进一步包括在所述缓冲层的相对于所述分散阻挡层的相反侧上的衬底,其中该衬底包括碳化硅、蓝宝石或基本纯净的硅中的任一种。
32.一种集成电路,包括:
如权利要求1-17中的任一项所述的器件,其中,所述器件是增强模式晶体管或耗尽模式晶体管;以及
与权利要求1-17中的任一项所述的器件电连接的晶体管、二极管、电阻器或电容器中的至少一个。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510136978.5A CN104952709B (zh) | 2009-05-14 | 2010-05-12 | Iii族氮化物器件及形成iii族氮化物器件的方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/465,968 | 2009-05-14 | ||
US12/465,968 US8742459B2 (en) | 2009-05-14 | 2009-05-14 | High voltage III-nitride semiconductor devices |
PCT/US2010/034579 WO2010132587A2 (en) | 2009-05-14 | 2010-05-12 | High voltage iii-nitride semiconductor devices |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510136978.5A Division CN104952709B (zh) | 2009-05-14 | 2010-05-12 | Iii族氮化物器件及形成iii族氮化物器件的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102460710A true CN102460710A (zh) | 2012-05-16 |
CN102460710B CN102460710B (zh) | 2015-04-15 |
Family
ID=43067801
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080030524.5A Active CN102460710B (zh) | 2009-05-14 | 2010-05-12 | 高电压iii族氮化物半导体器件 |
CN201510136978.5A Active CN104952709B (zh) | 2009-05-14 | 2010-05-12 | Iii族氮化物器件及形成iii族氮化物器件的方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510136978.5A Active CN104952709B (zh) | 2009-05-14 | 2010-05-12 | Iii族氮化物器件及形成iii族氮化物器件的方法 |
Country Status (3)
Country | Link |
---|---|
US (2) | US8742459B2 (zh) |
CN (2) | CN102460710B (zh) |
WO (1) | WO2010132587A2 (zh) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103715242A (zh) * | 2012-09-28 | 2014-04-09 | 富士通株式会社 | 半导体装置 |
CN103824881A (zh) * | 2012-11-16 | 2014-05-28 | 安华高科技通用Ip(新加坡)公司 | 包括经掺杂低温缓冲层的假晶高电子迁移率晶体管 |
CN103884944A (zh) * | 2014-03-31 | 2014-06-25 | 工业和信息化部电子第五研究所 | 氮化镓电子器件的检测方法和系统 |
CN104009034A (zh) * | 2013-02-26 | 2014-08-27 | 台湾积体电路制造股份有限公司 | 包含hemt和misfet的半导体装置及其形成方法 |
CN104037221A (zh) * | 2014-07-02 | 2014-09-10 | 西安电子科技大学 | 一种基于极化效应的复合场板高性能AlGaN/GaN HEMT器件结构及制作方法 |
CN104037217A (zh) * | 2014-07-02 | 2014-09-10 | 西安电子科技大学 | 一种基于复合偶极层的AlGaN/GaN HEMT开关器件结构及制作方法 |
CN104037220A (zh) * | 2014-07-02 | 2014-09-10 | 西安电子科技大学 | 一种基于偶级子层浮栅结构的增强型AlGaNGaNMISHEMT器件结构及其制作方法 |
CN104037219A (zh) * | 2014-07-02 | 2014-09-10 | 西安电子科技大学 | 一种基于栅结构的增强型AlGaN/GaN HEMT器件结构及其制作方法 |
CN104064595A (zh) * | 2014-07-02 | 2014-09-24 | 西安电子科技大学 | 一种基于槽栅结构的增强型AlGaN/GaN MISHEMT器件结构及其制作方法 |
CN104241260A (zh) * | 2013-06-18 | 2014-12-24 | 英飞凌科技奥地利有限公司 | 具有高电子迁移率晶体管和单片集成半导体二极管的高压级联二极管 |
CN104347579A (zh) * | 2013-07-31 | 2015-02-11 | 瑞萨电子株式会社 | 半导体装置 |
CN105206664A (zh) * | 2015-10-29 | 2015-12-30 | 杭州士兰微电子股份有限公司 | 基于硅衬底的hemt器件及其制造方法 |
CN105229207A (zh) * | 2013-02-15 | 2016-01-06 | 阿聚尔斯佩西太阳能有限责任公司 | 在异质基底上的第III族氮化物缓冲层结构的p型掺杂 |
CN105308720A (zh) * | 2013-06-11 | 2016-02-03 | 欧司朗光电半导体有限公司 | 用于制造氮化物化合物半导体器件的方法 |
CN105390541A (zh) * | 2015-10-30 | 2016-03-09 | 江苏能华微电子科技发展有限公司 | Hemt外延结构及其制备方法 |
CN104037216B (zh) * | 2014-07-02 | 2016-11-16 | 西安电子科技大学 | 一种基于偶极层的高压AlGaN/GaN MISHEMT器件结构及其制作方法 |
CN107507858A (zh) * | 2017-08-28 | 2017-12-22 | 电子科技大学 | 一种限流二极管 |
CN109804456A (zh) * | 2016-08-23 | 2019-05-24 | 克罗米斯有限公司 | 集成有工程化衬底的电子功率器件 |
Families Citing this family (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7915643B2 (en) | 2007-09-17 | 2011-03-29 | Transphorm Inc. | Enhancement mode gallium nitride power devices |
US7965126B2 (en) | 2008-02-12 | 2011-06-21 | Transphorm Inc. | Bridge circuits and their components |
US8519438B2 (en) | 2008-04-23 | 2013-08-27 | Transphorm Inc. | Enhancement mode III-N HEMTs |
US8289065B2 (en) | 2008-09-23 | 2012-10-16 | Transphorm Inc. | Inductive load power switching circuits |
US7898004B2 (en) | 2008-12-10 | 2011-03-01 | Transphorm Inc. | Semiconductor heterostructure diodes |
US8742459B2 (en) | 2009-05-14 | 2014-06-03 | Transphorm Inc. | High voltage III-nitride semiconductor devices |
US8390000B2 (en) | 2009-08-28 | 2013-03-05 | Transphorm Inc. | Semiconductor devices with field plates |
US8389977B2 (en) | 2009-12-10 | 2013-03-05 | Transphorm Inc. | Reverse side engineered III-nitride devices |
US8624662B2 (en) | 2010-02-05 | 2014-01-07 | Transphorm Inc. | Semiconductor electronic components and circuits |
JP5696392B2 (ja) * | 2010-07-29 | 2015-04-08 | 住友電気工業株式会社 | 半導体装置 |
JP6024075B2 (ja) * | 2010-07-30 | 2016-11-09 | 住友電気工業株式会社 | 半導体装置およびその製造方法 |
KR101720589B1 (ko) * | 2010-10-11 | 2017-03-30 | 삼성전자주식회사 | 이 모드(E-mode) 고 전자 이동도 트랜지스터 및 그 제조방법 |
WO2012066701A1 (ja) * | 2010-11-19 | 2012-05-24 | パナソニック株式会社 | 窒化物半導体装置 |
JP5810518B2 (ja) * | 2010-12-03 | 2015-11-11 | 富士通株式会社 | 化合物半導体装置及びその製造方法 |
US8742460B2 (en) | 2010-12-15 | 2014-06-03 | Transphorm Inc. | Transistors with isolation regions |
US8643062B2 (en) | 2011-02-02 | 2014-02-04 | Transphorm Inc. | III-N device structures and methods |
DE102011004080A1 (de) * | 2011-02-14 | 2012-08-16 | Forschungsverbund Berlin E.V. | Heterostruktur-Pufferschicht für Heterostruktur-Feldeffekttransistoren |
US8716141B2 (en) | 2011-03-04 | 2014-05-06 | Transphorm Inc. | Electrode configurations for semiconductor devices |
US8772842B2 (en) | 2011-03-04 | 2014-07-08 | Transphorm, Inc. | Semiconductor diodes with low reverse bias currents |
JP5075264B1 (ja) * | 2011-05-25 | 2012-11-21 | シャープ株式会社 | スイッチング素子 |
US8710511B2 (en) * | 2011-07-29 | 2014-04-29 | Northrop Grumman Systems Corporation | AIN buffer N-polar GaN HEMT profile |
US8901604B2 (en) | 2011-09-06 | 2014-12-02 | Transphorm Inc. | Semiconductor devices with guard rings |
US9257547B2 (en) | 2011-09-13 | 2016-02-09 | Transphorm Inc. | III-N device structures having a non-insulating substrate |
US8598937B2 (en) | 2011-10-07 | 2013-12-03 | Transphorm Inc. | High power semiconductor electronic components with increased reliability |
US9165766B2 (en) | 2012-02-03 | 2015-10-20 | Transphorm Inc. | Buffer layer structures suited for III-nitride devices with foreign substrates |
JP5895651B2 (ja) * | 2012-03-28 | 2016-03-30 | 富士通株式会社 | 化合物半導体装置及びその製造方法 |
WO2013155108A1 (en) | 2012-04-09 | 2013-10-17 | Transphorm Inc. | N-polar iii-nitride transistors |
US8860091B2 (en) | 2012-04-16 | 2014-10-14 | Hrl Laboratories, Llc | Group III-N HFET with a graded barrier layer |
CN102723358B (zh) * | 2012-05-30 | 2015-01-07 | 苏州能讯高能半导体有限公司 | 绝缘栅场效应晶体管及其制造方法 |
US9184275B2 (en) | 2012-06-27 | 2015-11-10 | Transphorm Inc. | Semiconductor devices with integrated hole collectors |
KR20140006295A (ko) * | 2012-07-02 | 2014-01-16 | 삼성전자주식회사 | 반도체 디바이스 |
US8803246B2 (en) | 2012-07-16 | 2014-08-12 | Transphorm Inc. | Semiconductor electronic components with integrated current limiters |
JP6002508B2 (ja) * | 2012-09-03 | 2016-10-05 | 住友化学株式会社 | 窒化物半導体ウェハ |
KR101901932B1 (ko) * | 2012-11-02 | 2018-09-27 | 엘지전자 주식회사 | 이종 기판, 질화물 반도체 발광 소자 및 그 제조 방법 |
TWI511325B (zh) * | 2012-11-19 | 2015-12-01 | Genesis Photonics Inc | 氮化物半導體結構及半導體發光元件 |
TWI535055B (zh) | 2012-11-19 | 2016-05-21 | 新世紀光電股份有限公司 | 氮化物半導體結構及半導體發光元件 |
TWI499080B (zh) | 2012-11-19 | 2015-09-01 | Genesis Photonics Inc | 氮化物半導體結構及半導體發光元件 |
TWI524551B (zh) | 2012-11-19 | 2016-03-01 | 新世紀光電股份有限公司 | 氮化物半導體結構及半導體發光元件 |
US8896101B2 (en) | 2012-12-21 | 2014-11-25 | Intel Corporation | Nonplanar III-N transistors with compositionally graded semiconductor channels |
TWI506788B (zh) * | 2012-12-25 | 2015-11-01 | Huga Optotech Inc | 場效電晶體 |
US9171730B2 (en) | 2013-02-15 | 2015-10-27 | Transphorm Inc. | Electrodes for semiconductor devices and methods of forming the same |
US9087718B2 (en) | 2013-03-13 | 2015-07-21 | Transphorm Inc. | Enhancement-mode III-nitride devices |
US9245993B2 (en) | 2013-03-15 | 2016-01-26 | Transphorm Inc. | Carbon doping semiconductor devices |
JP6392498B2 (ja) * | 2013-03-29 | 2018-09-19 | 富士通株式会社 | 化合物半導体装置及びその製造方法 |
US9059076B2 (en) | 2013-04-01 | 2015-06-16 | Transphorm Inc. | Gate drivers for circuits based on semiconductor devices |
KR102132760B1 (ko) | 2013-06-06 | 2020-07-13 | 엔지케이 인슐레이터 엘티디 | 13족 질화물 복합 기판, 반도체 소자, 및 13족 질화물 복합 기판의 제조 방법 |
SE1430022A1 (sv) * | 2013-07-01 | 2015-01-02 | Billiga semi-isolerande SiC-substrat | |
WO2015006111A1 (en) | 2013-07-09 | 2015-01-15 | Transphorm Inc. | Multilevel inverters and their components |
WO2015009514A1 (en) | 2013-07-19 | 2015-01-22 | Transphorm Inc. | Iii-nitride transistor including a p-type depleting layer |
FR3019682B1 (fr) * | 2014-04-04 | 2016-04-29 | Thales Sa | Couche tampon optimisee pour transistor a effet de champ a haute mobilite |
JP6331695B2 (ja) * | 2014-05-28 | 2018-05-30 | 三菱電機株式会社 | 半導体素子の製造方法 |
US9543940B2 (en) | 2014-07-03 | 2017-01-10 | Transphorm Inc. | Switching circuits having ferrite beads |
US9590494B1 (en) | 2014-07-17 | 2017-03-07 | Transphorm Inc. | Bridgeless power factor correction circuits |
US9318593B2 (en) | 2014-07-21 | 2016-04-19 | Transphorm Inc. | Forming enhancement mode III-nitride devices |
US10062756B2 (en) | 2014-10-30 | 2018-08-28 | Semiconductor Components Industries, Llc | Semiconductor structure including a doped buffer layer and a channel layer and a process of forming the same |
US20170260651A1 (en) * | 2014-11-24 | 2017-09-14 | Innosys, Inc. | Gallium Nitride Growth on Silicon |
US9536967B2 (en) | 2014-12-16 | 2017-01-03 | Transphorm Inc. | Recessed ohmic contacts in a III-N device |
US9536966B2 (en) | 2014-12-16 | 2017-01-03 | Transphorm Inc. | Gate structures for III-N devices |
US20170207303A1 (en) * | 2015-04-03 | 2017-07-20 | Hermes-Epitek Corp. | Semiconductor multilayer structure |
FR3043251B1 (fr) * | 2015-10-30 | 2022-11-11 | Thales Sa | Transistor a effet de champ a rendement et gain optimise |
WO2017123999A1 (en) | 2016-01-15 | 2017-07-20 | Transphorm Inc. | Enhancement mode iii-nitride devices having an al(1-x)sixo gate insulator |
EP3217433A1 (en) | 2016-03-08 | 2017-09-13 | IMEC vzw | Group iii nitride based semiconductor device |
US11581866B2 (en) | 2016-03-11 | 2023-02-14 | Akoustis, Inc. | RF acoustic wave resonators integrated with high electron mobility transistors including a shared piezoelectric/buffer layer and methods of forming the same |
US9768258B1 (en) * | 2016-03-17 | 2017-09-19 | Infineon Technologies Austria Ag | Substrate structure, semiconductor component and method |
US11152468B2 (en) * | 2016-03-31 | 2021-10-19 | Tohoku University | Semiconductor device |
TWI762486B (zh) | 2016-05-31 | 2022-05-01 | 美商創世舫科技有限公司 | 包含漸變空乏層的三族氮化物裝置 |
JP6780331B2 (ja) * | 2016-07-11 | 2020-11-04 | 富士電機株式会社 | 半導体装置の製造方法および半導体装置 |
US9917156B1 (en) | 2016-09-02 | 2018-03-13 | IQE, plc | Nucleation layer for growth of III-nitride structures |
FR3062517B1 (fr) * | 2017-02-02 | 2019-03-15 | Soitec | Structure pour application radiofrequence |
JP6966689B2 (ja) * | 2017-03-31 | 2021-11-17 | 富士通株式会社 | 窒化物半導体装置及びその製造方法 |
TWI701715B (zh) | 2017-06-06 | 2020-08-11 | 黃知澍 | N-face III族/氮化物磊晶結構及其主動元件與其積體化之極性反轉製作方法 |
US10630285B1 (en) | 2017-11-21 | 2020-04-21 | Transphorm Technology, Inc. | Switching circuits having drain connected ferrite beads |
CN111448674B (zh) * | 2017-12-05 | 2023-08-22 | 阿卜杜拉国王科技大学 | 用于形成分级纤锌矿iii族氮化物合金层的方法 |
US10756207B2 (en) | 2018-10-12 | 2020-08-25 | Transphorm Technology, Inc. | Lateral III-nitride devices including a vertical gate module |
US11515407B2 (en) * | 2018-12-26 | 2022-11-29 | Intel Corporation | High breakdown voltage structure for high performance GaN-based HEMT and MOS devices to enable GaN C-MOS |
WO2020191357A1 (en) | 2019-03-21 | 2020-09-24 | Transphorm Technology, Inc. | Integrated design for iii-nitride devices |
WO2021150496A1 (en) * | 2020-01-21 | 2021-07-29 | Akoustis, Inc. | Rf acoustic wave resonators integrated with high electron mobility transistors including a shared piezoelectric/buffer layer and methods of forming the same |
US12102010B2 (en) | 2020-03-05 | 2024-09-24 | Akoustis, Inc. | Methods of forming films including scandium at low temperatures using chemical vapor deposition to provide piezoelectric resonator devices and/or high electron mobility transistor devices |
US11749656B2 (en) | 2020-06-16 | 2023-09-05 | Transphorm Technology, Inc. | Module configurations for integrated III-Nitride devices |
JP2023537713A (ja) | 2020-08-05 | 2023-09-05 | トランスフォーム テクノロジー,インコーポレーテッド | 空乏層を有するiii族窒化物デバイス |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1599960A (zh) * | 2001-12-03 | 2005-03-23 | 克里公司 | 应变平衡的氮化物异质结晶体管及制造应变平衡的氮化物异质结晶体管的方法 |
US20060255364A1 (en) * | 2004-02-05 | 2006-11-16 | Saxler Adam W | Heterojunction transistors including energy barriers and related methods |
US20080237606A1 (en) * | 2007-03-30 | 2008-10-02 | Fujitsu Limited | Compound semiconductor device |
US20090045438A1 (en) * | 2005-12-28 | 2009-02-19 | Takashi Inoue | Field effect transistor, and multilayered epitaxial film for use in preparation of field effect transistor |
Family Cites Families (193)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4300091A (en) | 1980-07-11 | 1981-11-10 | Rca Corporation | Current regulating circuitry |
US4645562A (en) * | 1985-04-29 | 1987-02-24 | Hughes Aircraft Company | Double layer photoresist technique for side-wall profile control in plasma etching processes |
US4728826A (en) * | 1986-03-19 | 1988-03-01 | Siemens Aktiengesellschaft | MOSFET switch with inductive load |
US4821093A (en) * | 1986-08-18 | 1989-04-11 | The United States Of America As Represented By The Secretary Of The Army | Dual channel high electron mobility field effect transistor |
JPH07120807B2 (ja) * | 1986-12-20 | 1995-12-20 | 富士通株式会社 | 定電流半導体装置 |
US5051618A (en) | 1988-06-20 | 1991-09-24 | Idesco Oy | High voltage system using enhancement and depletion field effect transistors |
US5329147A (en) | 1993-01-04 | 1994-07-12 | Xerox Corporation | High voltage integrated flyback circuit in 2 μm CMOS |
US6097046A (en) | 1993-04-30 | 2000-08-01 | Texas Instruments Incorporated | Vertical field effect transistor and diode |
US5550404A (en) | 1993-05-20 | 1996-08-27 | Actel Corporation | Electrically programmable antifuse having stair aperture |
US5740192A (en) * | 1994-12-19 | 1998-04-14 | Kabushiki Kaisha Toshiba | Semiconductor laser |
US5646069A (en) | 1995-06-07 | 1997-07-08 | Hughes Aircraft Company | Fabrication process for Alx In1-x As/Gay In1-y As power HFET ohmic contacts |
US5618384A (en) * | 1995-12-27 | 1997-04-08 | Chartered Semiconductor Manufacturing Pte, Ltd. | Method for forming residue free patterned conductor layers upon high step height integrated circuit substrates using reflow of photoresist |
JP3677350B2 (ja) * | 1996-06-10 | 2005-07-27 | 三菱電機株式会社 | 半導体装置、及び半導体装置の製造方法 |
US6008684A (en) | 1996-10-23 | 1999-12-28 | Industrial Technology Research Institute | CMOS output buffer with CMOS-controlled lateral SCR devices |
US5714393A (en) * | 1996-12-09 | 1998-02-03 | Motorola, Inc. | Diode-connected semiconductor device and method of manufacture |
US5909103A (en) * | 1997-07-24 | 1999-06-01 | Siliconix Incorporated | Safety switch for lithium ion battery |
US6316820B1 (en) * | 1997-07-25 | 2001-11-13 | Hughes Electronics Corporation | Passivation layer and process for semiconductor devices |
JP3222847B2 (ja) | 1997-11-14 | 2001-10-29 | 松下電工株式会社 | 双方向形半導体装置 |
JP3129264B2 (ja) * | 1997-12-04 | 2001-01-29 | 日本電気株式会社 | 化合物半導体電界効果トランジスタ |
US6316793B1 (en) | 1998-06-12 | 2001-11-13 | Cree, Inc. | Nitride based transistors on semi-insulating silicon carbide substrates |
JP3111985B2 (ja) | 1998-06-16 | 2000-11-27 | 日本電気株式会社 | 電界効果型トランジスタ |
JP3180776B2 (ja) * | 1998-09-22 | 2001-06-25 | 日本電気株式会社 | 電界効果型トランジスタ |
JP2000058871A (ja) | 1999-07-02 | 2000-02-25 | Citizen Watch Co Ltd | 電子機器の集積回路 |
US6984571B1 (en) | 1999-10-01 | 2006-01-10 | Ziptronix, Inc. | Three dimensional device integration method and integrated device |
US6586781B2 (en) | 2000-02-04 | 2003-07-01 | Cree Lighting Company | Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same |
JP3751791B2 (ja) | 2000-03-28 | 2006-03-01 | 日本電気株式会社 | ヘテロ接合電界効果トランジスタ |
JP5130641B2 (ja) | 2006-03-31 | 2013-01-30 | サンケン電気株式会社 | 複合半導体装置 |
US7125786B2 (en) | 2000-04-11 | 2006-10-24 | Cree, Inc. | Method of forming vias in silicon carbide and resulting devices and circuits |
US7892974B2 (en) * | 2000-04-11 | 2011-02-22 | Cree, Inc. | Method of forming vias in silicon carbide and resulting devices and circuits |
US6475889B1 (en) * | 2000-04-11 | 2002-11-05 | Cree, Inc. | Method of forming vias in silicon carbide and resulting devices and circuits |
US6580101B2 (en) | 2000-04-25 | 2003-06-17 | The Furukawa Electric Co., Ltd. | GaN-based compound semiconductor device |
US6624452B2 (en) * | 2000-07-28 | 2003-09-23 | The Regents Of The University Of California | Gallium nitride-based HFET and a method for fabricating a gallium nitride-based HFET |
US6727531B1 (en) * | 2000-08-07 | 2004-04-27 | Advanced Technology Materials, Inc. | Indium gallium nitride channel high electron mobility transistors, and method of making the same |
US6548333B2 (en) * | 2000-12-01 | 2003-04-15 | Cree, Inc. | Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment |
TW466768B (en) | 2000-12-30 | 2001-12-01 | Nat Science Council | An In0.34Al0.66As0.85Sb0.15/InP HFET utilizing InP channels |
US7233028B2 (en) | 2001-02-23 | 2007-06-19 | Nitronex Corporation | Gallium nitride material devices and methods of forming the same |
US6830976B2 (en) | 2001-03-02 | 2004-12-14 | Amberwave Systems Corproation | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits |
US6849882B2 (en) * | 2001-05-11 | 2005-02-01 | Cree Inc. | Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer |
JP3834589B2 (ja) * | 2001-06-27 | 2006-10-18 | 株式会社ルネサステクノロジ | 半導体装置の製造方法 |
JP2005527102A (ja) * | 2001-07-24 | 2005-09-08 | クリー インコーポレイテッド | 高電子移動度トランジスタ及びその製造方法 |
JP4177048B2 (ja) | 2001-11-27 | 2008-11-05 | 古河電気工業株式会社 | 電力変換装置及びそれに用いるGaN系半導体装置 |
JP2003244943A (ja) | 2002-02-13 | 2003-08-29 | Honda Motor Co Ltd | 電源装置の昇圧装置 |
US7919791B2 (en) * | 2002-03-25 | 2011-04-05 | Cree, Inc. | Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same |
US6982204B2 (en) | 2002-07-16 | 2006-01-03 | Cree, Inc. | Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses |
KR100497890B1 (ko) * | 2002-08-19 | 2005-06-29 | 엘지이노텍 주식회사 | 질화물 반도체 발광소자 및 그 제조방법 |
WO2004019415A1 (en) * | 2002-08-26 | 2004-03-04 | University Of Florida | GaN-TYPE ENHANCEMENT MOSFET USING HETERO STRUCTURE |
AU2003263510A1 (en) * | 2002-10-29 | 2004-05-25 | Koninklijke Philips Electronics N.V. | Bi-directional double nmos switch |
JP4385205B2 (ja) | 2002-12-16 | 2009-12-16 | 日本電気株式会社 | 電界効果トランジスタ |
US7169634B2 (en) | 2003-01-15 | 2007-01-30 | Advanced Power Technology, Inc. | Design and fabrication of rugged FRED |
US20060118811A1 (en) | 2003-02-04 | 2006-06-08 | Shen Zheng | Bi-directional power switch |
JP2004260114A (ja) | 2003-02-27 | 2004-09-16 | Shin Etsu Handotai Co Ltd | 化合物半導体素子 |
US7112860B2 (en) | 2003-03-03 | 2006-09-26 | Cree, Inc. | Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices |
US7658709B2 (en) | 2003-04-09 | 2010-02-09 | Medtronic, Inc. | Shape memory alloy actuators |
US6979863B2 (en) | 2003-04-24 | 2005-12-27 | Cree, Inc. | Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same |
CA2427039C (en) | 2003-04-29 | 2013-08-13 | Kinectrics Inc. | High speed bi-directional solid state switch |
US7078743B2 (en) * | 2003-05-15 | 2006-07-18 | Matsushita Electric Industrial Co., Ltd. | Field effect transistor semiconductor device |
US7501669B2 (en) * | 2003-09-09 | 2009-03-10 | Cree, Inc. | Wide bandgap transistor devices with field plates |
EP2592655B1 (en) | 2003-09-09 | 2019-11-06 | The Regents of The University of California | Fabrication of single or multiple gate field plates |
US7700973B2 (en) * | 2003-10-10 | 2010-04-20 | The Regents Of The University Of California | GaN/AlGaN/GaN dispersion-free high electron mobility transistors |
US7268375B2 (en) | 2003-10-27 | 2007-09-11 | Sensor Electronic Technology, Inc. | Inverted nitride-based semiconductor structure |
US6867078B1 (en) * | 2003-11-19 | 2005-03-15 | Freescale Semiconductor, Inc. | Method for forming a microwave field effect transistor with high operating voltage |
US7071498B2 (en) | 2003-12-17 | 2006-07-04 | Nitronex Corporation | Gallium nitride material devices including an electrode-defining layer and methods of forming the same |
US20050133816A1 (en) * | 2003-12-19 | 2005-06-23 | Zhaoyang Fan | III-nitride quantum-well field effect transistors |
US7901994B2 (en) * | 2004-01-16 | 2011-03-08 | Cree, Inc. | Methods of manufacturing group III nitride semiconductor devices with silicon nitride layers |
US7045404B2 (en) * | 2004-01-16 | 2006-05-16 | Cree, Inc. | Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof |
US7382001B2 (en) * | 2004-01-23 | 2008-06-03 | International Rectifier Corporation | Enhancement mode III-nitride FET |
US8174048B2 (en) * | 2004-01-23 | 2012-05-08 | International Rectifier Corporation | III-nitride current control device and method of manufacture |
US7170111B2 (en) * | 2004-02-05 | 2007-01-30 | Cree, Inc. | Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same |
US7465997B2 (en) | 2004-02-12 | 2008-12-16 | International Rectifier Corporation | III-nitride bidirectional switch |
US7550781B2 (en) | 2004-02-12 | 2009-06-23 | International Rectifier Corporation | Integrated III-nitride power devices |
US7084475B2 (en) | 2004-02-17 | 2006-08-01 | Velox Semiconductor Corporation | Lateral conduction Schottky diode with plural mesas |
US7550783B2 (en) | 2004-05-11 | 2009-06-23 | Cree, Inc. | Wide bandgap HEMTs with source connected field plates |
US7573078B2 (en) | 2004-05-11 | 2009-08-11 | Cree, Inc. | Wide bandgap transistors with multiple field plates |
US7432142B2 (en) | 2004-05-20 | 2008-10-07 | Cree, Inc. | Methods of fabricating nitride-based transistors having regrown ohmic contact regions |
US7332795B2 (en) * | 2004-05-22 | 2008-02-19 | Cree, Inc. | Dielectric passivation for semiconductor devices |
JP4810072B2 (ja) | 2004-06-15 | 2011-11-09 | 株式会社東芝 | 窒素化合物含有半導体装置 |
CN100508212C (zh) | 2004-06-24 | 2009-07-01 | 日本电气株式会社 | 半导体器件 |
JP2006032552A (ja) * | 2004-07-14 | 2006-02-02 | Toshiba Corp | 窒化物含有半導体装置 |
JP4744109B2 (ja) | 2004-07-20 | 2011-08-10 | トヨタ自動車株式会社 | 半導体装置とその製造方法 |
JP2006033723A (ja) | 2004-07-21 | 2006-02-02 | Sharp Corp | 電力制御用光結合素子およびこの電力制御用光結合素子を用いた電子機器 |
US7238560B2 (en) * | 2004-07-23 | 2007-07-03 | Cree, Inc. | Methods of fabricating nitride-based transistors with a cap layer and a recessed gate |
US20060076677A1 (en) * | 2004-10-12 | 2006-04-13 | International Business Machines Corporation | Resist sidewall spacer for C4 BLM undercut control |
US7265399B2 (en) | 2004-10-29 | 2007-09-04 | Cree, Inc. | Asymetric layout structures for transistors and methods of fabricating the same |
JP4650224B2 (ja) | 2004-11-19 | 2011-03-16 | 日亜化学工業株式会社 | 電界効果トランジスタ |
JP4637553B2 (ja) * | 2004-11-22 | 2011-02-23 | パナソニック株式会社 | ショットキーバリアダイオード及びそれを用いた集積回路 |
US7709859B2 (en) * | 2004-11-23 | 2010-05-04 | Cree, Inc. | Cap layers including aluminum nitride for nitride-based transistors |
US7456443B2 (en) | 2004-11-23 | 2008-11-25 | Cree, Inc. | Transistors having buried n-type and p-type regions beneath the source region |
US7161194B2 (en) * | 2004-12-06 | 2007-01-09 | Cree, Inc. | High power density and/or linearity transistors |
US7834380B2 (en) * | 2004-12-09 | 2010-11-16 | Panasonic Corporation | Field effect transistor and method for fabricating the same |
US7217960B2 (en) | 2005-01-14 | 2007-05-15 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device |
US7429534B2 (en) | 2005-02-22 | 2008-09-30 | Sensor Electronic Technology, Inc. | Etching a nitride-based heterostructure |
US7253454B2 (en) | 2005-03-03 | 2007-08-07 | Cree, Inc. | High electron mobility transistor |
US11791385B2 (en) | 2005-03-11 | 2023-10-17 | Wolfspeed, Inc. | Wide bandgap transistors with gate-source field plates |
JP5076278B2 (ja) | 2005-03-14 | 2012-11-21 | 日亜化学工業株式会社 | 電界効果トランジスタ |
US7321132B2 (en) * | 2005-03-15 | 2008-01-22 | Lockheed Martin Corporation | Multi-layer structure for use in the fabrication of integrated circuit devices and methods for fabrication of same |
US7465967B2 (en) | 2005-03-15 | 2008-12-16 | Cree, Inc. | Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions |
US7439557B2 (en) * | 2005-03-29 | 2008-10-21 | Coldwatt, Inc. | Semiconductor device having a lateral channel and contacts on opposing surfaces thereof |
JP4912604B2 (ja) | 2005-03-30 | 2012-04-11 | 住友電工デバイス・イノベーション株式会社 | 窒化物半導体hemtおよびその製造方法。 |
US20060226442A1 (en) | 2005-04-07 | 2006-10-12 | An-Ping Zhang | GaN-based high electron mobility transistor and method for making the same |
JP4756557B2 (ja) | 2005-04-22 | 2011-08-24 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
US7544963B2 (en) | 2005-04-29 | 2009-06-09 | Cree, Inc. | Binary group III-nitride based high electron mobility transistors |
US7615774B2 (en) | 2005-04-29 | 2009-11-10 | Cree.Inc. | Aluminum free group III-nitride based high electron mobility transistors |
US7364988B2 (en) * | 2005-06-08 | 2008-04-29 | Cree, Inc. | Method of manufacturing gallium nitride based high-electron mobility devices |
US7326971B2 (en) * | 2005-06-08 | 2008-02-05 | Cree, Inc. | Gallium nitride based high-electron mobility devices |
US7408399B2 (en) | 2005-06-27 | 2008-08-05 | International Rectifier Corporation | Active driving of normally on, normally off cascoded configuration devices through asymmetrical CMOS |
US7855401B2 (en) | 2005-06-29 | 2010-12-21 | Cree, Inc. | Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides |
DE112006001751B4 (de) * | 2005-07-06 | 2010-04-08 | International Rectifier Corporation, El Segundo | Leistungs-Halbleiterbauteil und Verfahren zu Herstellung eines Halbleiterbauteils |
JP4712459B2 (ja) * | 2005-07-08 | 2011-06-29 | パナソニック株式会社 | トランジスタ及びその動作方法 |
JP4730529B2 (ja) * | 2005-07-13 | 2011-07-20 | サンケン電気株式会社 | 電界効果トランジスタ |
US20070018199A1 (en) * | 2005-07-20 | 2007-01-25 | Cree, Inc. | Nitride-based transistors and fabrication methods with an etch stop layer |
US7548112B2 (en) * | 2005-07-21 | 2009-06-16 | Cree, Inc. | Switch mode power amplifier using MIS-HEMT with field plate extension |
KR100610639B1 (ko) * | 2005-07-22 | 2006-08-09 | 삼성전기주식회사 | 수직 구조 질화갈륨계 발광다이오드 소자 및 그 제조방법 |
JP4751150B2 (ja) * | 2005-08-31 | 2011-08-17 | 株式会社東芝 | 窒化物系半導体装置 |
JP4997621B2 (ja) * | 2005-09-05 | 2012-08-08 | パナソニック株式会社 | 半導体発光素子およびそれを用いた照明装置 |
WO2008027027A2 (en) | 2005-09-07 | 2008-03-06 | Cree, Inc | Transistor with fluorine treatment |
US7948011B2 (en) * | 2005-09-16 | 2011-05-24 | The Regents Of The University Of California | N-polar aluminum gallium nitride/gallium nitride enhancement-mode field effect transistor |
US7482788B2 (en) * | 2005-10-12 | 2009-01-27 | System General Corp. | Buck converter for both full load and light load operations |
US7547925B2 (en) | 2005-11-14 | 2009-06-16 | Palo Alto Research Center Incorporated | Superlattice strain relief layer for semiconductor devices |
WO2007059220A2 (en) | 2005-11-15 | 2007-05-24 | The Regents Of The University Of California | Methods to shape the electric field in electron devices, passivate dislocations and point defects, and enhance the luminescence efficiency of optical devices |
JP2007149794A (ja) * | 2005-11-25 | 2007-06-14 | Matsushita Electric Ind Co Ltd | 電界効果トランジスタ |
US7932539B2 (en) * | 2005-11-29 | 2011-04-26 | The Hong Kong University Of Science And Technology | Enhancement-mode III-N devices, circuits, and methods |
JP2007157829A (ja) | 2005-12-01 | 2007-06-21 | Matsushita Electric Ind Co Ltd | 半導体装置 |
TW200723624A (en) | 2005-12-05 | 2007-06-16 | Univ Nat Chiao Tung | Process of producing group III nitride based reflectors |
KR100661602B1 (ko) * | 2005-12-09 | 2006-12-26 | 삼성전기주식회사 | 수직 구조 질화갈륨계 led 소자의 제조방법 |
JP2007165446A (ja) | 2005-12-12 | 2007-06-28 | Oki Electric Ind Co Ltd | 半導体素子のオーミックコンタクト構造 |
US7419892B2 (en) | 2005-12-13 | 2008-09-02 | Cree, Inc. | Semiconductor devices including implanted regions and protective layers and methods of forming the same |
JP5065595B2 (ja) * | 2005-12-28 | 2012-11-07 | 株式会社東芝 | 窒化物系半導体装置 |
US7592211B2 (en) | 2006-01-17 | 2009-09-22 | Cree, Inc. | Methods of fabricating transistors including supported gate electrodes |
US7709269B2 (en) | 2006-01-17 | 2010-05-04 | Cree, Inc. | Methods of fabricating transistors including dielectrically-supported gate electrodes |
JP2007215331A (ja) | 2006-02-10 | 2007-08-23 | Hitachi Ltd | 昇圧回路 |
US7566918B2 (en) | 2006-02-23 | 2009-07-28 | Cree, Inc. | Nitride based transistors for millimeter wave operation |
JP2007242853A (ja) | 2006-03-08 | 2007-09-20 | Sanken Electric Co Ltd | 半導体基体及びこれを使用した半導体装置 |
JP5071377B2 (ja) | 2006-03-16 | 2012-11-14 | 富士通株式会社 | 化合物半導体装置及びその製造方法 |
TW200742076A (en) * | 2006-03-17 | 2007-11-01 | Sumitomo Chemical Co | Semiconductor field effect transistor and method of manufacturing the same |
DE112007000667T5 (de) | 2006-03-20 | 2009-01-29 | International Rectifier Corp., El Segundo | Vereinigter Gate-Kaskoden-Transistor |
US7388236B2 (en) * | 2006-03-29 | 2008-06-17 | Cree, Inc. | High efficiency and/or high power density wide bandgap transistors |
US7745851B2 (en) | 2006-04-13 | 2010-06-29 | Cree, Inc. | Polytype hetero-interface high electron mobility device and method of making |
US7629627B2 (en) | 2006-04-18 | 2009-12-08 | University Of Massachusetts | Field effect transistor with independently biased gates |
TW200830550A (en) | 2006-08-18 | 2008-07-16 | Univ California | High breakdown enhancement mode gallium nitride based high electron mobility transistors with integrated slant field plate |
EP2065925B1 (en) * | 2006-09-20 | 2016-04-20 | Fujitsu Limited | Field-effect transistor |
KR100782430B1 (ko) * | 2006-09-22 | 2007-12-05 | 한국과학기술원 | 고전력을 위한 내부전계전극을 갖는 갈륨나이트라이드기반의 고전자 이동도 트랜지스터 구조 |
JP4282708B2 (ja) * | 2006-10-20 | 2009-06-24 | 株式会社東芝 | 窒化物系半導体装置 |
US8193020B2 (en) | 2006-11-15 | 2012-06-05 | The Regents Of The University Of California | Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition |
JP5332168B2 (ja) | 2006-11-17 | 2013-11-06 | 住友電気工業株式会社 | Iii族窒化物結晶の製造方法 |
US7692263B2 (en) * | 2006-11-21 | 2010-04-06 | Cree, Inc. | High voltage GaN transistors |
JP5114947B2 (ja) | 2006-12-28 | 2013-01-09 | 富士通株式会社 | 窒化物半導体装置とその製造方法 |
JP2008199771A (ja) | 2007-02-13 | 2008-08-28 | Fujitsu Ten Ltd | 昇圧回路制御装置、及び昇圧回路 |
US7655962B2 (en) | 2007-02-23 | 2010-02-02 | Sensor Electronic Technology, Inc. | Enhancement mode insulated gate heterostructure field-effect transistor with electrically isolated RF-enhanced source contact |
US8110425B2 (en) * | 2007-03-20 | 2012-02-07 | Luminus Devices, Inc. | Laser liftoff structure and related methods |
US7501670B2 (en) | 2007-03-20 | 2009-03-10 | Velox Semiconductor Corporation | Cascode circuit employing a depletion-mode, GaN-based FET |
US20090085065A1 (en) * | 2007-03-29 | 2009-04-02 | The Regents Of The University Of California | Method to fabricate iii-n semiconductor devices on the n-face of layers which are grown in the iii-face direction using wafer bonding and substrate removal |
US7935985B2 (en) | 2007-03-29 | 2011-05-03 | The Regents Of The University Of Califonia | N-face high electron mobility transistors with low buffer leakage and low parasitic resistance |
FR2914500B1 (fr) | 2007-03-30 | 2009-11-20 | Picogiga Internat | Dispositif electronique a contact ohmique ameliore |
JP2008288289A (ja) | 2007-05-16 | 2008-11-27 | Oki Electric Ind Co Ltd | 電界効果トランジスタとその製造方法 |
CN101312207B (zh) | 2007-05-21 | 2011-01-05 | 西安捷威半导体有限公司 | 增强型hemt器件及其制造方法 |
TWI512831B (zh) | 2007-06-01 | 2015-12-11 | Univ California | 氮化鎵p型/氮化鋁鎵/氮化鋁/氮化鎵增強型場效電晶體 |
JP2008306130A (ja) | 2007-06-11 | 2008-12-18 | Sanken Electric Co Ltd | 電界効果型半導体装置及びその製造方法 |
CN101689586B (zh) | 2007-06-15 | 2012-09-26 | 罗姆股份有限公司 | 氮化物半导体发光元件和氮化物半导体的制造方法 |
JP4478175B2 (ja) * | 2007-06-26 | 2010-06-09 | 株式会社東芝 | 半導体装置 |
US7598108B2 (en) | 2007-07-06 | 2009-10-06 | Sharp Laboratories Of America, Inc. | Gallium nitride-on-silicon interface using multiple aluminum compound buffer layers |
TWI460857B (zh) * | 2007-08-03 | 2014-11-11 | Univ Hong Kong Science & Techn | 可靠之常關型iii族-氮化物主動裝置結構,以及相關方法與系統 |
JP4775859B2 (ja) * | 2007-08-24 | 2011-09-21 | シャープ株式会社 | 窒化物半導体装置とそれを含む電力変換装置 |
US7875537B2 (en) * | 2007-08-29 | 2011-01-25 | Cree, Inc. | High temperature ion implantation of nitride based HEMTs |
JP4584293B2 (ja) * | 2007-08-31 | 2010-11-17 | 富士通株式会社 | 窒化物半導体装置、ドハティ増幅器、ドレイン電圧制御増幅器 |
EP2887402B1 (en) | 2007-09-12 | 2019-06-12 | Transphorm Inc. | III-nitride bidirectional switches |
US20090075455A1 (en) * | 2007-09-14 | 2009-03-19 | Umesh Mishra | Growing N-polar III-nitride Structures |
US7795642B2 (en) * | 2007-09-14 | 2010-09-14 | Transphorm, Inc. | III-nitride devices with recessed gates |
US7915643B2 (en) * | 2007-09-17 | 2011-03-29 | Transphorm Inc. | Enhancement mode gallium nitride power devices |
US20090072269A1 (en) | 2007-09-17 | 2009-03-19 | Chang Soo Suh | Gallium nitride diodes and integrated components |
JP2009081379A (ja) | 2007-09-27 | 2009-04-16 | Showa Denko Kk | Iii族窒化物半導体発光素子 |
JP2009081406A (ja) | 2007-09-27 | 2009-04-16 | Showa Denko Kk | Iii族窒化物半導体発光素子及びその製造方法、並びにランプ |
EP2221856B1 (en) | 2007-11-21 | 2020-09-09 | Mitsubishi Chemical Corporation | Nitride semiconductor, nitride semiconductor crystal growth method, and nitride semiconductor light emitting element |
US7851825B2 (en) | 2007-12-10 | 2010-12-14 | Transphorm Inc. | Insulated gate e-mode transistors |
JP5100413B2 (ja) | 2008-01-24 | 2012-12-19 | 株式会社東芝 | 半導体装置およびその製造方法 |
US7965126B2 (en) | 2008-02-12 | 2011-06-21 | Transphorm Inc. | Bridge circuits and their components |
US8674407B2 (en) * | 2008-03-12 | 2014-03-18 | Renesas Electronics Corporation | Semiconductor device using a group III nitride-based semiconductor |
US8076699B2 (en) * | 2008-04-02 | 2011-12-13 | The Hong Kong Univ. Of Science And Technology | Integrated HEMT and lateral field-effect rectifier combinations, methods, and systems |
US8519438B2 (en) | 2008-04-23 | 2013-08-27 | Transphorm Inc. | Enhancement mode III-N HEMTs |
US7985986B2 (en) | 2008-07-31 | 2011-07-26 | Cree, Inc. | Normally-off semiconductor devices |
TWI371163B (en) * | 2008-09-12 | 2012-08-21 | Glacialtech Inc | Unidirectional mosfet and applications thereof |
US9112009B2 (en) * | 2008-09-16 | 2015-08-18 | International Rectifier Corporation | III-nitride device with back-gate and field plate for improving transconductance |
US8289065B2 (en) | 2008-09-23 | 2012-10-16 | Transphorm Inc. | Inductive load power switching circuits |
JP2010087076A (ja) | 2008-09-30 | 2010-04-15 | Oki Electric Ind Co Ltd | 半導体装置 |
US8210104B2 (en) * | 2008-10-23 | 2012-07-03 | Eastman Kodak Company | Moveable printing plate registration member |
US7898004B2 (en) | 2008-12-10 | 2011-03-01 | Transphorm Inc. | Semiconductor heterostructure diodes |
US7884394B2 (en) | 2009-02-09 | 2011-02-08 | Transphorm Inc. | III-nitride devices and circuits |
US8742459B2 (en) | 2009-05-14 | 2014-06-03 | Transphorm Inc. | High voltage III-nitride semiconductor devices |
US8390000B2 (en) | 2009-08-28 | 2013-03-05 | Transphorm Inc. | Semiconductor devices with field plates |
US8138529B2 (en) * | 2009-11-02 | 2012-03-20 | Transphorm Inc. | Package configurations for low EMI circuits |
US20120217512A1 (en) | 2009-11-19 | 2012-08-30 | Philippe Renaud | Lateral power transistor device and method of manufacturing the same |
US8389977B2 (en) | 2009-12-10 | 2013-03-05 | Transphorm Inc. | Reverse side engineered III-nitride devices |
US8223458B2 (en) | 2010-04-08 | 2012-07-17 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetic head having an asymmetrical shape and systems thereof |
US8772832B2 (en) | 2010-06-04 | 2014-07-08 | Hrl Laboratories, Llc | GaN HEMTs with a back gate connected to the source |
-
2009
- 2009-05-14 US US12/465,968 patent/US8742459B2/en active Active
-
2010
- 2010-05-12 WO PCT/US2010/034579 patent/WO2010132587A2/en active Application Filing
- 2010-05-12 CN CN201080030524.5A patent/CN102460710B/zh active Active
- 2010-05-12 CN CN201510136978.5A patent/CN104952709B/zh active Active
-
2014
- 2014-04-25 US US14/262,649 patent/US9293561B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1599960A (zh) * | 2001-12-03 | 2005-03-23 | 克里公司 | 应变平衡的氮化物异质结晶体管及制造应变平衡的氮化物异质结晶体管的方法 |
US20060255364A1 (en) * | 2004-02-05 | 2006-11-16 | Saxler Adam W | Heterojunction transistors including energy barriers and related methods |
US20090045438A1 (en) * | 2005-12-28 | 2009-02-19 | Takashi Inoue | Field effect transistor, and multilayered epitaxial film for use in preparation of field effect transistor |
US20080237606A1 (en) * | 2007-03-30 | 2008-10-02 | Fujitsu Limited | Compound semiconductor device |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103715242A (zh) * | 2012-09-28 | 2014-04-09 | 富士通株式会社 | 半导体装置 |
CN103715242B (zh) * | 2012-09-28 | 2017-03-01 | 富士通株式会社 | 半导体装置 |
CN103824881A (zh) * | 2012-11-16 | 2014-05-28 | 安华高科技通用Ip(新加坡)公司 | 包括经掺杂低温缓冲层的假晶高电子迁移率晶体管 |
CN103824881B (zh) * | 2012-11-16 | 2017-07-07 | 安华高科技通用Ip(新加坡)公司 | 包括经掺杂低温缓冲层的假晶高电子迁移率晶体管 |
CN105229207A (zh) * | 2013-02-15 | 2016-01-06 | 阿聚尔斯佩西太阳能有限责任公司 | 在异质基底上的第III族氮化物缓冲层结构的p型掺杂 |
CN107799583A (zh) * | 2013-02-15 | 2018-03-13 | 阿聚尔斯佩西太阳能有限责任公司 | 在异质基底上的第III 族氮化物缓冲层结构的p 型掺杂 |
CN107799583B (zh) * | 2013-02-15 | 2023-04-07 | 阿聚尔斯佩西太阳能有限责任公司 | 在异质基底上的第III族氮化物缓冲层结构的p型掺杂 |
US9911734B2 (en) | 2013-02-26 | 2018-03-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device containing HEMT and MISFET and method of forming the same |
US10325910B2 (en) | 2013-02-26 | 2019-06-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device containing HEMT and MISFET and method of forming the same |
CN104009034A (zh) * | 2013-02-26 | 2014-08-27 | 台湾积体电路制造股份有限公司 | 包含hemt和misfet的半导体装置及其形成方法 |
US9418901B2 (en) | 2013-02-26 | 2016-08-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device containing HEMT and MISFET and method of forming the same |
CN104009034B (zh) * | 2013-02-26 | 2017-03-01 | 台湾积体电路制造股份有限公司 | 包含hemt和misfet的半导体装置及其形成方法 |
CN105308720A (zh) * | 2013-06-11 | 2016-02-03 | 欧司朗光电半导体有限公司 | 用于制造氮化物化合物半导体器件的方法 |
US9660137B2 (en) | 2013-06-11 | 2017-05-23 | Osram Opto Semiconductors Gmbh | Method for producing a nitride compound semiconductor device |
CN104241260A (zh) * | 2013-06-18 | 2014-12-24 | 英飞凌科技奥地利有限公司 | 具有高电子迁移率晶体管和单片集成半导体二极管的高压级联二极管 |
CN104241260B (zh) * | 2013-06-18 | 2017-06-09 | 英飞凌科技奥地利有限公司 | 具有高电子迁移率晶体管和单片集成半导体二极管的高压级联二极管 |
CN104347579A (zh) * | 2013-07-31 | 2015-02-11 | 瑞萨电子株式会社 | 半导体装置 |
CN103884944B (zh) * | 2014-03-31 | 2017-07-11 | 工业和信息化部电子第五研究所 | 氮化镓电子器件的检测方法和系统 |
CN103884944A (zh) * | 2014-03-31 | 2014-06-25 | 工业和信息化部电子第五研究所 | 氮化镓电子器件的检测方法和系统 |
CN104064595A (zh) * | 2014-07-02 | 2014-09-24 | 西安电子科技大学 | 一种基于槽栅结构的增强型AlGaN/GaN MISHEMT器件结构及其制作方法 |
CN104037221A (zh) * | 2014-07-02 | 2014-09-10 | 西安电子科技大学 | 一种基于极化效应的复合场板高性能AlGaN/GaN HEMT器件结构及制作方法 |
CN104037219A (zh) * | 2014-07-02 | 2014-09-10 | 西安电子科技大学 | 一种基于栅结构的增强型AlGaN/GaN HEMT器件结构及其制作方法 |
CN104037220A (zh) * | 2014-07-02 | 2014-09-10 | 西安电子科技大学 | 一种基于偶级子层浮栅结构的增强型AlGaNGaNMISHEMT器件结构及其制作方法 |
CN104064595B (zh) * | 2014-07-02 | 2016-11-09 | 西安电子科技大学 | 一种基于槽栅结构的增强型AlGaN/GaN MISHEMT器件结构及其制作方法 |
CN104037220B (zh) * | 2014-07-02 | 2017-01-25 | 西安电子科技大学 | 一种基于偶极子层浮栅结构的增强型AlGaN/GaN MISHEMT器件结构及其制作方法 |
CN104037219B (zh) * | 2014-07-02 | 2017-01-18 | 西安电子科技大学 | 一种基于栅结构的增强型AlGaN/GaN HEMT器件结构及其制作方法 |
CN104037217B (zh) * | 2014-07-02 | 2017-01-25 | 西安电子科技大学 | 一种基于复合偶极层的AlGaN/GaN HEMT开关器件结构及制作方法 |
CN104037221B (zh) * | 2014-07-02 | 2017-01-25 | 西安电子科技大学 | 一种基于极化效应的复合场板高性能AlGaN/GaN HEMT器件结构及制作方法 |
CN104037216B (zh) * | 2014-07-02 | 2016-11-16 | 西安电子科技大学 | 一种基于偶极层的高压AlGaN/GaN MISHEMT器件结构及其制作方法 |
CN104037217A (zh) * | 2014-07-02 | 2014-09-10 | 西安电子科技大学 | 一种基于复合偶极层的AlGaN/GaN HEMT开关器件结构及制作方法 |
CN105206664A (zh) * | 2015-10-29 | 2015-12-30 | 杭州士兰微电子股份有限公司 | 基于硅衬底的hemt器件及其制造方法 |
CN105206664B (zh) * | 2015-10-29 | 2019-05-07 | 杭州士兰微电子股份有限公司 | 基于硅衬底的hemt器件及其制造方法 |
CN105390541A (zh) * | 2015-10-30 | 2016-03-09 | 江苏能华微电子科技发展有限公司 | Hemt外延结构及其制备方法 |
CN109804456A (zh) * | 2016-08-23 | 2019-05-24 | 克罗米斯有限公司 | 集成有工程化衬底的电子功率器件 |
CN109804456B (zh) * | 2016-08-23 | 2022-12-23 | 克罗米斯有限公司 | 集成有工程化衬底的电子功率器件 |
CN107507858B (zh) * | 2017-08-28 | 2021-04-20 | 电子科技大学 | 一种限流二极管 |
CN107507858A (zh) * | 2017-08-28 | 2017-12-22 | 电子科技大学 | 一种限流二极管 |
Also Published As
Publication number | Publication date |
---|---|
WO2010132587A3 (en) | 2011-02-24 |
CN104952709A (zh) | 2015-09-30 |
CN102460710B (zh) | 2015-04-15 |
US20100289067A1 (en) | 2010-11-18 |
CN104952709B (zh) | 2017-12-12 |
US20140342512A1 (en) | 2014-11-20 |
WO2010132587A2 (en) | 2010-11-18 |
US9293561B2 (en) | 2016-03-22 |
US8742459B2 (en) | 2014-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102460710B (zh) | 高电压iii族氮化物半导体器件 | |
US10312361B2 (en) | Trenched vertical power field-effect transistors with improved on-resistance and breakdown voltage | |
Nanjo et al. | AlGaN channel HEMT with extremely high breakdown voltage | |
US9443969B2 (en) | Transistor having metal diffusion barrier | |
US20130099245A1 (en) | Field effect transistor, method for producing the same, and electronic device | |
EP2745326A1 (en) | Vertical field effect transistor on oxide semiconductor substrate and method of manufacturing the same | |
US11127596B2 (en) | Semiconductor material growth of a high resistivity nitride buffer layer using ion implantation | |
US9287389B2 (en) | Method and system for doping control in gallium nitride based devices | |
CN102881715A (zh) | 一种高频低噪声氮化镓基高电子迁移率晶体管结构 | |
US11276765B2 (en) | Composite-channel high electron mobility transistor | |
Wu et al. | GaN-based power high-electron-mobility transistors on Si substrates: from materials to devices | |
CN112133749A (zh) | 一种p型帽层增强型hemt器件及其制备方法 | |
Li et al. | Rectification behavior of polarization effect induced type-II n-GaN/n-type β-Ga2O3 isotype heterojunction grown by metal organic vapor phase epitaxy | |
Luong et al. | Performance improvements of AlGaN/GaN HEMTs by strain modification and unintentional carbon incorporation | |
US8963151B2 (en) | Nitride-based heterostructure field effect transistor having high efficiency | |
US20150021665A1 (en) | Transistor having back-barrier layer and method of making the same | |
CN109273527B (zh) | 一种半导体结构及其形成方法 | |
US20230215922A1 (en) | Compound semiconductor substrate and method for manufacturing compound semiconductor substrate | |
US11973137B2 (en) | Stacked buffer in transistors | |
CN109346522B (zh) | 一种半导体结构及其形成方法 | |
Geens et al. | Demonstration of high-quality GaN epitaxy on 200 mm engineered substrates for vertical power device fabrication | |
US12100759B2 (en) | Semiconductor device, manufacturing method and electronic equipment | |
Agarwal | Materials Development for Gallium Nitride Power Devices | |
Sathe et al. | High-Quality AlGaN/GaN HEMTs Growth on Silicon Using Al0. 07Ga0. 93N as Interlayer for High RF Applications | |
Hieu et al. | Low contact resistance and high breakdown voltage of AlGaN/GaN HEMT grown on silicon using both AlN/GaN superlattice and Al0. 07Ga0. 93N back barrier layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |