WO2018045866A1 - 具有杂化交联网络的动态聚合物及其应用 - Google Patents

具有杂化交联网络的动态聚合物及其应用 Download PDF

Info

Publication number
WO2018045866A1
WO2018045866A1 PCT/CN2017/098107 CN2017098107W WO2018045866A1 WO 2018045866 A1 WO2018045866 A1 WO 2018045866A1 CN 2017098107 W CN2017098107 W CN 2017098107W WO 2018045866 A1 WO2018045866 A1 WO 2018045866A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
atom
molecular weight
silicon
Prior art date
Application number
PCT/CN2017/098107
Other languages
English (en)
French (fr)
Inventor
李政
张欢
梁愫
林淦
欧阳勇
翁文桂
Original Assignee
翁秋梅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 翁秋梅 filed Critical 翁秋梅
Publication of WO2018045866A1 publication Critical patent/WO2018045866A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/56Boron-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/55Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • C08L83/12Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/10Block- or graft-copolymers containing polysiloxane sequences
    • C08J2383/12Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the invention relates to the field of smart polymers, in particular to a dynamic polymer having a hybrid crosslinked network composed of dynamic covalent bonds and common covalent bonds.
  • Polymers are also developing in the direction of functionalization, intelligence and refinement on the basis of basic performance.
  • Polymer materials are also expanded from structural materials to functional materials with effects of light, electricity, sound, magnetism, biomedicine, biomimetic, catalysis, matter separation and energy conversion, such as separation materials, biological materials, and intelligence.
  • New polymer materials with functional effects such as materials, energy storage materials, photoconductive materials, nano materials, and electronic information materials.
  • the research on the relationship between polymer structure and properties also goes from macroscopic to microscopic, from qualitative to quantitative, from static to dynamic, and gradually realizes the synthesis and preparation of polymers capable of achieving the desired functions at the molecular design level.
  • dynamic covalent bonds have the dynamic reversible properties of non-covalent interactions in supramolecular chemistry on the basis of common covalent bonds, while avoiding supramolecular non- Covalent interactions have weak bond bonds, poor stability, and are susceptible to external conditions. Therefore, by introducing a dynamic covalent bond into the polymer, it is hopeful that a polymer having a good overall performance can be obtained.
  • the three components of the polymer can be formed into a three-dimensional network structure by cross-linking, and the thermal stability, mechanical properties, solvent resistance and the like of the polymer can be improved, and good performance can be obtained.
  • Elastomers, thermosetting plastics and other materials are generally classified into a chemically crosslinked type or a physically crosslinked type. Chemically crosslinked polymers are generally formed by cross-linking of common covalent bonds. Once formed, they are very stable and have good mechanical properties. Physically crosslinked polymers are generally formed by cross-linking through non-covalent interactions. It is dynamically reversible, and the properties of the crosslinked structure and polymer are variability.
  • the present invention is directed to the above background, and provides a dynamic polymer having a hybrid crosslinked network structure comprising common covalent crosslinks and dynamic covalent crosslinks, wherein the common covalent crosslinks are common
  • the valence bond is achieved
  • the dynamic covalent crosslinking is achieved by a silicone borate linkage
  • the common covalent cross-linking reaches above the gel point of the common covalent cross-linking in at least one cross-linking network.
  • the dynamic polymer exhibits good dynamic reversibility while exhibiting good mechanical strength and certain toughness, and can exhibit functional characteristics such as stimuli responsiveness and plasticity.
  • the hybrid crosslinked network dynamic polymer described in the present invention may optionally further comprise supramolecular hydrogen bonding, wherein the supramolecular hydrogen bonding may be intrachain non-crosslinking and/or interchain crosslinking. Action and / or non-crosslinking.
  • the dynamic polymer may be composed of one or more crosslinked networks.
  • the dynamic polymer consists of only one crosslinked network, the common covalent crosslinks and dynamic covalent crosslinks are simultaneously included in the crosslinked network structure.
  • the dynamic polymer is composed of two or more crosslinked networks, it may be composed of two or more crosslinked networks which are mutually blended, or may be composed of two or more crosslinked networks interpenetrated with each other. It may be composed of a crosslinked network in which two or more portions are interpenetrated with each other, or may be composed of a combination of the above three crosslinked networks, but the present invention is not limited thereto.
  • the dynamic polymer contains only one crosslinked network, and the crosslinked network contains both common covalent crosslinks and organoborate linkages. Among them, the degree of crosslinking of ordinary covalent cross-linking reaches above the gel point.
  • the dynamic polymer contains two crosslinked networks, wherein one crosslinked network contains only ordinary covalent crosslinks and ordinary covalent crosslinks The degree of association reached above the gel point and the other crosslinked network contained only the organoborate linkage to crosslink.
  • the dynamic polymer contains two crosslinked networks, wherein one crosslinked network contains both common covalent crosslinks and organoborate linkages. Moreover, the degree of cross-linking of common covalent cross-linking reaches above the gel point, and another cross-linking network only contains ordinary covalent cross-linking and the degree of cross-linking of common covalent cross-linking reaches above the gel point.
  • the dynamic polymer contains two crosslinked networks, wherein one crosslinked network contains both common covalent crosslinks and organoborate linkages. And the cross-linking degree of common covalent cross-linking reaches above the gel point, and another cross-linking network also contains ordinary covalent cross-linking and cross-linking of organoboric acid silicide bonds, and the degree of cross-linking of common covalent cross-linking reaches gel. Above the point, but the two cross-linking networks are different.
  • the invention may also have other various hybrid network structure implementations, and one embodiment may include three or more networks of the same or different, and the same network may contain different common covalent crosslinks and/or Or different organoborate linkages, but also optionally contain the same or different supramolecular hydrogen bonding, wherein the supramolecular hydrogen bonding can be covalently crosslinked with the common covalent crosslinks and/or The same cross-linking network or in a separate cross-linking network or partially interacts with a covalent cross-linking network.
  • the cross-linking degree of any cross-linking of any network can also be reasonably controlled to achieve the purpose of regulating the balance structure and dynamic performance. Those skilled in the art can implement the logic and the context of the present invention reasonably and effectively.
  • the "ordinary covalent bond" as used in the present invention refers to a covalent bond other than a dynamic covalent bond in the conventional sense, which is an interaction formed by a shared electron pair between atoms, usually It is more difficult to break at temperatures (generally not higher than 100 ° C) and during normal times (generally less than 1 day), including but not limited to the usual carbon-carbon bonds, carbon-oxygen bonds, carbon-hydrogen bonds, carbon-nitrogen A bond, a carbon-sulfur bond, a nitrogen-hydrogen bond, a nitrogen-oxygen bond, a hydrogen-oxygen bond, a nitrogen-nitrogen bond, or the like.
  • the organoborate silicon silicate bond has the following structure:
  • At least one silicon borate bond (BO-Si) is formed between the boron atom and the silicon atom; at least one carbon atom in the structure is connected to the boron atom through a boron-carbon bond, and at least one organic group passes through the a boron-carbon bond is attached to the boron atom; Representing a linkage to a polymer chain, a cross-linking link, or any other suitable group, the boron atom and the silicon atom respectively enter the cross-linked network through at least one of said linkages.
  • BO-Si silicon borate bond
  • the organoborate linkage is formed by reacting an organoborate group and/or an organoborate group with a silanol and/or a silanol precursor.
  • the organoboronic acid group described in the present invention refers to a structural unit (B-OH) composed of a boron atom and a hydroxyl group bonded to the boron atom, and wherein the boron atom passes through at least one carbon atom through boron.
  • the carbon bonds are connected and at least one organic group is attached to the boron atom through the boron-carbon bond.
  • one hydroxyl group (-OH) in the organoboronic acid group is It is a functional group.
  • the organoborate group as used in the present invention refers to a structural unit (B-OR, which is composed of a boron atom, an oxygen atom bonded to the boron atom, and a hydrocarbon group or a silane group bonded to the oxygen atom.
  • R is a hydrocarbon group mainly composed of carbon or a hydrogen atom or a silane group mainly composed of silicon or a hydrogen atom, which is bonded to an oxygen atom through a carbon atom or a silicon atom, and wherein the boron atom passes through at least one carbon atom through the boron carbon The bonds are linked and at least one organic group is attached to the boron atom through the boron-carbon bond.
  • an ester group (-OR) in the organoborate group is a functional group.
  • the silanol group in the present invention refers to a structural unit (Si-OH) composed of a silicon atom and a hydroxyl group connected to the silicon atom, wherein the silanol group may be a silanol group (ie, a silyl group)
  • the silicon atom is connected to at least one carbon atom through a silicon carbon bond, and at least one organic group is bonded to the silicon atom through the silicon carbon bond, or may be an inorganic silicon hydroxy group (ie, the silicon atom in the silicon hydroxy group is not Attached to the organic group), preferably a silicone hydroxyl group.
  • one hydroxyl group (-OH) in the silanol group is a functional group.
  • the silanol precursor as described in the present invention refers to a structural unit (Si-X) composed of a silicon atom and a group capable of hydrolyzing a hydroxyl group connected to the silicon atom, wherein X is Hydrolyzed to give a hydroxyl group, which may be selected from the group consisting of halogen, cyano, oxocyano, thiocyano, alkoxy, amino, sulfate, borate, acyl, acyloxy, acylamino, ketone oxime Base, alkoxide group, and the like.
  • one of the silyl hydroxyl precursors which can be hydrolyzed to give a hydroxyl group (-X) is a functional group.
  • the dynamic polymer also optionally contains supramolecular hydrogen bonding.
  • Said optionally containing supramolecular hydrogen bonding by polymer backbone chains, pendant groups, side chains, branches, bifurcation chains, end groups and non-crossings present in the dynamic polymer hybrid crosslinked network A hydrogen bond is formed between the hydrogenated groups of the linked polymer backbone chain, pendant groups, side chains, branches, bifurcation chains, and any one or more of the terminal groups.
  • the hydrogen bond group may also be present in the small molecule.
  • the optional supramolecular hydrogen bonding described in the present invention is any suitable supramolecular interaction established by hydrogen bonding, which is generally carried out by a hydrogen atom covalently linked to an electronegative atom Z.
  • An atom Y having a large electronegativity and a small radius is hydrogen-mediated between Z and Y to form a hydrogen bond linkage in the form of ZH...Y, wherein the Z and Y are any suitable electronegativity and a small radius.
  • the atom which may be the same element or a different element, may be selected from atoms such as F, N, O, C, S, Cl, P, Br, I, more preferably F, N, O atoms. More preferably, it is an O and N atom.
  • the supramolecular hydrogen bonding can be produced by non-covalent interactions between any suitable hydrogen bonding groups.
  • the hydrogen bond group preferably contains the following structural components:
  • the hydrogen bond group may be selected from the group consisting of an amide group, a carbamate group, a urea group, a thiourethane group, a derivative of the above group, and the like.
  • the dynamic polymer can be obtained by using at least a compound of the following formulas as a raw material reaction:
  • Compound (IV) compound (V) which does not contain an organic boronic acid group, an organic boronic acid ester group, a silanol group, a silanol precursor, and an organoborate silicon ester bond but contains other reactive groups; among them, an organic boron compound ( I), the silicon-containing compound (II) and the compound (V) are not prepared as a raw material alone as a dynamic polymer.
  • These compounds may optionally contain the hydrogen bond group or may continue to react to form other reactive groups of the hydrogen bond group.
  • the other reactive group refers to a group capable of spontaneously or capable of performing a chemical reaction under an initiator or light, heat, irradiation, catalysis, etc. to form a common covalent bond, in particular, can be polymerized and / or cross-linking groups
  • suitable groups include, but are not limited to: hydroxyl, carboxyl, carbonyl, acyl, amide, acyloxy, amino, aldehyde, sulfonate, sulfonyl, decyl, alkenyl, alkyne Base, cyano, azine, sulfhydryl, halogen, isocyanate group, anhydride group, epoxy group, acrylate group, acrylamide group, maleimide group, succinimide group a group, a norbornene group, an azo group, an azide group, a heterocyclic group, a carbon radical, an oxygen radical, etc.; preferably a hydroxyl group, an amino group,
  • the organoboronic acid group and/or the organic boronic acid ester group and the silanol group and/or the silanol precursor in the reactant raw material can be heated, irradiated, irradiated, or the like, or in an initiator or a catalyst.
  • Dynamic covalent cross-linking under the action of additives to form organoborate silyl ester bonds; other reactive groups capable of ordinary covalent cross-linking in the reactants can also be heated, irradiated, irradiated, etc. or in an initiator.
  • the crosslinked network skeleton chain of the dynamic polymer may be an acrylate polymer, an acrylamide polymer, a polyether polymer, or a polypolymer according to a polymer main component and a reaction mode thereof. At least one of a segment of an ester polymer, a polyamide polymer, a polyurethane polymer, or a polyolefin polymer.
  • the present invention preferably provides a polyacrylate hybrid crosslinked network dynamic polymer.
  • the dynamic polymer of polyacrylates which means that the crosslinked network skeleton structure of the dynamic polymer described in the present invention is mainly composed of one of an acrylic group, an acrylate group or a combination thereof. Made up of polymer segments.
  • the present invention preferably provides a polyolefin-based hybrid crosslinked network dynamic polymer.
  • the polyolefin-based dynamic polymer means that the crosslinked network skeleton structure of the dynamic polymer described in the present invention is mainly composed of a saturated or unsaturated olefin polymer segment.
  • the olefin polymer segment may be selected from any one or a combination of any of the following: a polyethylene segment, a polypropylene segment, a polyisobutylene segment, a polystyrene segment, a polyvinyl chloride chain.
  • Segment polyvinylidene chloride segment, polyvinyl fluoride segment, polytetrafluoroethylene segment, polychlorotrifluoroethylene segment, polyvinyl acetate segment, polyvinyl alkyl ether segment, polybutadiene Chain segments, polyisoprene segments, polychloroprene segments, polynorbornene segments, and the like.
  • the present invention preferably provides a polyurethane-based hybrid crosslinked network dynamic polymer.
  • the dynamic polymer of polyurethane type which refers to the crosslinked network skeleton structure of the dynamic polymer described in the present invention mainly composed of a urethane group, a urea group, a thiocarbamate group.
  • the dynamic polymer morphology of the hybrid crosslinked network may be an emulsion, a general solid, a gel (including a hydrogel, an organogel, an oligomer swollen gel, a plasticizer swelling). Gel, ionic liquid swollen gel), foam, and the like.
  • the dynamic polymer may be selectively blended with other polymers, additives, and fillers that may be added during the preparation process to form a dynamic polymer.
  • the dynamic polymer has a wide range of properties and has broad application prospects in military aerospace equipment, functional coatings, biomedicine, biomedical materials, energy, construction, bionics, smart materials. In other fields, it has shown impressive results. Specifically, it can be applied to the manufacture of shock absorbers, cushioning materials, impact protection materials, sports protection products, military and police protective products, self-healing coatings, self-healing sheets, self-healing adhesives, bulletproof Glass interlayer adhesive, tough material, shape memory material, seals, toys and other products.
  • the present invention has the following beneficial effects:
  • the dynamic polymer hybrid crosslinked network structure of the present invention combines common covalent cross-linking, organoborate silicon ester bond cross-linking, and optional hydrogen bonding, and fully utilizes and combines the advantages of each action.
  • common covalent cross-linking provides a strong and stable network structure for dynamic polymers, polymers can maintain a balanced structure, that is, dimensional stability; while dynamic covalent organoborate silylate cross-linking is a dynamic polymer. It provides a covalent dynamic network structure that can be reversibly changed spontaneously or under the influence of the outside world, thereby realizing the "dynamic and static combination" of dynamic covalent bonds and common covalent bonds, and exhibits synergy in the polymer network.
  • the cross-linked polymer In the traditional cross-linked structure, since there is no intermolecular slippage and the bond breakage energy is generally high, it is basically necessary to provide the toughness by the elongation at the time of the stress between the cross-linking points, so that the obtained cross-linked polymer generally has a toughness comparison. Limited, and after the introduction of dynamic covalent bonds in the polymer, the dynamic covalent bond can be broken in the form of "sacrificial bond" under the action of external force, thereby dissipating a large amount of energy and providing enough for the crosslinked polymer.
  • the toughness makes the crosslinked polymer have excellent tensile strength and tear resistance while possessing the inherent mechanical strength and stability of the crosslinked structure.
  • the organoborate silicon ester bond in the present invention enables the crosslinked polymer to be made in a timely and rapid manner by virtue of its high dynamic reversibility and stress sensitivity.
  • the reaction compared with the existing supramolecular cross-linked polymer, the organoborate silicon ester bond in the present invention can dissipate more energy during the fracture process due to its covalent property, thereby better enhancing the material. Energy absorption characteristics and toughness.
  • the cleavage of the organoboric acid silicate bond is reversible, reversible, and imparts durability to the material.
  • the polymer can exhibit dilatancy, resulting in a transition from creep to high elasticity, which greatly increases the ability to disperse impact forces. Excellent impact resistance; and due to the existence of common covalent cross-linking, the polymer is self-supporting, eliminating the trouble of using a pouch to encapsulate the polymer but may leak, and has excellent practicability.
  • the traditional crosslinked polymer has the characteristics of low elongation at break, poor toughness and excellent resistance while retaining the mechanical strength and stability of the traditional crosslinked polymer. Impact performance, which is not possible with the prior art.
  • the dynamic polymer has a rich structure and various properties, and the common covalent component and dynamic component contained therein are controllable.
  • the number of functional groups in the starting compound, the molecular structure, the molecular weight, and/or introducing a reactive group, a group that promotes dynamics, a functional group, and/or a composition of the raw material in the raw material compound Dynamic polymers with different structures can be prepared to provide dynamic polymers with a wide variety of properties.
  • the dynamics of the organoboric acid silicide can be adjusted to obtain hybrid crosslinked materials of different properties.
  • the dynamic reversible bond in the dynamic polymer has strong dynamic reactivity and mild dynamic reaction conditions.
  • the present invention makes full use of the excellent thermal stability and high dynamic reversibility of the organoboric acid silicon silicate bond, and can be used without catalyst, high temperature, illumination or specific pH. Under the condition of realizing the synthesis and dynamic reversibility of dynamic polymer, the preparation efficiency is improved, the limitation of the use environment is also reduced, and the application range of the polymer is expanded.
  • the present invention relates to a dynamic polymer having a hybrid crosslinked network comprising common covalent crosslinks and dynamic covalent crosslinks, wherein the common covalent crosslinks are achieved by common covalent bonds,
  • the dynamic covalent cross-linking is achieved by a silicone borate linkage and the conventional covalent cross-linking is above the gel point of the common covalent cross-linking in at least one cross-linking network.
  • the hybrid crosslinked network dynamic polymer described in the present invention may optionally further comprise supramolecular hydrogen bonding, wherein the supramolecular hydrogen bonding may be intrachain non-crosslinking and/or interchain crosslinking. Action and / or non-crosslinking.
  • polymerization is a growth process/action of a chain, and mainly refers to a process in which a reactant having a relatively high molecular weight is synthesized by a reaction form of a lower molecular weight reactant by polycondensation, polyaddition, ring-opening polymerization or the like.
  • the reactants are generally compounds such as monomers, oligomers, and prepolymers which have a polymerization ability (that is, can be polymerized spontaneously or can be polymerized by an initiator or an external energy).
  • the product obtained by polymerization of one reactant is referred to as a homopolymer.
  • copolymer By two The product obtained by polymerizing two or more kinds of reactants is referred to as a copolymer.
  • the "polymerization" described in the present invention includes a linear growth process of a reactant molecular chain, a branching process including a reactant molecular chain, and a ring-forming process including a reactant molecular chain, but not The cross-linking process comprising the molecular chain of the reactants; that is, the term “polymerization” refers to the process of polymer chain polymerization growth of the reactants other than the cross-linking reaction process. In an embodiment of the invention, "polymerization” also encompasses chain growth caused by supramolecular hydrogen bonding.
  • crosslinking mainly refers to the formation of two-dimensional, three-dimensional, chemical and/or supramolecular chemical linkages between reactant molecules and/or reactant molecules by dynamic covalent bonds and/or hydrogen bonds.
  • the process of cluster-type and/or three-dimensional infinite network products In the cross-linking process, the polymer chains generally grow in the two-dimensional/three-dimensional direction, gradually forming clusters (which can be two-dimensional or three-dimensional), and then develop into three-dimensional infinite networks.
  • the cross-linking in the present invention comprises forming a three-dimensional infinite network structure above the gel point (including the gel point) and a two-dimensional, three-dimensional cluster structure below the gel point.
  • the "gel point" described in the present invention means that the viscosity of the reactants suddenly increases during the crosslinking process, and gelation occurs, and the reaction point when the cross-linking reaches a three-dimensional infinite network for the first time is also called Is the percolation threshold.
  • a crosslinked product above the gel point which has a three-dimensional infinite network structure, the crosslinked network constitutes a whole and spans the entire polymer structure, the crosslinked structure is relatively stable and firm; the crosslinked product below the gel point, It is only a loose link structure, does not form a three-dimensional infinite network structure, only has a small amount of two-dimensional or three-dimensional network structure locally, and does not belong to a cross-linked network that can form a whole across the entire polymer structure.
  • the "ordinary covalent bond” as used in the present invention refers to a covalent bond other than a dynamic covalent bond in the conventional sense, which is an interaction formed by a shared electron pair between atoms, usually It is more difficult to break at temperatures (generally not higher than 100 ° C) and during normal times (generally less than 1 day), including but not limited to the usual carbon-carbon bonds, carbon-oxygen bonds, carbon-hydrogen bonds, carbon-nitrogen A bond, a carbon-sulfur bond, a nitrogen-hydrogen bond, a nitrogen-oxygen bond, a hydrogen-oxygen bond, a nitrogen-nitrogen bond, or the like.
  • the "dynamic covalent bond” as used in the present invention refers to a type of special covalent bond capable of undergoing reversible cleavage and formation under suitable conditions, and specifically refers to a silicone borate linkage in the present invention.
  • the dynamic polymer crosslinked network contains both ordinary covalent crosslinks and dynamic covalent crosslinks based on organoborate linkages, optionally including supramolecular hydrogen bonding
  • the dynamic polymer in the present invention has a "hybrid crosslinked network" structure.
  • the dynamic polymer may be composed of one or more crosslinked networks.
  • the dynamic polymer may be composed of two or more crosslinked networks, it may be composed of two or more crosslinked networks which are mutually blended, or may be composed of two or more crosslinked networks interpenetrated with each other.
  • cross-linked networks may be composed of two or more cross-linked networks interspersed with each other, or may be composed of the above three cross-linking networks, but the present invention is not limited thereto; wherein two or more cross-linked networks may be the same, It may be different, and may be a combination containing only ordinary covalent crosslinks and a part containing only dynamic covalent crosslinks, or a part containing only ordinary covalent crosslinks and partially containing common covalent crosslinks and dynamic covalents.
  • the combination must satisfy the simultaneous inclusion of the common covalent cross-linking and dynamic covalent cross-linking, and at least one cross-linking in the dynamic polymer system Common covalently crosslinked network in general reach the gel point covalently crosslinked.
  • the dynamic polymer of the present invention ordinary covalent cross-linking reaches above the gel point of the common covalent cross-linking in at least one cross-linking network, ensuring that even in the case of only one cross-linked network, even all of the said
  • the polymer can also maintain an equilibrium structure, that is, in a normal state, it can be (at least partially) insoluble in the unmelted solid.
  • crosslinked networks When two or more crosslinked networks are present, there may be interactions between different crosslinked networks (including the dynamic covalent organoborate silicon carboxylate bonds and/or supramolecular hydrogen bonding), or may be independent of each other; Moreover, in addition to the ordinary covalent cross-linking of at least one cross-linking network, it is necessary to reach the gel point of the common covalent cross-linking, cross-linking of other cross-linking networks (including common covalent cross-linking, dynamic covalent cross-linking, supramolecular Hydrogen bonding and its sum) can be above the gel point, It may also be below the gel point, preferably above the gel point. When the organoborate silicon ester bond crosslinks above the gel point, it is more capable of exhibiting its dynamic advantages when used as a stress/strain responsive material, such as shear thickening.
  • the crosslinked network structure of the dynamic polymer may be blended and/or interspersed with other one or more non-crosslinked polymer chains, that is, between these polymer chains and There is no cross-linking between the cross-linked networks.
  • the dynamic polymer contains only one crosslinked network, and the crosslinked network contains both common covalent crosslinks and organoborate linkages.
  • the degree of crosslinking of ordinary covalent cross-linking reaches above the gel point.
  • it only contains one crosslinked network, which is convenient to prepare.
  • the dynamic polymer contains two crosslinked networks, wherein one crosslinked network contains only ordinary covalent crosslinks and ordinary covalent crosslinks The degree of association reached above the gel point and the other crosslinked network contained only the organoborate linkage to crosslink.
  • the dynamic cross-linking network can be dispersed in a common covalent cross-linking network, and the two networks can be independent of each other in raw material composition, and have special advantages in preparation.
  • the dynamic polymer contains two crosslinked networks, wherein one crosslinked network contains both common covalent crosslinks and organoborate linkages. Moreover, the degree of cross-linking of common covalent cross-linking reaches above the gel point, and another cross-linking network only contains ordinary covalent cross-linking and the degree of cross-linking of common covalent cross-linking reaches above the gel point.
  • the purpose of rationally regulating the dynamic polymer balance structure and mechanical properties can be achieved.
  • the dynamic polymer contains two crosslinked networks, wherein one crosslinked network contains both common covalent crosslinks and organoborate linkages. And the cross-linking degree of common covalent cross-linking reaches above the gel point, and another cross-linking network also contains ordinary covalent cross-linking and cross-linking of organoboric acid silicide bonds, and the degree of cross-linking of common covalent cross-linking reaches gel. Above the point, but the two cross-linking networks are different. In this embodiment, both cross-linked networks are hybrid networks at the same time, which is more favorable for rational regulation of dynamic polymer equilibrium structure, mechanical properties and dynamic performance.
  • the present invention may also have other various hybrid network interworking structure implementations, and one embodiment may include three or more identical or different cross-linked networks, and the same cross-linking network may include Different common covalent crosslinks and/or different organoboric acid silicide bonds are crosslinked, and optionally also contain the same or different supramolecular hydrogen bonding, wherein supramolecular hydrogen bonding can be covalently crosslinked with ordinary And/or dynamic covalent cross-linking in the same cross-linking network or in separate cross-linking networks or partially interacting with covalent cross-linking networks.
  • the cross-linking degree of any cross-linking of any network can also be reasonably controlled to achieve the purpose of regulating the balance structure and dynamic performance. Those skilled in the art can implement the logic and the context of the present invention reasonably and effectively.
  • the dynamic covalent crosslinking is achieved by a silicone borate linkage, meaning that the organoborate is contained in the polymer backbone and/or crosslink of the crosslinked network backbone. Silicone bond.
  • the dynamic covalent organoboronic acid silicate bond may be present on the side of the polymer backbone chain of the dynamic polymer hybrid crosslinked network as dynamic covalent crosslinks, and may also be present on the side of the hybrid crosslinked network backbone chain. And/or side chains and/or branches and/or branched chains and further further side groups and/or side chains and/or branches and/or branched chains.
  • only the organoborate silicon ester bond on the hybrid crosslinked network backbone can constitute dynamic covalent crosslinking.
  • the organoboronic acid silicate bond can be reversibly broken and regenerated under normal conditions; under suitable conditions, the organoborate linkage at any position in the dynamic polymer can participate in dynamic reversible exchange.
  • the total effective cross-linking degree of the polymer system will decrease.
  • the number of organoborate carboxylate bonds (the ratio of all bonds) on the skeleton between any two crosslinking points containing a silicon borate bond is not limited, and may be one or more, preferably only one. When only one is included, the dynamic polymer structure is more regular and the dynamics are more controllable.
  • the selectively possessing supramolecular hydrogen bonding is carried out by a polymer backbone chain, pendant groups, side chains, branches, which are present in the dynamic polymer hybrid crosslinked network, A hydrogen bond is formed between the bifurcated chain, the terminal group, and the non-crosslinked polymer skeleton chain, the side group, the side chain, the branch, the bifurcation chain, and the hydrogen bond group at any one or more of the terminal groups.
  • the hydrogen bond group may also be present in the small molecule.
  • hybrid crosslinked network polymer skeleton chain refers to any segment existing in the skeleton of the crosslinked network, It comprises a backbone and a crosslinked link constituting a crosslinked cluster and/or an infinite three-dimensional network backbone; wherein the crosslinks between the polymer chains can be one atom, one single bond, one group, one chain Segments, a cluster, etc., so the crosslinked link backbone between the polymer chains is also considered to be a polymer backbone chain.
  • the "side chain” refers to a chain structure having a molecular weight of more than 1000 Da which is connected to the polymer skeleton chain in the hybrid crosslinked network structure and in the non-crosslinked polymer structure and distributed on the side of the skeleton chain.
  • the "branched chain” or “bifurcation chain” refers to a chain structure having a molecular weight of more than 1000 Da which is branched from a polymer skeleton chain or any other chain; for the sake of simplicity, the hybrid crosslinking in the present invention
  • the side chains, branches, and bifurcation chains in the network structure and in the non-crosslinked polymer structure are collectively referred to as side chains unless otherwise specified.
  • the "side group” refers to a molecular weight of not less than 1000 Da which is connected to the polymer skeleton chain in the hybrid crosslinked network structure and in the non-crosslinked polymer structure and distributed on the side of the skeleton chain.
  • the chemical group and the short side chain having a molecular weight of not more than 1000 Da.
  • side chains and side groups it may have a multi-stage structure, that is, the side chains may continue to have side groups and side chains, and the side chains of the side chains may continue to have side groups and side chains, wherein the side chains Chain structures such as branched chains and bifurcated chains are also included.
  • end group refers to a chain of chains and/or side chains which are linked to a polymer backbone chain and/or a side chain in a hybrid crosslinked network structure and in a non-crosslinked polymer structure.
  • the chemical group at the end; in the present invention, the pendant group may also have a terminal group in a specific case.
  • the skeleton chain is the main chain.
  • the polymer chain can be considered as a branch or as a backbone.
  • Ordinary covalent cross-linking contained in a dynamic polymer which is any suitable covalent cross-linking link established by ordinary covalent bonds, including but not limited to covalent cross-linking formed by carbon-carbon bonds, through carbon - covalent cross-linking of sulfur bonds, covalent cross-linking by carbon-oxygen bonds, covalent cross-linking by carbon-nitrogen bonds, covalent cross-linking by silicon-carbon bonds, through silicon-oxygen
  • the covalent crosslink formed by the bond may have at least one chemical structure, and at least one reaction type and reaction means.
  • the ordinary covalent crosslinking may be carried out by a covalent reaction between any suitable groups, for example, through a carboxyl group, an acid halide group, an acid anhydride group, an ester group, or an amide group.
  • Cross-linking by covalent reaction cross-linking by olefin radical reaction and acrylate radical reaction; covalent cross-linking by thiol and olefin click reaction through CuAAC click reaction of azide group and alkynyl group;
  • the condensation reaction between the silanol groups is carried out by covalent crosslinking.
  • the organoborate silicon silicate bond has the following structure:
  • At least one silicon borate bond (BO-Si) is formed between the boron atom and the silicon atom; at least one carbon atom in the structure is connected to the boron atom through a boron-carbon bond, and at least one organic group passes through the a boron-carbon bond is attached to the boron atom; Representing a linkage to a polymer chain, a cross-linking link, or any other suitable group, the boron atom and the silicon atom respectively enter the cross-linked network through at least one of said linkages.
  • BO-Si silicon borate bond
  • the organoborate linkage is formed by reacting an organoborate group and/or an organoborate group with a silanol and/or a silanol precursor.
  • any suitable organic boronic acid group and/or organic boronic acid ester group may be combined with a silanol group and/or a silanol precursor to form an organoborate silicon ester bond, preferably an organic boronic acid group and a silanol group, an organic boronic acid group and a silanol precursor, an organoborate group and a silanol group to form a silicone borate linkage, more preferably an organoborate group and a silanol group, an organoborate group and a silanol group to form a silicone borate linkage, more preferably The organoborate group and the silanol group form a silicone borate linkage.
  • the organoboronic acid group described in the present invention refers to a structural unit (B-OH) composed of a boron atom and a hydroxyl group bonded to the boron atom, and wherein the boron atom passes through at least one carbon atom through boron.
  • the carbon bonds are connected and at least one organic group is attached to the boron atom through the boron-carbon bond.
  • one hydroxyl group (-OH) in the organoboronic acid group is It is a functional group.
  • the organoborate group as used in the present invention refers to a structural unit (B-OR, which is composed of a boron atom, an oxygen atom bonded to the boron atom, and a hydrocarbon group or a silane group bonded to the oxygen atom.
  • R is a hydrocarbon group mainly composed of carbon or a hydrogen atom or a silane group mainly composed of silicon or a hydrogen atom, which is bonded to an oxygen atom through a carbon atom or a silicon atom, and wherein the boron atom passes through at least one carbon atom through the boron carbon The bonds are linked and at least one organic group is attached to the boron atom through the boron-carbon bond.
  • an ester group (-OR) in the organoborate group is a functional group.
  • the silanol group in the present invention refers to a structural unit (Si-OH) composed of a silicon atom and a hydroxyl group connected to the silicon atom, wherein the silanol group may be a silanol group (ie, a silyl group)
  • the silicon atom is connected to at least one carbon atom through a silicon carbon bond, and at least one organic group is bonded to the silicon atom through the silicon carbon bond, or may be an inorganic silicon hydroxy group (ie, the silicon atom in the silicon hydroxy group is not Attached to the organic group), preferably a silicone hydroxyl group.
  • one hydroxyl group (-OH) in the silanol group is a functional group.
  • the silanol precursor as described in the present invention refers to a structural unit (Si-X) composed of a silicon atom and a group capable of hydrolyzing a hydroxyl group connected to the silicon atom, wherein X is Hydrolyzed to give a hydroxyl group, which may be selected from the group consisting of halogen, cyano, oxocyano, thiocyano, alkoxy, amino, sulfate, borate, acyl, acyloxy, acylamino, ketone oxime Base, alkoxide group, and the like.
  • one of the silyl hydroxyl precursors which can be hydrolyzed to give a hydroxyl group (-X) is a functional group.
  • the functional group described in the present invention refers to a hydroxyl group in the above organic boronic acid group, an ester group in an organic boronic acid ester group, a hydroxyl group in a silicon hydroxyl group, silicon.
  • the optional supramolecular hydrogen bonding described in the present invention is any suitable supramolecular interaction established by hydrogen bonding, which is generally carried out by a hydrogen atom covalently linked to an electronegative atom Z.
  • An atom Y having a large electronegativity and a small radius is hydrogen-mediated between Z and Y to form a hydrogen bond linkage in the form of ZH...Y, wherein the Z and Y are any suitable electronegativity and a small radius.
  • the atom which may be the same element or a different element, may be selected from atoms such as F, N, O, C, S, Cl, P, Br, I, more preferably F, N, O atoms. More preferably, it is an O and N atom.
  • the supramolecular hydrogen bonding may exist as supramolecular polymerization and/or cross-linking and/or intra-chain cyclization, that is, the hydrogen bond may only serve to connect two or more segment units. Increasing the size of the polymer chain but not acting as a supramolecular cross-linking, or hydrogen bonding only acts as a cross-linking between the chains, or only in the chain, or any two or two of the above three More than one combination.
  • the hydrogen bond may be any number of teeth.
  • the number of teeth refers to the number of hydrogen bonds formed by a donor (H, that is, a hydrogen atom) of a hydrogen bond group and a receptor (Y, that is, an electronegative atom accepting a hydrogen atom), each The H...Y combination is a tooth.
  • H that is, a hydrogen atom
  • Y that is, an electronegative atom accepting a hydrogen atom
  • hydrogen bonding bonding of one, two and three tooth hydrogen bonding groups is schematically illustrated, respectively.
  • the bonding conditions of the one-tooth, two-tooth and three-tooth hydrogen bonds can be specifically exemplified as follows:
  • the number of teeth of the hydrogen bond is not limited. If the number of teeth of the hydrogen bond is large, the strength is large, then the dynamics of the hydrogen bond is weak, which is helpful for providing common covalent cross-linking, promoting the dynamic polymer to maintain the equilibrium structure and improving the mechanical properties (modulus and strength). The role of ). If the number of teeth of the hydrogen bond is small, the strength is low, the dynamics of the hydrogen bond is strong, and the dynamic properties such as self-healing property and energy absorption property can be provided together with the dynamic covalent organoborate bond. In an embodiment of the invention, hydrogen bonding of no more than four teeth is preferred.
  • the supramolecular hydrogen bonding can be produced by non-covalent interactions between any suitable hydrogen bonding groups.
  • the hydrogen bond group preferably contains the following structural components:
  • the hydrogen bond group may be selected from the group consisting of an amide group, a carbamate group, a urea group, a thiourethane group, a derivative of the above group, and the like.
  • the backbone hydrogen bond group is a hydrogen bond group present on the polymer chain backbone, wherein at least a portion of the atoms are part of the chain backbone.
  • Suitable hybrid crosslinked network backbones and non-crosslinked chain backbone hydrogen bonding groups are for example (but the invention is not limited thereto):
  • the side hydrogen bond group is a hydrogen bond group on a side chain of a polymer chain having a molecular weight of not more than 1000 Da (including a branched chain and a branched chain), wherein a hydrogen bond group may also be present on the side group and/or side.
  • Suitable side hydrogen bonding groups are for example (but the invention is not limited to this):
  • n and n are the number of repeating units, and may be a fixed value or an average value, preferably less than 20, more preferably less than 5.
  • the same dynamic polymer may contain one or more hydrogen bonding groups, and the same crosslinking network may also contain one or more hydrogen bonding groups, that is, dynamic polymerization.
  • the substance may contain a hydrogen bond group or a combination of a plurality of hydrogen bond groups.
  • the hydrogen bond group may be formed by any suitable chemical reaction, for example, by a covalent reaction between a carboxyl group, an acid halide group, an acid anhydride group, an ester group, an amide group, an isocyanate group and an amino group; It is formed by a covalent reaction between an isocyanate group and a hydroxyl group, a thiol group, or a carboxyl group; and is formed by a covalent reaction between a succinimide ester group and an amino group, a hydroxyl group, and a thiol group.
  • the supramolecular hydrogen bonding in the crosslinked network may have any suitable degree of crosslinking, and may be above its gel point or below its gel point.
  • the supramolecular hydrogen bonding may be generated during the process of common covalent cross-linking and dynamic covalent cross-linking of the dynamic polymer; or may be pre-generated supramolecular hydrogen bonding followed by ordinary covalent cross-linking and dynamics.
  • Covalent cross-linking it is also possible to produce supramolecular hydrogen bonding during dynamic polymer subsequent molding after formation of common covalent crosslinks and dynamic covalent crosslinks, but the invention is not limited thereto.
  • the dynamic polymer can be obtained by using at least a compound of the following formulas as a raw material reaction:
  • the compounds may optionally contain such hydrogen bonding groups or, alternatively, other reactive groups which may continue to react to form hydrogen bonding groups.
  • a macromolecular compound; in the organoboron compound (I), the silicon-containing compound (II), and the compound (III), may or may not contain other reactive groups, but must satisfy the ordinary covalent cross-linking in the raw material formulation.
  • it satisfies the silicone borate linkage contained in the network backbone, and more preferably satisfies the same network backbone and contains both ordinary covalent crosslinks and organoborate silyl ester linkages.
  • the other reactive group refers to a group capable of spontaneously or capable of performing a chemical reaction under an initiator or light, heat, irradiation, catalysis, etc. to form a common covalent bond, in particular, can be polymerized and / or cross-linking groups
  • suitable groups include, but are not limited to: hydroxyl, carboxyl, carbonyl, acyl, amide, acyloxy, amino, aldehyde, sulfonate, sulfonyl, decyl, alkenyl, alkyne Base, cyano, azine, sulfhydryl, halogen, isocyanate group, anhydride group, epoxy group, acrylate group, acrylamide group, maleimide group, succinimide group a group, a norbornene group, an azo group, an azide group, a heterocyclic group, a carbon radical, an oxygen radical, etc.; preferably a hydroxyl group, an amino group,
  • organoboron compound (I) containing an organic boronic acid group and/or an organic boronic acid ester group described in the present invention may be represented by the following structure:
  • A is a module containing an organoboronic acid group and/or an organic boronic acid ester group
  • m is the number of modules A, m ⁇ 1
  • L is a substituent group on a single module A, or two or more modules A linking group between A
  • p is the number of groups L, p ⁇ 1.
  • the organoborate group-containing module A may be selected from any one or any of the following structures:
  • K 1 is a group directly bonded to a boron atom, and is selected from any one of the following structures: a hydrogen atom, a hetero atom group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a polymer chain residue having a molecular weight of more than 1000 Da;
  • the cyclic structure in A4 is a non-aromatic or aromatic boron heterocyclic group containing at least one organic boronic acid group, and the boron atom is placed in a cyclic structure, and the cyclic structure may be a small molecular ring or a large a molecular ring, which is preferably a 3- to 100-membered ring, more preferably a 3- to 50-membered ring, more preferably a 3- to 10-membered ring; and the ring-forming atoms of the cyclic structure in A4 are each independently a carbon atom, a boron atom or Other heteroatoms
  • the organoborate group-containing module A may be selected from any one or any of the following structures:
  • K 2 is a group directly bonded to a boron atom, and is selected from any one of the following structures: a hydrogen atom, a hetero atom group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a polymer chain residue having a molecular weight of more than 1000 Da;
  • R 1 , R 2 , R 3 , R 4 , and R 6 are a monovalent organic group or a monovalent organosilicon group directly bonded to an oxygen atom, which is directly bonded to an oxygen atom through a carbon atom or a silicon atom, and is selected from the group consisting of Any of the following structures: a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, a small molecular silane group having a molecular weight of not more than 1000 Da, and a polymer chain residue having a molecular weight of more than 1000 Da; and
  • R 5 is a divalent organic group directly bonded to two oxygen
  • a group or a divalent organosilicon group directly bonded to an oxygen atom through a carbon atom or a silicon atom which is selected from any one of the following structures: a divalent small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a divalent small molecular weight of not more than 1000 Da a molecular silane group having a divalent polymer chain residue having a molecular weight of more than 1000 Da; wherein the cyclic structure in B5 is a non-aromatic or aromatic boron heterocyclic group containing at least one organoborate group, and the boron atom is placed ring
  • the cyclic structure may be a small molecule ring or a macromolecular ring, which is preferably a 3- to 100-membered ring, more preferably a 3- to 50-membered ring, more preferably a 3- to 10-membered ring; and a ring in B5.
  • the ring-forming atoms of the like structure are each independently a carbon atom, a boron atom or other hetero atom, and at least one ring-forming atom is a boron atom and constitutes an organic borate group, and at least one ring-forming atom is bonded to the group L;
  • B5 The hydrogen atoms in the ring-forming atoms in the ring structure may or may not be substituted; the ring structure in B5 may be a single ring structure, a polycyclic structure, a spiro structure, a fused ring structure, or a bridged ring structure.
  • Nested ring structure Indicates a linkage to a group L; the boron atoms in the various structures are bonded to at least one carbon atom through a boron-carbon bond, and at least one organic group is attached to the boron atom through the boron-carbon bond.
  • one boron atom may be bonded to one hydroxyl group and one ester group at the same time, and at least one boron hydroxyl group and at least one may be simultaneously contained in the same module.
  • Borate ester groups for example:
  • the compound contains both an organic boronic acid group and an organic boronic acid ester group to help regulate its solubility, reaction rate, reaction degree and other parameters, as well as properties that can be used to regulate the dynamic properties of dynamic polymers.
  • the module A containing an organic boronic acid group and/or an organic boric acid ester group when present in a polymer and has two or more of the linkages, it may be attached to a non-ring or a failure.
  • the polymer chain of the cluster may also be attached to the pendant/side chain of the ring or cluster; when there is only one such linkage, it may be attached to any position of the polymer chain.
  • the module A may be selected from the same structure or a plurality of different structures, in which case p ⁇ 1, L is a linking group between two or more modules A; when p ⁇ 2, L may It is selected from the same structure or a plurality of different structures; the L structure may be selected from any one or more of the following: a single bond, a hetero atom linkage group, a divalent or polyvalent small molecule hydrocarbon group having a molecular weight of not more than 1000 Da, A divalent or polyvalent polymer chain residue having a molecular weight greater than 1000 Da.
  • the silicon-containing compound (II) containing a silanol group and/or a silanol precursor as described in the present invention may be an organic silicon-containing compound or an inorganic silicon-containing compound, which may be represented by the following structure:
  • G is a module containing a silanol and/or a silanol precursor
  • n is the number of modules G, n ⁇ 1
  • J is a substituent group on a single module G, or two or more modules G The linking group
  • q is the number of groups J, q ⁇ 1.
  • the silanol-containing module G may be selected from any one or any of the following structures:
  • K 3 , K 4 , K 5 , K 6 , and K 7 are groups directly bonded to a silicon atom, each of which is independently selected from any one of the following structures: a hydrogen atom, a hetero atom group, and a molecular weight of not more than 1000 Da.
  • Small molecular hydrocarbon group polymer chain residue with molecular weight greater than 1000 Da, inorganic small molecular chain residue with molecular weight not exceeding 1000 Da, inorganic macromolecular chain residue with molecular weight greater than 1000 Da; wherein, cyclic structure in C7, C8, C9
  • the non-aromatic or aromatic silicon heterocyclic group containing at least one silanol group, the silicon atom is placed in a ring structure, and the ring structure may be a small molecule ring or a macromolecular ring, which is preferably 3 to 100.
  • the ring more preferably a 3- to 50-membered ring, more preferably a 3- to 10-membered ring;
  • the ring-forming atoms of the cyclic structure in C7, C8, and C9 are each independently a carbon atom, a silicon atom, or other hetero atom, and At least one ring-forming atom is a silicon atom and constitutes a silanol group, and at least one ring-forming atom is bonded to the group J;
  • the ring structure in C7, C8, and C9 may be substituted for each of the hydrogen atoms on the ring atom, or may not be Substituted;
  • the cyclic structure in C7, C8, C9 can be Cyclic structure, polycyclic structure, spiro ring structure, ring structure fused, bridged ring structure, the nested loop structure; Indicates the connection to the group J.
  • the module G containing a silanol precursor may be selected from any one or any of the following structures:
  • K 8 , K 9 , K 10 , K 11 , and K 12 are groups directly bonded to a silicon atom, each of which is independently selected from any one of the following structures: a hydrogen atom, a hetero atom group, and a molecular weight of not more than 1000 Da.
  • Small molecular hydrocarbon group polymer chain residue with molecular weight greater than 1000 Da, inorganic small molecular chain residue with molecular weight not exceeding 1000 Da, inorganic macromolecular chain residue with molecular weight greater than 1000 Da;
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 , X 10 , X 11 , X 12 , X 13 , X 14 are hydrolyzable groups directly bonded to a silicon atom, including but not limited to halogen, cyano, a oxycyano group, a thiocyano group, an alkoxy group, an amino group, a sulfate group, a boronic acid ester group, an acyl group, an acyloxy group, an amide group, a ketoximino group, an alkoxide group or the like, preferably a halogen or an alkoxy group
  • the ring-forming atoms of the cyclic structure in D7, D8, and D9 are each independently a carbon atom, a silicon atom or other hetero atom, and at least one ring-forming atom is a silicon atom and constitutes a silanol precursor, and at least one ring is formed.
  • the atom is bonded to the group J; the ring structure in D7, D8, and D9 may or may not be substituted for each hydrogen atom on the ring atom; the ring structure in D7, D8, and D9 may be a single ring structure.
  • polycyclic structure, spiro ring structure, fused ring structure, bridge ring structure, nested ring structure Indicates the connection to the group J. It should be noted that in the above structure, a ring may also be formed between suitable different groups K, between different groups X, and between the group K and the group X.
  • At least one hydroxyl group and at least one hydroxyl group precursor may be simultaneously bonded to one silicon atom, and at least one silanol group may be simultaneously contained in the same module and at least A silanol precursor.
  • the compound contains both silanol and silanol precursors to help regulate its solubility, reaction rate, degree of reaction, and other properties that can be used to regulate the dynamics of dynamic polymers.
  • the module G containing a silanol group and/or a silanol precursor when present in a polymer and has two or more of the linkages, it may be attached to a non-cyclic or non-clustered group.
  • the polymer chain may also be attached to the pendant or side chain of the ring or cluster; when there is only one such linkage, it may be attached to any position of the polymer chain.
  • the structure may be selected from any one or more of the following: a hydrogen atom, a hetero atom group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, a polymer chain residue having a molecular weight of more than 1000 Da, and a small inorganic molecular chain residue having a molecular weight of not more than 1000 Da.
  • the module G may be selected from the same structure or a plurality of different structures, in which case q ⁇ 1, J is a linking group between two or more modules G; when q ⁇ 2, J may It is selected from the same structure or a plurality of different structures; the J structure may be selected from any one or more of the following: a single bond, a hetero atom linkage group, a divalent or polyvalent small molecule hydrocarbon group having a molecular weight of not more than 1000 Da, A divalent or polyvalent polymer chain residue having a molecular weight of more than 1000 Da, a divalent or polyvalent inorganic small molecular chain residue having a molecular weight of not more than 1000 Da, and a divalent or polyvalent inorganic macromolecular chain residue having a molecular weight of more than 1000 Da.
  • the compound (III) containing both an organic boronic acid group and/or an organic boronic acid ester group and a silanol group and/or a silanol precursor as described in the present invention may be represented by the following structure:
  • A is a module containing an organic boronic acid group and/or an organic boronic acid ester group, and the specific definition thereof can be referred to the definition of the module A in the organoboron compound (I), and details are not described herein again, wherein A preferably contains organic boric acid.
  • the module of the ester group; x is the number of the module A, x ⁇ 1; when x ⁇ 2, the module A may be selected from the same structure or a plurality of different structures; and G is a precursor containing a silicon hydroxy group and/or a silanol group.
  • module G is preferably a module containing a silicon hydroxy precursor
  • y is the number of modules G, y ⁇ 1
  • T is a linking group between two or more A, or between two or more G, or between A and G.
  • the T structure may be selected from any one or more of the following: a single bond, a hetero atom linkage group, a divalent or polyvalent small molecule hydrocarbon group having a molecular weight of not more than 1000 Da, and a divalent or multivalent polymerization having a molecular weight of more than 1000 Da.
  • Chain residue; v is the number of groups T, v ⁇ 1; when v ⁇ 2, T can be selected from the same structure or multiple different knots .
  • the group L in the structure of the organoboron compound (I), the group J in the structure of the silicon-containing compound (II), and the group T in the structure of the compound (III) are selected from the group consisting of a ring structure other than the ring structure.
  • the group A may be attached to the end of L or may be attached to any position in L;
  • the group G may be attached to the end of J or may be attached to any position in J;
  • groups A and G It can be connected to the end of T or to any position in T.
  • any one of the organic boronic acid groups, any one of the organic boronic acid ester groups, and any one of the silanols is a functional group.
  • the silicon-containing compound (II) which may be a monofunctional, difunctional, trifunctional or polyfunctional compound, for example, for the structure Organic boron compound (I) which is monofunctional, difunctional, trifunctional, tetrafunctional, respectively; for example, for The silicon-containing compound (II) which is a monofunctional, difunctional, trifunctional, tetrafunctional group, respectively; for the compound (III), it may be a bifunctional, trifunctional or polyfunctional compound, for example, for the structure The compound (III) which is a bifunctional group, a trifunctional group, a tetrafunctional group, and a pentafunctional group, respectively.
  • Other reactive groups may also optionally contain hydrogen bonding groups.
  • the compound (IV) containing a silicon borate bond and other reactive groups described in the present invention may be as follows Structure representation:
  • E is a module containing a silicon borate linkage; u is the number of modules E, u ⁇ 1; Y is a substituent group on a single module E, or a substituent group on a single module E and two or a linking group between the plurality of modules E, and at least one group Y is bonded to a boron atom of a silicon silicate bond, at least one group Y is bonded to a silicon atom of a silicon silicate bond; wherein, at least one group Group Y contains at least one other reactive group, and the number of other reactive groups contained in all groups Y is 2 or more; r is the number of groups Y, and r ⁇ 2.
  • the module E containing a silicone borate bond can be represented by the following structure:
  • K 13 , K 16 , and K 20 are groups directly bonded to a boron atom, each of which is independently selected from any one of the following structures: a hydrogen atom, a hetero atom group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a molecular weight.
  • K 14 , K 15 , K 17 , K 18 , K 19 , K 21 are groups directly bonded to a silicon atom, each of which is independently selected from any one of the following structures: a hydrogen atom a hetero atomic group, a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, a polymer chain residue having a molecular weight of more than 1000 Da, an inorganic small molecular chain residue having a molecular weight of not more than 1000 Da, and an inorganic macromolecular chain residue having a molecular weight of more than 1000 Da; Indicates the linkage to the group Y.
  • a ring may also be formed between suitable different groups K, between different groups Y, and between the group K and the group Y; the group Y may pass through the Si-O bond. It is connected to a boron atom and can also be connected to a silicon atom through a BO bond.
  • the module E containing a organoborate linkage may be passed through any one or any of the modules A containing an organic boronic acid group and/or an organic boronic acid ester group as mentioned in the present invention.
  • Any one or any of several modules G containing a silanol and/or a silanol precursor may be subjected to a condensation reaction or transesterification between an organoborate group and/or an organoborate group and a silanol group and/or a silanol precursor. The reaction is obtained.
  • Y is a substituent group on a single module E
  • Y may be selected from the same structure or a plurality of different structures, and Y contains other reactive groups The amount and structure must ensure that the dynamic polymer is obtainable; the Y structure may be selected from any one or more of the following: a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a polymer chain residue having a molecular weight of more than 1000 Da.
  • the module E may be selected from the same structure or a plurality of different structures, in which case r ⁇ 2, Y is a substituent group on a single module E and a linking group between two or more modules E , Y may be selected from the same structure or a plurality of different structures, and the number and structure of other reactive groups contained in Y must ensure that the dynamic polymer can be obtained; the Y structure may be selected from a molecular weight of not more than 1000 Da.
  • a small molecular hydrocarbon group at least one of polymer chain residues having a molecular weight of more than 1000 Da, and a single bond, a hetero atom linker, a divalent or polyvalent small molecule hydrocarbon group having a molecular weight of not more than 1000 Da, or a divalent or more molecular weight of more than 1000 Da At least one of the valence polymer chain residues.
  • the compound (IV) containing a silicon borate bond and other reactive groups it is generally a monomer containing a silicon borate bond, an oligomer containing a silicon borate bond, and a bond containing an organoborate. Prepolymer.
  • Compound (IV) can be produced by any suitable method, including preparation by a suitable organoboron compound (I) and a silicon-containing compound (II).
  • the compound (IV) can be produced by reacting at least one organoboron compound (I) containing other reactive groups and at least one silicon-containing compound (II) containing other reactive groups, or at least An organoboron compound (I) containing another reactive group is prepared by reacting at least one silicon-containing compound (II) which does not contain other reactive groups, and may also be passed through at least one other reactive group.
  • Organic boron compound (I) and at least one containing it The reactive group-containing silicon-containing compound (II) is subjected to a reaction preparation; the compound (IV) may also be passed through at least one compound (III) containing another reactive group or its organic boron compound (I) and/or The silicon compound (II) is prepared by a reaction.
  • the compound (V) described in the present invention is not particularly limited in its structure, and any suitable one does not contain an organic boronic acid group, an organic boronic acid ester group, a silanol group, a silanol precursor, and a silicone borate bond but contains other reactions.
  • the compound of the group is optionally selected as the compound (V) in the present invention.
  • the hetero atom group referred to in the present invention may be any suitable hetero atom-containing group, which may be selected from any of the following groups, but the invention is not limited thereto: halogen, hydroxyl, thiol , carboxyl group, nitro group, primary amino group, silicon group, phosphorus group, triazole, isoxazole, amide group, imide group, thioamide group, enamine group, carbonate group, thiocarbonate group , dithiocarbonate group, trithiocarbonate group, carbamate group, thiocarbamate group, dithiocarbamate group, orthoester group, phosphate group, phosphite Base, hypophosphite, phosphonate, phosphoryl, phosphoryl, hypophosphoryl, thiophosphoryl, thiophosphoryl, thiophosphoryl, phosphosilyl, silane ester, carbon Amide, thioamide, phosphoramide, phosphoramidite, pyrophosphoramide, cycl
  • the small molecular hydrocarbon group having a molecular weight of not more than 1000 Da as referred to in the present invention generally has 1 to 71 carbon atoms, and may or may not contain a hetero atom group.
  • the small molecular hydrocarbon group may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any, a hybridized form of any one, and combinations thereof: C 1 -71 alkyl, ring C 3-71 alkyl, phenyl, benzyl, aromatic hydrocarbon; small molecular hydrocarbon group is preferably methyl, ethyl, propyl, propylene, butyl, butylene, pentyl, hexyl, g Base, octyl, decyl, decyl, cyclohexyl, phenyl; more preferably methyl, ethyl, propyl, phenyl.
  • Polymer chain residues having a molecular weight greater than 1000 Da as referred to in the present invention may be any suitable polymer chain residues including, but not limited to, carbon chain polymer residues, hetero chain polymer residues, elemental organic Polymer residue.
  • the polymer may be a homopolymer or a copolymer composed of any monomer, oligomer or polymer; the polymer chain may be a flexible chain or a rigid chain.
  • the carbon chain polymer residue may be any suitable polymer residue mainly composed of carbon atoms in a main chain, which may be selected from any one of the following groups, and the unsaturated group of any one of them.
  • polyolefin chain residues such as polyethylene chain residues, polypropylene chain residues, polyisobutylene chain residues, polyphenylene Ethylene chain residue, polyvinyl chloride chain residue, polyvinylidene chloride chain residue, polyvinyl fluoride chain residue, polytetrafluoroethylene chain residue, polychlorotrifluoroethylene chain residue, polyvinyl acetate chain residue Base, polyvinyl alkyl ether chain residue, polybutadiene chain residue, polyisoprene chain residue, polychloroprene chain residue, polynorbornene chain residue, etc.; polyacrylic acid Chain residues, such as polyacrylic acid chain residues, polyacrylamide chain residues,
  • the heterochain polymer residue may be any suitable macromolecular backbone mainly composed of a carbon atom and a hetero atom composed of nitrogen, oxygen, sulfur or the like, which may be selected from any one of the following groups.
  • polyether chain residues such as polyethylene oxide chain residues, polypropylene oxide Chain residues, polytetrahydrofuran chain residues, epoxy resin chain residues, phenolic resin chain residues, polyphenylene ether chain residues, etc.
  • polyester chain residues such as polycaprolactone chain residues, polypentane Ester chain residue, polylactide chain residue, polyethylene terephthalate chain residue, unsaturated polyester chain residue, alkyd chain residue, polycarbonate chain residue, biopolyester Chain residues, liquid crystal polyester chain residues, etc.
  • polyamine chain residues such as polyamide chain residues, polyimide chain residues, polyurethane chain residues, polyurea chain residues,
  • the elemental organic polymer residue may be any suitable macromolecular backbone mainly composed of a hetero atom of an inorganic element such as silicon, boron or aluminum and a hetero atom composed of nitrogen, oxygen, sulfur, phosphorus or the like. It may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any one, a hybridized form of any one, and a combination thereof: a silicone-based polymer chain residue, such as a poly Organosilane chain residue, polyorganosiloxane chain residue, polyorganosiloxane borane chain residue, polyorganosilazane chain residue, polyorganosiloxane chain residue, polyorganophosphosiloxane chain residue Base, polyorganometallic siloxane chain residue; organoboron polymer chain residue, such as polyorganoborane chain residue, polyorganoboroxene chain residue, polyorganosilazolkene chain residue, polyorganic Boron sulfide
  • the small molecular silane group having a molecular weight of not more than 1000 Da as mentioned in the present invention may be any suitable molecular main chain mainly composed of silicon atoms and small molecular silane groups composed of nitrogen, oxygen, sulfur, phosphorus and the like.
  • the small molecular silane group may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any, a hybridized form of any one, and a combination thereof: silicon carbon An alkyl chain residue, a siloxane chain residue, a silazane chain residue, a silazane chain residue; preferably a silanol chain residue or a siloxane chain residue.
  • the inorganic small molecular chain residue having a molecular weight of not more than 1000 Da as mentioned in the present invention may be any suitable molecular main chain and side chain mainly composed of inorganic element hetero atoms such as silicon, boron, aluminum, and nitrogen, oxygen, Inorganic small molecular chain residues composed of hetero atoms such as sulfur and phosphorus, in general, the inorganic small molecular chain residues may be selected from any one of the following groups, any of the unsaturated forms, or any one of them.
  • any of the hybrid forms and combinations thereof chain sulfur residue, silane chain residue, silicon oxide chain residue, sulfur silicon compound chain residue, sulfur nitrogen compound chain residue, phosphazene Compound chain residue, phosphorus oxide chain residue, borane chain residue, boron oxide chain residue; preferably chain sulfur residue, silane chain residue, silicon oxide chain residue, phosphazene compound chain residue Borane chain residue.
  • the inorganic macromolecular chain residue having a molecular weight of more than 1000 Da as mentioned in the present invention may be any suitable macromolecular main chain and side chain mainly composed of inorganic element hetero atoms such as silicon, boron, aluminum, and nitrogen, oxygen,
  • chain thiopolymer residues may also be selected from any of the following groups of inorganic macromolecules with residues or either Surface-modified inorganic macromolecules with residues: zeolite-type molecular sieves, aluminum phosphate molecular sieves, zirconium phosphate molecular sieves, heteropolyacid salt molecular sieves, diamonds, graphite, graphene, graphene oxide, carbon nanotubes, fullerenes, Carbon fiber, white phosphorus, red phosphorus, phosphorus pentoxide, molybdenum sulfide, silicon dioxide, silicon disulfide, Silicon, silicon carb
  • the structure of the small molecular hydrocarbon group, the polymer chain residue, the small molecule silane chain residue, the inorganic small molecular chain residue, and the inorganic macromolecular chain residue is not particularly limited, and may be a linear type or a branched type. Star, comb, dendritic, monocyclic, polycyclic, spiro, fused, bridged, chained, two-dimensional and three-dimensional clusters and combinations thereof;
  • the molecular hydrocarbon group, the polymer chain residue, the small molecule silane chain residue, the inorganic small molecular chain residue, and the inorganic macromolecular chain residue may contain a soft segment, a rigid segment, or both. Rigid segments.
  • single bond means that a pair of electrons are shared between two atoms in a compound molecule.
  • Ordinary covalent bond which may be selected from the group consisting of boron boron single bond, carbon carbon single bond, carbon nitrogen single bond, nitrogen nitrogen single bond, boron carbon single bond, boron nitrogen single bond, borosilicate single bond, silicon silicon single bond, Silicon carbon single bond, silicon nitrogen single bond.
  • heteroatom linkage may be any suitable hetero atom-containing linking group which may be selected from any one or a combination of any of the following: ether group, sulfur group, double Sulfur, thioether, divalent tertiary amine, trivalent tertiary amine, divalent silicon, trivalent silicon, tetravalent silicon, divalent phosphorus, trivalent phosphorus, divalent boron, three Price boron base.
  • the "organic group” as used in the present invention refers to a group mainly composed of a carbon element and a hydrogen element as a skeleton, which may be a small molecular group having a molecular weight of not more than 1000 Da, or a molecular weight of more than 1000 Da.
  • suitable groups are, for example, methyl, ethyl, vinyl, phenyl, benzyl, carboxyl, aldehyde, acetyl, acetonyl and the like.
  • organosilicon group refers to a group mainly composed of a silicon element and a hydrogen element as a skeleton, which may be a small molecule silane group having a molecular weight of not more than 1000 Da, or a molecular weight of more than 1000 Da.
  • suitable groups are, for example, a silane group, a siloxane group, a silothane group, a silazane group or the like.
  • hetero atom as used in the present invention means a common non-carbon atom such as a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom, a silicon atom or a boron atom.
  • alkyl as used in the present invention means a saturated hydrocarbon group having a linear or branched structure. Where appropriate, an alkyl group can have a specified number of carbon atoms, for example, a C 1-4 alkyl group, which includes 1, 2, 3 or 4 carbon atoms in a straight or branched chain arrangement. alkyl.
  • alkyl groups include, but are not limited to, methyl, ethyl, propyl, n-butyl, isobutyl, tert-butyl, n-pentyl, 2-methylbutyl, 3-methylbutyl, 4 -methylbutyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 5-methylpentyl, 2-ethylbutyl, 3-ethylbutyl , heptyl, octyl, sulfhydryl, sulfhydryl.
  • cycloalkyl refers to a saturated cyclic hydrocarbon.
  • the cycloalkyl ring can include the specified number of carbon atoms.
  • a 3 to 8 membered cycloalkyl group includes 3, 4, 5, 6, 7, or 8 carbon atoms.
  • suitable cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
  • aromatic hydrocarbon group means any stable monocyclic or polycyclic carbon ring of up to 7 atoms in each ring, wherein at least one ring is aromatic.
  • aryl groups include, but are not limited to, phenyl, biphenyl, naphthyl, binaphthyl, tetrahydronaphthyl, indanyl, fluorenyl, hydrazino, phenanthryl, phenanthrenyl.
  • heteroarylalkyl denotes a stable monocyclic or polycyclic ring of up to 7 atoms in each ring, wherein at least one ring is aromatic and at least one ring contains O, N, S, P, Heteroatoms such as Si and B.
  • Heteroaryl hydrocarbon groups within the scope of this definition include, but are not limited to, acridinyl, oxazolyl, porphyrin, quinoxalinyl, quinazolinyl, pyrazolyl, indolyl, benzotriazolyl, furan Base, thienyl, phenylthio, 3,4-propylenedioxyphenylthio, benzothienyl, benzofuranyl, benzodioxane, benzodioxan, quinolyl , isoquinolyl, oxazolyl, isoxazolyl, imidazolyl, pyrazinyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrahydroquinoline, thiazolyl, isothiazolyl, 1,2 , 4-triazolyl, 1,2,3-triazolyl, 1,2,4-oxadiazol
  • the single ring structure mentioned in the ring structure of the present invention means that only one ring is contained in the ring structure, for example:
  • the polycyclic structure referred to refers to two or more independent rings in the ring structure, for example:
  • spiral ring structure refers to a ring structure in which a ring structure consists of two or more rings sharing one atom with each other, for example:
  • the fused ring structure (which also includes a bicyclic, aryl ring structure) refers to a ring structure in which a ring structure consists of two or more rings sharing each other by two adjacent atoms. Structure, for example:
  • the bridged ring structure referred to refers to a ring structure in which a ring structure consists of two or more rings by sharing two or more adjacent atoms, and has a three-dimensional cage structure, for example.
  • a ring structure in which a ring structure consists of two or more rings by sharing two or more adjacent atoms, and has a three-dimensional cage structure, for example.
  • the nested ring structure referred to refers to a ring structure in which a ring structure is composed of two or more rings connected or nested with each other, for example:
  • the range of the number of carbon atoms in the group is also indicated in the subscript position of C, indicating the number of carbon atoms of the group, for example, C 1-10 means “having 1 to 10 The carbon atom", C 3-20 means “having 3 to 20 carbon atoms”.
  • the "unsaturated C 3-20 hydrocarbyl group” means a compound having an unsaturated bond in a C 3-20 hydrocarbyl group.
  • the "substituted C 3-20 hydrocarbon group” means a compound obtained by substituting a hydrogen atom of a C 3-20 hydrocarbon group.
  • hybrid C 3-20 hydrocarbon group means a compound obtained by substituting a carbon atom in a C 3-20 hydrocarbon group with a hetero atom.
  • a group may be selected from a C 1-10 hydrocarbyl group, it may be selected from a hydrocarbon group of any one of the carbon atoms in the range indicated by the subscript, that is, selected from C 1 , C 2 , C 3 , C 4 , C And a hydrocarbon group of any one of C 6 , C 7 , C 8 , C 9 and C 10 hydrocarbon groups.
  • the subscripts marked in the interval form indicate that any integer within the range may be selected, and the range includes two endpoints.
  • the structure involved has an isomer, it may be any one of them unless otherwise specified.
  • the alkyl group is not particularly specified, it means a hydrocarbon group formed by losing a hydrogen atom at any position.
  • propyl refers to any of n-propyl and isopropyl
  • propylene refers to any of 1,3-propylene, 1,2-propylene, and isopropylidene.
  • substituted by “substituted hydrocarbon group” means that any one or more hydrogen atoms at any position in the substituted “hydrocarbon group” may be substituted with any substituent.
  • the substituents therein are not particularly limited, unless otherwise specified.
  • a compound for a compound, a group or an atom, it may be substituted and hybridized at the same time, for example, a nitrophenyl group is substituted for a hydrogen atom, and a -CH 2 -CH 2 -CH 2 - is replaced by -CH 2 -S- CH(CH 3 )-.
  • the term “and/or” is used to mean that the term may include an option selected from the conjunction “and/or” or may be selected from the conjunction " And/or the options described hereinafter, or both from the options described before and after the conjunction "and/or”.
  • “and/or” in the "organoboron compound (I) containing an organic boronic acid group and/or an organic boronic acid ester group” in the specification means that the organoboron compound (I) may contain only an organic boronic acid group.
  • A is a module containing an organic boric acid group and/or an organic borate group in the specification "and / Or ",” means that A is a module containing an organic boronic acid group, or a module containing an organic boronic acid ester group, or a module containing both an organic boronic acid group and an organic boronic acid ester group.
  • the conjunctions "and/or" appearing elsewhere in the specification of the invention represent such meaning.
  • molecular weight means the relative molecular mass of a substance, and its molecular weight is generally monodisperse for a small molecule compound, a small molecule group, and some macromolecular compounds having a fixed structure, a macromolecular group. That is, it has a fixed molecular weight; and for a substance having a polydisperse molecular weight such as an oligomer, a high polymer, an oligomer residue, or a polymer residue, the molecular weight generally means an average molecular weight.
  • the small molecule compound or small molecule group in the present invention specifically refers to a compound or a group having a molecular weight of not more than 1000 Da; the macromolecular compound and the macromolecular group specifically refer to a compound or a group having a molecular weight of more than 1000 Da.
  • the organoboronic acid group and the organic boronic acid ester group constituting the dynamic polymer organoborate silicon silicate bond are susceptible to being contained by unshared electron pairs due to the electron deficiency of the boron atom in the group.
  • the nuclear reagent is attacked to produce a bond; and for the silanol group constituting the organoborate silicon ester bond (including a silanol precursor capable of being converted into a silyl group), the silanol oxygen atom contains an unshared electron pair, and the silanol group It has strong polarity and high activity, and it can carry out relatively rapid dehydration condensation reaction, transesterification reaction, etc.
  • organoborate silicate in the process of contact with organoboric acid group and/or organoborate group.
  • the key constitutes a dynamic covalent cross-linking or the like.
  • the invention utilizes the high reactivity of the organoboronic acid group and the organic boronic acid ester group and the silicic hydroxyl group, and the strong dynamic reversibility of the organoboric acid silicon ester bond can be obtained under mild conditions.
  • a dynamic polymer that exhibits dynamic effects.
  • the organoborate group and/or the organic borate group are used to form the organoborate silicon ester bond, so that the components constituting the organoborate silicon ester bond are more abundantly selected, and the structure, dynamic reversibility and mechanical properties of the dynamic polymer are obtained.
  • the regulation of solvent resistance and the like are greatly improved, and the application range of the polymer is expanded.
  • organoboron compound (I) containing an organic boronic acid group and/or an organic boronic acid ester group is mixed with a silicon-containing compound (II) containing a silanol group and/or a silanol group precursor in a dissolved or molten state, organic
  • the organoboronic acid group in the boron compound (I) is capable of undergoing a rapid condensation reaction with a silanol group in the silicon-containing compound (II) to form a silicone boronic acid ester bond, thereby obtaining a dynamic monomer and/or a prepolymer and/or a polymer.
  • the organoborate group in the organoboron compound (I) can be directly transesterified with a silanol group in the silicon-containing compound (II) to form a silicon borate linkage, or it can be hydrolyzed to form an organoborate group.
  • the condensation reaction can be carried out directly by removing the small boron molecule from the organic boronic acid group in the organic boron compound (I), or by first forming a silanic hydroxyl group by hydrolysis, and then performing condensation reaction with the organic boronic acid group in the organic boron compound (I).
  • the organic boron compound (I) in an organic boronic acid ester transesterification reaction to form a silicone boronic ester bond, thereby obtaining dynamic monomers and / or prepolymers and / or polymers.
  • the reaction is carried out using an organoboron compound-containing organoboron compound (I) or a silicon-containing compound (Si) containing a silanol precursor, it is generally required to carry out the reaction at a higher temperature or by in situ hydrolysis of one of them. The condensation reaction is then carried out.
  • one or more organoboron compounds (I) and one or more silicon-containing compounds (II) may be contained at the same time.
  • the compound (III) containing both an organic boronic acid group and/or an organic boronic acid ester group and a silanol group and/or a silanol precursor it is generally required to make the compound (III) by controlling the reaction conditions and adding a suitable reaction assistant.
  • the organoboronic acid group can be reacted with a silanol precursor contained in the same or different compound (III) to form a silicon borate linkage, or the organoborate group in the compound (III) can be the same species or Silicon contained in different kinds of compounds (III)
  • the hydroxy precursor is reacted to form a silicon silicate bond, or the organoborate group in the compound (III) is first hydrolyzed to obtain an organoborate group, and then the silanol precursor contained in the same or different compound (III)
  • the reaction is carried out to form a silicon silicate bond, or the organoborate group in the compound (III) is condensed with a silanol group obtained by hydrolysis in the same or different compound (III).
  • the organoborate bond is formed, or the organoborate group and the silanol precursor in the compound (III) are simultaneously hydrolyzed and then subjected to a condensation reaction to form a silicone borate bond, thereby obtaining a dynamic polymer.
  • one or more organoboron compounds (I) and/or one or more silicon-containing compounds (II) may be contained.
  • the organoboron compound (I), the silicon-containing compound (II), and the compound (III) in the process of forming a dynamic monomer and/or a prepolymer and/or a polymer, in addition to reacting the organoboronic acid group and/or the organic boronic acid ester group contained in the compound with the silanol group and/or the silanol precursor, it is also possible to simultaneously utilize other reactive groups contained therein, optionally with other components, such as The compound (IV) and/or the compound (V) are subjected to ordinary covalent crosslinking by a polymerization/crosslinking reaction to form a hybrid crosslinked network of a dynamic polymer.
  • the prepolymer and/or polymer in which the organoboron compound (I), the silicon-containing compound (II), and the compound (III) are involved may be blended with other components such as the compound (IV) and/or the compound (V).
  • the dynamic polymer of the hybrid crosslinked network is then formed by ordinary covalent cross-linking of other ingredients. It is also possible to form a common covalent crosslink and then form a dynamic covalent organoborate bond.
  • the compound (IV) it is generally caused by mutual reaction between other reactive groups contained in the compound (IV), or by other reactive groups contained in the compound (IV) and the compound (V) and / or mutual reaction between the prepolymer formed by the organoboron compound (I), the silicon-containing compound (II), and the compound (III) and/or other reactive groups contained in the polymer, thereby obtaining a A hybrid crosslinked dynamic polymer of a silicone borate linkage. It is also possible to obtain ordinary covalent crosslinking by directly reacting with other reactive groups contained in the compound (IV) itself.
  • the present invention is not limited thereto, and those skilled in the art can implement the logic and the context of the present invention reasonably and effectively.
  • other reactive groups may be subjected to a common covalent bond by a reaction such as a form to form a hybrid crosslinked dynamic polymer together with a silicone borate bond: an amino group contained in the compound and The carboxyl group contained in the compound undergoes a condensation reaction to form an amide bond; a ring-opening reaction is carried out by an epoxy group contained in the compound and an amino group or a mercapto group contained in the compound to form a secondary amine bond or a thioether bond; and an initiator or an additive energy is used.
  • a reaction such as a form to form a hybrid crosslinked dynamic polymer together with a silicone borate bond: an amino group contained in the compound and The carboxyl group contained in the compound undergoes a condensation reaction to form an amide bond; a ring-opening reaction is carried out by an epoxy group contained in the compound and an amino group or a mercapto group contained in the compound to form a secondary amine bond or a thioether bond; and an initiator or
  • radical polymerization is carried out by an olefin group contained in the compound; an anionic/cationic polymerization is carried out by an olefin group contained in the compound by an initiator or an external energy; and an isocyanate group contained in the compound and an amino group contained in the compound
  • the hydroxyl group and the sulfhydryl group are reacted to form a urea bond, a urethane bond, and a thiourethane bond;
  • the ring-opening polymerization is carried out by an epoxy group contained in the compound to form an ether bond; and the compound is catalyzed by a monovalent copper.
  • the azide group contained in the compound and the alkynyl group contained in the compound are subjected to a CuAAC reaction; the thiol group contained in the compound is The olefin group contained in the compound undergoes a thiol-ene click reaction; an addition reaction between the double bonds contained in the compound, etc.; among them, a method capable of rapidly reacting at not higher than 100 ° C, more preferably at room temperature
  • the following rapid reaction methods include, but are not limited to, the reaction of an isocyanate group with an amino group, a hydroxyl group, a thiol group, an acrylate reaction, and a thiol-ene click reaction.
  • the hydrogen bonding group may be introduced in any suitable composition and at any suitable time, including but not limited to introduction from a monomer, introduction while forming a prepolymer, in forming a preform
  • the polymer is introduced afterwards, introduced at the same time as the formation of ordinary covalent cross-linking, and introduced after formation of ordinary covalent cross-linking. It is preferably introduced at the same time as the formation of the prepolymer and ordinary covalent crosslinking.
  • the hydrogen bond group can also be blocked and protected, and then solved at a suitable time (such as at the same time as or after formation of common covalent cross-linking). protection.
  • Suitable polymerization methods as mentioned in the embodiments of the present invention may be carried out by any suitable polymerization reaction generally used in the art including, but not limited to, condensation polymerization, addition polymerization, ring opening polymerization.
  • the reaction; wherein the addition polymerization reaction includes, but is not limited to, a radical polymerization reaction, an anionic polymerization reaction, a cationic polymerization reaction, and a coordination polymerization reaction.
  • the compound starting material can be carried out by any of the above-described polymerization methods by any suitable polymerization process generally used in the art.
  • the compound starting material when the compound starting material is obtained as a dynamic polymer in the form of a condensation polymerization, It can be carried out by a polymerization process such as melt polymerization, solution polymerization, or interfacial polymerization; for example, when the compound raw material obtains a dynamic polymer in the form of radical polymerization, it can be subjected to bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, etc.
  • the polymerization process is carried out; for example, when the compound raw material is obtained as a dynamic polymer in the form of ion polymerization, it can be carried out by a polymerization process such as solution polymerization, slurry polymerization, gas phase polymerization or the like.
  • the melt polymerization mentioned in the above polymerization process is generally carried out by subjecting the raw material of the compound to a molten state, and polymerizing under the conditions of an initiator or light, heat, irradiation, catalysis, etc., to obtain a dynamic polymer in a molten state.
  • the solution polymerization mentioned is usually carried out by dissolving the compound raw material and the initiator in a suitable solvent to obtain a dynamic polymer; the interfacial polymerization mentioned is usually carried out by dissolving the compound raw material in the same manner.
  • polymerization is carried out at the interface of the solution (or on the side of the organic phase of the interface) to obtain a dynamic polymer; the bulk polymerization mentioned is usually carried out by using a small amount of initiator in the raw material of the compound. Or polymerization under light, heat, irradiation, catalysis, etc. to obtain a dynamic polymer; the suspension polymerization mentioned is usually carried out by stirring the raw material of the compound in which the initiator is dissolved into small droplets and suspended in an aqueous medium. Polymerization is carried out to obtain a dynamic polymer; the emulsion polymerization mentioned is usually carried out by using a compound raw material by means of an emulsifier.
  • the slurry polymerization mentioned is usually carried out by dissolving the compound raw material in a suitable solvent and dispersing the initiator.
  • the form of the body is present in a solvent for polymerization, and the obtained dynamic polymer is precipitated in the form of a precipitate;
  • the gas phase polymerization mentioned is usually carried out by using the initiator in the gas phase, using an initiator or light, heat, Polymerization is carried out under conditions such as irradiation and catalysis to obtain a dynamic polymer.
  • Suitable crosslinking methods as mentioned in the embodiments of the present invention can be carried out by any suitable crosslinking reaction which is common in the art.
  • the compound raw material can obtain dynamic polymer by thermal initiation crosslinking, photoinitiated crosslinking, radiation induced crosslinking, plasma initiated crosslinking, microwave initiated crosslinking, etc.;
  • a dynamic polymer is obtained by chemical crosslinking means such as peroxide crosslinking and nucleophile substitution crosslinking.
  • the crosslinking process can be carried out in the form of a bulk, a solution, an emulsion or the like.
  • a dynamic polymer is preferably prepared by a solution polymerization/crosslinking process, an emulsion polymerization/crosslinking process.
  • the solution polymerization/crosslinking process and the emulsion polymerization/crosslinking process have the advantages of being capable of reducing the viscosity of the system, facilitating mass transfer and heat transfer, facilitating temperature control, and avoiding local overheating, and the obtained solution and emulsion are convenient for concentration or Dispersion is conducive to coating, mixing and other operations.
  • Organic boron compound (I), silicon-containing compound (II), compound (III), compound (IV), compound (V) for preparing dynamic polymer which may be gas, liquid, crystal, powder, granule, glue Shape, paste, etc.
  • the organoboron compound (I) as a raw material and the organic boronic acid in the compound (III) may be present in the form of an organic boronic acid or an organic boronic acid ester.
  • the silicon-containing compound (II) and the silanol group in the compound (III) may exist in the form of a silyl group or a silyl group.
  • some condensation inhibitors may be selectively added, generally in order to keep the system under neutral or near-neutral conditions, and avoid silicon-silicon condensed silicon. An oxane, thereby enabling a high yield of a compound containing a silanol group.
  • the organoboron compound (I) reacted therewith is in an excessive state, and for the silicon-containing compound (II) solid or liquid, It is added to the organoboron compound (I) in a form of slow addition or dropwise addition.
  • the organic boronic acid in the compound (III) is preferably selected in the form of an organic boronic acid ester, and the silicon hydroxyl group in the compound (III) is preferably selected as a silicon hydroxy precursor.
  • a non-polar inert solvent should be used as a reaction solvent as much as possible, and stored under low temperature conditions; at the same time, some condensation needs to be added during the synthesis of the raw material. Inhibitors and try to ensure Compound (III) is now available.
  • the raw material component for preparing the dynamic polymer is preferably matched with the organoboron compound (I) and the silicon-containing compound (II). Choice, but compound (III) is also an important component of dynamic polymer raw materials, and it has its specific advantages in some specific cases and cannot be ignored.
  • the organoboronic acid group and/or the organic boronic acid ester group and the silanol group and/or the silanol precursor in the reactant can be heated, irradiated, irradiated, etc.
  • Dynamic covalent cross-linking, or dynamic covalent cross-linking under the action of additives such as initiators and catalysts to form organoborate silyl ester bonds; other reactive groups capable of covalent cross-linking in the reactants can also be Common covalent cross-linking under heating, radiation, illumination, etc., or common covalent cross-linking under the action of additives such as initiators, cross-linking agents, curing agents, etc. to form covalent bonds.
  • a dynamic polymer having a first network structure (containing only one crosslinked network, and this crosslinked network contains both common covalent crosslinks and organoborate linkages)
  • It can be obtained by using at least one organoboron compound (I) and at least one silicon-containing compound (II) to participate in a reaction to form a silicone boronic acid ester bond and a common covalent bond for hybrid crosslinking; or using at least one compound (III) Or it is obtained by reacting with at least one organoboron compound (I) and/or at least one silicon-containing compound (II) to form a silicone borate bond and a common covalent bond for hybrid crosslinking; or using at least one Compound (IV), or it is obtained by reacting with at least one compound (V) to form a common covalent bond for hybridization; wherein at least one organoboron compound (I) or at least one silicon-containing compound (II) Or at least one compound (III) contains one or more other reactive groups.
  • the network only contains a common covalently crosslinked crosslinked network, which can be obtained by at least one compound (V) participating in the reaction to form a common covalent bond for crosslinking, or using at least one existing common covalently crosslinked polymer.
  • the ester bond is obtained by dynamic covalent crosslinking, or by using at least one compound (III), or participating in reaction with at least one organoboron compound (I) and/or at least one silicon-containing compound (II) to form silicon borate
  • the ester bond is obtained by dynamic covalent crosslinking.
  • the network structure only contains a common covalently crosslinked crosslinked network, and only contains a crosslinked network of organoborate silylate crosslinks, and contains ordinary
  • the cross-linking network of covalent cross-linking and organoboric acid silyl ester cross-linking can be separately prepared according to the above ideas using the corresponding compound raw materials.
  • the raw material components can be polymerized by using organoborate silicon ester bonds and/or common covalent bonds, and optional hydrogen bonds as link points.
  • Crosslinking results in a dynamic polymer with a higher molecular weight. Wherein, it is not required that all the functional groups and other reactive groups in the raw material component completely react with each other to form a common covalent bond and a dynamic covalent bond, as long as the common covalent bond and the dynamic covalent bond formed are sufficient to maintain the dynamic polymer.
  • the hybrid cross-linking network structure can be.
  • the order of cross-linking is not particularly limited, and dynamic covalent cross-linking may be performed before ordinary covalent cross-linking, or first Dynamic covalent cross-linking is carried out after ordinary covalent cross-linking, and conditions can be controlled such that dynamic covalent cross-linking and ordinary covalent cross-linking proceed simultaneously.
  • a second network structure as described in the present invention and a dynamic polymer of the third network structure can be prepared by a stepwise or simultaneous method.
  • the first network can be prepared by using a monomer or a prepolymer, a catalyst, an initiator, a crosslinking agent, and then prepared.
  • the second network is added to be blended to obtain a cross-linked network which is blended with each other, wherein the second network can be swelled with the solvent and then blended with the first network; or the first network can be prepared first, and then the cross-linked
  • the first network is placed in a second network monomer or prepolymer melt or solution containing a catalyst, an initiator, a crosslinking agent, etc., to swell, and then the second network monomer or prepolymer is polymerized in situ and Crosslinking forms a second network to obtain (partially) interpenetrating crosslinked networks, wherein the degree of crosslinking of the first network is preferably a gel Light cross-linking above the point to facilitate the interpenetration effect of the second network; and so on, for a dynamic polymer containing a multi-network structure, a similar step-by-step method can be used to obtain a plurality of inter-blended or interpenetrated intersections. Network.
  • the two prepared crosslinked networks can be placed in the same reactor and blended to obtain a crosslinked network which is blended with each other, wherein The crosslinked network can be swollen by means of a solvent and then blended; or two or more monomers or prepolymers can be mixed and reacted in the same reactor according to the respective polymerization and crosslinking processes to obtain (partial) Cross-linked networks interspersed with each other.
  • the structure and structure of the compound can be introduced into the compound raw materials by different numbers of functional groups, molecular segments of different structures, molecular segments of different molecular weights, reactive groups, functional groups, etc., as needed.
  • the preparation process becomes a structural component of the dynamic polymer, thereby achieving regulation of the dynamic polymer structure over a wide range.
  • the diversity of dynamic polymer structures also allows them to exhibit a wide range of properties and can be applied to different fields depending on the properties of the polymer.
  • the organic structure used (such as organic boron structure, silicone) Structure) can be an effective medium for technicians to regulate and design dynamic polymer structures.
  • a dynamic polymer having different dynamic activities can be prepared by designing a functional group structure in the organoboron compound (I), the silicon-containing compound (II), and the compound (III).
  • a dynamic polymer can be prepared by using a phenylboronic acid/phenylborate structure in which an aminomethyl group is attached or an amide boronic acid/phenyl boronate structure in an ortho position, and an ortho-aminomethyl or amide group can be used.
  • a strong electron withdrawing group such as a fluorine atom, an acetate group, a pyridyl group, a piperidinyl group, etc.
  • a strong electron withdrawing group such as a fluorine atom, an acetate group, a pyridyl group, a piperidinyl group, etc.
  • the reaction rate with the silanol and/or the silanol precursor is also greatly improved; the resulting dynamic polymer can exhibit higher dynamic activity, and the organoborate linkage in the polymer is milder.
  • the dynamic reversibility can be demonstrated under the conditions, and the dynamic polymer can be prepared and used under milder conditions, which expands the application range of the polymer.
  • Dynamic polymers with different degrees of crosslinking can be prepared, and the properties of dynamic polymers also vary with the degree of crosslinking.
  • the mechanical strength and mechanical modulus are generally low, the toughness and ductility are excellent, the thermal stability and dimensional stability are poor, and the texture is generally in macroscopic performance. It is soft and can be stretched in a wide range.
  • the mechanical strength and modulus are generally higher, and the toughness, thermal stability, wear resistance and creep resistance are improved, but ductility It will decrease, generally in the macroscopic performance of a colloid or solid with a more excellent resilience or a rigid appearance.
  • a dynamic polymer having a hybrid crosslinked network is prepared using at least one common covalent crosslink and at least one dynamic covalent crosslink.
  • the traditional cross-linked polymer it is generally obtained only by ordinary covalent cross-linking, and the obtained cross-linked polymer lacks dynamic property, does not have responsiveness under external stimulation, and cannot exhibit self-repairing and other functional characteristics.
  • the properties and application fields of the cross-linked polymer have caused great limitations; in addition, in the conventional cross-linked structure, since there is no intermolecular slippage and the bond breakage energy is generally high, it is basically necessary to rely on the stress between the cross-linking points.
  • the elongation provides elongation and thus the resulting crosslinked polymer generally has poor toughness.
  • Dynamic polymers with different properties can obtain one or more glass transition temperatures.
  • flexible chains such as polyethylene chains, polysiloxane chains, polybutadiene chains, polyacrylic chains, polyester chains, etc.
  • the resulting dynamic polymer molecular segments rotate relatively easily, typically having a lower glass transition temperature (generally no higher than 25 ° C) and a lower melting point (generally no higher than 100 ° C).
  • a dynamic polymerization obtained therefrom Due to the relative difficulty of rotation within the molecular segment, it generally has a high glass transition temperature (generally higher than 25 ° C) and a higher melting point (generally higher than 100 ° C), a larger melt viscosity; the material is usually macroscopic It has excellent mechanical properties, good dimensional stability, heat resistance and chemical resistance, but low ductility.
  • the resulting dynamic polymer When simultaneously using a compound containing a flexible chain and a rigid chain and/or a compound which can be simultaneously polymerized into a flexible and rigid chain, the resulting dynamic polymer generally has a plurality of distinct glass transition temperatures, and the polymer material is moderate.
  • the rigidity, hardness and flexibility of the mechanical properties can be adjusted according to different formulations.
  • the dynamic polymer having a flexible structure can exhibit more excellent dynamic reversibility and tensile toughness, it is preferred to utilize an organoboron compound (I) having a flexible structure and/or which can be polymerized into a flexible chain
  • the dynamic polymer is prepared by containing the silicon compound (II), the compound (III), the compound (IV), and the compound (V).
  • the dynamic polymer by adjusting the molecular weights of the organoboron compound (I), the silicon-containing compound (II), the compound (III), the compound (IV), and the compound (V), different crosslinking densities can be prepared.
  • Dynamic polymers which exhibit different properties due to differences in crosslink density. The lower the crosslink density of the dynamic polymer, the greater the molecular weight of the polymer chain between the crosslinks, and vice versa.
  • a functional group can also be introduced in the organoboron compound (I), the silicon-containing compound (II), the compound (III), the compound (IV), and the compound (V).
  • the way to regulate the performance of dynamic polymers For example, the hydrolysis resistance of the dynamic polymer is improved by introducing a hydrophobic group; the dynamic polymer having fluorescence is prepared by introducing a fluorescent group; and the oxidation resistance of the dynamic polymer is improved by introducing an antioxidant group;
  • the introduction of an acidic group or a basic group regulates the dynamics of the dynamic polymer and the like.
  • it is also possible to achieve compatibility between components by introducing structural components or coupling groups similar to those of other polymers. .
  • the above description is only a part of the regulation of the performance of the dynamic polymer which can be exerted on the structure of the compound component as a raw material in the present invention, and is adjustable for the design of the dynamic polymer structure, performance and use in the present invention.
  • the scope is wide, and often can also reflect many unexpected practical effects, which are difficult to be exhaustive, and those skilled in the art can adjust according to the idea of the present invention.
  • the crosslinked network skeleton chain of the dynamic polymer may be an acrylate polymer, an acrylamide polymer, a polyether polymer, or a polypolymer according to a polymer main component and a reaction mode thereof. At least one of a segment of an ester polymer, a polyamide polymer, a polyurethane polymer, or a polyolefin polymer.
  • the present invention preferably provides a polyacrylate hybrid crosslinked network dynamic polymer.
  • the dynamic polymer of polyacrylates which means that the crosslinked network skeleton structure of the dynamic polymer described in the present invention is mainly composed of one of an acrylic group, an acrylate group or a combination thereof. Made up of polymer segments.
  • the acrylic group and the acrylate group contained in the dynamic polymer of the polyacrylate type are preferably produced by introducing an acrylic monomer in a form of radical polymerization or radical copolymerization.
  • the acrylic monomer including but not limited to: acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, methacrylic acid Butyl ester, isobutyl acrylate, acrylic acid Butyl ester, 2-ethyl ethyl acrylate, n-octyl acrylate, decyl acrylate, 2-ethoxyethyl acrylate, 2-cyanoethyl acrylate, cyclohexyl acrylate, isobornyl acrylate, Lauryl acrylate, trifluoroethyl methacrylate, glycidyl methacrylate, glycidyl me
  • the group L, the group J, the group T, the group Y are respectively selected as a polyacrylic acid chain residue, a polymethyl acrylate chain residue, and a polymethyl methacrylate chain residue.
  • a base or other organoboron compound (I) containing an acrylic group or an acrylate group structure, a silicon-containing compound (II), a compound (III), a compound (IV), and a compound (V) as a raw material, and a compound raw material is used.
  • the polymerization/crosslinking reaction produces a dynamic polymer of polyacrylates.
  • the present invention preferably provides a polyolefin-based hybrid crosslinked network dynamic polymer.
  • the polyolefin-based dynamic polymer means that the crosslinked network skeleton structure of the dynamic polymer described in the present invention is mainly composed of a saturated or unsaturated olefin polymer segment.
  • the olefin polymer segment may be selected from any one or a combination of any of the following: a polyethylene segment, a polypropylene segment, a polyisobutylene segment, a polystyrene segment, a polyvinyl chloride chain.
  • Segment polyvinylidene chloride segment, polyvinyl fluoride segment, polytetrafluoroethylene segment, polychlorotrifluoroethylene segment, polyvinyl acetate segment, polyvinyl alkyl ether segment, polybutadiene Chain segments, polyisoprene segments, polychloroprene segments, polynorbornene segments, and the like.
  • the olefin polymer segment contained in the polyolefin-based dynamic polymer is preferably produced by reacting an ethylenic monomer in the form of radical polymerization or radical copolymerization.
  • the ethylenic monomer including but not limited to: ethylene, propylene, butylene, isobutylene, butadiene, isoprene, chloroprene, styrene, vinyl chloride, vinylidene chloride, vinyl fluoride , tetrafluoroethylene, hexafluoropropylene, alkyl vinyl ether, vinyl acetate, norbornene, and the like.
  • a group L, a group J, a group T, a group Y, a polyethylene chain residue, a polypropylene chain residue, a polyisobutylene chain residue, and a polystyrene chain may be respectively selected.
  • the present invention preferably provides a polyurethane-based hybrid crosslinked network dynamic polymer.
  • the dynamic polymer of polyurethane type which refers to the crosslinked network skeleton structure of the dynamic polymer described in the present invention mainly composed of a urethane group, a urea group, a thiocarbamate group.
  • the urethane group, the ureido group, and the thiourethane group contained in the dynamic polymer of the urethane type preferably pass through an isocyanate group and a hydroxyl group, an amino group, a thiol group or the like with an active hydrogen. The group is reacted and prepared.
  • a group L, a group J, a group T, a group Y respectively, a polyurethane chain residue, a polyurea chain residue, a polythiocarbamate chain residue or Other organoboron compound (I) containing a urethane group, a urea group or a thiourethane group structure, a silicon-containing compound (II), a compound (III), a compound (IV), and a compound (V)
  • organoboron compound (I) containing a urethane group, a urea group or a thiourethane group structure
  • silicon-containing compound (II) a compound (III), a compound (IV), and a compound (V)
  • a dynamic polymer of a polyurethane is obtained by a polymerization/crosslinking reaction between the compound raw materials.
  • a dynamic polymer of a polyurethane is obtained by an addition reaction between an isocyanate group and a hydroxyl group, an amino group or a sulfhydryl group together with a silicon silicate bond; in this case, generally A stepwise method is used to prepare a polyurethane dynamic polymer, that is, an isocyanate group contained in an organoboron compound (I), a silicon-containing compound (II), a compound (III), a compound (IV), and a compound (V)
  • the condensation reaction of the organoborate silicon ester bond is carried out under controlled conditions, wherein in order to ensure that the hydroxyl group, the amino group and the sulfhydryl group in the system sufficiently react with the isocyanate group, each compound raw material is contained.
  • the number of hydroxyl groups, amino groups and sulfhydryl groups is preferably from 1 to 4, and the molar ratio of the isocyanate groups participating in the reaction is excessive to the number of moles of hydroxyl groups, amino groups and mercapto groups, and the hydroxyl group, amino group and mercapto group in the system are reacted.
  • the organoboronic acid group and/or the organic boronic acid ester group and the silanol group are further / or a condensation reaction of the silanol precursor, such that the reaction to form the organoborate linkage is independent of the ordinary covalent reaction of other reactive groups.
  • the compound (V) may be selected from the group consisting of a polyisocyanate compound, a polyol compound, a polyamine compound, and a polyvalent mercapto compound.
  • the polyisocyanate compound is any suitable compound containing two or more isocyanate groups, which may be a small molecule compound having a molecular weight of not more than 1000 Da, or a macromolecular compound having a molecular weight of more than 1000 Da.
  • Suitable polyisocyanate compounds are, for example, toluene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, polymethylene polyphenyl isocyanate, liquefied MDI, dicyclohexylmethane Isocyanate, naphthalene diisocyanate, p-phenylene diisocyanate, benzene dimethylene diisocyanate, dimethyl biphenyl diisocyanate, 1,4-cyclohexane diisocyanate, tetramethyl meta-xylylene diisocyanate, three Methyl-1,6-hexamethylene diisocyanate, cyclohexane dimethylene diisocyanate, norbornane diisocyanate, TDI dimer, triphenylmethane triisocyanate, 4,4',4"- Triphenyl triisocyanate thio
  • the polyol compound which is any suitable compound containing two or more hydroxyl groups, preferably a compound containing two, three or four hydroxyl groups, which may be a small molecule compound having a molecular weight of not more than 1000 Da It may also be a macromolecular compound having a molecular weight of more than 1000 Da.
  • Suitable polyol compounds are, for example, ethylene glycol, propylene glycol, diethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, three Hydroxymethylpropane, glycerin, pentaerythritol, and the like.
  • the polyamine compound which is any suitable compound containing two or more amino groups, preferably a compound containing two, three or four amino groups, which may be a small molecule compound having a molecular weight of not more than 1000 Da It may also be a macromolecular compound having a molecular weight of more than 1000 Da.
  • Suitable polyamine compounds are, for example, methylene diamine, 1,2-ethylenediamine, propylene diamine, 1,2-diaminopropane, 1,3-diaminopentane, hexamethylenediamine , diaminoheptane, diaminododecane, diethylaminopropylamine, diethylenetriamine, N-aminoethylpiperazine, triethylenetetramine, N,N'-dimethyl Ethyldiamine, N,N'-diethylethylenediamine, N,N'-diisopropylethylenediamine, N,N'-dimethyl-1,3-propanediamine , N,N'-diethyl-1,3-propanediamine, N,N'-diisopropyl-1,3-propanediamine, N,N'-dimethyl-1,6-hexyl Diamine, N,N'-diethyl-1,6-he
  • the polyvalent mercapto compound which is any suitable compound containing two or more mercapto groups, preferably a compound containing two, three or four mercapto groups, which may be a small molecule compound having a molecular weight of not more than 1000 Da It may also be a macromolecular compound having a molecular weight of more than 1000 Da.
  • Suitable polyhydrazino compounds are, for example, 1,2-ethanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 1,2-butanedithiol, 1,3-butane Mercaptan, 1,5-pentanedithiol, 1,6-hexanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, 1,10-decanedithiol, 2, 3-butyldithiol, bis-ethyl thioether, 3,7-dithia-1,9-nonanedithiol, 3-mercapto- ⁇ -4-dimethylcyclohexylethanethiol, 1, 4-benzenedithiol, phthalic acid, 3,4-toluene dithiol, 1,5-naphthalene dithiol, lutidine dithiol, 4,4'-didecyl diphenyl sul
  • polyisocyanate compound polyol compound, polyamine compound, and polyfluorenyl compound may be used singly or in combination. It is also possible to contain an isocyanate group, a hydroxyl group, an amino group or a fluorenyl group in the same compound.
  • the dynamic polymers of polyacrylates, polyolefins and polyurethanes can be utilized.
  • the organoboron compound (I), the silicon-containing compound (II), the compound (III), the compound (IV), and the compound (V), and the polyacrylate The parameters of softness and hardness, flexibility, viscosity, foaming, etc. of dynamic polymers of polyolefins, polyolefins, and polyurethanes are controlled, and those skilled in the art can adjust according to actual conditions.
  • the dynamic polymer morphology of the hybrid crosslinked network may be an emulsion, a general solid, a gel (including a hydrogel, an organogel, an oligomer swollen gel, a plasticizer swelling). Gel, ionic liquid swelling gel), foam, etc., wherein the content of the soluble small molecular weight component contained in the ordinary solid and the foam is generally not more than 10% by weight, and the content of the small molecular weight component contained in the gel is generally not less than 50wt. %.
  • the dynamic polymer gel can be obtained by ordinary covalent crosslinking in a swelling agent, including one of water, an organic solvent, an oligomer, a plasticizer, an ionic liquid, or a combination thereof. It can also be obtained by swelling with a swelling agent after the preparation of the dynamic polymer is completed.
  • a swelling agent including one of water, an organic solvent, an oligomer, a plasticizer, an ionic liquid, or a combination thereof.
  • a swelling agent including one of water, an organic solvent, an oligomer, a plasticizer, an ionic liquid, or a combination thereof.
  • a swelling agent including one of water, an organic solvent, an oligomer, a plasticizer, an ionic liquid, or a combination thereof.
  • the preparation of foam materials is highly feasible due to the existence of common covalent cross-linking.
  • foaming is beneficial to reduce the apparent density of materials, and on the other hand, it is particularly beneficial for applications in buffering, damping, impact resistance, etc., because in addition to the deformation of the foam itself, it can produce buffering, damping, impact resistance, etc.
  • the organoborate silicon ester bond and optional hydrogen bonding in the inventive dynamic polymer are capable of producing intelligent energy absorption and dispersion effects under stress.
  • the dynamic polymer is mainly foamed by three methods: mechanical foaming method, physical foaming method and chemical foaming method.
  • the mechanical foaming method is to introduce a large amount of air or other gas into the emulsion, suspension or solution of the polymer into a uniform foam by vigorous stirring during the preparation of the dynamic polymer, and then pass through the physics. Or chemical changes make it gelatinize and solidify into a foam.
  • air can be introduced and an emulsifier or surfactant can be added.
  • the physical foaming method utilizes physical principles to achieve foaming of the polymer in the preparation process of the dynamic polymer, and generally includes the following four methods: (1) inert gas foaming method, that is, adding Pressing the inert gas into the molten polymer or the paste material under pressure, and then heating the pressure under reduced pressure to expand and foam the dissolved gas; (2) evaporating the gasification foam by using a low-boiling liquid, that is, pressing the low-boiling liquid Into the polymer or under certain pressure and temperature conditions, the liquid is dissolved into the polymer particles, and then the polymer is heated and softened, and the liquid is vaporized by evaporation to foam; (3) dissolution method, that is, liquid The medium is immersed in the polymer to dissolve the solid substance added in advance, so that a large amount of pores appear in the polymer to be foamed, such as mixing the soluble substance salt, starch, etc.
  • inert gas foaming method that is, adding Pressing the inert gas into the molten
  • the physical foaming method has the advantages of less toxicity in operation, lower cost of foaming raw materials, and no residual body of foaming agent. In addition, it can also be prepared by freeze drying.
  • the chemical foaming method is a method of foaming along with a chemical reaction in a dynamic polymer foaming process, and generally comprises the following two methods: (1) a thermal decomposition type foaming agent The bubble method, that is, the gas liberated by heating with a chemical foaming agent is foamed. (2) A foaming method in which a polymer component interacts to generate a gas, that is, a chemical reaction occurring between two or more components in a foaming system to generate an inert gas such as carbon dioxide or nitrogen to cause a polymer Expand and foam.
  • a small amount of a catalyst and a foam stabilizer (or a surfactant) are generally added.
  • dynamic polymer foam materials are mainly formed by three methods: compression foam molding, injection foam molding and extrusion foam molding.
  • the structure of the dynamic polymer foam material involves three types of open-cell structures, closed-cell structures, and half-open half-close structures.
  • the open-cell structure the cells and the cells are connected to each other, or are completely connected, and the single or three-dimensional gas can pass through.
  • Body or liquid bubble diameters ranging from 0.01 to 3 mm.
  • the closed-cell structure has an independent cell structure, and the inner cell is separated from the cell by a wall membrane, and most of them are not connected to each other, and the bubble diameter is 0.01-3 mm.
  • the cells contained in the cells are connected to each other and have a semi-open structure.
  • the foam structure which has formed a closed cell it can also be made into an open-cell structure by mechanical pressure or chemical method, and those skilled in the art can select according to actual needs.
  • dynamic polymer foam materials can be classified into soft, hard and semi-rigid according to their hardness classification: (1) flexible foam at 23 ° C and 50% relative humidity.
  • the elastic modulus of the foam is less than 70 MPa;
  • the rigid foam has a modulus of elasticity greater than 700 MPa at 23 ° C and 50% relative humidity;
  • a semi-hard (or semi-soft) foam between The foam between the above two types has a modulus of elasticity between 70 MPa and 700 MPa.
  • the dynamic polymer foam material can be further classified into low foaming, medium foaming, and high foaming according to its density.
  • a low foaming foam material having a density of more than 0.4 g/cm 3 and a foaming ratio of less than 1.5
  • a medium foamed foam material having a density of 0.1 to 0.4 g/cm 3 and a foaming ratio of 1.5 to 9
  • a foamed foam having a density of less than 0.1 g/cm 3 and a foaming ratio of greater than 9.
  • a raw material component for preparing a dynamic polymer in addition to the organoboron compound (I), the silicon-containing compound (II), the compound (III), the compound (IV), and the compound (V) described above, Other polymers added, additives which may be added, fillers which may be added, and these additives may be blended with the organoboron compound (I), the silicon-containing compound (II), the compound (III), the compound (IV)
  • the compound (V) crosslinking reaction product together constitutes a dynamic polymer having a hybrid crosslinked network.
  • the additional polymer that can be added which can form a crosslinked polymer together with a crosslinked polymer containing a silicon borate linkage to form a dynamic polymer having a hybrid crosslinked network, or as an additive in the system. Improve material properties, impart new properties to materials, improve material use and economic efficiency, and achieve comprehensive utilization of materials.
  • Other polymers which may be added may be selected from natural polymer compounds, synthetic resins, synthetic rubbers, synthetic fibers.
  • the present invention does not limit the properties of the added polymer and the molecular weight thereof, and may be an oligomer or a high polymer depending on the molecular weight, and may be a homopolymer or a copolymer depending on the polymerization form. In the specific use process, it should be selected according to the performance of the target material and the needs of the actual preparation process.
  • crosslinked polymers with ordinary covalent crosslinks When other polymers that can be added need to form a hybrid polymer with a crosslinked polymer containing a silicone borate linkage to form a dynamic polymer, it can be selected from crosslinked polymers with ordinary covalent crosslinks.
  • the crosslinked polymer with ordinary covalent cross-linking which may be selected from any one or any of the following cross-linked polymers: cross-linked polyvinyl chloride, cross-linked polyvinylidene chloride, cross-linked chlorination Polyethylene, crosslinked chlorinated polyvinyl chloride, crosslinked ethylene-vinyl acetate copolymer, crosslinked acrylonitrile-acrylate-styrene copolymer, crosslinked acrylonitrile-butadiene-styrene copolymer, crosslinked Polyethylene, crosslinked polyamide, crosslinked polyacrylic acid, crosslinked polyacrylamide, crosslinked polyacrylonitrile, crosslinked polyacrylate, crosslinked polymethyl acrylate, crosslinked polymeth
  • polymers that can be added serve as additives in the system to improve material properties, impart new properties to materials, improve material use and economic benefits, and achieve comprehensive utilization of materials
  • they may be selected from natural polymer compounds, synthetic resins. , synthetic rubber, synthetic fiber.
  • the other polymer which can be added is selected from a natural high molecular compound, it may be selected from any one of the following or any of several natural high molecular compounds: fur, natural rubber, cotton, hemp, asbestos, silk, lacquer, and the like.
  • the other polymer that can be added is selected from a synthetic resin
  • it may be selected from any one or any of the following synthetic resins: polychlorotrifluoroethylene, chlorinated polyethylene, chlorinated polyvinyl chloride, polyvinyl chloride, poly Vinylidene chloride, low density polyethylene, medium density polyethylene, high density polyethylene, ultra high molecular weight polyethylene, melamine-formaldehyde resin, polyamide, polyacrylic acid, polyacrylamide, polyacrylonitrile, polybenzimidazole, poly Ethylene terephthalate, polybutylene terephthalate, polycarbonate, polydimethylsiloxane, polyethylene, polyester, polyethersulfone, polyarylsulfone, polyetheretherketone, Tetrafluoroethylene-perfluoropropane copolymer, polyimide, polymethyl acrylate, polymethyl methacrylate, polymethacrylonitrile, polyphenylene ether, polypropylene, polyphen
  • the other polymer that can be added is selected from synthetic rubber
  • it may be selected from any one or any of the following synthetic rubbers: isoprene rubber, butadiene rubber, styrene butadiene rubber, nitrile rubber, neoprene, butyl Rubber, ethylene propylene rubber, silicone rubber, fluororubber, polyacrylate rubber, urethane rubber, chloroether rubber, thermoplastic elastomer, etc.
  • the other polymer that can be added is selected from synthetic fibers, it may be selected from any one or any of the following synthetic fibers: viscose fiber, cuprammonium fiber, diethyl ester fiber, triethyl ester fiber, polyamide fiber, Polyester fiber, polyurethane fiber, polyacrylonitrile fiber, polyvinyl chloride fiber, polyolefin fiber, fluorine-containing fiber, and the like.
  • polymers that may be added during the preparation of the polymer material are preferably natural rubber, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polyurethane, polyvinyl chloride, polyacrylic acid, polyacrylamide, polymethacrylic acid.
  • the additive that can be added can improve the material preparation process, improve product quality and yield, reduce product cost, or impart a unique application property to the product.
  • the additive which can be added is selected from any one or any of the following auxiliary agents: a synthesis auxiliary agent, including a catalyst, an initiator, a stabilization aid, including an antioxidant, a light stabilizer, a heat stabilizer; Additives for mechanical properties, including crosslinkers and co-crosslinkers, curing agents, chain extenders, toughening agents, coupling agents; additives to improve processability, including lubricants, mold release agents; softening and light Qualitative additives, including plasticizers, foaming agents, dynamic regulators; additives to change surface properties, including antistatic agents, emulsifiers, dispersants; additives to change color, including colorants, fluorescent whitening Agents, matting agents; flame retardant and smoke suppressing additives, including flame retardants; other additives, including nucleating agents, rheological agents, thickeners, leveling agents.
  • the catalyst in the additive which can be added, which can accelerate the reaction rate of the reactant in the reaction process by changing the reaction route and reducing the activation energy of the reaction. It includes but is not limited to any one or any of the following catalysts: 1 catalyst for polyurethane synthesis: amine catalysts such as triethylamine, triethylenediamine, bis(dimethylaminoethyl)ether, 2-(2) -dimethylamino-ethoxy)ethanol, trimethylhydroxyethylpropanediamine, N,N-bis(dimethylaminopropyl)isopropanolamine, N-(dimethylaminopropyl)diisopropyl Alcoholamine, N,N,N'-trimethyl-N'-hydroxyethyl bisamine ethyl ether, tetramethyldipropylene triamine, N,N-dimethylcyclohexylamine, N,N , N', N'-tetramethylalkylene diamine,
  • the initiator in the additive which can be added which can cause activation of the monomer molecule during the polymerization reaction to generate a radical, increase the reaction rate, and promote the reaction, including but not limited to any one or more of the following Initiator: 1 initiator for radical polymerization: organic peroxides such as lauroyl peroxide, benzoyl peroxide (BPO), diisopropyl peroxydicarbonate, dicyclohexyl peroxydicarbonate, Bis(4-tert-butylcyclohexyl) oxydicarbonate, t-butyl peroxybenzoate, t-butyl peroxypivalate, di-tert-butyl peroxide, dicumyl hydroperoxide; Nitrogen compounds, such as azobisisobutyronitrile (AIBN), azobisisoheptanenitrile; inorganic peroxides such as ammonium persulfate, potassium persulfate, etc.; 2 initiators
  • the initiator is preferably lauroyl peroxide, benzoyl peroxide, azobisisobutyronitrile or potassium persulfate.
  • the amount of the initiator to be used is not particularly limited and is usually from 0.1 to 1% by weight.
  • the antioxidant in the additive which can be added which can delay the oxidation process of the polymer sample, ensure that the material can be smoothly processed and prolonged, including but not limited to any one or more of the following Antioxidants: hindered phenols such as 2,6-di-tert-butyl-4-methylphenol, 1,1,3-tris(2-methyl-4hydroxy-5-tert-butylphenyl)butane , tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid] pentaerythritol ester, 2,2'-methylenebis(4-methyl-6-tert-butylphenol); Sulfur-containing hindered phenols such as 4,4'-thiobis-[3-methyl-6-tert-butylphenol], 2,2'-thiobis-[4-methyl-6-tert-butyl Phenol]; triazine-based hindered phenol, such as 1,3,5-bis[ ⁇ -(
  • the light stabilizer in the additive which can be added can prevent photoaging of the polymer sample and prolong its service life, including but not limited to any one or any of the following light stabilizers: light shielding agent, such as Carbon black, titanium dioxide, zinc oxide, calcium sulfite; ultraviolet absorbers such as 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octyloxybenzophenone, 2-(2) -hydroxy-3,5-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2,4,6-tri 2-hydroxy-4-n-butoxyphenyl)-1,3,5-s-triazine, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate; pioneer UV absorber, Such as p-tert-butylphenyl salicylate, bisphenol A disalicylate; UV quencher, such as bis(3,5-di-tert-butyl
  • the heat stabilizer in the additive which can be added can make the polymer sample not undergo chemical change due to heat during processing or use, or delay the change to achieve the purpose of prolonging the service life, including but not limited to Any one or any of the following heat stabilizers: lead salts, such as tribasic lead sulfate, lead dibasic phosphite, dibasic lead stearate, two Lead phthalate lead, tribasic lead maleate, base silicate lead, lead stearate, lead salicylate, dibasic lead phthalate, basic lead carbonate, silica coprecipitated silicon Lead acid; metal soaps: such as cadmium stearate, barium stearate, calcium stearate, lead stearate, zinc stearate; organotin compounds such as di-n-butyltin dilaurate, dilaurate N-octyltin, di(n-butyl)butyl maleate, di-n-octyltin di
  • the cross-linking agent in the additive which can be added which is used in the dynamic polymer to be cross-linked, and which can bridge the polymer molecules in the on-line type, so that multiple The linear molecules are bonded to each other to form a network structure, which can further increase the crosslinking density and crosslinking strength of the polymer, improve the heat resistance and service life of the polymer, and improve the mechanical properties and weather resistance of the material, including
  • the crosslinking agent is preferably dicumyl peroxide (DCP), benzoyl peroxide (BPO), or 2,4-dichlorobenzoyl peroxide (DCBP).
  • DCP dicumyl peroxide
  • BPO benzoyl peroxide
  • DCBP 2,4-dichlorobenzoyl peroxide
  • the amount of the crosslinking agent to be used is not particularly limited and is usually from 0.1 to 5% by weight.
  • the co-crosslinking agent in the additive which can be added which is used in the dynamic polymer to be used for cross-linking the reactant component, can inhibit the breakage of the polymer primary bond, and improve the crosslinking efficiency, including but It is not limited to any one or any of the following co-crosslinking agents: anthracene, such as p-quinone, p-dibenzoyl hydrazide; methacrylates such as methyl methacrylate, dimethyl Ethylene glycol acrylate, triethylene glycol dimethacrylate, tricarboxymethyl propyl trimethacrylate; allyl groups, such as diallyl phthalate, triallyl cyanide Acid ester, tetraallyloxyethane, diallyl maleate; maleimide, such as maleimide, N-phenylmaleimide, N, N'- Phenyl bismaleimide; other classes such as maleic anhydride, divinylbenzene, p-vinyl to
  • the co-crosslinking agent is preferably tricarboxymethyl propyl trimethacrylate (TMPT), triallyl cyanurate (TAIC), or ethylene glycol dimethacrylate (EDMA).
  • TMPT tricarboxymethyl propyl trimethacrylate
  • TAIC triallyl cyanurate
  • EDMA ethylene glycol dimethacrylate
  • the amount of the co-crosslinking agent to be used is not particularly limited and is usually from 0.1 to 1% by weight.
  • the curing agent in the additive which can be added can enhance or control the curing reaction of the reactant component in the polymerization process, including but It is not limited to any one or any of the following curing agents: an amine curing agent such as ethylenediamine, diethylenetriamine, triethylenetetramine, dimethylaminopropylamine, hexamethylenetetramine, m-phenylenediamine; An acid anhydride curing agent such as phthalic anhydride, maleic anhydride, pyromellitic dianhydride; an amide curing agent such as a low molecular polyamide; an imidazole such as 2-methylimidazole or 2-ethyl 4-methylimidazole, 2-phenylimidazole; boron trifluoride complex, and the like.
  • an amine curing agent such as ethylenediamine, diethylenetriamine, triethylenetetramine, dimethylaminopropylamine, hexamethylenetetramine, m
  • the curing agent is preferably ethylenediamine (EDA), diethylenetriamine (DETA), phthalic anhydride or maleic anhydride, and the amount of the curing agent to be used is not particularly limited, and is usually from 0.5 to 1% by weight.
  • the chain extender in the additive which can be added can react with a reactive group on the reactant molecular chain to expand the molecular chain and increase the molecular weight, including but not limited to any one or more of the following Chain extender: polyamine chain extender, such as diaminotoluene, diaminoxylene, tetramethylxylylenediamine, tetraethyldibenzylidenediamine, tetraisopropyldiphenylylene Diamine, m-phenylenediamine, tris(dimethylaminomethyl)phenol, diaminodiphenylmethane, 3,3'-dichloro-4,4'-diphenylmethanediamine (MOCA), 3 , 5-dimethylthiotoluenediamine (DMTDA), 3,5-diethyltoluenediamine (DETDA), 1,3,5-triethyl-2,6-diaminobenzene (TEMPDA).
  • the toughening agent in the additive which can be added can reduce the brittleness of the polymer sample, increase the toughness, and improve the material bearing Strength, including but not limited to any one or any of the following toughening agents: methyl methacrylate-butadiene-styrene copolymer resin, chlorinated polyethylene resin, ethylene-vinyl acetate copolymer resin and Modified product, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-butadiene copolymer, ethylene propylene rubber, EPDM rubber, cis-butyl rubber, styrene-butadiene rubber, styrene-butadiene a styrene block copolymer or the like; wherein the toughening agent is preferably ethylene propylene rubber, acrylonitrile-butadiene-styrene copolymer (ABS), styrene-butadiene-s
  • the coupling agent in the additive which can be added can improve the interface property between the polymer sample and the inorganic filler or the reinforcing material, reduce the viscosity of the material melt during the plastic processing, and improve the dispersion of the filler to improve the processing.
  • the properties give the article good surface quality and mechanical, thermal and electrical properties including, but not limited to, any one or any of the following coupling agents: organic acid chromium complexes, silane coupling agents, titanates a coupling agent, a sulfonyl azide coupling agent, an aluminate coupling agent, etc.; wherein the coupling agent is preferably ⁇ -aminopropyltriethoxysilane (silane coupling agent KH550), ⁇ -(2, 3 -glycidoxy)propyltrimethoxysilane (silane coupling agent KH560).
  • the amount of the coupling agent to be used is not particularly limited and is usually from 0.5 to 2% by weight.
  • the lubricant in the additive which can be added can improve the lubricity of the polymer sample, reduce friction and reduce interfacial adhesion performance, including but not limited to any one or any of the following lubricants: saturated hydrocarbons and Halogenated hydrocarbons such as paraffin wax, microcrystalline paraffin, liquid paraffin, low molecular weight polyethylene, oxidized polyethylene wax; fatty acids such as stearic acid, hydroxystearic acid; fatty acid esters such as fatty acid lower alcohol esters, fatty acids Polyol esters, natural waxes, ester waxes and saponified waxes; aliphatic amides such as stearic acid amide or stearic acid amide, oleamide or oleic acid amide, erucamide, N, N'-ethylene bis stearamide a fatty alcohol such as stearyl alcohol; a metal soap such as lead stearate, calcium stearate, barium stearate, magnesium stearate,
  • the release agent in the additive which can be added which can make the polymer sample easy to release, and the surface is smooth and clean, including but not limited to any one or any of the following mold release agents: paraffin hydrocarbon, soap Class, dimethyl silicone oil, ethyl silicone oil, methyl phenyl silicone oil, castor oil, waste engine oil, mineral oil, molybdenum disulfide, vinyl chloride resin, polystyrene, silicone rubber, etc., wherein the release agent is preferably dimethyl Base silicone oil.
  • the amount of the releasing agent to be used is not particularly limited and is usually from 0.5 to 2% by weight.
  • plasticizer in the additive which can increase the plasticity of the polymer sample, so that the hardness, modulus, softening temperature and embrittlement temperature of the polymer decrease, elongation, flexibility and flexibility Increased, including but not limited to any one or any of the following plasticizers: phthalates: dibutyl phthalate, dioctyl phthalate, diisooctyl phthalate, Diheptyl phthalate, diisononyl phthalate, diisononyl phthalate, butyl benzyl phthalate, butyl phthalate, butyl phthalate, phthalic acid Cyclohexyl ester, bis(tris) phthalate, di(2-ethyl)hexyl terephthalate; phosphates such as tricresyl phosphate, diphenyl-2-ethyl Ester; fatty acid esters such as di(2-ethyl)hexyl adipate, di(2-e
  • Diisodecyl dicarboxylate (DINP), diisononyl phthalate (DIDP), tricresyl phosphate (TCP).
  • the amount of the plasticizer to be used is not particularly limited and is usually from 5 to 20% by weight.
  • the foaming agent in the additive which can be added can make the polymer sample foam into pores, thereby obtaining a lightweight, heat-insulating, sound-insulating, elastic polymer material, including but not limited to any of the following Or any of a number of blowing agents: physical blowing agents, such as propane, methyl ether, pentane, neopentane, hexane, isopentane, heptane, isoheptane, petroleum ether, acetone, benzene, toluene, butyl Alkane, diethyl ether, methyl chloride, dichloromethane, dichloroethylene, dichlorodifluoromethane, chlorotrifluoromethane, physical microsphere/particle foaming agent; inorganic foaming agent such as sodium hydrogencarbonate, ammonium carbonate, carbonic acid Ammonium hydroxide; organic foaming agent, such as N, N'-dinitropenta Tetraamine, N,N'-dimethyl-
  • the blowing agent is preferably sodium hydrogencarbonate, ammonium carbonate, azodicarbonamide (foaming agent AC), N, N'-dinitropentamethyltetramine (foaming agent H), N, N' -Dimethyl-N,N'-dinitroso-terephthalamide (foaming agent NTA), physical microsphere foaming agent, and the amount of the foaming agent to be used are not particularly limited, and are generally 0.1 to 30% by weight. .
  • the dynamic modifier in the additive that can be added can enhance the dynamics of the adjustment of the organoborate linkage to obtain an optimized desired performance, which is generally a free compound with a free hydroxyl group or a free carboxyl group, including However, it is not limited to water, sodium hydroxide, alcohol (including silanol), carboxylic acid, and the like.
  • the amount of the dynamic regulator used is not particularly limited and is usually from 0.1 to 10% by weight.
  • the antistatic agent in the additive which can be added can guide or eliminate the harmful charge accumulated in the polymer sample, so that it does not cause inconvenience or harm to production and life, including but not limited to any one of the following or Several antistatic agents: anionic antistatic agents, such as alkyl sulfonates, sodium p-nonylphenoxypropane sulfonate, alkyl phosphate diethanolamine salts, potassium p-nonyldiphenyl ether sulfonate, phosphate esters Derivatives, phosphates, phosphate derivatives, fatty amine sulfonates, sodium butyrate sulfonate; cationic antistatic agents, such as fatty ammonium hydrochloride, lauryl trimethyl ammonium chloride, dodecyl Trimethylamine bromide, alkyl hydroxyethyl dimethyl ammonium perchlorate; zwitterionic antistatic agent, such as alkyl dicarboxymethyl ammonium
  • the emulsifier in the additive which can be added can improve the surface tension between various constituent phases in the polymer mixture containing the auxiliary agent to form a uniform and stable dispersion system or emulsion, which is preferably used for carrying out Emulsion polymerization, including but not limited to any one or any of the following emulsifiers: anionic, such as higher fatty acid salts, alkyl sulfonates, alkyl benzene sulfonates, sodium alkyl naphthalene sulfonates, succinic acid Esters, petroleum sulfonates, castor oil sulfates, sulfated butyl ricinolates, phosphate esters, fatty acyl-peptide condensates; cationic, such as alkyl ammonium salts, alkyl quaternary ammonium salts , alkyl pyridinium salt; zwitterionic type, such as carboxylate type, sulfonate
  • the dispersing agent in the additive which can be added enables the solid floc cluster in the polymer mixture to be dispersed into fine particles and suspended in the liquid, uniformly dispersing solid and liquid particles which are difficult to be dissolved in the liquid, and can also Preventing sedimentation and agglomeration of particles to form a stable suspension, including but not limited to any one or any of the following dispersants: anionic, such as sodium alkyl sulfate, sodium alkylbenzene sulfonate, sodium petroleum sulfonate ; cationic; nonionic, such as fatty alcohol polyoxyethylene ether, sorbitan fatty acid polyoxyethylene ether; inorganic type, such as silicate, condensed phosphate, etc.; wherein the dispersing agent is preferably dodecyl benzene Sodium sulfonate, naphthalene methylene sulfonate (dispersant N), fatty alcohol polyoxyethylene ether.
  • the colorant in the additive which can be added can make the polymer product exhibit the desired color and increase the surface color, including but not limited to any one or any of the following colorants: inorganic pigments such as titanium white , chrome yellow, cadmium red, iron red, molybdenum chrome red, ultramarine blue, chrome green, carbon black; organic pigments, such as Lisol Baohong BK, lake red C, blush, Jiaji R red, turnip red, Permanent solid red HF3C, plastic red R and clomo red BR, permanent orange HL, fast yellow G, Ciba plastic yellow R, permanent yellow 3G, permanent yellow H 2 G, indigo blue B, indigo green , plastic violet RL, aniline black; organic dyes, such as thioindigo, reduced yellow 4GF, Shilin blue RSN, salt-based rose essence, oil-soluble yellow, etc.; among them, the choice of colorants depends on the color requirements of the sample, not Need special restrictions.
  • the amount of the coloring agent to be used is not
  • the optical brightener in the additive which can be added enables the dyed material to obtain a fluorite-like sparkling effect, including but not limited to any one or any of the following fluorescent whitening agents: diphenyl Ethylene type, coumarin type, pyrazoline type, benzooxazole type, phthalimide type, etc.; among them, the fluorescent whitening agent is preferably sodium stilbene biphenyl disulfonate (fluorescent whitening agent CBS) , 4,4-bis(5-methyl-2-benzoxazolyl)stilbene (fluorescent brightener KSN), 2,2-(4,4'-distyryl) bisbenzone Azole (fluorescent brightener OB-1).
  • the amount of the fluorescent whitening agent to be used is not particularly limited and is usually from 0.002 to 0.03 % by weight.
  • the matting agent in the additive that can be added enables diffuse reflection when incident light reaches the surface of the polymer, resulting in a low-gloss matt and matte appearance, including but not limited to any one or more of the following Matting agent: precipitated barium sulfate, silica, hydrous gypsum powder, talc powder, titanium dioxide, polymethyl urea resin, etc.; wherein the matting agent is preferably silica.
  • the amount of the matting agent to be used is not particularly limited and is usually from 2 to 5% by weight.
  • the flame retardant in the additive that can be added can increase the flame resistance of the material, including but not limited to any one or any of the following flame retardants: phosphorus, such as red phosphorus, tricresyl phosphate, Triphenyl phosphate, tricresyl phosphate, toluene diphenyl phosphate; halogen-containing phosphates such as tris(2,3-dibromopropyl)phosphate, tris(2,3-dichloropropyl) phosphate; Organic halides, such as high chlorine content chlorinated paraffins, 1,1,2,2-tetrabromoethane, decabromodiphenyl ether, perchlorocyclopentanane; inorganic flame retardants, such as antimony trioxide, Aluminum hydroxide, magnesium hydroxide, zinc borate; reactive flame retardant, such as chloro-bromic anhydride, bis(2,3-dibromopropyl) fumarate, te
  • the nucleating agent in the additive which can be added can shorten the molding cycle of the material and improve the transparency and surface of the product by changing the crystallization behavior of the polymer, accelerating the crystallization rate, increasing the crystal density, and promoting the grain size miniaturization.
  • the purpose of physical and mechanical properties such as gloss, tensile strength, rigidity, heat distortion temperature, impact resistance, creep resistance, etc., including but not limited to any one or any of the following nucleating agents: benzoic acid, adipic acid And sodium benzoate, talc, sodium p-phenolate, silica, ethylene propylene rubber, ethylene propylene diene rubber, etc.; wherein the nucleating agent is preferably silica or ethylene propylene diene monomer.
  • the amount of the nucleating agent to be used is not particularly limited and is usually from 0.1 to 1% by weight.
  • the rheological agent in the additive which can be added can ensure good paintability and appropriate film thickness of the polymer in the coating process, prevent sedimentation of solid particles during storage, and improve redispersibility thereof.
  • rheological agents including but not limited to any one or any of the following rheological agents: inorganic, such as barium sulfate, zinc oxide, alkaline earth metal oxides, calcium carbonate, lithium chloride, sodium sulfate, magnesium silicate, gas phase dioxide Silicon, water glass, colloidal silica; organometallic compounds such as aluminum stearate, titanium chelate, aluminum chelate; organic, such as organic bentonite, castor oil derivatives, isocyanate derivatives, acrylic emulsions, An acrylic copolymer, a polyethylene wax or the like; wherein the rheological agent is preferably an organic bentonite, a polyethylene wax, a hydrophobically modified alkaline swellable emulsion (HASE), or an alkali swell
  • the thickener in the additive which can be added can impart good thixotropy and proper consistency to the polymer mixture, thereby satisfying various aspects such as stability performance and application performance during production, storage and use.
  • Requirements including but not limited to any one or any of the following thickeners: low molecular substances such as fatty acid salts, alkyl dimethylamine oxides, fatty acid isopropylamides, sorbitan tricarboxylates, glycerol Trioleate, cocoamidopropyl betaine; high molecular substances, such as bentonite, artificial hectorite, micronized silica, colloidal aluminum, polymethacrylate, methacrylic acid copolymer, maleic anhydride copolymer, Polyacrylamide, polyvinylpyrrolidone, polyether, etc.; wherein the thickener is preferably bentonite or acrylic acid-methacrylic acid copolymer.
  • the amount of the thickener to be used is not particularly
  • the leveling agent in the additive which can be added can ensure the smoothness and uniformity of the polymer coating film, improve the surface quality of the coating film, and improve the decorative property, including but not limited to any one or any of the following levels.
  • Agent polyacrylate, silicone A resin or the like; wherein the leveling agent is preferably a polyacrylate.
  • the amount of the leveling agent to be used is not particularly limited and is usually from 0.5 to 1.5% by weight.
  • additives which may be added are preferably catalysts, initiators, antioxidants, light stabilizers, heat stabilizers, crosslinking agents, curing agents, chain extenders, toughening agents, plasticizers. , foaming agent, flame retardant, dynamic regulator.
  • the coloring effect of the pigment; 5 imparts light stability and chemical resistance; 6 acts as a compatibilizing agent, which can reduce the cost and improve the competitiveness of the product in the market.
  • the filler which can be added is selected from any one or any of the following fillers: an inorganic non-metallic filler, a metal filler, and an organic filler.
  • the inorganic non-metallic fillers that can be added include, but are not limited to, any one or more of the following: calcium carbonate, clay, barium sulfate, calcium sulfate and calcium sulfite, talc, white carbon, quartz, mica powder , clay, asbestos, asbestos fiber, feldspar, chalk, limestone, barite powder, gypsum, graphite, carbon black, graphene, graphene oxide, carbon nanotubes, molybdenum disulfide, slag, flue ash, wood flour Shell powder, diatomaceous earth, red mud, wollastonite, silicon aluminum black, aluminum hydroxide, magnesium hydroxide, fly ash, oil shale powder, expanded perlite powder, conductive carbon black, vermiculite, iron Mud, white mud, alkaline mud, boron mud, (hollow) glass microbeads, foamed microspheres, foamable particles, glass powder, cement, glass fiber, carbon fiber, quartz fiber
  • the metal filler to be added includes, but is not limited to, any one or more of the following: conductive metal filler, metal particles, nanoparticles, metal and alloy powder, carbon steel, stainless steel, stainless steel fiber, liquid metal, metal organic a compound (especially an organometallic compound having photothermal, magnetocaloric, and electrothermal properties).
  • the organic fillers that can be added include, but are not limited to, any one or more of the following: fur, natural rubber, cotton, cotton linters, hemp, jute, flax, asbestos, cellulose, cellulose acetate, shellac, Chitin, chitosan, lignin, starch, protein, enzyme, hormone, lacquer, wood powder, shell powder, glycogen, xylose, silk, rayon, vinylon, phenolic microbeads, resin beads, and the like.
  • the type of filler to be added is not limited, and is mainly determined according to the required material properties, and preferably calcium carbonate, barium sulfate, talc, carbon black, graphene, (hollow) glass microbeads, foamed microspheres, glass fibers,
  • the amount of the filler used for the carbon fiber, the metal powder, the natural rubber, the lint, and the resin microbead is not particularly limited and is usually from 1 to 30% by weight.
  • a certain proportion of the raw materials may be mixed by mixing in any suitable material known in the art to prepare a dynamic polymer, which may be a batch, semi-continuous or continuous process mixture; Similarly, dynamic polymers can be formed in a batch, semi-continuous or continuous process.
  • the mixing modes employed include, but are not limited to, solution agitation mixing, melt agitation mixing, kneading, kneading, opening, melt extrusion, ball milling, etc., wherein solution agitation mixing, melt agitation mixing, and melt extrusion are preferred.
  • the form of energy supply during material mixing includes, but is not limited to, heating, illumination, radiation, microwave, ultrasound.
  • the molding methods used include, but are not limited to, extrusion molding, injection molding, compression molding, tape casting, calender molding, and casting molding.
  • a specific method for preparing a dynamic polymer by stirring and mixing a solution is usually carried out by stirring and dispersing the raw materials in a dissolved or dispersed form in a respective solvent or a common solvent in a reactor.
  • the mixing reaction temperature is controlled at 0 to 200 ° C, preferably 25 to 120 ° C, more preferably 25 to 80 ° C, and the mixing and stirring time is controlled to be 0.5 to 12 h, preferably 1 to 4 h.
  • the product obtained after the mixing and stirring may be poured into a suitable mold and placed at 0 to 150 ° C, preferably 25 to 80 ° C, for 0 to 48 hours to obtain a polymer sample.
  • a solvent sample may be selected as a solvent, a gel, a gel, or the like, or a solid polymer sample in the form of a block, a foam, or the like may be selected as a solvent.
  • the dynamic polymer is prepared by the method using the compound (IV) and the compound (V) as a raw material, it is usually necessary to add an initiator to the solvent to initiate polymerization to obtain a dynamic polymer, or to add a dispersant and Oil
  • the soluble initiator is formulated into a suspension to initiate polymerization by suspension polymerization or slurry polymerization to obtain a dynamic polymer, or an initiator and an emulsifier are added to prepare an emulsion to initiate polymerization by emulsion polymerization to obtain a dynamic polymer.
  • the methods of solution polymerization, suspension polymerization, slurry polymerization, and emulsion polymerization employed are all known to those skilled in the art and widely used, and can be adjusted according to actual conditions, and will not be further developed here.
  • the solvent used in the above preparation method should be selected according to the actual conditions such as the reactants, products and reaction processes, including but not limited to any one of the following solvents or a mixed solvent of any of several solvents: deionized water, acetonitrile, acetone, Butanone, benzene, toluene, xylene, ethyl acetate, diethyl ether, methyl tert-butyl ether, tetrahydrofuran, chloroform, dichloromethane, 1,2-dichloroethane, dimethyl sulfoxide, dimethyl Amide, dimethylacetamide, N-methylpyrrolidone, isopropyl acetate, n-butyl acetate, trichloroethylene, mesitylene, dioxane, Tris buffer, citrate buffer, acetic acid buffer solution, phosphoric acid Buffer solution or the like; preferably deionized water, toluene, chloroform,
  • the solvent may also be selected from the group consisting of an oligomer, a plasticizer, and an ionic liquid;
  • the oligomer includes, but is not limited to, a polyvinyl acetate oligomer, a poly(n-butyl acrylate) oligomer, a liquid paraffin, and the like;
  • the plasticizer may be selected from the classes of plasticizers in the additive which may be added, and will not be described herein;
  • the ionic liquid generally consists of an organic cation and an inorganic anion, and the cation is usually an alkyl quaternary ammonium ion.
  • a hydrogel can be obtained by using deionized water to prepare a dynamic polymer and selectively retaining it; when an organic solvent is used to prepare a dynamic polymer and it is selected to be retained, an organogel can be obtained; When preparing a dynamic polymer and selecting to retain it, an oligomer swollen gel can be obtained; when a dynamic polymer is prepared by using a plasticizer and selected to retain it, a plasticizer swollen gel can be obtained; using an ionic liquid to prepare When the dynamic polymer is selected and retained, an ionic liquid swollen gel can be obtained.
  • the liquid concentration of the compound to be disposed is not particularly limited depending on the structure, molecular weight, solubility, and desired dispersion state of the selected reactant, and a preferred compound liquid concentration is 0.1 to 10 mol/L, and more preferably 0.1 to 1 mol/L.
  • a specific method for preparing a dynamic polymer by melt-mixing usually by directly stirring or mixing the raw materials in a reactor, and then stirring and mixing the mixture, generally in the case where the raw material is a gas, a liquid or a solid having a low melting point.
  • the mixing reaction temperature is controlled at 0 to 200 ° C, preferably 25 to 120 ° C, more preferably 25 to 80 ° C
  • the mixing and stirring time is controlled to be 0.5 to 12 h, preferably 1 to 4 h.
  • the product obtained after the mixing and stirring may be poured into a suitable mold and placed at 0 to 150 ° C, preferably 25 to 80 ° C, for 0 to 48 hours to obtain a polymer sample.
  • the dynamic polymer is prepared by the method using the compound (IV) or the compound (V) as a raw material, it is usually necessary to add a small amount of the initiator to initiate polymerization to obtain a dynamic polymer by melt polymerization or gas phase polymerization.
  • the methods of melt polymerization and gas phase polymerization used are all known to those skilled in the art and widely used, and can be adjusted according to actual conditions, and will not be developed in detail here.
  • a specific method for preparing a dynamic polymer by melt extrusion mixing is usually carried out by adding a raw material to an extruder for extrusion blending at an extrusion temperature of 0 to 280 ° C, preferably 50 to 150 ° C.
  • the reaction product can be directly cast into a suitable size, or the obtained extruded sample can be crushed and then sampled by an injection molding machine or a molding machine.
  • the injection temperature is 0-280 ° C, preferably 50-150 ° C
  • the injection pressure is preferably 60-150 MPa
  • the molding temperature is 0-280 ° C, preferably 25-150 ° C, more preferably 25-80 ° C
  • the molding time is 0.5-60 min, preferably
  • the molding pressure is preferably 4-15 MPa at 1-10 min.
  • the spline can be placed in a suitable mold and placed at 0-150 ° C, preferably 25-80 ° C, for 0-48 h to give the final polymer sample.
  • the composition selection and formulation ratio of the selected organoboron compound (I), silicon-containing compound (II), compound (III), compound (IV), and compound (V) can be flexibly grasped. However, reasonable design and combination should be based on the properties of the target material and the structure of the selected compound, the number of reactive groups contained, and the molecular weight. Wherein, the organoboron compound (I), the silicon-containing compound (II), the compound (III), the compound (IV), and the compound (V) are added to ensure functional groups and/or other reactive groups in the reactant system. The molar equivalent ratio is in an appropriate range.
  • the molar equivalent ratio of the organic boronic acid group and/or the organic boronic acid ester group contained in the organic boron compound (I), the silicon-containing compound (II), and the compound (III) to the silanol group and/or the silanol precursor functional group is preferably 0.1 to
  • the range of 10 is more preferably in the range of 0.3 to 3, and still more preferably in the range of 0.8 to 1.2.
  • the molar equivalent ratio of the functional group contained in the organoboron compound (I), the silicon-containing compound (II), and the compound (III) is close to 1:1, a dynamic polymer having a high degree of reaction and good stability can be obtained;
  • the molar equivalent ratio of the functional group contained in the boron compound (I), the silicon-containing compound (II), and the compound (III) deviates from 1:1, a dynamic polymer having good dynamic properties can be obtained.
  • the dynamic polymer is prepared by using the compound (IV) and the compound (V) as a reaction component, the molar equivalent ratio of other reactive groups in the reactant system should also be in an appropriate range to carry out polymerization/crosslinking reaction.
  • the molar equivalent ratio of the other reactive groups is preferably in the range of 0.1 to 10, more preferably in the range of 0.3 to 3, still more preferably in the range of 0.8 to 1.2.
  • those skilled in the art can adjust according to actual needs.
  • the amount of the raw materials of the dynamic polymer components is not particularly limited, and those skilled in the art can adjust according to the actual preparation conditions and the properties of the target polymer.
  • the dynamic polymer properties are widely adjustable and have broad application prospects, and are embodied in military aerospace equipment, functional coatings, biomedicine, biomedical materials, energy, construction, bionics, smart materials, and the like. Eye-catching application effects.
  • dynamic polymers by utilizing the dilatancy of dynamic polymers, it can be applied to oil well production, fuel explosion protection, etc. It can also be applied to the production of damping shock absorbers for various motor vehicles, mechanical equipment, bridges.
  • the vibration isolation of the building when the polymer material is subjected to vibration, it can dissipate a large amount of energy to dampen the effect, thereby effectively alleviating the vibration of the vibrating body; and also utilizing the stress responsiveness of the dynamic polymer to generate the degree of cross-linking
  • the change, the flexibility and the strong elasticity change play the role of effectively dispersing the impact force, so that it can be used as an energy absorbing cushioning material in buffer packaging materials, sports protection products, impact protection products, and military and police protective materials, etc.
  • the shock and impact of the object or the human body under the action of external force including the shock wave generated by the explosion; etc.; because of the common covalent cross-linking, it can also be used as a shape memory material.
  • the material When the external force is removed, the material is in the loading process. Deformation due to dissociation of reversible organoborate linkages can be restored;
  • Some dynamic reversibility and stress rate dependence the preparation of stress-sensitive polymer materials, part of which can be applied to the preparation of toys and fitness materials with creeping and high elastic conversion magical effects, can also be used to prepare roads and bridges
  • the speed locker can be used to make seismic shear plates or cyclic stress bearing tools, or to make stress monitoring sensors.
  • a binder having a partial self-repairing function can be prepared, which can be applied to the adhesiveness of various materials, and can also be used as a bulletproof glass interlayer adhesive;
  • Certain wound self-healing polymer sealing glue and seals such as sealing plugs and sealing rings are widely used in electronics, electrical appliances, batteries, etc.; based on the dynamic reversibility of silicone borate bonds, it can be designed to have a scraping Scratch-resistant coating with self-repairing function, which prolongs the service life of the coating and achieves long-lasting corrosion protection of the base material.
  • a polymer mat with partial self-repairing function can be prepared.
  • Sheet or polymer sheet which can imitate the principle of healing of biological damage, enabling the material to self-heal the internal or external damage, eliminating hidden dangers and prolonging the service life of materials in military, aerospace, electronics, bionics, etc. Shows great application potential.
  • a silicone borate bond and an optional hydrogen bond are used as sacrificial bonds, and the fracture under external force can absorb a large amount of energy and impart excellent toughness to the polymer material, thereby obtaining a polymer having excellent toughness.
  • Fiber or sheet widely used in military, aerospace, sports, energy, construction and other fields.
  • crosslinked polymeric material of the present invention is further described below in conjunction with some specific embodiments.
  • the specific embodiments are intended to describe the invention in further detail, without limiting the scope of the invention.
  • a macromolecular organoboron compound (I), a small molecule silicon-containing compound (II), a macromolecular compound (V), and a small molecule compound (V) to prepare a dynamic polymer having a double crosslinked network, wherein the first network is dynamic The price cross-links, and the second network is ordinary covalent cross-linking.
  • acrylamide-phenylboronic acid copolymer (a) (with AIBN as initiator, acrylamide, 3-acrylamidophenylboronic acid as raw material, obtained by RAFT radical polymerization), 200 ml of deionized water, heated After stirring and dissolving at 50 ° C, a little acetic acid was added dropwise, and 1.7 g of the silane compound (b) (made by reacting 3-aminopropylmethyldimethoxysilane or adipoyl chloride) was slowly added, and the mixture was stirred and mixed. After 30 min, 2 ml of triethylamine was added, and the reaction was further stirred at 50 ° C for 2 h to form a first network.
  • silane compound (b) made by reacting 3-aminopropylmethyldimethoxysilane or adipoyl chloride
  • a small molecule compound (V), a macromolecular compound (V), a macromolecular organoboron compound (I), a small molecule silicon-containing compound (II) to prepare a dynamic polymer having a double crosslinked network, wherein the first network is a common The price crosslinks, and the second network is dynamic covalent cross-linking.
  • alkynyl-terminated polyamide (b) polyamide having a molecular weight of about 5000, 5- Alkynylhexanoic acid, propargyl alcohol as raw material, dicyclohexylcarbodiimide, 4-dimethylaminopyridine as catalyst, obtained by amidation and esterification reaction, 0.56 ml of N,N-diisopropyl Ethylamine, 38 mg of catalyst Cu(PPh 3 ) 3 Br.
  • the reaction flask was heated to 60 ° C, reacted under stirring for 12 h, and then added 4.1 g of phenylboronic acid-terminated polytetrahydrofuran (d) (using 3-aminobenzeneboronic acid as a raw material, and dibrom-terminated polytetrahydrofuran (molecular weight) About 1000) is prepared by a hydrocarbylation reaction, and a small amount of 20% aqueous acetic acid solution is added under stirring, and after mixing uniformly, 1.76 g of 1,1,3,3,5,5-six is slowly added successively.
  • d phenylboronic acid-terminated polytetrahydrofuran
  • the alkane/dichloromethane (3:1) was eluted to remove impurities, and the obtained polymer solid was placed in an oven at 50 ° C for 24 hours for drying and further reaction to finally obtain a block polymer sample having a certain elasticity.
  • the polymer sample can exhibit temporary rigidity and dissipate the stress, and can be applied as an impact resistant protective pad to the fitness equipment.
  • Preparation using a small molecule organoboron compound (I), a macromolecular silicon-containing compound (II), and a macromolecular compound (V) A dynamic polymer of a double crosslinked network, wherein the first network is a common covalent crosslink and the second network is a dynamic covalent crosslink.
  • a tri-terminal hydrogenated polysiloxane (b) (using octamethylcyclotetrasiloxane or phenyltris(dimethylsiloxane)silane as a raw material, concentrated sulfuric acid was added.
  • the catalyst is obtained by ring-opening polymerization method, 15 ml of double-end unsaturated polyether (c) (molecular weight is about 3000), and after passing nitrogen for 5 minutes, 200 ml of dioctyl phthalate is added, and the mixture is heated to 40 ° C for stirring and dissolution.
  • the obtained viscous crosslinked polymer was poured into a suitable mold and placed in a vacuum oven at 60 ° C for 24 h.
  • the reaction after cooling to room temperature for 30 min, the resulting polymer sample is gelatinous, has a certain elasticity, and Extend within a certain range. It was made into a dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm size, and subjected to a tensile test using a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 4.48 ⁇ 1.52 MPa. The tensile modulus was 6.72 ⁇ 2.39 MPa, and the elongation at break was 712 ⁇ 46%.
  • the obtained product also has good plasticity, can be placed in different shapes of the mold according to actual needs, and a certain degree of stress is applied under a certain temperature condition, and the polymer product of different shapes can be formed according to the mold.
  • the material exhibits good viscoelasticity, good isolation shock and stress buffering, and also exhibits excellent hydrolysis resistance.
  • the polymer sample can be made into an impact resistant protective gasket for use.
  • a small molecule organoboron compound (I), a small molecule silicon-containing compound (II), a macromolecular compound (V), a small molecule compound (V) to prepare a dynamic polymer having a double crosslinked network, wherein the first network is dynamic The price cross-links, and the second network is ordinary covalent cross-linking.
  • the organoboron compound (a) (using 1-hydroxyborocyclopropene as a raw material, and reacting it with hydrobromic acid to obtain 2-bromo-1-hydroxyborane; and 1,3,5- Triacryloylhexahydro-1,3,5-triazine, 2-aminoethanethiol is used as raw material, AIBN is used as initiator, triethylamine is used as catalyst, and intermediate product is obtained by thiol-ene click reaction, and then with 2 -Bromo-1-hydroxyborane is prepared by a hydrocarbylation reaction) dissolved in a tetrahydrofuran solvent and configured to be a 0.5 mol/L solution; a certain amount of a silicon-containing compound (b) (trimethylolpropane III) (3-mercaptopropionate), 1-chloro-vinyl-silacyclobutane as raw material, AIBN as initiator, triethylamine as catalyst, prepared by thiol-en
  • reaction liquid was poured into a suitable mold, placed in a vacuum oven at 60 ° C for 24 h for further reaction and drying, and then cooled to room temperature for 30 min to finally obtain a hard gelatinous polymer material, and the sample exhibited high elasticity and Good thermal stability, press it with your fingers to rebound quickly. It was made into a dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm size, and subjected to a tensile test using a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 2.78 ⁇ 0.91 MPa.
  • the tensile modulus was 4.54 ⁇ 1.12 MPa, and the elongation at break was 356 ⁇ 108%.
  • the polymer material can be used as a seismic shear material or a cyclic stress-carrying material having an efficient damping effect.
  • a dynamic polymer having a double crosslinked network is prepared by using a macromolecular compound (V), a macromolecular organoboron compound (I), and a macromolecular silicon-containing compound (II), wherein the first network is a common covalent crosslink, and the second network For dynamic covalent cross-linking.
  • V macromolecular compound
  • I macromolecular organoboron compound
  • III macromolecular silicon-containing compound
  • the polymer solution When it reaches a certain viscosity, the polymer solution is poured into a suitable mold, placed in a vacuum oven at 80 ° C for 24 hours to remove the solvent, and then cooled to room temperature for 30 minutes, finally obtained a block.
  • a yellow, hard, solid polymer solid sample with a certain gloss on the surface It was made into a dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm, and tensile test was carried out by a tensile tester at a tensile rate of 10 mm/min, and the tensile strength of the sample was measured to be 8.64 ⁇ 1.45 MPa. The tensile modulus is 20.78 ⁇ 4.25 MPa.
  • the polymer sample has a smooth surface and a certain strength and rigidity, which can be applied to the manufacture of medical supplies.
  • a small molecule compound (V), a macromolecular organoboron compound (I), a macromolecular silicon-containing compound (II) to prepare a dynamic polymer having a double crosslinked network (containing supramolecular hydrogen bonding), wherein the first network is ordinary Covalent cross-linking, the second network is dynamic covalent cross-linking.
  • acrylamide-borate copolymer (d) (using 1-isopropylethylborate diisopropyl ester, acryloyl chloride as raw material to prepare borate acrylamide monomer, and then with N, N-dimethyl acrylamide is obtained by radical polymerization to obtain a final product) dissolved in deionized water to prepare a solution of 0.4 mol/L; at the same time, a certain amount of acrylamide-silane copolymer (e) is weighed (with 2-acrylic acid) -3-(diethoxymethylsilyl)propyl ester is used as a raw material, and AIBN is an initiator, which is obtained by radical polymerization of N,N-dimethylacrylamide, and is dissolved in deionized water.
  • the solution was set to 0.5 mol/L, and 20 ml of each of the two copolymer solutions was uniformly mixed.
  • the previously prepared polyvinylpyrrolidone gel was swollen in the copolymer mixed solution, and after ultrasonication for 5 min, 1.6 g of Fe 3 O 4 particles surface-modified with silane coupling agent A151 and 1.0 g of bentonite were added, and the ultrasonication was continued for 1 min.
  • the Fe 3 O 4 particles were uniformly dispersed therein, and then a small amount of a 1 mol/L NaOH solution was added dropwise thereto, and the mixture was reacted at 60 ° C for 2 hours in a constant temperature water bath.
  • an IPN double-network hydrogel in which magnetic particles were dispersed was obtained. It was dried in an oven at 50 ° C for 24 h, then cooled to room temperature for 30 min to finally obtain a polymer dry gum with good resilience. It was made into a dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm, and tensile test was performed by a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 6.63 ⁇ 1.44 MPa. The tensile modulus was 10.05 ⁇ 1.97 MPa, and the elongation at break was 841 ⁇ 148%. The polymer sample exhibits good mechanical properties, and because it contains magnetic particles, electromagnetic wave heating can be used to control the shape memory capability of the material.
  • a dynamic polymer having a double crosslinked network is prepared using the macromolecular compound (III) and the macromolecular compound (V), wherein the first network is a common covalent crosslink and the second network is a dynamic covalent crosslink.
  • methyl vinyl silicone oil (a) (molecular weight of about 50,000), 15 ml of methyl hydrogenated silicone oil (b) (molecular weight of about 20,000), and 10 ml of monohydrogen terminated dimethicone (c) ( The molecular weight is about 5000), adding 2ml of 1% Pt(dvs)-xylene solution as a catalyst, heating to 80 ° C, reacting under nitrogen protection for 35 h, forming a first network, and then adding 25 ml of organic borate-silane modification Silicone oil (d) (based on methyl mercapto silicone oil with molecular weight of about 60,000, dimethyl vinyl borate, methyl vinyl diethoxysilane as raw material, DMPA as photoinitiator, under ultraviolet light irradiation, After thiol-ene click reaction, the mixture was heated to 80 ° C and mixed uniformly.
  • d organic borate-silane modification Silicone oil
  • a dynamic polymer having a single hybrid crosslinked network (containing supramolecular hydrogen bonding) is prepared using a macromolecular compound (V), a small molecule compound (V), and a small molecule compound (IV).
  • Ethylthio)propylsilane is used as a raw material, and is obtained by a condensation reaction. The reaction is continued as a crosslinking agent for 1 hour. After the reaction is completed, the acetone is removed in vacuo and cooled to room temperature to finally obtain a polyurethane-based polymer material having high elasticity. It is used as a damping damping material in automobiles, which can reduce noise and reduce vibration.
  • a dynamic polymer having a single hybrid crosslinked network is prepared using a macromolecular organoboron compound (I), a macromolecular silicon-containing compound (II), and a macromolecular compound (V).
  • dendritic organoboron compound (a) (using 2,2-dimethoxy-phenyl ethyl ketone (DMPA) as a photoinitiator, ultraviolet light as the light source, and vinyl boric acid and 1,2-B Dithiol is obtained by thiol-olefin click addition reaction; DMPA is used as photoinitiator, ultraviolet light is used as light source, and triallylamine and 1,2-ethanedithiol are passed through thiol-olefin.
  • DMPA 2,2-dimethoxy-phenyl ethyl ketone
  • the secondary intermediate product is further produced by a thiol-olefin click addition reaction with triallylamine, followed by passage of the thiol with 1,2-ethanedithiol.
  • the olefin click addition reaction produces a tertiary intermediate product, which is then reacted with triallylamine to obtain a four-stage intermediate product, and finally reacted with mercaptoboronic acid and 1,2-ethanedithiol via a thiol-olefin click addition reaction.
  • the final product is dissolved in a toluene solvent to prepare a 0.01 mol/L solution, 2.0 mg of BHT antioxidant is added; a certain amount of dimethyl hydroxy silicone oil (b) (molecular weight of about 4000) is heated and dissolved in a toluene solvent. Formulated into a solution of 0.12 mol / L; a certain amount of divinyl dimethicone (c) (molecular weight of about 2000) is heated and dissolved in toluene solvent Formulated 0.08mol / L solution.
  • the prepared polymer sample has a smooth surface and a certain strength, and can be stretched within a certain range. In addition, after the surface of the sample is slightly scratched, after applying a certain pressure for 4-6 hours in a mold placed at 80 ° C, the scratch disappears and has a certain self-repairing effect.
  • This polymer material can be used as a scratch-resistant electronic product protective case.
  • silane-modified polycaprolactone (b) (with allyl alcohol as initiator, stannous octoate as a catalyst, initiated ⁇ -caprolactone ring-opening polymerization to obtain olefin monocapped Polycaprolactone, which is then acrylated to give the olefin bi-capped polycaprolactone, which is then combined with gamma-mercaptopropyltrimethoxysilane.
  • the alkane uses AIBN as the initiator and triethylamine as the catalyst, and the final product is obtained by thiol-ene click reaction.
  • a macromolecular organoboron compound (I), a macromolecular silicon-containing compound (II), and a small molecule compound (V) to prepare a dynamic polymer having a double crosslinked network (containing supramolecular hydrogen bonding), wherein the first network is dynamic Covalent cross-linking, the second network is common covalent cross-linking.
  • the viscous polymer solution was poured into a suitable mold, dried in a vacuum oven at 50 ° C for 24 h, and then cooled to room temperature for 30 min to finally obtain a sample of the double network ionic liquid gel polymer in which graphene was dispersed, with fingers. By pressing the surface of the sample, the sample can rebound faster and exhibit good resilience. It was made into a dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm, and tensile test was performed by a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 3.94 ⁇ 0.42 MPa.
  • the tensile modulus is 5.89 ⁇ 1.54 MPa, and the elongation at break is 441 ⁇ 125%.
  • the polymer gel can exhibit good shape memory properties, and the gel can quickly return to its original shape after external stress is removed.
  • the dynamic polymer sample in this embodiment can be used as a graphene composite intelligent biomimetic material, and can be deformed and restored by an applied electric field.
  • a dynamic polymer having a single hybrid crosslinked network (containing supramolecular hydrogen bonding) is prepared using a small molecule compound (IV) and a small molecule compound (V).
  • a silicon borate compound (a) (using 1-aminoethylboronic acid and 3-aminopropyldimethylethoxysilane as raw materials) was added thereto.
  • a macromolecular organoboron compound (I), a macromolecular silicon-containing compound (II), a macromolecular compound (III), and a macromolecular compound (V) to prepare a dynamic polymer having a double crosslinked network, wherein the first network is dynamic The price crosslinks and the common covalent crosslinks, and the second network is dynamic covalent cross-linking and common covalent cross-linking.
  • phenylborate modified ethylene propylene rubber (a) (using low molecular weight ethylene propylene diene rubber as raw material, using dibenzoyl peroxide as a crosslinking agent to form a small cluster structure, and then The surface of the cluster is grafted with maleic anhydride, and then the 4-aminophenylboronic acid pinacol ester is added to obtain a final product by amidation. It is added to a dry and clean beaker, poured into 40 ml of xylene solvent, heated and stirred, and then added.
  • First network polymer viscous solution in another beaker Add 40ml of xylene solvent, add 3.12g of phenylborate-silane modified ethylene propylene rubber (c) (using low molecular weight ethylene propylene diene rubber as raw material, using dibenzoyl peroxide as crosslinking agent to form reaction After the small cluster structure, maleic anhydride is grafted on the surface of the cluster, and then 4-aminophenylboronic acid pinacol ester and 3-aminopropylmethyldimethoxysilane (the molar ratio of the two is 1:4).
  • c phenylborate-silane modified ethylene propylene rubber
  • the final product is obtained by amidation reaction, and a small amount of aqueous acetic acid solution is added dropwise for 30 minutes, then 1.5 ml of triethylamine is added, and the mixture is heated to 60 ° C for 3 hours to obtain a second network polymer viscous solution; each takes 20 ml two
  • the polymer solution was ultrasonically mixed with 0.6 g of expandable microsphere foaming agent for 1 min, placed in a suitable mold, and dried in a vacuum oven at 80 ° C for 24 h, then cooled to room temperature for 30 min, and taken out from the mold.
  • the sample was subjected to foam molding by a flat vulcanizing machine, wherein the molding temperature was 140-150 ° C, the molding time was 10-15 min, and the pressure was 4 MPa, and finally an ethylene-propylene rubber foam sponge was obtained.
  • the binary ethylene propylene rubber sponge has good isolation vibration and stress buffering effect, and also maintains a certain degree of ductility.
  • the obtained polymer material can be applied to the manufacture of home appliance insulation products or automobile shock absorbing products.
  • a dynamic polymer having a single hybrid crosslinked network (containing supramolecular hydrogen bonding) is prepared using a small molecule organoboron compound (I), a small molecule silicon-containing compound (II), and a small molecule compound (V).
  • Microfiber 0.18 g of silane coupling agent KH550, 0.18 g of sodium dodecylbenzenesulfonate, after stirring for 10 min, 0.09 g of bentonite was further added, and the mixture was uniformly mixed to continue the crosslinking reaction under stirring. During the reaction, the viscosity of the liquid continues to rise, When the viscosity rises to a certain stage, the yellow viscous polymer sample is poured into a suitable mold, placed in a vacuum oven at 80 ° C for 4 h, and then cooled to room temperature for 30 min to finally obtain a hard epoxy resin. The cured material has a smooth surface and a large surface hardness and compressive strength. After being chopped off, it is observed that the glass microfibers are uniformly distributed in the matrix.
  • the polymer material can be used for making electrical switching devices, printed circuit boards, parts of instrument panel electronic packaging materials, and for fixing various electronic components and metal parts.
  • a dynamic polymer having a single hybrid crosslinked network is prepared using the macromolecular organoboron compound (I) and the macromolecular silicon-containing compound (II).
  • borate-modified polybutadiene (a) in a dry clean flask (using terminal amino 1,3-polybutadiene, (bromomethyl)borate diisopropyl ester as raw material , prepared by hydrocarbylation), 2.8 g of surface-modified silica (b) (previously modified by silica with methyl methyldiethoxysilane), 1.6 mg of BHT anti-oxidation
  • a polybutadiene crosslinked polymer in which silica was dispersed was finally obtained. It was made into a dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm, and tensile test was performed by a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 1.72 ⁇ 0.59 MPa. The tensile modulus was 3.92 ⁇ 0.88 MPa, and the elongation at break was 468 ⁇ 54%.
  • the polymeric material can be used as an energy absorbing cushion for the manufacture of shoe materials or sporting goods.
  • a dynamic polymer having a single hybrid crosslinked network is prepared using the macromolecular compound (III) and the macromolecular silicon-containing compound (II).
  • modified polystyrene (using AIBN as initiator, using styrene and 4-vinylbenzeneboronic acid propylene glycol, styrene ethyltrimethoxysilane by free radical copolymerization) to be added to dry
  • 80 ml of toluene solvent was poured into it, heated to 60 ° C and dissolved by stirring.
  • 3.2 g of glass microfibers (b) with silanol groups were added to the beaker, and 8.8 mg of silane coupling was added.
  • Agent KH550 8.8mg of sodium dodecylbenzene sulfonate, after stirring for 30min, add 5.8mg of bentonite, heat to 80 ° C for 1h, add a small amount of 20% acetic acid aqueous solution to continue the reaction for 3h, then put the mixture Drying in a suitable mold in a vacuum oven at 50 ° C for 24 h, finally obtaining a hard block polymer solid dispersed with glass microfibers, which has high surface hardness and good mechanical strength, hard texture, and is hammered After the tapping was broken, it was observed that the glass microfibers in the matrix were tightly bound to the matrix.
  • the prepared polymer material can be used as a high-impact equipment instrument component or decorative sheet.
  • a dynamic polymer having a single hybrid crosslinked network is prepared using a macromolecular organoboron compound (I), a macromolecular silicon-containing compound (II), and a small molecule compound (V).
  • a dynamic polymer having a single hybrid crosslinked network is prepared using a macromolecular organoboron compound (I), a macromolecular silicon-containing compound (II), and a small molecule compound (V).
  • boric acid-amino modified polynorbornene (boranic acid modified norbornene is prepared by Diels-Alder reaction using vinyl boric acid and cyclopentadiene as raw materials; and vinylamine, cyclopentane
  • the olefin is used as a raw material to prepare an amino-modified norbornene by a Diels-Alder reaction; the boric acid-modified norbornene, the amino-modified norbornene and the norbornene are a metallocene catalyst/methylaluminoxane.
  • the catalytic system is prepared by addition polymerization, and is dissolved in o-dichlorobenzene solvent to prepare a 0.4 mol/L solution. 50 ml of the solution is added to a dry and clean flask, and a small amount of deionized water and acetic acid are added dropwise. Stand for use evenly.
  • silane-modified norbornene is obtained by Diels-Alder reaction; Vinylamine, cyclopentadiene as raw material, through Diels-Alder The reaction produces amino-modified norbornene; the silane-modified norbornene, the amino-modified norbornene and the norbornene are supported by a metallocene catalyst/methylaluminoxane as a catalytic system through addition polymerization.
  • the solution is prepared by heating and dissolving in a solvent of o-dichlorobenzene to prepare a solution of 0.4 mol/L, and 50 ml of the solution is slowly added to the previously prepared boric acid-amino-modified polynorbornene mixed solution, during the entire addition process.
  • the solution was heated to a water bath of 80 ° C and the mixture was uniformly mixed by constant stirring. After the addition of the solution was completed, stirring was continued for 30 min, then 4 ml of triethylamine was added, the reaction was continued at 80 ° C for 2 h, then 2.6 g of diglycidyl ether (c) was added, and the reaction was continued for 30 min, and then 3.78 g of 3-isocyanate was added.
  • the propyldimethoxymethylsilane (d) was further reacted for 4 hours, and suction-filtered under reduced pressure to give a white solid polymer sample.
  • the polymer sample is placed in a mold by heat and pressure molding to obtain a polymer sheet having shape memory characteristics, which can be used as a portable container or a billing article, which can be folded when not in use and can be restored when used.
  • a macromolecular compound (V), a macromolecular organoboron compound (I), and a macromolecular silicon-containing compound (II) to prepare a dynamic polymer having a double crosslinked network (containing supramolecular hydrogen bonding), wherein the first network is ordinary Covalent cross-linking, the second network is dynamic covalent cross-linking and common covalent cross-linking.
  • the iron oxide and 0.05 g of the silicone oil were further kneaded for 30 minutes, and the additive and the rubber were thoroughly mixed uniformly, and then the rubber was taken out and heat-treated at 120 ° C for 1 hour.
  • the heat-treated rubber mixture is reprocessed, and 2.5 g of a crosslinking agent (d) is added (using ⁇ -mercaptopropylmethyldimethoxysilane as a raw material, which is hydrolyzed at 60 ° C, and then heated to 100 °
  • the reaction was carried out at ° C for 4 h to obtain a condensation product, which was then modified with maleimide, 0.01 g of antioxidant 168, 0.02 g of antioxidant 1010, and 0.05 g of photoinitiator DMPA were continued for 20 min.
  • the rubber was taken out, placed in a suitable mold, placed in a vacuum oven at 80 ° C for 4 h, and then molded under a pressure of 10 MPa, and irradiated with ultraviolet light for 10 min under normal temperature and normal pressure to obtain a UV-curable silicone rubber base.
  • Polymer material A dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm was made by using a mold, and a tensile test was performed by a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 6.48 ⁇ 1.37 MPa.
  • the tensile modulus was 11.31 ⁇ 2.75 MPa, and the elongation at break was 713 ⁇ 201%.
  • the polymer material has a certain strength and surface elasticity and can achieve a viscoelastic transition under stress impact. With its functional characteristics, it can be made into silicone rubber damping diaphragm for use in the fields of electrical and electronic, medical equipment, automotive industry and so on.
  • a dynamic polymer having a double crosslinked network is prepared by using a macromolecular organoboron compound (I), a macromolecular silicon-containing compound (II), and a macromolecular compound (V), wherein the first network is dynamic covalent cross-linking, and the second network For common covalent cross-linking.
  • phenylboronic acid graft modified butyl rubber (a) (using bromobutyl rubber, 4-mercaptophenylboronic acid as raw material, using DMPA as photoinitiator, passing thiol-olefin under ultraviolet light irradiation) Click addition reaction), 25g silane graft modified butyl rubber (b) (using bromobutyl rubber, ⁇ methylmethyldiethoxysilane as raw material, DMPA as photoinitiator, in UV After light irradiation, the thiol-olefin click addition reaction is added to a small internal mixer for 20 minutes, and the kneaded material is taken out for cooling, and placed in a twin roll machine to form a sheet at room temperature.
  • the mixture was cooled, cut into pieces, immersed in a 90 ° C water bath for crosslinking, and then placed in a vacuum oven at 80 ° C for 6 h for further reaction and drying to obtain a first network polymer.
  • modified polysilsesquioxane (c) using propylpropyltriethoxysilane as raw material, ferric chloride and HCl as catalyst, hydrolysis and condensation to obtain thiol-modified polysilsesquioxane , which is obtained by partially capping vinylcyclopropane
  • 18.8 g of vinylidene-terminated polypropylene (d) (produced by propylene as raw material, catalyzed by catalytic polymerization of Et(Ind) 2 ZrCl 2 /MAO), 0.02g antioxidant 168, 0.04g antioxidant 1010, 0.02g photoinitiator DMPA, 20g first network polymer was added to the small internal mixer for 20min, then added 5g white carbon, 6g titanium dioxide
  • the kneaded material was taken out for cooling, placed in a twin roll machine and pressed into a sheet, and cooled at room temperature to cut pieces. Then, the rubber was taken out, placed in a suitable mold, irradiated with ultraviolet light for 10 minutes under normal temperature and normal pressure, and the obtained polymer sheet was taken out to obtain a rubbery dynamic polymer material. It was made into a dumbbell-shaped spline of 80.0 ⁇ 10.0 ⁇ (2.0-4.0) mm, and tensile test was performed by a tensile tester at a tensile rate of 50 mm/min, and the tensile strength of the sample was measured to be 3.87 ⁇ 0.86 MPa.
  • the tensile modulus was 5.31 ⁇ 1.05 MPa, and the elongation at break was 789 ⁇ 123%.
  • the polymer material maintains elasticity under normal conditions and exhibits temporary rigidity upon impact, and returns to a normal elastic state after impact, and can be made into a rubber base by utilizing the stress response characteristics of the sample. Use with pressure sensitive pads.
  • a dynamic polymer having a single hybrid crosslinked network is prepared using a small molecule organoboron compound (I), a macromolecular silicon-containing compound (II), a macromolecular compound (V), and a small molecule compound (V).
  • boric acid compound (a) (using AIBN as initiator, triethylamine as catalyst, using 4-pentenylboronic acid pinacol ester and 1,6-hexanedithiol by thiol-ene click reaction), 65g silane-grafted polyethylene (b) (BPO is used as initiator, grafting reaction of methylvinyldiethoxysilane with low-density polyethylene), 35g low-density polyethylene (c), 10g ten Bromodiphenylethane, 2g antimony trioxide, 1g polytetrafluoroethylene anti-drip agent, 1.0g dicumyl peroxide (d), 1g stearic acid, 0.1g antioxidant 168, 0.2g anti-oxygen
  • the agent 1010, 0.2 g of di-n-butyltin dilaurate, and 0.5 g of dimethyl silicone oil were uniformly mixed, and then added to a small extruder for extrusion blending, and the
  • the pellet was placed in a vacuum oven at 80 ° C for 4 h for pre-reaction, and then placed on a flat vulcanizing machine, preheated for 10 min under no pressure, and then heated to 150. °C, pressurizing 15MPa, molding for 15min to crosslink the polymer, and then the prepared sample was placed in 90 ° C water for further crosslinking, then taken out, placed in a mold, placed under nitrogen protection at 120 ° C -4 Drying was carried out for 6 hours to finally obtain a polyvinyl crosslinked polymer material having flame retardancy.
  • the polymer material has certain plasticity.
  • the polymer material can be made into a flame-retardant sheet or cable material for practical production applications.
  • a dynamic polymer having a single hybrid crosslinked network is prepared using a macromolecular organoboron compound (I), a macromolecular silicon-containing compound (II), a macromolecular compound (V), and a small molecule compound (V).
  • borate graft modified polyvinyl chloride (a) (made by grafting reaction of 1-aminoethylboronic acid pinacol ester with polyvinyl chloride), 35g of silane graft modified polyvinyl chloride (b (made by grafting 3-aminopropylmethyldimethoxysilane with polyvinyl chloride), 30g of polyvinyl chloride (c), 5g of trimethylhexamethylenediamine (d), 10g of phthalic acid Dioctyl dicarboxylate, 2 g stearic acid, 2 g of tribasic basic lead sulfate, 0.5 g of di-n-butyltin dilaurate, 0.1 g of antioxidant 168, 0.2 g of antioxidant 1010, 0.5 g of dimethicone After homogenization, it was added to a small internal mixer for kneading, the kneading temperature was 110 ° C, and the kn
  • the kneaded material was taken out and cooled, placed in a twin roll machine at 150 ° C to form a sheet, and cooled at room temperature to cut pieces.
  • a suitable amount of the mixed sample was placed in a suitable mold, placed on a flat vulcanizer, preheated at 160 ° C for 10 min, then pressurized to 10 MPa, and held for 10 min to obtain a polymer sheet.
  • the polymer sheets were immersed in a 90 ° C water bath for crosslinking for 4 h, then taken out, placed in a vacuum oven at 80 ° C for 12 h for drying and further reaction to finally obtain a crosslinked polyvinyl chloride polymer material.
  • the polymer sample shows excellent mechanical properties. Different from the traditional cross-linked polyvinyl chloride, the cross-linked product has good plasticity, can be formed into different appearance polymer products according to different shapes of the mold, and also shows good tensile toughness. In this embodiment, the polymer sample can be made into various types of functional pipe fittings, plates, and profiles for use in building materials, home, electronic parts, packaging materials and the like.
  • phenylborate modified polybutadiene (a) (using DMPA as photoinitiator, ultraviolet light as light source, 4-mercaptophenylboronic acid pinacol ester and terminal amine polybutadiene through thiol-ene Click reaction to obtain) 15g silane-modified polybutadiene (b) (using DMPA as photoinitiator and ultraviolet light as light source, passing ⁇ methylmethyldiethoxysilane and terminal amine polybutadiene Thiol-ene click reaction), 5g amide modified polybutadiene (c) (using DMPA as photoinitiator, UV light as light source, N-[(2-indolyl)carbamoyl]propanamide After mixing with the terminal aminopolybutadiene by thiol-ene click reaction, heating to 100 ° C and mixing, adding 1.0 g of distilled water, 1.2 g of triethylamine, stirring for 4 h, adding 0.2 g of di
  • the obtained rigid polyurethane foam material has excellent heat insulation performance, can withstand a certain load without significant deformation, and has many advantages such as low density, high specific strength, good dimensional stability, and the like, and can be applied to a refrigerator, In the field of insulation such as refrigerators and pipes, it can also be used as building insulation materials.
  • a small molecule organoboron compound (I), a macromolecular silicon-containing compound (II), and a macromolecular compound (V) to prepare a dynamic polymer having a double crosslinked network (containing supramolecular hydrogen bonding), wherein the first network is dynamic Covalent cross-linking, the second network is common covalent cross-linking.
  • organoboron compound (a) prepared by reacting 4-hydroxyphenylboronic acid pinacol ester and 4,4'-diphenylmethane diisocyanate as raw materials
  • a prepared by reacting 4-hydroxyphenylboronic acid pinacol ester and 4,4'-diphenylmethane diisocyanate as raw materials
  • the reaction was continued in a vacuum oven at 60 ° C for 12 h, then cooled to room temperature for 30 min, and foamed by a flat vulcanizer, wherein the molding temperature was 140-150 ° C, and the molding time was 10-15 min.
  • the pressure is 10 MPa, and finally a rigid polyurethane foaming material having a flame retarding effect is obtained.
  • the high-strength, flame-retardant and heat-insulating properties of the cross-linked polymer sample can be applied to the external wall insulation of the building, the waterproofing and insulation of the roof, the thermal insulation of the cold storage, and the heat preservation of the pipeline. Materials, building boards.
  • a dynamic polymer of a single hybrid crosslinked network (containing supramolecular hydrogen bonding).
  • phenylboronic acid modified styrene-maleic anhydride copolymer (a) (p-toluenesulfonic acid as catalyst, 4-aminobenzeneboronic acid and styrene-maleic anhydride copolymer reaction), 28g silane modification Styrene-maleic anhydride copolymer (b) (prepared by reacting 3-aminopropylmethyldimethoxysilane with styrene-maleic anhydride copolymer using p-toluenesulfonic acid as a catalyst), 3g 1, 8-octanediamine (c), 0.18 g of p-toluenesulfonic acid, 1.74 g of di-n-butyltin dilaurate, 5.8 g of dioctyl phthalate, 12 g of blowing agent F141b, 0.24 g of stearic acid, 0.06 g of anti- The oxygen agent
  • the sample is taken out and placed in a compression mold, and the mold is closed for pressure heating, the molding temperature is 100 to 110 ° C, the molding time is 10-15 min, the pressure is 10 MPa, and then the pre-expansion after demolding is performed.
  • the billet was placed in hot water at a temperature above 95 ° C, boiled for 4 h, then taken out, placed in a vacuum oven at 80 ° C for 6 h for further reaction and drying, and finally a hard polystyrene-based foamed polymer sample was obtained. It has good creep resistance and thermal stability. It is made into a block sample of 20.0 ⁇ 20.0 ⁇ 20.0mm size, and the compression performance test is carried out by universal testing machine.
  • the compression rate is 2mm/min, and the compressive strength of the sample is measured. 0.62 ⁇ 0.14 MPa.
  • the high strength, light weight, excellent thermal insulation performance and high energy absorption capacity of the polymer foam material can be used as the roof and wall of the building, and it can be used for sound insulation, water vapor blocking, sealing and thermal insulation. And so on.
  • a dynamic polymer having a single hybrid crosslinked network is prepared using a macromolecular organoboron compound (I), a macromolecular silicon-containing compound (II), a macromolecular compound (V), and a small molecule compound (V).
  • phenylborate graft modified ethylene-vinyl acetate copolymer (a) (using ethylene-vinyl alcohol-vinyl acetate copolymer as raw material, reacting it with acryloyl chloride to obtain a copolymer containing a double bond in the side chain, and then It is obtained by thiol-ene click reaction with 2-mercaptophenylboronic acid pinacol ester to obtain the final product), 42g of silane graft modified ethylene-vinyl acetate copolymer (b) (with ethylene-vinyl alcohol-vinyl acetate copolymer) As a raw material, it is reacted with acryloyl chloride to obtain a copolymer having a double bond in a side chain, which is then subjected to a thiol-ene click reaction with hydrazine methylmethyldiethoxysilane to obtain a final product), 10 g of ethylene-vinyl acetate
  • Copolymer (c) 10 g of AC foaming agent, 2 g of zinc oxide, 0.8 g of dicumyl peroxide (d), 10 g of calcium carbonate, 0.4 g of stearic acid, 0.1 g of antioxidant 168, 0.2 g of antioxidant 1010 0.4g of di-n-butyltin dilaurate is uniformly mixed, and then added to a small internal mixer for blending and blending, wherein the blending temperature is 100 ° C, the blending time is 10 min, and after the mixing is completed, the sample is taken out. It is pressed into a roll in a double roll machine, cooled at room temperature, and the prepared polymer sheet is immersed in water at 90 ° C.
  • Pre-crosslinking then taking out, placing in a vacuum oven at 80 ° C for 6 h for further reaction and drying, then cooling to room temperature for 30 min, taking out the mixed samples from the mold, cutting them, and then placing the appropriate amount in a suitable mold.
  • the molding temperature is 140-150 ° C
  • the molding time is 10-15 min
  • the pressure is 10 MPa
  • the material obtained is light in weight, and has the characteristics of cushioning, sound absorbing, shock absorbing and heat insulating, and can be used for the manufacture of sports equipment, mattresses, children's floors, high-grade sports shoes, and the like.
  • a dynamic polymer having a single hybrid crosslinked network (containing supramolecular hydrogen bonding) is prepared by using a macromolecular organoboron compound (I), a small molecule silicon-containing compound (II), and a small molecule compound (V).
  • boronic acid graft modified polypropylene (a) (using dicumyl peroxide as initiator, grafting low molecular weight polypropylene with maleic anhydride; then using p-toluenesulfonic acid as catalyst, with 1 - aminoethylboronic acid grafting reaction to obtain the final product), 20mg of BHT antioxidant, added to a dry clean three-necked flask, heated to 160 ° C under nitrogen protection conditions, stirred and melted, and then added dropwise a small amount of 20% acetic acid aqueous solution
  • silicon-containing compound (b) (using methallyl dichlorosilane, 1,10-fluorene dithiol as raw material, AIBN as initiator, triethylamine as catalyst, click through thiol-ene The reaction was carried out), the reaction was continued under nitrogen protection for 2 h, then 1.1 g of 1,6-hexanediamine (c), 0.05 g
  • Reaction 1h After that, it was poured into a suitable mold, and molded by a molding machine at 120 ° C. The molded sample was placed in a vacuum oven at 80 ° C for 4-6 hours, and then cooled to room temperature for 30 minutes to finally obtain a block shape.
  • Polypropylene based polymer sample The surface of the polymer sample has a gloss, a certain strength and compressibility, and can be stretched within a certain range.
  • the polymer material in this embodiment can be used as a stress-carrying material in a fine mold, and has a load-bearing effect while having a certain deformability and a buffering effect.

Abstract

一种具有杂化交联网络的动态聚合物,其包含有普通共价交联和动态共价交联,其中,所述的动态共价交联由有机硼酸硅酯键实现。此类动态聚合物结合了动态共价有机硼酸硅酯键与普通共价键各自的优势,并通过对反应物结构的调控,可制备出结构丰富,性能多样的聚合物。动态聚合物中动态共价交联所具有的强动态可逆性,使得聚合物可体现出刺激响应性、自修复性等功能特性,而普通共价交联又赋予了聚合物以一定的强度和稳定性;此外,有机硼酸硅酯键的动态性,可以产生良好的能量耗散和吸能效果,在特定结构中对材料进行增韧、阻尼和抗冲击。该动态聚合物可用于制作减震缓冲材料、抗冲击防护材料、自修复材料、韧性材料等。

Description

[根据细则37.2由ISA制定的发明名称] 具有杂化交联网络的动态聚合物及其应用 技术领域
本发明涉及智能聚合物领域,具体涉及一种由动态共价键和普通共价键构成的具有杂化交联网络的动态聚合物。
背景技术
进入21世纪之后,科学技术的进步和经济的发展对聚合物及其材料提出了更高的要求,聚合物也在基本性能的基础上,朝着功能化、智能化、精细化的方向不断发展,聚合物材料也由结构材料向具有光、电、声、磁、生物医学、仿生、催化、物质分离及能量转换等效应的功能材料方向扩展,出现了一系列诸如分离材料、生物材料、智能材料、贮能材料、光导材料、纳米材料、电子信息材料等具有功能效应的新型聚合物材料。对于聚合物结构与性能关系的研究,也由宏观进入微观,从定性进入定量,由静态进入动态,逐步实现在分子设计水平上合成并制备能够达到期望功能的聚合物。
传统的聚合物一般由普通共价键构成,普通共价键由于具有较高的键能,赋予了聚合物以良好的稳定性和应力承载能力。而动态共价键是在一定条件下可以发生可控可逆反应的一类化学键,它是一种比非共价键稳定,相对较弱的共价键,通过改变外界的条件可以实现动态共价键的断裂和形成。将动态共价键引入聚合物,是一种形成新型聚合物的可行方法。在聚合物中引入动态共价键的意义在于,动态共价键在普通共价键的基础上,具有超分子化学中非共价相互作用所具有的动态可逆特性,同时又规避了超分子非共价相互作用本身键能较弱,稳定性较差,易受外界条件影响的缺陷。因此,通过在聚合物中引入动态共价键,有希望能够获得具有良好综合性能的聚合物。
为了获得性能更为稳定的聚合物,可以通过交联的手段使得聚合物等组分形成三维网络结构,提高聚合物热稳定性、力学性能、耐溶剂性等性能,并可以获得具有良好使用性能的弹性体、热固性塑料等材料。对于交联聚合物,其一般可分为化学交联型或者是物理交联型。化学交联型聚合物一般通过普通共价键交联形成,一旦形成,则非常稳定,力学性能也比较优良;物理交联型聚合物一般通过非共价相互作用交联形成,其突出的特点是具有动态可逆性,交联结构和聚合物的性能具有可变性。而目前以动态共价键进行交联的聚合物体系还比较少见,而且现有的动态共价键的动态性均非常有限,往往需要添加催化剂或外界提供能量(如加热、光照等)来加速平衡过程,使其在构建动态共价交联的聚合物材料方面受到很大的限制。
发明内容
本发明针对上述背景,提供了一种具有杂化交联网络结构的动态聚合物,其包含有普通共价交联和动态共价交联,其中,所述的普通共价交联由普通共价键实现,所述的动态共价交联由有机硼酸硅酯键实现,并且所述的普通共价交联在至少一个交联网络中达到普通共价交联的凝胶点以上。所述的动态聚合物在具有良好的力学强度和一定的韧性的同时,也表现出良好的动态可逆性,并可体现出刺激响应性、可塑性等功能特性。
本发明通过如下技术方案予以实现:
一种具有杂化交联网络的动态聚合物,其包含有普通共价交联和动态共价交联,其中,所述的普通共价交联由普通共价键实现,所述的动态共价交联由有机硼酸硅酯键实现,并且所述的普通共价交联在至少一个交联网络中达到普通共价交联的凝胶点以上。
本发明中所述的杂化交联网络动态聚合物中,还可选地包含有超分子氢键作用,其中,超分子氢键作用可以是链内非交联作用和/或链间交联作用和/或非交联作用。
在本发明的实施方式中,动态聚合物可以由一个或多个交联网络所构成。当动态聚合物仅由一个交联网络构成时,在所述的交联网络结构中同时包含有所述的普通共价交联和动态共价交联。当动态聚合物由两个或多个交联网络构成时,其可以由两个或多个相互共混的交联网络构成,也可以由两个或多个相互穿插的交联网络构成,也可以由两个或多个部分相互穿插的交联网络构成,也可以由以上三种交联网络进行组合构成,但本发明不仅限于此。
根据本发明的一个优选实施方式(第一种网络结构),所述的动态聚合物仅含有一个交联网络,并且此交联网络同时含有普通共价交联和有机硼酸硅酯键交联,其中,普通共价交联的交联度达到凝胶点以上。
根据本发明的另一个优选实施方式(第二种网络结构),所述的动态聚合物含有两个交联网络,其中一个交联网络仅含有普通共价交联且普通共价交联的交联度达到凝胶点以上,另外一个交联网络仅含有有机硼酸硅酯键交联。
根据本发明的又一个优选实施方式(第三种网络结构),所述的动态聚合物含有两个交联网络,其中一个交联网络同时含有普通共价交联和有机硼酸硅酯键交联且普通共价交联的交联度达到凝胶点以上,另外一个交联网络仅含有普通共价交联且普通共价交联的交联度达到凝胶点以上。
根据本发明的又一个优选实施方式(第四种网络结构),所述的动态聚合物含有两个交联网络,其中一个交联网络同时含有普通共价交联和有机硼酸硅酯键交联且普通共价交联的交联度达到凝胶点以上,另外一个交联网络亦同时含有普通共价交联和有机硼酸硅酯键交联且普通共价交联的交联度达到凝胶点以上,但两个交联网络不同。
本发明还可以有其他多种多样的杂化网络结构实施方式,一个实施方式中可以包含三个或其以上相同或不相同的网络,同一个网络中可以包含不同的普通共价交联和/或不同的有机硼酸硅酯键交联,同时还可选地包含有相同或不同的超分子氢键作用,其中超分子氢键作用可以与普通共价交联和/或动态共价交联在同一个交联网络中或者在独立的交联网络中或者部分与共价交联网络相互作用。任何一个网络的任何一种交联的交联度也可以合理地进行控制,以达到调控平衡结构和动态性能的目的。本领域的技术人员可以根据本发明的逻辑和脉络,合理有效地实现。
本发明中所述的“普通共价键”,指的即是传统意义上的除动态共价键以外的共价键,其为原子间通过共用电子对所形成的一种相互作用,在通常温度下(一般不高于100℃)和通常时间内(一般小于1天)较难发生断裂,其包括但不仅限于通常的碳-碳键、碳-氧键、碳-氢键、碳-氮键、碳-硫键、氮-氢键、氮-氧键、氢-氧键、氮-氮键等。
在本发明中,所述的有机硼酸硅酯键,其具有如下结构:
Figure PCTCN2017098107-appb-000001
其中,硼原子和硅原子之间至少形成一个硼酸硅酯键(B-O-Si);所述结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
Figure PCTCN2017098107-appb-000002
表示与聚合物链、交联链接或者其他任意合适的基团的连接,硼原子和硅原子分别通过至少一个所述连接接入交联网络。
在本发明的实施方式中,所述的有机硼酸硅酯键由有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体反应而成。
本发明中所述的有机硼酸基,其指的是由硼原子以及与该硼原子相连的一个羟基所组成的结构基元(B-OH),且其中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。在本发明中,有机硼酸基中的一个羟基(-OH)即 为一个官能团。
本发明中所述的有机硼酸酯基,指的是由硼原子、与该硼原子相连的一个氧原子和与该氧原子相连的烃基或硅烷基所组成的结构基元(B-OR,其中R为以碳、氢原子为主的烃基或以硅、氢原子为主的硅烷基,其通过碳原子或硅原子与氧原子相连),且其中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。在本发明中,有机硼酸酯基中的一个酯基(-OR)即为一个官能团。
本发明中所述的硅羟基,其指的是由硅原子以及与该硅原子相连的一个羟基所组成的结构基元(Si-OH),其中,硅羟基可为有机硅羟基(即硅羟基中的硅原子至少与一个碳原子通过硅碳键相连,且至少有一个有机基团通过所述硅碳键连接到硅原子上),也可为无机硅羟基(即硅羟基中的硅原子不与有机基团相连接),优选为有机硅羟基。在本发明中,硅羟基中的一个羟基(-OH)即为一个官能团。
本发明中所述的硅羟基前驱体,其指的是由硅原子以及与该硅原子相连的一个可水解得到羟基的基团所组成的结构基元(Si-X),其中,X为可水解得到羟基的基团,其可选自卤素、氰基、氧氰基、硫氰基、烷氧基、氨基、硫酸酯基、硼酸酯基、酰基、酰氧基、酰氨基、酮肟基、醇盐基等。合适的硅羟基前驱体举例如:Si-Cl,Si-CN,Si-CNS,Si-CNO,Si-SO4CH3,Si-OB(OCH3)2,Si-NH2,Si-N(CH3)2,Si-OCH3,Si-COCH3,Si-OCOCH3,Si-CONH2,Si-O-N=C(CH3)2,Si-ONa。在本发明中,硅羟基前驱体中的一个可水解得到羟基的基团(-X)即为一个官能团。
在本发明的实施方式中,所述的动态聚合物还可选地含有超分子氢键作用。所述的可选地含有的超分子氢键作用,其由存在于动态聚合物杂化交联网络的聚合物骨架链、侧基、侧链、支链、分叉链、端基以及非交联型聚合物骨架链、侧基、侧链、支链、分叉链、端基中任一处或多处的氢键基团之间形成氢键构成。其中,所述的氢键基团也可以存在于小分子中。
在本发明中所述的可选的超分子氢键作用,其为任意合适的通过氢键所建立的超分子作用,其一般是通过与电负性大的原子Z共价相连的氢原子与电负性大、半径小的原子Y在Z与Y之间以氢为媒介,生成Z-H…Y形式的氢键链接,其中,所述的Z、Y为任意合适的电负性大而半径小的原子,其可为同种元素也可以为不同种元素,其可选自F、N、O、C、S、Cl、P、Br、I等原子,更优选为F、N、O原子,更优选为O、N原子。
本发明的实施方式中,所述的超分子氢键作用可以通过任意合适的氢键基团之间存在的非共价相互作用产生。其中,所述的氢键基团优选含有以下结构成分:
Figure PCTCN2017098107-appb-000003
更优选含有以下结构成分中的至少一种:
Figure PCTCN2017098107-appb-000004
其中,
Figure PCTCN2017098107-appb-000005
表示与聚合物链、交联链接或者其他任意合适的基团(包括氢原子)的连接。在本发明的实施方式中,氢键基团可选自酰胺基、氨基甲酸酯基、脲基、硫代氨基甲酸酯基以及以上基团的衍生物等。
在本发明的实施方式中,可至少利用以下几种化合物进行合理配方组合作为原料反应获得所述的动态聚合物:
含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I);含有硅羟基和/或硅羟基前躯 体的含硅化合物(II);同时含有有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体的化合物(III);含有有机硼酸硅酯键和其他反应性基团的化合物(IV);不含有有机硼酸基、有机硼酸酯基、硅羟基、硅羟基前驱体以及有机硼酸硅酯键但含有其他反应性基团的化合物(V);其中,有机硼化合物(I)、含硅化合物(II)和化合物(V)不单独作为原料制备所述的动态聚合物。该些化合物中可选地含有所述的氢键基团,或者可以继续反应生成氢键基团的其他反应性基团。
所述的其他反应性基团,指的是能够自发地,或者能够在引发剂或光、热、辐照、催化等条件下进行化学反应生成普通共价键的基团,特别是可以聚合和/或交联的基团,合适的基团包括但不仅限于:羟基、羧基、羰基、酰基、酰胺基、酰氧基、氨基、醛基、磺酸基、磺酰基、巯基、烯基、炔基、氰基、嗪基、胍基、卤素、异氰酸酯基团、酸酐基团、环氧基团、丙烯酸酯基团、丙烯酰胺基团、马来酰亚胺基团、琥珀酰亚胺酯基团、降冰片烯基团、偶氮基团、叠氮基团、杂环基团、碳自由基、氧自由基等;优选羟基、氨基、巯基、烯基、异氰酸酯基团、环氧基团、丙烯酸酯基团、丙烯酰胺基团。
在本发明的实施方式中,反应物原料中的有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体能够在加热、辐射、光照等条件下或者在引发剂、催化剂等添加剂的作用下进行动态共价交联形成有机硼酸硅酯键;反应物中能够进行普通共价交联的其他反应性基团,也能够在加热、辐射、光照等条件下或者在引发剂、交联剂、固化剂等添加剂的作用下进行普通共价交联形成普通共价键,从而与有机硼酸硅酯键一同构成动态聚合物的杂化交联网络。
在本发明的实施方式中,根据聚合物主体成分及其反应方式,所述的动态聚合物的交联网络骨架链可由丙烯酸酯类聚合物、丙烯酰胺类聚合物、聚醚类聚合物、聚酯类聚合物、聚酰胺类聚合物、聚氨酯类聚合物、聚烯烃类聚合物中的至少一种链段所构成。
本发明优选提供一种聚丙烯酸酯类的杂化交联网络动态聚合物。所述的聚丙烯酸酯类的动态聚合物,其指的是本发明中所述的动态聚合物的交联网络骨架结构主要由含有丙烯酸基团、丙烯酸酯基团中的一种或其组合的聚合物链段所构成。
本发明优选提供一种聚烯烃类的杂化交联网络动态聚合物。所述的聚烯烃类的动态聚合物,其指的是本发明中所述的动态聚合物的交联网络骨架结构主要由饱和或不饱和的烯烃聚合物链段所构成。其中,所述的烯烃聚合物链段,可选自以下任一种或任几种的组合:聚乙烯链段、聚丙烯链段、聚异丁烯链段、聚苯乙烯链段、聚氯乙烯链段、聚偏氯乙烯链段、聚氟乙烯链段、聚四氟乙烯链段、聚三氟氯乙烯链段、聚醋酸乙烯酯链段、聚乙烯基烷基醚链段、聚丁二烯链段、聚异戊二烯链段、聚氯丁二烯链段、聚降冰片烯链段等。
本发明优选提供一种聚氨酯类的杂化交联网络动态聚合物。所述的聚氨酯类的动态聚合物,其指的是本发明中所述的动态聚合物的交联网络骨架结构主要由含有氨基甲酸酯基、脲基、硫代氨基甲酸酯基中的一种或其组合的聚合物链段所构成。
在本发明的实施方式中,所述杂化交联网络的动态聚合物形态可以是乳液、普通固体、凝胶(包括水凝胶、有机凝胶、齐聚物溶胀凝胶、增塑剂溶胀凝胶、离子液体溶胀凝胶)、泡沫等。
在本发明的实施方式中,动态聚合物在制备过程中还可以选择性地加入某些可添加的其他聚合物、助剂、填料进行共混来共同组成动态聚合物。
在本发明的实施方式中,所述的动态聚合物性能大范围可调,具有广阔的应用前景,在军事航天设备、功能涂层、生物医药、生物医用材料、能源、建筑、仿生、智能材料等领域,都体现出令人瞩目的应用效果。具体来说,可将其应用于制作减震器、缓冲材料、抗冲击防护材料、运动防护制品、军警防护制品、自修复性涂层、自修复性板材、自修复性粘结剂、防弹玻璃夹层胶、韧性材料、形状记忆材料、密封件、玩具等制品。
与现有技术相比,本发明具有以下有益效果:
(1)本发明的动态聚合物杂化交联网络结构中结合了普通共价交联、有机硼酸硅酯键交联以及可选的氢键作用,充分利用并结合了各作用的优点。其中,普通共价交联为动态聚合物提供了一个强而稳定的网络结构,聚合物可以保持平衡结构,也即尺寸稳定性;而动态共价有机硼酸硅酯键交联则为动态聚合物提供了一个共价的可自发地或在外界作用下可逆变化的动态网络结构,从而实现了动态共价键与普通共价键的“动静结合”,在聚合物网络中表现出协同作用。传统的交联结构中由于没有分子间滑移作用且键断裂能普遍较高,基本需要依靠交联点间链段受力时的伸长来提供韧性,因此得到的交联聚合物一般韧性比较有限,而在聚合物中引入动态共价键后,动态共价键在外力作用下能以“可牺牲键”的形式进行断裂,从而耗散大量的能量,为交联聚合物提供了足够的韧性,使得交联聚合物在拥有交联结构固有的力学强度和稳定性的同时,也拥有优异的拉伸韧性和抗撕裂性。相比于传统的普通共价交联聚合物,本发明中的有机硼酸硅酯键能够凭借其较高的动态可逆性以及应力敏感性,使得交联聚合物能够及时、迅速地对外力做出反应;而相比于现有的超分子交联聚合物,本发明中的有机硼酸硅酯键又因其共价性质在断裂过程中能够耗散更多的能量,从而更好地提升材料的吸能特性和韧性。而且有机硼酸硅酯键的断裂是可逆的,可复原的,赋予材料以耐用性。基于有机硼酸硅酯键和可选的氢键作用的强动态性,聚合物可以表现出胀流性,从而产生从蠕变性到高弹性的转变,对冲击力分散的能力大大提高,从而达到优异的抗冲击效果;而且由于普通共价交联的存在,聚合物具有自支撑性,免去采用囊袋对聚合物进行装裹但却可能泄露的麻烦,具有优异的实用性。利用本发明所采用的设计思路,在保留了传统交联聚合物力学强度、稳定性等特性的同时,改变了传统交联聚合物断裂伸长率低,韧性差的缺陷,又具有优异的抗冲击性能,这是现有技术所无法达到的。
(2)本发明中动态聚合物的结构丰富,性能多样,其所含有的普通共价组分和动态组分具有可调控性。通过调整原料化合物中的官能团数、分子结构、分子量和/或在原料化合物中引入具有反应性的基团、促进动态性的基团、具有功能性的基团和/或调整原料组成等参数,可制备出具有不同结构的动态聚合物,从而使动态聚合物体现出丰富各异的性能。特别地,通过对有机硼化合物中硼原子邻近基团的设计,可以调整有机硼酸硅酯的动态性,从而获得不同性能的杂化交联材料。
(3)动态聚合物中动态可逆键的动态反应性强、动态反应条件温和。相比于现有的其他动态共价体系,本发明充分利用了有机硼酸硅酯键兼具有的良好的热稳定性和高动态可逆性,可在无需催化剂、无需高温、光照或特定pH的条件下实现动态聚合物的合成和动态可逆性,在提高了制备效率的同时,也降低了使用环境的局限性,扩展了聚合物的应用范围。此外,通过可选择性地控制其他条件(如加入助剂、调整反应温度等),能够在适当的环境下,加速或淬灭动态共价化学平衡,使其处于所需的状态,这在现有的超分子化学以及动态共价体系里面是较难做到的。
具体实施方式
本发明涉及一种具有杂化交联网络的动态聚合物,其包含有普通共价交联和动态共价交联,其中,所述的普通共价交联由普通共价键实现,所述的动态共价交联由有机硼酸硅酯键实现,并且所述的普通共价交联在至少一个交联网络中达到普通共价交联的凝胶点以上。
本发明中所述的杂化交联网络动态聚合物中,还可选地包含有超分子氢键作用,其中,超分子氢键作用可以是链内非交联作用和/或链间交联作用和/或非交联作用。
本发明中所用术语“聚合”为链的增长过程/作用,主要指的是较低分子量的反应物通过缩聚、加聚、开环聚合等反应形式合成具有较高分子量的产物的过程。在这其中,反应物一般为具有聚合能力(即能够自发地进行聚合,或者能够在引发剂或外加能作用下进行聚合)的单体、低聚物、预聚物等化合物。由一种反应物进行聚合得到的产物称为均聚物。由两种 或两种以上反应物进行聚合得到的产物称为共聚物。需要指出的是,在本发明中所述的“聚合”,其包含反应物分子链的线性增长过程,包含反应物分子链的支化过程,包含反应物分子链的成环过程,但并不包含反应物分子链的交联过程;即所述的“聚合”,指的是除交联反应过程之外的反应物分子链聚合增长过程。在本发明的实施方式中,“聚合”也包含超分子氢键作用引起的链增长。
本发明中所用术语“交联”,主要指的是反应物分子间和/或反应物分子内通过动态共价键和/或氢键的化学和/或超分子化学连接形成具有二维、三维团簇型和/或三维无限网状型产物的过程。在交联过程中,聚合物链一般先在二维/三维方向不断增长,逐步形成团簇(可以是二维或者三维),再发展为三维无限网络。除非特别说明,本发明中的交联包含形成凝胶点以上(含凝胶点)三维无限网络结构和凝胶点以下的二维、三维团簇结构。
本发明中所述的“凝胶点”,表示的是反应物在交联过程中,粘度突增,开始出现凝胶化现象,初次开始交联达到一个三维无限网络时的反应点,也称为渗滤阈值。处于凝胶点以上的交联产物,其具有三维无限网络结构,交联网络构成一个整体并横跨整个聚合物结构,交联结构较为稳定和牢固;处于凝胶点以下的交联产物,其仅为松散的链接结构,并未形成三维无限网络结构,仅在局部存在少量的二维或三维网络结构,并不属于横跨整个聚合物结构的能够构成一个整体的交联网络。
本发明中所述的“普通共价键”,指的即是传统意义上的除动态共价键以外的共价键,其为原子间通过共用电子对所形成的一种相互作用,在通常温度下(一般不高于100℃)和通常时间内(一般小于1天)较难发生断裂,其包括但不仅限于通常的碳-碳键、碳-氧键、碳-氢键、碳-氮键、碳-硫键、氮-氢键、氮-氧键、氢-氧键、氮-氮键等。在本发明中所述的“动态共价键“,指的是在适宜条件下能够进行可逆断裂和形成的一类特殊共价键,在本发明中特指有机硼酸硅酯键。
根据本发明的实施方式,由于动态聚合物交联网络中既含有普通共价交联又含有基于有机硼酸硅酯键的动态共价交联,还可选地包含有超分子氢键作用,因此本发明中的动态聚合物具有“杂化交联网络”结构。
在本发明的实施方式中,动态聚合物可以由一个或多个交联网络所构成。当动态聚合物仅由一个交联网络构成时,在所述的交联网络结构中同时包含有所述的普通共价交联和动态共价交联。当动态聚合物由两个或多个交联网络构成时,其可以由两个或多个相互共混的交联网络构成,也可以由两个或多个相互穿插的交联网络构成,也可以由两个或多个部分相互穿插的交联网络构成,也可以由以上三种交联网络进行组合构成,但本发明不仅限于此;其中,两个或多个交联网络可以相同,也可以不同,可以是部分仅包含有普通共价交联和部分仅包含动态共价交联的组合,或者是部分仅包含有普通共价交联和部分同时包含普通共价交联和动态共价交联的组合,或者是部分仅包含动态共价交联和部分同时包含普通共价交联和动态共价交联的组合,或者是各个交联网络中都同时包含有普通共价交联和动态共价交联的组合,但本发明不仅限于此;所述组合必须满足动态聚合物体系中同时包含有所述的普通共价交联和动态共价交联,且至少一个交联网络中的普通共价交联达到普通共价交联的凝胶点以上。
对本发明的动态聚合物而言,普通共价交联在至少一个交联网络中达到普通共价交联的凝胶点以上,可以保证即使在只有一个交联网络的情况下,即使所有所述的动态共价键和可选的超分子氢键均解离时,聚合物也可以保持平衡结构,也即在通常状态下可以为(至少部分为)不溶解不熔融的固体。当存在两个或多个交联网络时,不同交联网络之间可以有相互作用(包括所述的动态共价有机硼酸硅酯键和/或超分子氢键作用),也可以相互独立;而且除至少一个交联网络的普通共价交联必须达到普通共价交联的凝胶点以上外,其他交联网络的交联(包括普通共价交联、动态共价交联、超分子氢键作用及其之和)可以在凝胶点以上, 也可以在凝胶点以下,优选在凝胶点以上。当有机硼酸硅酯键交联达到凝胶点以上时,在作为应力/应变响应性材料使用时,更加能够体现出其动态性的优势,例如产生剪切增稠等特性。
在本发明的实施方式中,动态聚合物的交联网络结构中可以共混和/或穿插有其他一种或多种非交联型的聚合物链,也即这些聚合物链之间及其与所述交联网络之间没有交联作用。
根据本发明的一个优选实施方式(第一种网络结构),所述的动态聚合物仅含有一个交联网络,并且此交联网络同时含有普通共价交联和有机硼酸硅酯键交联,其中,普通共价交联的交联度达到凝胶点以上。对于该实施方式,其仅含有一个交联网络,制备上较为方便。
根据本发明的另一个优选实施方式(第二种网络结构),所述的动态聚合物含有两个交联网络,其中一个交联网络仅含有普通共价交联且普通共价交联的交联度达到凝胶点以上,另外一个交联网络仅含有有机硼酸硅酯键交联。在该实施方式中,动态交联网络可以分散于普通共价交联网络中,两个网络在原料组成上可以相互独立,制备上有特殊的优势。
根据本发明的又一个优选实施方式(第三种网络结构),所述的动态聚合物含有两个交联网络,其中一个交联网络同时含有普通共价交联和有机硼酸硅酯键交联且普通共价交联的交联度达到凝胶点以上,另外一个交联网络仅含有普通共价交联且普通共价交联的交联度达到凝胶点以上。在该实施方式中,通过控制两个普通共价交联网络的结构,可以达到合理调控动态聚合物平衡结构和力学性能的目的。
根据本发明的又一个优选实施方式(第四种网络结构),所述的动态聚合物含有两个交联网络,其中一个交联网络同时含有普通共价交联和有机硼酸硅酯键交联且普通共价交联的交联度达到凝胶点以上,另外一个交联网络亦同时含有普通共价交联和有机硼酸硅酯键交联且普通共价交联的交联度达到凝胶点以上,但两个交联网络不同。在该实施方式中,两个交联网络同时都是杂化网络,更有利于合理调控动态聚合物平衡结构、力学性能和动态性能。
此外,本发明还可以有其他多种多样的杂化网交联络结构实施方式,一个实施方式中可以包含三个或其以上相同或不相同的交联网络,同一个交联网络中可以包含有不同的普通共价交联和/或不同的有机硼酸硅酯键交联,同时还可选地包含有相同或不同的超分子氢键作用,其中超分子氢键作用可以与普通共价交联和/或动态共价交联在同一个交联网络中或者在各自独立的交联网络中或者部分与共价交联网络相互作用。任何一个网络的任何一种交联的交联度也可以合理地进行控制,以达到调控平衡结构和动态性能的目的。本领域的技术人员可以根据本发明的逻辑和脉络,合理有效地实现。
在本发明的实施方式中,所述的动态共价交联由有机硼酸硅酯键实现,指的是在交联网络骨架的聚合物主链和/或交联链接中含有所述的有机硼酸硅酯键。所述的动态共价有机硼酸硅酯键除作为动态共价交联存在于动态聚合物杂化交联网络的聚合物骨架链上之外,还可以存在于杂化交联网络骨架链的侧基和/或侧链和/或支链和/或分叉链上及其进一步的侧基和/或侧链和/或支链和/或分叉链上。其中只有杂化交联网络骨架上的有机硼酸硅酯键才能构成动态共价交联。所述的有机硼酸硅酯键在通常情况下,可以进行可逆断裂和再生成;在合适的条件下,动态聚合物中任何位置的有机硼酸硅酯键都可以参与动态可逆交换。在动态聚合物的杂化交联网络结构中,构成动态共价交联的有机硼酸硅酯键一旦解离,聚合物体系的总有效交联度将降低。在任意两个含有有机硼酸硅酯键的交联点之间骨架上的有机硼酸硅酯键数量(占所有键的比例)没有限制,可以是一个或者多个,优选仅含有一个。仅含有一个时,动态聚合物结构更加规整,动态性更加可控。
在本发明的实施方式中,所述的可选择性地含有的超分子氢键作用,其由存在于动态聚合物杂化交联网络的聚合物骨架链、侧基、侧链、支链、分叉链、端基以及非交联型聚合物骨架链、侧基、侧链、支链、分叉链、端基中任一处或多处的氢键基团之间形成氢键构成。其中,所述的氢键基团也可以存在于小分子中。
其中,所述的“杂化交联网络聚合物骨架链”,指的是存在于交联网络骨架中的任意链段, 其包括构成交联的团簇和/或无限三维网络骨架上的主链和交联链接;其中,聚合物链之间的交联链接可以为一个原子、一个单键、一个基团、一个链段、一个团簇等,因此聚合物链之间的交联链接骨架也视为聚合物骨架链。其中,所述的“侧链”,指的是在杂化交联网络结构中以及非交联聚合物结构中同聚合物骨架链相连接而分布在骨架链旁侧的分子量超过1000Da的链结构;其中,所述的“支链”、“分叉链”指的是从聚合物骨架链或其他任意链分叉出来的分子量超过1000Da的链结构;为简单起见,本发明中杂化交联网络结构中以及非交联聚合物结构中的侧链、支链、分叉链,如非特别说明,则统一称为侧链。其中,所述的“侧基”,指的是在杂化交联网络结构中以及非交联聚合物结构中同聚合物骨架链相连接而分布在骨架链旁侧的分子量不高于1000Da的化学基团和分子量不高于1000Da的短侧链。对于“侧链”和“侧基”,其可具有多级结构,也即侧链可以继续带有侧基和侧链,侧链的侧链可以继续有侧基和侧链,其中的侧链也包括支链和分叉链等链结构。其中,所述的“端基”,指的是在杂化交联网络结构中以及非交联聚合物结构中同聚合物骨架链和/或侧链相连接而位于骨架链和/或侧链末端的化学基团;本发明中,特定情况下侧基也可以有端基。在非交联聚合物中,骨架链即为主链。对于超支化和树枝状链及其相关的链结构,其中的聚合物链可以视为支链,也可以视为主链。
动态聚合物中所含有的普通共价交联,其为任意合适的通过普通共价键所建立的共价交联链接,包括但不仅限于通过碳-碳键形成的共价交联,通过碳-硫键形成的共价交联,通过碳-氧键形成的共价交联,通过碳-氮键形成的共价交联,通过硅-碳键形成的共价交联,通过硅-氧键形成的共价交联。在动态聚合物任一个交联网络结构中的普通共价交联可以有至少一种化学结构,以及至少一种反应类型和反应手段。
本发明的实施方式中,所述的普通共价交联可以通过任意合适的基团之间的共价反应进行,举例如:通过羧基、酰卤基团、酸酐基团、酯基、酰胺基、异氰酸酯基团、环氧基团与羟基之间的共价反应进行交联;通过羧基、酰卤基团、酸酐基团、酯基、酰胺基、异氰酸酯基团、环氧基团与氨基之间的共价反应进行交联;通过烯烃自由基反应、丙烯酸酯自由基反应进行交联;通过叠氮基团和炔基的CuAAC点击反应,巯基和烯烃的点击反应进行共价交联;通过硅羟基之间的缩合反应进行共价交联。
在本发明中,所述的有机硼酸硅酯键,其具有如下结构:
Figure PCTCN2017098107-appb-000006
其中,硼原子和硅原子之间至少形成一个硼酸硅酯键(B-O-Si);所述结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
Figure PCTCN2017098107-appb-000007
表示与聚合物链、交联链接或者其他任意合适的基团的连接,硼原子和硅原子分别通过至少一个所述连接接入交联网络。
在本发明的实施方式中,所述的有机硼酸硅酯键由有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体反应而成。其中,可以采用任意合适的有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体组合来形成有机硼酸硅酯键,优选采用有机硼酸基与硅羟基、有机硼酸基与硅羟基前躯体、有机硼酸酯基与硅羟基来形成有机硼酸硅酯键,更优选采用有机硼酸基与硅羟基、有机硼酸酯基与硅羟基来形成有机硼酸硅酯键,更优选采用有机硼酸酯基与硅羟基来形成有机硼酸硅酯键。
本发明中所述的有机硼酸基,其指的是由硼原子以及与该硼原子相连的一个羟基所组成的结构基元(B-OH),且其中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。在本发明中,有机硼酸基中的一个羟基(-OH)即 为一个官能团。
本发明中所述的有机硼酸酯基,指的是由硼原子、与该硼原子相连的一个氧原子和与该氧原子相连的烃基或硅烷基所组成的结构基元(B-OR,其中R为以碳、氢原子为主的烃基或以硅、氢原子为主的硅烷基,其通过碳原子或硅原子与氧原子相连),且其中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。在本发明中,有机硼酸酯基中的一个酯基(-OR)即为一个官能团。
本发明中所述的硅羟基,其指的是由硅原子以及与该硅原子相连的一个羟基所组成的结构基元(Si-OH),其中,硅羟基可为有机硅羟基(即硅羟基中的硅原子至少与一个碳原子通过硅碳键相连,且至少有一个有机基团通过所述硅碳键连接到硅原子上),也可为无机硅羟基(即硅羟基中的硅原子不与有机基团相连接),优选为有机硅羟基。在本发明中,硅羟基中的一个羟基(-OH)即为一个官能团。
本发明中所述的硅羟基前驱体,其指的是由硅原子以及与该硅原子相连的一个可水解得到羟基的基团所组成的结构基元(Si-X),其中,X为可水解得到羟基的基团,其可选自卤素、氰基、氧氰基、硫氰基、烷氧基、氨基、硫酸酯基、硼酸酯基、酰基、酰氧基、酰氨基、酮肟基、醇盐基等。合适的硅羟基前驱体举例如:Si-Cl,Si-CN,Si-CNS,Si-CNO,Si-SO4CH3,Si-OB(OCH3)2,Si-NH2,Si-N(CH3)2,Si-OCH3,Si-COCH3,Si-OCOCH3,Si-CONH2,Si-O-N=C(CH3)2,Si-ONa。在本发明中,硅羟基前驱体中的一个可水解得到羟基的基团(-X)即为一个官能团。
在本发明中所述的官能团,在没有其他特别指明的情况下,均指的是以上所述的有机硼酸基中的羟基、有机硼酸酯基中的酯基、硅羟基中的羟基、硅羟基前驱体中的可水解得到羟基的基团。
在本发明中所述的可选的超分子氢键作用,其为任意合适的通过氢键所建立的超分子作用,其一般是通过与电负性大的原子Z共价相连的氢原子与电负性大、半径小的原子Y在Z与Y之间以氢为媒介,生成Z-H…Y形式的氢键链接,其中,所述的Z、Y为任意合适的电负性大而半径小的原子,其可为同种元素也可以为不同种元素,其可选自F、N、O、C、S、Cl、P、Br、I等原子,更优选为F、N、O原子,更优选为O、N原子。其中,所述的超分子氢键作用可以作为超分子聚合和/或交联和/或链内成环作用存在,也即氢键可以仅起到连接两个或两个以上链段单元起到增大聚合物链尺寸但未起到超分子交联作用,或氢键仅起到链间超分子交联,或仅起到链内成环作用,或是以上三种中任意两种或两种以上的组合。
在本发明的实施方式中,所述的氢键可以是任意齿数。其中,所述的齿数指的是由氢键基团的供体(H,也就是氢原子)和受体(Y,也就是接受氢原子的电负性原子)所形成的氢键数量,每个H…Y组合为一齿。在下式中,分别示意说明一齿、二齿和三齿氢键基团的氢键成键情况。
Figure PCTCN2017098107-appb-000008
一齿、二齿和三齿氢键的成键情况可具体举例如下:
Figure PCTCN2017098107-appb-000009
氢键的齿数越多,协同效应越大,氢键的强度就越大。在本发明的实施方式中,对氢键的齿数没有限定。如果氢键的齿数多,则强度大,那么氢键作用的动态性就弱,有利于为普通共价交联提供辅助,起到促进动态聚合物保持平衡结构和提高力学性能(模量和强度)的作用。如果氢键的齿数少,则强度低,氢键作用的动态性就强,可以与动态共价有机硼酸硅酯键一起提供动态性能,如自修复性、吸能特性等。在本发明的实施方式中,优选不超过四齿的氢键作用。
本发明的实施方式中,所述的超分子氢键作用可以通过任意合适的氢键基团之间存在的非共价相互作用产生。其中,所述的氢键基团优选含有以下结构成分:
Figure PCTCN2017098107-appb-000010
更优选含有以下结构成分中的至少一种:
Figure PCTCN2017098107-appb-000011
其中,
Figure PCTCN2017098107-appb-000012
表示与聚合物链、交联链接或者其他任意合适的基团(包括氢原子)的连接。在本发明的实施方式中,氢键基团可选自酰胺基、氨基甲酸酯基、脲基、硫代氨基甲酸酯基以及以上基团的衍生物等。
骨架氢键基团为存在于聚合物链骨架上的氢键基团,其中至少部分原子是链骨架的组成部分。合适的杂化交联网络骨架和非交联链骨架氢键基团举例如(但本发明不仅限于此):
Figure PCTCN2017098107-appb-000013
Figure PCTCN2017098107-appb-000014
侧氢键基团为聚合链侧基、分子量不超过1000Da的侧链(包括支链和分叉链)上的氢键基团,其中,氢键基团也可存在于侧基和/或侧链的多级结构上。合适的侧氢键基团举例如(但本发明不仅限于此):
Figure PCTCN2017098107-appb-000015
Figure PCTCN2017098107-appb-000016
Figure PCTCN2017098107-appb-000017
其中,m、n为重复单元的数量,可以是固定值,也可以是平均值,优选小于20,更优选小于5。
在本发明中,同一种动态聚合物中可以含有一种或一种以上的氢键基团,同一个交联网络中也可以含有一种或一种以上的氢键基团,也即动态聚合物中可以含有一种氢键基团或多种氢键基团的组合。所述的氢键基团,可以通过任意合适的化学反应形成,例如:通过羧基、酰卤基团、酸酐基团、酯基、酰胺基、异氰酸酯基团与氨基之间的共价反应形成;通过异氰酸酯基团与羟基、巯基、羧基之间的共价反应形成;通过琥珀酰亚胺酯基团与氨基、羟基、巯基之间的共价反应形成。
在本发明中,交联网络中的超分子氢键作用可以具有任意合适的交联度,可以在其凝胶点以上,也可以在其凝胶点以下。所述超分子氢键作用可以是在动态聚合物进行普通共价交联和动态共价交联的过程中生成;也可以是预先生成超分子氢键作用后再进行普通共价交联和动态共价交联;也可以在普通共价交联和动态共价交联形成后,在动态聚合物后续成型过程中产生超分子氢键作用,但本发明不仅限于此。
在本发明的实施方式中,可至少利用以下几种化合物进行合理配方组合作为原料反应获得所述的动态聚合物:
含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I);含有硅羟基和/或硅羟基前躯体的含硅化合物(II);同时含有有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体的化合物(III);含有有机硼酸硅酯键和其他反应性基团的化合物(IV);不含有有机硼酸基、有机硼酸酯基、硅羟基、硅羟基前驱体以及有机硼酸硅酯键但含有其他反应性基团的化合物(V);其中,有机硼化合物(I)、含硅化合物(II)和化合物(V)不单独作为原料制备所述的动态聚合物。该些化合物中可选地含有所述的氢键基团,或者可选地含有可以继续反应生成氢键基团的其他反应性基团。
所述的有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V),其可以是分子量不超过1000Da的小分子化合物,也可以是分子量大于1000Da的大分子化合物;在有机硼化合物(I)、含硅化合物(II)、化合物(III)中,可以含有或者不含有其他反应性基团,但必须满足原料配方中可以实现普通共价交联,优选满足网络骨架中含有有机硼酸硅酯键,更优选满足同一个网络骨架中既含有普通共价交联也含有有机硼酸硅酯键交联。
所述的其他反应性基团,指的是能够自发地,或者能够在引发剂或光、热、辐照、催化等条件下进行化学反应生成普通共价键的基团,特别是可以聚合和/或交联的基团,合适的基团包括但不仅限于:羟基、羧基、羰基、酰基、酰胺基、酰氧基、氨基、醛基、磺酸基、磺酰基、巯基、烯基、炔基、氰基、嗪基、胍基、卤素、异氰酸酯基团、酸酐基团、环氧基团、丙烯酸酯基团、丙烯酰胺基团、马来酰亚胺基团、琥珀酰亚胺酯基团、降冰片烯基团、偶氮基团、叠氮基团、杂环基团、碳自由基、氧自由基等;优选羟基、氨基、巯基、烯基、异氰酸酯基团、环氧基团、丙烯酸酯基团、丙烯酰胺基团。
在本发明中所述的其他反应性基团,其在体系中起到的作用,一是进行衍生化反应制备氢键基团,二是在所述的化合物本身或其与其他化合物之间或与其反应产物之间直接通过所述的其他反应性基团的反应形成普通共价键,从而使得所述化合物和/或其反应产物的分子量增大/官能度增加,在化合物和/或其反应产物之间形成普通共价聚合和/或普通共价交联。
在本发明中所述的含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I),其可以如下结构表示:
Figure PCTCN2017098107-appb-000018
其中,A为含有有机硼酸基和/或有机硼酸酯基的模块;m为模块A的个数,m≥1;L为单个模块A上的取代基团,或者为两个或多个模块A之间的连接基团;p为基团L的个数,p≥1。
所述的含有有机硼酸基的模块A,其可选自以下任一种或任几种结构:
Figure PCTCN2017098107-appb-000019
其中,K1为与硼原子直接相连的基团,其选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;其中,A4中的环状结构为含有至少一个有机硼酸基的非芳香性或芳香性硼杂环基团,硼原子置于环状结构中,环状结构可以是小分子环,也可以是大分子环,其优选为3~100元环,更优选为3~50元环,更优选为3~10元环;A4中的环状结构的成环原子各自独立地为碳原子、硼原子或其他杂原子,且至少一个成环原子为硼原子并构成有机硼酸基,且至少一个成环原子与基团L相连;A4中的环状结构各个成环原子上的氢原子可以被取代,也可以不被取代;A4中的环状结构可以为单环结构、多环结构、螺环结构、稠环结构、桥环结构、嵌套环结构;
Figure PCTCN2017098107-appb-000020
表示与基团L的连接;所述各种结构中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。
所述的含有有机硼酸酯基的模块A,其可选自以下任一种或任几种结构:
Figure PCTCN2017098107-appb-000021
其中,K2为与硼原子直接相连的基团,其选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;R1、R2、R3、R4、R6为与氧原子直接相连的一价有机基团或一价有机硅基团,其通过碳原子或硅原子与氧原子直接相连,其选自以下任一种结构:分子量不超过1000Da的小分子烃基、分子量不超过1000Da的小分子硅烷基、分子量大于1000Da的聚合物链残基;R5为与两个氧原子直接相连的二价有机基团或二价有机硅基团,其通过碳原子或硅原子与氧原子直接相连,其选自以下任一种结构:分子量不超过1000Da的二价小分子烃基、分子量不超过1000Da的二价小分子硅烷基、分子量大于1000Da的二价聚合物链残基;其中,B5中的环状结构为含有至少一个有机硼酸酯基的非芳香性或芳香性硼杂环基团,硼原子置于环状结构中,环状结构可以是小分子环,也可以是大分子环,其优选为3~100元环,更优选为3~50元环,更优选为3~10元环;B5中的环状结构的成环原子各自独立地为碳原子、硼原子或其他杂原子,且至少一个成环原子为硼原子并构成有机硼酸酯基,且至少一个成环原子与基团L相连;B5中的环状结构各个成环原子上的氢原子可以被取代,也可以不被取代;B5中的环状结构可以为单环结构、多环结构、螺环结构、稠环结构、桥环结构、嵌套环结构;
Figure PCTCN2017098107-appb-000022
表示与基团L的连接;所述各种结构中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。
本发明中,含有有机硼酸基和/或有机硼酸酯基的模块A中,一个硼原子上可以同时连接一个羟基和一个酯基,同一个模块中也可以同时含有至少一个硼羟基和至少一个硼酸酯基,举例如:
Figure PCTCN2017098107-appb-000023
化合物同时含有有机硼酸基和有机硼酸酯基有助于调控其溶解性、反应速率、反应程度等参数,以及可用于调控动态聚合物的动态性等性能。
在本发明中,当所述的含有有机硼酸基和/或有机硼酸酯基的模块A存在于聚合物中,且有两个或多个所述连接时,其可以连接于不成环或不成团簇的聚合物链中,也可以连接于环状或团簇的侧基/侧链中;当只有一个所述连接时,其可以连接于聚合物链的任何位置。
当m=1时,p=1或者2,L为单个模块A上的取代基团;当p=2时,L可选自同一种结构或多种不同结构;所述的L结构可选自以下任一种或任几种:分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基。
当m>1时,模块A可选自同一种结构或多种不同结构,此时p≥1,L为两个或多个模块A之间的连接基团;当p≥2时,L可选自同一种结构或多种不同结构;所述的L结构可选自以下任一种或任几种:单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基。
在本发明中所述的含有硅羟基和/或硅羟基前躯体的含硅化合物(II),其可为有机含硅化合物,或者为无机含硅化合物,其可以如下结构表示:
Figure PCTCN2017098107-appb-000024
其中,G为含有硅羟基和/或硅羟基前驱体的模块;n为模块G的个数,n≥1;J为单个模块G上的取代基团,或者为两个或多个模块G之间的连接基团;q为基团J的个数,q≥1。
所述的含有硅羟基的模块G,其可以选自以下任一种或任几种结构:
Figure PCTCN2017098107-appb-000025
其中,K3、K4、K5、K6、K7为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基;其中,C7、C8、C9中的环状结构为含有至少一个硅羟基的非芳香性或芳香性硅杂环基团,硅原子置于环状结构中,环状结构可以是小分子环,也可以是大分子环,其优选为3~100元环,更优选为3~50元环,更优选为3~10元环;C7、C8、C9中的环状结构的成环原子各自独立地为碳原子、硅原子或其他杂原子,且至少一个成环原子为硅原子并构成硅羟基,且至少一个成环原子与基团J相连;C7、C8、C9中的环状结构各个成环原子上的氢原子可以被取代,也可以不被取代;C7、C8、C9中的环状结构可以为单环结构、多环结构、螺环结构、稠环结构、桥环结构、嵌套环结构;
Figure PCTCN2017098107-appb-000026
表示与基团J的连接。
所述的含有硅羟基前驱体的模块G,其可以选自以下任一种或任几种结构:
Figure PCTCN2017098107-appb-000027
其中,K8、K9、K10、K11、K12为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基;X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14为与硅原子直接相连的可水解基团,包括但不仅限于卤素、氰基、氧氰基、硫氰基、烷氧基、氨基、硫酸酯基、硼酸酯基、酰基、酰氧基、酰氨基、酮肟基、醇盐基等,优选卤素、烷氧基;其中,D7、D8、D9中的环状结构为含有至少一个硅羟基前驱体的非芳香性或芳香性硅杂环基团,硅原子置于环状结构中,环状结构可以是小分子环,也可以是大分子环,其优选为3~100元环,更优选为3~50元环,更优选为3~10元环;D7、D8、D9中的环状结构的成环原子各自独立地为碳原子、硅原子或其他杂原子,且至少一个成环原子为硅原子并构成硅羟基前驱体,且至少一个成环原子与基团J相连;D7、D8、D9中的环状结构各个成环原子上的氢原子可以被取代,也可以不被取代;D7、D8、D9中的环状结构可以为单环结构、多环结构、螺环结构、稠环结构、桥环结构、嵌套环结构;
Figure PCTCN2017098107-appb-000028
表示与基团J的连接。需要指出的是,在上述结构中,在合适的不同基团K之间、不同基团X之间以及基团K和基团X之间也可以成环。
本发明中,含有硅羟基和/或硅羟基前躯体的模块G中,一个硅原子上可以同时连接至少一个羟基和至少一个羟基前驱体,同一个模块中也可以同时含有至少一个硅羟基和至少一个硅羟基前驱体。举例如:
Figure PCTCN2017098107-appb-000029
化合物同时含有硅羟基和硅羟基前驱体有助于调控其溶解性、反应速率、反应程度等参数,以及可用于调控动态聚合物的动态性等性能。
在本发明中,当所述的含有硅羟基和/或硅羟基前驱体的模块G存在于聚合物中,且有两个或多个所述连接时,其可以连接于不成环或不成团簇的聚合物链中,也可以连接于环状或团簇的侧基/侧链中;当只有一个所述连接时,其可以连接于聚合物链的任何位置。
当n=1时,q=1、2或者3,J为单个模块G上的取代基团;当q=2或者3时,J可选自同一种结构或多种不同结构;所述的J结构可选自以下任一种或任几种:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基。
当n>1时,模块G可选自同一种结构或多种不同结构,此时q≥1,J为两个或多个模块G之间的连接基团;当q≥2时,J可选自同一种结构或多种不同结构;所述的J结构可选自以下任一种或任几种:单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、 分子量大于1000Da的二价或多价聚合物链残基、分子量不超过1000Da的二价或多价无机小分子链残基、分子量大于1000Da的二价或多价无机大分子链残基。
在本发明中所述的同时含有有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体的化合物(III),其可以如下结构表示:
Figure PCTCN2017098107-appb-000030
其中,A为含有有机硼酸基和/或有机硼酸酯基的模块,其具体定义可参考有机硼化合物(I)中模块A的定义,这里不再赘述,其中,A优选为含有有机硼酸酯基的模块;x为模块A的个数,x≥1;当x≥2时,模块A可选自同一种结构或多种不同结构;G为含有硅羟基和/或硅羟基前驱体的模块,其具体定义可参考含硅化合物(II)中模块G的定义,这里不再赘述,其中,G优选为含有硅羟基前驱体的模块;y为模块G的个数,y≥1;当y≥2时,模块G可选自同一种结构或多种不同结构;T为两个或多个A之间、或者两个或多个G之间、或者A与G之间的连接基团,所述的T结构可选自以下任一种或任几种:单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基;v为基团T的个数,v≥1;当v≥2时,T可选自同一种结构或多种不同结构。
需要说明的是,当有机硼化合物(I)结构中的基团L、含硅化合物(II)结构中的基团J、化合物(III)结构中的基团T选自除环状结构以外的链形结构时,基团A可连接于L的末端,也可连接于L中的任意位置;基团G可连接于J的末端,也可连接于J中的任意位置;基团A和G可连接于T的末端,也可连接于T中的任意位置。
对于有机硼化合物(I)、含硅化合物(II)、化合物(III),其有机硼酸基中的任一个羟基、有机硼酸酯基中的任一个酯基、硅羟基中的任一个羟基、硅羟基前驱体中的任一个可水解得到羟基的基团均为一个官能团。对于有机硼化合物(I)、含硅化合物(II),其可以为单官能团、双官能团、三官能团或多官能团化合物,例如,对于结构为
Figure PCTCN2017098107-appb-000031
的有机硼化合物(I),其分别为单官能团、双官能团、三官能团、四官能团;再例如,对于结构为
Figure PCTCN2017098107-appb-000032
的含硅化合物(II),其分别为单官能团、双官能团、三官能团、四官能团;对于化合物(III),其可以为双官能团、三官能团或多官能团化合物,例如,对于结构为
Figure PCTCN2017098107-appb-000033
的化合物(III),其分别为双官能团、三官能团、四官能团、五官能团。
在有机硼化合物(I)、含硅化合物(II)、化合物(III)中,除了含有有机硼酸基和/或有机硼酸酯基、硅羟基和/或硅羟基前驱体外,还可以选择性地含有其他反应性基团,也可以选择性地含有氢键基团。
在本发明中所述的含有有机硼酸硅酯键和其他反应性基团的化合物(IV),其可以如下 结构表示:
Figure PCTCN2017098107-appb-000034
其中,E为含有有机硼酸硅酯键的模块;u为模块E的个数,u≥1;Y为单个模块E上的取代基团,或者为单个模块E上的取代基团和两个或多个模块E之间的连接基团,且至少一个基团Y与有机硼酸硅酯键的硼原子相连,至少一个基团Y与有机硼酸硅酯键的硅原子相连;其中,在至少一个基团Y中含有至少一个其他反应性基团,并且在所有基团Y中含有的其他反应性基团数大于等于2;r为基团Y的个数,r≥2。
所述的含有有机硼酸硅酯键的模块E,其可以如下结构表示:
Figure PCTCN2017098107-appb-000035
其中,K13、K16、K20为与硼原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;K14、K15、K17、K18、K19、K21为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基;
Figure PCTCN2017098107-appb-000036
表示与基团Y的连接。需要指出的是,在上述结构中,在合适的不同基团K之间、不同基团Y之间以及基团K和基团Y之间也可以成环;基团Y可通过Si-O键与硼原子相连,也可通过B-O键与硅原子相连。
在本发明中,所述的含有有机硼酸硅酯键的模块E,可以通过本发明中所提到的任一种或任几种含有有机硼酸基和/或有机硼酸酯基的模块A与任一种或任几种含有硅羟基和/或硅羟基前驱体的模块G通过有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前驱体之间的缩合反应或酯交换反应所得。
当u=1时,r=2、3、4或5,Y为单个模块E上的取代基团,Y可选自同一种结构或多种不同结构,并且Y含有的其他反应性基团的数量和结构必须保证可以获得所述的动态聚合物;所述的Y结构可选自以下任一种或任几种:分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基。
当u>1时,模块E可选自同一种结构或多种不同结构,此时r≥2,Y为单个模块E上的取代基团和两个或多个模块E之间的连接基团,Y可选自同一种结构或多种不同结构,并且Y含有的其他反应性基团的数量和结构必须保证可以获得所述的动态聚合物;所述的Y结构可选自分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基中的至少一种以及单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基中的至少一种。
对于含有有机硼酸硅酯键和其他反应性基团的化合物(IV),其一般为含有有机硼酸硅酯键的单体、含有有机硼酸硅酯键的低聚物、含有有机硼酸硅酯键的预聚物。化合物(IV)可通过任意合适的方法制备,包括通过合适的有机硼化合物(I)和含硅化合物(II)进行制备。优选地,化合物(IV)可以通过至少一种含有其他反应性基团的有机硼化合物(I)和至少一种含有其他反应性基团的含硅化合物(II)进行反应制备,也可以通过至少一种含有其他反应性基团的有机硼化合物(I)与至少一种不含有其他反应性基团的含硅化合物(II)进行反应制备,也可以通过至少一种不含有其他反应性基团的有机硼化合物(I)与至少一种含有其 他反应性基团的含硅化合物(II)进行反应制备;化合物(IV)也可以通过至少一种含有其他反应性基团的化合物(III)或其与有机硼化合物(I)和/或含硅化合物(II)进行反应制备。
本发明中所述的化合物(V),对于其结构没有特别限定,任意合适的不含有有机硼酸基、有机硼酸酯基、硅羟基、硅羟基前驱体以及有机硼酸硅酯键但含有其他反应性基团的化合物均可选作为本发明中的化合物(V)。
在本发明中所提到的杂原子基团,其可以是任意合适的含有杂原子的基团,其可选自以下任一种基团,但本发明不仅限于此:卤素、羟基、硫醇、羧基、硝基、伯胺基、硅基、磷基、三氮唑、异噁唑、酰胺基、酰亚胺基、硫代酰胺基、烯胺基、碳酸酯基、硫代碳酸酯基、二硫代碳酸酯基、三硫代碳酸酯基、氨基甲酸酯基、硫代氨基甲酸酯基、二硫代氨基甲酸酯基、原酸酯基、磷酸酯基、亚磷酸酯基、次磷酸酯基、膦酸酯基、磷酰基、亚磷酰基、次磷酰基、硫代磷酰基、硫代亚磷酰基、硫代次磷酰基、磷硅烷酯基、硅烷酯基、碳酰胺、硫代酰胺、磷酰胺、亚磷酰胺、焦磷酰胺、环磷酰胺、异环磷酰胺、硫代磷酰胺、原硅酸基、偏硅酸基、次硅酸基、乌头酰基、肽键、偶氮基、异脲基、异硫脲基、脲基甲酸酯基、硫脲基甲酸酯基、胍基、脒基、氨基胍基、氨基脒基、亚氨酸基、亚氨酸硫酯基、硝酰基、亚硝酰基、磺酸基、磺酸酯基、亚磺酸酯基、磺酰胺基、亚磺酰胺基、磺酰脲基、马来酰亚胺。
在本发明中所提到的分子量不超过1000Da的小分子烃基,其一般含有1到71个碳原子,其可含有杂原子基团,也可不含有杂原子基团。概括地讲,所述的小分子烃基可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式、任一种的被杂化形式及其组合:C1-71烷基、环C3-71烷基、苯基、苄基、芳烃基;小分子烃基优选为甲基、乙基、丙基、丙烯、丁基、丁烯、戊基、己基、庚基、辛基、壬基、癸基、环己基、苯基;更优选为甲基、乙基、丙基、苯基。
在本发明中所提到的分子量大于1000Da的聚合物链残基,其可为任意合适的聚合物链残基,包括但不仅限于碳链聚合物残基、杂链聚合物残基、元素有机聚合物残基。其中,聚合物可为均聚物,也可为任几种单体、低聚物或聚合物组成的共聚物;聚合物链可为柔性链,也可为刚性链。
其中,所述的碳链聚合物残基,其可以是任意合适的大分子主链主要由碳原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式、任一种的被杂化形式及其组合:聚烯烃类链残基,如聚乙烯链残基、聚丙烯链残基、聚异丁烯链残基、聚苯乙烯链残基、聚氯乙烯链残基、聚偏氯乙烯链残基、聚氟乙烯链残基、聚四氟乙烯链残基、聚三氟氯乙烯链残基、聚醋酸乙烯酯链残基、聚乙烯基烷基醚链残基、聚丁二烯链残基、聚异戊二烯链残基、聚氯丁二烯链残基、聚降冰片烯链残基等;聚丙烯酸类链残基,如聚丙烯酸链残基、聚丙烯酰胺链残基、聚丙烯酸甲酯链残基、聚甲基丙烯酸甲酯链残基等;聚丙烯腈类链残基,如聚丙烯腈链残基等;优选聚乙烯链残基、聚丙烯链残基、聚苯乙烯链残基、聚氯乙烯链残基、聚丁二烯链残基、聚异戊二烯链残基、聚丙烯酸链残基、聚丙烯酰胺链残基、聚丙烯腈链残基。
所述的杂链聚合物残基,其可以是任意合适的大分子主链主要由碳原子和氮、氧、硫等杂原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式、任一种的被杂化形式及其组合:聚醚类链残基,如聚环氧乙烷链残基、聚环氧丙烷链残基、聚四氢呋喃链残基、环氧树脂链残基、酚醛树脂链残基、聚苯醚链残基等;聚酯类链残基,如聚己内酯链残基、聚戊内酯链残基、聚丙交酯链残基、聚对苯二甲酸乙二醇酯链残基、不饱和聚酯链残基、醇酸树脂链残基、聚碳酸酯链残基、生物聚酯链残基、液晶聚酯链残基等;聚胺类链残基,如聚酰胺链残基、聚酰亚胺链残基、聚氨酯链残基、聚脲链残基、聚硫代氨基甲酸酯链残基、脲醛树脂链残基、蜜胺树脂链残基、液晶聚合物链残基等;聚硫类链残基,如聚砜链残基、聚苯硫醚链残基等;优选聚环氧乙烷链残基、聚四氢呋喃链残基、 环氧树脂链残基、聚己内酯链残基、聚丙交酯链残基、聚酰胺链残基、聚氨酯链残基、聚脲链残基;所述的杂链聚合物残基,其可通过点击反应,如CuAAC反应、thiol-ene反应形成。
所述的元素有机聚合物残基,其可以是任意合适的大分子主链主要由硅、硼、铝等无机元素杂原子和氮、氧、硫、磷等杂原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式、任一种的被杂化形式及其组合:有机硅类聚合物链残基,如聚有机硅烷链残基、聚有机硅氧烷链残基、聚有机硅硼烷链残基、聚有机硅氮烷链残基、聚有机硅硫烷链残基、聚有机磷硅氧烷链残基、聚有机金属硅氧烷链残基;有机硼类聚合物链残基,如聚有机硼烷链残基、聚有机硼氧烷链残基、聚有机硼氮烷链残基、聚有机硼硫烷链残基、聚有机硼磷烷链残基等;有机磷类聚合物链残基;有机铅类聚合物链残基;有机锡类聚合物链残基;有机砷类聚合物链残基;有机锑类聚合物链残基;优选聚有机硅烷链残基、聚有机硅氧烷链残基、聚有机硼烷链残基。
在本发明中所提到的分子量不超过1000Da的小分子硅烷基,其可以是任意合适的分子主链主要由硅原子和氮、氧、硫、磷等杂原子构成的小分子硅烷基,概括地讲,所述的小分子硅烷基可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式、任一种的被杂化形式及其组合:硅碳烷链残基、硅氧烷链残基、硅硫烷链残基、硅氮烷链残基;优选硅碳烷链残基、硅氧烷链残基。
在本发明中所提到的分子量不超过1000Da的无机小分子链残基,其可以是任意合适的分子主链和侧链均主要由硅、硼、铝等无机元素杂原子和氮、氧、硫、磷等杂原子构成的无机小分子链残基,概括地讲,所述的无机小分子链残基可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式、任一种的被杂化形式及其组合:链状硫残基、硅烷链残基、硅氧化合物链残基、硫硅化合物链残基、硫氮化合物链残基、磷腈化合物链残基、磷氧化合物链残基、硼烷链残基、硼氧化合物链残基;优选链状硫残基、硅烷链残基、硅氧化合物链残基、磷腈化合物链残基、硼烷链残基。
在本发明中所提到的分子量大于1000Da的无机大分子链残基,其可以是任意合适的大分子主链和侧链均主要由硅、硼、铝等无机元素杂原子和氮、氧、硫、磷等杂原子构成的无机大分子链残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式、任一种的被杂化形式及其组合:链状硫聚合物残基、聚硅烷链残基、聚硅氧烷链残基、聚硫硅链残基、聚硫氮链残基、聚磷酸链残基、聚磷腈链残基、聚氯代磷腈链残基、聚硼烷链残基、聚硼氧烷链残基;也可选自以下组中任一种带有残基的无机大分子或任一种经过表面改性的带有残基的无机大分子:沸石型分子筛、磷酸铝分子筛、磷酸锆分子筛、杂多酸盐分子筛、金刚石、石墨、石墨烯、氧化石墨烯、碳纳米管、富勒烯、碳纤维、白磷、红磷、五氧化磷、硫化钼、二氧化硅、二硫化硅、氮化硅、碳化硅、滑石、高岭土、蒙脱石、云母、石棉、长石、水泥、玻璃、石英、陶瓷、氧化硼、氮化硫、硅化钙、硅酸盐、玻璃纤维、氧化铍、氧化镁、氧化汞、硼氢化物、氮化硼、碳化硼、氮化铝、水铝石、水铝矿、刚玉、二氧化钛;优选链状硫聚合物残基、聚硅烷链残基、聚硅氧烷链残基、聚磷腈链残基、聚硼烷链残基、经过表面改性的石墨烯、经过表面改性的碳纳米管、经过表面改性的碳纤维、经过表面改性的二氧化硅、经过表面改性的氮化硅、经过表面改性的碳化硅、经过表面改性的硅酸盐、经过表面改性的玻璃纤维、经过表面改性的氮化硼。
对于小分子烃基、聚合物链残基、小分子硅烷链残基、无机小分子链残基、无机大分子链残基的结构并未作特别限定,其可以是直链型、支链型、星型、梳型、树枝型、单环型、多环型、螺环型、稠环型、桥环型、带环状结构的链型、二维和三维团簇型及其组合;在小分子烃基、聚合物链残基、小分子硅烷链残基、无机小分子链残基、无机大分子链残基中,可以含有柔性链段,也可含有刚性链段,也可以同时含有柔性和刚性链段。
在本发明中所述的“单键”,其指的是在化合物分子中两个原子间以共用一对电子而构成 的普通共价键,其可选自硼硼单键、碳碳单键、碳氮单键、氮氮单键、硼碳单键、硼氮单键、硼硅单键、硅硅单键、硅碳单键、硅氮单键。
在本发明中所述的“杂原子连接基”,其可以是任意合适的含有杂原子的连接基团,其可选自以下任一种或任几种的组合:醚基、硫基、双硫基、硫醚基、二价叔胺基、三价叔胺基、二价硅基、三价硅基、四价硅基、二价磷基、三价磷基、二价硼基、三价硼基。
本发明中所述的“有机基团”,指的是主要以碳元素和氢元素作为骨架所构成的基团,其可以是分子量不超过1000Da的小分子基团,也可以是分子量大于1000Da的聚合物链残基,合适的基团举例如:甲基、乙基、乙烯基、苯基、苄基、羧基、醛基、乙酰基、丙酮基等。
本发明中所述的“有机硅基团”,指的是主要以硅元素和氢元素作为骨架所构成的基团,其可以是分子量不超过1000Da的小分子硅烷基,也可以是分子量大于1000Da的有机硅类聚合物链残基,合适的基团举例如:硅烷基、硅氧烷基、硅硫烷基、硅氮烷基等。
本发明中所用术语“杂原子”是指氮原子、氧原子、硫原子、磷原子、硅原子、硼原子等常见的非碳原子。
本发明中所用术语“烷基”是指具有直链或支链结构的饱和烃基。在适当的情况下,烷基可具有指定的碳原子数,例如,C1-4烷基,所述烷基包括在直链或支链排列中具有1、2、3或4个碳原子的烷基。合适的烷基的实例包括但不限于甲基、乙基、丙基、正丁基、异丁基、叔丁基、正戊基、2-甲基丁基、3-甲基丁基、4-甲基丁基、正己基、2-甲基戊基、3-甲基戊基、4-甲基戊基、5-甲基戊基、2-乙基丁基、3-乙基丁基、庚基、辛基、壬基、癸基。
本发明中所用术语“环烷基”是指饱和的环烃。环烷基环可包括指定的碳原子数。例如,3至8元环烷基包括3、4、5、6、7或8个碳原子。合适的环烷基的实例包括但不限于环丙基、环丁基、环戊基、环己基、环庚基和环辛基。
本发明中所用术语“芳烃基”意指在各个环中至多7个原子的任何稳定的单环或多环碳环,其中至少一个环为芳香族的。此类芳基的实例包括但不限于苯基、联苯基、萘基、联萘基、四氢萘基、茚满基、蒽基、联蒽基、菲基、联菲基。
本发明中所用术语“杂芳烃基”表示在各个环中至多7个原子的稳定的单环或多环,其中至少一个环为芳香族且至少一个环含有选自O、N、S、P、Si、B等杂原子。在本定义范围内的杂芳烃基包括但不限于吖啶基、咔唑基、噌啉基、喹喔啉基、喹唑啉基、吡唑基、吲哚基、苯并三唑基、呋喃基、噻吩基、苯硫基、3,4-亚丙基二氧苯硫基、苯并噻吩基、苯并呋喃基、苯并二噁烷、苯并二氧杂环己烯、喹啉基、异喹啉基、噁唑基、异噁唑基、咪唑基、吡嗪基、哒嗪基、吡啶基、嘧啶基、吡咯基、四氢喹啉、噻唑基、异噻唑基、1,2,4-三唑基、1,2,3-三唑基、1,2,4-噁二唑基、1,2,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,4,5-四嗪基和四唑基。
在本发明的环状结构中所提到的单环结构,指的是在环状结构中只含有一个环,举例如:
Figure PCTCN2017098107-appb-000037
所提到的多环结构,指的是在环状结构中含有两个或两个以上独立的环,举例如:
Figure PCTCN2017098107-appb-000038
Figure PCTCN2017098107-appb-000039
所提到的螺环结构,指的是在环状结构中含有由两个或多个环彼此间通过共用一个原子构成的环状结构,举例如:
Figure PCTCN2017098107-appb-000040
所提到的稠环结构(其也包括二环、芳并环结构),指的是在环状结构中含有由两个或多个环彼此间通过共用两个相邻的原子构成的环状结构,举例如:
Figure PCTCN2017098107-appb-000041
所提到的桥环结构,指的是在环状结构中含有由两个或多个环彼此间通过共用两个以上相邻的原子构成的环状结构,其具有三维的笼状结构,举例如:
Figure PCTCN2017098107-appb-000042
所提到的嵌套环结构,指的是在环状结构中含有由两个或多个环彼此间相连或嵌套构成的环状结构,举例如:
Figure PCTCN2017098107-appb-000043
为简便起见,本发明中也将基团中的碳原子数范围以下标形式标注在C的下标位置,表示该基团具有的碳原子数,例如C1-10表示“具有1至10个碳原子”、C3-20表示“具有3至20个碳原子”。“不饱和的C3-20烃基”指C3-20烃基中含有不饱和键的化合物。“取代的C3-20烃基”指C3-20烃基的氢原子被取代得到的化合物。“杂化的C3-20烃基”指C3-20烃基中的碳原子被杂原子取代得到的化合物。当一个基团可选自C1-10烃基时,其可选自下标所示范围中任一种碳原子数的烃基,即可选自C1、C2、C3、C4、C5、C6、C7、C8、C9、C10烃基中任一种烃基。本发明中,在没有特别说明的情况下,以区间形式标记的下标均表示可选自该范围内任一整数,该范围包括两个端点。
当涉及到的结构具有同分异构体时,没有特别指定的情况下,可以为其中任一种异构体。如对于烷基,没有特别指定的情况下,指失去任一位置的氢原子形成的烃基。具体地,如丙基指正丙基、异丙基中任一种,亚丙基指1,3-亚丙基、1,2-亚丙基、异亚丙基中任一种。
本发明中“取代的”,以“取代的烃基”为例,指被取代的“烃基”中任一位置的任一个或一个以上的氢原子可以被任一取代基所取代。没有特别限定的情况下,其中的取代基没有特别限制。
对于一个化合物、一个基团或一个原子,可以同时被取代和被杂化,例如硝基苯基取代氢原子,又如-CH2-CH2-CH2-被替换为-CH2-S-CH(CH3)-。
为了说明的简明性,在本发明的说明书中,利用连接词“和/或”来表示所述的术语可以包含选自连接词“和/或”之前所述的选项,或者选自连接词“和/或”之后所述的选项,或者同时选自连接词“和/或”之前和之后所述的选项这三种情况。例如,说明书中“含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I)”中的“和/或”,其含义即是有机硼化合物(I)可以仅含有有机硼酸基,或者仅含有有机硼酸酯基,或者同时含有有机硼酸基和有机硼酸酯基;再例如,说明书中“A为含有有机硼酸基和/或有机硼酸酯基的模块”中的“和/或”,其含义即是A为含有有机硼酸基的模块,或者为含有有机硼酸酯基的模块,或者为同时含有有机硼酸基和有机硼酸酯基的模块。在本发明说明书中其他地方出现的连接词“和/或”,均代表此类含义。
本发明中所用术语“分子量”均代表物质的相对分子质量,对于小分子化合物、小分子基团及某些具有固定结构的大分子化合物、大分子基团而言,其分子量一般具有单分散性,也即具有固定分子量;而对于低聚物,高聚物、低聚物残基、高聚物残基等具有多分散性分子量的物质,其分子量一般指代平均分子量。其中,本发明中的小分子化合物、小分子基团特指分子量不超过1000Da的化合物或基团;大分子化合物、大分子基团特指分子量大于1000Da的化合物或基团。
在本发明中,对于构成动态聚合物有机硼酸硅酯键的有机硼酸基和有机硼酸酯基,由于基团中硼原子所具有的缺电子性,使得其易被含有未共用电子对的亲核试剂所进攻而产生键合;而对于构成有机硼酸硅酯键的硅羟基(包括能够通过转化得到硅羟基的硅羟基前驱体),由于硅羟基氧原子上含有未共用电子对,以及硅羟基本身所具有的强极性和高活性,其在与有机硼酸基和/或有机硼酸酯基相接触的过程中,能够进行较为快速的脱水缩合反应、酯交换反应等反应形成有机硼酸硅酯键,从而构成动态共价交联等。本发明正是利用了有机硼酸基和有机硼酸酯基与硅羟基所具有的高反应活性,有机硼酸硅酯键所具有的较强的动态可逆性,制得了在较为温和的条件下即可体现出动态效果的动态聚合物。同时,利用有机硼酸基和/或有机硼酸酯基来形成有机硼酸硅酯键,使得构成有机硼酸硅酯键的组分选择更为丰富,对于动态聚合物的结构、动态可逆性、力学性能、耐溶剂性等方面的调控性大大提高,扩展了聚合物的应用范围。
当将含有有机硼酸基和/或有机硼酸酯基的有机硼化合物(I)与含有硅羟基和/或硅羟基前驱体的含硅化合物(II)在溶解或熔融状态下进行混合时,有机硼化合物(I)中的有机硼酸基能够与含硅化合物(II)中的硅羟基进行快速的缩合反应形成有机硼酸硅酯键,从而得到动态单体和/或预聚物和/或聚合物;有机硼化合物(I)中的有机硼酸酯基,可以直接与含硅化合物(II)中的硅羟基进行酯交换反应形成有机硼酸硅酯键,也可以先通过水解形成有机硼酸基后再与含硅化合物(II)中的硅羟基进行缩合反应形成有机硼酸硅酯键,从而得到动态单体和/或预聚物和/或聚合物;含硅化合物(II)中的硅羟基前驱体,可以直接与有机硼化合物(I)中的有机硼酸基通过脱去小分子进行缩合反应,也可以先通过水解形成硅羟基后,再与有机硼化合物(I)中的有机硼酸基进行缩合反应,或者与有机硼化合物(I)中的有机硼酸酯基进行酯交换反应形成有机硼酸硅酯键,从而得到动态单体和/或预聚物和/或聚合物。当使用含有有机硼酸酯基的有机硼化合物(I)或含有硅羟基前驱体的含硅化合物(II)进行反应时,一般需要较高温度进行反应,或者通过对其中之一进行原位水解后进行缩合反应。一个聚合体系中,可以同时含有一种或者多种有机硼化合物(I)以及一种或者多种含硅化合物(II)。
对于同时含有有机硼酸基和/或有机硼酸酯基以及硅羟基和/或硅羟基前躯体的化合物(III),其一般需要通过控制反应条件以及添加合适的反应助剂,使化合物(III)中的有机硼酸基能够与同种或者不同种化合物(III)中含有的硅羟基前驱体进行反应形成有机硼酸硅酯键,或者使化合物(III)中的有机硼酸酯基能够与同种或者不同种化合物(III)中含有的硅 羟基前驱体进行反应形成有机硼酸硅酯键,或者使化合物(III)中的有机硼酸酯基先通过水解得到有机硼酸基后再与同种或者不同种化合物(III)中含有的硅羟基前驱体进行反应形成有机硼酸硅酯键,或者使化合物(III)中的有机硼酸酯基与同种或者不同种化合物(III)中含有的硅羟基前躯体先通过水解得到的硅羟基进行缩合反应形成有机硼酸硅酯键,或者使化合物(III)中的有机硼酸酯基和硅羟基前躯体同时先水解再进行缩合反应形成有机硼酸硅酯键,从而得到动态聚合物。一个聚合体系中,除可以含有一种或者多种化合物(III)外,还可以同时含有一种或者多种有机硼化合物(I)和/或一种或者多种含硅化合物(II)。
在本发明的实施方式中,对于有机硼化合物(I)、含硅化合物(II)、化合物(III),其在形成动态单体和/或预聚物和/或聚合物的过程中,除了利用化合物中含有的有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体进行反应外,还可同时利用其含有的其他反应性基团可选地与其他成分,如化合物(IV)和/或化合物(V),通过聚合/交联反应进行普通共价交联,共同反应构成动态聚合物的杂化交联网络。也可以将有机硼化合物(I)、含硅化合物(II)、化合物(III)参与形成的预聚物和/或聚合物与其他成分如化合物(IV)和/或化合物(V)共混,然后通过其他成分的普通共价交联形成杂化交联网络的动态聚合物。也可以先形成普通共价交联,再形成动态共价有机硼酸硅酯键。
对于化合物(IV),其一般是通过化合物(IV)中所含有的其他反应性基团之间的相互反应,或者通过化合物(IV)中所含有的其他反应性基团与化合物(V)和/或由有机硼化合物(I)、含硅化合物(II)、化合物(III)参与形成的预聚物和/或聚合物中所含有的其他反应性基团之间的相互反应,从而得到含有有机硼酸硅酯键的杂化交联动态聚合物。也可以直接由化合物(IV)本身含有的其他反应性基团反应获得普通共价交联。当然,本发明不仅限与此,本领域技术人员可以根据本发明的逻辑和脉络,合理有效地实现。
在本发明的实施方式中,其他反应性基团可通过诸如如下形式的反应得到普通共价键,从而与有机硼酸硅酯键一同形成杂化交联动态聚合物:通过化合物中含有的氨基和化合物中含有的羧基进行缩合反应形成酰胺键;通过化合物中含有的环氧基团和化合物中含有的氨基、巯基进行开环反应形成仲胺键、硫醚键;在引发剂或外加能的作用下,通过化合物中含有的烯烃基进行自由基聚合;在引发剂或外加能的作用下,通过化合物中含有的烯烃基进行阴/阳离子聚合;通过化合物中含有的异氰酸酯基与化合物中含有的氨基、羟基、巯基进行反应形成脲键、氨基甲酸酯键和硫代氨基甲酸酯键;通过化合物中含有的环氧基团进行开环聚合形成醚键;在一价铜催化下,通过化合物中含有的叠氮基团和化合物中含有的炔基进行CuAAC反应;通过化合物中含有的巯基和化合物中含有的烯烃基进行thiol-ene点击反应;通过化合物中含有的双键之间的加成反应等;其中,优选能够在不高于100℃下快速反应的方式,更优选能够在室温下快速反应的方式,包括但不限于异氰酸酯基与氨基、羟基、巯基的反应、丙烯酸酯反应、thiol-ene点击反应。
在本发明的实施方式中,氢键基团可以在任意合适的成分中和在任意合适的时机下引入,包括但不仅限于从单体中引入,在形成预聚物的同时引入,在形成预聚物之后引入,在形成普通共价交联的同时引入,在形成普通共价交联之后引入。优选在形成预聚物和普通共价交联的同时引入。为避免氢键基团引入后形成氢键交联影响混合、溶解等操作,也可以对氢键基团进行封闭保护,待合适时间(如形成普通共价交联的同时或之后)再进行解保护。
在本发明的实施方式中所提到的合适的聚合方法,其可以通过本领域所通用的任一种合适的聚合反应来进行,包括但不仅限于缩合聚合反应、加成聚合反应、开环聚合反应;其中,加成聚合反应包括但不仅限于自由基聚合反应、阴离子聚合反应、阳离子聚合反应、配位聚合反应。
在具体实施过程中,化合物原料可利用上述的任一种聚合反应方法,通过本领域所通用的任一种合适的聚合工艺来实施。例如,当化合物原料以缩合聚合的形式得到动态聚合物时, 其可通过熔融聚合、溶液聚合、界面聚合等聚合工艺进行实施;又例如,当化合物原料以自由基聚合的形式得到动态聚合物时,其可通过本体聚合、溶液聚合、悬浮聚合、乳液聚合等聚合工艺进行实施;再例如,当化合物原料以离子聚合的形式得到动态聚合物时,其可通过溶液聚合、淤浆聚合、气相聚合等聚合工艺进行实施。
在上述聚合工艺中所提到的熔融聚合,其通常的实施方法是将化合物原料处于熔融状态下,利用引发剂或光、热、辐照、催化等条件进行聚合,得到熔融状态的动态聚合物;所提到的溶液聚合,其通常的实施方法是将化合物原料、引发剂溶于适当溶剂中进行聚合得到动态聚合物;所提到的界面聚合,其通常的实施方法是将化合物原料溶解在两种互不相溶的溶剂中,在溶液的界面上(或界面有机相一侧)进行聚合得到动态聚合物;所提到的本体聚合,其通常的实施方法是将化合物原料在少量引发剂或光、热、辐照、催化等条件下进行聚合得到动态聚合物;所提到的悬浮聚合,其通常的实施方法是将溶解有引发剂的化合物原料搅拌成小液滴,悬浮在水介质中进行聚合得到动态聚合物;所提到的乳液聚合,其通常的实施方法是将化合物原料借助乳化剂的作用分散在溶解有引发剂的水介质中,形成乳液后再进行聚合得到动态聚合物;所提到的淤浆聚合,其通常的实施方法是将化合物原料溶于适当溶剂中,引发剂则以分散体的形式存在于溶剂中进行聚合,得到的动态聚合物以沉淀的形式析出;所提到的气相聚合,其通常的实施方法是将化合物原料在气相状态下,利用引发剂或光、热、辐照、催化等条件进行聚合得到动态聚合物。
在本发明的实施方式中所提到的合适的交联方法,其可以通过本领域所通用的任一种合适的交联反应来进行。
在具体实施过程中,化合物原料可利用热引发交联、光引发交联、辐射引发交联、等离子体引发交联、微波引发交联等物理交联手段得到动态聚合物;化合物原料也可利用过氧化物交联、亲核试剂取代交联等化学交联手段得到动态聚合物。其中,交联过程可以以本体、溶液、乳液等形式进行。
在制备工艺中,优选采用溶液聚合/交联工艺、乳液聚合/交联工艺来制备动态聚合物。所述的溶液聚合/交联工艺、乳液聚合/交联工艺,其具有能够降低体系粘度,易于传质传热、便于温度控制、可避免局部过热的优势,所获得的溶液、乳液便于浓缩或分散,有利于进行涂覆、混合等操作。
用于制备动态聚合物的有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V),其可以是气体、液体、晶体、粉末、颗粒、胶状、膏状等。
在制备动态聚合物的过程中,作为原料的有机硼化合物(I)、化合物(III)中的有机硼酸,其可以有机硼酸或有机硼酸酯的形式存在。作为原料的含硅化合物(II)、化合物(III)中的硅羟基,其可以硅羟基或硅羟基前驱体的形式存在。
在含硅化合物(II)原料的合成和使用过程中,可以选择性地加入一些缩合抑制剂,其一般是为了使体系能够保持在中性或接近中性的条件下,避免硅羟基缩合成硅氧烷,从而能够得到高产率的含有硅羟基的化合物。在含硅化合物(II)的使用过程中,尽量保证合成好的或水解后的含硅化合物(II)现合现用;更为合适的选择是,在含硅化合物(II)合成或水解之后,紧接着就控制条件将其与有机硼化合物(I)进行缩合反应,得到动态聚合物。在将含硅化合物(II)与有机硼化合物(I)反应的过程中,尽量保证与其进行反应的有机硼化合物(I)处于过量的状态下,对于含硅化合物(II)固体或液体,多采用缓慢添加或滴加的形式加入到有机硼化合物(I)中。
当原料选自化合物(III)时,为保证原料的稳定性,化合物(III)中的有机硼酸优先选择以有机硼酸酯的形式存在,化合物(III)中的硅羟基优先选择以硅羟基前驱体的形式存在,并且在化合物(III)的制备过程中,应尽量使用非极性惰性溶剂作为反应溶剂,并在低温条件下进行保存;同时,在原料的合成过程中往往也需要加入一些缩合抑制剂,并尽量保证化 合物(III)现合现用。考虑到化合物(III)在制备以及保存过程中所采用的方式方法相对较为繁杂,因此用于制备动态聚合物的原料组分优先在有机硼化合物(I)与含硅化合物(II)中进行搭配选择,但化合物(III)也是动态聚合物原料的重要组成之一,在某些特定情况下具有其特定的优势,不能忽略。
当将反应物原料在溶解或熔融状态下进行混合时,反应物中的有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体能够在加热、辐射、光照等条件下进行动态共价交联,或者在引发剂、催化剂等添加剂的作用下进行动态共价交联生成有机硼酸硅酯键;反应物中能够进行共价交联的其他反应性基团,也能够在加热、辐射、光照等条件下进行普通共价交联,或者在引发剂、交联剂、固化剂等添加剂的作用下进行普通共价交联生成共价键。
在动态聚合物的制备过程中,对于具有第一种网络结构(仅含有一个交联网络,并且此交联网络同时含有普通共价交联和有机硼酸硅酯键交联)的动态聚合物,其可利用至少一种有机硼化合物(I)和至少一种含硅化合物(II)参与反应生成有机硼酸硅酯键和普通共价键进行杂化交联得到;或者利用至少一种化合物(III),或者其与至少一种有机硼化合物(I)和/或至少一种含硅化合物(II)参与反应生成有机硼酸硅酯键和普通共价键进行杂化交联得到;或者利用至少一种化合物(IV),或者其与至少一种化合物(V)参与反应生成普通共价键进行杂化交联得到;其中,至少一种有机硼化合物(I)或至少一种含硅化合物(II)或至少一种化合物(III)含有一个或一个以上其他反应性基团。
对于具有第二种网络结构(含有两个交联网络,其中一个交联网络仅含有普通共价交联,另一个交联网络仅含有有机硼酸硅酯键交联)的动态聚合物,其网络结构中仅含有普通共价交联的交联网络,可利用至少一种化合物(V)参与反应生成普通共价键进行交联得到,或者利用至少一种已有的普通共价交联聚合物作为原料进行制备;其网络结构中仅含有有机硼酸硅酯键交联的交联网络,可利用至少一种有机硼化合物(I)和至少一种含硅化合物(II)参与反应生成有机硼酸硅酯键进行动态共价交联得到,或者利用至少一种化合物(III),或者其与至少一种有机硼化合物(I)和/或至少一种含硅化合物(II)参与反应生成有机硼酸硅酯键进行动态共价交联得到。
同理,对于具有其他杂化交联网络结构的动态聚合物,其网络结构中仅含有普通共价交联的交联网络,仅含有有机硼酸硅酯键交联的交联网络,同时含有普通共价交联和有机硼酸硅酯键交联的交联网络,均可根据上述思路,利用相应的化合物原料进行分别制备。
在动态聚合物的制备过程中,作为原料的化合物相互参与反应之后,原料组分之间能够以有机硼酸硅酯键和/或普通共价键,以及可选的氢键作为链接点进行聚合/交联,得到具有更高分子量的动态聚合物。其中,并不要求原料组分中所有的官能团和其他反应性基团都完全相互反应形成普通共价键和动态共价键,只要形成的普通共价键和动态共价键足以维持动态聚合物的杂化交联网络结构即可。
对于同时需要进行动态共价交联以及普通共价交联的体系,进行交联的先后顺序并不做特别限定,可以先进行动态共价交联后再进行普通共价交联,也可以先进行普通共价交联后再进行动态共价交联,也可以控制条件使得动态共价交联和普通共价交联同时进行。
对于含有两个或两个以上交联网络的动态聚合物,如本发明中所述的第二种网络结构和第三种网络结构的动态聚合物,可采用分步法、同步法进行制备。
例如,对于含有双网络结构的动态聚合物,当采用分步法进行制备时,可以先利用单体或预聚物、催化剂、引发剂、交联剂制备好第一网络,再将制备好的第二网络加入进行共混得到相互共混的交联网络,其中,第二网络可借助溶剂进行溶胀后与第一网络进行共混;也可以先制备好第一网络,再将已经交联的第一网络置入含有催化剂、引发剂、交联剂等的第二网络单体或预聚物熔体或溶液中,使其溶胀,然后使第二网络单体或预聚物就地聚合并交联形成第二网络,得到(部分)相互穿插的交联网络,其中,第一网络的交联度优选为凝胶 点以上的轻度交联,以便于第二网络的互穿效果;以此类推,对于含有多网络结构的动态聚合物,可采用类似的分步法得到多个相互共混或相互穿插的交联网络。
例如,对于含有双网络结构的动态聚合物,当采用同步法进行制备时,可以将两种制备好的交联网络置于同一反应器中进行共混得到相互共混的交联网络,其中,可借助溶剂对交联网络进行溶胀后再进行共混;也可以将两种或多种单体或预聚物混合后在同一反应器中按各自聚合和交联历程进行反应,得到(部分)相互穿插的交联网络。
在本发明中利用有机硼化合物(I)、含硅化物(II)、化合物(III)、化合物(IV)、化合物(V)制备具有杂化交联网络的动态聚合物的过程中,通过对化合物结构的设计和调整,可以依据需要将不同数量的官能团、不同结构的分子链段、不同分子量的分子链段、反应性基团、功能性基团等有机结构引入到化合物原料中,并通过制备过程成为动态聚合物的结构组分,从而在较大范围内实现对动态聚合物结构的调控。动态聚合物结构的多样性,也使得其体现出丰富各异的性能,并可根据聚合物所具有的性能将其应用于不同的领域。更为重要的是,本领域的技术人员往往也可根据实际应用的需要,从源头对聚合物的结构和性能进行设计;在这过程中,所采用的有机结构(如有机硼结构、有机硅结构)则能够成为技术人员调控和设计动态聚合物结构的有效媒介。
其中,通过对有机硼化合物(I)、含硅化合物(II)、化合物(III)中官能团结构的设计,可以制备出具有不同动态活性的动态聚合物。例如,利用邻位连有氨甲基的苯硼酸/苯硼酸酯结构或者邻位连有酰胺基的苯硼酸/苯硼酸酯结构制备动态聚合物,邻位的氨甲基或酰胺基能够起到促进动态性的效果;再例如,在有机硼酸基和/或有机硼酸酯基中的硼原子上连接有强吸电子基(如氟原子、乙酸基、吡啶基、哌啶基等)后,其与硅羟基和/或硅羟基前驱体的反应速率也大大提高;由此所得到的动态聚合物能够体现出更高的动态活性,使得聚合物中的有机硼酸硅酯键在较为温和的条件下即可表现出动态可逆性,也使得动态聚合物可在更为温和的条件下进行制备和使用,扩展了聚合物的应用范围。
在动态聚合物的制备过程中,通过调控有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)中的官能团数和其他反应性基团数,可以制备出具有不同交联程度的动态聚合物,而动态聚合物的性能也随着交联程度的不同而有所差异。对于利用交联程度较低的动态聚合物所制成的材料,其通常力学强度和力学模量较低,韧性和延展性优良,热稳定性和尺寸稳定性较差,一般在宏观表现上质地较为柔软、可进行大范围地拉伸。而对于利用交联程度较高的动态聚合物所制成的材料,通常其力学强度和模量较高,韧性、热稳定性、耐磨性及抗蠕变性都有所提高,但延展性会有所下降,一般在宏观表现上为具有更为优良的回弹性或呈现刚性的胶体或固体。
在本发明中,利用至少一种普通共价交联以及至少一种动态共价交联来制备得到具有杂化交联网络的动态聚合物。对于传统的交联聚合物,其一般仅通过普通共价交联制得,得到的交联聚合物缺乏动态性,在外界刺激作用下不具有响应性,无法体现出自修复等功能特性,对交联聚合物的性能和应用领域造成了很大的限制;此外,传统的交联结构中由于没有分子间滑移作用且键断裂能普遍较高,基本需要依靠交联点间链段受力时的伸长来提供韧性,因此得到的交联聚合物一般韧性较差。而对于现有的动态交联聚合物,其一般稳定性和力学性能较差,往往还无法达到实际使用的需要,制得的动态聚合物多为溶液、凝胶或其他软材料,对其应用和推广也产生了诸多限制。而利用普通共价键和动态共价键所制得的具有杂化交联网络的动态聚合物,其相比超分子聚合物和现有的动态交联聚合物,体现出了更为优良的稳定性和力学性能,能够将其作为材料进行使用,已具备了一定的应用价值;同时,相比于传统的交联聚合物,动态共价键的引入,又使得聚合物能够体现出动态可逆性,并通过动态共价键的可逆断裂吸收能量,赋予聚合物材料以良好的韧性,从而构筑起一个比较稳定同时又动态可逆的交联聚合物体系。
在动态聚合物的制备过程中,通过调控有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)中分子链的柔顺性,可以制备出具有不同性质特点的动态聚合物,获得的动态聚合物可以具有一个或者多个玻璃化转变温度。对于主要由柔性链(如聚乙烯链、聚硅氧烷链、聚丁二烯链、聚丙烯酸链、聚酯链等)构成的化合物和/或可以聚合成柔性链的化合物,由其所制得的动态聚合物分子链段内旋转相对容易,一般具有较低的玻璃化转变温度(一般不高于25℃)和较低的熔点(一般不高于100℃)。对于主要由刚性链(如聚乙炔链、聚芳酰胺链、聚苯醚链、聚苯并噻唑链等)构成的化合物和/或可以聚合成刚性链的化合物,由其所制得的动态聚合物由于分子链段内旋转相对困难,一般具有较高的玻璃化转变温度(一般高于25℃)和较高的熔点(一般高于100℃),较大的熔体粘度;材料通常在宏观上表现为具有较为优良的力学性能,较好的尺寸稳定性、耐热性和耐化学腐蚀性,但延展性较低。当同时采用含有柔性链和刚性链的化合物和/或可以同时聚合成柔性和刚性链的化合物时,所制得的动态聚合物一般存在多个差别明显的玻璃化转变温度,聚合物材料具有适中的刚性、硬度、柔顺性,其力学性能可以根据不同的配方进行调节。在本发明中,由于具有柔性结构的动态聚合物能够体现出更为优良的动态可逆性和拉伸韧性,因此优选利用具有柔性结构和/或可以聚合成柔性链的有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)来制备动态聚合物。
在动态聚合物的制备过程中,通过调控有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)的分子量,可以制备出具有不同交联密度的动态聚合物,其由于交联密度的不同也表现出不同的性质特点。动态聚合物的交联密度越低,交联点之间的聚合物链分子量越大,反之则越小。对于交联密度较低的动态聚合物,其一般玻璃化转变温度和熔点较低,刚性和表面硬度较低,力学强度低,但能够体现出较好的动态活性;对于交联密度较高的动态聚合物,其一般玻璃化转变温度和熔点较高,能够表现出较好的力学强度、韧性和弹性,但动态活性会有所下降。本领域的技术人员可根据实际需要进行调整。
此外,在动态聚合物的制备过程中,还可通过在有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)中引入功能性基团的方式对动态聚合物的性能进行调控。例如,通过引入疏水性基团来提高动态聚合物的耐水解性;通过引入荧光基团来制备具有荧光性的动态聚合物;通过引入抗氧化基团来提高动态聚合物的抗氧化性;通过引入酸性基团或碱性基团对动态聚合物的动态性进行调节等。又例如,当需要将动态聚合物与其他聚合物进行共混时,还可通过引入与其他聚合物相类似的结构组分或者偶联基团,来达到提高组分之间相容性的目的。
诸如以上所述仅是对本发明中作为原料的化合物组分结构所能起到的对动态聚合物性能调控的部分举例说明,对于本发明中动态聚合物结构、性能、用途的设计,其可调范围广泛,往往还可体现出许多意想不到的实际效果,难以做到穷举,本领域的技术人员可以根据本发明的思路进行调整。
在本发明的实施方式中,根据聚合物主体成分及其反应方式,所述的动态聚合物的交联网络骨架链可由丙烯酸酯类聚合物、丙烯酰胺类聚合物、聚醚类聚合物、聚酯类聚合物、聚酰胺类聚合物、聚氨酯类聚合物、聚烯烃类聚合物中的至少一种链段所构成。
本发明优选提供一种聚丙烯酸酯类的杂化交联网络动态聚合物。所述的聚丙烯酸酯类的动态聚合物,其指的是本发明中所述的动态聚合物的交联网络骨架结构主要由含有丙烯酸基团、丙烯酸酯基团中的一种或其组合的聚合物链段所构成。
在本发明的实施方式中,聚丙烯酸酯类的动态聚合物中含有的丙烯酸基团、丙烯酸酯基团优选通过引入丙烯酸类单体以自由基聚合或自由基共聚合的形式反应制得。其中,所述的丙烯酸类单体,包括但不仅限于:丙烯酸、甲基丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、丙烯酸正丁酯、甲基丙烯酸正丁酯、丙烯酸异丁酯、丙烯酸叔 丁酯、丙烯酸-2-乙基乙酯、丙烯酸正辛酯、丙烯酸癸酯、丙烯酸-2-乙氧基乙酯、丙烯酸-2-氰基乙酯、丙烯酸环己酯、丙烯酸异冰片酯、丙烯酸月桂酯、甲基丙烯酸三氟乙酯、甲基丙烯酸缩水甘油酯等。
在本发明的制备过程中,可以通过分别选用基团L、基团J、基团T、基团Y为聚丙烯酸链残基、聚丙烯酸甲酯链残基、聚甲基丙烯酸甲酯链残基或其他含有丙烯酸基团、丙烯酸酯基团结构的有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)来作为原料,利用化合物原料间的聚合/交联反应制得聚丙烯酸酯类的动态聚合物。
本发明优选提供一种聚烯烃类的杂化交联网络动态聚合物。所述的聚烯烃类的动态聚合物,其指的是本发明中所述的动态聚合物的交联网络骨架结构主要由饱和或不饱和的烯烃聚合物链段所构成。其中,所述的烯烃聚合物链段,可选自以下任一种或任几种的组合:聚乙烯链段、聚丙烯链段、聚异丁烯链段、聚苯乙烯链段、聚氯乙烯链段、聚偏氯乙烯链段、聚氟乙烯链段、聚四氟乙烯链段、聚三氟氯乙烯链段、聚醋酸乙烯酯链段、聚乙烯基烷基醚链段、聚丁二烯链段、聚异戊二烯链段、聚氯丁二烯链段、聚降冰片烯链段等。
在本发明的实施方式中,聚烯烃类的动态聚合物中含有的烯烃聚合物链段优选通过引入烯类单体以自由基聚合或自由基共聚合的形式反应制得。其中,所述的烯类单体,包括但不仅限于:乙烯、丙烯、丁烯、异丁烯、丁二烯、异戊二烯、氯丁二烯、苯乙烯、氯乙烯、偏氯乙烯、氟乙烯、四氟乙烯、六氟丙烯、烷基乙烯基醚、醋酸乙烯酯、降冰片烯等。
在本发明的制备过程中,可以通过分别选用基团L、基团J、基团T、基团Y为聚乙烯链残基、聚丙烯链残基、聚异丁烯链残基、聚苯乙烯链残基、聚氯乙烯链残基、聚偏氯乙烯链残基、聚氟乙烯链残基、聚四氟乙烯链残基、聚三氟氯乙烯链残基、聚醋酸乙烯酯链残基、聚乙烯基烷基醚链残基、聚丁二烯链残基、聚异戊二烯链残基、聚氯丁二烯链残基、聚降冰片烯链残基或其他含有烯烃聚合物链段结构的有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)来作为原料,利用化合物原料间的聚合/交联反应制得聚烯烃类的动态聚合物。
本发明优选提供一种聚氨酯类的杂化交联网络动态聚合物。所述的聚氨酯类的动态聚合物,其指的是本发明中所述的动态聚合物的交联网络骨架结构主要由含有氨基甲酸酯基、脲基、硫代氨基甲酸酯基中的一种或其组合的聚合物链段所构成。
在本发明的实施方式中,聚氨酯类的动态聚合物中含有的氨基甲酸酯基、脲基、硫代氨基甲酸酯基优选通过异氰酸酯基团和羟基、氨基、巯基等带有活泼氢的基团进行反应制得。
在本发明的制备过程中,可以通过分别选用基团L、基团J、基团T、基团Y为聚氨酯链残基、聚脲链残基、聚硫代氨基甲酸酯链残基或其他含有氨基甲酸酯基、脲基、硫代氨基甲酸酯基结构的有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)来作为原料,利用化合物原料间的聚合/交联反应制得聚氨酯类的动态聚合物。也可以通过在有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)中引入定量的异氰酸酯基团以及定量的羟基、氨基、巯基,然后将其作为其他反应性基团中的一种,通过异氰酸酯基团和羟基、氨基、巯基之间的加成反应与有机硼酸硅酯键一起制得聚氨酯类的动态聚合物;在此情况下,一般采用分步法来制备聚氨酯类动态聚合物,即先将有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)中含有的异氰酸酯基团与有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)中含有的羟基、氨基、巯基进行充分地反应生成氨基甲酸酯基、脲基、硫代氨基甲酸酯基后,再控制条件进行有机硼酸硅酯键的缩合反应,在这其中,为了保证体系中的羟基、氨基、巯基充分与异氰酸酯基团进行反应,各化合物原料中含有的羟基、氨基、巯基的个数均优选为1~4个,并保证体系中参与反应的异氰酸酯基团的摩尔数过量于羟基、氨基、巯基的摩尔数,在体系中的羟基、氨基、巯基反应完全后,再进行有机硼酸基和/或有机硼酸酯基与硅羟基和 /或硅羟基前躯体的缩合反应,使得生成有机硼酸硅酯键的反应独立于其他反应性基团的普通共价反应。在聚氨酯类动态聚合物的制备过程中,化合物(V)可选为多异氰酸酯化合物、多元醇化合物、多元胺化合物、多元巯基化合物。
所述的多异氰酸酯化合物,其为任意合适的包含两个或两个以上异氰酸酯基团的化合物,其可以是分子量不超过1000Da的小分子化合物,也可以是分子量大于1000Da的大分子化合物。合适的多异氰酸酯化合物举例如:甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、异氟尔酮二异氰酸酯、六亚甲基二异氰酸酯、多亚甲基多苯基异氰酸酯、液化MDI、二环己基甲烷二异氰酸酯、萘二异氰酸酯、对苯二异氰酸酯、苯二亚甲基二异氰酸酯、二甲基联苯二异氰酸酯、1,4-环己烷二异氰酸酯、四甲基间苯二亚甲基二异氰酸酯、三甲基-1,6-六亚甲基二异氰酸酯、环己烷二亚甲基二异氰酸酯、降冰片烷二异氰酸酯、TDI二聚体、三苯基甲烷三异氰酸酯、4,4’,4”-硫代磷酸三苯基三异氰酸酯、HDI三聚体、IPDI三聚体、TDI三聚体、MDI三聚体、TDI-TMP加成物、含有异氰酸酯基团的聚酯、含有异氰酸酯基团的聚醚、含有异氰酸酯基团的聚烯烃、含有异氰酸酯基团的聚有机硅等;优选甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、异氟尔酮二异氰酸酯、六亚甲基二异氰酸酯、多亚甲基多苯基异氰酸酯。
所述的多元醇化合物,其为任意合适的包含两个或两个以上羟基的化合物,优选为包含有两个、三个或四个羟基的化合物,其可以是分子量不超过1000Da的小分子化合物,也可以是分子量大于1000Da的大分子化合物。合适的多元醇化合物举例如:乙二醇、丙二醇、一缩二乙二醇、二缩二乙二醇、1,4-丁二醇、新戊二醇、1,6-己二醇、三羟甲基丙烷、甘油、季戊四醇等。
所述的多元胺化合物,其为任意合适的包含两个或两个以上氨基的化合物,优选为包含有两个、三个或四个氨基的化合物,其可以是分子量不超过1000Da的小分子化合物,也可以是分子量大于1000Da的大分子化合物。合适的多元胺化合物举例如:亚甲基二胺、1,2-乙二胺、丙邻二胺、1,2-二氨基丙烷、1,3-二氨基戊烷、六亚甲基二胺、二氨基庚烷、二氨基十二烷、二乙基氨基丙基胺、二亚乙基三胺、N-氨基乙基哌嗪、三亚乙基四胺、N,N’-二甲基亚乙基二胺、N,N’-二乙基亚乙基二胺、N,N’-二异丙基亚乙基二胺、N,N’-二甲基-1,3-丙二胺、N,N’-二乙基-1,3-丙二胺、N,N’-二异丙基-1,3-丙二胺、N,N’-二甲基-1,6-己二胺、N,N’-二乙基-1,6-己二胺、N,N’,N”-三甲基双(六亚甲基)三胺、二氨基甲苯、二氨基二甲苯、四甲基亚二甲苯基二胺、间苯二胺、三(二甲基氨基甲基)苯酚、二氨基二苯基甲烷、3,3’-二氯-4,4’-二苯基甲烷二胺、3,5-二甲硫基甲苯二胺、3,5-二乙基甲苯二胺等。
所述的多元巯基化合物,其为任意合适的包含两个或两个以上巯基的化合物,优选为包含有两个、三个或四个巯基的化合物,其可以是分子量不超过1000Da的小分子化合物,也可以是分子量大于1000Da的大分子化合物。合适的多元巯基化合物举例如:1,2-乙二硫醇、1,3-丙二硫醇、1,4-丁二硫醇、1,2-丁二硫醇、1,3-丁二硫醇、1,5-戊二硫醇、1,6-己二硫醇、1,8-辛二硫醇、1,9-壬二硫醇、1,10-癸二硫醇、2,3-丁二硫醇、双巯乙基硫醚、3,7-二硫杂-1,9-壬二硫醇、3-巯基-β-4-二甲基环己乙硫醇、1,4-苯二硫醇、邻苯二硫醇、3,4-甲苯二硫醇、1,5-萘二硫醇、卢丁二硫醇、4,4’-二巯基二苯硫醚、二巯基-3,6-二氧辛烷、1,5-巯基-3-硫代戊烷、1,3,5-三嗪-2,4,6-三硫醇等。
对于上述的多异氰酸酯化合物、多元醇化合物、多元胺化合物、多巯基化合物,可以单独使用,也可以混合使用。在同一个化合物中也可以同时含有异氰酸酯基团、羟基、氨基、巯基。
由于聚丙烯酸酯类、聚烯烃类、聚氨酯类的动态聚合物具有简便成熟的制备工艺、宽广可调的分子结构、优异多样的性能参数、良好的实际应用能力以及广泛的应用领域,可以利用已有用于此类聚合物制备的诸多原料和现成的工艺设备将本发明中的动态聚合物迅速地投入到生产应用中。因此,将其作为本发明中所述的动态聚合物的优选实施方式。同样地,通 过调控有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)的分子结构、分子量、官能度、羟值等参数,也可对聚丙烯酸酯类、聚烯烃类、聚氨酯类的动态聚合物的软硬程度、柔韧性、粘度、发泡情况等参数进行控制,本领域的技术人员可根据实际情况进行调整。
在本发明的实施方式中,所述杂化交联网络的动态聚合物形态可以是乳液、普通固体、凝胶(包括水凝胶、有机凝胶、齐聚物溶胀凝胶、增塑剂溶胀凝胶、离子液体溶胀凝胶)、泡沫等,其中,普通固体和泡沫中含有的可溶解小分子量成分含量一般不高于10wt%,而凝胶中含有的小分子量成分含量一般不低于50wt%。
在本发明的实施方式中,动态聚合物凝胶可以通过在溶胀剂(包括水、有机溶剂、齐聚物、增塑剂、离子液体中之一或其组合)中进行普通共价交联获得,也可以在动态聚合物制备完成后再利用溶胀剂进行溶胀获得。当然,本发明不仅限与此,本领域技术人员可以根据本发明的逻辑和脉络,合理有效地实现。
由于存在普通共价交联,制备泡沫材料可行性高。泡沫化一方面有利于降低材料的表观密度,另一方面特别有利于在缓冲、阻尼、抗冲击等方面进行应用,因为除了泡沫本身的形变可以产生缓冲、阻尼、抗冲击等效果外,本发明的动态聚合物中的有机硼酸硅酯键和可选的氢键作用能够在应力作用下产生智能的能量吸收和分散效果。在动态聚合物泡沫材料的制备过程中,主要采用机械发泡法、物理发泡法、化学发泡法三种方法对动态聚合物进行发泡。
其中,所述的机械发泡法,是在动态聚合物的制备过程中借助强烈搅拌把大量空气或其他气体引入聚合物的乳液、悬浮液或溶液中使之成为均匀的泡沫体,然后经过物理或化学变化使之胶凝、固化而成为泡沫材料。为缩短成型周期可通入空气和加入乳化剂或表面活性剂。
其中,所述的物理发泡法,是在动态聚合物的制备过程中利用物理原理来实现聚合物的发泡,其一般包括以下四种方法:(1)惰性气体发泡法,即在加压情况下把惰性气体压入熔融聚合物或糊状物料中,然后减压升温,使溶解的气体膨胀而发泡;(2)利用低沸点液体蒸发气化发泡,即把低沸点液体压入聚合物中或在一定的压力、温度状况下,使液体溶入聚合物颗粒中,然后将聚合物加热软化,液体也随之蒸发气化而发泡;(3)溶出法,即用液体介质浸入聚合物中溶解掉事先所添加的固体物质,使聚合物中出现大量孔隙而呈发泡状,如将可溶性物质食盐、淀粉等先与聚合物混合,等到成型为制品后,再将制品放在水中反复处理,把可溶性物质溶出,即得到开孔型泡沫制品;(4)中空微球法,即在塑料中加入中空微球后经固化而成为闭孔型泡沫塑料;其中,优选利用在聚合物中溶入惰性气体和低沸点液体的方法进行发泡。采用物理发泡法,具有操作中毒性较小,发泡原料成本较低,发泡剂无残留体等优点。此外,还可以采用冷冻干燥法制备。
其中,所述的化学发泡法,是在动态聚合物发泡过程中伴随着化学反应,产生气体而发泡的方法,其一般包括以下两种方法:(1)热分解型发泡剂发泡法,即利用化学发泡剂加热后分解放出的气体进行发泡。(2)聚合物组分间相互作用产生气体的发泡法,即利用发泡体系中的两个或多个组分之间发生的化学反应,生成惰性气体(如二氧化碳或氮气)致使聚合物膨胀而发泡。发泡过程中为控制聚合反应和发泡反应平衡进行,为保证制品有较好的质量,一般加入少量催化剂和泡沫稳定剂(或表面活性剂)。其中,优选利用在聚合物中添加化学发泡剂的方法进行发泡。
在动态聚合物的制备过程中,主要采用模压发泡成型、注射发泡成型以及挤出发泡成型三种方法对动态聚合物泡沫材料进行成型。
在动态聚合物的制备过程中,本领域的技术人员可根据实际制备情况以及目标聚合物性能选择合适的发泡方法以及泡沫材料成型方法对动态聚合物泡沫材料进行制备。
在本发明的实施方式中,动态聚合物泡沫材料的结构涉及开孔结构、闭孔结构、半开半闭结构三种。开孔结构中,泡孔与泡孔之间互相连通,或完全连通,单维或三维都能通过气 体或液体,泡孔径为0.01-3mm不等。闭孔结构,具有独立泡孔结构,内部泡孔与泡孔之间有壁膜隔开,绝大多数都不相互连通,泡孔径为0.01-3mm不等。所含有的泡孔既有相互连通又有互不连通的结构则为半开孔结构。对于已形成闭孔的泡沫结构,也可借助机械施压或化学方法使其成为开孔结构,本领域的技术人员可依据实际需要进行选择。
在本发明的实施方式中,动态聚合物泡沫材料按照其硬度分类,可分为软质、硬质和半硬质三类:(1)软质泡沫,在23℃和50%的相对湿度下,泡沫塑料的弹性模量小于70MPa;(2)硬质泡沫,在23℃和50%的相对湿度下,弹性模量大于700MPa;(3)半硬质(或半软质)泡沫,介于以上两类之间的泡沫体,其弹性模量介于70MPa和700MPa之间。
在本发明的实施方式中,动态聚合物泡沫材料按照其密度又可分为低发泡、中发泡和高发泡。低发泡的泡沫材料,其密度大于0.4g/cm3,发泡倍率小于1.5;中发泡的泡沫材料,其密度为0.1~0.4g/cm3,发泡倍率为1.5~9;而高发泡的泡沫材料,其密度小于0.1g/cm3,发泡倍率大于9。
用于制备动态聚合物的原料组分,除之前所述的有机硼化合物(I)、含硅化合物(II),化合物(III)、化合物(IV)、化合物(V)之外,还包括可添加的其他聚合物、可添加的助剂、可添加的填料,这些可添加物通过共混的形式与有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)交联反应产物共同组成具有杂化交联网络的动态聚合物。
所述的可添加的其他聚合物,其能够与含有有机硼酸硅酯键的交联聚合物共同构成交联体系组成具有杂化交联网络的动态聚合物,或者作为添加物在体系中起到改进材料性能、赋予材料新性能、提高材料使用与经济效益、达到材料综合利用的作用。可添加的其他聚合物,其可选自天然高分子化合物、合成树脂、合成橡胶、合成纤维。本发明对所添加的聚合物的性状以及所具有的分子量不做限定,根据分子量的不同,可以为低聚物,或者高聚物,根据聚合形态的不同,可以为均聚物,或者共聚物,在具体使用过程中应根据目标材料的性能以及实际制备过程的需要而进行选择。
当可添加的其他聚合物需要与含有有机硼酸硅酯键的交联聚合物共同构成杂化交联网络组成动态聚合物时,其可选自带有普通共价交联的交联聚合物。所述的带有普通共价交联的交联聚合物,其可选自以下任一种或任几种交联聚合物:交联聚氯乙烯、交联聚偏氯乙烯、交联氯化聚乙烯、交联氯化聚氯乙烯、交联乙烯-乙酸乙烯酯共聚物、交联丙烯腈-丙烯酸酯-苯乙烯共聚物、交联丙烯腈-丁二烯-苯乙烯共聚物、交联聚乙烯、交联聚酰胺、交联聚丙烯酸、交联聚丙烯酰胺、交联聚丙烯腈、交联聚丙烯酸酯、交联聚丙烯酸甲酯、交联聚甲基丙烯腈、交联聚甲基丙烯酸甲酯、交联聚苯并咪唑、交联聚醋酸乙烯酯、交联聚对苯二甲酸乙二醇酯、交联聚对苯二甲酸丁二醇酯、交联聚碳酸酯、交联聚醚、交联聚酯、交联酚醛树脂、交联脲醛树脂、交联醇酸树脂、交联三聚氰胺-甲醛树脂、交联四氟乙烯-全氟丙烷共聚物、交联聚酰亚胺、交联聚苯醚、交联聚丙烯、交联聚苯硫醚、交联聚苯砜、交联聚苯乙烯、交联聚砜、交联聚醚砜、交联聚芳砜、交联聚氟乙烯、交联聚四氟乙烯、交联聚三氟氯乙烯、交联聚氨酯、交联聚脲、交联氯乙烯-乙酸乙烯酯共聚物、交联聚乙烯吡咯烷酮、交联不饱和聚酯、交联生物聚酯、交联聚醚醚酮、交联聚异戊二烯、交联顺丁二烯、交联聚苯乙烯-丁二烯共聚物、交联丁二烯-丙烯腈共聚物、交联聚氯丁二烯、交联异丁烯-异戊二烯共聚物、交联乙烯-丙烯共聚物、交联硅橡胶、交联氟橡胶、交联聚硫、交联液晶聚合物等。
当可添加的其他聚合物作为添加物在体系中起到改进材料性能、赋予材料新性能、提高材料使用与经济效益、达到材料综合利用的作用时,其可选自天然高分子化合物、合成树脂、合成橡胶、合成纤维。
当可添加的其他聚合物选自天然高分子化合物时,其可选自以下任一种或任几种天然高分子化合物:皮毛、天然橡胶、棉花、麻、石棉、蚕丝、生漆等。
当可添加的其他聚合物选自合成树脂时,其可选自以下任一种或任几种合成树脂:聚三氟氯乙烯、氯化聚乙烯、氯化聚氯乙烯、聚氯乙烯、聚偏氯乙烯、低密度聚乙烯、中密度聚乙烯、高密度聚乙烯、超高分子量聚乙烯、三聚氰胺-甲醛树脂、聚酰胺、聚丙烯酸、聚丙烯酰胺、聚丙烯腈、聚苯并咪唑、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚碳酸酯、聚二甲基硅氧烷、聚乙烯、聚酯、聚醚砜、聚芳砜、聚醚醚酮、四氟乙烯-全氟丙烷共聚物、聚酰亚胺、聚丙烯酸甲酯、聚甲基丙烯酸甲酯、聚甲基丙烯腈、聚苯醚、聚丙烯、聚苯硫醚、聚苯砜、聚苯乙烯、高抗冲聚苯乙烯、聚砜、聚四氟乙烯、聚氨酯、聚脲、聚乙酸乙烯酯、乙烯-丙烯共聚物、乙烯-乙酸乙烯酯共聚物、丙烯腈-丙烯酸酯-苯乙烯共聚物、丙烯腈-丁二烯-苯乙烯共聚物、氯乙烯-乙酸乙烯酯共聚物、聚乙烯吡咯烷酮、酚醛树脂、脲醛树脂、不饱和聚酯等。
当可添加的其他聚合物选自合成橡胶时,其可选自以下任一种或任几种合成橡胶:异戊橡胶、顺丁橡胶、丁苯橡胶、丁腈橡胶、氯丁橡胶、丁基橡胶、乙丙橡胶、硅橡胶、氟橡胶、聚丙烯酸酯橡胶、聚氨酯橡胶、氯醚橡胶、热塑性弹性体等。
当可添加的其他聚合物选自合成纤维时,其可选自以下任一种或任几种合成纤维:黏胶纤维、铜氨纤维、二乙酯纤维、三乙酯纤维、聚酰胺纤维、聚酯纤维、聚氨酯纤维、聚丙烯腈纤维、聚氯乙烯纤维、聚烯烃纤维、含氟纤维等。
在聚合物材料的制备过程中,可添加的其他聚合物优选天然橡胶、聚乙烯、聚丙烯、乙烯-乙酸乙烯酯共聚物、聚氨酯、聚氯乙烯、聚丙烯酸、聚丙烯酰胺、聚甲基丙烯酸甲酯、酚醛树脂、异戊橡胶、顺丁橡胶、丁苯橡胶、丁腈橡胶、氯丁橡胶、丁基橡胶、乙丙橡胶、硅橡胶、聚氨酯橡胶、热塑性弹性体。
所述的可添加的助剂,其能够改善材料制备过程,提高产品质量和产量,降低产品成本或者赋予产品某种特有的应用性能。所述的可添加的助剂选自以下任一种或任几种助剂:合成助剂,包括催化剂、引发剂;稳定化助剂,包括抗氧剂、光稳定剂、热稳定剂;改善力学性能的助剂,包括交联剂和助交联剂、固化剂、扩链剂、增韧剂、偶联剂;提高加工性能的助剂,包括润滑剂、脱模剂;柔软化与轻质化的助剂,包括增塑剂、发泡剂、动态调节剂;改变表面性能的助剂,包括抗静电剂、乳化剂、分散剂;改变色光的助剂,包括着色剂、荧光增白剂、消光剂;难燃化与抑烟助剂,包括阻燃剂;其他助剂,包括成核剂、流变剂、增稠剂、流平剂。
所述的可添加的助剂中的催化剂,其能够通过改变反应途径,降低反应活化能来加速反应物在反应过程中的反应速率。其包括但不仅限于以下任一种或任几种催化剂:①聚氨酯合成用催化剂:胺类催化剂,如三乙胺、三亚乙基二胺、双(二甲氨基乙基)醚、2-(2-二甲氨基-乙氧基)乙醇、三甲基羟乙基丙二胺、N,N-双(二甲胺丙基)异丙醇胺、N-(二甲氨基丙基)二异丙醇胺、N,N,N’-三甲基-N’-羟乙基双胺乙基醚、四甲基二亚丙基三胺、N,N-二甲基环己胺、N,N,N’,N’-四甲基亚烷基二胺、N,N,N’,N’,N’-五甲基二亚乙基三胺、N,N-二甲基乙醇胺、N-乙基吗啉、2,4,6-(二甲氨基甲基)苯酚、三甲基-N-2-羟丙基己酸、N,N-二甲基苄胺、N,N-二甲基十六胺等;有机金属类催化剂,如辛酸亚锡、二丁基锡二月桂酸酯、二辛基锡二月桂酸酯、异辛酸锌、异辛酸铅、油酸钾、环烷酸锌、环烷酸钴、乙酰丙酮铁、乙酸苯汞、丙酸苯汞、环烷酸铋、甲醇钠、辛酸钾、油酸钾、碳酸钙等;②聚烯烃合成用催化剂:如Ziegler-Natta催化剂、π-烯丙基镍、烷基锂催化剂、茂金属催化剂、一氯二乙基铝、四氯化钛、三氯化钛、三氟化硼乙醚络合物、氧化镁、二甲胺、氯化亚铜、三乙胺、四苯硼钠、三氧化二锑、倍半乙基氯化铝、三氯氧钒、三异丁基铝、环烷酸镍、环烷酸稀土等;③CuAAC反应催化剂:由一价铜化合物和胺配体共用协同催化;一价铜化合物可选自Cu(I)盐,如CuCl、CuBr、CuI、CuCN、CuOAc等;也可选自Cu(I)络合物,如[Cu(CH3CN)4]PF6、[Cu(CH3CN)4]OTf、CuBr(PPh3)3等;胺配体可选自三[(1-苄基-1H-1,2,3-三唑-4-基)甲基]胺(TBTA)、三[(1-叔丁基 -1H-1,2,3-三唑-4-基)甲基]胺(TTTA)、三(2-苯并咪唑甲基)胺(TBIA)、水合红菲绕啉二磺酸钠等;④thiol-ene反应催化剂:光催化剂,如安息香二甲醚、2-羟基-2-甲基苯基丙酮、2,2-二甲氧基-2-苯基苯乙酮等;亲核试剂催化剂,如乙二胺、三乙醇胺、三乙胺、吡啶、4-二甲基氨基吡啶、咪唑、二异丙基乙基胺等。所用的催化剂用量没有特别限定,一般为0.01-0.5wt%。
所述的可添加的助剂中的引发剂,其能够在聚合反应过程中引起单体分子活化而产生游离基,提高反应速率,促进反应进行,包括但不仅限于以下任一种或任几种引发剂:①自由基聚合用引发剂:有机过氧化物,如过氧化月桂酰、过氧化苯甲酰(BPO)、过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯、过氧化二碳酸双(4-叔丁基环己基)酯、叔丁基过氧化苯甲酸酯、叔丁基过氧化特戊酸酯、二叔丁基过氧化物、过氧化氢二异丙苯;偶氮化合物,如偶氮二异丁腈(AIBN)、偶氮二异庚腈;无机过氧化物,如过硫酸铵、过硫酸钾等;②活性聚合用引发剂:如2,2,6,6-四甲基-1-氧基哌啶、1-氯-1-苯基乙烷/氯化亚铜/双吡啶三元体系等;③离子聚合用引发剂:如丁基锂、钠/萘体系、三氟化硼/水体系、四氯化锡/卤代烷体系等;④配位聚合用引发剂:如四氯化钛/三乙基铝体系、二氯二锆茂/甲基铝氧烷体系等;⑤开环聚合用引发剂:如甲醇钠、甲醇钾、乙二胺、1,6-己二异氰酸酯、辛酸亚锡等。其中,引发剂优选过氧化月桂酰、过氧化苯甲酰、偶氮二异丁腈、过硫酸钾。所用的引发剂用量没有特别限定,一般为0.1-1wt%。
所述的可添加的助剂中的抗氧剂,其能够延缓聚合物样品的氧化过程,保证材料能够顺利地进行制备加工并延长其使用寿命,包括但不仅限于以下任一种或任几种抗氧剂:受阻酚类,如2,6-二叔丁基-4-甲基苯酚、1,1,3-三(2-甲基-4羟基-5-叔丁基苯基)丁烷、四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、2,2’-亚甲基双(4-甲基-6-叔丁基苯酚);含硫受阻酚类,如4,4’-硫代双-[3-甲基-6-叔丁基苯酚]、2,2’-硫代双-[4-甲基-6-叔丁基苯酚];三嗪系受阻酚,如1,3,5-二[β-(3,5-二叔丁基-4-羟基苯基)丙酰]-六氢均三嗪;三聚异氰酸酯受阻酚类,如三(3,5-二叔丁基-4-羟基苄基)-三异氰酸酯;胺类,如N,N’-二(β-萘基)对苯二胺、N,N’-二苯基对苯二胺、N-苯基-N’-环己基对苯二胺;含硫类,如硫代二丙酸二月桂酯、2-巯基苯并咪唑、2-巯基苯并噻唑;亚磷酸酯类,如亚磷酸三苯酯、亚磷酸三壬基苯酯、三[2.4-二叔丁基苯基]亚磷酸酯等;其中,抗氧剂优选茶多酚(TP)、丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)、叔丁基对苯二酚(TBHQ)、三[2.4-二叔丁基苯基]亚磷酸酯(抗氧剂168)、四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(抗氧剂1010)。所用的抗氧剂用量没有特别限定,一般为0.01-1wt%。
所述的可添加的助剂中的光稳定剂,能够防止聚合物样品发生光老化,延长其使用寿命,其包括但不仅限于以下任一种或任几种光稳定剂:光屏蔽剂,如炭黑、二氧化钛、氧化锌、亚硫酸钙;紫外线吸收剂,如2-羟基-4-甲氧基二苯甲酮、2-羟基-4-正辛氧基二苯甲酮、2-(2-羟基-3,5-二叔丁基苯基)-5-氯苯并三唑、2-(2-羟基-5-甲基苯基)苯并三唑、2,4,6-三(2-羟基-4-正丁氧基苯基)-1,3,5-均三嗪、2-氰基-3,3-二苯基丙烯酸2-乙基己酯;先驱型紫外线吸收剂,如水杨酸对-叔丁基苯酯、双水杨酸双酚A酯;紫外线猝灭剂,如双(3,5-二叔丁基-4-羟基苄基膦酸单乙酯)、2,2’-硫代双(4-特辛基酚氧基)镍;受阻胺光稳定剂,如癸二酸双(2,2,6,6-四甲基哌啶)酯、苯甲酸(2,2,6,6-四甲基哌啶)酯、三(1,2,2,6,6-五甲基哌啶基)亚磷酸酯;其他光稳定剂,如3,5-二叔丁基-4-羟基苯甲酸(2,4-二叔丁基苯)酯、烷基磷酸酰胺、N,N’-二正丁基二硫代氨基甲酸锌、N,N’-二正丁基二硫代氨基甲酸镍等;其中,光稳定剂优选炭黑、癸二酸双(2,2,6,6-四甲基哌啶)酯(光稳定剂770)。所用的光稳定剂用量没有特别限定,一般为0.01-0.5wt%。
所述的可添加的助剂中的热稳定剂,能够使得聚合物样品在加工或使用过程中不因受热而发生化学变化,或者延缓这些变化来达到延长使用寿命的目的,其包括但不仅限于以下任一种或任几种热稳定剂:铅盐类,如三盐基硫酸铅、二盐基亚磷酸铅、二盐基硬脂酸铅、二 盐基苯二甲酸铅、三盐基马来酸铅、盐基性硅酸铅、硬脂酸铅、水杨酸铅、二盐基邻苯二甲酸铅、碱式碳酸铅、硅胶共沉淀硅酸铅;金属皂类:如硬脂酸镉、硬脂酸钡、硬脂酸钙、硬脂酸铅、硬脂酸锌;有机锡化合物类,如二月桂酸二正丁基锡、二月桂酸二正辛基锡、马来酸二(正)丁基锡、双马来酸单辛酯二正辛基锡、二巯基乙酸异辛酯二正辛基锡、京锡C-102、二巯基乙酸异辛脂二甲基锡;锑稳定剂,如硫醇锑盐、巯基乙酸酯硫醇锑、巯基羧酸酯锑、羧酸酯锑;环氧化合物类,如环氧化油、环氧脂肪酸酯;亚磷酸酯类,如亚磷酸三芳酯、亚磷酸三烷酯、亚磷酸三芳烷酯、烷芳混合酯、聚合型亚磷酸酯;其中,热稳定剂优选硬脂酸钡、硬脂酸钙、二月桂酸二正丁基锡、马来酸二(正)丁基锡。所用的热稳定剂用量没有特别限定,一般为0.1-0.5wt%。
所述的可添加的助剂中的交联剂,其配合在动态聚合物中需要进行交联的反应物组分进行使用,其能在线型的聚合物分子间起架桥作用,使多个线型分子相互键合交联成网状结构,能够进一步增加聚合物的交联密度和交联强度,提高聚合物的耐热性能及使用寿命,同时改善材料的机械性能及耐候性,其包括但不仅限于以下任一种或任几种交联剂:聚丙二醇缩水甘油醚、氧化锌、氯化铝、硫酸铝、硝酸铬、正硅酸乙酯、正硅酸甲酯、对甲苯磺酸、对甲苯磺酰氯、二丙烯酸-1,4-丁二醇酯、二甲基丙烯酸乙二醇酯、丙烯酸丁酯、异丙醇铝、醋酸锌、乙酰丙酮钛、氮丙啶、异氰酸酯、酚醛树脂、六次甲基四胺、过氧化二异丙苯、过氧化月桂酰、过氧化硬酯酰、过氧化苯甲酰、过氧化环己酮、过氧化苯乙酮、过氧化二叔丁基、邻苯过氧二甲酸二叔丁酯、异丙苯过氧化氢、乙烯基三叔丁过氧基硅烷、二苯基-二叔丁过氧基硅烷、三甲基叔丁基过氧硅烷等。其中,交联剂优选过氧化二异丙苯(DCP)、过氧化苯甲酰(BPO)、过氧化2,4-二氯苯甲酰(DCBP)。所用的交联剂用量没有特别限定,一般为0.1-5wt%。
所述的可添加的助剂中的助交联剂,其配合在动态聚合物中需要进行交联的反应物组分进行使用,能够抑制聚合物主键的断裂,提高交联效率,其包括但不仅限于以下任一种或任几种助交联剂:肟类,如对醌二肟、对二苯甲酰苯醌二肟;甲基丙烯酸酯类,如甲基丙烯酸甲酯、二甲基丙烯酸乙二醇酯、双甲基丙烯酸二缩三乙二醇酯、三甲基丙烯酸三羧甲基丙酯;烯丙基类,如邻苯二甲酸二烯丙酯、三烯丙基氰尿酸酯、四烯丙基氧基乙烷、马来酸二烯丙酯;马来酰亚胺类,如马来酰亚胺、N-苯基马来酰亚胺、N,N’-间苯基双马来酰亚胺;其他类,如马来酸酐、二乙烯基苯、对乙烯基甲苯、1,2-聚丁二烯、乙烯基三甲氧乙氧基硅烷等。其中,助交联剂优选三甲基丙烯酸三羧甲基丙酯(TMPT)、三烯丙基氰尿酸酯(TAIC)、二甲基丙烯酸乙二醇酯(EDMA)。所用的助交联剂用量没有特别限定,一般为0.1-1wt%。
所述的可添加的助剂中的固化剂,其配合在动态聚合物中需要进行固化的反应物组分进行使用,能够增进或控制反应物组分在聚合过程中的固化反应,其包括但不仅限于以下任一种或任几种固化剂:胺类固化剂,如乙二胺、二乙烯三胺、三乙烯四胺、二甲氨基丙胺、六次甲基四胺、间苯二胺;酸酐类固化剂,如邻苯二甲酸酐、顺丁烯二酸酐、均苯四酸二酐;酰胺类固化剂,如低分子聚酰胺;咪唑类,如2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑;三氟化硼络合物等。其中,固化剂优选乙二胺(EDA)、二乙烯三胺(DETA)、邻苯二甲酸酐、顺丁烯二酸酐,所用的固化剂用量没有特别限定,一般为0.5-1wt%。
所述的可添加的助剂中的扩链剂,能与反应物分子链上的反应性基团反应而使分子链扩展、分子量增大,其包括但不仅限于以下任一种或任几种扩链剂:多元胺类扩链剂,如二氨基甲苯、二氨基二甲苯、四甲基亚二甲苯基二胺、四乙基二苯亚甲基二胺、四异丙基二苯亚基二胺、间苯二胺、三(二甲基氨基甲基)苯酚、二氨基二苯基甲烷、3,3’-二氯-4,4’-二苯基甲烷二胺(MOCA)、3,5-二甲硫基甲苯二胺(DMTDA)、3,5-二乙基甲苯二胺(DETDA)、1,3,5-三乙基-2,6-二氨基苯(TEMPDA)。所用的扩链剂用量没有特别限定,一般为1-10wt%。
所述的可添加的助剂中的增韧剂,能够降低聚合物样品脆性,增大韧性,提高材料承载 强度,其包括但不仅限于以下任一种或任几种增韧剂:甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物树脂、氯化聚乙烯树脂、乙烯-醋酸乙烯酯共聚物树脂及其改性物、丙烯腈-丁二烯-苯乙烯共聚物、丙烯腈-丁二烯共聚物、乙丙胶、三元乙丙胶、顺丁胶、丁苯胶、苯乙烯-丁二烯-苯乙烯嵌段共聚物等;其中,增韧剂优选乙丙胶、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物树脂(MBS)、氯化聚乙烯树脂(CPE)。所用的增韧剂用量没有特别限定,一般为5-10wt%。
所述的可添加的助剂中的偶联剂,能够改善聚合物样品与无机填充剂或增强材料的界面性能,在塑料加工过程中降低材料熔体的粘度,改善填料的分散度以提高加工性能,进而使制品获得良好的表面质量及机械、热和电性能,其包括但不仅限于以下任一种或任几种偶联剂:有机酸铬络合物、硅烷偶联剂、钛酸酯偶联剂、磺酰叠氮偶联剂、铝酸酯偶联剂等;其中,偶联剂优选γ-氨丙基三乙氧基硅烷(硅烷偶联剂KH550)、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷(硅烷偶联剂KH560)。所用的偶联剂用量没有特别限定,一般为0.5-2wt%。
所述的可添加的助剂中的润滑剂,能够提高聚合物样品的润滑性、减少摩擦、降低界面粘附性能,其包括但不仅限于以下任一种或任几种润滑剂:饱和烃和卤代烃类,如固体石蜡、微晶石蜡、液体石蜡、低分子量聚乙烯、氧化聚乙烯蜡;脂肪酸类,如硬脂酸、羟基硬脂酸;脂肪酸酯类,如脂肪酸低级醇酯、脂肪酸多元醇酯、天然蜡、酯蜡和皂化蜡;脂肪族酰胺类,如硬脂酰胺或硬脂酸酰胺、油酰胺或油酸酰胺、芥酸酰胺、N,N’-乙撑双硬脂酰胺;脂肪醇类,如硬脂醇;金属皂类,如硬脂酸铅、硬脂酸钙、硬脂酸钡、硬脂酸镁、硬脂酸锌等;其中,润滑剂优选固体石蜡、液体石蜡、硬脂酸、低分子量聚乙烯。所用的润滑剂用量没有特别限定,一般为0.5-1wt%。
所述的可添加的助剂中的脱模剂,它可使聚合物样品易于脱模,表面光滑、洁净,其包括但不仅限于以下任一种或任几种脱模剂:石蜡烃、皂类、二甲基硅油、乙基硅油、甲基苯基硅油、蓖麻油、废机油、矿物油、二硫化钼、氯乙烯树脂、聚苯乙烯、硅橡胶等;其中,脱模剂优选二甲基硅油。所用的脱模剂用量没有特别限定,一般为0.5-2wt%。
所述的可添加的助剂中的增塑剂,其能够增加聚合物样品的塑性,使得聚合物的硬度、模量、软化温度和脆化温度下降,伸长率、曲挠性和柔韧性提高,其包括但不仅限于以下任一种或任几种增塑剂:苯二甲酸酯类:邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、邻苯二甲酸二异辛酯、邻苯二甲酸二庚酯、邻苯二甲酸二异癸酯、邻苯二甲酸二异壬酯、邻苯二甲酸丁苄酯、邻苯二甲酸丁酯乙醇酸丁酯、邻苯二甲酸二环己酯、邻苯二甲酸双(十三)酯、对苯二甲酸二(2-乙基)己酯;磷酸酯类,如磷酸三甲苯酯、磷酸(二苯-2-乙基)己酯;脂肪酸酯类,如己二酸二(2-乙基)己酯、癸二酸二(2-乙基)己酯;环氧化合物类,如环氧甘油酯类、环氧脂肪酸单酯类、环氧四氢邻苯二甲酸酯类、环氧大豆油、环氧硬脂酸(2-乙基)己酯、环氧大豆油酸2-乙基己酯、4,5-环氧四氢邻苯二甲酸二(2-乙基)己酯、黄杨乙酰蓖麻油酸甲酯;二元醇脂类,如C5~9酸乙二醇酯、C5~9酸二缩三乙二醇酯;含氯类,如绿化石蜡类、氯代脂肪酸酯;聚酯类,如乙二酸1,2-丙二醇系聚酯、癸二酸1,2-丙二醇聚酯、石油磺酸苯酯、偏苯三酸酯、柠檬酸酯等;其中,增塑剂优选邻苯二甲酸二辛酯(DOP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二异辛酯(DIOP)、邻苯二甲酸二异壬酯(DINP)、邻苯二甲酸二异癸酯(DIDP)、磷酸三甲苯酯(TCP)。所用的增塑剂用量没有特别限定,一般为5-20wt%。
所述的可添加的助剂中的发泡剂,能使得聚合物样品发泡成孔,从而得到质轻、隔热、隔音、富有弹性的聚合物材料,其包括但不仅限于以下任一种或任几种发泡剂:物理发泡剂,如丙烷、甲醚、戊烷、新戊烷、己烷、异戊烷、庚烷、异庚烷、石油醚、丙酮、苯、甲苯、丁烷、乙醚、氯甲烷、二氯甲烷、二氯乙烯、二氯二氟甲烷、三氟氯甲烷、物理型微球/颗粒发泡剂;无机发泡剂,如碳酸氢钠、碳酸铵、碳酸氢铵;有机发泡剂,如N,N’-二硝基五次甲 基四胺、N,N’-二甲基-N,N’-二亚硝基对苯二甲酰胺、偶氮二甲酰胺、偶氮二碳酸钡、偶氮二碳酸二异丙酯、偶氮甲酰胺甲酸钾、偶氮二异丁腈、4,4’-氧代双苯磺酰肼、苯磺酰肼、三肼基三嗪、对甲苯磺酰氨基脲、联苯-4,4’-二磺酰叠氮;发泡促进剂,如尿素、硬脂酸、月桂酸、水杨酸、三盐基性硫酸铅、二盐基亚磷酸铅、硬脂酸铅、硬脂酸镉、硬脂酸锌、氧化锌;发泡抑制剂,如马来酸、富马酸、硬脂酰氯、苯二甲酰氯、马来酸酐、苯二甲酸酐、对苯二酚、萘二酚、脂肪族胺、酰胺、肟、异氰酸酯、硫醇、硫酚、硫脲、硫化物、砜、环己酮、乙酰丙酮、六氯环戊二烯、二丁基马来酸锡等。其中,发泡剂优选碳酸氢钠、碳酸铵、偶氮二甲酰胺(发泡剂AC)、N,N’-二硝基五次甲基四胺(发泡剂H)、N,N’-二甲基-N,N’-二亚硝基对苯二甲酰胺(发泡剂NTA),物理型微球发泡剂、所用的发泡剂用量没有特别限定,一般为0.1-30wt%。
所述的可添加的助剂中的动态调节剂,能够提升调节有机硼酸硅酯键的动态性,以便获得最优化的期望性能,其一般是游离的带有自由羟基或者自由羧基的化合物,包括但不仅限于水、氢氧化钠、醇(包括硅醇)、羧酸等。所用的动态调节剂用量没有特别限定,一般为0.1-10wt%。
所述的可添加的助剂中的抗静电剂,可将聚合物样品中聚集的有害电荷引导或消除,使其不对生产和生活造成不便或危害,其包括但不仅限于以下任一种或任几种抗静电剂:阴离子型抗静电剂,如烷基磺酸盐、对壬基苯氧基丙烷磺酸钠、烷基磷酸酯二乙醇胺盐、对壬基二苯醚磺酸钾、磷酸酯衍生物、磷酸盐、磷酸酯衍生物、脂肪胺磺酸盐、丁酸酯磺酸钠;阳离子型抗静电剂,如脂肪铵盐酸盐、月桂基三甲基氯化铵、十二烷基三甲胺溴化物、烷基羟乙基二甲铵高氯酸盐;两性离子型抗静电剂,如烷基二羧甲基铵乙内盐、月桂基甜菜碱、N,N,N-三烷基铵乙酰(N’-烷基)胺乙内盐、N-月桂基-N,N-二聚氧化乙烯基-N-乙基膦酸钠、N-烷基氨基酸盐;非离子型抗静电剂,如脂肪酸环氧乙烷加成物、烷基酚环氧乙烷加成物、磷酸三聚氧乙烯基醚酯、甘油脂肪酸酯;高分子型抗静电剂,如聚烯丙酰胺N-季铵盐取代物、聚4-乙烯基-1-丙酮基吡啶磷酸-对丁基苯酯盐等;其中,抗静电剂优选月桂基三甲基氯化铵、烷基磷酸酯二乙醇胺盐(抗静电剂P)。所用的抗静电剂用量没有特别限定,一般为0.3-3wt%。
所述的可添加的助剂中的乳化剂,能够改善包含助剂的聚合物混合液中各种构成相之间的表面张力,使之形成均匀稳定的分散体系或乳液,其优选用于进行乳液聚合,其包括但不仅限于以下任一种或任几种乳化剂:阴离子型,如高级脂肪酸盐、烷基磺酸盐、烷基苯磺酸盐、烷基萘磺酸钠、琥珀酸酯磺酸盐、石油磺酸盐、蓖麻油硫酸酯盐、硫酸化蓖麻酸丁酯盐、磷酸酯盐、脂肪酰-肽缩合物;阳离子型,如烷基铵盐、烷基季铵盐、烷基吡啶盐;两性离子型,如羧酸酯型、磺酸酯型、硫酸酯型、磷酸酯型;非离子型,如烷基酚聚氧乙烯醚、脂肪酸聚氧乙烯酯、甘油脂肪酸酯、季戊四醇脂肪酸酯、山梨醇及失水山梨醇脂肪酸酯、蔗糖脂肪酸酯、醇胺脂肪酰胺等;其中,乳化剂优选十二烷基苯磺酸钠、失水山梨醇脂肪酸酯、三乙醇胺硬脂酸酯(乳化剂FM)。所用的乳化剂用量没有特别限定,一般为1-5wt%。
所述的可添加的助剂中的分散剂,能够使得聚合物混合液中固体絮凝团分散为细小的粒子而悬浮于液体中,均一分散那些难于溶解于液体的固体及液体颗粒,同时也能防止颗粒的沉降和凝聚,形成安定悬浮液,其包括但不仅限于以下任一种或任几种分散剂:阴离子型,如烷基硫酸酯钠盐、烷基苯磺酸钠、石油磺酸钠;阳离子型;非离子型,如脂肪醇聚氧乙烯醚、山梨糖醇酐脂肪酸聚氧乙烯醚;无机型,如硅酸盐、缩合磷酸盐等;其中,分散剂优选十二烷基苯磺酸钠、萘系亚甲基磺酸盐(分散剂N)、脂肪醇聚氧乙烯醚。所用的分散剂用量没有特别限定,一般为0.3-0.8wt%。
所述的可添加的助剂中的着色剂,可以使聚合物产品呈现出所需要的颜色,增加表面色彩,其包括但不仅限于以下任一种或任几种着色剂:无机颜料,如钛白、铬黄、镉红、铁红、钼铬红、群青、铬绿、炭黑;有机颜料,如立索尔宝红BK、色淀红C、苝红、嘉基R红、 酞菁红、永固洋红HF3C、塑料大红R和克洛莫红BR、永固橙HL、耐晒黄G、汽巴塑料黄R、永固黄3G、永固黄H2G、酞青蓝B、酞青绿、塑料紫RL、苯胺黑;有机染料,如硫靛红、还原黄4GF、士林蓝RSN、盐基性玫瑰精、油溶黄等;其中,着色剂的选用根据样品颜色需求而定,不需要特别限定。所用的着色剂用量没有特别限定,一般为0.3-0.8wt%。
所述的可添加的助剂中的荧光增白剂,能使所染物质获得类似荧石的闪闪发光的效应,其包括但不仅限于以下任一种或任几种荧光增白剂:二苯乙烯型、香豆素型、吡唑啉型、苯并氧氮型、苯二甲酰亚胺型等;其中,荧光增白剂优选二苯乙烯联苯二磺酸钠(荧光增白剂CBS)、4,4-双(5甲基-2-苯并噁唑基)二苯乙烯(荧光增白剂KSN)、2,2-(4,4’-二苯乙烯基)双苯并噁唑(荧光增白剂OB-1)。所用的荧光增白剂用量没有特别限定,一般为0.002-0.03wt%。
所述的可添加的助剂中的消光剂,能够使得入射光到达聚合物表面时,发生漫反射,产生低光泽的亚光和消光外观,其包括但不仅限于以下任一种或任几种消光剂:沉降硫酸钡、二氧化硅、含水石膏粉、滑石粉、钛白粉、聚甲基脲树脂等;其中,消光剂优选二氧化硅。所用的消光剂用量没有特别限定,一般为2-5wt%。
所述的可添加的助剂中的阻燃剂,能够增加材料的耐燃性,其包括但不仅限于以下任一种或任几种阻燃剂:磷系,如红磷、磷酸三甲酚酯、磷酸三苯酯、磷酸三甲苯酯、磷酸甲苯二苯酯;含卤磷酸酯类,如三(2,3-二溴丙基)磷酸酯、磷酸三(2,3-二氯丙)酯;有机卤化物,如高含氯量氯化石蜡、1,1,2,2-四溴乙烷、十溴二苯醚、全氯环戊癸烷;无机阻燃剂,如三氧化二锑、氢氧化铝、氢氧化镁、硼酸锌;反应型阻燃剂,如氯桥酸酐、双(2,3-二溴丙基)反丁烯二酸酯、四溴双酚A、四溴邻苯二甲酸酐等;其中,阻燃剂优选十溴二苯醚、磷酸三苯酯、磷酸三甲苯酯、磷酸甲苯二苯酯、三氧化二锑。所用的阻燃剂用量没有特别限定,一般为1-20wt%。
所述的可添加的助剂中的成核剂,能够通过改变聚合物的结晶行为,加快结晶速率、增加结晶密度和促使晶粒尺寸微细化,达到缩短材料成型周期,提高制品透明性、表面光泽、抗拉强度、刚性、热变形温度、抗冲击性、抗蠕变性等物理机械性能的目的,其包括但不仅限于以下任一种或任几种成核剂:苯甲酸、己二酸、苯甲酸钠、滑石粉、对苯酚磺酸钠、二氧化硅、乙丙橡胶、三元乙丙橡胶等;其中,成核剂优选二氧化硅、三元乙丙橡胶。所用的成核剂用量没有特别限定,一般为0.1-1wt%。
所述的可添加的助剂中的流变剂,能够保证聚合物在涂膜过程中具有良好的涂刷性和适当的涂膜厚度,防止贮存时固体颗粒的沉降,能够提高其再分散性,其包括但不仅限于以下任一种或任几种流变剂:无机类,如硫酸钡、氧化锌、碱土金属氧化物、碳酸钙、氯化锂、硫酸钠、硅酸镁、气相二氧化硅、水玻璃、胶态二氧化硅;有机金属化合物,如硬脂酸铝、钛螯合物、铝螯合物;有机类,如有机膨润土、蓖麻油衍生物、异氰酸酯衍生物、丙烯酸乳液、丙烯酸共聚物、聚乙烯蜡等;其中,流变剂优选有机膨润土、聚乙烯蜡、疏水改性碱性可膨胀乳液(HASE)、碱性可膨胀乳液(ASE)。所用的流变剂用量没有特别限定,一般为0.1-1wt%。
所述的可添加的助剂中的增稠剂,能够赋予聚合物混合液良好的触变性和适当的稠度,从而满足其在生产、贮存和使用过程中的稳定性能和应用性能等多方面的需求,其包括但不仅限于以下任一种或任几种增稠剂:低分子物质,如脂肪酸盐、烷基二甲胺氧化物、脂肪酸异丙酰胺、脱水山梨醇三羧酸酯、甘油三油酸酯、椰子酰胺丙基甜菜碱;高分子物质,如皂土、人工水辉石、微粉二氧化硅、胶体铝、聚甲基丙烯酸盐、甲基丙烯酸共聚物、顺酐共聚物、聚丙烯酰胺、聚乙烯吡咯酮、聚醚等;其中,增稠剂优选皂土、丙烯酸-甲基丙烯酸共聚物。所用的增稠剂用量没有特别限定,一般为0.1-1.5wt%。
所述的可添加的助剂中的流平剂,能够保证聚合物涂膜的平整光滑均匀,改善涂膜表面质量、提高装饰性,其包括但不仅限于以下任一种或任几种流平剂:聚丙烯酸酯类、有机硅 树脂等;其中,流平剂优选聚丙烯酸酯。所用的流平剂用量没有特别限定,一般为0.5-1.5wt%。
在动态聚合物的制备过程中,可添加的助剂优选催化剂、引发剂、抗氧剂、光稳定剂、热稳定剂、交联剂、固化剂、扩链剂、增韧剂、增塑剂、发泡剂、阻燃剂、动态调节剂。
所述的可添加的填料,其在动态聚合物中主要起到以下作用:①降低成型制品的收缩率,提高制品的尺寸稳定性、表面光洁度、平滑性以及平光性或无光性等;②调节聚合物的粘度;③满足不同性能要求,如提高聚合物材料冲击强度及压缩强度、硬度、刚度和模量、提高耐磨性、提高热变形温度、改善导电性及导热性等;④提高颜料的着色效果;⑤赋予光稳定性和耐化学腐蚀性;⑥起到增容作用,可降低成本,提高产品在市场上的竞争能力。
所述的可添加的填料,选自以下任一种或任几种填料:无机非金属填料、金属填料、有机填料。
所述的可添加的无机非金属填料,包括但不仅限于以下任一种或任几种:碳酸钙、陶土、硫酸钡、硫酸钙和亚硫酸钙、滑石粉、白炭黑、石英、云母粉、粘土、石棉、石棉纤维、正长石、白垩、石灰石、重晶石粉、石膏、石墨、炭黑、石墨烯、氧化石墨烯、碳纳米管、二硫化钼、矿渣、烟道灰、木粉及壳粉、硅藻土、赤泥、硅灰石、硅铝炭黑、氢氧化铝、氢氧化镁、粉煤灰、油页岩粉、膨胀珍珠岩粉、导电炭黑、蛭石、铁泥、白泥、碱泥、硼泥、(中空)玻璃微珠、发泡微球、可发泡颗粒、玻璃粉、水泥、玻璃纤维、碳纤维、石英纤维、炭芯硼纤维、二硼化钛纤维、钛酸钙纤维、碳硅纤维、陶瓷纤维、晶须等。
所述的可添加的金属填料,包括但不仅限于以下任一种或任几种:导电金属填料、金属颗粒、纳米颗粒、金属及合金粉、碳钢、不锈钢、不锈钢纤维、液态金属、金属有机化合物(特别是具有光热、磁热、电热性能的有机金属化合物)等。
所述的可添加的有机填料,包括但不仅限于以下任一种或任几种:皮毛、天然橡胶、棉花、棉绒、麻、黄麻、亚麻、石棉、纤维素、醋酸纤维素、虫胶、甲壳素、壳聚糖、木质素、淀粉、蛋白质、酶、激素、生漆、木粉、壳粉、糖原、木糖、蚕丝、人造丝、维尼纶、酚醛微珠、树脂微珠等。
其中,添加的填料类型不限定,主要根据所需求的材料性能而定,优选碳酸钙、硫酸钡、滑石粉、炭黑、石墨烯、(中空)玻璃微珠、发泡微球、玻璃纤维、碳纤维、金属粉、天然橡胶、棉绒、树脂微珠,所用的填料用量没有特别限定,一般为1-30wt%。
在动态聚合物的制备过程中,可通过本领域已知的任意合适的材料混合方式将一定配比的原料通过混合来制备动态聚合物,其可以是间歇、半连续或连续工艺形式的混合;同样地,也可选择间歇、半连续或连续工艺形式对动态聚合物进行成型。采用的混合方式包括但不仅限于溶液搅拌混合、熔融搅拌混合、捏合、密炼、开炼、熔融挤出、球磨等,其中优选溶液搅拌混合、熔融搅拌混合和熔融挤出。在物料混合过程中的能量提供形式包括但不仅限于加热、光照、辐射、微波、超声。采用的成型方式包括但不仅限于挤出成型、注射成型、模压成型、流延成型、压延成型、铸塑成型。
在动态聚合物的制备过程中,还可以加入之前所述的可添加的其他聚合物、可添加的助剂、可添加的填料来共同组成动态聚合物复合体系,但这些添加物并不都是必须的。
利用溶液搅拌混合制备动态聚合物的具体方法,通常是将原料以溶解或分散的形式在各自的溶剂中或者共同的溶剂中在反应器中进行搅拌混合。通常,混合反应温度控制在0-200℃,优选25-120℃,更优选25-80℃,混合搅拌时间控制在0.5-12h,优选1-4h。可将混合搅拌后得到的产物浇注到合适的模具中,在0-150℃,优选25-80℃温度条件下,放置0-48h,得到聚合物样品。此过程中可根据需要选择保留溶剂制成以乳液、凝胶、胶状等形式存在的聚合物样品,或者选择除去溶剂制成块状、泡沫状等形式存在的固态聚合物样品。
以化合物(IV)、化合物(V)作为原料利用此方法制备动态聚合物时,通常还需要视情况在溶剂中加入引发剂以溶液聚合的方式来引发聚合得到动态聚合物,或者加入分散剂和油 溶性引发剂配制成悬浮液以悬浮聚合或淤浆聚合的方式来引发聚合得到动态聚合物,或者加入引发剂和乳化剂配制成乳液以乳液聚合的方式来引发聚合得到动态聚合物。所采用的溶液聚合、悬浮聚合、淤浆聚合以及乳液聚合的方法,均为本领域的技术人员所熟知并广泛使用的聚合方法,可依据实际情况进行调整,这里不再详细展开。
上述制备方法中所用到的溶剂,应根据反应物、产物及反应过程等实际情况进行选择,包括但不仅限于以下任一种溶剂或任几种溶剂的混合溶剂:去离子水、乙腈、丙酮、丁酮、苯、甲苯、二甲苯、乙酸乙酯、乙醚、甲基叔丁基醚、四氢呋喃、氯仿、二氯甲烷、1,2-二氯乙烷、二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、醋酸异丙酯、醋酸正丁酯、三氯乙烯、均三甲苯、二恶烷、Tris缓冲液、柠檬酸缓冲液、乙酸缓冲溶液、磷酸缓冲溶液等;优选去离子水、甲苯、氯仿、二氯甲烷、1,2-二氯乙烷、四氢呋喃、二甲基甲酰胺、磷酸缓冲溶液。此外,溶剂也可选自齐聚物、增塑剂、离子液体;所述的齐聚物包括但不仅限于聚醋酸乙烯酯齐聚物、聚丙烯酸正丁酯齐聚物、液体石蜡等;所述的增塑剂可选自可添加的助剂中的增塑剂中所述类别,这里不再赘述;所述的离子液体一般由有机阳离子和无机阴离子组成,阳离子通常为烷基季铵离子、烷基季瞵离子、1,3-二烷基取代的咪唑离子、N-烷基取代的吡啶离子等;阴离子通常为卤素离子、四氟硼酸根离子、六氟磷酸根离子、也有CF3SO3 -、(CF3SO2)2N-、C3F7COO-、C4F9SO3 -、CF3COO-、(CF3SO2)3C-、(C2F5SO2)3C-、(C2F5SO2)2N-、SbF6 -、AsF6 -等。其中,利用去离子水来制备动态聚合物并选择将其保留时,可以得到水凝胶;利用有机溶剂来制备动态聚合物并选择将其保留时,可以得到有机凝胶;利用齐聚物来制备动态聚合物并选择将其保留时,可以得到齐聚物溶胀凝胶;利用增塑剂来制备动态聚合物并选择将其保留时,可以得到增塑剂溶胀凝胶;利用离子液体来制备动态聚合物并选择将其保留时,可以得到离子液体溶胀凝胶。
上述制备方法中,所配置的化合物液体浓度根据所选反应物的结构、分子量、溶解度及所需的分散状态而定,没有特别限定,优选的化合物液体浓度为0.1~10mol/L,更优选为0.1~1mol/L。
利用熔融搅拌混合制备动态聚合物的具体方法,通常是将原料在反应器中直接搅拌混合或加热熔融后搅拌混合反应,此种方式一般在原料为气体、液体或熔点较低的固体的情况下使用。通常,混合反应温度控制在0-200℃,优选25-120℃,更优选25-80℃,混合搅拌时间控制在0.5-12h,优选1-4h。可将混合搅拌后得到的产物浇注到合适的模具中,在0-150℃,优选25-80℃温度条件下,放置0-48h,得到聚合物样品。
以化合物(IV)、化合物(V)作为原料利用此方法制备动态聚合物时,通常还需要视情况加入少量引发剂以熔融聚合或气相聚合的方式来引发聚合得到动态聚合物。其所采用的熔融聚合、气相聚合的方法,均为本领域的技术人员所熟知并广泛使用的聚合方法,可依据实际情况进行调整,这里不再详细展开。
利用熔融挤出混合制备动态聚合物的具体方法,通常是将原料加入到挤出机中进行挤出共混反应,挤出温度为0-280℃,优选50-150℃。反应产物可直接流延成型后裁成合适尺寸,或者将得到的挤出样品进行破碎后,利用注塑机或者模压机进行制样。注塑温度为0-280℃,优选50-150℃,注塑压力优选60-150MPa;模压温度为0-280℃,优选25-150℃,更优选25-80℃,模压时间为0.5-60min,优选1-10min,模压压力优选4-15MPa。可将样条置于合适的模具中,在0-150℃,优选25-80℃温度条件下,放置0-48h,得到最终的聚合物样品。
在动态聚合物的制备过程中,所选用的有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)的成分选择和配方比例可以灵活把握,但应根据目标材料性能以及所选化合物的结构、含有的反应性基团数和分子量进行合理的设计和组合。其中,所添加的有机硼化合物(I)、含硅化合物(II)、化合物(III)、化合物(IV)、化合物(V)应保证反应物体系中的官能团和/或其他反应性基团的摩尔当量比处于适当的范围。有 机硼化合物(I)、含硅化合物(II)、化合物(III)中含有的有机硼酸基和/或有机硼酸酯基与硅羟基和/或硅羟基前躯体官能团的摩尔当量比优选0.1~10的范围,更优选0.3~3的范围,更优选0.8~1.2的范围。当有机硼化合物(I)、含硅化合物(II)、化合物(III)中含有的官能团的摩尔当量比接近1:1时,可以得到的反应程度高、稳定性好的动态聚合物;当有机硼化合物(I)、含硅化合物(II)、化合物(III)中含有的官能团的摩尔当量比偏离1:1时,则可以得到动态性较好的动态聚合物。同样地,当选用化合物(IV)、化合物(V)作为反应组分制备动态聚合物时,反应物体系中其他反应性基团的摩尔当量比也应处于适当的范围,进行聚合/交联反应的其他反应性基团的摩尔当量比优选0.1~10的范围,更优选0.3~3的范围,更优选0.8~1.2的范围。在实际制备过程中,本领域的技术人员可根据实际需要进行调整。
在动态聚合物的制备过程中,对动态聚合物各组分原料的添加量并未做特别的限定,本领域的技术人员可根据实际制备情况以及目标聚合物性能进行调整。
所述的动态聚合物性能大范围可调,具有广阔的应用前景,在军事航天设备、功能涂层、生物医药、生物医用材料、能源、建筑、仿生、智能材料等领域,都体现出令人瞩目的应用效果。
例如,通过利用动态聚合物所具有的胀流性,可将其应用于油井采油、燃油防爆等方面;也可将其应用于制作阻尼减震器,用于各种机动车辆、机械设备、桥梁、建筑的震动隔离,聚合物材料在受到振动时,可以耗散大量能量起到阻尼效果,从而有效地缓和震动体的震动;也可利用动态聚合物所具有的应力响应性,产生交联度的变化,出现柔性和强弹性的转变,起到有效分散冲击力的作用,从而可作为吸能缓冲材料应用于缓冲包装材料、运动防护制品、冲击防护制品以及军警用防护材料等方面,减少物品或人体在外力作用下所受到的震动和冲击,包括爆炸产生的冲击波等;因为存在普通共价交联,也可将其作为形状记忆材料进行使用,当外力去除时,材料在加载过程中由于可逆有机硼酸硅酯键的解离而产生的形变能够得以恢复;通过动态聚合物所具有的动态可逆性和应力速率依赖性,制备出应力敏感型的聚合物材料,一部分可以应用于制备具有蠕变性和高弹性转换的魔幻效果的玩具和健身材料,还可用于制备道路和桥梁的速度锁定器,以及可用于制作抗震剪切板或循环应力承载工具,或者用于制作应力监测传感器。
再例如,充分利用动态聚合物所具有的自修复性,可以制备出具有部分自修复功能的粘结剂,应用于各类材料的胶黏,也可作为防弹玻璃夹层胶;也可用于制备具有一定伤口自愈合性的聚合物封堵胶和密封塞、密封圈等密封件,广泛应用于电子、电器、电池等方面;基于有机硼酸硅酯键的动态可逆性,可以设计制备出具有刮痕自修复功能的耐刮擦涂层,从而延长涂层的使用寿命,实现对基体材料的长效防腐保护;通过合适的组分选择和配方设计,可以制备具有部分自修复功能的聚合物垫片或聚合物板材,从而可以模仿生物体损伤愈合的原理,使得材料能够对内部或者外部损伤进行自愈合,消除了隐患,延长了材料的使用寿命,在军工、航天、电子、仿生等领域表现出巨大的应用潜力。
再例如,将有机硼酸硅酯键和可选的氢键作为可牺牲键,其在外力作用下的断裂可吸收大量能量而赋予聚合物材料以优异的韧性,从而可以获得韧性极佳的聚合物纤维或者板材,广泛应用于军事、航天、运动、能源、建筑等领域。
下面结合一些具体实施方式对本发明所述的交联聚合物材料做进一步描述。具体实施例为进一步详细说明本发明,非限定本发明的保护范围。
实施例1
利用大分子有机硼化合物(I)、小分子含硅化合物(II)、大分子化合物(V)、小分子化合物(V)制备具有双重交联网络的动态聚合物,其中第一网络为动态共价交联,第二网络为普通共价交联。
Figure PCTCN2017098107-appb-000044
在三口烧瓶中加入15g丙烯酰胺-苯硼酸共聚物(a)(以AIBN为引发剂,丙烯酰胺、3-丙烯酰胺基苯硼酸为原料,通过RAFT自由基聚合得到),200ml去离子水,加热到50℃进行搅拌溶解后,滴加入少许乙酸,慢慢加入1.7g硅烷化合物(b)(以3-氨丙基甲基二甲氧基硅烷、己二酰氯为原料反应制得),搅拌混合30min后,加入2ml三乙胺,在50℃条件下继续搅拌反应2h,形成第一网络。然后加入10g聚丙烯酸(c),搅拌溶解后,再加入0.84g氮丙啶交联剂(d)继续反应1h,然后加入3.8g中空玻璃微球、3.8g皂土、0.4g硬脂酸和0.4g油酸,加热搅拌混合均匀后,置于50℃烘箱中放置24h进行干燥以及进一步的反应,最终得到具有一定弹性的固态聚合物产品,可将其作为一种轻质弹性小球进行使用。
实施例2
利用小分子化合物(V)、大分子化合物(V)、大分子有机硼化合物(I)、小分子含硅化合物(II)制备具有双重交联网络的动态聚合物,其中第一网络为普通共价交联,第二网络为动态共价交联。
Figure PCTCN2017098107-appb-000045
在干燥洁净的反应瓶中加入100ml的四氢呋喃溶剂,密封后,利用氩气鼓泡除氧1h,然后在反应瓶中加入0.6g叠氮化合物(a)(以季戊四醇、3-溴丙酸为原料,通过酯化反应得季戊四醇3-溴丙酸酯后,将其与叠氮化钠反应制得),4.32g炔基封端的聚酰胺(b)(以分子量约为5000的聚酰胺、5-炔基己酸、炔丙醇为原料,二环己基碳二亚胺、4-二甲氨基吡啶为催化剂,通过酰胺化、酯化反应制得),0.56ml的N,N-二异丙基乙胺,38mg催化剂Cu(PPh3)3Br。将反应瓶加热到60℃,在搅拌的状态下反应12h,再加入4.1g苯硼酸封端的聚四氢呋喃(d)(以3-氨基苯硼酸为原料,将其与二溴封端的聚四氢呋喃(分子量约为1000)通过烃基化反应制得),在搅拌的状态下,加入少量20%的乙酸水溶液,混合均匀后,再依次缓慢加入1.76g的1,1,3,3,5,5-六乙氧基-1,3,5-三硅代环己烷(c),4.16g十四甲基-1,11-二氯六硅氧烷(e)。通过搅拌使各组分充分混合均匀后,加入2ml三乙胺,继续在氩气保护条件下反应3h,得到具有一定粘度的聚合物流体,将反应液进行抽滤除溶剂得初产物,利用正己烷/二氯甲烷(3:1)洗脱去杂质,将得到的聚合物固体置于50℃烘箱中放置24h进行干燥以及进一步的反应,最终得到具有一定弹性的块状聚合物样品。当在样品上施加一定外力作用时,聚合物样品能够表现表现出临时刚性,起到耗散应力的效果,可将其作为抗冲击防护垫应用于健身器材。
实施例3
利用小分子有机硼化合物(I)、大分子含硅化合物(II)、大分子化合物(V)制备具有 双重交联网络的动态聚合物,其中第一网络为普通共价交联,第二网络为动态共价交联。
Figure PCTCN2017098107-appb-000046
在干燥洁净的三口烧瓶中加入20ml三端氢基聚硅氧烷(b)(以八甲基环四硅氧烷、苯基三(二甲基硅氧烷基)硅烷为原料,浓硫酸为催化剂,通过开环聚合法制得),15ml的双端不饱和聚醚(c)(分子量约为3000),通氮气5min后,加入200ml邻苯二甲酸二辛酯,加热到40℃进行搅拌溶解,加入1ml 1%Pt(dvs)-THF溶液作为催化剂,在氮气保护条件下反应36h,形成第一网络,然后加入12ml甲基羟基硅油(d)(分子量约为2000),2.61g的有机硼化合物(a)(将丙烯基硼酸与1,3,5-三嗪-2,4,6-三硫醇以DMPA作为光引发剂,紫外光为光源,通过thiol-ene点击反应制得),滴加入少量的三乙胺,在80℃氮气保护条件下反应4h形成第二网络,将得到的粘稠状的交联聚合物倒入合适的模具中,置于60℃真空烘箱中24h进行进一步的反应,之后冷却到室温放置30min,最终得到的聚合物样品呈胶状,有一定的弹性,并可在一定范围内进行延展。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为4.48±1.52MPa,拉伸模量为6.72±2.39MPa,断裂伸长率为712±46%。此外,制得的产品也具有良好的可塑性,可根据实际需要放置于不同形状的模具中,并在一定温度条件下略微施加一定应力,即可根据模具成型为不同形状的聚合物产品。在使用过程中,材料表现出了良好的粘弹性,具有良好的隔离震动和应力缓冲效果,同时也表现出了优良的耐水解性。在本实施例中,可将聚合物样品制成一种抗冲击防护垫片进行使用。
实施例4
利用小分子有机硼化合物(I)、小分子含硅化合物(II)、大分子化合物(V)、小分子化合物(V)制备具有双重交联网络的动态聚合物,其中第一网络为动态共价交联,第二网络为普通共价交联。
Figure PCTCN2017098107-appb-000047
将有机硼化合物(a)(以1-羟基硼杂环丙烯为原料,将其与氢溴酸通过加成反应制得2-溴-1-羟基硼杂环丙烷;以1,3,5-三丙烯酰基六氢-1,3,5-三嗪、2-氨基乙硫醇为原料,AIBN为引发剂,三乙胺为催化剂,通过thiol-ene点击反应制得中间产物后,再与2-溴-1-羟基硼杂环丙烷通过烃基化反应制得)溶解在四氢呋喃溶剂中,配置成0.5mol/L的溶液;取一定量的含硅化合物(b)(以三羟甲基丙烷三(3-巯基丙酸酯)、1-氯-乙烯基-硅杂环丁烷为原料,AIBN为引发剂,三乙胺为催化剂,通过thiol-ene点击反应制得)溶解于四氢呋喃溶剂中配制成0.5mol/L的溶液。在干燥洁净的烧瓶中加入20ml配置好的有机硼化合物溶液,滴加入少量的20%乙酸水溶液,在搅拌状态下滴加入20ml的含硅化合物溶液,在50℃条件下搅拌均匀后,再滴加入2ml的三乙胺,继续反应4h,形成第一网络,然后加入3.2g聚环氧丙烷三丙烯酸酯(c)(以丙三醇、环氧丙烷为原料,三氟化硼乙醚为催化剂,通过阳离子开环聚合合成羟基封端的三臂聚环氧丙烷,再将其与丙烯酸通过酯化反应制得),0.24g 1,6-己二硫醇(d),0.05g光催化剂DMPA,1mg BHT抗氧剂,通过搅拌使反应物溶解完全后,在紫外光照射下反应10min,形成第二网络。然后将反应液倒入合适的模具中,置于60℃真空烘箱中24h进行进一步的反应和干燥,之后冷却到室温放置30min,最终得到硬质胶状的聚合物材料,样品表现出高弹性和良好的热稳定性,用手指对其进行按压可快速回弹。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为2.78±0.91MPa,拉伸模量为4.54±1.12MPa,断裂伸长率为356±108%。在本实施例中,可将聚合物材料作为具有高效阻尼效果的抗震剪切材料或循环应力承载材料。
实施例5
利用大分子化合物(V)、大分子有机硼化合物(I)、大分子含硅化合物(II)制备具有双重交联网络的动态聚合物,其中第一网络为普通共价交联,第二网络为动态共价交联。
Figure PCTCN2017098107-appb-000048
称取5g端乙烯基聚二甲基硅氧烷(a)(分子量约为3000),2.08g四端氢基聚硅氧烷(b)(以八甲基环四硅氧烷、四(二甲基硅氧基)硅烷为原料,浓硫酸为催化剂,通过开环聚合法合成)溶解于80ml的无水甲苯溶剂中,加热到40℃进行搅拌溶解,加入铂烯络合物Pt(dvs)作为催化剂,在氮气保护条件下反应36h(形成第一网络)。反应结束后,加入2.0g硼酸封端的四臂化合物(c)(利用2-甲酰基苯硼酸、氨气为原料,甲苯为溶剂,通过Petasis反应合成2-氨甲基苯硼酸,再将其与四溴季戊醇通过烃基化反应制得),在搅拌的状态下,加入4ml的去离子水,少量的乙酸,混合均匀后,再依次缓慢加入9.6ml羟基封端的甲基苯基硅油(d)(分子量约为12,000),搅拌混合30min后,加入3ml的三乙胺,在氮气保护回流条件下进行反应,加热反应1h后,加入0.2g钛合金粉末、0.2g陶瓷粉、0.4g硫酸钙,搅拌均匀后,继续反应2h。在反应过程中,溶液粘度不断上升,当其达到一定粘度时,将聚合物溶液倒入合适的模具中,置于80℃真空烘箱中24h进行除溶剂,之后冷却到室温放置30min,最终得到块状乳黄色,呈硬质性的,表面具有一定光泽度的聚合物固体样品。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为10mm/min,测得样品拉伸强度为8.64±1.45MPa,拉伸模量为20.78±4.25MPa。聚合物样品表面光滑,具有一定的强度和刚性,可将其应用于制作医疗用品支架。
实施例6
利用小分子化合物(V)、大分子有机硼化合物(I)、大分子含硅化合物(II)制备具有双重交联网络(含有超分子氢键作用)的动态聚合物,其中第一网络为普通共价交联,第二网络为动态共价交联。
Figure PCTCN2017098107-appb-000049
称取一定量的乙烯基吡咯烷酮(a),并将其溶解于去离子水中配制成1mol/L的溶液,在溶液中加入10mol%的丙烯酸酯单体(b)(以异氰酸酯丙烯酸乙酯、正丙胺为原料反应制得),1mol%的交联剂N,N’-亚甲基双丙烯酰胺(c),0.6mol%的引发剂过硫酸钾,搅拌混合均匀后,静置1h除去气泡,置于60℃条件下恒温水浴反应4h,得到聚乙烯基吡咯烷酮凝胶(第一网络)。称取一定量的丙烯酰胺-硼酸酯共聚物(d)(以1-氨基乙基硼酸二异丙酯、丙烯酰氯为原料反应制得硼酸酯丙烯酰胺单体,再将其与N,N-二甲基丙烯酰胺通过自由基聚合得到最终产物)溶解于去离子水中配制成0.4mol/L的溶液;同时,称取一定量的丙烯酰胺-硅烷共聚物(e)(以2-丙烯酸-3-(二乙氧基甲基硅烷基)丙基酯为原料,AIBN为引发剂,将其与N,N-二甲基丙烯酰胺通过自由基聚合后制得)溶解于去离子水中,配置成0.5mol/L的溶液,各取20ml两种共聚物溶液混合均匀。将之前制得的聚乙烯基吡咯烷酮凝胶溶胀于共聚物混合溶液中,超声5min后,加入1.6g经过硅烷偶联剂A151表面修饰的Fe3O4粒子和1.0g皂土,继续超声1min,使Fe3O4粒子在其中分散均匀,接着滴加入少量1mol/L的NaOH溶液,置于60℃条件下恒温水浴反应2h。反应结束后,得到分散有磁性粒子的IPN双网络水凝胶。将其置于50℃烘箱中干燥24h,之后冷却到室温放置30min,最终得到具有良好回弹性的聚合物干胶。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为6.63±1.44MPa,拉伸模量为10.05±1.97MPa,断裂伸长率为841±148%。聚合物样品体现出了良好的力学性能,并且由于其包含有磁性粒子,可利用电磁波加热控制材料的形状记忆能力。
实施例7
利用大分子化合物(III)、大分子化合物(V)制备具有双重交联网络的动态聚合物,其中第一网络为普通共价交联,第二网络为动态共价交联。
Figure PCTCN2017098107-appb-000050
在三口烧瓶中加入20ml甲基乙烯基硅油(a)(分子量约为50,000),15ml甲基含氢硅油(b)(分子量约为20,000),10ml单氢封端二甲基硅油(c)(分子量约为5000),加入2ml 1%Pt(dvs)-二甲苯溶液作为催化剂,加热到80℃,在氮气保护条件下反应35h,形成第一网络,然后加入25ml有机硼酸酯-硅烷改性硅油(d)(以分子量约为60,000的甲基巯基硅油、乙烯基硼酸二甲酯、甲基乙烯基二乙氧基硅烷为原料,以DMPA作为光引发剂,在紫外光照射条件下,通过thiol-ene点击反应制得)升温到80℃混合均匀后,加入少量的去离子水,滴加入2ml的三乙胺,在搅拌状态下进行聚合反应。在聚合的过程中,硅油的粘度不断上升,反应3h 之后,得到具有较大粘度的聚合物样品,此时将其倒入到合适的模具中,置于80℃真空烘箱中继续反应24h,之后冷却到室温放置30min,最终得到橡胶状的聚合物样品,其具有一定的强度和表面弹性。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为3.46±0.91MPa,拉伸模量为6.32±1.01MPa,断裂伸长率为583±214%。在材料的制备过程中,其体现出了良好的可塑性,可依据需要压制成不同形状尺寸的产品。在本实施例中,可利用聚合物材料本身所具有的阻尼特性,作为高阻尼隔震橡胶支座,应用于桥梁和房屋建筑的震动隔离。
实施例8
利用大分子化合物(V)、小分子化合物(V)、小分子化合物(IV)制备具有单一杂化交联网络(含有超分子氢键作用)的动态聚合物。
Figure PCTCN2017098107-appb-000051
在干燥洁净的烧瓶中称取30g的聚乙二醇400(a),加热到110℃除水1h,然后加入12g十一烷-1,6,11-三基三异氰酸酯(b),在80℃氮气保护条件下反应3h,然后降温到60℃,加入2.02g扩链剂二羟甲基丙酸(c),1.52g三乙胺,10.74g丙酮,0.12g辛酸亚锡,回流反应1.5h,然后再加入0.75g 1,3,6-三氨基己烷(d),1.9g有机硼硅化合物(e)(以4-氨基苯硼酸,二甲基甲氧基-3-(2-氨基乙硫基)丙基硅烷为原料,通过缩合反应制得)作为交联剂继续反应1h,反应结束后,真空除去丙酮,冷却至室温,最终得到具有高弹性的聚氨酯基聚合物材料,可将其作为一种阻尼减震材料应用于汽车,可以起到减少噪声、减少震动的作用。
实施例9
利用大分子有机硼化合物(I)、大分子含硅化合物(II)、大分子化合物(V)制备具有单一杂化交联网络的动态聚合物。
Figure PCTCN2017098107-appb-000052
取一定量树枝状的有机硼化合物(a)(以2,2-二甲氧基-苯基乙酮(DMPA)作为光引发剂,紫外光为光源,将乙烯基硼酸与1,2-乙二硫醇通过硫醇-烯烃click加成反应制得巯基硼酸;以DMPA作为光引发剂,紫外光为光源,将三烯丙基胺与1,2-乙二硫醇通过硫醇-烯烃click加成反应制得一级中间产物后,再与三烯丙基胺继续通过硫醇-烯烃click加成反应制得二级中间产物,之后再与1,2-乙二硫醇通过硫醇-烯烃click加成反应制得三级中间产物,再与三烯丙基胺反应制得四级中间产物,最后与巯基硼酸、1,2-乙二硫醇通过硫醇-烯烃click加成反应制得最终产物)溶解于甲苯溶剂中配制成0.01mol/L的溶液,加入2.0mg的BHT抗氧剂;取一定量二甲基羟基硅油(b)(分子量约为4000)加热溶解于甲苯溶剂中配制成0.12mol/L的溶液;取一定量二乙烯基聚二甲基硅氧烷(c)(分子量约为2000)加热溶解于甲苯溶剂中配制成0.08mol/L的溶液。各取20ml有机硼化合物溶液和两种硅油溶液加入到干燥洁净的烧瓶中,搅拌均匀后,加入0.032gAIBN,0.8g的三乙胺,在80℃氮气保护条件下反应90min。之后将聚合物溶液倒入到合适的模具中,置于50℃烘箱中放置24h进行干燥以及进一步的反应,最终得到块状的聚合物样品。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为3.97±1.01MPa,拉伸模量为6.03±1.49MPa,断裂伸长率为296±102%。制得的聚合物样品表面光滑,具有一定的强度,可在一定范围内进行拉伸。此外,将样品表面进行小划痕之后,置于80℃的模具中施加一定压力贴合4-6h之后,划痕消失,具有一定的自修复效果。此聚合物材料可以作为防刮电子产品保护壳。
实施例10
利用大分子有机硼化合物(I)、大分子含硅化合物(II)、大分子化合物(V)、小分子化合物(V)制备具有双重交联网络(含有超分子氢键作用)的动态聚合物,其中第一网络为普通共价交联,第二网络为动态共价交联。
Figure PCTCN2017098107-appb-000053
在三口烧瓶中依次加入20g四臂聚乙二醇(d)(分子量约为3000),5.58g 4,4’-二苯基甲烷二异氰酸酯(c),0.28g辛酸亚锡,200ml乙酸乙酯溶剂,通氮气保护后,加热到50℃进行搅拌溶解,在65℃条件下反应4h后,再加入1.2g 1-氨基-2-丙酮(e)进行封端(形成第一网络),然后加入20g丙烯酸酯共聚物(a)(将3-(2-羟基乙基)苯基硼酸频哪醇酯与丙烯酰氯反应制得苯硼酸酯丙烯酸酯单体1;将异氰酸酯丙烯酸乙酯与乙胺反应制得含脲键的丙烯酸酯单体2;以AIBN为引发剂,将苯硼酸酯丙烯酸酯单体1与丙烯酸酯单体2、甲基丙烯酸甲酯通过自由基聚合得到),滴加入少量20%乙酸水溶液,慢慢加入5g硅烷改性的聚己内酯(b)(以烯丙醇为引发剂,辛酸亚锡为催化剂,引发ε-己内酯开环聚合得烯烃单封端的聚己内酯,再将其与丙烯酸酯化得烯烃双封端的聚己内酯,再将其与γ-巯丙基三甲氧基硅烷以AIBN为引发剂,三乙胺为催化剂,通过thiol-ene点击反应得到最终产物),搅拌混合30min后,加入2ml三乙胺,在50℃氮气保护条件下继续搅拌反应1h,然后升温到100℃加热反应1h(形成第二网络)。反应完成后,将聚合物溶液倒入到合适的模具中,将样品置于80℃烘箱中24h进行除溶剂,之后冷却到室温放置30min,最终得到交联的聚合物块状样品。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为10.73±2.38MPa,拉伸模量为18.09±3.97MPa,断裂伸长率为214±85%。制得的交联聚合物材料具有优良的综合性能,体现出良好的力学强度和抗冲击性,可作为抗冲击板材使用。
实施例11
利用大分子有机硼化合物(I)、大分子含硅化合物(II)、小分子化合物(V)制备具有双重交联网络(含有超分子氢键作用)的动态聚合物,其中第一网络为动态共价交联,第二网络为普通共价交联。
Figure PCTCN2017098107-appb-000054
在干燥洁净的烧瓶中称取120ml离子液体1-丁基-3-甲基咪唑六氟磷酸盐,然后加入10g乙烯基吡咯烷酮-硼酸共聚物(a)(以AIBN为引发剂,乙烯基吡咯烷酮、3-丙烯酰胺基苯硼酸为原料,通过RAFT自由基聚合得到),10g乙烯基吡咯烷酮-硅烷共聚物(b)(以2-丙烯酸-3-(二 乙氧基甲基硅烷基)丙基酯为原料,AIBN为引发剂,将其与乙烯基吡咯烷酮通过自由基聚合制得),滴加入少量三乙胺,置于50℃水浴锅中进行加热反应(形成第一网络)。反应2h后,加入12g N-异丙基丙烯酰胺(c),2.5g烯丙基化合物(d)(将烯丙基羟乙基醚和5-氯甲基-2-恶唑烷酮按摩尔比1:1溶于甲苯,以碳酸钾为催化剂,以四丁基溴化铵为相转移剂反应制得),1.5g交联剂N,N’-亚甲基双丙烯酰胺(e),2.16g石墨烯粉,0.1g十二烷基苯磺酸钠,滴加入少量的过硫酸铵及亚硫酸氢钠水溶液,在氮气保护条件下反应4h(形成第二网络)。将粘稠的聚合物溶液倒入合适的模具中,置于50℃真空烘箱中干燥24h,之后冷却到室温放置30min,最终得到分散有石墨烯的双网络离子液体凝胶聚合物样品,用手指对样品表面进行按压,样品能够较快地回弹,表现出良好的回弹性。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为3.94±0.42MPa,拉伸模量为5.89±1.54MPa,断裂伸长率为441±125%。聚合物凝胶能够表现出良好的形状记忆特性,在外界应力去除之后,凝胶能够快速回复原有形状。本实施例中的动态聚合物样品,可将其作为一种石墨烯复合智能仿生材料进行使用,能够在外加电场作用下进行凝胶的形变与复原。
实施例12
利用小分子化合物(IV)、小分子化合物(V)制备具有单一杂化交联网络(含有超分子氢键作用)的动态聚合物。
Figure PCTCN2017098107-appb-000055
在干燥洁净的烧瓶中加入120ml无水四氢呋喃溶剂,再在其中加入6.38g硼酸硅酯化合物(a)(以1-氨基乙基硼酸、3-氨基丙基二甲基乙氧基硅烷为原料,通过缩合反应制得),11.52g三氨基化合物(c)(以三羟甲基丙烷三(3-巯基丙酸酯)、烯丙胺为原料,AIBN为引发剂,三乙胺为催化剂,通过thiol-ene点击反应制得)搅拌溶解后,加入2ml吡啶,滴加入12.6g辛二酰氯(b),搅拌混合反应3h。反应结束后,通过减压抽滤脱去溶剂得到固态聚合物样品。得到的聚合物样品具有一定的粘度和弹性,可以作为多层板的夹层胶,应用于防爆建筑。
实施例13
利用大分子有机硼化合物(I)、大分子含硅化合物(II)、大分子化合物(III)、大分子化合物(V)制备具有双重交联网络的动态聚合物,其中第一网络为动态共价交联和普通共价交联,第二网络为动态共价交联和普通共价交联。
Figure PCTCN2017098107-appb-000056
称取3.64g苯硼酸酯改性乙丙橡胶(a)(以低分子量二元乙丙橡胶为原料,利用过氧化二苯甲酰作为交联剂进行反应形成小团簇结构后,再在团簇表面接枝马来酸酐,再加入4-氨基苯硼酸频哪醇酯通过酰胺化反应制得最终产物)加到干燥洁净的烧杯中,倒入40ml的二甲苯溶剂进行加热搅拌,再加入4ml的去离子水,滴加入少量的乙酸,再称取2.48g硅烷改性乙丙橡胶(b)(以低分子量二元乙丙橡胶为原料,利用过氧化二苯甲酰作为交联剂进行反应形成小团簇结构后,再在团簇表面接枝马来酸酐,再加入3-氨丙基甲基二甲氧基硅烷通过酰胺化反应制得最终产物),在搅拌状态下缓慢加入到烧杯中,滴加入少量的三乙胺,加入1.0mgBHT抗氧剂,加热到80℃进行搅拌反应2h,然后加入5.82g聚氧乙烯二胺(d),0.036g对甲苯磺酸继续反应2h得到第一网络聚合物粘稠溶液;在另外一个烧杯中加入40ml的二甲苯溶剂,加入3.12g苯硼酸酯-硅烷改性乙丙橡胶(c)(以低分子量二元乙丙橡胶为原料,利用过氧化二苯甲酰作为交联剂进行反应形成小团簇结构后,再在团簇表面接枝马来酸酐,再加入4-氨基苯硼酸频哪醇酯、3-氨丙基甲基二甲氧基硅烷(二者摩尔比为1:4)通过酰胺化反应制得最终产物),滴加入少量的乙酸水溶液放置30min后,再加入1.5ml三乙胺,加热到60℃反应3h,得到第二网络聚合物粘稠溶液;各取20ml两种聚合物溶液,加入0.6g可膨胀微球发泡剂超声混合1min,将其置于合适的模具中,在80℃真空烘箱中继续反应干燥24h,之后冷却到室温放置30min,从模具中取出样品,利用平板硫化机进行发泡成型,其中,模压温度为140-150℃,模压时间为10-15min,压力为4MPa,最终得到乙丙橡胶泡沫海绵。二元乙丙橡胶海绵具有良好的隔离震动和应力缓冲效果,同时也保持了一定程度的延展性,可将制得的聚合物材料应用于制作家电绝缘制品或汽车减震制品。
实施例14
利用小分子有机硼化合物(I)、小分子含硅化合物(II)、小分子化合物(V)制备具有单一杂化交联网络(含有超分子氢键作用)的动态聚合物。
Figure PCTCN2017098107-appb-000057
称取20ml对氨基苯酚三缩水甘油环氧树脂(a)加入到三口烧瓶中,升温到60℃,通氮气保温1h后,加入14.43g氨基硼酸频哪醇酯化合物(b)(以异丙烯基硼酸频哪醇酯与2-氨基乙硫醇通过thiol-ene点击反应制得),10.53g二乙烯三胺基丙基三甲氧基硅烷(c),搅拌反应2h后,加入9.1g三甲基-1,6-六亚甲基二异氰酸酯(d),继续反应2h之后,滴加入少量20%乙酸水溶液,搅拌反应30min后,加入0.5g三乙胺,继续反应2h,然后依次加入3.6g玻璃微纤、0.18g硅烷偶联剂KH550、0.18g十二烷基苯磺酸钠,搅拌10min后,再加入0.09g的皂土,混合均匀继续在搅拌状态下进行交联反应。在反应的过程中,液体的粘度不断上升, 当粘度上升到一定阶段时,将黄色粘稠状的聚合物样品浇注到合适的模具中,置于80℃真空烘箱中继续反应4h,之后冷却到室温放置30min,最终得到硬质的环氧树脂固化材料,其表面光滑,具有较大的表面硬度和抗压强度,将其掰断之后,观察到玻璃微纤在基体中分布均匀。在本实施例中,可将聚合物材料用于制作电气开关装置、印制线路底盘、仪表盘电子封装材料的零部件,也可用于各种电子元件和金属零件的固定。
实施例15
利用大分子有机硼化合物(I)、大分子含硅化合物(II)制备具有单一杂化交联网络的动态聚合物。
Figure PCTCN2017098107-appb-000058
在干燥洁净的烧瓶中分别称取12.4g硼酸酯改性的聚丁二烯(a)(以端氨基1,3-聚丁二烯、(溴代甲基)硼酸二异丙酯为原料,通过烃基化反应制得),2.8g表面改性二氧化硅(b)(利用巯甲基甲基二乙氧基硅烷对二氧化硅进行部分表面改性制得),1.6mg BHT抗氧剂,再在其中加入80ml苯溶剂,在50℃条件下通过搅拌混合均匀后,再加入16mg的十二烷基苯磺酸钠,8mg的皂土,加热到70℃继续反应2h,然后加入0.03g的光引发剂DMPA,搅拌30min,得到具有一定粘度的混合液,在搅拌状态下将其置于紫外灯下照射20min,反应完毕后将产物置于合适的模具中在50℃真空烘箱中干燥24h,最终得到分散有二氧化硅的聚丁二烯交联聚合物。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为1.72±0.59MPa,拉伸模量为3.92±0.88MPa,断裂伸长率为468±54%。在本实施例中,可将聚合物材料作为一种吸能减震性垫片用于鞋材或体育用品的制作。
实施例16
利用大分子化合物(III)、大分子含硅化合物(II)制备具有单一杂化交联网络的动态聚合物。
Figure PCTCN2017098107-appb-000059
称取12.5g改性聚苯乙烯(a)(以AIBN为引发剂,利用苯乙烯和4-乙烯基苯硼酸丙二醇酯,苯乙烯乙基三甲氧基硅烷通过自由基共聚制得)加入到干燥洁净的烧杯中,在其中倒入80ml的甲苯溶剂,加热到60℃通过搅拌进行溶解之后,在烧杯中加入3.2g表面带有硅羟基的玻璃微纤(b),再加入8.8mg硅烷偶联剂KH550、8.8mg的十二烷基苯磺酸钠,继续搅拌30min后,加入5.8mg的皂土,加热到80℃反应1h之后,加入少量20%乙酸水溶液继续反应3h,之后将混合液置于合适的模具中在50℃真空烘箱中干燥24h,最终得到分散有玻璃微纤的硬质块状聚合物固体,其具有较高的表面硬度和良好的力学强度,质地硬,用锤子将其敲击破碎之后,观察发现基体中的玻璃微纤与基体结合紧密。将破碎料放入模具中加热到 180℃,在5MPa压力下模压成型5min,将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为10mm/min,测得样品拉伸强度为12.23±2.49MPa,拉伸模量为33.74±5.65MPa,可将制得的聚合物材料作为高抗冲设备仪表零部件、装饰性板材使用。
实施例17
利用大分子有机硼化合物(I)、大分子含硅化合物(II)、小分子化合物(V)制备具有单一杂化交联网络的动态聚合物。
Figure PCTCN2017098107-appb-000060
在干燥洁净的烧瓶中加入120ml氯仿溶剂,通氮气除水除氧1h,然后加入14.5g苯硼酸改性聚碳酸酯(a)(从橙皮中提取苎烯氧化物,将其与二氧化碳在β-二亚胺锌的催化作用下发生聚合反应,得到聚碳酸酯PLimC,再将其与[4-(巯基甲基)苯基]硼酸新戊二醇酯通过thiol-ene点击反应制得),13g硅烷改性聚碳酸酯(b)(从橙皮中提取苎烯氧化物,将其与二氧化碳在β-二亚胺锌的催化作用下发生聚合反应,得到聚碳酸酯PLimC,再将其与γ-巯丙基甲基二甲氧基硅烷通过thiol-ene点击反应制得),加热到60℃搅拌溶解后,再加入4mg BHT抗氧剂,1.8g 1,2-双(2-巯基乙氧基)乙烷(c),0.06gAIBN,1.35g三乙胺,在氮气保护条件下反应2h,然后滴加入少量的乙酸水溶液,继续反应3h,之后将混合液置于合适的模具中在50℃真空烘箱中干燥24h,最终得到透明硬质块状聚合物固体,将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为10mm/min,测得样品拉伸强度为17.84±4.05MPa,拉伸模量为43.55±9.36MPa,利用其所具有的表面硬度和高强度,可将其制成耐冲击防护罩或高抗冲电气仪表零件使用。
实施例18
利用大分子有机硼化合物(I)、大分子含硅化合物(II)、小分子化合物(V)制备具有单一杂化交联网络的动态聚合物。
Figure PCTCN2017098107-appb-000061
取一定量硼酸-氨基改性聚降冰片烯(a)(以乙烯基硼酸、环戊二烯为原料,通过Diels-Alder反应制得硼酸改性的降冰片烯;以乙烯胺、环戊二烯为原料,通过Diels-Alder反应制得氨基改性的降冰片烯;将硼酸改性的降冰片烯、氨基改性的降冰片烯与降冰片烯以茂金属催化剂/甲基铝氧烷为催化体系,通过加成聚合反应制得)加热溶解于邻二氯苯溶剂中配制成0.4mol/L的溶液,从中取50ml加入到干燥洁净的烧瓶中,滴加入少量的去离子水和乙酸搅拌均匀待用。取一定量硅烷-氨基改性聚降冰片烯(b)(以甲基乙烯基二乙氧基硅烷、环戊二烯为原料,通过Diels-Alder反应制得硅烷改性的降冰片烯;以乙烯胺、环戊二烯为原料,通过Diels-Alder 反应制得氨基改性的降冰片烯;将硅烷改性的降冰片烯、氨基改性的降冰片烯与降冰片烯以茂金属催化剂/甲基铝氧烷为催化体系,通过加成聚合反应制得)加热溶解于邻二氯苯溶剂中配制成0.4mol/L的溶液,从中取50ml缓慢加入到之前配置好的硼酸-氨基改性聚降冰片烯混合溶液中,在整个加入过程中,溶液处于80℃水浴加热条件,并通过不断搅拌使混合液混合均匀。溶液添加完成后,继续搅拌30min,然后加入4ml三乙胺,在80℃条件下继续反应2h,然后加入2.6g二环氧甘油醚(c),继续反应30min后,再加入3.78g 3-异氰酸酯基丙基二甲氧基甲基硅烷(d),继续反应4h,减压抽滤得到白色的固体聚合物样品。将聚合物样品放入模具中加热加压成型,可得到具有形状记忆特性的聚合物片材,可将其用作可携带用容器、营帐用品,在不用时进行折叠,使用时可复原。
实施例19
利用大分子化合物(V)、大分子有机硼化合物(I)、大分子含硅化合物(II)制备具有双重交联网络(含有超分子氢键作用)的动态聚合物,其中第一网络为普通共价交联,第二网络为动态共价交联和普通共价交联。
Figure PCTCN2017098107-appb-000062
称取20g缩合型单组份室温硫化硅橡胶(a)(以α,ω-二羟基聚二甲基硅氧烷为基体,配有正硅酸乙酯,有机锡,白炭黑等添加剂)加入到小型密炼机中加热混炼30min后,加入20g苯硼酸改性硅橡胶(b)(以甲基乙烯基硅橡胶、4-巯基苯硼酸为原料,以DMPA作为光引发剂,在紫外光照射条件下,通过硫醇-烯烃click加成反应制得)、20g硅醇改性硅橡胶(c)(以甲基乙烯基硅橡胶、γ-巯丙基甲基二甲氧基硅烷为原料,以DMPA作为光引发剂,在紫外光照射条件下,通过硫醇-烯烃click加成反应制得中间产物后,再水解得到最终产物),15g白炭黑、15g钛白粉、2.6g三氧化二铁、0.05g硅油继续混炼30min,使添加剂与胶料充分混合均匀后,将胶料取出,在120℃条件下热处理1h。将热处理后的混炼胶进行返炼,加入2.5g交联剂(d)(以γ-巯丙基甲基二甲氧基硅烷为原料,将其在60℃条件下水解后,加热到100℃反应4h得到缩合产物,然后利用马来酰亚胺改性制得)、0.01g抗氧剂168、0.02g抗氧剂1010、0.05g光引发剂DMPA继续混炼20min。之后取出胶料,置于合适的模具中,在80℃真空烘箱中放置4h,然后在10MPa压力下成型,并在常温常压下将其利用紫外光照射10min,得到紫外光固化的硅橡胶基聚合物材料。利用模具制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为6.48±1.37MPa,拉伸模量为11.31±2.75MPa,断裂伸长率为713±201%。聚合物材料具有一定的强度和表面弹性,并可在应力冲击下实现粘弹性转变。利用其所具有的功能特性,可将其制作成硅橡胶阻尼减震片应用于电子电气、医疗器械、汽车工业等领域。
实施例20
利用大分子有机硼化合物(I)、大分子含硅化合物(II)、大分子化合物(V)制备具有双重交联网络的动态聚合物,其中第一网络为动态共价交联,第二网络为普通共价交联。
Figure PCTCN2017098107-appb-000063
称取22g苯硼酸接枝改性丁基橡胶(a)(以溴化丁基橡胶、4-巯基苯硼酸为原料,以DMPA作为光引发剂,在紫外光照射条件下,通过硫醇-烯烃click加成反应制得),25g硅烷接枝改性丁基橡胶(b)(以溴化丁基橡胶、巯甲基甲基二乙氧基硅烷为原料,以DMPA作为光引发剂,在紫外光照射条件下,通过硫醇-烯烃click加成反应制得)加入到小型密炼机中混炼20min后,取出混炼后的物料进行冷却,置于双辊机中压制成薄片,在室温下进行冷却,裁片,浸于90℃水浴中进行交联,然后置于80℃真空烘箱中放置6h进行进一步的反应和干燥,得第一网络聚合物。称取2.4g改性聚倍半硅氧烷(c)(以巯丙基三乙氧基硅烷为原料,三氯化铁、HCl为催化剂,水解缩合得巯基改性的聚倍半硅氧烷,再利用乙烯基环丙烷部分封端制得),18.8g亚乙烯基端基聚丙烯(d)(以丙烯为原料,利用Et(Ind)2ZrCl2/MAO催化体系催化聚合制得),0.02g抗氧剂168,0.04g抗氧剂1010,0.02g光引发剂DMPA,20g第一网络聚合物加入到小型密炼机中混炼20min后,加入5g白炭黑、6g钛白粉、0.05g硬脂酸钡、0.15g硬脂酸继续混炼20min。取出混炼后的物料进行冷却,置于双辊机中压制成薄片,在室温下进行冷却,裁片。之后取出胶料,置于合适的模具中,在常温常压下将其利用紫外光照射10min,再将制得的聚合物薄片取出,得到橡胶态的动态聚合物材料。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为3.87±0.86MPa,拉伸模量为5.31±1.05MPa,断裂伸长率为789±123%。此聚合物材料在常态下可以保持弹性,并在受到冲击时表现出临时刚性,而在冲击之后,又变回正常的弹性状态,利用样品所具有的应力响应特性,可将其制作成橡胶基压敏垫使用。
实施例21
利用小分子有机硼化合物(I)、大分子含硅化合物(II)、大分子化合物(V)、小分子化合物(V)制备具有单一杂化交联网络的动态聚合物。
Figure PCTCN2017098107-appb-000064
取16g硼酸化合物(a)(以AIBN为引发剂、三乙胺为催化剂,利用4-戊烯基硼酸频哪醇酯与1,6-己二硫醇通过thiol-ene点击反应制得)、65g硅烷接枝聚乙烯(b)(以BPO为引发剂,将甲基乙烯基二乙氧基硅烷与低密度聚乙烯进行接枝反应制得)、35g低密度聚乙烯(c)、10g十溴二苯乙烷、2g三氧化二锑、1g聚四氟乙烯抗滴落剂、1.0g过氧化二异丙苯(d)、1g硬脂酸、0.1g抗氧剂168、0.2g抗氧剂1010、0.2g二月桂酸二正丁基锡、0.5g二甲基硅油混合均匀后,加入到小型挤出机中进行挤出共混,挤出温度为110℃。得到的挤出样条进行造粒之后,将粒料放置于80℃的真空烘箱中放置4h进行预反应,然后再放置于平板硫化机上在不加压的状态下预热10min,然后升温至150℃,加压15MPa,模压15min使聚合物进行交联反应,而后将制得的样片置于90℃水中进行进一步交联,然后取出,置于模具中,在120℃氮气保护条件下放置4-6h进行干燥,最终得到具有阻燃性能的聚乙烯基交联聚合物材料。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为12.73±2.85MPa,拉伸模量为31.59±5.21MPa,断裂 伸长率为313±64%。聚合物材料除了具有良好的力学强度以及优良的阻燃性外,还具有一定的可塑性。在本实施例中,可将聚合物材料制成阻燃板材或电缆材料投入实际生产应用。
实施例22
利用大分子有机硼化合物(I)、大分子含硅化合物(II)、大分子化合物(V)、小分子化合物(V)制备具有单一杂化交联网络的动态聚合物。
Figure PCTCN2017098107-appb-000065
取35g硼酸酯接枝改性聚氯乙烯(a)(将1-氨基乙基硼酸频哪醇酯与聚氯乙烯通过接枝反应制得)、35g硅烷接枝改性聚氯乙烯(b)(将3-氨丙基甲基二甲氧基硅烷与聚氯乙烯通过接枝反应制得),30g的聚氯乙烯(c)、5g三甲基己二胺(d)、10g邻苯二甲酸二辛脂、2g硬脂酸、2g三盐基碱式硫酸铅、0.5g二月桂酸二正丁基锡、0.1g抗氧剂168、0.2g抗氧剂1010、0.5g二甲基硅油混合均匀后,加入到小型密炼机中进行混炼,混炼温度为110℃,混炼时间为15min。将混炼后的物料取出冷却,置于150℃的双辊机中压制成薄片,在室温下进行冷却,裁片。取适量混炼样片置于合适的模具中,放置于平板硫化机上在160℃预热10min,然后加压至10MPa,保压10min,制得聚合物薄片。将聚合物薄片浸于90℃水浴中进行交联4h,然后取出,置于80℃真空烘箱中放置12h进行干燥以及进一步的反应,最终得到交联的聚氯乙烯基聚合物材料。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为14.39±3.12MPa,拉伸模量为23.46±4.72MPa,断裂伸长率为532±148%,聚合物样品表现出了优良的力学性能。不同于传统的交联聚氯乙烯,本交联产品具有良好的可塑性,可根据不同形状的模具成型为不同外观的聚合物产品,同时也体现出了较好的拉伸韧性。在本实施例中,可将聚合物样品制成各类具有功能性的管材管件、板材、异型材应用于建筑建材、家居、电子零部件、包装材料等领域。
实施例23
利用大分子有机硼化合物(I)、大分子含硅化合物(II)、大分子化合物(V)、小分子化合物(V)制备具有单一杂化交联网络(含有超分子氢键作用)的动态聚合物。
Figure PCTCN2017098107-appb-000066
取20g苯硼酸酯改性聚丁二烯(a)(以DMPA作为光引发剂,紫外光为光源,将4-巯基苯硼酸频哪醇酯与端胺基聚丁二烯通过thiol-ene点击反应制得),15g硅烷改性聚丁二烯(b)(以DMPA作为光引发剂,紫外光为光源,将巯甲基甲基二乙氧基硅烷与端胺基聚丁二烯通过thiol-ene点击反应制得),5g酰胺改性聚丁二烯(c)(以DMPA作为光引发剂,紫外光为光源,将N-[(2-巯乙基)氨基甲酰]丙酰胺与端胺基聚丁二烯通过thiol-ene点击反应制得)加热到100℃混合均匀后,加入1.0g蒸馏水,1.2g三乙胺,搅拌反应4h后,加入0.2g二月桂酸二丁基锡,0.8g硅油泡沫稳定剂,高速搅拌混合均匀后,加入3.67g三苯基甲烷三异氰酸酯(d) 迅速混合,并高速搅拌30s,当混合物发白冒泡时,迅速将其倒入合适的模具中,置于80℃条件下进行成型发泡12h,使得反应聚合完全,最终可得到硬质发泡的聚氨酯材料。利用偏光显微镜对聚合物样品的泡孔断面进行观察,可以看到泡孔大小分布较为均匀,平均泡孔孔径较小,只存在少量的大泡孔。将其制成20.0×20.0×20.0mm尺寸的块状样品,利用万能试验机进行压缩性能测试,压缩速率为2mm/min,测得样品压缩强度为0.78±0.12MPa。得到的硬质聚氨酯泡沫材料具有优异的绝热保温性能,并能够承受一定的载荷而不发生明显变形,还具有密度小、比强度高、尺寸稳定性好等诸多优点,可将其应用于冰箱、冷柜和管道等保温领域,也可作为建筑保温材料进行使用。
实施例24
利用小分子有机硼化合物(I)、大分子含硅化合物(II)、大分子化合物(V)制备具有双重交联网络(含有超分子氢键作用)的动态聚合物,其中第一网络为动态共价交联,第二网络为普通共价交联。
Figure PCTCN2017098107-appb-000067
取5g有机硼化合物(a)(以4-羟基苯硼酸频哪醇酯、4,4’-二苯基甲烷二异氰酸酯为原料反应制得)加入到干燥洁净的烧瓶中,加入200ml THF溶剂,加热到60℃进行搅拌溶解,然后滴加入少量的20%乙酸水溶液,加热到60℃,在搅拌状态下缓慢加入30g的硅烷改性聚环氧丙烷三醇(b)(以3-氨丙基三甲氧基硅烷、分子量约为500的环氧丙烷三醇、4,4’-二苯基甲烷二异氰酸酯为原料反应制得)搅拌混合30min后,加入2ml三乙胺,在80℃氮气保护条件下继续搅拌反应5h得到第一网络,而后加热到100℃抽真空除水1h。反应完成后,降温到60℃,加入20g聚醚胺(c)(分子量约为50,000),4.2g微球发泡剂,0.04g二乙醇胺,0.28g辛酸亚锡,2g膨胀石墨,2g聚磷酸铵,快速搅拌30s混合均匀后,加入16g多亚甲基多苯基多异氰酸酯(d)(异氰酸酯含量约为30%),继续在氮气气氛中搅拌反应2h得到第二网络,将反应物倒入到合适的模具中,置于60℃真空烘箱中继续反应12h,之后冷却到室温放置30min,利用平板硫化机进行发泡成型,其中,模压温度为140-150℃,模压时间为10-15min,压力为10MPa,最终得到具有阻燃效果的硬质聚氨酯发泡材料。在本实施例中,利用交联聚合物样品所具有的高强度、阻燃性、隔热性,可将其应用于建筑物外墙保温、屋面防水保温一体化、冷库保温隔热、管道保温材料、建筑板材。
实施例25
利用大分子有机硼化合物(I)、大分子含硅化合物(II),小分子化合物(V)制备具有 单一杂化交联网络(含有超分子氢键作用)的动态聚合物。
Figure PCTCN2017098107-appb-000068
取30g苯硼酸改性苯乙烯-马来酸酐共聚物(a)(以对甲苯磺酸为催化剂,将4-氨基苯硼酸与苯乙烯-马来酸酐共聚物反应制得),28g硅烷改性苯乙烯-马来酸酐共聚物(b)(以对甲苯磺酸为催化剂,将3-氨丙基甲基二甲氧基硅烷与苯乙烯-马来酸酐共聚物反应制得),3g 1,8-辛二胺(c),0.18g对甲苯磺酸,1.74g二月桂酸二正丁基锡,5.8g邻苯二甲酸二辛酯,12g发泡剂F141b,0.24g硬脂酸,0.06g抗氧剂168,0.12g抗氧剂1010混合均匀后,加入到小型密炼机中进行密炼共混,并控制混合温度在40℃以下。混炼完毕后,将样品取出,装入压缩模具中,模具闭合进行加压加热,模压温度为100~110℃,模压时间为10-15min,压力为10MPa,然后将脱模后的预发泡坯料放入温度在95℃以上的热水中,水煮4h,然后取出,于80℃真空烘箱中放置6h进行进一步的反应和干燥,最终得到硬质的聚苯乙烯基发泡聚合物样品,其具有良好抗蠕变性和热稳定性,将其制成20.0×20.0×20.0mm尺寸的块状样品,利用万能试验机进行压缩性能测试,压缩速率为2mm/min,测得样品压缩强度为0.62±0.14MPa。利用聚合物泡沫材料所具有的高强度、质量轻、极佳的保温绝热性能和高吸收能量能力,可作为建筑物的屋面和墙体,起到隔音、挡水蒸汽、密封和保温隔热阻等作用。
实施例26
利用大分子有机硼化合物(I)、大分子含硅化合物(II)、大分子化合物(V)、小分子化合物(V)制备具有单一杂化交联网络的动态聚合物。
Figure PCTCN2017098107-appb-000069
取48g苯硼酸酯接枝改性乙烯-醋酸乙烯共聚物(a)(以乙烯-乙烯醇-醋酸乙烯共聚物为原料,将其与丙烯酰氯反应得侧链含有双键的共聚物,再将其与2-巯基苯硼酸频哪醇酯通过thiol-ene点击反应制得最终产物)、42g硅烷接枝改性乙烯-醋酸乙烯共聚物(b)(以乙烯-乙烯醇-醋酸乙烯共聚物为原料,将其与丙烯酰氯反应得侧链含有双键的共聚物,再将其与巯甲基甲基二乙氧基硅烷通过thiol-ene点击反应制得最终产物)、10g乙烯-醋酸乙烯共聚物(c)、10gAC发泡剂、2g氧化锌、0.8g过氧化二异丙苯(d)、10g碳酸钙、0.4g硬脂酸、0.1g抗氧剂168、0.2g抗氧剂1010、0.4g二月桂酸二正丁基锡混合均匀后,加入到小型密炼机中进行密炼共混,其中,共混温度为100℃,共混时间为10min,混炼完毕后,将样品取出,放入双辊机中压制成薄片,在室温下进行冷却,裁片将制得的聚合物薄片浸于90℃水浴进行预交联,然后取出,于80℃真空烘箱中放置6h进行进一步的反应和干燥,之后冷却到室温放置30min,从模具中取出混炼样片,将其剪碎后取适量置于合适的模具中,利用平板硫化机进行发泡成型,其中,模压温度为140-150℃,模压时间为10-15min,压力为10MPa,最终得 到软质的发泡聚合物样品,其具有良好的柔软度和回弹性,对其进行按压之后能够迅速回弹,并可在一定范围内进行拉伸。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为8.52±0.97MPa,拉伸模量为13.07±3.72MPa,断裂伸长率为421±112%。在本实施例中,利用制得的材料所具有的质量轻,并具备缓冲、吸音、吸震、保温特性,可将其用于运动器材、床垫、儿童地板、高档运动鞋等的制造。
实施例27
利用大分子有机硼化合物(I)、小分子含硅化合物(II)、小分子化合物(V)制备具有单一杂化交联网络(含有超分子氢键作用)的动态聚合物。
Figure PCTCN2017098107-appb-000070
称取25g的硼酸接枝改性聚丙烯(a)(以过氧化二异丙苯为引发剂,用马来酸酐接枝改性低分子量聚丙烯;然后以对甲苯磺酸为催化剂,用1-氨基乙基硼酸接枝反应得最终产物),20mg的BHT抗氧剂,加入到干燥洁净的三口烧瓶中,在氮气保护条件下加热到160℃进行搅拌熔融,然后滴加入少量20%乙酸水溶液,加入2.3g的含硅化合物(b)(利用甲基烯丙基二氯硅烷、1,10-癸二硫醇为原料,以AIBN为引发剂、三乙胺为催化剂,通过thiol-ene点击反应制得),在氮气保护条件下继续反应2h,然后加入1.1g 1,6-己二胺(c),0.05g对甲苯磺酸,1.0g增塑剂DOP,0.25g二甲基硅油继续反应1h。之后将其浇注到合适的模具中,在120℃条件下利用模压机进行模压成型,成型的样品置于80℃真空烘箱中继续反应4-6h,之后冷却到室温放置30min,最终得到块状的聚丙烯基聚合物样品。聚合物样品表面具有光泽度,具有一定的强度和可压缩性,能在一定范围内进行拉伸。将其制成80.0×10.0×(2.0~4.0)mm尺寸的哑铃型样条,利用拉伸试验机进行拉伸测试,拉伸速率为50mm/min,测得样品拉伸强度为12.02±2.98MPa,拉伸模量为32.72±3.42MPa,断裂伸长率为658±146%。本实施例中的聚合物材料可以作为应力承载材料在精细模具中进行使用,起到承载应力作用的同时,又具有一定的可变形性,起到缓冲作用。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种具有杂化交联网络的动态聚合物,其特征在于,其包含有普通共价交联和动态共价交联,其中,所述的普通共价交联由普通共价键实现,所述的动态共价交联由有机硼酸硅酯键实现,并且所述的普通共价交联在至少一个交联网络中达到普通共价交联的凝胶点以上;
    其中,所述的有机硼酸硅酯键,其具有如下结构:
    Figure PCTCN2017098107-appb-100001
    其中,硼原子和硅原子之间至少形成一个硼酸硅酯键,且结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。
  2. 根据权利要求1所述的具有杂化交联网络的动态聚合物,其特征在于,所述的动态聚合物还包含有超分子氢键作用。
  3. 根据权利要求2所述的具有杂化交联网络的动态聚合物,其特征在于,形成所述的超分子氢键作用的氢键基团,其含有以下结构成分:
    Figure PCTCN2017098107-appb-100002
  4. 根据权利要求1所述的具有杂化交联网络的动态聚合物,其特征在于,所述的动态聚合物仅含有一个交联网络,并且此交联网络同时含有普通共价交联和有机硼酸硅酯键交联,其中,普通共价交联的交联度达到凝胶点以上。
  5. 根据权利要求1所述的具有杂化交联网络的动态聚合物,其特征在于,所述的动态聚合物含有两个交联网络,其中一个交联网络仅含有普通共价交联且普通共价交联的交联度达到凝胶点以上,另外一个交联网络仅含有有机硼酸硅酯键交联。
  6. 根据权利要求1所述的具有杂化交联网络的动态聚合物,其特征在于,所述的动态聚合物含有两个交联网络,其中一个交联网络同时含有普通共价交联和有机硼酸硅酯键交联且普通共价交联的交联度达到凝胶点以上,另外一个交联网络仅含有普通共价交联且普通共价交联的交联度达到凝胶点以上。
  7. 根据权利要求1所述的具有杂化交联网络的动态聚合物,其特征在于,所述的动态聚合物含有两个交联网络,其中一个交联网络同时含有普通共价交联和有机硼酸硅酯键交联且普通共价交联的交联度达到凝胶点以上,另外一个交联网络亦同时含有普通共价交联和有机硼酸硅酯键交联且普通共价交联的交联度达到凝胶点以上,但两个交联网络不同。
  8. 根据权利要求1所述的具有杂化交联网络的动态聚合物,其特征在于,其至少利用以下化合物进行配方组合反应获得:
    有机硼化合物(I),其含有有机硼酸基、或者有机硼酸酯基、或者有机硼酸基和有机硼 酸酯基的组合;含硅化合物(II),其含有硅羟基、或者硅羟基前驱体、或者硅羟基和硅羟基前驱体的组合;化合物(III),其同时含有有机硼酸基、或者有机硼酸酯基、或者有机硼酸基和有机硼酸酯基的组合以及硅羟基、或者硅羟基前驱体、或者硅羟基和硅羟基前驱体的组合;化合物(IV),其含有有机硼酸硅酯键以及其他反应性基团;化合物(V),其不含有有机硼酸基、有机硼酸酯基、硅羟基、硅羟基前驱体以及有机硼酸硅酯键但含有其他反应性基团;其中,有机硼化合物(I)、含硅化合物(II)和化合物(V)不单独作为原料制备所述的动态聚合物;
    其中,所述的有机硼酸基,指的是由硼原子以及与该硼原子相连的一个羟基所组成的结构基元,且其中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
    其中,所述的有机硼酸酯基,指的是由硼原子、与该硼原子相连的一个氧原子和与该氧原子相连的烃基或硅烷基所组成的结构基元,且其中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
    其中,所述的硅羟基,指的是由硅原子以及与该硅原子相连的一个羟基所组成的结构基元;
    其中,所述的硅羟基前驱体,指的是由硅原子以及与该硅原子相连的一个可水解得到羟基的基团所组成的结构基元,其中,可水解得到羟基的基团选自卤素、氰基、氧氰基、硫氰基、烷氧基、氨基、硫酸酯基、硼酸酯基、酰基、酰氧基、酰氨基、酮肟基、醇盐基;
    其中,所述的其他反应性基团,其选自羟基、羧基、羰基、酰基、酰胺基、酰氧基、氨基、醛基、磺酸基、磺酰基、巯基、烯基、炔基、氰基、嗪基、胍基、卤素、异氰酸酯基团、酸酐基团、环氧基团、丙烯酸酯基团、丙烯酰胺基团、马来酰亚胺基团、琥珀酰亚胺酯基团、降冰片烯基团、偶氮基团、叠氮基团、杂环基团、碳自由基、氧自由基。
  9. 根据权利要求8所述的具有杂化交联网络的动态聚合物,其特征在于,所述的有机硼化合物(I),其以如下结构表示:
    Figure PCTCN2017098107-appb-100003
    其中,A为含有有机硼酸基、或者有机硼酸酯基、或者有机硼酸基和有机硼酸酯基的模块;m为模块A的个数,m≥1;L为单个模块A上的取代基团,或者为两个或多个模块A之间的连接基团,其选自以下任一种或任几种结构:分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基;其中,m=1时,L为单 个模块A上的取代基团,其选自分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基中的至少一种;m>1时,L为两个或多个模块A之间的连接基团,其选自单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基中的至少一种;p为基团L的个数,p≥1;
    所述的含硅化合物(II),其以如下结构表示:
    Figure PCTCN2017098107-appb-100004
    其中,G为含有硅羟基、或者硅羟基前驱体、或者硅羟基和硅羟基前驱体的模块;n为模块G的个数,n≥1;J为单个模块G上的取代基团,或者为两个或多个模块G之间的连接基团,其选自以下任一种或任几种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基、单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基、分子量不超过1000Da的二价或多价无机小分子链残基、分子量大于1000Da的二价或多价无机大分子链残基;其中,n=1时,J为单个模块G上的取代基团,其选自氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基中的至少一种;n>1时,J为两个或多个模块G之间的连接基团,其选自单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基、分子量不超过1000Da的二价或多价无机小分子链残基、分子量大于1000Da的二价或多价无机大分子链残基中的至少一种;q为基团J的个数,q≥1;
    所述的化合物(III),其以如下结构表示:
    Figure PCTCN2017098107-appb-100005
    其中,A为含有有机硼酸基、或者有机硼酸酯基、或者有机硼酸基和有机硼酸酯基的模块;x为模块A的个数,x≥1;G为含有硅羟基、或者硅羟基前驱体、或者硅羟基和硅羟基前驱体的模块;y为模块G的个数,y≥1;T为两个或多个A之间、或者两个或多个G之间、或者A与G之间的连接基团,其选自以下任一种或任几种结构:单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基;v为基团T的个数,v≥1;
    所述的化合物(IV),其以如下结构表示:
    Figure PCTCN2017098107-appb-100006
    其中,E为含有有机硼酸硅酯键的模块;u为模块E的个数,u≥1;Y为单个模块E上的取代基团,或者为单个模块E上的取代基团和两个或多个模块E之间的连接基团,且至少一个基团Y与有机硼酸硅酯键的硼原子相连,至少一个基团Y与有机硼酸硅酯键的硅原子相连;其中,在至少一个基团Y中含有至少一个其他反应性基团,并且在所有基团Y中含有的其他反应性基团数大于等于2;所述的基团Y,其选自以下任一种或任几种结构:分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基;其中,u=1时,Y为单个模块E上的取代基团,其选自分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基中的至少一种;u>1时,Y为单个模块E上的取代基团和两个或多个模块E之间的连接基团,其选自分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基中的至少一种以及单键、杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基中的至少一种;r为基团Y的个数,r≥2;
    其中,所述的含有有机硼酸基的模块A,其选自以下任一种或任几种结构:
    Figure PCTCN2017098107-appb-100007
    其中,K1为与硼原子直接相连的基团,其选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;其中,A4中的环状结构为含有至少一个有机硼酸基的非芳香性或芳香性硼杂环基团;A4中的环状结构的成环原子各自独立地为碳原子、硼原子或其他杂原子,且至少一个成环原子为硼原子并构成有机硼酸基,且至少一个成环原子与基团L或基团T相连;所述各种结构中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
    所述的含有有机硼酸酯基的模块A,其选自以下任一种或任几种结构:
    Figure PCTCN2017098107-appb-100008
    其中,K2为与硼原子直接相连的基团,其选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;R1、R2、R3、R4、R6为与氧原子直接相连的一价有机基团或一价有机硅基团,其通过碳原子或硅原子与氧 原子直接相连,其选自以下任一种结构:分子量不超过1000Da的小分子烃基、分子量不超过1000Da的小分子硅烷基、分子量大于1000Da的聚合物链残基;R5为与两个氧原子直接相连的二价有机基团或二价有机硅基团,其通过碳原子或硅原子与氧原子直接相连,其选自以下任一种结构:分子量不超过1000Da的二价小分子烃基、分子量不超过1000Da的二价小分子硅烷基、分子量大于1000Da的二价聚合物链残基;其中,B5中的环状结构为含有至少一个有机硼酸酯基的非芳香性或芳香性硼杂环基团;B5中的环状结构的成环原子各自独立地为碳原子、硼原子或其他杂原子,且至少一个成环原子为硼原子并构成有机硼酸酯基,且至少一个成环原子与基团L或基团T相连;所述各种结构中的硼原子至少与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
    所述的含有硅羟基的模块G,其选自以下任一种或任几种结构:
    Figure PCTCN2017098107-appb-100009
    其中,K3、K4、K5、K6、K7为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基;其中,C7、C8、C9中的环状结构为含有至少一个硅羟基的非芳香性或芳香性硅杂环基团;C7、C8、C9中的环状结构的成环原子各自独立地为碳原子、硅原子或其他杂原子,且至少一个成环原子为硅原子并构成硅羟基,且至少一个成环原子与基团J或基团T相连;
    所述的含有硅羟基前驱体的模块G,其选自以下任一种或任几种结构:
    Figure PCTCN2017098107-appb-100010
    其中,K8、K9、K10、K11、K12为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基;X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14为与硅原子直接相连的可水解基团,其选自卤素、氰基、氧氰基、硫氰基、烷氧基、氨基、硫酸酯基、硼酸酯基、酰基、酰氧基、酰氨基、酮肟基、醇盐基;其中,D7、D8、D9中的环状结构为含有至少一个硅羟基前驱体的非芳香性或芳香性硅杂环基团;D7、D8、D9中的环状结构的成环原子各自独立地为碳原子、硅原子或其他杂原子,且至少一个成环原子为硅原子并构成硅羟基前驱体,且至少一个成环原子与基团J或基团T相连;
    所述的含有有机硼酸硅酯键的模块E,其选自以下任一种或任几种结构:
    Figure PCTCN2017098107-appb-100011
    其中,K13、K16、K20为与硼原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基;K14、K15、K17、K18、K19、K21为与硅原子直接相连的基团,其各自独立地选自以下任一种结构:氢原子、杂原子基团、分子量不超过1000Da的小分子烃基、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基。
  10. 根据权利要求9所述的具有杂化交联网络的动态聚合物,其特征在于,所述的杂原子基团,其选自以下任一种基团:卤素、羟基、硫醇、羧基、硝基、伯胺基、硅基、磷基、三氮唑、异噁唑、酰胺基、酰亚胺基、硫代酰胺基、烯胺基、碳酸酯基、硫代碳酸酯基、二硫代碳酸酯基、三硫代碳酸酯基、氨基甲酸酯基、硫代氨基甲酸酯基、二硫代氨基甲酸酯基、原酸酯基、磷酸酯基、亚磷酸酯基、次磷酸酯基、膦酸酯基、磷酰基、亚磷酰基、次磷酰基、硫代磷酰基、硫代亚磷酰基、硫代次磷酰基、磷硅烷酯基、硅烷酯基、碳酰胺、硫代酰胺、磷酰胺、亚磷酰胺、焦磷酰胺、环磷酰胺、异环磷酰胺、硫代磷酰胺、原硅酸基、偏硅酸基、次硅酸基、乌头酰基、肽键、偶氮基、异脲基、异硫脲基、脲基甲酸酯基、硫脲基甲酸酯基、胍基、脒基、氨基胍基、氨基脒基、亚氨酸基、亚氨酸硫酯基、硝酰基、亚硝酰基、磺酸基、磺酸酯基、亚磺酸酯基、磺酰胺基、亚磺酰胺基、磺酰脲基、马来酰亚胺;
    所述的分子量不超过1000Da的小分子烃基,其选自以下组中任一种、任一种的不饱和 形式、任一种的被取代形式、任一种的被杂化形式及其组合:C1-71烷基、环C3-71烷基、苯基、苄基、芳烃基;
    所述的分子量大于1000Da的聚合物链残基,其选自均聚或共聚形式的碳链聚合物残基、杂链聚合物残基、元素有机聚合物残基;
    所述的分子量不超过1000Da的小分子硅烷基,其选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式、任一种的被杂化形式及其组合:硅碳烷链残基、硅氧烷链残基、硅硫烷链残基、硅氮烷链残基;
    所述的分子量不超过1000Da的无机小分子链残基,其选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式、任一种的被杂化形式及其组合:链状硫残基、硅烷链残基、硅氧化合物链残基、硫硅化合物链残基、硫氮化合物链残基、磷腈化合物链残基、磷氧化合物链残基、硼烷链残基、硼氧化合物链残基;
    所述的分子量大于1000Da的无机大分子链残基,其选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式、任一种的被杂化形式及其组合:链状硫聚合物残基、聚硅烷链残基、聚硅氧烷链残基、聚硫硅链残基、聚硫氮链残基、聚磷酸链残基、聚磷腈链残基、聚氯代磷腈链残基、聚硼烷链残基、聚硼氧烷链残基;或者选自以下组中任一种带有残基的无机大分子或任一种经过表面改性的带有残基的无机大分子:沸石型分子筛、磷酸铝分子筛、磷酸锆分子筛、杂多酸盐分子筛、金刚石、石墨、石墨烯、氧化石墨烯、碳纳米管、富勒烯、碳纤维、白磷、红磷、五氧化磷、硫化钼、二氧化硅、二硫化硅、氮化硅、碳化硅、滑石、高岭土、蒙脱石、云母、石棉、长石、水泥、玻璃、石英、陶瓷、氧化硼、氮化硫、硅化钙、硅酸盐、玻璃纤维、氧化铍、氧化镁、氧化汞、硼氢化物、氮化硼、碳化硼、氮化铝、水铝石、水铝矿、刚玉、二氧化钛;
    所述的单键,其选自硼硼单键、碳碳单键、碳氮单键、氮氮单键、硼碳单键、硼氮单键、硼硅单键、硅硅单键、硅碳单键、硅氮单键;
    所述的杂原子连接基,其选自以下任一种或任几种的组合:醚基、硫基、双硫基、硫醚基、二价叔胺基、三价叔胺基、二价硅基、三价硅基、四价硅基、二价磷基、三价磷基、二价硼基、三价硼基。
  11. 根据权利要求8所述的具有杂化交联网络的动态聚合物,其特征在于,构成动态聚合物的配方组分还包括以下任一种或任几种可添加物:其他聚合物、助剂、填料;
    其中,可添加的其他聚合物选自以下任一种或任几种:天然高分子化合物、合成树脂、合成橡胶、合成纤维;
    其中,可添加的助剂选自以下任一种或任几种:催化剂、引发剂、抗氧剂、光稳定剂、 热稳定剂、交联剂和助交联剂、固化剂、扩链剂、增韧剂、偶联剂、润滑剂、脱模剂、增塑剂、发泡剂、动态调节剂、抗静电剂、乳化剂、分散剂、着色剂、荧光增白剂、消光剂、阻燃剂、成核剂、流变剂、增稠剂、流平剂;
    其中,可添加的填料选自以下任一种或任几种:无机非金属填料、金属填料、有机填料。
  12. 根据权利要求1所述的具有杂化交联网络的动态聚合物,其特征在于,所述的动态聚合物的交联网络骨架链由丙烯酸酯类聚合物、丙烯酰胺类聚合物、聚醚类聚合物、聚酯类聚合物、聚酰胺类聚合物、聚氨酯类聚合物、聚烯烃类聚合物中的至少一种链段所构成。
  13. 根据权利要求1所述的具有杂化交联网络的动态聚合物,其特征在于,其具有以下任一种性状:乳液、凝胶、普通固体、泡沫。
  14. 一种具有杂化交联网络的动态聚合物,其特征在于,其包含有普通共价交联和动态共价交联,其中,所述的普通共价交联由普通共价键实现,所述的动态共价交联由有机硼酸硅酯键实现,并且所述的普通共价交联在至少一个交联网络中达到普通共价交联的凝胶点以上;其中含有由骨架氢键基团、侧氢键基团中至少一种参与形成的氢键作用;
    其中,所述的有机硼酸硅酯键,其具有如下结构:
    Figure PCTCN2017098107-appb-100012
    其中,硼原子和硅原子之间至少形成一个硼酸硅酯键,且结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
    其中,所述骨架氢键基团、侧氢键基团,其含有以下结构成分:
    Figure PCTCN2017098107-appb-100013
  15. 根据权利要求1到8、12、13、14中任一项所述的具有杂化交联网络的动态聚合物,其特征在于,其应用于以下制品:减震器、缓冲材料、抗冲击防护材料、运动防护制品、军警防护制品、自修复性涂层、自修复性板材、自修复性粘结剂、防弹玻璃夹层胶、韧性材料、形状记忆材料、密封件、玩具。
PCT/CN2017/098107 2016-09-09 2017-08-18 具有杂化交联网络的动态聚合物及其应用 WO2018045866A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610812706.7A CN107805311B (zh) 2016-09-09 2016-09-09 一种具有杂化交联网络的动态聚合物及其应用
CN201610812706.7 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018045866A1 true WO2018045866A1 (zh) 2018-03-15

Family

ID=61562679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098107 WO2018045866A1 (zh) 2016-09-09 2017-08-18 具有杂化交联网络的动态聚合物及其应用

Country Status (2)

Country Link
CN (1) CN107805311B (zh)
WO (1) WO2018045866A1 (zh)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109135187A (zh) * 2018-07-14 2019-01-04 桂林理工大学 一种杂化粒子增韧环氧树脂复合材料的制备方法
WO2019210098A1 (en) * 2018-04-25 2019-10-31 Northwestern University Urethane exchange catalysts and methods for reprocessing cross-linked polyurethanes
CN110435185A (zh) * 2019-08-20 2019-11-12 大同新成新材料股份有限公司 一种碳纤维增强热塑性树脂基复合材料制备方法及制备装置
CN111040204A (zh) * 2019-01-01 2020-04-21 翁秋梅 一种力致响应动态聚合物及其应用
CN111162314A (zh) * 2019-12-25 2020-05-15 中国科学院青岛生物能源与过程研究所 一种基于动态化学键的自修复聚合物电解质及其在二次锂电池中的应用
CN111574636A (zh) * 2019-06-12 2020-08-25 郑秀旗 一种顺丁烯二酸淀粉酯、制备方法及其应用
WO2020219663A1 (en) * 2019-04-23 2020-10-29 Northwestern University Urethane exchange catalysts and methods for reprocessing cross-linked polyurethane foams
CN111978740A (zh) * 2020-08-21 2020-11-24 广东工业大学 一种可固相再生硅橡胶及其制备方法和应用
CN112156071A (zh) * 2020-10-09 2021-01-01 天津工业大学 一种响应性两亲性聚合物自组装胶束的制备方法
CN112851248A (zh) * 2021-01-29 2021-05-28 烟台华宝新材料科技有限公司 一种高强度混凝土及其制备方法
US20210189187A1 (en) * 2019-12-11 2021-06-24 Ut-Battelle, Llc Self-healing adhesive composition
CN113109265A (zh) * 2021-03-18 2021-07-13 温州医科大学 一种细菌光热检测试剂、试剂盒及检测方法
CN113456877A (zh) * 2021-07-09 2021-10-01 广西德之然生物科技有限公司 有机硅泡沫医用敷料及其制备方法与应用
CN113526494A (zh) * 2021-06-28 2021-10-22 合肥国轩高科动力能源有限公司 一种制备石墨烯水凝胶的方法
CN113563659A (zh) * 2021-08-24 2021-10-29 胜利油田胜机石油装备有限公司 聚乙烯复合材料及其在制备耐高温内衬油管中的应用
CN113908125A (zh) * 2021-10-09 2022-01-11 天津工业大学 一种具有ros响应的两亲性前药聚合物自组装胶束的制备方法
CN113979641A (zh) * 2021-10-15 2022-01-28 广州市儒兴科技开发有限公司 玻璃粉及其制备方法及一种应用窗口宽的电池银浆
CN114316272A (zh) * 2021-12-16 2022-04-12 湖北兴瑞硅材料有限公司 一种结构控制剂的制备工艺
CN114539786A (zh) * 2022-03-23 2022-05-27 贵州电网有限责任公司 一种耐热增强的自修复聚硼硅氧烷复合材料的制备方法
CN114539785A (zh) * 2022-04-01 2022-05-27 郑州轻工业大学 一种聚氨酯改性的橡胶复合材料、制备方法及其在避雷器复合外套中的应用
CN114773756A (zh) * 2022-05-24 2022-07-22 四川大学 一种热机械稳定超分子弹性体材料及其制备方法
CN114920963A (zh) * 2022-06-21 2022-08-19 湖北工业大学 高性能循环利用的枝化动态交联再生聚乙烯树脂及其制备方法
CN115160584A (zh) * 2022-07-06 2022-10-11 西北工业大学 一种基于阳离子-π与静电作用协同构筑异质孔超分子有机框架及制备方法
CN115360431A (zh) * 2022-08-16 2022-11-18 厦门大学 一种聚丁二烯基高电导率聚合物电解质的制备方法及其应用
CN115676785A (zh) * 2022-09-09 2023-02-03 新纳奇材料科技江苏有限公司 一种氯化磷腈催化剂的制备方法及其在含氢硅油制备中的应用
CN115819983A (zh) * 2022-11-30 2023-03-21 中欧电子材料国际创新中心(合肥)有限公司 一种含八重氢键的交联型硅橡胶及其制备方法
CN115975224A (zh) * 2023-03-16 2023-04-18 四川大学 一种pH/ROS双响应的组织粘附载药水凝胶及其制备方法和应用
CN116143990A (zh) * 2023-03-14 2023-05-23 温州东润新材料科技有限公司 一种有机硅改性的tpu复合材料及其制备方法
CN116515280A (zh) * 2023-04-06 2023-08-01 北京金博轩科技发展有限公司 一种隔氧夜光塑料及其制备方法
CN116875819A (zh) * 2023-09-06 2023-10-13 江西赣锡工贸有限公司 一种基于含锡碱液的高效提锡工艺
CN117125714A (zh) * 2023-10-27 2023-11-28 宁德时代新能源科技股份有限公司 硅基材料及其制备方法、负极极片、电池和用电设备
CN117327233A (zh) * 2023-10-10 2024-01-02 嘉鱼县宇威新材料科技有限公司 一种具有核壳结构的耐寒硅丙增韧剂及其制备方法
CN117586471A (zh) * 2024-01-18 2024-02-23 西南石油大学 一种具有荧光性能的自修复超疏水聚氨酯及其制备方法
CN117603660A (zh) * 2024-01-24 2024-02-27 北京泰派斯特电子技术有限公司 一种超薄耐击穿电压的导热绝缘垫片及其制备方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108677351B (zh) * 2018-05-18 2020-09-25 宁波荣昌祥服饰股份有限公司 一种抗菌抗污衬衫面料
CN109054056B (zh) * 2018-06-14 2021-05-25 中山大学 一种基于可逆共价键的互锁网络交联聚合物及其制备方法和应用
CN108892452A (zh) * 2018-08-21 2018-11-27 龚良军 一种新型保水材料及其制备方法和应用
CN109209498B (zh) * 2018-10-10 2020-05-01 中煤科工集团重庆研究院有限公司 煤矿井下远距离火区封闭方法
CN111040119B (zh) * 2018-10-12 2021-12-24 三门大洋橡塑有限公司 一种自修复型有机硅改性聚氨酯及其制备方法
CN109517240B (zh) * 2018-10-30 2021-01-05 西北工业大学 一种具有动态交联结构的丁腈橡胶的制备方法
CN109137036A (zh) * 2018-11-26 2019-01-04 南京理工大学 一种钛合金表面陶瓷层接枝水凝胶的复合涂层及其制备方法
CN111378158A (zh) * 2019-01-01 2020-07-07 翁秋梅 一种基于可逆自由基型力敏团的力致响应性聚合物
CN111378159A (zh) * 2019-01-01 2020-07-07 翁秋梅 一种基于杂化交联动态聚合物的吸能方法及材料
CN111040202A (zh) * 2019-01-01 2020-04-21 翁秋梅 一种组合杂化动态聚合物及其应用
CN111378163A (zh) * 2019-01-01 2020-07-07 翁秋梅 一种组合杂化动态聚合物及其应用
CN109897512B (zh) * 2019-03-27 2021-03-23 浙江中科应化科技有限公司 一种改性聚脲涂料
CN110330690B (zh) * 2019-07-23 2021-03-09 华侨大学 一种硅氧烷系动态交联剂及其应用
CN110684162B (zh) * 2019-09-04 2020-10-02 中国科学院福建物质结构研究所 一种4d打印树脂及其制备方法与应用
CN110522766B (zh) * 2019-09-30 2021-09-28 新乡医学院 一种负载肿瘤外泌体的凝胶体系及其制备方法和应用
CN110639052B (zh) * 2019-09-30 2021-06-29 新乡医学院 一种促进创面愈合的复合凝胶体系及其制备方法和应用
CN110563974B (zh) * 2019-09-30 2021-09-28 新乡医学院 一种活性氧响应的自崩解水凝胶及其制备方法和应用
CN110703498B (zh) * 2019-10-21 2022-12-27 京东方科技集团股份有限公司 量子点膜及其制备方法、背光源、显示装置
CN111019576B (zh) * 2019-11-22 2021-08-10 南京工程学院 一种芳香族双马来酰亚胺改性液体聚硫橡胶增韧的环氧粘合剂及制备方法
CN110819115B (zh) * 2019-11-25 2021-10-22 中国工程物理研究院总体工程研究所 一种具有高效自修复特性的聚硅氧烷及其制备方法
CN111363369B (zh) * 2020-04-23 2022-03-25 南通市华高新材料科技有限公司 一种光缆填充膏及制备方法
CN112481519B (zh) * 2020-11-10 2021-10-08 河北工业大学 一种高阻尼CuAlMn形状记忆合金的制备方法
CN112351592B (zh) * 2020-11-24 2021-11-30 中国科学技术大学 一种基于液晶高分子薄膜制备柔性电路板的方法
CN112778459A (zh) * 2021-01-11 2021-05-11 江苏宇博塑业有限公司 一种高分子eva卷芯工艺
CN112692391B (zh) * 2021-01-29 2022-04-12 东莞市绿志岛金属有限公司 一种耐高温无铅激光焊锡膏
CN113088112B (zh) * 2021-03-01 2022-04-22 上海无忧树新材料科技有限公司 一种双网络结构的丙烯酸盐喷膜防水材料
CN112876652A (zh) * 2021-03-01 2021-06-01 桂林理工大学 一种松香基环氧类玻璃高分子材料及其制备方法
CN113178660A (zh) * 2021-04-27 2021-07-27 江苏宇博塑业有限公司 一种高分子eppe卷芯工艺
CN113413490B (zh) * 2021-05-14 2022-05-27 哈尔滨医科大学 一种超声响应性复合水凝胶及其制备方法和应用
CN113896998B (zh) * 2021-10-12 2022-09-16 浙江大学 一种基于动态交联改性的聚烯烃热塑性弹性体的制备方法
CN114775918B (zh) * 2022-04-12 2022-10-21 广东安拓普聚合物科技有限公司 一种屋面光伏防水卷材及其制备方法
CN114956794B (zh) * 2022-06-16 2023-01-31 宁夏合元碳素有限公司 一种耐侵蚀岩棉炉衬材料及其制备方法
CN115873246A (zh) * 2022-11-30 2023-03-31 中国科学院兰州化学物理研究所 一种耐高温热固性超分子形状记忆聚酰亚胺及其制备方法
CN116285567B (zh) * 2023-01-16 2023-08-29 浙江大学 一种具有自修复性且增韧型环氧粉末涂料及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107720A1 (en) * 2009-03-30 2012-05-03 Gihane Nasr Self-supporting dynamic polymer membrane, method of preparation, and uses
CN102816438A (zh) * 2011-06-06 2012-12-12 日东电工株式会社 有机硅树脂组合物以及导热片
CN105492501A (zh) * 2013-05-03 2016-04-13 拉姆兰特有限公司 交联的硅氧烷基聚合物组合物
CN105646872A (zh) * 2016-02-26 2016-06-08 翁秋梅 一种动态聚合物材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6767981B1 (en) * 2002-09-26 2004-07-27 The United States Of America As Represented By The Secretary Of The Navy Thermoset and ceramic containing silicon and boron
CN104530315B (zh) * 2014-12-23 2016-11-23 湘潭大学 一种基于甲壳型液晶的自愈合液晶弹性体及其制备方法
CN107446135B (zh) * 2016-06-01 2020-04-10 翁秋梅 一种具有动态交联结构的动态聚合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107720A1 (en) * 2009-03-30 2012-05-03 Gihane Nasr Self-supporting dynamic polymer membrane, method of preparation, and uses
CN102816438A (zh) * 2011-06-06 2012-12-12 日东电工株式会社 有机硅树脂组合物以及导热片
CN105492501A (zh) * 2013-05-03 2016-04-13 拉姆兰特有限公司 交联的硅氧烷基聚合物组合物
CN105646872A (zh) * 2016-02-26 2016-06-08 翁秋梅 一种动态聚合物材料

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019210098A1 (en) * 2018-04-25 2019-10-31 Northwestern University Urethane exchange catalysts and methods for reprocessing cross-linked polyurethanes
CN109135187B (zh) * 2018-07-14 2022-08-09 桂林理工大学 一种杂化粒子增韧环氧树脂复合材料的制备方法
CN109135187A (zh) * 2018-07-14 2019-01-04 桂林理工大学 一种杂化粒子增韧环氧树脂复合材料的制备方法
CN111040204A (zh) * 2019-01-01 2020-04-21 翁秋梅 一种力致响应动态聚合物及其应用
CN111040204B (zh) * 2019-01-01 2023-01-24 厦门天策材料科技有限公司 一种力致响应动态聚合物及其应用
WO2020219663A1 (en) * 2019-04-23 2020-10-29 Northwestern University Urethane exchange catalysts and methods for reprocessing cross-linked polyurethane foams
CN111574636A (zh) * 2019-06-12 2020-08-25 郑秀旗 一种顺丁烯二酸淀粉酯、制备方法及其应用
CN111574636B (zh) * 2019-06-12 2023-02-17 郑秀旗 一种顺丁烯二酸淀粉酯、制备方法及其应用
CN110435185A (zh) * 2019-08-20 2019-11-12 大同新成新材料股份有限公司 一种碳纤维增强热塑性树脂基复合材料制备方法及制备装置
US20210189187A1 (en) * 2019-12-11 2021-06-24 Ut-Battelle, Llc Self-healing adhesive composition
CN111162314A (zh) * 2019-12-25 2020-05-15 中国科学院青岛生物能源与过程研究所 一种基于动态化学键的自修复聚合物电解质及其在二次锂电池中的应用
CN111978740A (zh) * 2020-08-21 2020-11-24 广东工业大学 一种可固相再生硅橡胶及其制备方法和应用
CN112156071A (zh) * 2020-10-09 2021-01-01 天津工业大学 一种响应性两亲性聚合物自组装胶束的制备方法
CN112851248A (zh) * 2021-01-29 2021-05-28 烟台华宝新材料科技有限公司 一种高强度混凝土及其制备方法
CN113109265A (zh) * 2021-03-18 2021-07-13 温州医科大学 一种细菌光热检测试剂、试剂盒及检测方法
CN113526494A (zh) * 2021-06-28 2021-10-22 合肥国轩高科动力能源有限公司 一种制备石墨烯水凝胶的方法
CN113526494B (zh) * 2021-06-28 2023-09-08 合肥国轩高科动力能源有限公司 一种制备石墨烯水凝胶的方法
CN113456877A (zh) * 2021-07-09 2021-10-01 广西德之然生物科技有限公司 有机硅泡沫医用敷料及其制备方法与应用
CN113456877B (zh) * 2021-07-09 2023-04-11 广西德之然生物科技有限公司 有机硅泡沫医用敷料及其制备方法与应用
CN113563659A (zh) * 2021-08-24 2021-10-29 胜利油田胜机石油装备有限公司 聚乙烯复合材料及其在制备耐高温内衬油管中的应用
CN113908125A (zh) * 2021-10-09 2022-01-11 天津工业大学 一种具有ros响应的两亲性前药聚合物自组装胶束的制备方法
CN113979641A (zh) * 2021-10-15 2022-01-28 广州市儒兴科技开发有限公司 玻璃粉及其制备方法及一种应用窗口宽的电池银浆
CN113979641B (zh) * 2021-10-15 2022-10-04 广州市儒兴科技股份有限公司 玻璃粉及其制备方法及一种应用窗口宽的电池银浆
CN114316272A (zh) * 2021-12-16 2022-04-12 湖北兴瑞硅材料有限公司 一种结构控制剂的制备工艺
CN114539786A (zh) * 2022-03-23 2022-05-27 贵州电网有限责任公司 一种耐热增强的自修复聚硼硅氧烷复合材料的制备方法
CN114539785A (zh) * 2022-04-01 2022-05-27 郑州轻工业大学 一种聚氨酯改性的橡胶复合材料、制备方法及其在避雷器复合外套中的应用
CN114539785B (zh) * 2022-04-01 2023-11-17 郑州轻工业大学 一种聚氨酯改性的橡胶复合材料、制备方法及其在避雷器复合外套中的应用
CN114773756B (zh) * 2022-05-24 2023-08-22 四川大学 一种热机械稳定超分子弹性体材料及其制备方法
CN114773756A (zh) * 2022-05-24 2022-07-22 四川大学 一种热机械稳定超分子弹性体材料及其制备方法
CN114920963A (zh) * 2022-06-21 2022-08-19 湖北工业大学 高性能循环利用的枝化动态交联再生聚乙烯树脂及其制备方法
CN115160584B (zh) * 2022-07-06 2024-03-22 西北工业大学 一种基于阳离子-π与静电作用协同构筑异质孔超分子有机框架及制备方法
CN115160584A (zh) * 2022-07-06 2022-10-11 西北工业大学 一种基于阳离子-π与静电作用协同构筑异质孔超分子有机框架及制备方法
CN115360431A (zh) * 2022-08-16 2022-11-18 厦门大学 一种聚丁二烯基高电导率聚合物电解质的制备方法及其应用
CN115676785A (zh) * 2022-09-09 2023-02-03 新纳奇材料科技江苏有限公司 一种氯化磷腈催化剂的制备方法及其在含氢硅油制备中的应用
CN115819983A (zh) * 2022-11-30 2023-03-21 中欧电子材料国际创新中心(合肥)有限公司 一种含八重氢键的交联型硅橡胶及其制备方法
CN115819983B (zh) * 2022-11-30 2023-09-22 中欧电子材料国际创新中心(合肥)有限公司 一种含八重氢键的交联型硅橡胶及其制备方法
CN116143990A (zh) * 2023-03-14 2023-05-23 温州东润新材料科技有限公司 一种有机硅改性的tpu复合材料及其制备方法
CN115975224A (zh) * 2023-03-16 2023-04-18 四川大学 一种pH/ROS双响应的组织粘附载药水凝胶及其制备方法和应用
CN115975224B (zh) * 2023-03-16 2023-08-08 四川大学 一种pH/ROS双响应的组织粘附载药水凝胶及其制备方法和应用
CN116515280A (zh) * 2023-04-06 2023-08-01 北京金博轩科技发展有限公司 一种隔氧夜光塑料及其制备方法
CN116875819A (zh) * 2023-09-06 2023-10-13 江西赣锡工贸有限公司 一种基于含锡碱液的高效提锡工艺
CN116875819B (zh) * 2023-09-06 2023-11-17 江西赣锡工贸有限公司 一种基于含锡碱液的高效提锡工艺
CN117327233A (zh) * 2023-10-10 2024-01-02 嘉鱼县宇威新材料科技有限公司 一种具有核壳结构的耐寒硅丙增韧剂及其制备方法
CN117327233B (zh) * 2023-10-10 2024-04-05 嘉鱼县宇威新材料科技有限公司 一种具有核壳结构的耐寒硅丙增韧剂及其制备方法
CN117125714A (zh) * 2023-10-27 2023-11-28 宁德时代新能源科技股份有限公司 硅基材料及其制备方法、负极极片、电池和用电设备
CN117125714B (zh) * 2023-10-27 2024-03-29 宁德时代新能源科技股份有限公司 硅基材料及其制备方法、负极极片、电池和用电设备
CN117586471A (zh) * 2024-01-18 2024-02-23 西南石油大学 一种具有荧光性能的自修复超疏水聚氨酯及其制备方法
CN117586471B (zh) * 2024-01-18 2024-04-19 西南石油大学 一种具有荧光性能的自修复超疏水聚氨酯及其制备方法
CN117603660A (zh) * 2024-01-24 2024-02-27 北京泰派斯特电子技术有限公司 一种超薄耐击穿电压的导热绝缘垫片及其制备方法
CN117603660B (zh) * 2024-01-24 2024-04-26 北京泰派斯特电子技术有限公司 一种超薄耐击穿电压的导热绝缘垫片及其制备方法

Also Published As

Publication number Publication date
CN107805311B (zh) 2022-04-01
CN107805311A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
WO2018045866A1 (zh) 具有杂化交联网络的动态聚合物及其应用
CN107805308B (zh) 一种具有杂化交联网络的动态聚合物及其应用
WO2017206671A1 (zh) 具有动态交联结构的动态聚合物
WO2018137508A1 (zh) 具有杂化交联结构的动态聚合物及其应用
CN108341960B (zh) 一种含有组合动态共价键的动态聚合物及其应用
CN107805309B (zh) 一种非共价交联结构的动态聚合物及其应用
CN108341951B (zh) 一种具有杂化交联结构的动态聚合物及其应用
CN107556450B (zh) 一种具有杂化交联网络的动态聚合物及应用
CN108342049B (zh) 一种物理分相动态聚合物及其应用
CN108341961B (zh) 一种含有组合动态共价键的动态聚合物制备及其应用
CN108342002A (zh) 一种具有杂化交联网络的动态聚合物及其应用
CN109666167B (zh) 一种杂化动态聚合物组合物
CN109666121B (zh) 一种杂化动态交联聚合物及其应用
CN108610486A (zh) 一种基于组合杂化交联动态聚合物的吸能方法
CN109206570B (zh) 一种柔性物理分相超分子动态聚合物及其应用
CN109666168A (zh) 一种自修复性固态杂化动态聚合物及其应用
CN108342037A (zh) 一种基于杂化交联网络动态聚合物的吸能方法
CN108341965A (zh) 一种交联动态聚合物及其应用
CN108341948A (zh) 一种杂化交联动态聚合物及其应用
CN108341958A (zh) 一种基于杂化动态聚合物的吸能方法
WO2018137505A1 (zh) 具有杂化键合结构的动态聚合物或组成及其应用
CN109207110B (zh) 一种杂化交联动态聚合物
CN109666160B (zh) 一种具有杂化交联网络的动态聚合物
CN108341959A (zh) 一种动态聚合物及其应用
CN109666178A (zh) 一种杂化动态聚合物组合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848039

Country of ref document: EP

Kind code of ref document: A1