CN104037219A - 一种基于栅结构的增强型AlGaN/GaN HEMT器件结构及其制作方法 - Google Patents

一种基于栅结构的增强型AlGaN/GaN HEMT器件结构及其制作方法 Download PDF

Info

Publication number
CN104037219A
CN104037219A CN201410312271.0A CN201410312271A CN104037219A CN 104037219 A CN104037219 A CN 104037219A CN 201410312271 A CN201410312271 A CN 201410312271A CN 104037219 A CN104037219 A CN 104037219A
Authority
CN
China
Prior art keywords
algan
layer
enhanced
gan
ganhemt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410312271.0A
Other languages
English (en)
Other versions
CN104037219B (zh
Inventor
冯倩
董良
代波
杜锴
陆小力
马晓华
郑雪峰
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201410312271.0A priority Critical patent/CN104037219B/zh
Publication of CN104037219A publication Critical patent/CN104037219A/zh
Application granted granted Critical
Publication of CN104037219B publication Critical patent/CN104037219B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种基于Γ栅结构的增强型AlGaN/GaNHEMT器件结构及其制作方法,从下往上依次包括衬底、GaN缓冲层、AlN隔离层、GaN沟道层、AlGaN本征层、AlGaN掺杂层,所述AlGaN掺杂层上间隔设有源极、有机绝缘层和漏极,所述有机绝缘层上依次设有ITO栅电极,和high-k介质层,所述high-k介质上设有ITO栅电极,上述结构的顶层还间隔淀积有钝化层。本发明在栅上使用了high-K介质,可以降低栅泄漏电流,减少低频噪声;采用浮栅结构俘获电子实现增强型AlGaN/GaNHEMT器件,避免了采用F离子注入引入的晶格损伤以及栅区域干法刻蚀引入的大量界面态。

Description

一种基于栅结构的增强型AlGaN/GaN HEMT器件结构及其制作方法
技术领域
本发明涉及微电子技术领域,尤其是涉及一种基于偶极子层浮栅结构的增强型AlGaN/GaNHEMT器件及其制作方法。
背景技术
GaN是为第三代宽禁带隙半导体,它具有禁带宽度大、击穿电场高、热导率高、饱和电子速度大和异质结界面二维电子气浓度高等特性,使其受到广泛关注。利用GaN材料制成的高迁移率晶体管(HEMT)具有导通电阻低、饱和电流大、击穿电压高等特点,是一种高性能的功率电子器件。
因为较强极化电荷的存在,AlGaN/GaN异质结构中会形成天然的高密度二维电子气,通常制造的AlGaN/GaNHEMT器件都是耗尽型的,增强型AlGaN/GaNHEMT器件则相对困难。十几年来针对GaN基电子器件的研究大部分工作都集中在耗尽型AlGaN/GaNHEMT器件上。但是增强型器件具有许多不可或缺的优势,AlGaN/GaN增强型HEMT器件在微波大功率器件电路中具有很好的电路兼容性;同时,增强型器件的研制使单片集成D-HEMT和E-HEMT互补逻辑电路成为可能。
由于增强型HEMT具有如上的优势,为了形成与耗尽型晶体管互补增强型晶体管,需要采用一些特殊的工艺或者器件结构,比如:槽栅结构HEMT、薄膜势垒、栅下注F–等工艺。但是这些工艺或者结构都存在一定的不足之处,比如栅下注F–器件在高功率工作时,工作温度会较高,F–会在栅下会继续扩散,导致了器件的不稳定性或者器件性能下降等情况。
发明内容
本发明为了克服上述的不足,提供了一种基于偶极子层浮栅结构的增强型AlGaN/GaNHEMT器件结构以及相应的制作方法。
本发明的技术方案如下:
一种基于Γ栅结构的增强型AlGaN/GaNHEMT器件结构,从下往上依次包括衬底、GaN缓冲层、AlN隔离层、GaN沟道层、AlGaN本征层、AlGaN掺杂层,所述AlGaN掺杂层上间隔设有源极、有机绝缘层和漏极,所述有机绝缘层上依次设有ITO栅电极,和high-k介质层,所述high-k介质上设有ITO栅电极,上述结构的顶层还间隔淀积有钝化层。
所述衬底材料为蓝宝石、碳化硅、GaN或MgO。
所述AlGaN掺杂层中Al的组分含量在0~1之间,Ga的组分含量与Al的组分含量之和为1。
所述有机绝缘层为PTFE层。
所述high-k介质为Al2O3和HfO2中的一种。
所述钝化层中包括Si3N4、Al2O3、HfO2和HfSiO中的一种或多种。
上述的一种基于Γ栅结构的增强型AlGaN/GaNHEMT器件结构通过以下方法制作:
(1)对外延生长的AlGaN/GaN材料进行有机清洗,用流动的去离子水清洗并放入HCl:H2O=1:1的溶液中进行腐蚀30~60s,最后用流动的去离子水清洗并用高纯氮气吹干;
(2)对清洗干净的AlGaN/GaN材料进行光刻和干法刻蚀,形成有源区台面;
(3)对制备好台面的AlGaN/GaN材料进行光刻,形成源漏区,放入电子束蒸发台中淀积欧姆接触金属Ti/Al/Ni/Au=20/120/45/50nm并进行剥离,最后在氮气环境中进行850℃,35s的快速热退火,形成欧姆接触;
(4)对完成合金的器件进行光刻,形成栅极金属区域,然后放入氧等离子 处理室中对AlGaN表面进行轻度氧化处理,然后放入电子束蒸发台中:反应室真空抽至4.0*10-3帕,缓慢加电压使控制PTFE蒸发速率为0.1nm/s,淀积5~10nm厚的PTFE薄膜,然后再蒸发10nm厚的ITO层,再淀积20~30nm的Al2O3,再蒸发200nm的ITO栅电极;
(5)将淀积好的器件放入丙酮溶液中浸泡30~60min,进行超声剥离,形成浮栅电极结构;
(6)将完成栅极制备的器件放入PECVD反应室淀积SiN钝化膜;
(7)将器件再次进行清洗、光刻显影,形成SiN薄膜的刻蚀区,并放入ICP干法刻蚀反应室中,将源极、漏极上面覆盖的SiN薄膜刻蚀掉;
(8)将器件进行清洗、光刻显影,并放入电子束蒸发台中淀积Ti/Au=20/200nm的加厚电极,完成整体器件的制备。
所述步骤(6)中的工艺条件为:SiH4的流量为40sccm,NH3的流量为10sccm,反应室压力为1~2Pa,射频功率为40W,淀积200nm~300nm厚的SiN钝化膜。
所述步骤(7)中的工艺条件为:上电极功率为200W,下电极功率为20W,反应室压力为1.5Pa,CF4的流量为20sccm,Ar气的流量为10sccm,刻蚀时间为10min。
本发明的有益效果是:
1.本发明采用PTFE和ITO所产生的偶极子层对沟道2DEG进行部分耗尽,有利于增强型AlGaN/GaNHEMT器件的实现;
2.本发明在栅上使用了high-K介质,可以降低栅泄漏电流,减少低频噪声;
3.本发明采用浮栅结构俘获电子实现增强型AlGaN/GaNHEMT器件,避免了采用F离子注入引入的晶格损伤以及栅区域干法刻蚀引入的大量界面态。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1是本发明的示意图;
图2是本发明的制作工艺流程示意图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图1所示,本实施例提供了一种基于Γ栅结构的增强型AlGaN/GaNHEMT器件结构,从下往上依次包括衬底、GaN缓冲层、AlN隔离层、GaN沟道层、AlGaN本征层、AlGaN掺杂层,所述AlGaN掺杂层上间隔设有源极、有机绝缘层和漏极,所述有机绝缘层上依次设有ITO栅电极,和high-k介质层,所述high-k介质上设有ITO栅电极,上述结构的顶层还间隔淀积有钝化层,其中,所述衬底材料为蓝宝石、碳化硅、GaN或MgO,所述AlGaN掺杂层中Al的组分含量在0~1之间,Ga的组分含量与Al的组分含量之和为1,所述有机绝缘层为PTFE层,所述high-k介质为Al2O3和HfO2中的一种,所述钝化层中包括Si3N4、Al2O3、HfO2和HfSiO中的一种或多种。
同时使用PTFE、ITO和Al2O3(high-k)。PTFE层、ITO层和high-k层形成了浮栅结构,该结构实现增强型器件的原理为:一方面在PTFE绝缘介质上淀积ITO金属能够在PTFE表面产生偶极子层:PTFE与ITO一侧会产生正离子,PTFE与AlGaN一侧会产生负离子,从而对正下方的2DEG浓度产生了耗尽作用,导致了2DEG浓度的减小;另一方面在栅极和漏极之间施加较大的反偏电压(例如Vd=20V,Vg=阈值电压),与此同时ITO浮栅能够捕获由于隧穿进入PTFE的电子,在ITO金属层上形成电子聚集,再次对沟道中的2DEG产生耗尽作用;由于两方面耗尽作用的同时存在会使得器件更容易实现增强型工作。
如图2所示,本发明的制作步骤如下:
(1)对外延生长的AlGaN/GaN材料进行有机清洗,用流动的去离子水清洗并放入HCl:H2O=1:1的溶液中进行腐蚀30~60s,最后用流动的去离子水清 洗并用高纯氮气吹干;
(2)对清洗干净的AlGaN/GaN材料进行光刻和干法刻蚀,形成有源区台面;
(3)对制备好台面的AlGaN/GaN材料进行光刻,形成源漏区,放入电子束蒸发台中淀积欧姆接触金属Ti/Al/Ni/Au=20/120/45/50nm并进行剥离,最后在氮气环境中进行850℃,35s的快速热退火,形成欧姆接触;
(4)对完成合金的器件进行光刻,形成栅极金属区域,然后放入氧等离子处理室中对AlGaN表面进行轻度氧化处理,然后放入电子束蒸发台中:反应室真空抽至4.0*10-3帕,缓慢加电压使控制PTFE蒸发速率为0.1nm/s,淀积5~10nm厚的PTFE薄膜,然后再蒸发10nm厚的ITO层,再淀积20~30nm的Al2O3,再蒸发200nm的ITO栅电极;
(5)将淀积好的器件放入丙酮溶液中浸泡30~60min,进行超声剥离,形成浮栅电极结构;
(6)将完成栅极制备的器件放入PECVD反应室淀积SiN钝化膜,具体工艺条件为:SiH4的流量为40sccm,NH3的流量为10sccm,反应室压力为1~2Pa,射频功率为40W,淀积200nm~300nm厚的SiN钝化膜。
(7)将器件再次进行清洗、光刻显影,形成SiN薄膜的刻蚀区,并放入ICP干法刻蚀反应室中,工艺条件为:上电极功率为200W,下电极功率为20W,反应室压力为1.5Pa,CF4的流量为20sccm,Ar气的流量为10sccm,刻蚀时间为10min,将源极、漏极上面覆盖的SiN薄膜刻蚀掉;
(8)将器件进行清洗、光刻显影,并放入电子束蒸发台中淀积Ti/Au=20/200nm的加厚电极,完成整体器件的制备。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种基于Γ栅结构的增强型AlGaN/GaNHEMT器件结构,其特征在于,从下往上依次包括衬底、GaN缓冲层、AlN隔离层、GaN沟道层、AlGaN本征层、AlGaN掺杂层,所述AlGaN掺杂层上间隔设有源极、有机绝缘层和漏极,所述有机绝缘层上依次设有ITO栅电极,和high-k介质层,所述high-k介质上设有ITO栅电极,上述结构的顶层还间隔淀积有钝化层。
2.根据权利要求1所述的基于Γ栅结构的增强型AlGaN/GaNHEMT器件结构,其特征在于,所述衬底材料为蓝宝石、碳化硅、GaN或MgO。
3.根据权利要求1所述的基于Γ栅结构的增强型AlGaN/GaNHEMT器件结构,其特征在于,所述AlGaN掺杂层中Al的组分含量在0~1之间,Ga的组分含量与Al的组分含量之和为1。
4.根据权利要求1所述的基于Γ栅结构的增强型AlGaN/GaNHEMT器件结构,其特征在于,所述有机绝缘层为PTFE层。
5.根据权利要求1所述的基于Γ栅结构的增强型AlGaN/GaNHEMT器件结构,其特征在于,所述high-k介质为Al2O3和HfO2中的一种。
6.根据权利要求1所述的基于Γ栅结构的增强型AlGaN/GaNHEMT器件结构,其特征在于,所述钝化层中包括Si3N4、Al2O3、HfO2和HfSiO中的一种或多种。
7.一种基于Γ栅结构的增强型AlGaN/GaNHEMT器件结构的制作方法,其特征在于,包括如下步骤:
(1)对外延生长的AlGaN/GaN材料进行有机清洗,用流动的去离子水清洗并放入HCl:H2O=1:1的溶液中进行腐蚀30~60s,最后用流动的去离子水清洗并用高纯氮气吹干;
(2)对清洗干净的AlGaN/GaN材料进行光刻和干法刻蚀,形成有源区台面;
(3)对制备好台面的AlGaN/GaN材料进行光刻,形成源漏区,放入电子束蒸发台中淀积欧姆接触金属Ti/Al/Ni/Au=20/120/45/50nm并进行剥离,最后在氮气环境中进行850℃,35s的快速热退火,形成欧姆接触;
(4)对完成合金的器件进行光刻,形成栅极金属区域,然后放入氧等离子处理室中对AlGaN表面进行轻度氧化处理,然后放入电子束蒸发台中:反应室真空抽至4.0*10-3帕,缓慢加电压使控制PTFE蒸发速率为0.1nm/s,淀积5~10nm厚的PTFE薄膜,然后再蒸发10nm厚的ITO层,再淀积20~30nm的Al2O3,再蒸发200nm的ITO栅电极;
(5)将淀积好的器件放入丙酮溶液中浸泡30~60min,进行超声剥离,形成浮栅电极结构;
(6)将完成栅极制备的器件放入PECVD反应室淀积SiN钝化膜;
(7)将器件再次进行清洗、光刻显影,形成SiN薄膜的刻蚀区,并放入ICP干法刻蚀反应室中,将源极、漏极上面覆盖的SiN薄膜刻蚀掉;
(8)将器件进行清洗、光刻显影,并放入电子束蒸发台中淀积Ti/Au=20/200nm的加厚电极,完成整体器件的制备。
8.根据权利要求7所述的一种基于Γ栅结构的增强型AlGaN/GaNHEMT器件结构的制作方法,其特征在于,所述步骤(6)中的工艺条件为:SiH4的流量为40sccm,NH3的流量为10sccm,反应室压力为1~2Pa,射频功率为40W,淀积200nm~300nm厚的SiN钝化膜。
9.根据权利要求6所述的一种基于Γ栅结构的增强型AlGaN/GaNHEMT器件结构的制作方法,其特征在于,所述步骤(7)中的工艺条件为:上电极功率为200W,下电极功率为20W,反应室压力为1.5Pa,CF4的流量为20sccm,Ar气的流量为10sccm,刻蚀时间为10min。
CN201410312271.0A 2014-07-02 2014-07-02 一种基于栅结构的增强型AlGaN/GaN HEMT器件结构及其制作方法 Expired - Fee Related CN104037219B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410312271.0A CN104037219B (zh) 2014-07-02 2014-07-02 一种基于栅结构的增强型AlGaN/GaN HEMT器件结构及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410312271.0A CN104037219B (zh) 2014-07-02 2014-07-02 一种基于栅结构的增强型AlGaN/GaN HEMT器件结构及其制作方法

Publications (2)

Publication Number Publication Date
CN104037219A true CN104037219A (zh) 2014-09-10
CN104037219B CN104037219B (zh) 2017-01-18

Family

ID=51467923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410312271.0A Expired - Fee Related CN104037219B (zh) 2014-07-02 2014-07-02 一种基于栅结构的增强型AlGaN/GaN HEMT器件结构及其制作方法

Country Status (1)

Country Link
CN (1) CN104037219B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081771A (zh) * 2019-12-24 2020-04-28 成都挚信电子技术有限责任公司 一种绝缘层掩埋型晶体管结构及器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110088456A1 (en) * 2009-10-16 2011-04-21 Fan Ren Normalized hydrogen sensing and methods of fabricating a normalized hydrogen sensor
CN102460710A (zh) * 2009-05-14 2012-05-16 特兰斯夫公司 高电压ⅲ族氮化物半导体器件
CN102714219A (zh) * 2009-12-10 2012-10-03 特兰斯夫公司 反侧设计的iii-氮化物器件
US20140110759A1 (en) * 2011-07-01 2014-04-24 Panasonic Corporation Semiconductor device
CN103872120A (zh) * 2012-12-07 2014-06-18 索尼公司 半导体装置和制造半导体装置的方法
EP2746760A1 (en) * 2012-12-21 2014-06-25 Stichting IMEC Nederland 2DEG sensor, method for making such sensor and use of such sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460710A (zh) * 2009-05-14 2012-05-16 特兰斯夫公司 高电压ⅲ族氮化物半导体器件
US20110088456A1 (en) * 2009-10-16 2011-04-21 Fan Ren Normalized hydrogen sensing and methods of fabricating a normalized hydrogen sensor
CN102714219A (zh) * 2009-12-10 2012-10-03 特兰斯夫公司 反侧设计的iii-氮化物器件
US20140110759A1 (en) * 2011-07-01 2014-04-24 Panasonic Corporation Semiconductor device
CN103872120A (zh) * 2012-12-07 2014-06-18 索尼公司 半导体装置和制造半导体装置的方法
EP2746760A1 (en) * 2012-12-21 2014-06-25 Stichting IMEC Nederland 2DEG sensor, method for making such sensor and use of such sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081771A (zh) * 2019-12-24 2020-04-28 成都挚信电子技术有限责任公司 一种绝缘层掩埋型晶体管结构及器件
CN111081771B (zh) * 2019-12-24 2023-04-18 成都挚信电子技术有限责任公司 一种绝缘层掩埋型晶体管结构及器件

Also Published As

Publication number Publication date
CN104037219B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
CN100557815C (zh) InA1N/GaN异质结增强型高电子迁移率晶体管结构及制作方法
CN104037218B (zh) 一种基于极化效应的高性能AlGaN/GaN HEMT高压器件结构及制作方法
CN105355659A (zh) 槽栅AlGaN/GaN HEMT器件结构及制作方法
CN108110054A (zh) 一种GaN基HEMT器件及其制备方法
CN104037221B (zh) 一种基于极化效应的复合场板高性能AlGaN/GaN HEMT器件结构及制作方法
CN105448964A (zh) 复合阶梯场板槽栅AlGaN/GaN HEMT高压器件结构及其制作方法
CN105448975A (zh) 复合阶梯场板槽栅hemt高压器件及其制作方法
CN104064595B (zh) 一种基于槽栅结构的增强型AlGaN/GaN MISHEMT器件结构及其制作方法
CN106158960A (zh) 基于数字化湿法栅刻蚀技术形成GaN增强型MOSFET及制备方法
CN103745990B (zh) 耗尽型AlGaN/GaN MISHEMT高压器件及其制作方法
CN104037222B (zh) 一种基于有机聚合物极化效应的高压槽栅AlGaN/GaN HEMT器件结构及制作方法
CN104037217B (zh) 一种基于复合偶极层的AlGaN/GaN HEMT开关器件结构及制作方法
CN104037215B (zh) 一种基于聚合物的增强型AlGaN/GaN MISHEMT器件结构及其制作方法
CN112968059A (zh) 一种新型增强型GaN HEMT器件结构
CN103794643B (zh) 一种基于槽栅高压器件及其制作方法
CN103745992A (zh) 基于复合漏极的AlGaN/GaN MISHEMT高压器件及其制作方法
CN103762234B (zh) 基于超结漏场板的AlGaN/GaN MISHEMT高压器件及其制作方法
CN104037219B (zh) 一种基于栅结构的增强型AlGaN/GaN HEMT器件结构及其制作方法
CN104037220B (zh) 一种基于偶极子层浮栅结构的增强型AlGaN/GaN MISHEMT器件结构及其制作方法
CN104037216B (zh) 一种基于偶极层的高压AlGaN/GaN MISHEMT器件结构及其制作方法
CN103745993B (zh) 基于超结的AlGaN/GaN MISHEMT高压器件及其制作方法
CN103779411A (zh) 基于超结槽栅的高压器件及其制作方法
CN103745991B (zh) 基于超结的AlGaN/GaN高压器件及其制作方法
CN103779410B (zh) 基于超结漏场板的槽栅高压器件及其制作方法
CN103762235B (zh) 基于超结漏场板的AlGaN/GaN高压器件及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170118

Termination date: 20170702

CF01 Termination of patent right due to non-payment of annual fee